DwarfException.cpp revision 4b3eb330a0dfae55c07e0ded7a309d01d2e69285
1//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains support for writing DWARF exception info into asm files. 11// 12//===----------------------------------------------------------------------===// 13 14#include "DwarfException.h" 15#include "llvm/Module.h" 16#include "llvm/CodeGen/AsmPrinter.h" 17#include "llvm/CodeGen/MachineModuleInfo.h" 18#include "llvm/CodeGen/MachineFrameInfo.h" 19#include "llvm/CodeGen/MachineFunction.h" 20#include "llvm/CodeGen/MachineLocation.h" 21#include "llvm/MC/MCAsmInfo.h" 22#include "llvm/MC/MCContext.h" 23#include "llvm/MC/MCExpr.h" 24#include "llvm/MC/MCSection.h" 25#include "llvm/MC/MCStreamer.h" 26#include "llvm/MC/MCSymbol.h" 27#include "llvm/Target/Mangler.h" 28#include "llvm/Target/TargetData.h" 29#include "llvm/Target/TargetFrameInfo.h" 30#include "llvm/Target/TargetLoweringObjectFile.h" 31#include "llvm/Target/TargetMachine.h" 32#include "llvm/Target/TargetOptions.h" 33#include "llvm/Target/TargetRegisterInfo.h" 34#include "llvm/Support/Dwarf.h" 35#include "llvm/Support/FormattedStream.h" 36#include "llvm/ADT/SmallString.h" 37#include "llvm/ADT/StringExtras.h" 38#include "llvm/ADT/Twine.h" 39using namespace llvm; 40 41DwarfException::DwarfException(AsmPrinter *A) 42 : Asm(A), MMI(Asm->MMI), shouldEmitTable(false), shouldEmitMoves(false), 43 shouldEmitTableModule(false), shouldEmitMovesModule(false) {} 44 45DwarfException::~DwarfException() {} 46 47/// EmitCIE - Emit a Common Information Entry (CIE). This holds information that 48/// is shared among many Frame Description Entries. There is at least one CIE 49/// in every non-empty .debug_frame section. 50void DwarfException::EmitCIE(const Function *PersonalityFn, unsigned Index) { 51 // Size and sign of stack growth. 52 int stackGrowth = Asm->getTargetData().getPointerSize(); 53 if (Asm->TM.getFrameInfo()->getStackGrowthDirection() == 54 TargetFrameInfo::StackGrowsDown) 55 stackGrowth *= -1; 56 57 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 58 59 // Begin eh frame section. 60 Asm->OutStreamer.SwitchSection(TLOF.getEHFrameSection()); 61 62 MCSymbol *EHFrameSym; 63 if (TLOF.isFunctionEHFrameSymbolPrivate()) 64 EHFrameSym = Asm->GetTempSymbol("EH_frame", Index); 65 else 66 EHFrameSym = Asm->OutContext.GetOrCreateSymbol(Twine("EH_frame") + 67 Twine(Index)); 68 Asm->OutStreamer.EmitLabel(EHFrameSym); 69 70 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("section_eh_frame", Index)); 71 72 // Define base labels. 73 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("eh_frame_common", Index)); 74 75 // Define the eh frame length. 76 Asm->OutStreamer.AddComment("Length of Common Information Entry"); 77 Asm->EmitLabelDifference(Asm->GetTempSymbol("eh_frame_common_end", Index), 78 Asm->GetTempSymbol("eh_frame_common_begin", Index), 79 4); 80 81 // EH frame header. 82 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("eh_frame_common_begin",Index)); 83 Asm->OutStreamer.AddComment("CIE Identifier Tag"); 84 Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/); 85 Asm->OutStreamer.AddComment("DW_CIE_VERSION"); 86 Asm->OutStreamer.EmitIntValue(dwarf::DW_CIE_VERSION, 1/*size*/, 0/*addr*/); 87 88 // The personality presence indicates that language specific information will 89 // show up in the eh frame. Find out how we are supposed to lower the 90 // personality function reference: 91 92 unsigned LSDAEncoding = TLOF.getLSDAEncoding(); 93 unsigned FDEEncoding = TLOF.getFDEEncoding(); 94 unsigned PerEncoding = TLOF.getPersonalityEncoding(); 95 96 char Augmentation[6] = { 0 }; 97 unsigned AugmentationSize = 0; 98 char *APtr = Augmentation + 1; 99 100 if (PersonalityFn) { 101 // There is a personality function. 102 *APtr++ = 'P'; 103 AugmentationSize += 1 + Asm->GetSizeOfEncodedValue(PerEncoding); 104 } 105 106 if (UsesLSDA[Index]) { 107 // An LSDA pointer is in the FDE augmentation. 108 *APtr++ = 'L'; 109 ++AugmentationSize; 110 } 111 112 if (FDEEncoding != dwarf::DW_EH_PE_absptr) { 113 // A non-default pointer encoding for the FDE. 114 *APtr++ = 'R'; 115 ++AugmentationSize; 116 } 117 118 if (APtr != Augmentation + 1) 119 Augmentation[0] = 'z'; 120 121 Asm->OutStreamer.AddComment("CIE Augmentation"); 122 Asm->OutStreamer.EmitBytes(StringRef(Augmentation, strlen(Augmentation)+1),0); 123 124 // Round out reader. 125 Asm->EmitULEB128(1, "CIE Code Alignment Factor"); 126 Asm->EmitSLEB128(stackGrowth, "CIE Data Alignment Factor"); 127 Asm->OutStreamer.AddComment("CIE Return Address Column"); 128 129 const TargetRegisterInfo *RI = Asm->TM.getRegisterInfo(); 130 Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true)); 131 132 if (Augmentation[0]) { 133 Asm->EmitULEB128(AugmentationSize, "Augmentation Size"); 134 135 // If there is a personality, we need to indicate the function's location. 