DwarfException.cpp revision 7e1a8f882f1baa1c0d5204373d6eb4cb7fc9f3ea
1//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for writing DWARF exception info into asm files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DwarfException.h"
15#include "llvm/Module.h"
16#include "llvm/CodeGen/MachineModuleInfo.h"
17#include "llvm/CodeGen/MachineFrameInfo.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/CodeGen/MachineLocation.h"
20#include "llvm/MC/MCAsmInfo.h"
21#include "llvm/MC/MCContext.h"
22#include "llvm/MC/MCExpr.h"
23#include "llvm/MC/MCSection.h"
24#include "llvm/MC/MCStreamer.h"
25#include "llvm/MC/MCSymbol.h"
26#include "llvm/Target/Mangler.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetFrameInfo.h"
29#include "llvm/Target/TargetLoweringObjectFile.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Support/Dwarf.h"
34#include "llvm/Support/FormattedStream.h"
35#include "llvm/Support/Timer.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/ADT/Twine.h"
39using namespace llvm;
40
41DwarfException::DwarfException(AsmPrinter *A)
42  : DwarfPrinter(A), shouldEmitTable(false), shouldEmitMoves(false),
43    shouldEmitTableModule(false), shouldEmitMovesModule(false),
44    ExceptionTimer(0) {
45  if (TimePassesIsEnabled)
46    ExceptionTimer = new Timer("DWARF Exception Writer");
47}
48
49DwarfException::~DwarfException() {
50  delete ExceptionTimer;
51}
52
53/// EmitCIE - Emit a Common Information Entry (CIE). This holds information that
54/// is shared among many Frame Description Entries.  There is at least one CIE
55/// in every non-empty .debug_frame section.
56void DwarfException::EmitCIE(const Function *PersonalityFn, unsigned Index) {
57  // Size and sign of stack growth.
58  int stackGrowth =
59    Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
60    TargetFrameInfo::StackGrowsUp ?
61    TD->getPointerSize() : -TD->getPointerSize();
62
63  const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
64
65  // Begin eh frame section.
66  Asm->OutStreamer.SwitchSection(TLOF.getEHFrameSection());
67
68  MCSymbol *EHFrameSym;
69  if (TLOF.isFunctionEHFrameSymbolPrivate())
70    EHFrameSym = getDWLabel("EH_frame", Index);
71  else
72    EHFrameSym = Asm->OutContext.GetOrCreateSymbol(Twine("EH_frame") +
73                                                   Twine(Index));
74  Asm->OutStreamer.EmitLabel(EHFrameSym);
75
76  Asm->OutStreamer.EmitLabel(getDWLabel("section_eh_frame", Index));
77
78  // Define base labels.
79  Asm->OutStreamer.EmitLabel(getDWLabel("eh_frame_common", Index));
80
81  // Define the eh frame length.
82  Asm->OutStreamer.AddComment("Length of Common Information Entry");
83  EmitDifference(getDWLabel("eh_frame_common_end", Index),
84                 getDWLabel("eh_frame_common_begin", Index), true);
85
86  // EH frame header.
87  Asm->OutStreamer.EmitLabel(getDWLabel("eh_frame_common_begin", Index));
88  Asm->OutStreamer.AddComment("CIE Identifier Tag");
89  Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
90  Asm->OutStreamer.AddComment("DW_CIE_VERSION");
91  Asm->OutStreamer.EmitIntValue(dwarf::DW_CIE_VERSION, 1/*size*/, 0/*addr*/);
92
93  // The personality presence indicates that language specific information will
94  // show up in the eh frame.  Find out how we are supposed to lower the
95  // personality function reference:
96
97  unsigned LSDAEncoding = TLOF.getLSDAEncoding();
98  unsigned FDEEncoding = TLOF.getFDEEncoding();
99  unsigned PerEncoding = TLOF.getPersonalityEncoding();
100
101  char Augmentation[6] = { 0 };
102  unsigned AugmentationSize = 0;
103  char *APtr = Augmentation + 1;
104
105  if (PersonalityFn) {
106    // There is a personality function.
107    *APtr++ = 'P';
108    AugmentationSize += 1 + SizeOfEncodedValue(PerEncoding);
109  }
110
111  if (UsesLSDA[Index]) {
112    // An LSDA pointer is in the FDE augmentation.
113    *APtr++ = 'L';
114    ++AugmentationSize;
115  }
116
117  if (FDEEncoding != dwarf::DW_EH_PE_absptr) {
118    // A non-default pointer encoding for the FDE.
