DwarfException.cpp revision d7e8ddc5012d22398eba6b8094e2fd7821bac9cc
1//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for writing DWARF exception info into asm files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DwarfException.h"
15#include "llvm/Module.h"
16#include "llvm/CodeGen/AsmPrinter.h"
17#include "llvm/CodeGen/MachineModuleInfo.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineLocation.h"
21#include "llvm/MC/MCAsmInfo.h"
22#include "llvm/MC/MCContext.h"
23#include "llvm/MC/MCExpr.h"
24#include "llvm/MC/MCSection.h"
25#include "llvm/MC/MCStreamer.h"
26#include "llvm/MC/MCSymbol.h"
27#include "llvm/Target/Mangler.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetFrameLowering.h"
30#include "llvm/Target/TargetLoweringObjectFile.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Support/Dwarf.h"
35#include "llvm/Support/FormattedStream.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/ADT/Twine.h"
39using namespace llvm;
40
41DwarfException::DwarfException(AsmPrinter *A)
42  : Asm(A), MMI(Asm->MMI) {}
43
44DwarfException::~DwarfException() {}
45
46/// SharedTypeIds - How many leading type ids two landing pads have in common.
47unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
48                                       const LandingPadInfo *R) {
49  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
50  unsigned LSize = LIds.size(), RSize = RIds.size();
51  unsigned MinSize = LSize < RSize ? LSize : RSize;
52  unsigned Count = 0;
53
54  for (; Count != MinSize; ++Count)
55    if (LIds[Count] != RIds[Count])
56      return Count;
57
58  return Count;
59}
60
61/// PadLT - Order landing pads lexicographically by type id.
62bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
63  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
64  unsigned LSize = LIds.size(), RSize = RIds.size();
65  unsigned MinSize = LSize < RSize ? LSize : RSize;
66
67  for (unsigned i = 0; i != MinSize; ++i)
68    if (LIds[i] != RIds[i])
69      return LIds[i] < RIds[i];
70
71  return LSize < RSize;
72}
73
74/// ComputeActionsTable - Compute the actions table and gather the first action
75/// index for each landing pad site.
76unsigned DwarfException::
77ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
78                    SmallVectorImpl<ActionEntry> &Actions,
79                    SmallVectorImpl<unsigned> &FirstActions) {
80
81  // The action table follows the call-site table in the LSDA. The individual
82  // records are of two types:
83  //
84  //   * Catch clause
85  //   * Exception specification
86  //
87  // The two record kinds have the same format, with only small differences.
88  // They are distinguished by the "switch value" field: Catch clauses
89  // (TypeInfos) have strictly positive switch values, and exception
90  // specifications (FilterIds) have strictly negative switch values. Value 0
91  // indicates a catch-all clause.
92  //
93  // Negative type IDs index into FilterIds. Positive type IDs index into
94  // TypeInfos.  The value written for a positive type ID is just the type ID
95  // itself.  For a negative type ID, however, the value written is the
96  // (negative) byte offset of the corresponding FilterIds entry.  The byte
97  // offset is usually equal to the type ID (because the FilterIds entries are
98  // written using a variable width encoding, which outputs one byte per entry
99  // as long as the value written is not too large) but can differ.  This kind
100  // of complication does not occur for positive type IDs because type infos are
101  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
102  // offset corresponding to FilterIds[i].
103
104  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
105  SmallVector<int, 16> FilterOffsets;
106  FilterOffsets.reserve(FilterIds.size());
107  int Offset = -1;
108
109  for (std::vector<unsigned>::const_iterator
110         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
111    FilterOffsets.push_back(Offset);
112    Offset -= MCAsmInfo::getULEB128Size(*I);
113  }
114
115  FirstActions.reserve(LandingPads.size());
116
117  int FirstAction = 0;
118  unsigned SizeActions = 0;
119  const LandingPadInfo *PrevLPI = 0;
120
121  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
122         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
123    const LandingPadInfo *LPI = *I;
124    const std::vector<int> &TypeIds = LPI->TypeIds;
125    unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
126    unsigned SizeSiteActions = 0;
127
128    if (NumShared < TypeIds.size()) {
129      unsigned SizeAction = 0;
130      unsigned PrevAction = (unsigned)-1;
131
132      if (NumShared) {
133        unsigned SizePrevIds = PrevLPI->TypeIds.size();
134        assert(Actions.size());
135        PrevAction = Actions.size() - 1;
136        SizeAction =
137          MCAsmInfo::getSLEB128Size(Actions[PrevAction].NextAction) +
138          MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
139
140        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
141          assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
142          SizeAction -=
143            MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
144          SizeAction += -Actions[PrevAction].NextAction;
145          PrevAction = Actions[PrevAction].Previous;
146        }
147      }
148
149      // Compute the actions.
