DwarfException.cpp revision 451e8e6330161627a231f22d167d49dd0c374db8
1//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for writing DWARF exception info into asm files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DwarfException.h"
15#include "llvm/Module.h"
16#include "llvm/CodeGen/MachineModuleInfo.h"
17#include "llvm/CodeGen/MachineFrameInfo.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/CodeGen/MachineLocation.h"
20#include "llvm/MC/MCSection.h"
21#include "llvm/MC/MCStreamer.h"
22#include "llvm/MC/MCAsmInfo.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetFrameInfo.h"
25#include "llvm/Target/TargetLoweringObjectFile.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Support/Dwarf.h"
29#include "llvm/Support/Mangler.h"
30#include "llvm/Support/Timer.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34using namespace llvm;
35
36static TimerGroup &getDwarfTimerGroup() {
37  static TimerGroup DwarfTimerGroup("DWARF Exception");
38  return DwarfTimerGroup;
39}
40
41DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A,
42                               const MCAsmInfo *T)
43  : Dwarf(OS, A, T, "eh"), shouldEmitTable(false), shouldEmitMoves(false),
44    shouldEmitTableModule(false), shouldEmitMovesModule(false),
45    ExceptionTimer(0) {
46  if (TimePassesIsEnabled)
47    ExceptionTimer = new Timer("DWARF Exception Writer",
48                               getDwarfTimerGroup());
49}
50
51DwarfException::~DwarfException() {
52  delete ExceptionTimer;
53}
54
55/// SizeOfEncodedValue - Return the size of the encoding in bytes.
56unsigned DwarfException::SizeOfEncodedValue(unsigned Encoding) {
57  if (Encoding == dwarf::DW_EH_PE_omit)
58    return 0;
59
60  switch (Encoding & 0x07) {
61  case dwarf::DW_EH_PE_absptr:
62    return TD->getPointerSize();
63  case dwarf::DW_EH_PE_udata2:
64    return 2;
65  case dwarf::DW_EH_PE_udata4:
66    return 4;
67  case dwarf::DW_EH_PE_udata8:
68    return 8;
69  }
70
71  assert(0 && "Invalid encoded value.");
72  return 0;
73}
74
75/// EmitCIE - Emit a Common Information Entry (CIE). This holds information that
76/// is shared among many Frame Description Entries.  There is at least one CIE
77/// in every non-empty .debug_frame section.
78void DwarfException::EmitCIE(const Function *Personality, unsigned Index) {
79  // Size and sign of stack growth.
80  int stackGrowth =
81    Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
82    TargetFrameInfo::StackGrowsUp ?
83    TD->getPointerSize() : -TD->getPointerSize();
84
85  // Begin eh frame section.
86  Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection());
87
88  if (MAI->is_EHSymbolPrivate())
89    O << MAI->getPrivateGlobalPrefix();
90
91  O << "EH_frame" << Index << ":\n";
92  EmitLabel("section_eh_frame", Index);
93
94  // Define base labels.
95  EmitLabel("eh_frame_common", Index);
96
97  // Define the eh frame length.
98  EmitDifference("eh_frame_common_end", Index,
99                 "eh_frame_common_begin", Index, true);
100  Asm->EOL("Length of Common Information Entry");
101
102  // EH frame header.
103  EmitLabel("eh_frame_common_begin", Index);
104  Asm->EmitInt32((int)0);
105  Asm->EOL("CIE Identifier Tag");
106  Asm->EmitInt8(dwarf::DW_CIE_VERSION);
107  Asm->EOL("CIE Version");
108
109  // The personality presence indicates that language specific information will
110  // show up in the eh frame.
111
112  // FIXME: Don't hardcode these encodings.
113  unsigned PerEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
114  if (Personality && MAI->getNeedsIndirectEncoding())
115    PerEncoding |= dwarf::DW_EH_PE_indirect;
116  unsigned LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
117  unsigned FDEEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
118
119  char Augmentation[5] = { 0 };
120  unsigned AugmentationSize = 0;
121  char *APtr = Augmentation + 1;
122
123  if (Personality) {
124    // There is a personality function.
125    *APtr++ = 'P';
126    AugmentationSize += 1 + SizeOfEncodedValue(PerEncoding);
127  }
128
129  if (UsesLSDA[Index]) {
130    // An LSDA pointer is in the FDE augmentation.