119    *APtr++ = 'R';
120    ++AugmentationSize;
121  }
122
123  if (APtr != Augmentation + 1)
124    Augmentation[0] = 'z';
125
126  Asm->OutStreamer.AddComment("CIE Augmentation");
127  Asm->OutStreamer.EmitBytes(StringRef(Augmentation, strlen(Augmentation)+1),0);
128
129  // Round out reader.
130  Asm->EmitULEB128(1, "CIE Code Alignment Factor");
131  Asm->EmitSLEB128(stackGrowth, "CIE Data Alignment Factor");
132  Asm->OutStreamer.AddComment("CIE Return Address Column");
133  Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true));
134
135  if (Augmentation[0]) {
136    Asm->EmitULEB128(AugmentationSize, "Augmentation Size");
137
138    // If there is a personality, we need to indicate the function's location.
139    if (PersonalityFn) {
140      EmitEncodingByte(PerEncoding, "Personality");
141      Asm->OutStreamer.AddComment("Personality");
142      EmitReference(PersonalityFn, PerEncoding);
143    }
144    if (UsesLSDA[Index])
145      EmitEncodingByte(LSDAEncoding, "LSDA");
146    if (FDEEncoding != dwarf::DW_EH_PE_absptr)
147      EmitEncodingByte(FDEEncoding, "FDE");
148  }
149
150  // Indicate locations of general callee saved registers in frame.
151  std::vector<MachineMove> Moves;
152  RI->getInitialFrameState(Moves);
153  EmitFrameMoves(0, Moves, true);
154
155  // On Darwin the linker honors the alignment of eh_frame, which means it must
156  // be 8-byte on 64-bit targets to match what gcc does.  Otherwise you get
157  // holes which confuse readers of eh_frame.
158  Asm->EmitAlignment(TD->getPointerSize() == 4 ? 2 : 3, 0, 0, false);
159  Asm->OutStreamer.EmitLabel(getDWLabel("eh_frame_common_end", Index));
160}
161
162/// EmitFDE - Emit the Frame Description Entry (FDE) for the function.
163void DwarfException::EmitFDE(const FunctionEHFrameInfo &EHFrameInfo) {
164  assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() &&
165         "Should not emit 'available externally' functions at all");
166
167  const Function *TheFunc = EHFrameInfo.function;
168  const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
169
170  unsigned LSDAEncoding = TLOF.getLSDAEncoding();
171  unsigned FDEEncoding = TLOF.getFDEEncoding();
172
173  Asm->OutStreamer.SwitchSection(TLOF.getEHFrameSection());
174
175  // Externally visible entry into the functions eh frame info. If the
176  // corresponding function is static, this should not be externally visible.
177  if (!TheFunc->hasLocalLinkage() && TLOF.isFunctionEHSymbolGlobal())
178    Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym,MCSA_Global);
179
180  // If corresponding function is weak definition, this should be too.
181  if (TheFunc->isWeakForLinker() && MAI->getWeakDefDirective())
182    Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym,
183                                         MCSA_WeakDefinition);
184
185  // If corresponding function is hidden, this should be too.
186  if (TheFunc->hasHiddenVisibility())
187    if (MCSymbolAttr HiddenAttr = MAI->getHiddenVisibilityAttr())
188      Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym,
189                                           HiddenAttr);
190
191  // If there are no calls then you can't unwind.  This may mean we can omit the
192  // EH Frame, but some environments do not handle weak absolute symbols. If
193  // UnwindTablesMandatory is set we cannot do this optimization; the unwind
194  // info is to be available for non-EH uses.
195  if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory &&
196      (!TheFunc->isWeakForLinker() ||
197       !MAI->getWeakDefDirective() ||
198       TLOF.getSupportsWeakOmittedEHFrame())) {
199    Asm->OutStreamer.EmitAssignment(EHFrameInfo.FunctionEHSym,
200                                    MCConstantExpr::Create(0, Asm->OutContext));
201    // This name has no connection to the function, so it might get
202    // dead-stripped when the function is not, erroneously.  Prohibit
203    // dead-stripping unconditionally.
204    if (MAI->hasNoDeadStrip())
205      Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym,
206                                           MCSA_NoDeadStrip);
207  } else {
208    Asm->OutStreamer.EmitLabel(EHFrameInfo.FunctionEHSym);
209
210    // EH frame header.
