DwarfException.cpp revision ca752c9020a1b1cf151142bd9e0cbca9af12d807
1//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for writing DWARF exception info into asm files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DwarfException.h"
15#include "llvm/Module.h"
16#include "llvm/CodeGen/MachineModuleInfo.h"
17#include "llvm/CodeGen/MachineFrameInfo.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/CodeGen/MachineLocation.h"
20#include "llvm/MC/MCAsmInfo.h"
21#include "llvm/MC/MCContext.h"
22#include "llvm/MC/MCExpr.h"
23#include "llvm/MC/MCSection.h"
24#include "llvm/MC/MCStreamer.h"
25#include "llvm/MC/MCSymbol.h"
26#include "llvm/Target/Mangler.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetFrameInfo.h"
29#include "llvm/Target/TargetLoweringObjectFile.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Support/Dwarf.h"
33#include "llvm/Support/FormattedStream.h"
34#include "llvm/Support/Timer.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/StringExtras.h"
37using namespace llvm;
38
39DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A,
40                               const MCAsmInfo *T)
41  : DwarfPrinter(OS, A, T, "eh"), shouldEmitTable(false),shouldEmitMoves(false),
42    shouldEmitTableModule(false), shouldEmitMovesModule(false),
43    ExceptionTimer(0) {
44  if (TimePassesIsEnabled)
45    ExceptionTimer = new Timer("DWARF Exception Writer");
46}
47
48DwarfException::~DwarfException() {
49  delete ExceptionTimer;
50}
51
52/// SizeOfEncodedValue - Return the size of the encoding in bytes.
53unsigned DwarfException::SizeOfEncodedValue(unsigned Encoding) {
54  if (Encoding == dwarf::DW_EH_PE_omit)
55    return 0;
56
57  switch (Encoding & 0x07) {
58  case dwarf::DW_EH_PE_absptr:
59    return TD->getPointerSize();
60  case dwarf::DW_EH_PE_udata2:
61    return 2;
62  case dwarf::DW_EH_PE_udata4:
63    return 4;
64  case dwarf::DW_EH_PE_udata8:
65    return 8;
66  }
67
68  assert(0 && "Invalid encoded value.");
69  return 0;
70}
71
72/// CreateLabelDiff - Emit a label and subtract it from the expression we
73/// already have.  This is equivalent to emitting "foo - .", but we have to emit
74/// the label for "." directly.
75const MCExpr *DwarfException::CreateLabelDiff(const MCExpr *ExprRef,
76                                              const char *LabelName,
77                                              unsigned Index) {
78  SmallString<64> Name;
79  raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix()
80                            << LabelName << Asm->getFunctionNumber()
81                            << "_" << Index;
82  MCSymbol *DotSym = Asm->OutContext.GetOrCreateSymbol(Name.str());
83  Asm->OutStreamer.EmitLabel(DotSym);
84
85  return MCBinaryExpr::CreateSub(ExprRef,
86                                 MCSymbolRefExpr::Create(DotSym,
87                                                         Asm->OutContext),
88                                 Asm->OutContext);
89}
90
91/// EmitCIE - Emit a Common Information Entry (CIE). This holds information that
92/// is shared among many Frame Description Entries.  There is at least one CIE
93/// in every non-empty .debug_frame section.
94void DwarfException::EmitCIE(const Function *PersonalityFn, unsigned Index) {
95  // Size and sign of stack growth.
96  int stackGrowth =
97    Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
98    TargetFrameInfo::StackGrowsUp ?
99    TD->getPointerSize() : -TD->getPointerSize();
100
101  const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
102
103  // Begin eh frame section.
104  Asm->OutStreamer.SwitchSection(TLOF.getEHFrameSection());
105
106  if (MAI->is_EHSymbolPrivate())
107    O << MAI->getPrivateGlobalPrefix();
108  O << "EH_frame" << Index << ":\n";
109
110  EmitLabel("section_eh_frame", Index);
111
112  // Define base labels.
113  EmitLabel("eh_frame_common", Index);
114
115  // Define the eh frame length.
116  EmitDifference("eh_frame_common_end", Index,
117                 "eh_frame_common_begin", Index, true);
118  EOL("Length of Common Information Entry");
119
120  // EH frame header.