131    *APtr++ = 'L';
132    ++AugmentationSize;
133  }
134
135  if (FDEEncoding != dwarf::DW_EH_PE_absptr) {
136    // A non-default pointer encoding for the FDE.
137    *APtr++ = 'R';
138    ++AugmentationSize;
139  }
140
141  if (APtr != Augmentation + 1)
142    Augmentation[0] = 'z';
143
144  Asm->EmitString(Augmentation);
145  Asm->EOL("CIE Augmentation");
146
147  // Round out reader.
148  Asm->EmitULEB128Bytes(1);
149  Asm->EOL("CIE Code Alignment Factor");
150  Asm->EmitSLEB128Bytes(stackGrowth);
151  Asm->EOL("CIE Data Alignment Factor");
152  Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true));
153  Asm->EOL("CIE Return Address Column");
154
155  Asm->EmitULEB128Bytes(AugmentationSize);
156  Asm->EOL("Augmentation Size");
157
158  Asm->EmitInt8(PerEncoding);
159  Asm->EOL("Personality", PerEncoding);
160
161  // If there is a personality, we need to indicate the function's location.
162  if (Personality) {
163    O << MAI->getData32bitsDirective();
164
165    O << MAI->getPersonalityPrefix();
166    Asm->EmitExternalGlobal((const GlobalVariable *)(Personality));
167    O << MAI->getPersonalitySuffix();
168
169    if (strcmp(MAI->getPersonalitySuffix(), "+4@GOTPCREL"))
170      O << "-" << MAI->getPCSymbol();
171    Asm->EOL("Personality");
172
173    Asm->EmitInt8(LSDAEncoding);
174    Asm->EOL("LSDA Encoding", LSDAEncoding);
175
176    Asm->EmitInt8(FDEEncoding);
177    Asm->EOL("FDE Encoding", FDEEncoding);
178  }
179
180  // Indicate locations of general callee saved registers in frame.
181  std::vector<MachineMove> Moves;
182  RI->getInitialFrameState(Moves);
183  EmitFrameMoves(NULL, 0, Moves, true);
184
185  // On Darwin the linker honors the alignment of eh_frame, which means it must
186  // be 8-byte on 64-bit targets to match what gcc does.  Otherwise you get
187  // holes which confuse readers of eh_frame.
188  Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
189                     0, 0, false);
190  EmitLabel("eh_frame_common_end", Index);
191
192  Asm->EOL();
193}
194
195/// EmitFDE - Emit the Frame Description Entry (FDE) for the function.
196void DwarfException::EmitFDE(const FunctionEHFrameInfo &EHFrameInfo) {
197  assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() &&
198         "Should not emit 'available externally' functions at all");
199
200  const Function *TheFunc = EHFrameInfo.function;
201
202  Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection());
203
204  // Externally visible entry into the functions eh frame info. If the
205  // corresponding function is static, this should not be externally visible.
206  if (!TheFunc->hasLocalLinkage())
207    if (const char *GlobalEHDirective = MAI->getGlobalEHDirective())
208      O << GlobalEHDirective << EHFrameInfo.FnName << "\n";
209
210  // If corresponding function is weak definition, this should be too.
211  if (TheFunc->isWeakForLinker() && MAI->getWeakDefDirective())
212    O << MAI->getWeakDefDirective() << EHFrameInfo.FnName << "\n";
213
214  // If there are no calls then you can't unwind.  This may mean we can omit the
215  // EH Frame, but some environments do not handle weak absolute symbols. If
216  // UnwindTablesMandatory is set we cannot do this optimization; the unwind
217  // info is to be available for non-EH uses.
218  if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory &&
219      (!TheFunc->isWeakForLinker() ||
220       !MAI->getWeakDefDirective() ||
221       MAI->getSupportsWeakOmittedEHFrame())) {
222    O << EHFrameInfo.FnName << " = 0\n";
223    // This name has no connection to the function, so it might get
224    // dead-stripped when the function is not, erroneously.  Prohibit
225    // dead-stripping unconditionally.
226    if (const char *UsedDirective = MAI->getUsedDirective())
227      O << UsedDirective << EHFrameInfo.FnName << "\n\n";
228  } else {
229    O << EHFrameInfo.FnName << ":\n";
230
231    // EH frame header.
