DwarfException.cpp revision 8cb9a3b13f3226b7e741768b69d26ecd6b5231f1
1//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for writing DWARF exception info into asm files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DwarfException.h"
15#include "llvm/Module.h"
16#include "llvm/CodeGen/MachineModuleInfo.h"
17#include "llvm/CodeGen/MachineFrameInfo.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/CodeGen/MachineLocation.h"
20#include "llvm/MC/MCAsmInfo.h"
21#include "llvm/MC/MCContext.h"
22#include "llvm/MC/MCExpr.h"
23#include "llvm/MC/MCSection.h"
24#include "llvm/MC/MCStreamer.h"
25#include "llvm/MC/MCSymbol.h"
26#include "llvm/Target/Mangler.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetFrameInfo.h"
29#include "llvm/Target/TargetLoweringObjectFile.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Support/Dwarf.h"
33#include "llvm/Support/Timer.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/StringExtras.h"
37using namespace llvm;
38
39DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A,
40                               const MCAsmInfo *T)
41  : Dwarf(OS, A, T, "eh"), shouldEmitTable(false), shouldEmitMoves(false),
42    shouldEmitTableModule(false), shouldEmitMovesModule(false),
43    ExceptionTimer(0) {
44  if (TimePassesIsEnabled)
45    ExceptionTimer = new Timer("DWARF Exception Writer");
46}
47
48DwarfException::~DwarfException() {
49  delete ExceptionTimer;
50}
51
52/// SizeOfEncodedValue - Return the size of the encoding in bytes.
53unsigned DwarfException::SizeOfEncodedValue(unsigned Encoding) {
54  if (Encoding == dwarf::DW_EH_PE_omit)
55    return 0;
56
57  switch (Encoding & 0x07) {
58  case dwarf::DW_EH_PE_absptr:
59    return TD->getPointerSize();
60  case dwarf::DW_EH_PE_udata2:
61    return 2;
62  case dwarf::DW_EH_PE_udata4:
63    return 4;
64  case dwarf::DW_EH_PE_udata8:
65    return 8;
66  }
67
68  assert(0 && "Invalid encoded value.");
69  return 0;
70}
71
72/// CreateLabelDiff - Emit a label and subtract it from the expression we
73/// already have.  This is equivalent to emitting "foo - .", but we have to emit
74/// the label for "." directly.
75const MCExpr *DwarfException::CreateLabelDiff(const MCExpr *ExprRef,
76                                              const char *LabelName,
77                                              unsigned Index) {
78  SmallString<64> Name;
79  raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix()
80                            << LabelName << Asm->getFunctionNumber()
81                            << "_" << Index;
82  MCSymbol *DotSym = Asm->OutContext.GetOrCreateSymbol(Name.str());
83  Asm->OutStreamer.EmitLabel(DotSym);
84
85  return MCBinaryExpr::CreateSub(ExprRef,
86                                 MCSymbolRefExpr::Create(DotSym,
87                                                         Asm->OutContext),
88                                 Asm->OutContext);
89}
90
91/// EmitCIE - Emit a Common Information Entry (CIE). This holds information that
92/// is shared among many Frame Description Entries.  There is at least one CIE
93/// in every non-empty .debug_frame section.
94void DwarfException::EmitCIE(const Function *PersonalityFn, unsigned Index) {
95  // Size and sign of stack growth.
96  int stackGrowth =
97    Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
98    TargetFrameInfo::StackGrowsUp ?
99    TD->getPointerSize() : -TD->getPointerSize();
100
101  const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
102
103  // Begin eh frame section.
104  Asm->OutStreamer.SwitchSection(TLOF.getEHFrameSection());
105
106  if (MAI->is_EHSymbolPrivate())
107    O << MAI->getPrivateGlobalPrefix();
108  O << "EH_frame" << Index << ":\n";
109
110  EmitLabel("section_eh_frame", Index);
111
112  // Define base labels.
113  EmitLabel("eh_frame_common", Index);
114
115  // Define the eh frame length.
116  EmitDifference("eh_frame_common_end", Index,
117                 "eh_frame_common_begin", Index, true);
118  Asm->EOL("Length of Common Information Entry");
119
120  // EH frame header.
121  EmitLabel("eh_frame_common_begin", Index);
122  Asm->EmitInt32((int)0);
123  Asm->EOL("CIE Identifier Tag");
124  Asm->EmitInt8(dwarf::DW_CIE_VERSION);
125  Asm->EOL("CIE Version");
126
127  // The personality presence indicates that language specific information will
128  // show up in the eh frame.  Find out how we are supposed to lower the
129  // personality function reference:
130  const MCExpr *PersonalityRef = 0;
131  bool IsPersonalityIndirect = false, IsPersonalityPCRel = false;
132  if (PersonalityFn) {
133    // FIXME: HANDLE STATIC CODEGEN MODEL HERE.