136 if (PersonalityFn) { 137 Asm->EmitEncodingByte(PerEncoding, "Personality"); 138 Asm->OutStreamer.AddComment("Personality"); 139 Asm->EmitReference(PersonalityFn, PerEncoding); 140 } 141 if (UsesLSDA[Index]) 142 Asm->EmitEncodingByte(LSDAEncoding, "LSDA"); 143 if (FDEEncoding != dwarf::DW_EH_PE_absptr) 144 Asm->EmitEncodingByte(FDEEncoding, "FDE"); 145 } 146 147 // Indicate locations of general callee saved registers in frame. 148 std::vector<MachineMove> Moves; 149 RI->getInitialFrameState(Moves); 150 Asm->EmitFrameMoves(Moves, 0, true); 151 152 // On Darwin the linker honors the alignment of eh_frame, which means it must 153 // be 8-byte on 64-bit targets to match what gcc does. Otherwise you get 154 // holes which confuse readers of eh_frame. 155 Asm->EmitAlignment(Asm->getTargetData().getPointerSize() == 4 ? 2 : 3); 156 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("eh_frame_common_end", Index)); 157} 158 159/// EmitFDE - Emit the Frame Description Entry (FDE) for the function. 160void DwarfException::EmitFDE(const FunctionEHFrameInfo &EHFrameInfo) { 161 assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() && 162 "Should not emit 'available externally' functions at all"); 163 164 const Function *TheFunc = EHFrameInfo.function; 165 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 166 167 unsigned LSDAEncoding = TLOF.getLSDAEncoding(); 168 unsigned FDEEncoding = TLOF.getFDEEncoding(); 169 170 Asm->OutStreamer.SwitchSection(TLOF.getEHFrameSection()); 171 172 // Externally visible entry into the functions eh frame info. If the 173 // corresponding function is static, this should not be externally visible. 174 if (!TheFunc->hasLocalLinkage() && TLOF.isFunctionEHSymbolGlobal()) 175 Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym,MCSA_Global); 176 177 // If corresponding function is weak definition, this should be too. 178 if (TheFunc->isWeakForLinker() && Asm->MAI->getWeakDefDirective()) 179 Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym, 180 MCSA_WeakDefinition); 181 182 // If corresponding function is hidden, this should be too. 183 if (TheFunc->hasHiddenVisibility()) 184 if (MCSymbolAttr HiddenAttr = Asm->MAI->getHiddenVisibilityAttr()) 185 Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym, 186 HiddenAttr); 187 188 // If there are no calls then you can't unwind. This may mean we can omit the 189 // EH Frame, but some environments do not handle weak absolute symbols. If 190 // UnwindTablesMandatory is set we cannot do this optimization; the unwind 191 // info is to be available for non-EH uses. 192 if (!EHFrameInfo.adjustsStack && !UnwindTablesMandatory && 193 (!TheFunc->isWeakForLinker() || 194 !Asm->MAI->getWeakDefDirective() || 195 TLOF.getSupportsWeakOmittedEHFrame())) { 196 Asm->OutStreamer.EmitAssignment(EHFrameInfo.FunctionEHSym, 197 MCConstantExpr::Create(0, Asm->OutContext)); 198 // This name has no connection to the function, so it might get 199 // dead-stripped when the function is not, erroneously. Prohibit 200 // dead-stripping unconditionally. 201 if (Asm->MAI->hasNoDeadStrip()) 202 Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym, 203 MCSA_NoDeadStrip); 204 } else { 205 Asm->OutStreamer.EmitLabel(EHFrameInfo.FunctionEHSym); 206 207 // EH frame header. 208 Asm->OutStreamer.AddComment("Length of Frame Information Entry"); 209 Asm->EmitLabelDifference( 210 Asm->GetTempSymbol("eh_frame_end", EHFrameInfo.Number), 211 Asm->GetTempSymbol("eh_frame_begin", EHFrameInfo.Number), 4); 212 213 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("eh_frame_begin", 214 EHFrameInfo.Number)); 215 216 Asm->OutStreamer.AddComment("FDE CIE offset"); 217 Asm->EmitLabelDifference( 218 Asm->GetTempSymbol("eh_frame_begin", EHFrameInfo.Number), 219 Asm->GetTempSymbol("eh_frame_common", 220 EHFrameInfo.PersonalityIndex), 4); 221 222 MCSymbol *EHFuncBeginSym = 223 Asm->GetTempSymbol("eh_func_begin", EHFrameInfo.Number); 224 225 Asm->OutStreamer.AddComment("FDE initial location"); 226 Asm->EmitReference(EHFuncBeginSym, FDEEncoding); 227 228 Asm->OutStreamer.AddComment("FDE address range"); 229 Asm->EmitLabelDifference(Asm->GetTempSymbol("eh_func_end", 230 EHFrameInfo.Number), 231 EHFuncBeginSym, 232 Asm->GetSizeOfEncodedValue(FDEEncoding)); 233 234 // If there is a personality and landing pads then point to the language 235 // specific data area in the exception table. 