232    EmitDifference("eh_frame_end", EHFrameInfo.Number,
233                   "eh_frame_begin", EHFrameInfo.Number, true);
234    Asm->EOL("Length of Frame Information Entry");
235
236    EmitLabel("eh_frame_begin", EHFrameInfo.Number);
237
238    EmitSectionOffset("eh_frame_begin", "eh_frame_common",
239                      EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
240                      true, true, false);
241
242    Asm->EOL("FDE CIE offset");
243
244    EmitReference("eh_func_begin", EHFrameInfo.Number, true, true);
245    Asm->EOL("FDE initial location");
246    EmitDifference("eh_func_end", EHFrameInfo.Number,
247                   "eh_func_begin", EHFrameInfo.Number, true);
248    Asm->EOL("FDE address range");
249
250    // If there is a personality and landing pads then point to the language
251    // specific data area in the exception table.
252    if (MMI->getPersonalities()[0] != NULL) {
253      bool is4Byte = TD->getPointerSize() == sizeof(int32_t);
254
255      Asm->EmitULEB128Bytes(is4Byte ? 4 : 8);
256      Asm->EOL("Augmentation size");
257
258      if (EHFrameInfo.hasLandingPads)
259        EmitReference("exception", EHFrameInfo.Number, true, false);
260      else {
261        if (is4Byte)
262          Asm->EmitInt32((int)0);
263        else
264          Asm->EmitInt64((int)0);
265      }
266      Asm->EOL("Language Specific Data Area");
267    } else {
268      Asm->EmitULEB128Bytes(0);
269      Asm->EOL("Augmentation size");
270    }
271
272    // Indicate locations of function specific callee saved registers in frame.
273    EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves,
274                   true);
275
276    // On Darwin the linker honors the alignment of eh_frame, which means it
277    // must be 8-byte on 64-bit targets to match what gcc does.  Otherwise you
278    // get holes which confuse readers of eh_frame.
279    Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
280                       0, 0, false);
281    EmitLabel("eh_frame_end", EHFrameInfo.Number);
282
283    // If the function is marked used, this table should be also.  We cannot
284    // make the mark unconditional in this case, since retaining the table also
285    // retains the function in this case, and there is code around that depends
286    // on unused functions (calling undefined externals) being dead-stripped to
287    // link correctly.  Yes, there really is.
288    if (MMI->isUsedFunction(EHFrameInfo.function))
289      if (const char *UsedDirective = MAI->getUsedDirective())
290        O << UsedDirective << EHFrameInfo.FnName << "\n\n";
291  }
292
293  Asm->EOL();
294}
295
296/// SharedTypeIds - How many leading type ids two landing pads have in common.
297unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
298                                       const LandingPadInfo *R) {
299  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
300  unsigned LSize = LIds.size(), RSize = RIds.size();
301  unsigned MinSize = LSize < RSize ? LSize : RSize;
302  unsigned Count = 0;
303
304  for (; Count != MinSize; ++Count)
305    if (LIds[Count] != RIds[Count])
306      return Count;
307
308  return Count;
309}
310
311/// PadLT - Order landing pads lexicographically by type id.
312bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
313  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
314  unsigned LSize = LIds.size(), RSize = RIds.size();
315  unsigned MinSize = LSize < RSize ? LSize : RSize;
316
317  for (unsigned i = 0; i != MinSize; ++i)
318    if (LIds[i] != RIds[i])
319      return LIds[i] < RIds[i];
320
321  return LSize < RSize;
322}
323
324/// ComputeActionsTable - Compute the actions table and gather the first action
325/// index for each landing pad site.
326unsigned DwarfException::
327ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
328                    SmallVectorImpl<ActionEntry> &Actions,
329                    SmallVectorImpl<unsigned> &FirstActions) {
330
331  // The action table follows the call-site table in the LSDA. The individual
332  // records are of two types:
333  //
334  //   * Catch clause
335  //   * Exception specification
336  //
337  // The two record kinds have the same format, with only small differences.
338  // They are distinguished by the "switch value" field: Catch clauses
339  // (TypeInfos) have strictly positive switch values, and exception
340  // specifications (FilterIds) have strictly negative switch values. Value 0
341  // indicates a catch-all clause.
342  //
343  // Negative type IDs index into FilterIds. Positive type IDs index into
344  // TypeInfos.  The value written for a positive type ID is just the type ID
345  // itself.  For a negative type ID, however, the value written is the
346  // (negative) byte offset of the corresponding FilterIds entry.  The byte
347  // offset is usually equal to the type ID (because the FilterIds entries are
348  // written using a variable width encoding, which outputs one byte per entry
349  // as long as the value written is not too large) but can differ.  This kind
350  // of complication does not occur for positive type IDs because type infos are
351  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
352  // offset corresponding to FilterIds[i].
