DwarfException.cpp revision cfa17985ae5be02135e39f36181195bcbfd3bd07
1//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for writing DWARF exception info into asm files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DwarfException.h"
15#include "llvm/Module.h"
16#include "llvm/CodeGen/MachineModuleInfo.h"
17#include "llvm/CodeGen/MachineFrameInfo.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/CodeGen/MachineLocation.h"
20#include "llvm/MC/MCAsmInfo.h"
21#include "llvm/MC/MCContext.h"
22#include "llvm/MC/MCExpr.h"
23#include "llvm/MC/MCSection.h"
24#include "llvm/MC/MCStreamer.h"
25#include "llvm/MC/MCSymbol.h"
26#include "llvm/Target/Mangler.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetFrameInfo.h"
29#include "llvm/Target/TargetLoweringObjectFile.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Support/Dwarf.h"
33#include "llvm/Support/FormattedStream.h"
34#include "llvm/Support/Timer.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/ADT/Twine.h"
38using namespace llvm;
39
40DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A,
41                               const MCAsmInfo *T)
42  : DwarfPrinter(OS, A, T, "eh"), shouldEmitTable(false),shouldEmitMoves(false),
43    shouldEmitTableModule(false), shouldEmitMovesModule(false),
44    ExceptionTimer(0) {
45  if (TimePassesIsEnabled)
46    ExceptionTimer = new Timer("DWARF Exception Writer");
47}
48
49DwarfException::~DwarfException() {
50  delete ExceptionTimer;
51}
52
53/// SizeOfEncodedValue - Return the size of the encoding in bytes.
54unsigned DwarfException::SizeOfEncodedValue(unsigned Encoding) {
55  if (Encoding == dwarf::DW_EH_PE_omit)
56    return 0;
57
58  switch (Encoding & 0x07) {
59  case dwarf::DW_EH_PE_absptr:
60    return TD->getPointerSize();
61  case dwarf::DW_EH_PE_udata2:
62    return 2;
63  case dwarf::DW_EH_PE_udata4:
64    return 4;
65  case dwarf::DW_EH_PE_udata8:
66    return 8;
67  }
68
69  assert(0 && "Invalid encoded value.");
70  return 0;
71}
72
73/// CreateLabelDiff - Emit a label and subtract it from the expression we
74/// already have.  This is equivalent to emitting "foo - .", but we have to emit
75/// the label for "." directly.
76const MCExpr *DwarfException::CreateLabelDiff(const MCExpr *ExprRef,
77                                              const char *LabelName,
78                                              unsigned Index) {
79  SmallString<64> Name;
80  raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix()
81                            << LabelName << Asm->getFunctionNumber()
82                            << "_" << Index;
83  MCSymbol *DotSym = Asm->OutContext.GetOrCreateSymbol(Name.str());
84  Asm->OutStreamer.EmitLabel(DotSym);
85
86  return MCBinaryExpr::CreateSub(ExprRef,
87                                 MCSymbolRefExpr::Create(DotSym,
88                                                         Asm->OutContext),
89                                 Asm->OutContext);
90}
91
92/// EmitCIE - Emit a Common Information Entry (CIE). This holds information that
93/// is shared among many Frame Description Entries.  There is at least one CIE
94/// in every non-empty .debug_frame section.
95void DwarfException::EmitCIE(const Function *PersonalityFn, unsigned Index) {
96  // Size and sign of stack growth.
97  int stackGrowth =
98    Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
99    TargetFrameInfo::StackGrowsUp ?
100    TD->getPointerSize() : -TD->getPointerSize();
101
102  const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
103
104  // Begin eh frame section.
105  Asm->OutStreamer.SwitchSection(TLOF.getEHFrameSection());
106
107  if (MAI->is_EHSymbolPrivate())
108    O << MAI->getPrivateGlobalPrefix();
109  O << "EH_frame" << Index << ":\n";
110
111  EmitLabel("section_eh_frame", Index);
112
113  // Define base labels.
114  EmitLabel("eh_frame_common", Index);
115
116  // Define the eh frame length.
117  EmitDifference("eh_frame_common_end", Index,
118                 "eh_frame_common_begin", Index, true);
119  EOL("Length of Common Information Entry");
120
121  // EH frame header.
