DwarfException.cpp revision cc564640451a9fb7c8732b93be3e3555c314a7b6
1//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for writing DWARF exception info into asm files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DwarfException.h"
15#include "llvm/Module.h"
16#include "llvm/CodeGen/MachineModuleInfo.h"
17#include "llvm/CodeGen/MachineFrameInfo.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/CodeGen/MachineLocation.h"
20#include "llvm/MC/MCAsmInfo.h"
21#include "llvm/MC/MCContext.h"
22#include "llvm/MC/MCExpr.h"
23#include "llvm/MC/MCSection.h"
24#include "llvm/MC/MCStreamer.h"
25#include "llvm/MC/MCSymbol.h"
26#include "llvm/Target/Mangler.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetFrameInfo.h"
29#include "llvm/Target/TargetLoweringObjectFile.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Support/Dwarf.h"
33#include "llvm/Support/FormattedStream.h"
34#include "llvm/Support/Timer.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/StringExtras.h"
37using namespace llvm;
38
39DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A,
40                               const MCAsmInfo *T)
41  : DwarfPrinter(OS, A, T, "eh"), shouldEmitTable(false),shouldEmitMoves(false),
42    shouldEmitTableModule(false), shouldEmitMovesModule(false),
43    ExceptionTimer(0) {
44  if (TimePassesIsEnabled)
45    ExceptionTimer = new Timer("DWARF Exception Writer");
46}
47
48DwarfException::~DwarfException() {
49  delete ExceptionTimer;
50}
51
52/// SizeOfEncodedValue - Return the size of the encoding in bytes.
53unsigned DwarfException::SizeOfEncodedValue(unsigned Encoding) {
54  if (Encoding == dwarf::DW_EH_PE_omit)
55    return 0;
56
57  switch (Encoding & 0x07) {
58  case dwarf::DW_EH_PE_absptr:
59    return TD->getPointerSize();
60  case dwarf::DW_EH_PE_udata2:
61    return 2;
62  case dwarf::DW_EH_PE_udata4:
63    return 4;
64  case dwarf::DW_EH_PE_udata8:
65    return 8;
66  }
67
68  assert(0 && "Invalid encoded value.");
69  return 0;
70}
71
72/// CreateLabelDiff - Emit a label and subtract it from the expression we
73/// already have.  This is equivalent to emitting "foo - .", but we have to emit
74/// the label for "." directly.
75const MCExpr *DwarfException::CreateLabelDiff(const MCExpr *ExprRef,
76                                              const char *LabelName,
77                                              unsigned Index) {
78  SmallString<64> Name;
79  raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix()
80                            << LabelName << Asm->getFunctionNumber()
81                            << "_" << Index;
82  MCSymbol *DotSym = Asm->OutContext.GetOrCreateSymbol(Name.str());
83  Asm->OutStreamer.EmitLabel(DotSym);
84
85  return MCBinaryExpr::CreateSub(ExprRef,
86                                 MCSymbolRefExpr::Create(DotSym,
87                                                         Asm->OutContext),
88                                 Asm->OutContext);
89}
90
91/// EmitCIE - Emit a Common Information Entry (CIE). This holds information that
92/// is shared among many Frame Description Entries.  There is at least one CIE
93/// in every non-empty .debug_frame section.
94void DwarfException::EmitCIE(const Function *PersonalityFn, unsigned Index) {
95  // Size and sign of stack growth.
96  int stackGrowth =
97    Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
98    TargetFrameInfo::StackGrowsUp ?
99    TD->getPointerSize() : -TD->getPointerSize();
100
101  const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
102
103  // Begin eh frame section.
104  Asm->OutStreamer.SwitchSection(TLOF.getEHFrameSection());
105
106  if (MAI->is_EHSymbolPrivate())
107    O << MAI->getPrivateGlobalPrefix();
108  O << "EH_frame" << Index << ":\n";
109
110  EmitLabel("section_eh_frame", Index);
111
112  // Define base labels.
113  EmitLabel("eh_frame_common", Index);
114
115  // Define the eh frame length.
116  EmitDifference("eh_frame_common_end", Index,
117                 "eh_frame_common_begin", Index, true);
118  EOL("Length of Common Information Entry");
119
120  // EH frame header.