134
135    // In non-static mode, ask the object file how to represent this reference.
136    PersonalityRef =
137      TLOF.getSymbolForDwarfGlobalReference(PersonalityFn, Asm->Mang,
138                                            Asm->MMI,
139                                            IsPersonalityIndirect,
140                                            IsPersonalityPCRel);
141  }
142
143  unsigned PerEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
144  if (IsPersonalityIndirect)
145    PerEncoding |= dwarf::DW_EH_PE_indirect;
146  unsigned LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
147  unsigned FDEEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
148
149  char Augmentation[5] = { 0 };
150  unsigned AugmentationSize = 0;
151  char *APtr = Augmentation + 1;
152
153  if (PersonalityRef) {
154    // There is a personality function.
155    *APtr++ = 'P';
156    AugmentationSize += 1 + SizeOfEncodedValue(PerEncoding);
157  }
158
159  if (UsesLSDA[Index]) {
160    // An LSDA pointer is in the FDE augmentation.
161    *APtr++ = 'L';
162    ++AugmentationSize;
163  }
164
165  if (FDEEncoding != dwarf::DW_EH_PE_absptr) {
166    // A non-default pointer encoding for the FDE.
167    *APtr++ = 'R';
168    ++AugmentationSize;
169  }
170
171  if (APtr != Augmentation + 1)
172    Augmentation[0] = 'z';
173
174  Asm->EmitString(Augmentation);
175  Asm->EOL("CIE Augmentation");
176
177  // Round out reader.
178  Asm->EmitULEB128Bytes(1);
179  Asm->EOL("CIE Code Alignment Factor");
180  Asm->EmitSLEB128Bytes(stackGrowth);
181  Asm->EOL("CIE Data Alignment Factor");
182  Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true));
183  Asm->EOL("CIE Return Address Column");
184
185  Asm->EmitULEB128Bytes(AugmentationSize);
186  Asm->EOL("Augmentation Size");
187
188  Asm->EmitInt8(PerEncoding);
189  Asm->EOL("Personality", PerEncoding);
190
191  // If there is a personality, we need to indicate the function's location.
192  if (PersonalityRef) {
193    if (!IsPersonalityPCRel)
194      PersonalityRef = CreateLabelDiff(PersonalityRef, "personalityref_addr",
195                                       Index);
196
197    O << MAI->getData32bitsDirective() << *PersonalityRef;
198    Asm->EOL("Personality");
199
200    Asm->EmitInt8(LSDAEncoding);
201    Asm->EOL("LSDA Encoding", LSDAEncoding);
202
203    Asm->EmitInt8(FDEEncoding);
204    Asm->EOL("FDE Encoding", FDEEncoding);
205  }
206
207  // Indicate locations of general callee saved registers in frame.
208  std::vector<MachineMove> Moves;
209  RI->getInitialFrameState(Moves);
210  EmitFrameMoves(NULL, 0, Moves, true);
211
212  // On Darwin the linker honors the alignment of eh_frame, which means it must
213  // be 8-byte on 64-bit targets to match what gcc does.  Otherwise you get
214  // holes which confuse readers of eh_frame.
215  Asm->EmitAlignment(TD->getPointerSize() == 4 ? 2 : 3, 0, 0, false);
216  EmitLabel("eh_frame_common_end", Index);
217
218  Asm->EOL();
219}
220
221/// EmitFDE - Emit the Frame Description Entry (FDE) for the function.
222void DwarfException::EmitFDE(const FunctionEHFrameInfo &EHFrameInfo) {
223  assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() &&
224         "Should not emit 'available externally' functions at all");
225
226  const Function *TheFunc = EHFrameInfo.function;
227
228  Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection());
229
230  // Externally visible entry into the functions eh frame info. If the
231  // corresponding function is static, this should not be externally visible.
232  if (!TheFunc->hasLocalLinkage())
233    if (const char *GlobalEHDirective = MAI->getGlobalEHDirective())
234      O << GlobalEHDirective << *EHFrameInfo.FunctionEHSym << '\n';
235
236  // If corresponding function is weak definition, this should be too.
237  if (TheFunc->isWeakForLinker() && MAI->getWeakDefDirective())
238    O << MAI->getWeakDefDirective() << *EHFrameInfo.FunctionEHSym << '\n';
239
240  // If corresponding function is hidden, this should be too.
241  if (TheFunc->hasHiddenVisibility())
242    if (const char *HiddenDirective = MAI->getHiddenDirective())
243      O << HiddenDirective << *EHFrameInfo.FunctionEHSym << '\n';
244
245  // If there are no calls then you can't unwind.  This may mean we can omit the
246  // EH Frame, but some environments do not handle weak absolute symbols. If
247  // UnwindTablesMandatory is set we cannot do this optimization; the unwind
248  // info is to be available for non-EH uses.