122  EmitLabel("eh_frame_common_begin", Index);
123  if (Asm->VerboseAsm) Asm->OutStreamer.AddComment("CIE Identifier Tag");
124  Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
125  if (Asm->VerboseAsm) Asm->OutStreamer.AddComment("DW_CIE_VERSION");
126  Asm->OutStreamer.EmitIntValue(dwarf::DW_CIE_VERSION, 1/*size*/, 0/*addr*/);
127
128  // The personality presence indicates that language specific information will
129  // show up in the eh frame.  Find out how we are supposed to lower the
130  // personality function reference:
131  const MCExpr *PersonalityRef = 0;
132  bool IsPersonalityIndirect = false, IsPersonalityPCRel = false;
133  if (PersonalityFn) {
134    // FIXME: HANDLE STATIC CODEGEN MODEL HERE.
135
136    // In non-static mode, ask the object file how to represent this reference.
137    PersonalityRef =
138      TLOF.getSymbolForDwarfGlobalReference(PersonalityFn, Asm->Mang,
139                                            Asm->MMI,
140                                            IsPersonalityIndirect,
141                                            IsPersonalityPCRel);
142  }
143
144  unsigned PerEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
145  if (IsPersonalityIndirect)
146    PerEncoding |= dwarf::DW_EH_PE_indirect;
147  unsigned LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
148  unsigned FDEEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
149
150  char Augmentation[6] = { 0 };
151  unsigned AugmentationSize = 0;
152  char *APtr = Augmentation + 1;
153
154  if (PersonalityRef) {
155    // There is a personality function.
156    *APtr++ = 'P';
157    AugmentationSize += 1 + SizeOfEncodedValue(PerEncoding);
158  }
159
160  if (UsesLSDA[Index]) {
161    // An LSDA pointer is in the FDE augmentation.
162    *APtr++ = 'L';
163    ++AugmentationSize;
164  }
165
166  if (FDEEncoding != dwarf::DW_EH_PE_absptr) {
167    // A non-default pointer encoding for the FDE.
168    *APtr++ = 'R';
169    ++AugmentationSize;
170  }
171
172  if (APtr != Augmentation + 1)
173    Augmentation[0] = 'z';
174
175  Asm->OutStreamer.EmitBytes(StringRef(Augmentation, strlen(Augmentation)+1),0);
176  EOL("CIE Augmentation");
177
178  // Round out reader.
179  EmitULEB128(1, "CIE Code Alignment Factor");
180  EmitSLEB128(stackGrowth, "CIE Data Alignment Factor");
181  Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true));
182  EOL("CIE Return Address Column");
183
184  EmitULEB128(AugmentationSize, "Augmentation Size");
185  EmitEncodingByte(PerEncoding, "Personality");
186
187  // If there is a personality, we need to indicate the function's location.
188  if (PersonalityRef) {
189    if (!IsPersonalityPCRel)
190      PersonalityRef = CreateLabelDiff(PersonalityRef, "personalityref_addr",
191                                       Index);
192
193    O << MAI->getData32bitsDirective() << *PersonalityRef;
194    EOL("Personality");
195
196    EmitEncodingByte(LSDAEncoding, "LSDA");
197    EmitEncodingByte(FDEEncoding, "FDE");
198  }
199
200  // Indicate locations of general callee saved registers in frame.
201  std::vector<MachineMove> Moves;
202  RI->getInitialFrameState(Moves);
203  EmitFrameMoves(NULL, 0, Moves, true);
204
205  // On Darwin the linker honors the alignment of eh_frame, which means it must
206  // be 8-byte on 64-bit targets to match what gcc does.  Otherwise you get
207  // holes which confuse readers of eh_frame.
208  Asm->EmitAlignment(TD->getPointerSize() == 4 ? 2 : 3, 0, 0, false);
209  EmitLabel("eh_frame_common_end", Index);
210  Asm->O << '\n';
211}
212
213/// EmitFDE - Emit the Frame Description Entry (FDE) for the function.
214void DwarfException::EmitFDE(const FunctionEHFrameInfo &EHFrameInfo) {
215  assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() &&
216         "Should not emit 'available externally' functions at all");
217
218  const Function *TheFunc = EHFrameInfo.function;
219
220  Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection());
221
222  // Externally visible entry into the functions eh frame info. If the
223  // corresponding function is static, this should not be externally visible.
224  if (!TheFunc->hasLocalLinkage())
225    if (const char *GlobalEHDirective = MAI->getGlobalEHDirective())
226      O << GlobalEHDirective << *EHFrameInfo.FunctionEHSym << '\n';
227
228  // If corresponding function is weak definition, this should be too.
229  if (TheFunc->isWeakForLinker() && MAI->getWeakDefDirective())
230    O << MAI->getWeakDefDirective() << *EHFrameInfo.FunctionEHSym << '\n';
231
232  // If corresponding function is hidden, this should be too.