353
354  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
355  SmallVector<int, 16> FilterOffsets;
356  FilterOffsets.reserve(FilterIds.size());
357  int Offset = -1;
358
359  for (std::vector<unsigned>::const_iterator
360         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
361    FilterOffsets.push_back(Offset);
362    Offset -= MCAsmInfo::getULEB128Size(*I);
363  }
364
365  FirstActions.reserve(LandingPads.size());
366
367  int FirstAction = 0;
368  unsigned SizeActions = 0;
369  const LandingPadInfo *PrevLPI = 0;
370
371  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
372         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
373    const LandingPadInfo *LPI = *I;
374    const std::vector<int> &TypeIds = LPI->TypeIds;
375    const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
376    unsigned SizeSiteActions = 0;
377
378    if (NumShared < TypeIds.size()) {
379      unsigned SizeAction = 0;
380      ActionEntry *PrevAction = 0;
381
382      if (NumShared) {
383        const unsigned SizePrevIds = PrevLPI->TypeIds.size();
384        assert(Actions.size());
385        PrevAction = &Actions.back();
386        SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
387          MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
388
389        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
390          SizeAction -=
391            MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
392          SizeAction += -PrevAction->NextAction;
393          PrevAction = PrevAction->Previous;
394        }
395      }
396
397      // Compute the actions.
398      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
399        int TypeID = TypeIds[J];
400        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
401        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
402        unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
403
404        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
405        SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
406        SizeSiteActions += SizeAction;
407
408        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
409        Actions.push_back(Action);
410        PrevAction = &Actions.back();
411      }
412
413      // Record the first action of the landing pad site.
414      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
415    } // else identical - re-use previous FirstAction
416
417    // Information used when created the call-site table. The action record
418    // field of the call site record is the offset of the first associated
419    // action record, relative to the start of the actions table. This value is
420    // biased by 1 (1 in dicating the start of the actions table), and 0
421    // indicates that there are no actions.
422    FirstActions.push_back(FirstAction);
423
424    // Compute this sites contribution to size.
425    SizeActions += SizeSiteActions;
426
427    PrevLPI = LPI;
428  }
429
430  return SizeActions;
431}
432
433/// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
434/// has a try-range containing the call, a non-zero landing pad, and an
435/// appropriate action.  The entry for an ordinary call has a try-range
436/// containing the call and zero for the landing pad and the action.  Calls
437/// marked 'nounwind' have no entry and must not be contained in the try-range
438/// of any entry - they form gaps in the table.  Entries must be ordered by
439/// try-range address.
440void DwarfException::
441ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
442                     const RangeMapType &PadMap,
443                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
444                     const SmallVectorImpl<unsigned> &FirstActions) {
445  // The end label of the previous invoke or nounwind try-range.
446  unsigned LastLabel = 0;
447
448  // Whether there is a potentially throwing instruction (currently this means
449  // an ordinary call) between the end of the previous try-range and now.
450  bool SawPotentiallyThrowing = false;
451
452  // Whether the last CallSite entry was for an invoke.
453  bool PreviousIsInvoke = false;
454
455  // Visit all instructions in order of address.
456  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
457       I != E; ++I) {
458    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
459         MI != E; ++MI) {
460      if (!MI->isLabel()) {
461        SawPotentiallyThrowing |= MI->getDesc().isCall();
462        continue;
463      }
464
465      unsigned BeginLabel = MI->getOperand(0).getImm();
466      assert(BeginLabel && "Invalid label!");
467
468      // End of the previous try-range?
469      if (BeginLabel == LastLabel)
470        SawPotentiallyThrowing = false;
471
472      // Beginning of a new try-range?
473      RangeMapType::iterator L = PadMap.find(BeginLabel);
474      if (L == PadMap.end())
475        // Nope, it was just some random label.
476        continue;
477
478      const PadRange &P = L->second;
479      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
480      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
481             "Inconsistent landing pad map!");
482
483      // For Dwarf exception handling (SjLj handling doesn't use this). If some
484      // instruction between the previous try-range and this one may throw,
485      // create a call-site entry with no landing pad for the region between the
486      // try-ranges.