211    Asm->OutStreamer.AddComment("Length of Frame Information Entry");
212    EmitDifference(getDWLabel("eh_frame_end", EHFrameInfo.Number),
213                   getDWLabel("eh_frame_begin", EHFrameInfo.Number),
214                   true);
215
216    Asm->OutStreamer.EmitLabel(getDWLabel("eh_frame_begin",EHFrameInfo.Number));
217
218    Asm->OutStreamer.AddComment("FDE CIE offset");
219    EmitSectionOffset(getDWLabel("eh_frame_begin", EHFrameInfo.Number),
220                      getDWLabel("eh_frame_common",
221                                 EHFrameInfo.PersonalityIndex),
222                      true, true);
223
224    MCSymbol *EHFuncBeginSym = getDWLabel("eh_func_begin", EHFrameInfo.Number);
225
226    Asm->OutStreamer.AddComment("FDE initial location");
227    EmitReference(EHFuncBeginSym, FDEEncoding);
228
229    Asm->OutStreamer.AddComment("FDE address range");
230    EmitDifference(getDWLabel("eh_func_end", EHFrameInfo.Number),EHFuncBeginSym,
231                   SizeOfEncodedValue(FDEEncoding) == 4);
232
233    // If there is a personality and landing pads then point to the language
234    // specific data area in the exception table.
235    if (MMI->getPersonalities()[0] != NULL) {
236      unsigned Size = SizeOfEncodedValue(LSDAEncoding);
237
238      Asm->EmitULEB128(Size, "Augmentation size");
239      Asm->OutStreamer.AddComment("Language Specific Data Area");
240      if (EHFrameInfo.hasLandingPads)
241        EmitReference(getDWLabel("exception", EHFrameInfo.Number),LSDAEncoding);
242      else
243        Asm->OutStreamer.EmitIntValue(0, Size/*size*/, 0/*addrspace*/);
244
245    } else {
246      Asm->EmitULEB128(0, "Augmentation size");
247    }
248
249    // Indicate locations of function specific callee saved registers in frame.
250    EmitFrameMoves(EHFuncBeginSym, EHFrameInfo.Moves, true);
251
252    // On Darwin the linker honors the alignment of eh_frame, which means it
253    // must be 8-byte on 64-bit targets to match what gcc does.  Otherwise you
254    // get holes which confuse readers of eh_frame.
255    Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
256                       0, 0, false);
257    Asm->OutStreamer.EmitLabel(getDWLabel("eh_frame_end", EHFrameInfo.Number));
258
259    // If the function is marked used, this table should be also.  We cannot
260    // make the mark unconditional in this case, since retaining the table also
261    // retains the function in this case, and there is code around that depends
262    // on unused functions (calling undefined externals) being dead-stripped to
263    // link correctly.  Yes, there really is.
264    if (MMI->isUsedFunction(EHFrameInfo.function))
265      if (MAI->hasNoDeadStrip())
266        Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym,
267                                             MCSA_NoDeadStrip);
268  }
269  Asm->OutStreamer.AddBlankLine();
270}
271
272/// SharedTypeIds - How many leading type ids two landing pads have in common.
273unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
274                                       const LandingPadInfo *R) {
275  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
276  unsigned LSize = LIds.size(), RSize = RIds.size();
277  unsigned MinSize = LSize < RSize ? LSize : RSize;
278  unsigned Count = 0;
279
280  for (; Count != MinSize; ++Count)
281    if (LIds[Count] != RIds[Count])
282      return Count;
283
284  return Count;
285}
286
287/// PadLT - Order landing pads lexicographically by type id.
288bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
289  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
290  unsigned LSize = LIds.size(), RSize = RIds.size();
291  unsigned MinSize = LSize < RSize ? LSize : RSize;
292
293  for (unsigned i = 0; i != MinSize; ++i)
294    if (LIds[i] != RIds[i])
295      return LIds[i] < RIds[i];
296
297  return LSize < RSize;
298}
299
300/// ComputeActionsTable - Compute the actions table and gather the first action
301/// index for each landing pad site.
302unsigned DwarfException::
303ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
304                    SmallVectorImpl<ActionEntry> &Actions,
305                    SmallVectorImpl<unsigned> &FirstActions) {
306
307  // The action table follows the call-site table in the LSDA. The individual
308  // records are of two types:
309  //
310  //   * Catch clause
311  //   * Exception specification
312  //
313  // The two record kinds have the same format, with only small differences.
314  // They are distinguished by the "switch value" field: Catch clauses
315  // (TypeInfos) have strictly positive switch values, and exception
316  // specifications (FilterIds) have strictly negative switch values. Value 0
317  // indicates a catch-all clause.