233  if (TheFunc->hasHiddenVisibility())
234    if (MCSymbolAttr HiddenAttr = MAI->getHiddenVisibilityAttr())
235      Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym,
236                                           HiddenAttr);
237
238  // If there are no calls then you can't unwind.  This may mean we can omit the
239  // EH Frame, but some environments do not handle weak absolute symbols. If
240  // UnwindTablesMandatory is set we cannot do this optimization; the unwind
241  // info is to be available for non-EH uses.
242  if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory &&
243      (!TheFunc->isWeakForLinker() ||
244       !MAI->getWeakDefDirective() ||
245       MAI->getSupportsWeakOmittedEHFrame())) {
246    O << *EHFrameInfo.FunctionEHSym << " = 0\n";
247    // This name has no connection to the function, so it might get
248    // dead-stripped when the function is not, erroneously.  Prohibit
249    // dead-stripping unconditionally.
250    if (MAI->hasNoDeadStrip())
251      Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym,
252                                           MCSA_NoDeadStrip);
253  } else {
254    O << *EHFrameInfo.FunctionEHSym << ":\n";
255
256    // EH frame header.
257    EmitDifference("eh_frame_end", EHFrameInfo.Number,
258                   "eh_frame_begin", EHFrameInfo.Number, true);
259    EOL("Length of Frame Information Entry");
260
261    EmitLabel("eh_frame_begin", EHFrameInfo.Number);
262
263    EmitSectionOffset("eh_frame_begin", "eh_frame_common",
264                      EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
265                      true, true, false);
266
267    EOL("FDE CIE offset");
268
269    EmitReference("eh_func_begin", EHFrameInfo.Number, true, true);
270    EOL("FDE initial location");
271    EmitDifference("eh_func_end", EHFrameInfo.Number,
272                   "eh_func_begin", EHFrameInfo.Number, true);
273    EOL("FDE address range");
274
275    // If there is a personality and landing pads then point to the language
276    // specific data area in the exception table.
277    if (MMI->getPersonalities()[0] != NULL) {
278
279      if (Asm->TM.getLSDAEncoding() != DwarfLSDAEncoding::EightByte) {
280        EmitULEB128(4, "Augmentation size");
281
282        if (EHFrameInfo.hasLandingPads)
283          EmitReference("exception", EHFrameInfo.Number, true, true);
284        else
285          Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
286      } else {
287        EmitULEB128(TD->getPointerSize(), "Augmentation size");
288
289        if (EHFrameInfo.hasLandingPads) {
290          EmitReference("exception", EHFrameInfo.Number, true, false);
291        } else {
292          Asm->OutStreamer.EmitIntValue(0, TD->getPointerSize(),
293                                        0/*addrspace*/);
294        }
295      }
296
297      EOL("Language Specific Data Area");
298    } else {
299      EmitULEB128(0, "Augmentation size");
300    }
301
302    // Indicate locations of function specific callee saved registers in frame.
303    EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves,
304                   true);
305
306    // On Darwin the linker honors the alignment of eh_frame, which means it
307    // must be 8-byte on 64-bit targets to match what gcc does.  Otherwise you
308    // get holes which confuse readers of eh_frame.
309    Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
310                       0, 0, false);
311    EmitLabel("eh_frame_end", EHFrameInfo.Number);
312
313    // If the function is marked used, this table should be also.  We cannot
314    // make the mark unconditional in this case, since retaining the table also
315    // retains the function in this case, and there is code around that depends
316    // on unused functions (calling undefined externals) being dead-stripped to
317    // link correctly.  Yes, there really is.
318    if (MMI->isUsedFunction(EHFrameInfo.function))
319      if (MAI->hasNoDeadStrip())
320        Asm->OutStreamer.EmitSymbolAttribute(EHFrameInfo.FunctionEHSym,
321                                             MCSA_NoDeadStrip);
322  }
323  Asm->O << '\n';
324}
325
326/// SharedTypeIds - How many leading type ids two landing pads have in common.
327unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
328                                       const LandingPadInfo *R) {
329  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
330  unsigned LSize = LIds.size(), RSize = RIds.size();
331  unsigned MinSize = LSize < RSize ? LSize : RSize;
332  unsigned Count = 0;
333
334  for (; Count != MinSize; ++Count)
335    if (LIds[Count] != RIds[Count])
336      return Count;
337
338  return Count;
339}
340
341/// PadLT - Order landing pads lexicographically by type id.
342bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
343  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
344  unsigned LSize = LIds.size(), RSize = RIds.size();
345  unsigned MinSize = LSize < RSize ? LSize : RSize;
346
347  for (unsigned i = 0; i != MinSize; ++i)
348    if (LIds[i] != RIds[i])
349      return LIds[i] < RIds[i];
350
351  return LSize < RSize;
352}
353
354/// ComputeActionsTable - Compute the actions table and gather the first action
355/// index for each landing pad site.