121  EmitLabel("eh_frame_common_begin", Index);
122  if (Asm->VerboseAsm) Asm->OutStreamer.AddComment("CIE Identifier Tag");
123  Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
124  if (Asm->VerboseAsm) Asm->OutStreamer.AddComment("DW_CIE_VERSION");
125  Asm->OutStreamer.EmitIntValue(dwarf::DW_CIE_VERSION, 1/*size*/, 0/*addr*/);
126
127  // The personality presence indicates that language specific information will
128  // show up in the eh frame.  Find out how we are supposed to lower the
129  // personality function reference:
130  const MCExpr *PersonalityRef = 0;
131  bool IsPersonalityIndirect = false, IsPersonalityPCRel = false;
132  if (PersonalityFn) {
133    // FIXME: HANDLE STATIC CODEGEN MODEL HERE.
134
135    // In non-static mode, ask the object file how to represent this reference.
136    PersonalityRef =
137      TLOF.getSymbolForDwarfGlobalReference(PersonalityFn, Asm->Mang,
138                                            Asm->MMI,
139                                            IsPersonalityIndirect,
140                                            IsPersonalityPCRel);
141  }
142
143  unsigned PerEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
144  if (IsPersonalityIndirect)
145    PerEncoding |= dwarf::DW_EH_PE_indirect;
146  unsigned LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
147  unsigned FDEEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
148
149  char Augmentation[6] = { 0 };
150  unsigned AugmentationSize = 0;
151  char *APtr = Augmentation + 1;
152
153  if (PersonalityRef) {
154    // There is a personality function.
155    *APtr++ = 'P';
156    AugmentationSize += 1 + SizeOfEncodedValue(PerEncoding);
157  }
158
159  if (UsesLSDA[Index]) {
160    // An LSDA pointer is in the FDE augmentation.
161    *APtr++ = 'L';
162    ++AugmentationSize;
163  }
164
165  if (FDEEncoding != dwarf::DW_EH_PE_absptr) {
166    // A non-default pointer encoding for the FDE.
167    *APtr++ = 'R';
168    ++AugmentationSize;
169  }
170
171  if (APtr != Augmentation + 1)
172    Augmentation[0] = 'z';
173
174  Asm->OutStreamer.EmitBytes(StringRef(Augmentation, strlen(Augmentation)+1),0);
175  EOL("CIE Augmentation");
176
177  // Round out reader.
178  EmitULEB128(1, "CIE Code Alignment Factor");
179  EmitSLEB128(stackGrowth, "CIE Data Alignment Factor");
180  Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true));
181  EOL("CIE Return Address Column");
182
183  EmitULEB128(AugmentationSize, "Augmentation Size");
184  EmitEncodingByte(PerEncoding, "Personality");
185
186  // If there is a personality, we need to indicate the function's location.
187  if (PersonalityRef) {
188    if (!IsPersonalityPCRel)
189      PersonalityRef = CreateLabelDiff(PersonalityRef, "personalityref_addr",
190                                       Index);
191
192    O << MAI->getData32bitsDirective() << *PersonalityRef;
193    EOL("Personality");
194
195    EmitEncodingByte(LSDAEncoding, "LSDA");
196    EmitEncodingByte(FDEEncoding, "FDE");
197  }
198
199  // Indicate locations of general callee saved registers in frame.
200  std::vector<MachineMove> Moves;
201  RI->getInitialFrameState(Moves);
202  EmitFrameMoves(NULL, 0, Moves, true);
203
204  // On Darwin the linker honors the alignment of eh_frame, which means it must
205  // be 8-byte on 64-bit targets to match what gcc does.  Otherwise you get
206  // holes which confuse readers of eh_frame.
207  Asm->EmitAlignment(TD->getPointerSize() == 4 ? 2 : 3, 0, 0, false);
208  EmitLabel("eh_frame_common_end", Index);
209  Asm->O << '\n';
210}
211
212/// EmitFDE - Emit the Frame Description Entry (FDE) for the function.
213void DwarfException::EmitFDE(const FunctionEHFrameInfo &EHFrameInfo) {
214  assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() &&
215         "Should not emit 'available externally' functions at all");
216
217  const Function *TheFunc = EHFrameInfo.function;
218
219  Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection());
220
221  // Externally visible entry into the functions eh frame info. If the
222  // corresponding function is static, this should not be externally visible.
223  if (!TheFunc->hasLocalLinkage())
224    if (const char *GlobalEHDirective = MAI->getGlobalEHDirective())
225      O << GlobalEHDirective << *EHFrameInfo.FunctionEHSym << '\n';
226
227  // If corresponding function is weak definition, this should be too.
228  if (TheFunc->isWeakForLinker() && MAI->getWeakDefDirective())
229    O << MAI->getWeakDefDirective() << *EHFrameInfo.FunctionEHSym << '\n';
230
231  // If corresponding function is hidden, this should be too.