318  //
319  // Negative type IDs index into FilterIds. Positive type IDs index into
320  // TypeInfos.  The value written for a positive type ID is just the type ID
321  // itself.  For a negative type ID, however, the value written is the
322  // (negative) byte offset of the corresponding FilterIds entry.  The byte
323  // offset is usually equal to the type ID (because the FilterIds entries are
324  // written using a variable width encoding, which outputs one byte per entry
325  // as long as the value written is not too large) but can differ.  This kind
326  // of complication does not occur for positive type IDs because type infos are
327  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
328  // offset corresponding to FilterIds[i].
329
330  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
331  SmallVector<int, 16> FilterOffsets;
332  FilterOffsets.reserve(FilterIds.size());
333  int Offset = -1;
334
335  for (std::vector<unsigned>::const_iterator
336         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
337    FilterOffsets.push_back(Offset);
338    Offset -= MCAsmInfo::getULEB128Size(*I);
339  }
340
341  FirstActions.reserve(LandingPads.size());
342
343  int FirstAction = 0;
344  unsigned SizeActions = 0;
345  const LandingPadInfo *PrevLPI = 0;
346
347  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
348         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
349    const LandingPadInfo *LPI = *I;
350    const std::vector<int> &TypeIds = LPI->TypeIds;
351    const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
352    unsigned SizeSiteActions = 0;
353
354    if (NumShared < TypeIds.size()) {
355      unsigned SizeAction = 0;
356      unsigned PrevAction = (unsigned)-1;
357
358      if (NumShared) {
359        const unsigned SizePrevIds = PrevLPI->TypeIds.size();
360        assert(Actions.size());
361        PrevAction = Actions.size() - 1;
362        SizeAction =
363          MCAsmInfo::getSLEB128Size(Actions[PrevAction].NextAction) +
364          MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
365
366        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
367          assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
368          SizeAction -=
369            MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
370          SizeAction += -Actions[PrevAction].NextAction;
371          PrevAction = Actions[PrevAction].Previous;
372        }
373      }
374
375      // Compute the actions.
376      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
377        int TypeID = TypeIds[J];
378        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
379        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
380        unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
381
382        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
383        SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
384        SizeSiteActions += SizeAction;
385
386        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
387        Actions.push_back(Action);
388        PrevAction = Actions.size() - 1;
389      }
390
391      // Record the first action of the landing pad site.
392      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
393    } // else identical - re-use previous FirstAction
394
395    // Information used when created the call-site table. The action record
396    // field of the call site record is the offset of the first associated
397    // action record, relative to the start of the actions table. This value is
398    // biased by 1 (1 indicating the start of the actions table), and 0
399    // indicates that there are no actions.
400    FirstActions.push_back(FirstAction);
401
402    // Compute this sites contribution to size.
403    SizeActions += SizeSiteActions;
404
405    PrevLPI = LPI;
406  }
407
408  return SizeActions;
409}
410
411/// CallToNoUnwindFunction - Return `true' if this is a call to a function
412/// marked `nounwind'. Return `false' otherwise.
413bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) {
414  assert(MI->getDesc().isCall() && "This should be a call instruction!");
415
416  bool MarkedNoUnwind = false;
417  bool SawFunc = false;
418
419  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
420    const MachineOperand &MO = MI->getOperand(I);
421
422    if (!MO.isGlobal()) continue;
423
424    Function *F = dyn_cast<Function>(MO.getGlobal());
425    if (F == 0) continue;
426
427    if (SawFunc) {
428      // Be conservative. If we have more than one function operand for this
429      // call, then we can't make the assumption that it's the callee and
430      // not a parameter to the call.
431      //
432      // FIXME: Determine if there's a way to say that `F' is the callee or
433      // parameter.
434      MarkedNoUnwind = false;
435      break;
436    }
437
438    MarkedNoUnwind = F->doesNotThrow();
439    SawFunc = true;
440  }
441
442  return MarkedNoUnwind;
443}
444
445/// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
446/// has a try-range containing the call, a non-zero landing pad, and an
447/// appropriate action.  The entry for an ordinary call has a try-range
448/// containing the call and zero for the landing pad and the action.  Calls
449/// marked 'nounwind' have no entry and must not be contained in the try-range
450/// of any entry - they form gaps in the table.  Entries must be ordered by
451/// try-range address.
452void DwarfException::
453ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
454                     const RangeMapType &PadMap,
455                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
456                     const SmallVectorImpl<unsigned> &FirstActions) {
457  // The end label of the previous invoke or nounwind try-range.
458  MCSymbol *LastLabel = 0;
459
460  // Whether there is a potentially throwing instruction (currently this means
461  // an ordinary call) between the end of the previous try-range and now.
462  bool SawPotentiallyThrowing = false;
463
464  // Whether the last CallSite entry was for an invoke.
465  bool PreviousIsInvoke = false;
466
467  // Visit all instructions in order of address.