356unsigned DwarfException::
357ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
358                    SmallVectorImpl<ActionEntry> &Actions,
359                    SmallVectorImpl<unsigned> &FirstActions) {
360
361  // The action table follows the call-site table in the LSDA. The individual
362  // records are of two types:
363  //
364  //   * Catch clause
365  //   * Exception specification
366  //
367  // The two record kinds have the same format, with only small differences.
368  // They are distinguished by the "switch value" field: Catch clauses
369  // (TypeInfos) have strictly positive switch values, and exception
370  // specifications (FilterIds) have strictly negative switch values. Value 0
371  // indicates a catch-all clause.
372  //
373  // Negative type IDs index into FilterIds. Positive type IDs index into
374  // TypeInfos.  The value written for a positive type ID is just the type ID
375  // itself.  For a negative type ID, however, the value written is the
376  // (negative) byte offset of the corresponding FilterIds entry.  The byte
377  // offset is usually equal to the type ID (because the FilterIds entries are
378  // written using a variable width encoding, which outputs one byte per entry
379  // as long as the value written is not too large) but can differ.  This kind
380  // of complication does not occur for positive type IDs because type infos are
381  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
382  // offset corresponding to FilterIds[i].
383
384  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
385  SmallVector<int, 16> FilterOffsets;
386  FilterOffsets.reserve(FilterIds.size());
387  int Offset = -1;
388
389  for (std::vector<unsigned>::const_iterator
390         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
391    FilterOffsets.push_back(Offset);
392    Offset -= MCAsmInfo::getULEB128Size(*I);
393  }
394
395  FirstActions.reserve(LandingPads.size());
396
397  int FirstAction = 0;
398  unsigned SizeActions = 0;
399  const LandingPadInfo *PrevLPI = 0;
400
401  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
402         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
403    const LandingPadInfo *LPI = *I;
404    const std::vector<int> &TypeIds = LPI->TypeIds;
405    const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
406    unsigned SizeSiteActions = 0;
407
408    if (NumShared < TypeIds.size()) {
409      unsigned SizeAction = 0;
410      ActionEntry *PrevAction = 0;
411
412      if (NumShared) {
413        const unsigned SizePrevIds = PrevLPI->TypeIds.size();
414        assert(Actions.size());
415        PrevAction = &Actions.back();
416        SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
417          MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
418
419        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
420          SizeAction -=
421            MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
422          SizeAction += -PrevAction->NextAction;
423          PrevAction = PrevAction->Previous;
424        }
425      }
426
427      // Compute the actions.
428      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
429        int TypeID = TypeIds[J];
430        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
431        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
432        unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
433
434        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
435        SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
436        SizeSiteActions += SizeAction;
437
438        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
439        Actions.push_back(Action);
440        PrevAction = &Actions.back();
441      }
442
443      // Record the first action of the landing pad site.
444      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
445    } // else identical - re-use previous FirstAction
446
447    // Information used when created the call-site table. The action record
448    // field of the call site record is the offset of the first associated
449    // action record, relative to the start of the actions table. This value is
450    // biased by 1 (1 in dicating the start of the actions table), and 0
451    // indicates that there are no actions.
452    FirstActions.push_back(FirstAction);
453
454    // Compute this sites contribution to size.
455    SizeActions += SizeSiteActions;
456
457    PrevLPI = LPI;
458  }
459
460  return SizeActions;
461}
462
463/// CallToNoUnwindFunction - Return `true' if this is a call to a function
464/// marked `nounwind'. Return `false' otherwise.
465bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) {
466  assert(MI->getDesc().isCall() && "This should be a call instruction!");
467
468  bool MarkedNoUnwind = false;
469  bool SawFunc = false;
470
471  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
472    const MachineOperand &MO = MI->getOperand(I);
473
474    if (MO.isGlobal()) {
475      if (Function *F = dyn_cast<Function>(MO.getGlobal())) {
476        if (SawFunc) {
477          // Be conservative. If we have more than one function operand for this
478          // call, then we can't make the assumption that it's the callee and
479          // not a parameter to the call.
480          //
481          // FIXME: Determine if there's a way to say that `F' is the callee or
482          // parameter.
483          MarkedNoUnwind = false;
484          break;
485        }
486
487        MarkedNoUnwind = F->doesNotThrow();
488        SawFunc = true;
489      }
490    }
491  }
492
493  return MarkedNoUnwind;
494}
495
496/// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
497/// has a try-range containing the call, a non-zero landing pad, and an
498/// appropriate action.  The entry for an ordinary call has a try-range
499/// containing the call and zero for the landing pad and the action.  Calls
500/// marked 'nounwind' have no entry and must not be contained in the try-range
501/// of any entry - they form gaps in the table.  Entries must be ordered by
502/// try-range address.