121  EmitLabel("eh_frame_common_begin", Index);
122  if (Asm->VerboseAsm) Asm->OutStreamer.AddComment("CIE Identifier Tag");
123  Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
124  if (Asm->VerboseAsm) Asm->OutStreamer.AddComment("DW_CIE_VERSION");
125  Asm->OutStreamer.EmitIntValue(dwarf::DW_CIE_VERSION, 1/*size*/, 0/*addr*/);
126
127  // The personality presence indicates that language specific information will
128  // show up in the eh frame.  Find out how we are supposed to lower the
129  // personality function reference:
130  const MCExpr *PersonalityRef = 0;
131  bool IsPersonalityIndirect = false, IsPersonalityPCRel = false;
132  if (PersonalityFn) {
133    // FIXME: HANDLE STATIC CODEGEN MODEL HERE.
134
135    // In non-static mode, ask the object file how to represent this reference.
136    PersonalityRef =
137      TLOF.getSymbolForDwarfGlobalReference(PersonalityFn, Asm->Mang,
138                                            Asm->MMI,
139                                            IsPersonalityIndirect,
140                                            IsPersonalityPCRel);
141  }
142
143  unsigned PerEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
144  if (IsPersonalityIndirect)
145    PerEncoding |= dwarf::DW_EH_PE_indirect;
146  unsigned LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
147  unsigned FDEEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
148
149  char Augmentation[6] = { 0 };
150  unsigned AugmentationSize = 0;
151  char *APtr = Augmentation + 1;
152
153  if (PersonalityRef) {
154    // There is a personality function.
155    *APtr++ = 'P';
156    AugmentationSize += 1 + SizeOfEncodedValue(PerEncoding);
157  }
158
159  if (UsesLSDA[Index]) {
160    // An LSDA pointer is in the FDE augmentation.
161    *APtr++ = 'L';
162    ++AugmentationSize;
163  }
164
165  if (FDEEncoding != dwarf::DW_EH_PE_absptr) {
166    // A non-default pointer encoding for the FDE.
167    *APtr++ = 'R';
168    ++AugmentationSize;
169  }
170
171  if (APtr != Augmentation + 1)
172    Augmentation[0] = 'z';
173
174  Asm->OutStreamer.EmitBytes(StringRef(Augmentation, strlen(Augmentation)+1),0);
175  EOL("CIE Augmentation");
176
177  // Round out reader.
178  EmitULEB128(1, "CIE Code Alignment Factor");
179  EmitSLEB128(stackGrowth, "CIE Data Alignment Factor");
180  Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true));
181  EOL("CIE Return Address Column");
182
183  EmitULEB128(AugmentationSize, "Augmentation Size");
184  EmitEncodingByte(PerEncoding, "Personality");
185
186  // If there is a personality, we need to indicate the function's location.
187  if (PersonalityRef) {
188    if (!IsPersonalityPCRel)
189      PersonalityRef = CreateLabelDiff(PersonalityRef, "personalityref_addr",
190                                       Index);
191
192    O << MAI->getData32bitsDirective() << *PersonalityRef;
193    EOL("Personality");
194
195    EmitEncodingByte(LSDAEncoding, "LSDA");
196    EmitEncodingByte(FDEEncoding, "FDE");
197  }
198
199  // Indicate locations of general callee saved registers in frame.
200  std::vector<MachineMove> Moves;
201  RI->getInitialFrameState(Moves);
202  EmitFrameMoves(NULL, 0, Moves, true);
203
204  // On Darwin the linker honors the alignment of eh_frame, which means it must
205  // be 8-byte on 64-bit targets to match what gcc does.  Otherwise you get
206  // holes which confuse readers of eh_frame.
207  Asm->EmitAlignment(TD->getPointerSize() == 4 ? 2 : 3, 0, 0, false);
208  EmitLabel("eh_frame_common_end", Index);
209  Asm->O << '\n';
210}
211
212/// EmitFDE - Emit the Frame Description Entry (FDE) for the function.
213void DwarfException::EmitFDE(const FunctionEHFrameInfo &EHFrameInfo) {
214  assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() &&
215         "Should not emit 'available externally' functions at all");
216
217  const Function *TheFunc = EHFrameInfo.function;
218
219  Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection());
220
221  // Externally visible entry into the functions eh frame info. If the
222  // corresponding function is static, this should not be externally visible.
223  if (!TheFunc->hasLocalLinkage())
224    if (const char *GlobalEHDirective = MAI->getGlobalEHDirective())
225      O << GlobalEHDirective << *EHFrameInfo.FunctionEHSym << '\n';
226
227  // If corresponding function is weak definition, this should be too.
228  if (TheFunc->isWeakForLinker() && MAI->getWeakDefDirective())
229    O << MAI->getWeakDefDirective() << *EHFrameInfo.FunctionEHSym << '\n';
230
231  // If corresponding function is hidden, this should be too.