468  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
469       I != E; ++I) {
470    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
471         MI != E; ++MI) {
472      if (!MI->isLabel()) {
473        if (MI->getDesc().isCall())
474          SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
475        continue;
476      }
477
478      // End of the previous try-range?
479      MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
480      if (BeginLabel == LastLabel)
481        SawPotentiallyThrowing = false;
482
483      // Beginning of a new try-range?
484      RangeMapType::const_iterator L = PadMap.find(BeginLabel);
485      if (L == PadMap.end())
486        // Nope, it was just some random label.
487        continue;
488
489      const PadRange &P = L->second;
490      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
491      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
492             "Inconsistent landing pad map!");
493
494      // For Dwarf exception handling (SjLj handling doesn't use this). If some
495      // instruction between the previous try-range and this one may throw,
496      // create a call-site entry with no landing pad for the region between the
497      // try-ranges.
498      if (SawPotentiallyThrowing &&
499          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
500        CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
501        CallSites.push_back(Site);
502        PreviousIsInvoke = false;
503      }
504
505      LastLabel = LandingPad->EndLabels[P.RangeIndex];
506      assert(BeginLabel && LastLabel && "Invalid landing pad!");
507
508      if (!LandingPad->LandingPadLabel) {
509        // Create a gap.
510        PreviousIsInvoke = false;
511      } else {
512        // This try-range is for an invoke.
513        CallSiteEntry Site = {
514          BeginLabel,
515          LastLabel,
516          LandingPad->LandingPadLabel,
517          FirstActions[P.PadIndex]
518        };
519
520        // Try to merge with the previous call-site. SJLJ doesn't do this
521        if (PreviousIsInvoke &&
522          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
523          CallSiteEntry &Prev = CallSites.back();
524          if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
525            // Extend the range of the previous entry.
526            Prev.EndLabel = Site.EndLabel;
527            continue;
528          }
529        }
530
531        // Otherwise, create a new call-site.
532        if (MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf)
533          CallSites.push_back(Site);
534        else {
535          // SjLj EH must maintain the call sites in the order assigned
536          // to them by the SjLjPrepare pass.
537          unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
538          if (CallSites.size() < SiteNo)
539            CallSites.resize(SiteNo);
540          CallSites[SiteNo - 1] = Site;
541        }
542        PreviousIsInvoke = true;
543      }
544    }
545  }
546
547  // If some instruction between the previous try-range and the end of the
548  // function may throw, create a call-site entry with no landing pad for the
549  // region following the try-range.
550  if (SawPotentiallyThrowing &&
551      MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
552    CallSiteEntry Site = { LastLabel, 0, 0, 0 };
553    CallSites.push_back(Site);
554  }
555}
556
557/// EmitExceptionTable - Emit landing pads and actions.
558///
559/// The general organization of the table is complex, but the basic concepts are
560/// easy.  First there is a header which describes the location and organization
561/// of the three components that follow.
562///
563///  1. The landing pad site information describes the range of code covered by
564///     the try.  In our case it's an accumulation of the ranges covered by the
565///     invokes in the try.  There is also a reference to the landing pad that
566///     handles the exception once processed.  Finally an index into the actions
567///     table.
568///  2. The action table, in our case, is composed of pairs of type IDs and next
569///     action offset.  Starting with the action index from the landing pad
570///     site, each type ID is checked for a match to the current exception.  If
571///     it matches then the exception and type id are passed on to the landing
572///     pad.  Otherwise the next action is looked up.  This chain is terminated
573///     with a next action of zero.  If no type id is found then the frame is
574///     unwound and handling continues.
575///  3. Type ID table contains references to all the C++ typeinfo for all
576///     catches in the function.  This tables is reverse indexed base 1.
577void DwarfException::EmitExceptionTable() {
578  const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
579  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
580  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
581
582  // Sort the landing pads in order of their type ids.  This is used to fold
583  // duplicate actions.
584  SmallVector<const LandingPadInfo *, 64> LandingPads;
585  LandingPads.reserve(PadInfos.size());
586
587  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
588    LandingPads.push_back(&PadInfos[i]);
589
590  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
591
592  // Compute the actions table and gather the first action index for each
593  // landing pad site.
594  SmallVector<ActionEntry, 32> Actions;
595  SmallVector<unsigned, 64> FirstActions;
596  unsigned SizeActions=ComputeActionsTable(LandingPads, Actions, FirstActions);
597
598  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
599  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
600  // try-ranges for them need be deduced when using DWARF exception handling.