236 if (MMI->getPersonalities()[0] != NULL) { 237 unsigned Size = Asm->GetSizeOfEncodedValue(LSDAEncoding); 238 239 Asm->EmitULEB128(Size, "Augmentation size"); 240 Asm->OutStreamer.AddComment("Language Specific Data Area"); 241 if (EHFrameInfo.hasLandingPads) 242 Asm->EmitReference(Asm->GetTempSymbol("exception", EHFrameInfo.Number), 243 LSDAEncoding); 244 else 245 Asm->OutStreamer.EmitIntValue(0, Size/*size*/, 0/*addrspace*/); 246 247 } else { 248 Asm->EmitULEB128(0, "Augmentation size"); 249 } 250 251 // Indicate locations of function specific callee saved registers in frame. 252 Asm->EmitFrameMoves(EHFrameInfo.Moves, EHFuncBeginSym, true); 253 254 // On Darwin the linker honors the alignment of eh_frame, which means it 255 // must be 8-byte on 64-bit targets to match what gcc does. Otherwise you 256 // get holes which confuse readers of eh_frame. 257 Asm->EmitAlignment(Asm->getTargetData().getPointerSize() == 4 ? 2 : 3); 258 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("eh_frame_end", 259 EHFrameInfo.Number)); 260 261 // If the function is marked used, this table should be also. We cannot 262 // make the mark unconditional in this case, since retaining the table also 263 // retains the function in this case, and there is code around that depends 264 // on unused functions (calling undefined externals) being dead-stripped to 265 // link correctly. Yes, there really is. 266 if (MMI->isUsedFunction(EHFrameInfo.function)) 267 if (Asm->MAI->hasNoDeadStrip()) 268 Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym, 269 MCSA_NoDeadStrip); 270 } 271 Asm->OutStreamer.AddBlankLine(); 272} 273 274/// SharedTypeIds - How many leading type ids two landing pads have in common. 275unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L, 276 const LandingPadInfo *R) { 277 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 278 unsigned LSize = LIds.size(), RSize = RIds.size(); 279 unsigned MinSize = LSize < RSize ? LSize : RSize; 280 unsigned Count = 0; 281 282 for (; Count != MinSize; ++Count) 283 if (LIds[Count] != RIds[Count]) 284 return Count; 285 286 return Count; 287} 288 289/// PadLT - Order landing pads lexicographically by type id. 290bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) { 291 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 292 unsigned LSize = LIds.size(), RSize = RIds.size(); 293 unsigned MinSize = LSize < RSize ? LSize : RSize; 294 295 for (unsigned i = 0; i != MinSize; ++i) 296 if (LIds[i] != RIds[i]) 297 return LIds[i] < RIds[i]; 298 299 return LSize < RSize; 300} 301 302/// ComputeActionsTable - Compute the actions table and gather the first action 303/// index for each landing pad site. 304unsigned DwarfException:: 305ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads, 306 SmallVectorImpl<ActionEntry> &Actions, 307 SmallVectorImpl<unsigned> &FirstActions) { 308 309 // The action table follows the call-site table in the LSDA. The individual 310 // records are of two types: 311 // 312 // * Catch clause 313 // * Exception specification 314 // 315 // The two record kinds have the same format, with only small differences. 316 // They are distinguished by the "switch value" field: Catch clauses 317 // (TypeInfos) have strictly positive switch values, and exception 318 // specifications (FilterIds) have strictly negative switch values. Value 0 319 // indicates a catch-all clause. 320 // 321 // Negative type IDs index into FilterIds. Positive type IDs index into 322 // TypeInfos. The value written for a positive type ID is just the type ID 323 // itself. For a negative type ID, however, the value written is the 324 // (negative) byte offset of the corresponding FilterIds entry. The byte 325 // offset is usually equal to the type ID (because the FilterIds entries are 326 // written using a variable width encoding, which outputs one byte per entry 327 // as long as the value written is not too large) but can differ. This kind 328 // of complication does not occur for positive type IDs because type infos are 329 // output using a fixed width encoding. FilterOffsets[i] holds the byte 330 // offset corresponding to FilterIds[i]. 331 332 const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); 333 SmallVector<int, 16> FilterOffsets; 334 FilterOffsets.reserve(FilterIds.size()); 335 int Offset = -1; 336 337 for (std::vector<unsigned>::const_iterator 338 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { 339 FilterOffsets.push_back(Offset); 340 Offset -= MCAsmInfo::getULEB128Size(*I); 341 } 342 343 FirstActions.reserve(LandingPads.size()); 344 345 int FirstAction = 0; 346 unsigned SizeActions = 0; 347 const LandingPadInfo *PrevLPI = 0; 348 349 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator 350 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) { 351 const LandingPadInfo *LPI = *I; 352 const std::vector<int> &TypeIds = LPI->TypeIds; 353 unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0; 354 unsigned SizeSiteActions = 0; 