232  if (TheFunc->hasHiddenVisibility())
233    if (const char *HiddenDirective = MAI->getHiddenDirective())
234      O << HiddenDirective << *EHFrameInfo.FunctionEHSym << '\n';
235
236  // If there are no calls then you can't unwind.  This may mean we can omit the
237  // EH Frame, but some environments do not handle weak absolute symbols. If
238  // UnwindTablesMandatory is set we cannot do this optimization; the unwind
239  // info is to be available for non-EH uses.
240  if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory &&
241      (!TheFunc->isWeakForLinker() ||
242       !MAI->getWeakDefDirective() ||
243       MAI->getSupportsWeakOmittedEHFrame())) {
244    O << *EHFrameInfo.FunctionEHSym << " = 0\n";
245    // This name has no connection to the function, so it might get
246    // dead-stripped when the function is not, erroneously.  Prohibit
247    // dead-stripping unconditionally.
248    if (const char *UsedDirective = MAI->getUsedDirective())
249      O << UsedDirective << *EHFrameInfo.FunctionEHSym << "\n\n";
250  } else {
251    O << *EHFrameInfo.FunctionEHSym << ":\n";
252
253    // EH frame header.
254    EmitDifference("eh_frame_end", EHFrameInfo.Number,
255                   "eh_frame_begin", EHFrameInfo.Number, true);
256    EOL("Length of Frame Information Entry");
257
258    EmitLabel("eh_frame_begin", EHFrameInfo.Number);
259
260    EmitSectionOffset("eh_frame_begin", "eh_frame_common",
261                      EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
262                      true, true, false);
263
264    EOL("FDE CIE offset");
265
266    EmitReference("eh_func_begin", EHFrameInfo.Number, true, true);
267    EOL("FDE initial location");
268    EmitDifference("eh_func_end", EHFrameInfo.Number,
269                   "eh_func_begin", EHFrameInfo.Number, true);
270    EOL("FDE address range");
271
272    // If there is a personality and landing pads then point to the language
273    // specific data area in the exception table.
274    if (MMI->getPersonalities()[0] != NULL) {
275
276      if (Asm->TM.getLSDAEncoding() != DwarfLSDAEncoding::EightByte) {
277        EmitULEB128(4, "Augmentation size");
278
279        if (EHFrameInfo.hasLandingPads)
280          EmitReference("exception", EHFrameInfo.Number, true, true);
281        else
282          Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
283      } else {
284        EmitULEB128(TD->getPointerSize(), "Augmentation size");
285
286        if (EHFrameInfo.hasLandingPads) {
287          EmitReference("exception", EHFrameInfo.Number, true, false);
288        } else {
289          Asm->OutStreamer.EmitIntValue(0, TD->getPointerSize(),
290                                        0/*addrspace*/);
291        }
292      }
293
294      EOL("Language Specific Data Area");
295    } else {
296      EmitULEB128(0, "Augmentation size");
297    }
298
299    // Indicate locations of function specific callee saved registers in frame.
300    EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves,
301                   true);
302
303    // On Darwin the linker honors the alignment of eh_frame, which means it
304    // must be 8-byte on 64-bit targets to match what gcc does.  Otherwise you
305    // get holes which confuse readers of eh_frame.
306    Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
307                       0, 0, false);
308    EmitLabel("eh_frame_end", EHFrameInfo.Number);
309
310    // If the function is marked used, this table should be also.  We cannot
311    // make the mark unconditional in this case, since retaining the table also
312    // retains the function in this case, and there is code around that depends
313    // on unused functions (calling undefined externals) being dead-stripped to
314    // link correctly.  Yes, there really is.
315    if (MMI->isUsedFunction(EHFrameInfo.function))
316      if (const char *UsedDirective = MAI->getUsedDirective())
317        O << UsedDirective << *EHFrameInfo.FunctionEHSym << "\n\n";
318  }
319  Asm->O << '\n';
320}
321
322/// SharedTypeIds - How many leading type ids two landing pads have in common.
323unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
324                                       const LandingPadInfo *R) {
325  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
326  unsigned LSize = LIds.size(), RSize = RIds.size();
327  unsigned MinSize = LSize < RSize ? LSize : RSize;
328  unsigned Count = 0;
329
330  for (; Count != MinSize; ++Count)
331    if (LIds[Count] != RIds[Count])
332      return Count;
333
334  return Count;
335}
336
337/// PadLT - Order landing pads lexicographically by type id.
338bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
339  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
340  unsigned LSize = LIds.size(), RSize = RIds.size();
341  unsigned MinSize = LSize < RSize ? LSize : RSize;
342
343  for (unsigned i = 0; i != MinSize; ++i)
344    if (LIds[i] != RIds[i])
345      return LIds[i] < RIds[i];
346
347  return LSize < RSize;
348}
349
350/// ComputeActionsTable - Compute the actions table and gather the first action
351/// index for each landing pad site.
352unsigned DwarfException::
353ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
354                    SmallVectorImpl<ActionEntry> &Actions,
355                    SmallVectorImpl<unsigned> &FirstActions) {
356
357  // The action table follows the call-site table in the LSDA. The individual
358  // records are of two types:
359  //
360  //   * Catch clause
361  //   * Exception specification
362  //
363  // The two record kinds have the same format, with only small differences.
364  // They are distinguished by the "switch value" field: Catch clauses
365  // (TypeInfos) have strictly positive switch values, and exception
366  // specifications (FilterIds) have strictly negative switch values. Value 0
367  // indicates a catch-all clause.
368  //
369  // Negative type IDs index into FilterIds. Positive type IDs index into
370  // TypeInfos.  The value written for a positive type ID is just the type ID
371  // itself.  For a negative type ID, however, the value written is the
372  // (negative) byte offset of the corresponding FilterIds entry.  The byte
373  // offset is usually equal to the type ID (because the FilterIds entries are
374  // written using a variable width encoding, which outputs one byte per entry
375  // as long as the value written is not too large) but can differ.  This kind
376  // of complication does not occur for positive type IDs because type infos are
377  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
378  // offset corresponding to FilterIds[i].
379
380  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
381  SmallVector<int, 16> FilterOffsets;
382  FilterOffsets.reserve(FilterIds.size());
383  int Offset = -1;
384
385  for (std::vector<unsigned>::const_iterator
386         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
387    FilterOffsets.push_back(Offset);
388    Offset -= MCAsmInfo::getULEB128Size(*I);
389  }
390
391  FirstActions.reserve(LandingPads.size());
392
393  int FirstAction = 0;
394  unsigned SizeActions = 0;
395  const LandingPadInfo *PrevLPI = 0;
396
397  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
398         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
399    const LandingPadInfo *LPI = *I;
400    const std::vector<int> &TypeIds = LPI->TypeIds;
401    const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
402    unsigned SizeSiteActions = 0;
403
404    if (NumShared < TypeIds.size()) {
405      unsigned SizeAction = 0;
406      ActionEntry *PrevAction = 0;
407
408      if (NumShared) {
409        const unsigned SizePrevIds = PrevLPI->TypeIds.size();
410        assert(Actions.size());
411        PrevAction = &Actions.back();
412        SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
413          MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
414
415        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
416          SizeAction -=
417            MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
418          SizeAction += -PrevAction->NextAction;
419          PrevAction = PrevAction->Previous;
420        }
421      }
422
423      // Compute the actions.
424      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
425        int TypeID = TypeIds[J];
426        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
427        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
428        unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
429
430        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
431        SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
432        SizeSiteActions += SizeAction;
433
434        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
435        Actions.push_back(Action);
436        PrevAction = &Actions.back();
437      }
438
439      // Record the first action of the landing pad site.
440      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
441    } // else identical - re-use previous FirstAction
442
443    // Information used when created the call-site table. The action record
444    // field of the call site record is the offset of the first associated
445    // action record, relative to the start of the actions table. This value is
446    // biased by 1 (1 in dicating the start of the actions table), and 0
447    // indicates that there are no actions.
448    FirstActions.push_back(FirstAction);
449
450    // Compute this sites contribution to size.
451    SizeActions += SizeSiteActions;
452
453    PrevLPI = LPI;
454  }
455
456  return SizeActions;
457}
458
459/// CallToNoUnwindFunction - Return `true' if this is a call to a function
460/// marked `nounwind'. Return `false' otherwise.
461bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) {
462  assert(MI->getDesc().isCall() && "This should be a call instruction!");
463
464  bool MarkedNoUnwind = false;
465  bool SawFunc = false;
466
467  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
468    const MachineOperand &MO = MI->getOperand(I);
469
470    if (MO.isGlobal()) {
471      if (Function *F = dyn_cast<Function>(MO.getGlobal())) {
472        if (SawFunc) {
473          // Be conservative. If we have more than one function operand for this
474          // call, then we can't make the assumption that it's the callee and
475          // not a parameter to the call.
476          //
477          // FIXME: Determine if there's a way to say that `F' is the callee or
478          // parameter.