601  RangeMapType PadMap;
602  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
603    const LandingPadInfo *LandingPad = LandingPads[i];
604    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
605      MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
606      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
607      PadRange P = { i, j };
608      PadMap[BeginLabel] = P;
609    }
610  }
611
612  // Compute the call-site table.
613  SmallVector<CallSiteEntry, 64> CallSites;
614  ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
615
616  // Final tallies.
617
618  // Call sites.
619  const unsigned SiteStartSize  = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
620  const unsigned SiteLengthSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
621  const unsigned LandingPadSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
622  bool IsSJLJ = MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
623  bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
624  unsigned CallSiteTableLength;
625
626  if (IsSJLJ)
627    CallSiteTableLength = 0;
628  else
629    CallSiteTableLength = CallSites.size() *
630      (SiteStartSize + SiteLengthSize + LandingPadSize);
631
632  for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
633    CallSiteTableLength += MCAsmInfo::getULEB128Size(CallSites[i].Action);
634    if (IsSJLJ)
635      CallSiteTableLength += MCAsmInfo::getULEB128Size(i);
636  }
637
638  // Type infos.
639  const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
640  unsigned TTypeEncoding;
641  unsigned TypeFormatSize;
642
643  if (!HaveTTData) {
644    // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
645    // that we're omitting that bit.
646    TTypeEncoding = dwarf::DW_EH_PE_omit;
647    TypeFormatSize = SizeOfEncodedValue(dwarf::DW_EH_PE_absptr);
648  } else {
649    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
650    // pick a type encoding for them.  We're about to emit a list of pointers to
651    // typeinfo objects at the end of the LSDA.  However, unless we're in static
652    // mode, this reference will require a relocation by the dynamic linker.
653    //
654    // Because of this, we have a couple of options:
655    //
656    //   1) If we are in -static mode, we can always use an absolute reference
657    //      from the LSDA, because the static linker will resolve it.
658    //
659    //   2) Otherwise, if the LSDA section is writable, we can output the direct
660    //      reference to the typeinfo and allow the dynamic linker to relocate
661    //      it.  Since it is in a writable section, the dynamic linker won't
662    //      have a problem.
663    //
664    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
665    //      we need to use some form of indirection.  For example, on Darwin,
666    //      we can output a statically-relocatable reference to a dyld stub. The
667    //      offset to the stub is constant, but the contents are in a section
668    //      that is updated by the dynamic linker.  This is easy enough, but we
669    //      need to tell the personality function of the unwinder to indirect
670    //      through the dyld stub.
671    //
672    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
673    // somewhere.  This predicate should be moved to a shared location that is
674    // in target-independent code.
675    //
676    TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
677    TypeFormatSize = SizeOfEncodedValue(TTypeEncoding);
678  }
679
680  // Begin the exception table.
681  Asm->OutStreamer.SwitchSection(LSDASection);
682  Asm->EmitAlignment(2, 0, 0, false);
683
684  // Emit the LSDA.
685  MCSymbol *GCCETSym =
686    Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+
687                                      Twine(SubprogramCount));
688  Asm->OutStreamer.EmitLabel(GCCETSym);
689  Asm->OutStreamer.EmitLabel(getDWLabel("exception", SubprogramCount));
690
691  if (IsSJLJ)
692    Asm->OutStreamer.EmitLabel(getDWLabel("_LSDA_", Asm->getFunctionNumber()));
693
694  // Emit the LSDA header.
695  EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
696  EmitEncodingByte(TTypeEncoding, "@TType");
697
698  // The type infos need to be aligned. GCC does this by inserting padding just
699  // before the type infos. However, this changes the size of the exception
700  // table, so you need to take this into account when you output the exception
701  // table size. However, the size is output using a variable length encoding.
702  // So by increasing the size by inserting padding, you may increase the number
703  // of bytes used for writing the size. If it increases, say by one byte, then
704  // you now need to output one less byte of padding to get the type infos
705  // aligned. However this decreases the size of the exception table. This
706  // changes the value you have to output for the exception table size. Due to
707  // the variable length encoding, the number of bytes used for writing the
708  // length may decrease. If so, you then have to increase the amount of
709  // padding. And so on. If you look carefully at the GCC code you will see that
710  // it indeed does this in a loop, going on and on until the values stabilize.
711  // We chose another solution: don't output padding inside the table like GCC
712  // does, instead output it before the table.