487      if (SawPotentiallyThrowing &&
488          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
489        CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
490        CallSites.push_back(Site);
491        PreviousIsInvoke = false;
492      }
493
494      LastLabel = LandingPad->EndLabels[P.RangeIndex];
495      assert(BeginLabel && LastLabel && "Invalid landing pad!");
496
497      if (LandingPad->LandingPadLabel) {
498        // This try-range is for an invoke.
499        CallSiteEntry Site = {
500          BeginLabel,
501          LastLabel,
502          LandingPad->LandingPadLabel,
503          FirstActions[P.PadIndex]
504        };
505
506        // Try to merge with the previous call-site. SJLJ doesn't do this
507        if (PreviousIsInvoke &&
508          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
509          CallSiteEntry &Prev = CallSites.back();
510          if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
511            // Extend the range of the previous entry.
512            Prev.EndLabel = Site.EndLabel;
513            continue;
514          }
515        }
516
517        // Otherwise, create a new call-site.
518        CallSites.push_back(Site);
519        PreviousIsInvoke = true;
520      } else {
521        // Create a gap.
522        PreviousIsInvoke = false;
523      }
524    }
525  }
526
527  // If some instruction between the previous try-range and the end of the
528  // function may throw, create a call-site entry with no landing pad for the
529  // region following the try-range.
530  if (SawPotentiallyThrowing &&
531      MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
532    CallSiteEntry Site = { LastLabel, 0, 0, 0 };
533    CallSites.push_back(Site);
534  }
535}
536
537/// EmitExceptionTable - Emit landing pads and actions.
538///
539/// The general organization of the table is complex, but the basic concepts are
540/// easy.  First there is a header which describes the location and organization
541/// of the three components that follow.
542///
543///  1. The landing pad site information describes the range of code covered by
544///     the try.  In our case it's an accumulation of the ranges covered by the
545///     invokes in the try.  There is also a reference to the landing pad that
546///     handles the exception once processed.  Finally an index into the actions
547///     table.
548///  2. The action table, in our case, is composed of pairs of type IDs and next
549///     action offset.  Starting with the action index from the landing pad
550///     site, each type ID is checked for a match to the current exception.  If
551///     it matches then the exception and type id are passed on to the landing
552///     pad.  Otherwise the next action is looked up.  This chain is terminated
553///     with a next action of zero.  If no type id is found then the frame is
554///     unwound and handling continues.
555///  3. Type ID table contains references to all the C++ typeinfo for all
556///     catches in the function.  This tables is reverse indexed base 1.
557void DwarfException::EmitExceptionTable() {
558  const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
559  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
560  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
561  if (PadInfos.empty()) return;
562
563  // Sort the landing pads in order of their type ids.  This is used to fold
564  // duplicate actions.
565  SmallVector<const LandingPadInfo *, 64> LandingPads;
566  LandingPads.reserve(PadInfos.size());
567
568  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
569    LandingPads.push_back(&PadInfos[i]);
570
571  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
572
573  // Compute the actions table and gather the first action index for each
574  // landing pad site.
575  SmallVector<ActionEntry, 32> Actions;
576  SmallVector<unsigned, 64> FirstActions;
577  unsigned SizeActions = ComputeActionsTable(LandingPads, Actions,
578                                             FirstActions);
579
580  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
581  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
582  // try-ranges for them need be deduced when using DWARF exception handling.
583  RangeMapType PadMap;
584  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
585    const LandingPadInfo *LandingPad = LandingPads[i];
586    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
587      unsigned BeginLabel = LandingPad->BeginLabels[j];
588      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
589      PadRange P = { i, j };
590      PadMap[BeginLabel] = P;
591    }
592  }
593
594  // Compute the call-site table.
595  SmallVector<CallSiteEntry, 64> CallSites;
596  ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
597
598  // Final tallies.
599
600  // Call sites.
601  const unsigned SiteStartSize  = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
602  const unsigned SiteLengthSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
603  const unsigned LandingPadSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
604  bool IsSJLJ = MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
605  bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
606  unsigned SizeSites;
607
608  if (IsSJLJ)
609    SizeSites = 0;
610  else
611    SizeSites = CallSites.size() *
612      (SiteStartSize + SiteLengthSize + LandingPadSize);
613
614  for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
615    SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
616    if (IsSJLJ)
617      SizeSites += MCAsmInfo::getULEB128Size(i);
618  }
619
620  // Type infos.