150      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
151        int TypeID = TypeIds[J];
152        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
153        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
154        unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
155
156        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
157        SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
158        SizeSiteActions += SizeAction;
159
160        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
161        Actions.push_back(Action);
162        PrevAction = Actions.size() - 1;
163      }
164
165      // Record the first action of the landing pad site.
166      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
167    } // else identical - re-use previous FirstAction
168
169    // Information used when created the call-site table. The action record
170    // field of the call site record is the offset of the first associated
171    // action record, relative to the start of the actions table. This value is
172    // biased by 1 (1 indicating the start of the actions table), and 0
173    // indicates that there are no actions.
174    FirstActions.push_back(FirstAction);
175
176    // Compute this sites contribution to size.
177    SizeActions += SizeSiteActions;
178
179    PrevLPI = LPI;
180  }
181
182  return SizeActions;
183}
184
185/// CallToNoUnwindFunction - Return `true' if this is a call to a function
186/// marked `nounwind'. Return `false' otherwise.
187bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) {
188  assert(MI->getDesc().isCall() && "This should be a call instruction!");
189
190  bool MarkedNoUnwind = false;
191  bool SawFunc = false;
192
193  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
194    const MachineOperand &MO = MI->getOperand(I);
195
196    if (!MO.isGlobal()) continue;
197
198    const Function *F = dyn_cast<Function>(MO.getGlobal());
199    if (F == 0) continue;
200
201    if (SawFunc) {
202      // Be conservative. If we have more than one function operand for this
203      // call, then we can't make the assumption that it's the callee and
204      // not a parameter to the call.
205      //
206      // FIXME: Determine if there's a way to say that `F' is the callee or
207      // parameter.
208      MarkedNoUnwind = false;
209      break;
210    }
211
212    MarkedNoUnwind = F->doesNotThrow();
213    SawFunc = true;
214  }
215
216  return MarkedNoUnwind;
217}
218
219/// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
220/// has a try-range containing the call, a non-zero landing pad, and an
221/// appropriate action.  The entry for an ordinary call has a try-range
222/// containing the call and zero for the landing pad and the action.  Calls
223/// marked 'nounwind' have no entry and must not be contained in the try-range
224/// of any entry - they form gaps in the table.  Entries must be ordered by
225/// try-range address.
226void DwarfException::
227ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
228                     const RangeMapType &PadMap,
229                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
230                     const SmallVectorImpl<unsigned> &FirstActions) {
231  // The end label of the previous invoke or nounwind try-range.
232  MCSymbol *LastLabel = 0;
233
234  // Whether there is a potentially throwing instruction (currently this means
235  // an ordinary call) between the end of the previous try-range and now.
236  bool SawPotentiallyThrowing = false;
237
238  // Whether the last CallSite entry was for an invoke.
239  bool PreviousIsInvoke = false;
240
241  // Visit all instructions in order of address.
242  for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end();
243       I != E; ++I) {
244    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
245         MI != E; ++MI) {
246      if (!MI->isLabel()) {
247        if (MI->getDesc().isCall())
248          SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
249        continue;
250      }
251
252      // End of the previous try-range?
253      MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
254      if (BeginLabel == LastLabel)
255        SawPotentiallyThrowing = false;
256
257      // Beginning of a new try-range?
258      RangeMapType::const_iterator L = PadMap.find(BeginLabel);
259      if (L == PadMap.end())
260        // Nope, it was just some random label.
261        continue;
262
263      const PadRange &P = L->second;
264      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
265      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
266             "Inconsistent landing pad map!");
267
268      // For Dwarf exception handling (SjLj handling doesn't use this). If some
269      // instruction between the previous try-range and this one may throw,
270      // create a call-site entry with no landing pad for the region between the
271      // try-ranges.
272      if (SawPotentiallyThrowing &&
273          Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
274        CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
275        CallSites.push_back(Site);
276        PreviousIsInvoke = false;
277      }
278
279      LastLabel = LandingPad->EndLabels[P.RangeIndex];
280      assert(BeginLabel && LastLabel && "Invalid landing pad!");
281
282      if (!LandingPad->LandingPadLabel) {
283        // Create a gap.
284        PreviousIsInvoke = false;
285      } else {
286        // This try-range is for an invoke.