503void DwarfException::
504ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
505                     const RangeMapType &PadMap,
506                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
507                     const SmallVectorImpl<unsigned> &FirstActions) {
508  // The end label of the previous invoke or nounwind try-range.
509  unsigned LastLabel = 0;
510
511  // Whether there is a potentially throwing instruction (currently this means
512  // an ordinary call) between the end of the previous try-range and now.
513  bool SawPotentiallyThrowing = false;
514
515  // Whether the last CallSite entry was for an invoke.
516  bool PreviousIsInvoke = false;
517
518  // Visit all instructions in order of address.
519  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
520       I != E; ++I) {
521    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
522         MI != E; ++MI) {
523      if (!MI->isLabel()) {
524        if (MI->getDesc().isCall())
525          SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
526
527        continue;
528      }
529
530      unsigned BeginLabel = MI->getOperand(0).getImm();
531      assert(BeginLabel && "Invalid label!");
532
533      // End of the previous try-range?
534      if (BeginLabel == LastLabel)
535        SawPotentiallyThrowing = false;
536
537      // Beginning of a new try-range?
538      RangeMapType::const_iterator L = PadMap.find(BeginLabel);
539      if (L == PadMap.end())
540        // Nope, it was just some random label.
541        continue;
542
543      const PadRange &P = L->second;
544      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
545      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
546             "Inconsistent landing pad map!");
547
548      // For Dwarf exception handling (SjLj handling doesn't use this). If some
549      // instruction between the previous try-range and this one may throw,
550      // create a call-site entry with no landing pad for the region between the
551      // try-ranges.
552      if (SawPotentiallyThrowing &&
553          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
554        CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
555        CallSites.push_back(Site);
556        PreviousIsInvoke = false;
557      }
558
559      LastLabel = LandingPad->EndLabels[P.RangeIndex];
560      assert(BeginLabel && LastLabel && "Invalid landing pad!");
561
562      if (LandingPad->LandingPadLabel) {
563        // This try-range is for an invoke.
564        CallSiteEntry Site = {
565          BeginLabel,
566          LastLabel,
567          LandingPad->LandingPadLabel,
568          FirstActions[P.PadIndex]
569        };
570
571        // Try to merge with the previous call-site. SJLJ doesn't do this
572        if (PreviousIsInvoke &&
573          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
574          CallSiteEntry &Prev = CallSites.back();
575          if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
576            // Extend the range of the previous entry.
577            Prev.EndLabel = Site.EndLabel;
578            continue;
579          }
580        }
581
582        // Otherwise, create a new call-site.
583        if (MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf)
584          CallSites.push_back(Site);
585        else {
586          // SjLj EH must maintain the call sites in the order assigned
587          // to them by the SjLjPrepare pass.
588          unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
589          if (CallSites.size() < SiteNo)
590            CallSites.resize(SiteNo);
591          CallSites[SiteNo - 1] = Site;
592        }
593        PreviousIsInvoke = true;
594      } else {
595        // Create a gap.
596        PreviousIsInvoke = false;
597      }
598    }
599  }
600
601  // If some instruction between the previous try-range and the end of the
602  // function may throw, create a call-site entry with no landing pad for the
603  // region following the try-range.
604  if (SawPotentiallyThrowing &&
605      MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
606    CallSiteEntry Site = { LastLabel, 0, 0, 0 };
607    CallSites.push_back(Site);
608  }
609}
610
611/// EmitExceptionTable - Emit landing pads and actions.
612///
613/// The general organization of the table is complex, but the basic concepts are
614/// easy.  First there is a header which describes the location and organization
615/// of the three components that follow.
616///
617///  1. The landing pad site information describes the range of code covered by
618///     the try.  In our case it's an accumulation of the ranges covered by the
619///     invokes in the try.  There is also a reference to the landing pad that
620///     handles the exception once processed.  Finally an index into the actions
621///     table.
622///  2. The action table, in our case, is composed of pairs of type IDs and next
623///     action offset.  Starting with the action index from the landing pad
624///     site, each type ID is checked for a match to the current exception.  If
625///     it matches then the exception and type id are passed on to the landing
626///     pad.  Otherwise the next action is looked up.  This chain is terminated
627///     with a next action of zero.  If no type id is found then the frame is
628///     unwound and handling continues.
629///  3. Type ID table contains references to all the C++ typeinfo for all
630///     catches in the function.  This tables is reverse indexed base 1.