232  if (TheFunc->hasHiddenVisibility())
233    if (MCSymbolAttr HiddenAttr = MAI->getHiddenVisibilityAttr())
234      Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym,
235                                           HiddenAttr);
236
237  // If there are no calls then you can't unwind.  This may mean we can omit the
238  // EH Frame, but some environments do not handle weak absolute symbols. If
239  // UnwindTablesMandatory is set we cannot do this optimization; the unwind
240  // info is to be available for non-EH uses.
241  if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory &&
242      (!TheFunc->isWeakForLinker() ||
243       !MAI->getWeakDefDirective() ||
244       MAI->getSupportsWeakOmittedEHFrame())) {
245    O << *EHFrameInfo.FunctionEHSym << " = 0\n";
246    // This name has no connection to the function, so it might get
247    // dead-stripped when the function is not, erroneously.  Prohibit
248    // dead-stripping unconditionally.
249    if (MAI->hasNoDeadStrip())
250      Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym,
251                                           MCSA_NoDeadStrip);
252  } else {
253    O << *EHFrameInfo.FunctionEHSym << ":\n";
254
255    // EH frame header.
256    EmitDifference("eh_frame_end", EHFrameInfo.Number,
257                   "eh_frame_begin", EHFrameInfo.Number, true);
258    EOL("Length of Frame Information Entry");
259
260    EmitLabel("eh_frame_begin", EHFrameInfo.Number);
261
262    EmitSectionOffset("eh_frame_begin", "eh_frame_common",
263                      EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
264                      true, true, false);
265
266    EOL("FDE CIE offset");
267
268    EmitReference("eh_func_begin", EHFrameInfo.Number, true, true);
269    EOL("FDE initial location");
270    EmitDifference("eh_func_end", EHFrameInfo.Number,
271                   "eh_func_begin", EHFrameInfo.Number, true);
272    EOL("FDE address range");
273
274    // If there is a personality and landing pads then point to the language
275    // specific data area in the exception table.
276    if (MMI->getPersonalities()[0] != NULL) {
277
278      if (Asm->TM.getLSDAEncoding() != DwarfLSDAEncoding::EightByte) {
279        EmitULEB128(4, "Augmentation size");
280
281        if (EHFrameInfo.hasLandingPads)
282          EmitReference("exception", EHFrameInfo.Number, true, true);
283        else
284          Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
285      } else {
286        EmitULEB128(TD->getPointerSize(), "Augmentation size");
287
288        if (EHFrameInfo.hasLandingPads) {
289          EmitReference("exception", EHFrameInfo.Number, true, false);
290        } else {
291          Asm->OutStreamer.EmitIntValue(0, TD->getPointerSize(),
292                                        0/*addrspace*/);
293        }
294      }
295
296      EOL("Language Specific Data Area");
297    } else {
298      EmitULEB128(0, "Augmentation size");
299    }
300
301    // Indicate locations of function specific callee saved registers in frame.
302    EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves,
303                   true);
304
305    // On Darwin the linker honors the alignment of eh_frame, which means it
306    // must be 8-byte on 64-bit targets to match what gcc does.  Otherwise you
307    // get holes which confuse readers of eh_frame.
308    Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
309                       0, 0, false);
310    EmitLabel("eh_frame_end", EHFrameInfo.Number);
311
312    // If the function is marked used, this table should be also.  We cannot
313    // make the mark unconditional in this case, since retaining the table also
314    // retains the function in this case, and there is code around that depends
315    // on unused functions (calling undefined externals) being dead-stripped to
316    // link correctly.  Yes, there really is.
317    if (MMI->isUsedFunction(EHFrameInfo.function))
318      if (MAI->hasNoDeadStrip())
319        Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym,
320                                             MCSA_NoDeadStrip);
321  }
322  Asm->O << '\n';
323}
324
325/// SharedTypeIds - How many leading type ids two landing pads have in common.
326unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
327                                       const LandingPadInfo *R) {
328  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
329  unsigned LSize = LIds.size(), RSize = RIds.size();
330  unsigned MinSize = LSize < RSize ? LSize : RSize;
331  unsigned Count = 0;
332
333  for (; Count != MinSize; ++Count)
334    if (LIds[Count] != RIds[Count])
335      return Count;
336
337  return Count;
338}
339
340/// PadLT - Order landing pads lexicographically by type id.
341bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
342  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
343  unsigned LSize = LIds.size(), RSize = RIds.size();
344  unsigned MinSize = LSize < RSize ? LSize : RSize;
345
346  for (unsigned i = 0; i != MinSize; ++i)
347    if (LIds[i] != RIds[i])
348      return LIds[i] < RIds[i];
349
350  return LSize < RSize;
351}
352
353/// ComputeActionsTable - Compute the actions table and gather the first action
354/// index for each landing pad site.