287        CallSiteEntry Site = {
288          BeginLabel,
289          LastLabel,
290          LandingPad->LandingPadLabel,
291          FirstActions[P.PadIndex]
292        };
293
294        // Try to merge with the previous call-site. SJLJ doesn't do this
295        if (PreviousIsInvoke &&
296          Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
297          CallSiteEntry &Prev = CallSites.back();
298          if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
299            // Extend the range of the previous entry.
300            Prev.EndLabel = Site.EndLabel;
301            continue;
302          }
303        }
304
305        // Otherwise, create a new call-site.
306        if (Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf)
307          CallSites.push_back(Site);
308        else {
309          // SjLj EH must maintain the call sites in the order assigned
310          // to them by the SjLjPrepare pass.
311          unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
312          if (CallSites.size() < SiteNo)
313            CallSites.resize(SiteNo);
314          CallSites[SiteNo - 1] = Site;
315        }
316        PreviousIsInvoke = true;
317      }
318    }
319  }
320
321  // If some instruction between the previous try-range and the end of the
322  // function may throw, create a call-site entry with no landing pad for the
323  // region following the try-range.
324  if (SawPotentiallyThrowing &&
325      Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
326    CallSiteEntry Site = { LastLabel, 0, 0, 0 };
327    CallSites.push_back(Site);
328  }
329}
330
331/// EmitExceptionTable - Emit landing pads and actions.
332///
333/// The general organization of the table is complex, but the basic concepts are
334/// easy.  First there is a header which describes the location and organization
335/// of the three components that follow.
336///
337///  1. The landing pad site information describes the range of code covered by
338///     the try.  In our case it's an accumulation of the ranges covered by the
339///     invokes in the try.  There is also a reference to the landing pad that
340///     handles the exception once processed.  Finally an index into the actions
341///     table.
342///  2. The action table, in our case, is composed of pairs of type IDs and next
343///     action offset.  Starting with the action index from the landing pad
344///     site, each type ID is checked for a match to the current exception.  If
345///     it matches then the exception and type id are passed on to the landing
346///     pad.  Otherwise the next action is looked up.  This chain is terminated
347///     with a next action of zero.  If no type id is found then the frame is
348///     unwound and handling continues.
349///  3. Type ID table contains references to all the C++ typeinfo for all
350///     catches in the function.  This tables is reverse indexed base 1.
351void DwarfException::EmitExceptionTable() {
352  const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
353  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
354  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
355
356  // Sort the landing pads in order of their type ids.  This is used to fold
357  // duplicate actions.
358  SmallVector<const LandingPadInfo *, 64> LandingPads;
359  LandingPads.reserve(PadInfos.size());
360
361  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
362    LandingPads.push_back(&PadInfos[i]);
363
364  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
365
366  // Compute the actions table and gather the first action index for each
367  // landing pad site.
368  SmallVector<ActionEntry, 32> Actions;
369  SmallVector<unsigned, 64> FirstActions;
370  unsigned SizeActions=ComputeActionsTable(LandingPads, Actions, FirstActions);
371
372  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
373  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
374  // try-ranges for them need be deduced when using DWARF exception handling.
375  RangeMapType PadMap;
376  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
377    const LandingPadInfo *LandingPad = LandingPads[i];
378    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
379      MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
380      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
381      PadRange P = { i, j };
382      PadMap[BeginLabel] = P;
383    }
384  }
385
386  // Compute the call-site table.
387  SmallVector<CallSiteEntry, 64> CallSites;
388  ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
389
390  // Final tallies.
391
392  // Call sites.
393  bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
394  bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
395
396  unsigned CallSiteTableLength;
397  if (IsSJLJ)
398    CallSiteTableLength = 0;
399  else {
400    unsigned SiteStartSize  = 4; // dwarf::DW_EH_PE_udata4
401    unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
402    unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
403    CallSiteTableLength =
404      CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
405  }
406
407  for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
408    CallSiteTableLength += MCAsmInfo::getULEB128Size(CallSites[i].Action);
409    if (IsSJLJ)
410      CallSiteTableLength += MCAsmInfo::getULEB128Size(i);
411  }
412
413  // Type infos.
414  const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
415  unsigned TTypeEncoding;
416  unsigned TypeFormatSize;
417
418  if (!HaveTTData) {
419    // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
420    // that we're omitting that bit.
421    TTypeEncoding = dwarf::DW_EH_PE_omit;
422    // dwarf::DW_EH_PE_absptr
423    TypeFormatSize = Asm->getTargetData().getPointerSize();
424  } else {
425    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
426    // pick a type encoding for them.  We're about to emit a list of pointers to
427    // typeinfo objects at the end of the LSDA.  However, unless we're in static
428    // mode, this reference will require a relocation by the dynamic linker.