631void DwarfException::EmitExceptionTable() {
632  const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
633  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
634  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
635  if (PadInfos.empty()) return;
636
637  // Sort the landing pads in order of their type ids.  This is used to fold
638  // duplicate actions.
639  SmallVector<const LandingPadInfo *, 64> LandingPads;
640  LandingPads.reserve(PadInfos.size());
641
642  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
643    LandingPads.push_back(&PadInfos[i]);
644
645  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
646
647  // Compute the actions table and gather the first action index for each
648  // landing pad site.
649  SmallVector<ActionEntry, 32> Actions;
650  SmallVector<unsigned, 64> FirstActions;
651  unsigned SizeActions = ComputeActionsTable(LandingPads, Actions,
652                                             FirstActions);
653
654  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
655  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
656  // try-ranges for them need be deduced when using DWARF exception handling.
657  RangeMapType PadMap;
658  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
659    const LandingPadInfo *LandingPad = LandingPads[i];
660    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
661      unsigned BeginLabel = LandingPad->BeginLabels[j];
662      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
663      PadRange P = { i, j };
664      PadMap[BeginLabel] = P;
665    }
666  }
667
668  // Compute the call-site table.
669  SmallVector<CallSiteEntry, 64> CallSites;
670  ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
671
672  // Final tallies.
673
674  // Call sites.
675  const unsigned SiteStartSize  = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
676  const unsigned SiteLengthSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
677  const unsigned LandingPadSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
678  bool IsSJLJ = MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
679  bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
680  unsigned SizeSites;
681
682  if (IsSJLJ)
683    SizeSites = 0;
684  else
685    SizeSites = CallSites.size() *
686      (SiteStartSize + SiteLengthSize + LandingPadSize);
687
688  for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
689    SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
690    if (IsSJLJ)
691      SizeSites += MCAsmInfo::getULEB128Size(i);
692  }
693
694  // Type infos.
695  const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
696  unsigned TTypeFormat;
697  unsigned TypeFormatSize;
698
699  if (!HaveTTData) {
700    // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
701    // that we're omitting that bit.
702    TTypeFormat = dwarf::DW_EH_PE_omit;
703    TypeFormatSize = SizeOfEncodedValue(dwarf::DW_EH_PE_absptr);
704  } else {
705    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
706    // pick a type encoding for them.  We're about to emit a list of pointers to
707    // typeinfo objects at the end of the LSDA.  However, unless we're in static
708    // mode, this reference will require a relocation by the dynamic linker.
709    //
710    // Because of this, we have a couple of options:
711    //
712    //   1) If we are in -static mode, we can always use an absolute reference
713    //      from the LSDA, because the static linker will resolve it.
714    //
715    //   2) Otherwise, if the LSDA section is writable, we can output the direct
716    //      reference to the typeinfo and allow the dynamic linker to relocate
717    //      it.  Since it is in a writable section, the dynamic linker won't
718    //      have a problem.
719    //
720    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
721    //      we need to use some form of indirection.  For example, on Darwin,
722    //      we can output a statically-relocatable reference to a dyld stub. The
723    //      offset to the stub is constant, but the contents are in a section
724    //      that is updated by the dynamic linker.  This is easy enough, but we
725    //      need to tell the personality function of the unwinder to indirect
726    //      through the dyld stub.
727    //
728    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
729    // somewhere.  This predicate should be moved to a shared location that is
730    // in target-independent code.
731    //
732    if (LSDASection->getKind().isWriteable() ||
733        Asm->TM.getRelocationModel() == Reloc::Static)
734      TTypeFormat = dwarf::DW_EH_PE_absptr;
735    else
736      TTypeFormat = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
737        dwarf::DW_EH_PE_sdata4;
738
739    TypeFormatSize = SizeOfEncodedValue(TTypeFormat);
740  }
741
742  // Begin the exception table.
743  Asm->OutStreamer.SwitchSection(LSDASection);
744  Asm->EmitAlignment(2, 0, 0, false);
745
746  O << "GCC_except_table" << SubprogramCount << ":\n";
747
748  // The type infos need to be aligned. GCC does this by inserting padding just
749  // before the type infos. However, this changes the size of the exception
750  // table, so you need to take this into account when you output the exception
751  // table size. However, the size is output using a variable length encoding.
752  // So by increasing the size by inserting padding, you may increase the number
753  // of bytes used for writing the size. If it increases, say by one byte, then
754  // you now need to output one less byte of padding to get the type infos
755  // aligned.  However this decreases the size of the exception table. This
756  // changes the value you have to output for the exception table size. Due to
757  // the variable length encoding, the number of bytes used for writing the
758  // length may decrease. If so, you then have to increase the amount of
759  // padding. And so on. If you look carefully at the GCC code you will see that
760  // it indeed does this in a loop, going on and on until the values stabilize.