355unsigned DwarfException::
356ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
357                    SmallVectorImpl<ActionEntry> &Actions,
358                    SmallVectorImpl<unsigned> &FirstActions) {
359
360  // The action table follows the call-site table in the LSDA. The individual
361  // records are of two types:
362  //
363  //   * Catch clause
364  //   * Exception specification
365  //
366  // The two record kinds have the same format, with only small differences.
367  // They are distinguished by the "switch value" field: Catch clauses
368  // (TypeInfos) have strictly positive switch values, and exception
369  // specifications (FilterIds) have strictly negative switch values. Value 0
370  // indicates a catch-all clause.
371  //
372  // Negative type IDs index into FilterIds. Positive type IDs index into
373  // TypeInfos.  The value written for a positive type ID is just the type ID
374  // itself.  For a negative type ID, however, the value written is the
375  // (negative) byte offset of the corresponding FilterIds entry.  The byte
376  // offset is usually equal to the type ID (because the FilterIds entries are
377  // written using a variable width encoding, which outputs one byte per entry
378  // as long as the value written is not too large) but can differ.  This kind
379  // of complication does not occur for positive type IDs because type infos are
380  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
381  // offset corresponding to FilterIds[i].
382
383  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
384  SmallVector<int, 16> FilterOffsets;
385  FilterOffsets.reserve(FilterIds.size());
386  int Offset = -1;
387
388  for (std::vector<unsigned>::const_iterator
389         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
390    FilterOffsets.push_back(Offset);
391    Offset -= MCAsmInfo::getULEB128Size(*I);
392  }
393
394  FirstActions.reserve(LandingPads.size());
395
396  int FirstAction = 0;
397  unsigned SizeActions = 0;
398  const LandingPadInfo *PrevLPI = 0;
399
400  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
401         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
402    const LandingPadInfo *LPI = *I;
403    const std::vector<int> &TypeIds = LPI->TypeIds;
404    const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
405    unsigned SizeSiteActions = 0;
406
407    if (NumShared < TypeIds.size()) {
408      unsigned SizeAction = 0;
409      ActionEntry *PrevAction = 0;
410
411      if (NumShared) {
412        const unsigned SizePrevIds = PrevLPI->TypeIds.size();
413        assert(Actions.size());
414        PrevAction = &Actions.back();
415        SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
416          MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
417
418        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
419          SizeAction -=
420            MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
421          SizeAction += -PrevAction->NextAction;
422          PrevAction = PrevAction->Previous;
423        }
424      }
425
426      // Compute the actions.
427      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
428        int TypeID = TypeIds[J];
429        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
430        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
431        unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
432
433        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
434        SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
435        SizeSiteActions += SizeAction;
436
437        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
438        Actions.push_back(Action);
439        PrevAction = &Actions.back();
440      }
441
442      // Record the first action of the landing pad site.
443      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
444    } // else identical - re-use previous FirstAction
445
446    // Information used when created the call-site table. The action record
447    // field of the call site record is the offset of the first associated
448    // action record, relative to the start of the actions table. This value is
449    // biased by 1 (1 in dicating the start of the actions table), and 0
450    // indicates that there are no actions.
451    FirstActions.push_back(FirstAction);
452
453    // Compute this sites contribution to size.
454    SizeActions += SizeSiteActions;
455
456    PrevLPI = LPI;
457  }
458
459  return SizeActions;
460}
461
462/// CallToNoUnwindFunction - Return `true' if this is a call to a function
463/// marked `nounwind'. Return `false' otherwise.
464bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) {
465  assert(MI->getDesc().isCall() && "This should be a call instruction!");
466
467  bool MarkedNoUnwind = false;
468  bool SawFunc = false;
469
470  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
471    const MachineOperand &MO = MI->getOperand(I);
472
473    if (MO.isGlobal()) {
474      if (Function *F = dyn_cast<Function>(MO.getGlobal())) {
475        if (SawFunc) {
476          // Be conservative. If we have more than one function operand for this
477          // call, then we can't make the assumption that it's the callee and
478          // not a parameter to the call.
479          //
480          // FIXME: Determine if there's a way to say that `F' is the callee or
481          // parameter.