479          MarkedNoUnwind = false;
480          break;
481        }
482
483        MarkedNoUnwind = F->doesNotThrow();
484        SawFunc = true;
485      }
486    }
487  }
488
489  return MarkedNoUnwind;
490}
491
492/// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
493/// has a try-range containing the call, a non-zero landing pad, and an
494/// appropriate action.  The entry for an ordinary call has a try-range
495/// containing the call and zero for the landing pad and the action.  Calls
496/// marked 'nounwind' have no entry and must not be contained in the try-range
497/// of any entry - they form gaps in the table.  Entries must be ordered by
498/// try-range address.
499void DwarfException::
500ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
501                     const RangeMapType &PadMap,
502                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
503                     const SmallVectorImpl<unsigned> &FirstActions) {
504  // The end label of the previous invoke or nounwind try-range.
505  unsigned LastLabel = 0;
506
507  // Whether there is a potentially throwing instruction (currently this means
508  // an ordinary call) between the end of the previous try-range and now.
509  bool SawPotentiallyThrowing = false;
510
511  // Whether the last CallSite entry was for an invoke.
512  bool PreviousIsInvoke = false;
513
514  // Visit all instructions in order of address.
515  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
516       I != E; ++I) {
517    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
518         MI != E; ++MI) {
519      if (!MI->isLabel()) {
520        if (MI->getDesc().isCall())
521          SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
522
523        continue;
524      }
525
526      unsigned BeginLabel = MI->getOperand(0).getImm();
527      assert(BeginLabel && "Invalid label!");
528
529      // End of the previous try-range?
530      if (BeginLabel == LastLabel)
531        SawPotentiallyThrowing = false;
532
533      // Beginning of a new try-range?
534      RangeMapType::const_iterator L = PadMap.find(BeginLabel);
535      if (L == PadMap.end())
536        // Nope, it was just some random label.
537        continue;
538
539      const PadRange &P = L->second;
540      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
541      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
542             "Inconsistent landing pad map!");
543
544      // For Dwarf exception handling (SjLj handling doesn't use this). If some
545      // instruction between the previous try-range and this one may throw,
546      // create a call-site entry with no landing pad for the region between the
547      // try-ranges.
548      if (SawPotentiallyThrowing &&
549          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
550        CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
551        CallSites.push_back(Site);
552        PreviousIsInvoke = false;
553      }
554
555      LastLabel = LandingPad->EndLabels[P.RangeIndex];
556      assert(BeginLabel && LastLabel && "Invalid landing pad!");
557
558      if (LandingPad->LandingPadLabel) {
559        // This try-range is for an invoke.
560        CallSiteEntry Site = {
561          BeginLabel,
562          LastLabel,
563          LandingPad->LandingPadLabel,
564          FirstActions[P.PadIndex]
565        };
566
567        // Try to merge with the previous call-site. SJLJ doesn't do this
568        if (PreviousIsInvoke &&
569          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
570          CallSiteEntry &Prev = CallSites.back();
571          if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
572            // Extend the range of the previous entry.
573            Prev.EndLabel = Site.EndLabel;
574            continue;
575          }
576        }
577
578        // Otherwise, create a new call-site.
579        CallSites.push_back(Site);
580        PreviousIsInvoke = true;
581      } else {
582        // Create a gap.
583        PreviousIsInvoke = false;
584      }
585    }
586  }
587
588  // If some instruction between the previous try-range and the end of the
589  // function may throw, create a call-site entry with no landing pad for the
590  // region following the try-range.
591  if (SawPotentiallyThrowing &&
592      MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
593    CallSiteEntry Site = { LastLabel, 0, 0, 0 };
594    CallSites.push_back(Site);
595  }
596}
597
598/// EmitExceptionTable - Emit landing pads and actions.
599///
600/// The general organization of the table is complex, but the basic concepts are
601/// easy.  First there is a header which describes the location and organization
602/// of the three components that follow.
603///
604///  1. The landing pad site information describes the range of code covered by
605///     the try.  In our case it's an accumulation of the ranges covered by the
606///     invokes in the try.  There is also a reference to the landing pad that
607///     handles the exception once processed.  Finally an index into the actions
608///     table.
609///  2. The action table, in our case, is composed of pairs of type IDs and next
610///     action offset.  Starting with the action index from the landing pad
611///     site, each type ID is checked for a match to the current exception.  If
612///     it matches then the exception and type id are passed on to the landing
613///     pad.  Otherwise the next action is looked up.  This chain is terminated
614///     with a next action of zero.  If no type id is found then the frame is
615///     unwound and handling continues.