355 356 if (NumShared < TypeIds.size()) { 357 unsigned SizeAction = 0; 358 unsigned PrevAction = (unsigned)-1; 359 360 if (NumShared) { 361 unsigned SizePrevIds = PrevLPI->TypeIds.size(); 362 assert(Actions.size()); 363 PrevAction = Actions.size() - 1; 364 SizeAction = 365 MCAsmInfo::getSLEB128Size(Actions[PrevAction].NextAction) + 366 MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID); 367 368 for (unsigned j = NumShared; j != SizePrevIds; ++j) { 369 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!"); 370 SizeAction -= 371 MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID); 372 SizeAction += -Actions[PrevAction].NextAction; 373 PrevAction = Actions[PrevAction].Previous; 374 } 375 } 376 377 // Compute the actions. 378 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) { 379 int TypeID = TypeIds[J]; 380 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); 381 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; 382 unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); 383 384 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; 385 SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); 386 SizeSiteActions += SizeAction; 387 388 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction }; 389 Actions.push_back(Action); 390 PrevAction = Actions.size() - 1; 391 } 392 393 // Record the first action of the landing pad site. 394 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; 395 } // else identical - re-use previous FirstAction 396 397 // Information used when created the call-site table. The action record 398 // field of the call site record is the offset of the first associated 399 // action record, relative to the start of the actions table. This value is 400 // biased by 1 (1 indicating the start of the actions table), and 0 401 // indicates that there are no actions. 402 FirstActions.push_back(FirstAction); 403 404 // Compute this sites contribution to size. 405 SizeActions += SizeSiteActions; 406 407 PrevLPI = LPI; 408 } 409 410 return SizeActions; 411} 412 413/// CallToNoUnwindFunction - Return `true' if this is a call to a function 414/// marked `nounwind'. Return `false' otherwise. 415bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) { 416 assert(MI->getDesc().isCall() && "This should be a call instruction!"); 417 418 bool MarkedNoUnwind = false; 419 bool SawFunc = false; 420 421 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 422 const MachineOperand &MO = MI->getOperand(I); 423 424 if (!MO.isGlobal()) continue; 425 426 const Function *F = dyn_cast<Function>(MO.getGlobal()); 427 if (F == 0) continue; 428 429 if (SawFunc) { 430 // Be conservative. If we have more than one function operand for this 431 // call, then we can't make the assumption that it's the callee and 432 // not a parameter to the call. 433 // 434 // FIXME: Determine if there's a way to say that `F' is the callee or 435 // parameter. 436 MarkedNoUnwind = false; 437 break; 438 } 439 440 MarkedNoUnwind = F->doesNotThrow(); 441 SawFunc = true; 442 } 443 444 return MarkedNoUnwind; 445} 446 447/// ComputeCallSiteTable - Compute the call-site table. The entry for an invoke 448/// has a try-range containing the call, a non-zero landing pad, and an 449/// appropriate action. The entry for an ordinary call has a try-range 450/// containing the call and zero for the landing pad and the action. Calls 451/// marked 'nounwind' have no entry and must not be contained in the try-range 452/// of any entry - they form gaps in the table. Entries must be ordered by 453/// try-range address. 454void DwarfException:: 455ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, 456 const RangeMapType &PadMap, 457 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 458 const SmallVectorImpl<unsigned> &FirstActions) { 459 // The end label of the previous invoke or nounwind try-range. 460 MCSymbol *LastLabel = 0; 461 462 // Whether there is a potentially throwing instruction (currently this means 463 // an ordinary call) between the end of the previous try-range and now. 464 bool SawPotentiallyThrowing = false; 465 466 // Whether the last CallSite entry was for an invoke. 467 bool PreviousIsInvoke = false; 468 469 // Visit all instructions in order of address. 470 for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end(); 471 I != E; ++I) { 472 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); 473 MI != E; ++MI) { 474 if (!MI->isLabel()) { 475 if (MI->getDesc().isCall()) 476 SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI); 477 continue; 478 } 479 480 // End of the previous try-range? 481 MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); 482 if (BeginLabel == LastLabel) 483 SawPotentiallyThrowing = false; 484 485 // Beginning of a new try-range? 