482          MarkedNoUnwind = false;
483          break;
484        }
485
486        MarkedNoUnwind = F->doesNotThrow();
487        SawFunc = true;
488      }
489    }
490  }
491
492  return MarkedNoUnwind;
493}
494
495/// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
496/// has a try-range containing the call, a non-zero landing pad, and an
497/// appropriate action.  The entry for an ordinary call has a try-range
498/// containing the call and zero for the landing pad and the action.  Calls
499/// marked 'nounwind' have no entry and must not be contained in the try-range
500/// of any entry - they form gaps in the table.  Entries must be ordered by
501/// try-range address.
502void DwarfException::
503ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
504                     const RangeMapType &PadMap,
505                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
506                     const SmallVectorImpl<unsigned> &FirstActions) {
507  // The end label of the previous invoke or nounwind try-range.
508  unsigned LastLabel = 0;
509
510  // Whether there is a potentially throwing instruction (currently this means
511  // an ordinary call) between the end of the previous try-range and now.
512  bool SawPotentiallyThrowing = false;
513
514  // Whether the last CallSite entry was for an invoke.
515  bool PreviousIsInvoke = false;
516
517  // Visit all instructions in order of address.
518  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
519       I != E; ++I) {
520    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
521         MI != E; ++MI) {
522      if (!MI->isLabel()) {
523        if (MI->getDesc().isCall())
524          SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
525
526        continue;
527      }
528
529      unsigned BeginLabel = MI->getOperand(0).getImm();
530      assert(BeginLabel && "Invalid label!");
531
532      // End of the previous try-range?
533      if (BeginLabel == LastLabel)
534        SawPotentiallyThrowing = false;
535
536      // Beginning of a new try-range?
537      RangeMapType::const_iterator L = PadMap.find(BeginLabel);
538      if (L == PadMap.end())
539        // Nope, it was just some random label.
540        continue;
541
542      const PadRange &P = L->second;
543      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
544      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
545             "Inconsistent landing pad map!");
546
547      // For Dwarf exception handling (SjLj handling doesn't use this). If some
548      // instruction between the previous try-range and this one may throw,
549      // create a call-site entry with no landing pad for the region between the
550      // try-ranges.
551      if (SawPotentiallyThrowing &&
552          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
553        CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
554        CallSites.push_back(Site);
555        PreviousIsInvoke = false;
556      }
557
558      LastLabel = LandingPad->EndLabels[P.RangeIndex];
559      assert(BeginLabel && LastLabel && "Invalid landing pad!");
560
561      if (LandingPad->LandingPadLabel) {
562        // This try-range is for an invoke.
563        CallSiteEntry Site = {
564          BeginLabel,
565          LastLabel,
566          LandingPad->LandingPadLabel,
567          FirstActions[P.PadIndex]
568        };
569
570        // Try to merge with the previous call-site. SJLJ doesn't do this
571        if (PreviousIsInvoke &&
572          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
573          CallSiteEntry &Prev = CallSites.back();
574          if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
575            // Extend the range of the previous entry.
576            Prev.EndLabel = Site.EndLabel;
577            continue;
578          }
579        }
580
581        // Otherwise, create a new call-site.
582        if (MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf)
583          CallSites.push_back(Site);
584        else {
585          // SjLj EH must maintain the call sites in the order assigned
586          // to them by the SjLjPrepare pass.
587          unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
588          if (CallSites.size() < SiteNo)
589            CallSites.resize(SiteNo);
590          CallSites[SiteNo - 1] = Site;
591        }
592        PreviousIsInvoke = true;
593      } else {
594        // Create a gap.
595        PreviousIsInvoke = false;
596      }
597    }
598  }
599
600  // If some instruction between the previous try-range and the end of the
601  // function may throw, create a call-site entry with no landing pad for the
602  // region following the try-range.
603  if (SawPotentiallyThrowing &&
604      MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
605    CallSiteEntry Site = { LastLabel, 0, 0, 0 };
606    CallSites.push_back(Site);
607  }
608}
609
610/// EmitExceptionTable - Emit landing pads and actions.
611///
612/// The general organization of the table is complex, but the basic concepts are
613/// easy.  First there is a header which describes the location and organization
614/// of the three components that follow.
615///
616///  1. The landing pad site information describes the range of code covered by
617///     the try.  In our case it's an accumulation of the ranges covered by the
618///     invokes in the try.  There is also a reference to the landing pad that
619///     handles the exception once processed.  Finally an index into the actions
620///     table.
621///  2. The action table, in our case, is composed of pairs of type IDs and next
622///     action offset.  Starting with the action index from the landing pad
623///     site, each type ID is checked for a match to the current exception.  If
624///     it matches then the exception and type id are passed on to the landing
625///     pad.  Otherwise the next action is looked up.  This chain is terminated
626///     with a next action of zero.  If no type id is found then the frame is
627///     unwound and handling continues.