249  if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory &&
250      (!TheFunc->isWeakForLinker() ||
251       !MAI->getWeakDefDirective() ||
252       MAI->getSupportsWeakOmittedEHFrame())) {
253    O << *EHFrameInfo.FunctionEHSym << " = 0\n";
254    // This name has no connection to the function, so it might get
255    // dead-stripped when the function is not, erroneously.  Prohibit
256    // dead-stripping unconditionally.
257    if (const char *UsedDirective = MAI->getUsedDirective())
258      O << UsedDirective << *EHFrameInfo.FunctionEHSym << "\n\n";
259  } else {
260    O << *EHFrameInfo.FunctionEHSym << ":\n";
261
262    // EH frame header.
263    EmitDifference("eh_frame_end", EHFrameInfo.Number,
264                   "eh_frame_begin", EHFrameInfo.Number, true);
265    Asm->EOL("Length of Frame Information Entry");
266
267    EmitLabel("eh_frame_begin", EHFrameInfo.Number);
268
269    EmitSectionOffset("eh_frame_begin", "eh_frame_common",
270                      EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
271                      true, true, false);
272
273    Asm->EOL("FDE CIE offset");
274
275    EmitReference("eh_func_begin", EHFrameInfo.Number, true, true);
276    Asm->EOL("FDE initial location");
277    EmitDifference("eh_func_end", EHFrameInfo.Number,
278                   "eh_func_begin", EHFrameInfo.Number, true);
279    Asm->EOL("FDE address range");
280
281    // If there is a personality and landing pads then point to the language
282    // specific data area in the exception table.
283    if (MMI->getPersonalities()[0] != NULL) {
284      bool is4Byte = TD->getPointerSize() == sizeof(int32_t);
285
286      if (Asm->TM.getLSDAEncoding() == DwarfLSDAEncoding::FourByte) {
287        Asm->EmitULEB128Bytes(4);
288        Asm->EOL("Augmentation size");
289
290        if (EHFrameInfo.hasLandingPads)
291          EmitReference("exception", EHFrameInfo.Number, true, true);
292        else
293          Asm->EmitInt32((int)0);
294      } else {
295        Asm->EmitULEB128Bytes(is4Byte ? 4 : 8);
296        Asm->EOL("Augmentation size");
297
298        if (EHFrameInfo.hasLandingPads) {
299          EmitReference("exception", EHFrameInfo.Number, true, false);
300        } else {
301          if (is4Byte)
302            Asm->EmitInt32((int)0);
303          else
304            Asm->EmitInt64((int)0);
305        }
306      }
307
308      Asm->EOL("Language Specific Data Area");
309    } else {
310      Asm->EmitULEB128Bytes(0);
311      Asm->EOL("Augmentation size");
312    }
313
314    // Indicate locations of function specific callee saved registers in frame.
315    EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves,
316                   true);
317
318    // On Darwin the linker honors the alignment of eh_frame, which means it
319    // must be 8-byte on 64-bit targets to match what gcc does.  Otherwise you
320    // get holes which confuse readers of eh_frame.
321    Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
322                       0, 0, false);
323    EmitLabel("eh_frame_end", EHFrameInfo.Number);
324
325    // If the function is marked used, this table should be also.  We cannot
326    // make the mark unconditional in this case, since retaining the table also
327    // retains the function in this case, and there is code around that depends
328    // on unused functions (calling undefined externals) being dead-stripped to
329    // link correctly.  Yes, there really is.
330    if (MMI->isUsedFunction(EHFrameInfo.function))
331      if (const char *UsedDirective = MAI->getUsedDirective()) {
332        O << UsedDirective << *EHFrameInfo.FunctionEHSym << "\n\n";
333      }
334  }
335
336  Asm->EOL();
337}
338
339/// SharedTypeIds - How many leading type ids two landing pads have in common.
340unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
341                                       const LandingPadInfo *R) {
342  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
343  unsigned LSize = LIds.size(), RSize = RIds.size();
344  unsigned MinSize = LSize < RSize ? LSize : RSize;
345  unsigned Count = 0;
346
347  for (; Count != MinSize; ++Count)
348    if (LIds[Count] != RIds[Count])
349      return Count;
350
351  return Count;
352}
353
354/// PadLT - Order landing pads lexicographically by type id.
355bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
356  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
357  unsigned LSize = LIds.size(), RSize = RIds.size();
358  unsigned MinSize = LSize < RSize ? LSize : RSize;
359
360  for (unsigned i = 0; i != MinSize; ++i)
361    if (LIds[i] != RIds[i])
362      return LIds[i] < RIds[i];
363
364  return LSize < RSize;
365}
366
367/// ComputeActionsTable - Compute the actions table and gather the first action
368/// index for each landing pad site.
369unsigned DwarfException::
370ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
371                    SmallVectorImpl<ActionEntry> &Actions,
372                    SmallVectorImpl<unsigned> &FirstActions) {
373
374  // The action table follows the call-site table in the LSDA. The individual
375  // records are of two types:
376  //
377  //   * Catch clause
378  //   * Exception specification
379  //
380  // The two record kinds have the same format, with only small differences.
381  // They are distinguished by the "switch value" field: Catch clauses
382  // (TypeInfos) have strictly positive switch values, and exception
383  // specifications (FilterIds) have strictly negative switch values. Value 0
384  // indicates a catch-all clause.
385  //
386  // Negative type IDs index into FilterIds. Positive type IDs index into
387  // TypeInfos.  The value written for a positive type ID is just the type ID
388  // itself.  For a negative type ID, however, the value written is the
389  // (negative) byte offset of the corresponding FilterIds entry.  The byte
390  // offset is usually equal to the type ID (because the FilterIds entries are
391  // written using a variable width encoding, which outputs one byte per entry
392  // as long as the value written is not too large) but can differ.  This kind
393  // of complication does not occur for positive type IDs because type infos are
394  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
395  // offset corresponding to FilterIds[i].
396
397  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
398  SmallVector<int, 16> FilterOffsets;
399  FilterOffsets.reserve(FilterIds.size());
400  int Offset = -1;
401
402  for (std::vector<unsigned>::const_iterator
403         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
404    FilterOffsets.push_back(Offset);
405    Offset -= MCAsmInfo::getULEB128Size(*I);
406  }
407
408  FirstActions.reserve(LandingPads.size());
409
410  int FirstAction = 0;
411  unsigned SizeActions = 0;
412  const LandingPadInfo *PrevLPI = 0;
413
414  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
415         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
416    const LandingPadInfo *LPI = *I;
417    const std::vector<int> &TypeIds = LPI->TypeIds;
418    const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
419    unsigned SizeSiteActions = 0;
420
421    if (NumShared < TypeIds.size()) {
422      unsigned SizeAction = 0;
423      ActionEntry *PrevAction = 0;
424
425      if (NumShared) {
426        const unsigned SizePrevIds = PrevLPI->TypeIds.size();
427        assert(Actions.size());
428        PrevAction = &Actions.back();
429        SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
430          MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
431
432        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
433          SizeAction -=
434            MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
435          SizeAction += -PrevAction->NextAction;
436          PrevAction = PrevAction->Previous;
437        }
438      }
439
440      // Compute the actions.
441      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
442        int TypeID = TypeIds[J];
443        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
444        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
445        unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
446
447        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
448        SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
449        SizeSiteActions += SizeAction;
450
451        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
452        Actions.push_back(Action);
453        PrevAction = &Actions.back();
454      }
455
456      // Record the first action of the landing pad site.
457      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
458    } // else identical - re-use previous FirstAction
459
460    // Information used when created the call-site table. The action record
461    // field of the call site record is the offset of the first associated
462    // action record, relative to the start of the actions table. This value is
463    // biased by 1 (1 in dicating the start of the actions table), and 0
464    // indicates that there are no actions.
465    FirstActions.push_back(FirstAction);
466
467    // Compute this sites contribution to size.
468    SizeActions += SizeSiteActions;
469
470    PrevLPI = LPI;
471  }
472
473  return SizeActions;
474}
475
476/// CallToNoUnwindFunction - Return `true' if this is a call to a function
477/// marked `nounwind'. Return `false' otherwise.
478bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) {
479  assert(MI->getDesc().isCall() && "This should be a call instruction!");
480
481  bool MarkedNoUnwind = false;
482  bool SawFunc = false;
483
484  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
485    const MachineOperand &MO = MI->getOperand(I);
486
487    if (MO.isGlobal()) {
488      if (Function *F = dyn_cast<Function>(MO.getGlobal())) {
489        if (SawFunc) {
490          // Be conservative. If we have more than one function operand for this
491          // call, then we can't make the assumption that it's the callee and
492          // not a parameter to the call.
493          //
494          // FIXME: Determine if there's a way to say that `F' is the callee or
495          // parameter.
496          MarkedNoUnwind = false;
497          break;
498        }
499
500        MarkedNoUnwind = F->doesNotThrow();
501        SawFunc = true;
502      }
503    }
504  }
505
506  return MarkedNoUnwind;
507}
508
509/// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
510/// has a try-range containing the call, a non-zero landing pad, and an
511/// appropriate action.  The entry for an ordinary call has a try-range
512/// containing the call and zero for the landing pad and the action.  Calls
513/// marked 'nounwind' have no entry and must not be contained in the try-range
514/// of any entry - they form gaps in the table.  Entries must be ordered by
515/// try-range address.