486 RangeMapType::const_iterator L = PadMap.find(BeginLabel); 487 if (L == PadMap.end()) 488 // Nope, it was just some random label. 489 continue; 490 491 const PadRange &P = L->second; 492 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; 493 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && 494 "Inconsistent landing pad map!"); 495 496 // For Dwarf exception handling (SjLj handling doesn't use this). If some 497 // instruction between the previous try-range and this one may throw, 498 // create a call-site entry with no landing pad for the region between the 499 // try-ranges. 500 if (SawPotentiallyThrowing && 501 Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) { 502 CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 }; 503 CallSites.push_back(Site); 504 PreviousIsInvoke = false; 505 } 506 507 LastLabel = LandingPad->EndLabels[P.RangeIndex]; 508 assert(BeginLabel && LastLabel && "Invalid landing pad!"); 509 510 if (!LandingPad->LandingPadLabel) { 511 // Create a gap. 512 PreviousIsInvoke = false; 513 } else { 514 // This try-range is for an invoke. 515 CallSiteEntry Site = { 516 BeginLabel, 517 LastLabel, 518 LandingPad->LandingPadLabel, 519 FirstActions[P.PadIndex] 520 }; 521 522 // Try to merge with the previous call-site. SJLJ doesn't do this 523 if (PreviousIsInvoke && 524 Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) { 525 CallSiteEntry &Prev = CallSites.back(); 526 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { 527 // Extend the range of the previous entry. 528 Prev.EndLabel = Site.EndLabel; 529 continue; 530 } 531 } 532 533 // Otherwise, create a new call-site. 534 if (Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) 535 CallSites.push_back(Site); 536 else { 537 // SjLj EH must maintain the call sites in the order assigned 538 // to them by the SjLjPrepare pass. 539 unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel); 540 if (CallSites.size() < SiteNo) 541 CallSites.resize(SiteNo); 542 CallSites[SiteNo - 1] = Site; 543 } 544 PreviousIsInvoke = true; 545 } 546 } 547 } 548 549 // If some instruction between the previous try-range and the end of the 550 // function may throw, create a call-site entry with no landing pad for the 551 // region following the try-range. 552 if (SawPotentiallyThrowing && 553 Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) { 554 CallSiteEntry Site = { LastLabel, 0, 0, 0 }; 555 CallSites.push_back(Site); 556 } 557} 558 559/// EmitExceptionTable - Emit landing pads and actions. 560/// 561/// The general organization of the table is complex, but the basic concepts are 562/// easy. First there is a header which describes the location and organization 563/// of the three components that follow. 564/// 565/// 1. The landing pad site information describes the range of code covered by 566/// the try. In our case it's an accumulation of the ranges covered by the 567/// invokes in the try. There is also a reference to the landing pad that 568/// handles the exception once processed. Finally an index into the actions 569/// table. 570/// 2. The action table, in our case, is composed of pairs of type IDs and next 571/// action offset. Starting with the action index from the landing pad 572/// site, each type ID is checked for a match to the current exception. If 573/// it matches then the exception and type id are passed on to the landing 574/// pad. Otherwise the next action is looked up. This chain is terminated 575/// with a next action of zero. If no type id is found then the frame is 576/// unwound and handling continues. 577/// 3. Type ID table contains references to all the C++ typeinfo for all 578/// catches in the function. This tables is reverse indexed base 1. 579void DwarfException::EmitExceptionTable() { 580 const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); 581 const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); 582 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); 583 584 // Sort the landing pads in order of their type ids. This is used to fold 585 // duplicate actions. 586 SmallVector<const LandingPadInfo *, 64> LandingPads; 587 LandingPads.reserve(PadInfos.size()); 588 589 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) 590 LandingPads.push_back(&PadInfos[i]); 591 592 std::sort(LandingPads.begin(), LandingPads.end(), PadLT); 593 594 // Compute the actions table and gather the first action index for each 595 // landing pad site. 596 SmallVector<ActionEntry, 32> Actions; 597 SmallVector<unsigned, 64> FirstActions; 598 unsigned SizeActions=ComputeActionsTable(LandingPads, Actions, FirstActions); 599 600 // Invokes and nounwind calls have entries in PadMap (due to being bracketed 601 // by try-range labels when lowered). Ordinary calls do not, so appropriate 602 // try-ranges for them need be deduced when using DWARF exception handling. 