628///  3. Type ID table contains references to all the C++ typeinfo for all
629///     catches in the function.  This tables is reverse indexed base 1.
630void DwarfException::EmitExceptionTable() {
631  const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
632  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
633  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
634  if (PadInfos.empty()) return;
635
636  // Sort the landing pads in order of their type ids.  This is used to fold
637  // duplicate actions.
638  SmallVector<const LandingPadInfo *, 64> LandingPads;
639  LandingPads.reserve(PadInfos.size());
640
641  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
642    LandingPads.push_back(&PadInfos[i]);
643
644  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
645
646  // Compute the actions table and gather the first action index for each
647  // landing pad site.
648  SmallVector<ActionEntry, 32> Actions;
649  SmallVector<unsigned, 64> FirstActions;
650  unsigned SizeActions = ComputeActionsTable(LandingPads, Actions,
651                                             FirstActions);
652
653  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
654  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
655  // try-ranges for them need be deduced when using DWARF exception handling.
656  RangeMapType PadMap;
657  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
658    const LandingPadInfo *LandingPad = LandingPads[i];
659    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
660      unsigned BeginLabel = LandingPad->BeginLabels[j];
661      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
662      PadRange P = { i, j };
663      PadMap[BeginLabel] = P;
664    }
665  }
666
667  // Compute the call-site table.
668  SmallVector<CallSiteEntry, 64> CallSites;
669  ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
670
671  // Final tallies.
672
673  // Call sites.
674  const unsigned SiteStartSize  = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
675  const unsigned SiteLengthSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
676  const unsigned LandingPadSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
677  bool IsSJLJ = MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
678  bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
679  unsigned SizeSites;
680
681  if (IsSJLJ)
682    SizeSites = 0;
683  else
684    SizeSites = CallSites.size() *
685      (SiteStartSize + SiteLengthSize + LandingPadSize);
686
687  for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
688    SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
689    if (IsSJLJ)
690      SizeSites += MCAsmInfo::getULEB128Size(i);
691  }
692
693  // Type infos.
694  const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
695  unsigned TTypeFormat;
696  unsigned TypeFormatSize;
697
698  if (!HaveTTData) {
699    // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
700    // that we're omitting that bit.
701    TTypeFormat = dwarf::DW_EH_PE_omit;
702    TypeFormatSize = SizeOfEncodedValue(dwarf::DW_EH_PE_absptr);
703  } else {
704    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
705    // pick a type encoding for them.  We're about to emit a list of pointers to
706    // typeinfo objects at the end of the LSDA.  However, unless we're in static
707    // mode, this reference will require a relocation by the dynamic linker.
708    //
709    // Because of this, we have a couple of options:
710    //
711    //   1) If we are in -static mode, we can always use an absolute reference
712    //      from the LSDA, because the static linker will resolve it.
713    //
714    //   2) Otherwise, if the LSDA section is writable, we can output the direct
715    //      reference to the typeinfo and allow the dynamic linker to relocate
716    //      it.  Since it is in a writable section, the dynamic linker won't
717    //      have a problem.
718    //
719    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
720    //      we need to use some form of indirection.  For example, on Darwin,
721    //      we can output a statically-relocatable reference to a dyld stub. The
722    //      offset to the stub is constant, but the contents are in a section
723    //      that is updated by the dynamic linker.  This is easy enough, but we
724    //      need to tell the personality function of the unwinder to indirect
725    //      through the dyld stub.
726    //
727    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
728    // somewhere.  This predicate should be moved to a shared location that is
729    // in target-independent code.
730    //
731    if (LSDASection->getKind().isWriteable() ||
732        Asm->TM.getRelocationModel() == Reloc::Static)
733      TTypeFormat = dwarf::DW_EH_PE_absptr;
734    else
735      TTypeFormat = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
736        dwarf::DW_EH_PE_sdata4;
737
738    TypeFormatSize = SizeOfEncodedValue(TTypeFormat);
739  }
740
741  // Begin the exception table.
742  Asm->OutStreamer.SwitchSection(LSDASection);
743  Asm->EmitAlignment(2, 0, 0, false);
744
745  O << "GCC_except_table" << SubprogramCount << ":\n";
746
747  // The type infos need to be aligned. GCC does this by inserting padding just
748  // before the type infos. However, this changes the size of the exception
749  // table, so you need to take this into account when you output the exception
750  // table size. However, the size is output using a variable length encoding.