429    //
430    // Because of this, we have a couple of options:
431    //
432    //   1) If we are in -static mode, we can always use an absolute reference
433    //      from the LSDA, because the static linker will resolve it.
434    //
435    //   2) Otherwise, if the LSDA section is writable, we can output the direct
436    //      reference to the typeinfo and allow the dynamic linker to relocate
437    //      it.  Since it is in a writable section, the dynamic linker won't
438    //      have a problem.
439    //
440    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
441    //      we need to use some form of indirection.  For example, on Darwin,
442    //      we can output a statically-relocatable reference to a dyld stub. The
443    //      offset to the stub is constant, but the contents are in a section
444    //      that is updated by the dynamic linker.  This is easy enough, but we
445    //      need to tell the personality function of the unwinder to indirect
446    //      through the dyld stub.
447    //
448    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
449    // somewhere.  This predicate should be moved to a shared location that is
450    // in target-independent code.
451    //
452    TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
453    TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
454  }
455
456  // Begin the exception table.
457  Asm->OutStreamer.SwitchSection(LSDASection);
458  Asm->EmitAlignment(2);
459
460  // Emit the LSDA.
461  MCSymbol *GCCETSym =
462    Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+
463                                      Twine(Asm->getFunctionNumber()));
464  Asm->OutStreamer.EmitLabel(GCCETSym);
465  Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception",
466                                                Asm->getFunctionNumber()));
467
468  if (IsSJLJ)
469    Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("_LSDA_",
470                                                  Asm->getFunctionNumber()));
471
472  // Emit the LSDA header.
473  Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
474  Asm->EmitEncodingByte(TTypeEncoding, "@TType");
475
476  // The type infos need to be aligned. GCC does this by inserting padding just
477  // before the type infos. However, this changes the size of the exception
478  // table, so you need to take this into account when you output the exception
479  // table size. However, the size is output using a variable length encoding.
480  // So by increasing the size by inserting padding, you may increase the number
481  // of bytes used for writing the size. If it increases, say by one byte, then
482  // you now need to output one less byte of padding to get the type infos
483  // aligned. However this decreases the size of the exception table. This
484  // changes the value you have to output for the exception table size. Due to
485  // the variable length encoding, the number of bytes used for writing the
486  // length may decrease. If so, you then have to increase the amount of
487  // padding. And so on. If you look carefully at the GCC code you will see that
488  // it indeed does this in a loop, going on and on until the values stabilize.
489  // We chose another solution: don't output padding inside the table like GCC
490  // does, instead output it before the table.
491  unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
492  unsigned CallSiteTableLengthSize =
493    MCAsmInfo::getULEB128Size(CallSiteTableLength);
494  unsigned TTypeBaseOffset =
495    sizeof(int8_t) +                            // Call site format
496    CallSiteTableLengthSize +                   // Call site table length size
497    CallSiteTableLength +                       // Call site table length
498    SizeActions +                               // Actions size
499    SizeTypes;
500  unsigned TTypeBaseOffsetSize = MCAsmInfo::getULEB128Size(TTypeBaseOffset);
501  unsigned TotalSize =
502    sizeof(int8_t) +                            // LPStart format
503    sizeof(int8_t) +                            // TType format
504    (HaveTTData ? TTypeBaseOffsetSize : 0) +    // TType base offset size
505    TTypeBaseOffset;                            // TType base offset
506  unsigned SizeAlign = (4 - TotalSize) & 3;
507
508  if (HaveTTData) {
509    // Account for any extra padding that will be added to the call site table
510    // length.
511    Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
512    SizeAlign = 0;
513  }
514
515  // SjLj Exception handling
516  if (IsSJLJ) {
517    Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
518
519    // Add extra padding if it wasn't added to the TType base offset.
520    Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
521
522    // Emit the landing pad site information.
523    unsigned idx = 0;
524    for (SmallVectorImpl<CallSiteEntry>::const_iterator
525         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
526      const CallSiteEntry &S = *I;
527
528      // Offset of the landing pad, counted in 16-byte bundles relative to the
529      // @LPStart address.
530      Asm->EmitULEB128(idx, "Landing pad");
531
532      // Offset of the first associated action record, relative to the start of
533      // the action table. This value is biased by 1 (1 indicates the start of
534      // the action table), and 0 indicates that there are no actions.
535      Asm->EmitULEB128(S.Action, "Action");
536    }
537  } else {
538    // DWARF Exception handling
539    assert(Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf);
540
541    // The call-site table is a list of all call sites that may throw an
542    // exception (including C++ 'throw' statements) in the procedure
543    // fragment. It immediately follows the LSDA header. Each entry indicates,
544    // for a given call, the first corresponding action record and corresponding
545    // landing pad.