603 RangeMapType PadMap; 604 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { 605 const LandingPadInfo *LandingPad = LandingPads[i]; 606 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { 607 MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; 608 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); 609 PadRange P = { i, j }; 610 PadMap[BeginLabel] = P; 611 } 612 } 613 614 // Compute the call-site table. 615 SmallVector<CallSiteEntry, 64> CallSites; 616 ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions); 617 618 // Final tallies. 619 620 // Call sites. 621 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 622 bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true; 623 624 unsigned CallSiteTableLength; 625 if (IsSJLJ) 626 CallSiteTableLength = 0; 627 else { 628 unsigned SiteStartSize = 4; // dwarf::DW_EH_PE_udata4 629 unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4 630 unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4 631 CallSiteTableLength = 632 CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize); 633 } 634 635 for (unsigned i = 0, e = CallSites.size(); i < e; ++i) { 636 CallSiteTableLength += MCAsmInfo::getULEB128Size(CallSites[i].Action); 637 if (IsSJLJ) 638 CallSiteTableLength += MCAsmInfo::getULEB128Size(i); 639 } 640 641 // Type infos. 642 const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection(); 643 unsigned TTypeEncoding; 644 unsigned TypeFormatSize; 645 646 if (!HaveTTData) { 647 // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say 648 // that we're omitting that bit. 649 TTypeEncoding = dwarf::DW_EH_PE_omit; 650 // dwarf::DW_EH_PE_absptr 651 TypeFormatSize = Asm->getTargetData().getPointerSize(); 652 } else { 653 // Okay, we have actual filters or typeinfos to emit. As such, we need to 654 // pick a type encoding for them. We're about to emit a list of pointers to 655 // typeinfo objects at the end of the LSDA. However, unless we're in static 656 // mode, this reference will require a relocation by the dynamic linker. 657 // 658 // Because of this, we have a couple of options: 659 // 660 // 1) If we are in -static mode, we can always use an absolute reference 661 // from the LSDA, because the static linker will resolve it. 662 // 663 // 2) Otherwise, if the LSDA section is writable, we can output the direct 664 // reference to the typeinfo and allow the dynamic linker to relocate 665 // it. Since it is in a writable section, the dynamic linker won't 666 // have a problem. 667 // 668 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable, 669 // we need to use some form of indirection. For example, on Darwin, 670 // we can output a statically-relocatable reference to a dyld stub. The 671 // offset to the stub is constant, but the contents are in a section 672 // that is updated by the dynamic linker. This is easy enough, but we 673 // need to tell the personality function of the unwinder to indirect 674 // through the dyld stub. 675 // 676 // FIXME: When (3) is actually implemented, we'll have to emit the stubs 677 // somewhere. This predicate should be moved to a shared location that is 678 // in target-independent code. 679 // 680 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding(); 681 TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding); 682 } 683 684 // Begin the exception table. 685 Asm->OutStreamer.SwitchSection(LSDASection); 686 Asm->EmitAlignment(2); 687 688 // Emit the LSDA. 689 MCSymbol *GCCETSym = 690 Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+ 691 Twine(Asm->getFunctionNumber())); 692 Asm->OutStreamer.EmitLabel(GCCETSym); 693 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception", 694 Asm->getFunctionNumber())); 695 696 if (IsSJLJ) 697 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("_LSDA_", 698 Asm->getFunctionNumber())); 699 700 // Emit the LSDA header. 701 Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); 702 Asm->EmitEncodingByte(TTypeEncoding, "@TType"); 703 704 // The type infos need to be aligned. GCC does this by inserting padding just 705 // before the type infos. However, this changes the size of the exception 706 // table, so you need to take this into account when you output the exception 707 // table size. However, the size is output using a variable length encoding. 