751  // So by increasing the size by inserting padding, you may increase the number
752  // of bytes used for writing the size. If it increases, say by one byte, then
753  // you now need to output one less byte of padding to get the type infos
754  // aligned.  However this decreases the size of the exception table. This
755  // changes the value you have to output for the exception table size. Due to
756  // the variable length encoding, the number of bytes used for writing the
757  // length may decrease. If so, you then have to increase the amount of
758  // padding. And so on. If you look carefully at the GCC code you will see that
759  // it indeed does this in a loop, going on and on until the values stabilize.
760  // We chose another solution: don't output padding inside the table like GCC
761  // does, instead output it before the table.
762  unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
763  unsigned TyOffset = sizeof(int8_t) +          // Call site format
764    MCAsmInfo::getULEB128Size(SizeSites) +      // Call-site table length
765    SizeSites + SizeActions + SizeTypes;
766  unsigned TotalSize = sizeof(int8_t) +         // LPStart format
767                       sizeof(int8_t) +         // TType format
768    (HaveTTData ?
769     MCAsmInfo::getULEB128Size(TyOffset) : 0) + // TType base offset
770    TyOffset;
771  unsigned SizeAlign = (4 - TotalSize) & 3;
772
773  for (unsigned i = 0; i != SizeAlign; ++i) {
774    Asm->EmitInt8(0);
775    EOL("Padding");
776  }
777
778  EmitLabel("exception", SubprogramCount);
779
780  if (IsSJLJ) {
781    SmallString<16> LSDAName;
782    raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() <<
783      "_LSDA_" << Asm->getFunctionNumber();
784    O << LSDAName.str() << ":\n";
785  }
786
787  // Emit the header.
788  EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
789  EmitEncodingByte(TTypeFormat, "@TType");
790
791  if (HaveTTData)
792    EmitULEB128(TyOffset, "@TType base offset");
793
794  // SjLj Exception handling
795  if (IsSJLJ) {
796    EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
797    EmitULEB128(SizeSites, "Call site table length");
798
799    // Emit the landing pad site information.
800    unsigned idx = 0;
801    for (SmallVectorImpl<CallSiteEntry>::const_iterator
802         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
803      const CallSiteEntry &S = *I;
804
805      // Offset of the landing pad, counted in 16-byte bundles relative to the
806      // @LPStart address.
807      EmitULEB128(idx, "Landing pad");
808
809      // Offset of the first associated action record, relative to the start of
810      // the action table. This value is biased by 1 (1 indicates the start of
811      // the action table), and 0 indicates that there are no actions.
812      EmitULEB128(S.Action, "Action");
813    }
814  } else {
815    // DWARF Exception handling
816    assert(MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf);
817
818    // The call-site table is a list of all call sites that may throw an
819    // exception (including C++ 'throw' statements) in the procedure
820    // fragment. It immediately follows the LSDA header. Each entry indicates,
821    // for a given call, the first corresponding action record and corresponding
822    // landing pad.
823    //
824    // The table begins with the number of bytes, stored as an LEB128
825    // compressed, unsigned integer. The records immediately follow the record
826    // count. They are sorted in increasing call-site address. Each record
827    // indicates:
828    //
829    //   * The position of the call-site.
830    //   * The position of the landing pad.
831    //   * The first action record for that call site.
832    //
833    // A missing entry in the call-site table indicates that a call is not
834    // supposed to throw.
835
836    // Emit the landing pad call site table.
837    EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
838    EmitULEB128(SizeSites, "Call site table size");
839
840    for (SmallVectorImpl<CallSiteEntry>::const_iterator
841         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
842      const CallSiteEntry &S = *I;
843      const char *BeginTag;
844      unsigned BeginNumber;
845
846      if (!S.BeginLabel) {
847        BeginTag = "eh_func_begin";
848        BeginNumber = SubprogramCount;
849      } else {
850        BeginTag = "label";
851        BeginNumber = S.BeginLabel;
852      }
853
854      // Offset of the call site relative to the previous call site, counted in
855      // number of 16-byte bundles. The first call site is counted relative to
856      // the start of the procedure fragment.
857      EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount,
858                        true, true);
859      EOL("Region start");
860
861      if (!S.EndLabel)
862        EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber,
863                       true);
864      else
865        EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true);
866
867      EOL("Region length");
868
869      // Offset of the landing pad, counted in 16-byte bundles relative to the
870      // @LPStart address.
871      if (!S.PadLabel)
872        Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
873      else
874        EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount,
875                          true, true);
876
877      EOL("Landing pad");
878
879      // Offset of the first associated action record, relative to the start of
880      // the action table. This value is biased by 1 (1 indicates the start of
881      // the action table), and 0 indicates that there are no actions.