516void DwarfException::
517ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
518                     const RangeMapType &PadMap,
519                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
520                     const SmallVectorImpl<unsigned> &FirstActions) {
521  // The end label of the previous invoke or nounwind try-range.
522  unsigned LastLabel = 0;
523
524  // Whether there is a potentially throwing instruction (currently this means
525  // an ordinary call) between the end of the previous try-range and now.
526  bool SawPotentiallyThrowing = false;
527
528  // Whether the last CallSite entry was for an invoke.
529  bool PreviousIsInvoke = false;
530
531  // Visit all instructions in order of address.
532  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
533       I != E; ++I) {
534    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
535         MI != E; ++MI) {
536      if (!MI->isLabel()) {
537        if (MI->getDesc().isCall())
538          SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
539
540        continue;
541      }
542
543      unsigned BeginLabel = MI->getOperand(0).getImm();
544      assert(BeginLabel && "Invalid label!");
545
546      // End of the previous try-range?
547      if (BeginLabel == LastLabel)
548        SawPotentiallyThrowing = false;
549
550      // Beginning of a new try-range?
551      RangeMapType::const_iterator L = PadMap.find(BeginLabel);
552      if (L == PadMap.end())
553        // Nope, it was just some random label.
554        continue;
555
556      const PadRange &P = L->second;
557      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
558      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
559             "Inconsistent landing pad map!");
560
561      // For Dwarf exception handling (SjLj handling doesn't use this). If some
562      // instruction between the previous try-range and this one may throw,
563      // create a call-site entry with no landing pad for the region between the
564      // try-ranges.
565      if (SawPotentiallyThrowing &&
566          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
567        CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
568        CallSites.push_back(Site);
569        PreviousIsInvoke = false;
570      }
571
572      LastLabel = LandingPad->EndLabels[P.RangeIndex];
573      assert(BeginLabel && LastLabel && "Invalid landing pad!");
574
575      if (LandingPad->LandingPadLabel) {
576        // This try-range is for an invoke.
577        CallSiteEntry Site = {
578          BeginLabel,
579          LastLabel,
580          LandingPad->LandingPadLabel,
581          FirstActions[P.PadIndex]
582        };
583
584        // Try to merge with the previous call-site. SJLJ doesn't do this
585        if (PreviousIsInvoke &&
586          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
587          CallSiteEntry &Prev = CallSites.back();
588          if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
589            // Extend the range of the previous entry.
590            Prev.EndLabel = Site.EndLabel;
591            continue;
592          }
593        }
594
595        // Otherwise, create a new call-site.
596        CallSites.push_back(Site);
597        PreviousIsInvoke = true;
598      } else {
599        // Create a gap.
600        PreviousIsInvoke = false;
601      }
602    }
603  }
604
605  // If some instruction between the previous try-range and the end of the
606  // function may throw, create a call-site entry with no landing pad for the
607  // region following the try-range.
608  if (SawPotentiallyThrowing &&
609      MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
610    CallSiteEntry Site = { LastLabel, 0, 0, 0 };
611    CallSites.push_back(Site);
612  }
613}
614
615/// EmitExceptionTable - Emit landing pads and actions.
616///
617/// The general organization of the table is complex, but the basic concepts are
618/// easy.  First there is a header which describes the location and organization
619/// of the three components that follow.
620///
621///  1. The landing pad site information describes the range of code covered by
622///     the try.  In our case it's an accumulation of the ranges covered by the
623///     invokes in the try.  There is also a reference to the landing pad that
624///     handles the exception once processed.  Finally an index into the actions
625///     table.
626///  2. The action table, in our case, is composed of pairs of type IDs and next
627///     action offset.  Starting with the action index from the landing pad
628///     site, each type ID is checked for a match to the current exception.  If
629///     it matches then the exception and type id are passed on to the landing
630///     pad.  Otherwise the next action is looked up.  This chain is terminated
631///     with a next action of zero.  If no type id is found then the frame is
632///     unwound and handling continues.
633///  3. Type ID table contains references to all the C++ typeinfo for all
634///     catches in the function.  This tables is reverse indexed base 1.
635void DwarfException::EmitExceptionTable() {
636  const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
637  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
638  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
639  if (PadInfos.empty()) return;
640
641  // Sort the landing pads in order of their type ids.  This is used to fold
642  // duplicate actions.