616///  3. Type ID table contains references to all the C++ typeinfo for all
617///     catches in the function.  This tables is reverse indexed base 1.
618void DwarfException::EmitExceptionTable() {
619  const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
620  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
621  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
622  if (PadInfos.empty()) return;
623
624  // Sort the landing pads in order of their type ids.  This is used to fold
625  // duplicate actions.
626  SmallVector<const LandingPadInfo *, 64> LandingPads;
627  LandingPads.reserve(PadInfos.size());
628
629  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
630    LandingPads.push_back(&PadInfos[i]);
631
632  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
633
634  // Compute the actions table and gather the first action index for each
635  // landing pad site.
636  SmallVector<ActionEntry, 32> Actions;
637  SmallVector<unsigned, 64> FirstActions;
638  unsigned SizeActions = ComputeActionsTable(LandingPads, Actions,
639                                             FirstActions);
640
641  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
642  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
643  // try-ranges for them need be deduced when using DWARF exception handling.
644  RangeMapType PadMap;
645  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
646    const LandingPadInfo *LandingPad = LandingPads[i];
647    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
648      unsigned BeginLabel = LandingPad->BeginLabels[j];
649      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
650      PadRange P = { i, j };
651      PadMap[BeginLabel] = P;
652    }
653  }
654
655  // Compute the call-site table.
656  SmallVector<CallSiteEntry, 64> CallSites;
657  ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
658
659  // Final tallies.
660
661  // Call sites.
662  const unsigned SiteStartSize  = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
663  const unsigned SiteLengthSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
664  const unsigned LandingPadSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
665  bool IsSJLJ = MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
666  bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
667  unsigned SizeSites;
668
669  if (IsSJLJ)
670    SizeSites = 0;
671  else
672    SizeSites = CallSites.size() *
673      (SiteStartSize + SiteLengthSize + LandingPadSize);
674
675  for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
676    SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
677    if (IsSJLJ)
678      SizeSites += MCAsmInfo::getULEB128Size(i);
679  }
680
681  // Type infos.
682  const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
683  unsigned TTypeFormat;
684  unsigned TypeFormatSize;
685
686  if (!HaveTTData) {
687    // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
688    // that we're omitting that bit.
689    TTypeFormat = dwarf::DW_EH_PE_omit;
690    TypeFormatSize = SizeOfEncodedValue(dwarf::DW_EH_PE_absptr);
691  } else {
692    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
693    // pick a type encoding for them.  We're about to emit a list of pointers to
694    // typeinfo objects at the end of the LSDA.  However, unless we're in static
695    // mode, this reference will require a relocation by the dynamic linker.
696    //
697    // Because of this, we have a couple of options:
698    //
699    //   1) If we are in -static mode, we can always use an absolute reference
700    //      from the LSDA, because the static linker will resolve it.
701    //
702    //   2) Otherwise, if the LSDA section is writable, we can output the direct
703    //      reference to the typeinfo and allow the dynamic linker to relocate
704    //      it.  Since it is in a writable section, the dynamic linker won't
705    //      have a problem.
706    //
707    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
708    //      we need to use some form of indirection.  For example, on Darwin,
709    //      we can output a statically-relocatable reference to a dyld stub. The
710    //      offset to the stub is constant, but the contents are in a section
711    //      that is updated by the dynamic linker.  This is easy enough, but we
712    //      need to tell the personality function of the unwinder to indirect
713    //      through the dyld stub.
714    //
715    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
716    // somewhere.  This predicate should be moved to a shared location that is
717    // in target-independent code.
718    //
719    if (LSDASection->getKind().isWriteable() ||
720        Asm->TM.getRelocationModel() == Reloc::Static)
721      TTypeFormat = dwarf::DW_EH_PE_absptr;
722    else
723      TTypeFormat = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
724        dwarf::DW_EH_PE_sdata4;
725
726    TypeFormatSize = SizeOfEncodedValue(TTypeFormat);
727  }
728
729  // Begin the exception table.
730  Asm->OutStreamer.SwitchSection(LSDASection);
731  Asm->EmitAlignment(2, 0, 0, false);
732
733  O << "GCC_except_table" << SubprogramCount << ":\n";
734
735  // The type infos need to be aligned. GCC does this by inserting padding just
736  // before the type infos. However, this changes the size of the exception
737  // table, so you need to take this into account when you output the exception
738  // table size. However, the size is output using a variable length encoding.