882      EmitULEB128(S.Action, "Action");
883    }
884  }
885
886  // Emit the Action Table.
887  for (SmallVectorImpl<ActionEntry>::const_iterator
888         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
889    const ActionEntry &Action = *I;
890
891    // Type Filter
892    //
893    //   Used by the runtime to match the type of the thrown exception to the
894    //   type of the catch clauses or the types in the exception specification.
895    EmitSLEB128(Action.ValueForTypeID, "TypeInfo index");
896
897    // Action Record
898    //
899    //   Self-relative signed displacement in bytes of the next action record,
900    //   or 0 if there is no next action record.
901    EmitSLEB128(Action.NextAction, "Next action");
902  }
903
904  // Emit the Catch TypeInfos.
905  for (std::vector<GlobalVariable *>::const_reverse_iterator
906         I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
907    const GlobalVariable *GV = *I;
908    PrintRelDirective();
909
910    if (GV)
911      O << *Asm->GetGlobalValueSymbol(GV);
912    else
913      O << "0x0";
914
915    EOL("TypeInfo");
916  }
917
918  // Emit the Exception Specifications.
919  for (std::vector<unsigned>::const_iterator
920         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
921    unsigned TypeID = *I;
922    EmitULEB128(TypeID, TypeID != 0 ? "Exception specification" : 0);
923  }
924
925  Asm->EmitAlignment(2, 0, 0, false);
926}
927
928/// EndModule - Emit all exception information that should come after the
929/// content.
930void DwarfException::EndModule() {
931  if (MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf)
932    return;
933
934  if (!shouldEmitMovesModule && !shouldEmitTableModule)
935    return;
936
937  if (TimePassesIsEnabled)
938    ExceptionTimer->startTimer();
939
940  const std::vector<Function *> Personalities = MMI->getPersonalities();
941
942  for (unsigned I = 0, E = Personalities.size(); I < E; ++I)
943    EmitCIE(Personalities[I], I);
944
945  for (std::vector<FunctionEHFrameInfo>::iterator
946         I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I)
947    EmitFDE(*I);
948
949  if (TimePassesIsEnabled)
950    ExceptionTimer->stopTimer();
951}
952
953/// BeginFunction - Gather pre-function exception information. Assumes it's
954/// being emitted immediately after the function entry point.
955void DwarfException::BeginFunction(const MachineFunction *MF) {
956  if (!MMI || !MAI->doesSupportExceptionHandling()) return;
957
958  if (TimePassesIsEnabled)
959    ExceptionTimer->startTimer();
960
961  this->MF = MF;
962  shouldEmitTable = shouldEmitMoves = false;
963
964  // Map all labels and get rid of any dead landing pads.
965  MMI->TidyLandingPads();
966
967  // If any landing pads survive, we need an EH table.
968  if (!MMI->getLandingPads().empty())
969    shouldEmitTable = true;
970
971  // See if we need frame move info.
972  if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory)
973    shouldEmitMoves = true;
974
975  if (shouldEmitMoves || shouldEmitTable)
976    // Assumes in correct section after the entry point.
977    EmitLabel("eh_func_begin", ++SubprogramCount);
978
979  shouldEmitTableModule |= shouldEmitTable;
980  shouldEmitMovesModule |= shouldEmitMoves;
981
982  if (TimePassesIsEnabled)
983    ExceptionTimer->stopTimer();
984}
985
986/// EndFunction - Gather and emit post-function exception information.
987///
988void DwarfException::EndFunction() {
989  if (!shouldEmitMoves && !shouldEmitTable) return;
990
991  if (TimePassesIsEnabled)
992    ExceptionTimer->startTimer();
993
994  EmitLabel("eh_func_end", SubprogramCount);
995  EmitExceptionTable();
996
997  MCSymbol *FunctionEHSym =
998    Asm->GetSymbolWithGlobalValueBase(MF->getFunction(), ".eh",
999                                      Asm->MAI->is_EHSymbolPrivate());
1000
1001  // Save EH frame information
1002  EHFrames.push_back(FunctionEHFrameInfo(FunctionEHSym, SubprogramCount,
1003                                         MMI->getPersonalityIndex(),
1004                                         MF->getFrameInfo()->hasCalls(),
1005                                         !MMI->getLandingPads().empty(),
1006                                         MMI->getFrameMoves(),
1007                                         MF->getFunction()));
1008
1009  // Record if this personality index uses a landing pad.
1010  UsesLSDA[MMI->getPersonalityIndex()] |= !MMI->getLandingPads().empty();
1011
1012  if (TimePassesIsEnabled)
1013    ExceptionTimer->stopTimer();
1014}
1015