546    //
547    // The table begins with the number of bytes, stored as an LEB128
548    // compressed, unsigned integer. The records immediately follow the record
549    // count. They are sorted in increasing call-site address. Each record
550    // indicates:
551    //
552    //   * The position of the call-site.
553    //   * The position of the landing pad.
554    //   * The first action record for that call site.
555    //
556    // A missing entry in the call-site table indicates that a call is not
557    // supposed to throw.
558
559    // Emit the landing pad call site table.
560    Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
561
562    // Add extra padding if it wasn't added to the TType base offset.
563    Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
564
565    for (SmallVectorImpl<CallSiteEntry>::const_iterator
566         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
567      const CallSiteEntry &S = *I;
568
569      MCSymbol *EHFuncBeginSym =
570        Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber());
571
572      MCSymbol *BeginLabel = S.BeginLabel;
573      if (BeginLabel == 0)
574        BeginLabel = EHFuncBeginSym;
575      MCSymbol *EndLabel = S.EndLabel;
576      if (EndLabel == 0)
577        EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber());
578
579      // Offset of the call site relative to the previous call site, counted in
580      // number of 16-byte bundles. The first call site is counted relative to
581      // the start of the procedure fragment.
582      Asm->OutStreamer.AddComment("Region start");
583      Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
584
585      Asm->OutStreamer.AddComment("Region length");
586      Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
587
588
589      // Offset of the landing pad, counted in 16-byte bundles relative to the
590      // @LPStart address.
591      Asm->OutStreamer.AddComment("Landing pad");
592      if (!S.PadLabel)
593        Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
594      else
595        Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4);
596
597      // Offset of the first associated action record, relative to the start of
598      // the action table. This value is biased by 1 (1 indicates the start of
599      // the action table), and 0 indicates that there are no actions.
600      Asm->EmitULEB128(S.Action, "Action");
601    }
602  }
603
604  // Emit the Action Table.
605  if (Actions.size() != 0) {
606    Asm->OutStreamer.AddComment("-- Action Record Table --");
607    Asm->OutStreamer.AddBlankLine();
608  }
609
610  for (SmallVectorImpl<ActionEntry>::const_iterator
611         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
612    const ActionEntry &Action = *I;
613    Asm->OutStreamer.AddComment("Action Record");
614    Asm->OutStreamer.AddBlankLine();
615
616    // Type Filter
617    //
618    //   Used by the runtime to match the type of the thrown exception to the
619    //   type of the catch clauses or the types in the exception specification.
620    Asm->EmitSLEB128(Action.ValueForTypeID, "  TypeInfo index");
621
622    // Action Record
623    //
624    //   Self-relative signed displacement in bytes of the next action record,
625    //   or 0 if there is no next action record.
626    Asm->EmitSLEB128(Action.NextAction, "  Next action");
627  }
628
629  // Emit the Catch TypeInfos.
630  if (!TypeInfos.empty()) {
631    Asm->OutStreamer.AddComment("-- Catch TypeInfos --");
632    Asm->OutStreamer.AddBlankLine();
633  }
634  for (std::vector<const GlobalVariable *>::const_reverse_iterator
635         I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
636    const GlobalVariable *GV = *I;
637
638    Asm->OutStreamer.AddComment("TypeInfo");
639    if (GV)
640      Asm->EmitReference(GV, TTypeEncoding);
641    else
642      Asm->OutStreamer.EmitIntValue(0,Asm->GetSizeOfEncodedValue(TTypeEncoding),
643                                    0);
644  }
645
646  // Emit the Exception Specifications.
647  if (!FilterIds.empty()) {
648    Asm->OutStreamer.AddComment("-- Filter IDs --");
649    Asm->OutStreamer.AddBlankLine();
650  }
651  for (std::vector<unsigned>::const_iterator
652         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
653    unsigned TypeID = *I;
654    Asm->EmitULEB128(TypeID, TypeID != 0 ? "Exception specification" : 0);
655  }
656
657  Asm->EmitAlignment(2);
658}
659
660/// EndModule - Emit all exception information that should come after the
661/// content.
662void DwarfException::EndModule() {
663  assert(0 && "Should be implemented");
664}
665
666/// BeginFunction - Gather pre-function exception information. Assumes it's
667/// being emitted immediately after the function entry point.
668void DwarfException::BeginFunction(const MachineFunction *MF) {
669  assert(0 && "Should be implemented");
670}
671
672/// EndFunction - Gather and emit post-function exception information.
673///
674void DwarfException::EndFunction() {
675  assert(0 && "Should be implemented");
676}
677