643  SmallVector<const LandingPadInfo *, 64> LandingPads;
644  LandingPads.reserve(PadInfos.size());
645
646  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
647    LandingPads.push_back(&PadInfos[i]);
648
649  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
650
651  // Compute the actions table and gather the first action index for each
652  // landing pad site.
653  SmallVector<ActionEntry, 32> Actions;
654  SmallVector<unsigned, 64> FirstActions;
655  unsigned SizeActions = ComputeActionsTable(LandingPads, Actions,
656                                             FirstActions);
657
658  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
659  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
660  // try-ranges for them need be deduced when using DWARF exception handling.
661  RangeMapType PadMap;
662  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
663    const LandingPadInfo *LandingPad = LandingPads[i];
664    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
665      unsigned BeginLabel = LandingPad->BeginLabels[j];
666      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
667      PadRange P = { i, j };
668      PadMap[BeginLabel] = P;
669    }
670  }
671
672  // Compute the call-site table.
673  SmallVector<CallSiteEntry, 64> CallSites;
674  ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
675
676  // Final tallies.
677
678  // Call sites.
679  const unsigned SiteStartSize  = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
680  const unsigned SiteLengthSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
681  const unsigned LandingPadSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
682  bool IsSJLJ = MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
683  bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
684  unsigned SizeSites;
685
686  if (IsSJLJ)
687    SizeSites = 0;
688  else
689    SizeSites = CallSites.size() *
690      (SiteStartSize + SiteLengthSize + LandingPadSize);
691
692  for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
693    SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
694    if (IsSJLJ)
695      SizeSites += MCAsmInfo::getULEB128Size(i);
696  }
697
698  // Type infos.
699  const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
700  unsigned TTypeFormat;
701  unsigned TypeFormatSize;
702
703  if (!HaveTTData) {
704    // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
705    // that we're omitting that bit.
706    TTypeFormat = dwarf::DW_EH_PE_omit;
707    TypeFormatSize = SizeOfEncodedValue(dwarf::DW_EH_PE_absptr);
708  } else {
709    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
710    // pick a type encoding for them.  We're about to emit a list of pointers to
711    // typeinfo objects at the end of the LSDA.  However, unless we're in static
712    // mode, this reference will require a relocation by the dynamic linker.
713    //
714    // Because of this, we have a couple of options:
715    //
716    //   1) If we are in -static mode, we can always use an absolute reference
717    //      from the LSDA, because the static linker will resolve it.
718    //
719    //   2) Otherwise, if the LSDA section is writable, we can output the direct
720    //      reference to the typeinfo and allow the dynamic linker to relocate
721    //      it.  Since it is in a writable section, the dynamic linker won't
722    //      have a problem.
723    //
724    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
725    //      we need to use some form of indirection.  For example, on Darwin,
726    //      we can output a statically-relocatable reference to a dyld stub. The
727    //      offset to the stub is constant, but the contents are in a section
728    //      that is updated by the dynamic linker.  This is easy enough, but we
729    //      need to tell the personality function of the unwinder to indirect
730    //      through the dyld stub.
731    //
732    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
733    // somewhere.  This predicate should be moved to a shared location that is
734    // in target-independent code.
735    //
736    if (LSDASection->getKind().isWriteable() ||
737        Asm->TM.getRelocationModel() == Reloc::Static)
738      TTypeFormat = dwarf::DW_EH_PE_absptr;
739    else
740      TTypeFormat = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
741        dwarf::DW_EH_PE_sdata4;
742
743    TypeFormatSize = SizeOfEncodedValue(TTypeFormat);
744  }
745
746  // Begin the exception table.
747  Asm->OutStreamer.SwitchSection(LSDASection);
748  Asm->EmitAlignment(2, 0, 0, false);
749
750  O << "GCC_except_table" << SubprogramCount << ":\n";
751
752  // The type infos need to be aligned. GCC does this by inserting padding just
753  // before the type infos. However, this changes the size of the exception
754  // table, so you need to take this into account when you output the exception
755  // table size. However, the size is output using a variable length encoding.
756  // So by increasing the size by inserting padding, you may increase the number
757  // of bytes used for writing the size. If it increases, say by one byte, then
758  // you now need to output one less byte of padding to get the type infos
759  // aligned.  However this decreases the size of the exception table. This
760  // changes the value you have to output for the exception table size. Due to
761  // the variable length encoding, the number of bytes used for writing the
762  // length may decrease. If so, you then have to increase the amount of
763  // padding. And so on. If you look carefully at the GCC code you will see that
764  // it indeed does this in a loop, going on and on until the values stabilize.
765  // We chose another solution: don't output padding inside the table like GCC
766  // does, instead output it before the table.