739  // So by increasing the size by inserting padding, you may increase the number
740  // of bytes used for writing the size. If it increases, say by one byte, then
741  // you now need to output one less byte of padding to get the type infos
742  // aligned.  However this decreases the size of the exception table. This
743  // changes the value you have to output for the exception table size. Due to
744  // the variable length encoding, the number of bytes used for writing the
745  // length may decrease. If so, you then have to increase the amount of
746  // padding. And so on. If you look carefully at the GCC code you will see that
747  // it indeed does this in a loop, going on and on until the values stabilize.
748  // We chose another solution: don't output padding inside the table like GCC
749  // does, instead output it before the table.
750  unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
751  unsigned TyOffset = sizeof(int8_t) +          // Call site format
752    MCAsmInfo::getULEB128Size(SizeSites) +      // Call-site table length
753    SizeSites + SizeActions + SizeTypes;
754  unsigned TotalSize = sizeof(int8_t) +         // LPStart format
755                       sizeof(int8_t) +         // TType format
756    (HaveTTData ?
757     MCAsmInfo::getULEB128Size(TyOffset) : 0) + // TType base offset
758    TyOffset;
759  unsigned SizeAlign = (4 - TotalSize) & 3;
760
761  for (unsigned i = 0; i != SizeAlign; ++i) {
762    Asm->EmitInt8(0);
763    EOL("Padding");
764  }
765
766  EmitLabel("exception", SubprogramCount);
767
768  if (IsSJLJ) {
769    SmallString<16> LSDAName;
770    raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() <<
771      "_LSDA_" << Asm->getFunctionNumber();
772    O << LSDAName.str() << ":\n";
773  }
774
775  // Emit the header.
776  EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
777  EmitEncodingByte(TTypeFormat, "@TType");
778
779  if (HaveTTData)
780    EmitULEB128(TyOffset, "@TType base offset");
781
782  // SjLj Exception handling
783  if (IsSJLJ) {
784    EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
785    EmitULEB128(SizeSites, "Call site table length");
786
787    // Emit the landing pad site information.
788    unsigned idx = 0;
789    for (SmallVectorImpl<CallSiteEntry>::const_iterator
790         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
791      const CallSiteEntry &S = *I;
792
793      // Offset of the landing pad, counted in 16-byte bundles relative to the
794      // @LPStart address.
795      EmitULEB128(idx, "Landing pad");
796
797      // Offset of the first associated action record, relative to the start of
798      // the action table. This value is biased by 1 (1 indicates the start of
799      // the action table), and 0 indicates that there are no actions.
800      EmitULEB128(S.Action, "Action");
801    }
802  } else {
803    // DWARF Exception handling
804    assert(MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf);
805
806    // The call-site table is a list of all call sites that may throw an
807    // exception (including C++ 'throw' statements) in the procedure
808    // fragment. It immediately follows the LSDA header. Each entry indicates,
809    // for a given call, the first corresponding action record and corresponding
810    // landing pad.
811    //
812    // The table begins with the number of bytes, stored as an LEB128
813    // compressed, unsigned integer. The records immediately follow the record
814    // count. They are sorted in increasing call-site address. Each record
815    // indicates:
816    //
817    //   * The position of the call-site.
818    //   * The position of the landing pad.
819    //   * The first action record for that call site.
820    //
821    // A missing entry in the call-site table indicates that a call is not
822    // supposed to throw.
823
824    // Emit the landing pad call site table.
825    EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
826    EmitULEB128(SizeSites, "Call site table size");
827
828    for (SmallVectorImpl<CallSiteEntry>::const_iterator
829         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
830      const CallSiteEntry &S = *I;
831      const char *BeginTag;
832      unsigned BeginNumber;
833
834      if (!S.BeginLabel) {
835        BeginTag = "eh_func_begin";
836        BeginNumber = SubprogramCount;
837      } else {
838        BeginTag = "label";
839        BeginNumber = S.BeginLabel;
840      }
841
842      // Offset of the call site relative to the previous call site, counted in
843      // number of 16-byte bundles. The first call site is counted relative to
844      // the start of the procedure fragment.
845      EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount,
846                        true, true);
847      EOL("Region start");
848
849      if (!S.EndLabel)
850        EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber,
851                       true);
852      else
853        EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true);
854
855      EOL("Region length");
856
857      // Offset of the landing pad, counted in 16-byte bundles relative to the
858      // @LPStart address.
859      if (!S.PadLabel)
860        Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
861      else
862        EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount,
863                          true, true);
864
865      EOL("Landing pad");
866
867      // Offset of the first associated action record, relative to the start of
868      // the action table. This value is biased by 1 (1 indicates the start of
869      // the action table), and 0 indicates that there are no actions.