761  // We chose another solution: don't output padding inside the table like GCC
762  // does, instead output it before the table.
763  unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
764  unsigned TyOffset = sizeof(int8_t) +          // Call site format
765    MCAsmInfo::getULEB128Size(SizeSites) +      // Call-site table length
766    SizeSites + SizeActions + SizeTypes;
767  unsigned TotalSize = sizeof(int8_t) +         // LPStart format
768                       sizeof(int8_t) +         // TType format
769    (HaveTTData ?
770     MCAsmInfo::getULEB128Size(TyOffset) : 0) + // TType base offset
771    TyOffset;
772  unsigned SizeAlign = (4 - TotalSize) & 3;
773
774  for (unsigned i = 0; i != SizeAlign; ++i) {
775    Asm->EmitInt8(0);
776    EOL("Padding");
777  }
778
779  EmitLabel("exception", SubprogramCount);
780
781  if (IsSJLJ) {
782    SmallString<16> LSDAName;
783    raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() <<
784      "_LSDA_" << Asm->getFunctionNumber();
785    O << LSDAName.str() << ":\n";
786  }
787
788  // Emit the header.
789  EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
790  EmitEncodingByte(TTypeFormat, "@TType");
791
792  if (HaveTTData)
793    EmitULEB128(TyOffset, "@TType base offset");
794
795  // SjLj Exception handling
796  if (IsSJLJ) {
797    EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
798    EmitULEB128(SizeSites, "Call site table length");
799
800    // Emit the landing pad site information.
801    unsigned idx = 0;
802    for (SmallVectorImpl<CallSiteEntry>::const_iterator
803         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
804      const CallSiteEntry &S = *I;
805
806      // Offset of the landing pad, counted in 16-byte bundles relative to the
807      // @LPStart address.
808      EmitULEB128(idx, "Landing pad");
809
810      // Offset of the first associated action record, relative to the start of
811      // the action table. This value is biased by 1 (1 indicates the start of
812      // the action table), and 0 indicates that there are no actions.
813      EmitULEB128(S.Action, "Action");
814    }
815  } else {
816    // DWARF Exception handling
817    assert(MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf);
818
819    // The call-site table is a list of all call sites that may throw an
820    // exception (including C++ 'throw' statements) in the procedure
821    // fragment. It immediately follows the LSDA header. Each entry indicates,
822    // for a given call, the first corresponding action record and corresponding
823    // landing pad.
824    //
825    // The table begins with the number of bytes, stored as an LEB128
826    // compressed, unsigned integer. The records immediately follow the record
827    // count. They are sorted in increasing call-site address. Each record
828    // indicates:
829    //
830    //   * The position of the call-site.
831    //   * The position of the landing pad.
832    //   * The first action record for that call site.
833    //
834    // A missing entry in the call-site table indicates that a call is not
835    // supposed to throw.
836
837    // Emit the landing pad call site table.
838    EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
839    EmitULEB128(SizeSites, "Call site table size");
840
841    for (SmallVectorImpl<CallSiteEntry>::const_iterator
842         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
843      const CallSiteEntry &S = *I;
844      const char *BeginTag;
845      unsigned BeginNumber;
846
847      if (!S.BeginLabel) {
848        BeginTag = "eh_func_begin";
849        BeginNumber = SubprogramCount;
850      } else {
851        BeginTag = "label";
852        BeginNumber = S.BeginLabel;
853      }
854
855      // Offset of the call site relative to the previous call site, counted in
856      // number of 16-byte bundles. The first call site is counted relative to
857      // the start of the procedure fragment.
858      EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount,
859                        true, true);
860      EOL("Region start");
861
862      if (!S.EndLabel)
863        EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber,
864                       true);
865      else
866        EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true);
867
868      EOL("Region length");
869
870      // Offset of the landing pad, counted in 16-byte bundles relative to the
871      // @LPStart address.
872      if (!S.PadLabel) {
873        Asm->OutStreamer.AddComment("Landing pad");
874        Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
875      } else {
876        EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount,
877                          true, true);
878        EOL("Landing pad");
879      }
880
881      // Offset of the first associated action record, relative to the start of
882      // the action table. This value is biased by 1 (1 indicates the start of
883      // the action table), and 0 indicates that there are no actions.
884      EmitULEB128(S.Action, "Action");
885    }
886  }
887
888  // Emit the Action Table.