621  const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
622  unsigned TTypeFormat;
623  unsigned TypeFormatSize;
624
625  if (!HaveTTData) {
626    // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
627    // that we're omitting that bit.
628    TTypeFormat = dwarf::DW_EH_PE_omit;
629    TypeFormatSize = SizeOfEncodedValue(dwarf::DW_EH_PE_absptr);
630  } else {
631    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
632    // pick a type encoding for them.  We're about to emit a list of pointers to
633    // typeinfo objects at the end of the LSDA.  However, unless we're in static
634    // mode, this reference will require a relocation by the dynamic linker.
635    //
636    // Because of this, we have a couple of options:
637    //
638    //   1) If we are in -static mode, we can always use an absolute reference
639    //      from the LSDA, because the static linker will resolve it.
640    //
641    //   2) Otherwise, if the LSDA section is writable, we can output the direct
642    //      reference to the typeinfo and allow the dynamic linker to relocate
643    //      it.  Since it is in a writable section, the dynamic linker won't
644    //      have a problem.
645    //
646    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
647    //      we need to use some form of indirection.  For example, on Darwin,
648    //      we can output a statically-relocatable reference to a dyld stub. The
649    //      offset to the stub is constant, but the contents are in a section
650    //      that is updated by the dynamic linker.  This is easy enough, but we
651    //      need to tell the personality function of the unwinder to indirect
652    //      through the dyld stub.
653    //
654    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
655    // somewhere.  This predicate should be moved to a shared location that is
656    // in target-independent code.
657    //
658    if (LSDASection->getKind().isWriteable() ||
659        Asm->TM.getRelocationModel() == Reloc::Static)
660      TTypeFormat = dwarf::DW_EH_PE_absptr;
661    else
662      TTypeFormat = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
663        dwarf::DW_EH_PE_sdata4;
664
665    TypeFormatSize = SizeOfEncodedValue(TTypeFormat);
666  }
667
668  // Begin the exception table.
669  Asm->OutStreamer.SwitchSection(LSDASection);
670  Asm->EmitAlignment(2, 0, 0, false);
671
672  O << "GCC_except_table" << SubprogramCount << ":\n";
673
674  // The type infos need to be aligned. GCC does this by inserting padding just
675  // before the type infos. However, this changes the size of the exception
676  // table, so you need to take this into account when you output the exception
677  // table size. However, the size is output using a variable length encoding.
678  // So by increasing the size by inserting padding, you may increase the number
679  // of bytes used for writing the size. If it increases, say by one byte, then
680  // you now need to output one less byte of padding to get the type infos
681  // aligned.  However this decreases the size of the exception table. This
682  // changes the value you have to output for the exception table size. Due to
683  // the variable length encoding, the number of bytes used for writing the
684  // length may decrease. If so, you then have to increase the amount of
685  // padding. And so on. If you look carefully at the GCC code you will see that
686  // it indeed does this in a loop, going on and on until the values stabilize.
687  // We chose another solution: don't output padding inside the table like GCC
688  // does, instead output it before the table.
689  unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
690  unsigned TyOffset = sizeof(int8_t) +          // Call site format
691    MCAsmInfo::getULEB128Size(SizeSites) +      // Call-site table length
692    SizeSites + SizeActions + SizeTypes;
693  unsigned TotalSize = sizeof(int8_t) +         // LPStart format
694                       sizeof(int8_t) +         // TType format
695    (HaveTTData ?
696     MCAsmInfo::getULEB128Size(TyOffset) : 0) + // TType base offset
697    TyOffset;
698  unsigned SizeAlign = (4 - TotalSize) & 3;
699
700  for (unsigned i = 0; i != SizeAlign; ++i) {
701    Asm->EmitInt8(0);
702    Asm->EOL("Padding");
703  }
704
705  EmitLabel("exception", SubprogramCount);
706
707  if (IsSJLJ) {
708    SmallString<16> LSDAName;
709    raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() <<
710      "_LSDA_" << Asm->getFunctionNumber();
711    O << LSDAName.str() << ":\n";
712  }
713
714  // Emit the header.
715  Asm->EmitInt8(dwarf::DW_EH_PE_omit);
716  Asm->EOL("@LPStart format", dwarf::DW_EH_PE_omit);
717
718  Asm->EmitInt8(TTypeFormat);
719  Asm->EOL("@TType format", TTypeFormat);
720
721  if (HaveTTData) {
722    Asm->EmitULEB128Bytes(TyOffset);
723    Asm->EOL("@TType base offset");
724  }
725
726  // SjLj Exception handling
727  if (IsSJLJ) {
728    Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
729    Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4);
730    Asm->EmitULEB128Bytes(SizeSites);
731    Asm->EOL("Call site table length");
732
733    // Emit the landing pad site information.