870      EmitULEB128(S.Action, "Action");
871    }
872  }
873
874  // Emit the Action Table.
875  for (SmallVectorImpl<ActionEntry>::const_iterator
876         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
877    const ActionEntry &Action = *I;
878
879    // Type Filter
880    //
881    //   Used by the runtime to match the type of the thrown exception to the
882    //   type of the catch clauses or the types in the exception specification.
883    EmitSLEB128(Action.ValueForTypeID, "TypeInfo index");
884
885    // Action Record
886    //
887    //   Self-relative signed displacement in bytes of the next action record,
888    //   or 0 if there is no next action record.
889    EmitSLEB128(Action.NextAction, "Next action");
890  }
891
892  // Emit the Catch TypeInfos.
893  for (std::vector<GlobalVariable *>::const_reverse_iterator
894         I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
895    const GlobalVariable *GV = *I;
896    PrintRelDirective();
897
898    if (GV)
899      O << *Asm->GetGlobalValueSymbol(GV);
900    else
901      O << "0x0";
902
903    EOL("TypeInfo");
904  }
905
906  // Emit the Exception Specifications.
907  for (std::vector<unsigned>::const_iterator
908         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
909    unsigned TypeID = *I;
910    EmitULEB128(TypeID, TypeID != 0 ? "Exception specification" : 0);
911  }
912
913  Asm->EmitAlignment(2, 0, 0, false);
914}
915
916/// EndModule - Emit all exception information that should come after the
917/// content.
918void DwarfException::EndModule() {
919  if (MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf)
920    return;
921
922  if (!shouldEmitMovesModule && !shouldEmitTableModule)
923    return;
924
925  if (TimePassesIsEnabled)
926    ExceptionTimer->startTimer();
927
928  const std::vector<Function *> Personalities = MMI->getPersonalities();
929
930  for (unsigned I = 0, E = Personalities.size(); I < E; ++I)
931    EmitCIE(Personalities[I], I);
932
933  for (std::vector<FunctionEHFrameInfo>::iterator
934         I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I)
935    EmitFDE(*I);
936
937  if (TimePassesIsEnabled)
938    ExceptionTimer->stopTimer();
939}
940
941/// BeginFunction - Gather pre-function exception information. Assumes it's
942/// being emitted immediately after the function entry point.
943void DwarfException::BeginFunction(MachineFunction *MF) {
944  if (!MMI || !MAI->doesSupportExceptionHandling()) return;
945
946  if (TimePassesIsEnabled)
947    ExceptionTimer->startTimer();
948
949  this->MF = MF;
950  shouldEmitTable = shouldEmitMoves = false;
951
952  // Map all labels and get rid of any dead landing pads.
953  MMI->TidyLandingPads();
954
955  // If any landing pads survive, we need an EH table.
956  if (!MMI->getLandingPads().empty())
957    shouldEmitTable = true;
958
959  // See if we need frame move info.
960  if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory)
961    shouldEmitMoves = true;
962
963  if (shouldEmitMoves || shouldEmitTable)
964    // Assumes in correct section after the entry point.
965    EmitLabel("eh_func_begin", ++SubprogramCount);
966
967  shouldEmitTableModule |= shouldEmitTable;
968  shouldEmitMovesModule |= shouldEmitMoves;
969
970  if (TimePassesIsEnabled)
971    ExceptionTimer->stopTimer();
972}
973
974/// EndFunction - Gather and emit post-function exception information.
975///
976void DwarfException::EndFunction() {
977  if (!shouldEmitMoves && !shouldEmitTable) return;
978
979  if (TimePassesIsEnabled)
980    ExceptionTimer->startTimer();
981
982  EmitLabel("eh_func_end", SubprogramCount);
983  EmitExceptionTable();
984
985  const MCSymbol *FunctionEHSym =
986    Asm->GetSymbolWithGlobalValueBase(MF->getFunction(), ".eh",
987                                      Asm->MAI->is_EHSymbolPrivate());
988
989  // Save EH frame information
990  EHFrames.push_back(FunctionEHFrameInfo(FunctionEHSym, SubprogramCount,
991                                         MMI->getPersonalityIndex(),
992                                         MF->getFrameInfo()->hasCalls(),
993                                         !MMI->getLandingPads().empty(),
994                                         MMI->getFrameMoves(),
995                                         MF->getFunction()));
996
997  // Record if this personality index uses a landing pad.
998  UsesLSDA[MMI->getPersonalityIndex()] |= !MMI->getLandingPads().empty();
999
1000  if (TimePassesIsEnabled)
1001    ExceptionTimer->stopTimer();
1002}
1003