713  unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
714  unsigned CallSiteTableLengthSize =
715    MCAsmInfo::getULEB128Size(CallSiteTableLength);
716  unsigned TTypeBaseOffset =
717    sizeof(int8_t) +                            // Call site format
718    CallSiteTableLengthSize +                   // Call site table length size
719    CallSiteTableLength +                       // Call site table length
720    SizeActions +                               // Actions size
721    SizeTypes;
722  unsigned TTypeBaseOffsetSize = MCAsmInfo::getULEB128Size(TTypeBaseOffset);
723  unsigned TotalSize =
724    sizeof(int8_t) +                            // LPStart format
725    sizeof(int8_t) +                            // TType format
726    (HaveTTData ? TTypeBaseOffsetSize : 0) +    // TType base offset size
727    TTypeBaseOffset;                            // TType base offset
728  unsigned SizeAlign = (4 - TotalSize) & 3;
729
730  if (HaveTTData) {
731    // Account for any extra padding that will be added to the call site table
732    // length.
733    Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
734    SizeAlign = 0;
735  }
736
737  // SjLj Exception handling
738  if (IsSJLJ) {
739    EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
740
741    // Add extra padding if it wasn't added to the TType base offset.
742    Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
743
744    // Emit the landing pad site information.
745    unsigned idx = 0;
746    for (SmallVectorImpl<CallSiteEntry>::const_iterator
747         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
748      const CallSiteEntry &S = *I;
749
750      // Offset of the landing pad, counted in 16-byte bundles relative to the
751      // @LPStart address.
752      Asm->EmitULEB128(idx, "Landing pad");
753
754      // Offset of the first associated action record, relative to the start of
755      // the action table. This value is biased by 1 (1 indicates the start of
756      // the action table), and 0 indicates that there are no actions.
757      Asm->EmitULEB128(S.Action, "Action");
758    }
759  } else {
760    // DWARF Exception handling
761    assert(MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf);
762
763    // The call-site table is a list of all call sites that may throw an
764    // exception (including C++ 'throw' statements) in the procedure
765    // fragment. It immediately follows the LSDA header. Each entry indicates,
766    // for a given call, the first corresponding action record and corresponding
767    // landing pad.
768    //
769    // The table begins with the number of bytes, stored as an LEB128
770    // compressed, unsigned integer. The records immediately follow the record
771    // count. They are sorted in increasing call-site address. Each record
772    // indicates:
773    //
774    //   * The position of the call-site.
775    //   * The position of the landing pad.
776    //   * The first action record for that call site.
777    //
778    // A missing entry in the call-site table indicates that a call is not
779    // supposed to throw.
780
781    // Emit the landing pad call site table.
782    EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
783
784    // Add extra padding if it wasn't added to the TType base offset.
785    Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
786
787    for (SmallVectorImpl<CallSiteEntry>::const_iterator
788         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
789      const CallSiteEntry &S = *I;
790
791      MCSymbol *EHFuncBeginSym = getDWLabel("eh_func_begin", SubprogramCount);
792
793      MCSymbol *BeginLabel = S.BeginLabel;
794      if (BeginLabel == 0)
795        BeginLabel = EHFuncBeginSym;
796      MCSymbol *EndLabel = S.EndLabel;
797      if (EndLabel == 0)
798        EndLabel = getDWLabel("eh_func_end", SubprogramCount);
799
800      // Offset of the call site relative to the previous call site, counted in
801      // number of 16-byte bundles. The first call site is counted relative to
802      // the start of the procedure fragment.
803      Asm->OutStreamer.AddComment("Region start");
804      EmitSectionOffset(BeginLabel, EHFuncBeginSym, true, true);
805
806      Asm->OutStreamer.AddComment("Region length");
807      EmitDifference(EndLabel, BeginLabel, true);
808
809
810      // Offset of the landing pad, counted in 16-byte bundles relative to the
811      // @LPStart address.
812      Asm->OutStreamer.AddComment("Landing pad");
813      if (!S.PadLabel)
814        Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
815      else
816        EmitSectionOffset(S.PadLabel, EHFuncBeginSym, true, true);
817
818      // Offset of the first associated action record, relative to the start of
819      // the action table. This value is biased by 1 (1 indicates the start of
820      // the action table), and 0 indicates that there are no actions.
821      Asm->EmitULEB128(S.Action, "Action");
822    }
823  }
824
825  // Emit the Action Table.
826  if (Actions.size() != 0) {
827    Asm->OutStreamer.AddComment("-- Action Record Table --");
828    Asm->OutStreamer.AddBlankLine();
829  }
830
831  for (SmallVectorImpl<ActionEntry>::const_iterator
832         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
833    const ActionEntry &Action = *I;
834    Asm->OutStreamer.AddComment("Action Record");
835    Asm->OutStreamer.AddBlankLine();
836
837    // Type Filter
838    //
839    //   Used by the runtime to match the type of the thrown exception to the
840    //   type of the catch clauses or the types in the exception specification.