708 // So by increasing the size by inserting padding, you may increase the number 709 // of bytes used for writing the size. If it increases, say by one byte, then 710 // you now need to output one less byte of padding to get the type infos 711 // aligned. However this decreases the size of the exception table. This 712 // changes the value you have to output for the exception table size. Due to 713 // the variable length encoding, the number of bytes used for writing the 714 // length may decrease. If so, you then have to increase the amount of 715 // padding. And so on. If you look carefully at the GCC code you will see that 716 // it indeed does this in a loop, going on and on until the values stabilize. 717 // We chose another solution: don't output padding inside the table like GCC 718 // does, instead output it before the table. 719 unsigned SizeTypes = TypeInfos.size() * TypeFormatSize; 720 unsigned CallSiteTableLengthSize = 721 MCAsmInfo::getULEB128Size(CallSiteTableLength); 722 unsigned TTypeBaseOffset = 723 sizeof(int8_t) + // Call site format 724 CallSiteTableLengthSize + // Call site table length size 725 CallSiteTableLength + // Call site table length 726 SizeActions + // Actions size 727 SizeTypes; 728 unsigned TTypeBaseOffsetSize = MCAsmInfo::getULEB128Size(TTypeBaseOffset); 729 unsigned TotalSize = 730 sizeof(int8_t) + // LPStart format 731 sizeof(int8_t) + // TType format 732 (HaveTTData ? TTypeBaseOffsetSize : 0) + // TType base offset size 733 TTypeBaseOffset; // TType base offset 734 unsigned SizeAlign = (4 - TotalSize) & 3; 735 736 if (HaveTTData) { 737 // Account for any extra padding that will be added to the call site table 738 // length. 739 Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign); 740 SizeAlign = 0; 741 } 742 743 // SjLj Exception handling 744 if (IsSJLJ) { 745 Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site"); 746 747 // Add extra padding if it wasn't added to the TType base offset. 748 Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign); 749 750 // Emit the landing pad site information. 751 unsigned idx = 0; 752 for (SmallVectorImpl<CallSiteEntry>::const_iterator 753 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) { 754 const CallSiteEntry &S = *I; 755 756 // Offset of the landing pad, counted in 16-byte bundles relative to the 757 // @LPStart address. 758 Asm->EmitULEB128(idx, "Landing pad"); 759 760 // Offset of the first associated action record, relative to the start of 761 // the action table. This value is biased by 1 (1 indicates the start of 762 // the action table), and 0 indicates that there are no actions. 763 Asm->EmitULEB128(S.Action, "Action"); 764 } 765 } else { 766 // DWARF Exception handling 767 assert(Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf); 768 769 // The call-site table is a list of all call sites that may throw an 770 // exception (including C++ 'throw' statements) in the procedure 771 // fragment. It immediately follows the LSDA header. Each entry indicates, 772 // for a given call, the first corresponding action record and corresponding 773 // landing pad. 774 // 775 // The table begins with the number of bytes, stored as an LEB128 776 // compressed, unsigned integer. The records immediately follow the record 777 // count. They are sorted in increasing call-site address. Each record 778 // indicates: 779 // 780 // * The position of the call-site. 781 // * The position of the landing pad. 782 // * The first action record for that call site. 783 // 784 // A missing entry in the call-site table indicates that a call is not 785 // supposed to throw. 786 787 // Emit the landing pad call site table. 788 Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site"); 789 790 // Add extra padding if it wasn't added to the TType base offset. 791 Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign); 792 793 for (SmallVectorImpl<CallSiteEntry>::const_iterator 794 I = CallSites.begin(), E = CallSites.end(); I != E; ++I) { 795 const CallSiteEntry &S = *I; 796 797 MCSymbol *EHFuncBeginSym = 798 Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber()); 799 800 MCSymbol *BeginLabel = S.BeginLabel; 801 if (BeginLabel == 0) 802 BeginLabel = EHFuncBeginSym; 803 MCSymbol *EndLabel = S.EndLabel; 804 if (EndLabel == 0) 805 EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber()); 806 807 // Offset of the call site relative to the previous call site, counted in 808 // number of 16-byte bundles. The first call site is counted relative to 809 // the start of the procedure fragment. 810 Asm->OutStreamer.AddComment("Region start"); 811 Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4); 812 813 Asm->OutStreamer.AddComment("Region length"); 814 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); 815 816 817 // Offset of the landing pad, counted in 16-byte bundles relative to the 818 // @LPStart address. 