767  unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
768  unsigned TyOffset = sizeof(int8_t) +          // Call site format
769    MCAsmInfo::getULEB128Size(SizeSites) +      // Call-site table length
770    SizeSites + SizeActions + SizeTypes;
771  unsigned TotalSize = sizeof(int8_t) +         // LPStart format
772                       sizeof(int8_t) +         // TType format
773    (HaveTTData ?
774     MCAsmInfo::getULEB128Size(TyOffset) : 0) + // TType base offset
775    TyOffset;
776  unsigned SizeAlign = (4 - TotalSize) & 3;
777
778  for (unsigned i = 0; i != SizeAlign; ++i) {
779    Asm->EmitInt8(0);
780    Asm->EOL("Padding");
781  }
782
783  EmitLabel("exception", SubprogramCount);
784
785  if (IsSJLJ) {
786    SmallString<16> LSDAName;
787    raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() <<
788      "_LSDA_" << Asm->getFunctionNumber();
789    O << LSDAName.str() << ":\n";
790  }
791
792  // Emit the header.
793  Asm->EmitInt8(dwarf::DW_EH_PE_omit);
794  Asm->EOL("@LPStart format", dwarf::DW_EH_PE_omit);
795
796  Asm->EmitInt8(TTypeFormat);
797  Asm->EOL("@TType format", TTypeFormat);
798
799  if (HaveTTData) {
800    Asm->EmitULEB128Bytes(TyOffset);
801    Asm->EOL("@TType base offset");
802  }
803
804  // SjLj Exception handling
805  if (IsSJLJ) {
806    Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
807    Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4);
808    Asm->EmitULEB128Bytes(SizeSites);
809    Asm->EOL("Call site table length");
810
811    // Emit the landing pad site information.
812    unsigned idx = 0;
813    for (SmallVectorImpl<CallSiteEntry>::const_iterator
814         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
815      const CallSiteEntry &S = *I;
816
817      // Offset of the landing pad, counted in 16-byte bundles relative to the
818      // @LPStart address.
819      Asm->EmitULEB128Bytes(idx);
820      Asm->EOL("Landing pad");
821
822      // Offset of the first associated action record, relative to the start of
823      // the action table. This value is biased by 1 (1 indicates the start of
824      // the action table), and 0 indicates that there are no actions.
825      Asm->EmitULEB128Bytes(S.Action);
826      Asm->EOL("Action");
827    }
828  } else {
829    // DWARF Exception handling
830    assert(MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf);
831
832    // The call-site table is a list of all call sites that may throw an
833    // exception (including C++ 'throw' statements) in the procedure
834    // fragment. It immediately follows the LSDA header. Each entry indicates,
835    // for a given call, the first corresponding action record and corresponding
836    // landing pad.
837    //
838    // The table begins with the number of bytes, stored as an LEB128
839    // compressed, unsigned integer. The records immediately follow the record
840    // count. They are sorted in increasing call-site address. Each record
841    // indicates:
842    //
843    //   * The position of the call-site.
844    //   * The position of the landing pad.
845    //   * The first action record for that call site.
846    //
847    // A missing entry in the call-site table indicates that a call is not
848    // supposed to throw.
849
850    // Emit the landing pad call site table.
851    Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
852    Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4);
853    Asm->EmitULEB128Bytes(SizeSites);
854    Asm->EOL("Call site table size");
855
856    for (SmallVectorImpl<CallSiteEntry>::const_iterator
857         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
858      const CallSiteEntry &S = *I;
859      const char *BeginTag;
860      unsigned BeginNumber;
861
862      if (!S.BeginLabel) {
863        BeginTag = "eh_func_begin";
864        BeginNumber = SubprogramCount;
865      } else {
866        BeginTag = "label";
867        BeginNumber = S.BeginLabel;
868      }
869
870      // Offset of the call site relative to the previous call site, counted in
871      // number of 16-byte bundles. The first call site is counted relative to
872      // the start of the procedure fragment.
873      EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount,
874                        true, true);
875      Asm->EOL("Region start");
876
877      if (!S.EndLabel)
878        EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber,
879                       true);
880      else
881        EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true);
882
883      Asm->EOL("Region length");
884
885      // Offset of the landing pad, counted in 16-byte bundles relative to the
886      // @LPStart address.
887      if (!S.PadLabel)
888        Asm->EmitInt32(0);
889      else
890        EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount,
891                          true, true);
892
893      Asm->EOL("Landing pad");
894
895      // Offset of the first associated action record, relative to the start of
896      // the action table. This value is biased by 1 (1 indicates the start of
897      // the action table), and 0 indicates that there are no actions.
898      Asm->EmitULEB128Bytes(S.Action);
899      Asm->EOL("Action");
900    }
901  }
902
903  // Emit the Action Table.