734    unsigned idx = 0;
735    for (SmallVectorImpl<CallSiteEntry>::const_iterator
736         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
737      const CallSiteEntry &S = *I;
738
739      // Offset of the landing pad, counted in 16-byte bundles relative to the
740      // @LPStart address.
741      Asm->EmitULEB128Bytes(idx);
742      Asm->EOL("Landing pad");
743
744      // Offset of the first associated action record, relative to the start of
745      // the action table. This value is biased by 1 (1 indicates the start of
746      // the action table), and 0 indicates that there are no actions.
747      Asm->EmitULEB128Bytes(S.Action);
748      Asm->EOL("Action");
749    }
750  } else {
751    // DWARF Exception handling
752    assert(MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf);
753
754    // The call-site table is a list of all call sites that may throw an
755    // exception (including C++ 'throw' statements) in the procedure
756    // fragment. It immediately follows the LSDA header. Each entry indicates,
757    // for a given call, the first corresponding action record and corresponding
758    // landing pad.
759    //
760    // The table begins with the number of bytes, stored as an LEB128
761    // compressed, unsigned integer. The records immediately follow the record
762    // count. They are sorted in increasing call-site address. Each record
763    // indicates:
764    //
765    //   * The position of the call-site.
766    //   * The position of the landing pad.
767    //   * The first action record for that call site.
768    //
769    // A missing entry in the call-site table indicates that a call is not
770    // supposed to throw.
771
772    // Emit the landing pad call site table.
773    Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
774    Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4);
775    Asm->EmitULEB128Bytes(SizeSites);
776    Asm->EOL("Call site table size");
777
778    for (SmallVectorImpl<CallSiteEntry>::const_iterator
779         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
780      const CallSiteEntry &S = *I;
781      const char *BeginTag;
782      unsigned BeginNumber;
783
784      if (!S.BeginLabel) {
785        BeginTag = "eh_func_begin";
786        BeginNumber = SubprogramCount;
787      } else {
788        BeginTag = "label";
789        BeginNumber = S.BeginLabel;
790      }
791
792      // Offset of the call site relative to the previous call site, counted in
793      // number of 16-byte bundles. The first call site is counted relative to
794      // the start of the procedure fragment.
795      EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount,
796                        true, true);
797      Asm->EOL("Region start");
798
799      if (!S.EndLabel)
800        EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber,
801                       true);
802      else
803        EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true);
804
805      Asm->EOL("Region length");
806
807      // Offset of the landing pad, counted in 16-byte bundles relative to the
808      // @LPStart address.
809      if (!S.PadLabel)
810        Asm->EmitInt32(0);
811      else
812        EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount,
813                          true, true);
814
815      Asm->EOL("Landing pad");
816
817      // Offset of the first associated action record, relative to the start of
818      // the action table. This value is biased by 1 (1 indicates the start of
819      // the action table), and 0 indicates that there are no actions.
820      Asm->EmitULEB128Bytes(S.Action);
821      Asm->EOL("Action");
822    }
823  }
824
825  // Emit the Action Table.
826  for (SmallVectorImpl<ActionEntry>::const_iterator
827         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
828    const ActionEntry &Action = *I;
829
830    // Type Filter
831    //
832    //   Used by the runtime to match the type of the thrown exception to the
833    //   type of the catch clauses or the types in the exception specification.
834
835    Asm->EmitSLEB128Bytes(Action.ValueForTypeID);
836    Asm->EOL("TypeInfo index");
837
838    // Action Record
839    //
840    //   Self-relative signed displacement in bytes of the next action record,
841    //   or 0 if there is no next action record.
842
843    Asm->EmitSLEB128Bytes(Action.NextAction);
844    Asm->EOL("Next action");
845  }
846
847  // Emit the Catch Clauses. The code for the catch clauses following the same
848  // try is similar to a switch statement. The catch clause action record
849  // informs the runtime about the type of a catch clause and about the
850  // associated switch value.