889  EOL("Action Record Table:");
890  unsigned Iter = 1;
891  for (SmallVectorImpl<ActionEntry>::const_iterator
892         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
893    const ActionEntry &Action = *I;
894    EOL(Twine("Action Record ") + Twine(Iter++));
895
896    // Type Filter
897    //
898    //   Used by the runtime to match the type of the thrown exception to the
899    //   type of the catch clauses or the types in the exception specification.
900    EmitSLEB128(Action.ValueForTypeID, "  TypeInfo index");
901
902    // Action Record
903    //
904    //   Self-relative signed displacement in bytes of the next action record,
905    //   or 0 if there is no next action record.
906    EmitSLEB128(Action.NextAction, "  Next action");
907  }
908
909  // Emit the Catch TypeInfos.
910  Iter = TypeInfos.size();
911  for (std::vector<GlobalVariable *>::const_reverse_iterator
912         I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
913    const GlobalVariable *GV = *I;
914    PrintRelDirective();
915
916    if (GV) {
917      O << *Asm->GetGlobalValueSymbol(GV);
918      EOL(Twine("TypeInfo ") + Twine(Iter--));
919    } else {
920      O << "0x0";
921      EOL("");
922    }
923  }
924
925  // Emit the Exception Specifications.
926  for (std::vector<unsigned>::const_iterator
927         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
928    unsigned TypeID = *I;
929    EmitULEB128(TypeID, TypeID != 0 ? "Exception specification" : 0);
930  }
931
932  Asm->EmitAlignment(2, 0, 0, false);
933}
934
935/// EndModule - Emit all exception information that should come after the
936/// content.
937void DwarfException::EndModule() {
938  if (MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf)
939    return;
940
941  if (!shouldEmitMovesModule && !shouldEmitTableModule)
942    return;
943
944  if (TimePassesIsEnabled)
945    ExceptionTimer->startTimer();
946
947  const std::vector<Function *> Personalities = MMI->getPersonalities();
948
949  for (unsigned I = 0, E = Personalities.size(); I < E; ++I)
950    EmitCIE(Personalities[I], I);
951
952  for (std::vector<FunctionEHFrameInfo>::iterator
953         I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I)
954    EmitFDE(*I);
955
956  if (TimePassesIsEnabled)
957    ExceptionTimer->stopTimer();
958}
959
960/// BeginFunction - Gather pre-function exception information. Assumes it's
961/// being emitted immediately after the function entry point.
962void DwarfException::BeginFunction(const MachineFunction *MF) {
963  if (!MMI || !MAI->doesSupportExceptionHandling()) return;
964
965  if (TimePassesIsEnabled)
966    ExceptionTimer->startTimer();
967
968  this->MF = MF;
969  shouldEmitTable = shouldEmitMoves = false;
970
971  // Map all labels and get rid of any dead landing pads.
972  MMI->TidyLandingPads();
973
974  // If any landing pads survive, we need an EH table.
975  if (!MMI->getLandingPads().empty())
976    shouldEmitTable = true;
977
978  // See if we need frame move info.
979  if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory)
980    shouldEmitMoves = true;
981
982  if (shouldEmitMoves || shouldEmitTable)
983    // Assumes in correct section after the entry point.
984    EmitLabel("eh_func_begin", ++SubprogramCount);
985
986  shouldEmitTableModule |= shouldEmitTable;
987  shouldEmitMovesModule |= shouldEmitMoves;
988
989  if (TimePassesIsEnabled)
990    ExceptionTimer->stopTimer();
991}
992
993/// EndFunction - Gather and emit post-function exception information.
994///
995void DwarfException::EndFunction() {
996  if (!shouldEmitMoves && !shouldEmitTable) return;
997
998  if (TimePassesIsEnabled)
999    ExceptionTimer->startTimer();
1000
1001  EmitLabel("eh_func_end", SubprogramCount);
1002  EmitExceptionTable();
1003
1004  MCSymbol *FunctionEHSym =
1005    Asm->GetSymbolWithGlobalValueBase(MF->getFunction(), ".eh",
1006                                      Asm->MAI->is_EHSymbolPrivate());
1007
1008  // Save EH frame information
1009  EHFrames.push_back(FunctionEHFrameInfo(FunctionEHSym, SubprogramCount,
1010                                         MMI->getPersonalityIndex(),
1011                                         MF->getFrameInfo()->hasCalls(),
1012                                         !MMI->getLandingPads().empty(),
1013                                         MMI->getFrameMoves(),
1014                                         MF->getFunction()));
1015
1016  // Record if this personality index uses a landing pad.
1017  UsesLSDA[MMI->getPersonalityIndex()] |= !MMI->getLandingPads().empty();
1018
1019  if (TimePassesIsEnabled)
1020    ExceptionTimer->stopTimer();
1021}
1022