904  for (SmallVectorImpl<ActionEntry>::const_iterator
905         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
906    const ActionEntry &Action = *I;
907
908    // Type Filter
909    //
910    //   Used by the runtime to match the type of the thrown exception to the
911    //   type of the catch clauses or the types in the exception specification.
912
913    Asm->EmitSLEB128Bytes(Action.ValueForTypeID);
914    Asm->EOL("TypeInfo index");
915
916    // Action Record
917    //
918    //   Self-relative signed displacement in bytes of the next action record,
919    //   or 0 if there is no next action record.
920
921    Asm->EmitSLEB128Bytes(Action.NextAction);
922    Asm->EOL("Next action");
923  }
924
925  // Emit the Catch TypeInfos.
926  for (std::vector<GlobalVariable *>::const_reverse_iterator
927         I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
928    const GlobalVariable *GV = *I;
929    PrintRelDirective();
930
931    if (GV) {
932      O << *Asm->GetGlobalValueSymbol(GV);
933    } else {
934      O << "0x0";
935    }
936
937    Asm->EOL("TypeInfo");
938  }
939
940  // Emit the Exception Specifications.
941  for (std::vector<unsigned>::const_iterator
942         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
943    unsigned TypeID = *I;
944    Asm->EmitULEB128Bytes(TypeID);
945    if (TypeID != 0)
946      Asm->EOL("Exception specification");
947    else
948      Asm->EOL();
949  }
950
951  Asm->EmitAlignment(2, 0, 0, false);
952}
953
954/// EndModule - Emit all exception information that should come after the
955/// content.
956void DwarfException::EndModule() {
957  if (MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf)
958    return;
959
960  if (!shouldEmitMovesModule && !shouldEmitTableModule)
961    return;
962
963  if (TimePassesIsEnabled)
964    ExceptionTimer->startTimer();
965
966  const std::vector<Function *> Personalities = MMI->getPersonalities();
967
968  for (unsigned I = 0, E = Personalities.size(); I < E; ++I)
969    EmitCIE(Personalities[I], I);
970
971  for (std::vector<FunctionEHFrameInfo>::iterator
972         I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I)
973    EmitFDE(*I);
974
975  if (TimePassesIsEnabled)
976    ExceptionTimer->stopTimer();
977}
978
979/// BeginFunction - Gather pre-function exception information. Assumes it's
980/// being emitted immediately after the function entry point.
981void DwarfException::BeginFunction(MachineFunction *MF) {
982  if (!MMI || !MAI->doesSupportExceptionHandling()) return;
983
984  if (TimePassesIsEnabled)
985    ExceptionTimer->startTimer();
986
987  this->MF = MF;
988  shouldEmitTable = shouldEmitMoves = false;
989
990  // Map all labels and get rid of any dead landing pads.
991  MMI->TidyLandingPads();
992
993  // If any landing pads survive, we need an EH table.
994  if (!MMI->getLandingPads().empty())
995    shouldEmitTable = true;
996
997  // See if we need frame move info.
998  if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory)
999    shouldEmitMoves = true;
1000
1001  if (shouldEmitMoves || shouldEmitTable)
1002    // Assumes in correct section after the entry point.
1003    EmitLabel("eh_func_begin", ++SubprogramCount);
1004
1005  shouldEmitTableModule |= shouldEmitTable;
1006  shouldEmitMovesModule |= shouldEmitMoves;
1007
1008  if (TimePassesIsEnabled)
1009    ExceptionTimer->stopTimer();
1010}
1011
1012/// EndFunction - Gather and emit post-function exception information.
1013///
1014void DwarfException::EndFunction() {
1015  if (!shouldEmitMoves && !shouldEmitTable) return;
1016
1017  if (TimePassesIsEnabled)
1018    ExceptionTimer->startTimer();
1019
1020  EmitLabel("eh_func_end", SubprogramCount);
1021  EmitExceptionTable();
1022
1023  const MCSymbol *FunctionEHSym =
1024    Asm->GetSymbolWithGlobalValueBase(MF->getFunction(), ".eh",
1025                                      Asm->MAI->is_EHSymbolPrivate());
1026
1027  // Save EH frame information
1028  EHFrames.push_back(FunctionEHFrameInfo(FunctionEHSym, SubprogramCount,
1029                                         MMI->getPersonalityIndex(),
1030                                         MF->getFrameInfo()->hasCalls(),
1031                                         !MMI->getLandingPads().empty(),
1032                                         MMI->getFrameMoves(),
1033                                         MF->getFunction()));
1034
1035  // Record if this personality index uses a landing pad.
1036  UsesLSDA[MMI->getPersonalityIndex()] |= !MMI->getLandingPads().empty();
1037
1038  if (TimePassesIsEnabled)
1039    ExceptionTimer->stopTimer();
1040}
1041