841    Asm->EmitSLEB128(Action.ValueForTypeID, "  TypeInfo index");
842
843    // Action Record
844    //
845    //   Self-relative signed displacement in bytes of the next action record,
846    //   or 0 if there is no next action record.
847    Asm->EmitSLEB128(Action.NextAction, "  Next action");
848  }
849
850  // Emit the Catch TypeInfos.
851  if (!TypeInfos.empty()) {
852    Asm->OutStreamer.AddComment("-- Catch TypeInfos --");
853    Asm->OutStreamer.AddBlankLine();
854  }
855  for (std::vector<GlobalVariable *>::const_reverse_iterator
856         I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
857    const GlobalVariable *GV = *I;
858
859    Asm->OutStreamer.AddComment("TypeInfo");
860    if (GV)
861      EmitReference(GV, TTypeEncoding);
862    else
863      Asm->OutStreamer.EmitIntValue(0, SizeOfEncodedValue(TTypeEncoding), 0);
864  }
865
866  // Emit the Exception Specifications.
867  if (!FilterIds.empty()) {
868    Asm->OutStreamer.AddComment("-- Filter IDs --");
869    Asm->OutStreamer.AddBlankLine();
870  }
871  for (std::vector<unsigned>::const_iterator
872         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
873    unsigned TypeID = *I;
874    Asm->EmitULEB128(TypeID, TypeID != 0 ? "Exception specification" : 0);
875  }
876
877  Asm->EmitAlignment(2, 0, 0, false);
878}
879
880/// EndModule - Emit all exception information that should come after the
881/// content.
882void DwarfException::EndModule() {
883  if (MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf)
884    return;
885
886  if (!shouldEmitMovesModule && !shouldEmitTableModule)
887    return;
888
889  TimeRegion Timer(ExceptionTimer);
890
891  const std::vector<Function *> Personalities = MMI->getPersonalities();
892
893  for (unsigned I = 0, E = Personalities.size(); I < E; ++I)
894    EmitCIE(Personalities[I], I);
895
896  for (std::vector<FunctionEHFrameInfo>::iterator
897         I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I)
898    EmitFDE(*I);
899}
900
901/// BeginFunction - Gather pre-function exception information. Assumes it's
902/// being emitted immediately after the function entry point.
903void DwarfException::BeginFunction(const MachineFunction *MF) {
904  if (!MMI || !MAI->doesSupportExceptionHandling()) return;
905
906  TimeRegion Timer(ExceptionTimer);
907  this->MF = MF;
908  shouldEmitTable = shouldEmitMoves = false;
909
910  // If any landing pads survive, we need an EH table.
911  shouldEmitTable = !MMI->getLandingPads().empty();
912
913  // See if we need frame move info.
914  shouldEmitMoves = !MF->getFunction()->doesNotThrow() || UnwindTablesMandatory;
915
916  if (shouldEmitMoves || shouldEmitTable)
917    // Assumes in correct section after the entry point.
918    Asm->OutStreamer.EmitLabel(getDWLabel("eh_func_begin", ++SubprogramCount));
919
920  shouldEmitTableModule |= shouldEmitTable;
921  shouldEmitMovesModule |= shouldEmitMoves;
922}
923
924/// EndFunction - Gather and emit post-function exception information.
925///
926void DwarfException::EndFunction() {
927  if (!shouldEmitMoves && !shouldEmitTable) return;
928
929  TimeRegion Timer(ExceptionTimer);
930  Asm->OutStreamer.EmitLabel(getDWLabel("eh_func_end", SubprogramCount));
931
932  // Record if this personality index uses a landing pad.
933  bool HasLandingPad = !MMI->getLandingPads().empty();
934  UsesLSDA[MMI->getPersonalityIndex()] |= HasLandingPad;
935
936  // Map all labels and get rid of any dead landing pads.
937  MMI->TidyLandingPads();
938
939  if (HasLandingPad)
940    EmitExceptionTable();
941
942  const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
943  MCSymbol *FunctionEHSym =
944    Asm->GetSymbolWithGlobalValueBase(MF->getFunction(), ".eh",
945                                      TLOF.isFunctionEHFrameSymbolPrivate());
946
947  // Save EH frame information
948  EHFrames.push_back(FunctionEHFrameInfo(FunctionEHSym, SubprogramCount,
949                                         MMI->getPersonalityIndex(),
950                                         MF->getFrameInfo()->hasCalls(),
951                                         !MMI->getLandingPads().empty(),
952                                         MMI->getFrameMoves(),
953                                         MF->getFunction()));
954}
955