819 Asm->OutStreamer.AddComment("Landing pad"); 820 if (!S.PadLabel) 821 Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/); 822 else 823 Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4); 824 825 // Offset of the first associated action record, relative to the start of 826 // the action table. This value is biased by 1 (1 indicates the start of 827 // the action table), and 0 indicates that there are no actions. 828 Asm->EmitULEB128(S.Action, "Action"); 829 } 830 } 831 832 // Emit the Action Table. 833 if (Actions.size() != 0) { 834 Asm->OutStreamer.AddComment("-- Action Record Table --"); 835 Asm->OutStreamer.AddBlankLine(); 836 } 837 838 for (SmallVectorImpl<ActionEntry>::const_iterator 839 I = Actions.begin(), E = Actions.end(); I != E; ++I) { 840 const ActionEntry &Action = *I; 841 Asm->OutStreamer.AddComment("Action Record"); 842 Asm->OutStreamer.AddBlankLine(); 843 844 // Type Filter 845 // 846 // Used by the runtime to match the type of the thrown exception to the 847 // type of the catch clauses or the types in the exception specification. 848 Asm->EmitSLEB128(Action.ValueForTypeID, " TypeInfo index"); 849 850 // Action Record 851 // 852 // Self-relative signed displacement in bytes of the next action record, 853 // or 0 if there is no next action record. 854 Asm->EmitSLEB128(Action.NextAction, " Next action"); 855 } 856 857 // Emit the Catch TypeInfos. 858 if (!TypeInfos.empty()) { 859 Asm->OutStreamer.AddComment("-- Catch TypeInfos --"); 860 Asm->OutStreamer.AddBlankLine(); 861 } 862 for (std::vector<const GlobalVariable *>::const_reverse_iterator 863 I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) { 864 const GlobalVariable *GV = *I; 865 866 Asm->OutStreamer.AddComment("TypeInfo"); 867 if (GV) 868 Asm->EmitReference(GV, TTypeEncoding); 869 else 870 Asm->OutStreamer.EmitIntValue(0,Asm->GetSizeOfEncodedValue(TTypeEncoding), 871 0); 872 } 873 874 // Emit the Exception Specifications. 875 if (!FilterIds.empty()) { 876 Asm->OutStreamer.AddComment("-- Filter IDs --"); 877 Asm->OutStreamer.AddBlankLine(); 878 } 879 for (std::vector<unsigned>::const_iterator 880 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) { 881 unsigned TypeID = *I; 882 Asm->EmitULEB128(TypeID, TypeID != 0 ? "Exception specification" : 0); 883 } 884 885 Asm->EmitAlignment(2); 886} 887 888/// EndModule - Emit all exception information that should come after the 889/// content. 890void DwarfException::EndModule() { 891 if (Asm->MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf) 892 return; 893 894 if (!shouldEmitMovesModule && !shouldEmitTableModule) 895 return; 896 897 const std::vector<const Function*> &Personalities = MMI->getPersonalities(); 898 899 for (unsigned I = 0, E = Personalities.size(); I < E; ++I) 900 EmitCIE(Personalities[I], I); 901 902 for (std::vector<FunctionEHFrameInfo>::iterator 903 I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I) 904 EmitFDE(*I); 905} 906 907/// BeginFunction - Gather pre-function exception information. Assumes it's 908/// being emitted immediately after the function entry point. 909void DwarfException::BeginFunction(const MachineFunction *MF) { 910 shouldEmitTable = shouldEmitMoves = false; 911 912 // If any landing pads survive, we need an EH table. 913 shouldEmitTable = !MMI->getLandingPads().empty(); 914 915 // See if we need frame move info. 916 shouldEmitMoves = 917 !Asm->MF->getFunction()->doesNotThrow() || UnwindTablesMandatory; 918 919 if (shouldEmitMoves || shouldEmitTable) 920 // Assumes in correct section after the entry point. 921 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("eh_func_begin", 922 Asm->getFunctionNumber())); 923 924 shouldEmitTableModule |= shouldEmitTable; 925 shouldEmitMovesModule |= shouldEmitMoves; 926} 927 928/// EndFunction - Gather and emit post-function exception information. 929/// 930void DwarfException::EndFunction() { 931 if (!shouldEmitMoves && !shouldEmitTable) return; 932 933 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("eh_func_end", 934 Asm->getFunctionNumber())); 935 936 // Record if this personality index uses a landing pad. 937 bool HasLandingPad = !MMI->getLandingPads().empty(); 938 UsesLSDA[MMI->getPersonalityIndex()] |= HasLandingPad; 939 940 // Map all labels and get rid of any dead landing pads. 941 MMI->TidyLandingPads(); 942 943 if (HasLandingPad) 944 EmitExceptionTable(); 945 946 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 947 MCSymbol *FunctionEHSym = 948 Asm->GetSymbolWithGlobalValueBase(Asm->MF->getFunction(), ".eh", 949 TLOF.isFunctionEHFrameSymbolPrivate()); 950 951 // Save EH frame information 952 EHFrames. 953 push_back(FunctionEHFrameInfo(FunctionEHSym, 954 Asm->getFunctionNumber(), 955 MMI->getPersonalityIndex(), 956 Asm->MF->getFrameInfo()->adjustsStack(), 957 !MMI->getLandingPads().empty(), 958 MMI->getFrameMoves(), 959 Asm->MF->getFunction())); 960} 961