851  //
852  //  Action Record Fields:
853  //
854  //   * Filter Value
855  //     Positive value, starting at 1. Index in the types table of the
856  //     __typeinfo for the catch-clause type. 1 is the first word preceding
857  //     TTBase, 2 is the second word, and so on. Used by the runtime to check
858  //     if the thrown exception type matches the catch-clause type. Back-end
859  //     generated switch statements check against this value.
860  //
861  //   * Next
862  //     Signed offset, in bytes from the start of this field, to the next
863  //     chained action record, or zero if none.
864  //
865  // The order of the action records determined by the next field is the order
866  // of the catch clauses as they appear in the source code, and must be kept in
867  // the same order. As a result, changing the order of the catch clause would
868  // change the semantics of the program.
869  for (std::vector<GlobalVariable *>::const_reverse_iterator
870         I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
871    const GlobalVariable *GV = *I;
872    PrintRelDirective();
873
874    if (GV) {
875      std::string GLN;
876      O << Asm->getGlobalLinkName(GV, GLN);
877    } else {
878      O << "0x0";
879    }
880
881    Asm->EOL("TypeInfo");
882  }
883
884  // Emit the Type Table.
885  for (std::vector<unsigned>::const_iterator
886         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
887    unsigned TypeID = *I;
888    Asm->EmitULEB128Bytes(TypeID);
889    Asm->EOL("Filter TypeInfo index");
890  }
891
892  Asm->EmitAlignment(2, 0, 0, false);
893}
894
895/// EndModule - Emit all exception information that should come after the
896/// content.
897void DwarfException::EndModule() {
898  if (MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf)
899    return;
900
901  if (!shouldEmitMovesModule && !shouldEmitTableModule)
902    return;
903
904  if (TimePassesIsEnabled)
905    ExceptionTimer->startTimer();
906
907  const std::vector<Function *> Personalities = MMI->getPersonalities();
908
909  for (unsigned I = 0, E = Personalities.size(); I < E; ++I)
910    EmitCIE(Personalities[I], I);
911
912  for (std::vector<FunctionEHFrameInfo>::iterator
913         I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I)
914    EmitFDE(*I);
915
916  if (TimePassesIsEnabled)
917    ExceptionTimer->stopTimer();
918}
919
920/// BeginFunction - Gather pre-function exception information. Assumes it's
921/// being emitted immediately after the function entry point.
922void DwarfException::BeginFunction(MachineFunction *MF) {
923  if (!MMI || !MAI->doesSupportExceptionHandling()) return;
924
925  if (TimePassesIsEnabled)
926    ExceptionTimer->startTimer();
927
928  this->MF = MF;
929  shouldEmitTable = shouldEmitMoves = false;
930
931  // Map all labels and get rid of any dead landing pads.
932  MMI->TidyLandingPads();
933
934  // If any landing pads survive, we need an EH table.
935  if (!MMI->getLandingPads().empty())
936    shouldEmitTable = true;
937
938  // See if we need frame move info.
939  if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory)
940    shouldEmitMoves = true;
941
942  if (shouldEmitMoves || shouldEmitTable)
943    // Assumes in correct section after the entry point.
944    EmitLabel("eh_func_begin", ++SubprogramCount);
945
946  shouldEmitTableModule |= shouldEmitTable;
947  shouldEmitMovesModule |= shouldEmitMoves;
948
949  if (TimePassesIsEnabled)
950    ExceptionTimer->stopTimer();
951}
952
953/// EndFunction - Gather and emit post-function exception information.
954///
955void DwarfException::EndFunction() {
956  if (!shouldEmitMoves && !shouldEmitTable) return;
957
958  if (TimePassesIsEnabled)
959    ExceptionTimer->startTimer();
960
961  EmitLabel("eh_func_end", SubprogramCount);
962  EmitExceptionTable();
963
964  // Save EH frame information
965  EHFrames.push_back(FunctionEHFrameInfo(getAsm()->getCurrentFunctionEHName(MF),
966                                         SubprogramCount,
967                                         MMI->getPersonalityIndex(),
968                                         MF->getFrameInfo()->hasCalls(),
969                                         !MMI->getLandingPads().empty(),
970                                         MMI->getFrameMoves(),
971                                         MF->getFunction()));
972
973  // Record if this personality index uses a landing pad.
974  UsesLSDA[MMI->getPersonalityIndex()] |= !MMI->getLandingPads().empty();
975
976  if (TimePassesIsEnabled)
977    ExceptionTimer->stopTimer();
978}
979