DwarfException.cpp revision ecc260e403d09ba04ed87d2d04226ac851c68e5a
1//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for writing DWARF exception info into asm files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DwarfException.h"
15#include "llvm/Module.h"
16#include "llvm/CodeGen/MachineModuleInfo.h"
17#include "llvm/CodeGen/MachineFrameInfo.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/CodeGen/MachineLocation.h"
20#include "llvm/MC/MCAsmInfo.h"
21#include "llvm/MC/MCContext.h"
22#include "llvm/MC/MCExpr.h"
23#include "llvm/MC/MCSection.h"
24#include "llvm/MC/MCStreamer.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetFrameInfo.h"
27#include "llvm/Target/TargetLoweringObjectFile.h"
28#include "llvm/Target/TargetOptions.h"
29#include "llvm/Target/TargetRegisterInfo.h"
30#include "llvm/Support/Dwarf.h"
31#include "llvm/Support/Mangler.h"
32#include "llvm/Support/Timer.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/ADT/StringExtras.h"
36using namespace llvm;
37
38static TimerGroup &getDwarfTimerGroup() {
39  static TimerGroup DwarfTimerGroup("DWARF Exception");
40  return DwarfTimerGroup;
41}
42
43DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A,
44                               const MCAsmInfo *T)
45  : Dwarf(OS, A, T, "eh"), shouldEmitTable(false), shouldEmitMoves(false),
46    shouldEmitTableModule(false), shouldEmitMovesModule(false),
47    ExceptionTimer(0) {
48  if (TimePassesIsEnabled)
49    ExceptionTimer = new Timer("DWARF Exception Writer",
50                               getDwarfTimerGroup());
51}
52
53DwarfException::~DwarfException() {
54  delete ExceptionTimer;
55}
56
57/// SizeOfEncodedValue - Return the size of the encoding in bytes.
58unsigned DwarfException::SizeOfEncodedValue(unsigned Encoding) {
59  if (Encoding == dwarf::DW_EH_PE_omit)
60    return 0;
61
62  switch (Encoding & 0x07) {
63  case dwarf::DW_EH_PE_absptr:
64    return TD->getPointerSize();
65  case dwarf::DW_EH_PE_udata2:
66    return 2;
67  case dwarf::DW_EH_PE_udata4:
68    return 4;
69  case dwarf::DW_EH_PE_udata8:
70    return 8;
71  }
72
73  assert(0 && "Invalid encoded value.");
74  return 0;
75}
76
77/// EmitCIE - Emit a Common Information Entry (CIE). This holds information that
78/// is shared among many Frame Description Entries.  There is at least one CIE
79/// in every non-empty .debug_frame section.
80void DwarfException::EmitCIE(const Function *PersonalityFn, unsigned Index) {
81  // Size and sign of stack growth.
82  int stackGrowth =
83    Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
84    TargetFrameInfo::StackGrowsUp ?
85    TD->getPointerSize() : -TD->getPointerSize();
86
87  const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
88
89  // Begin eh frame section.
90  Asm->OutStreamer.SwitchSection(TLOF.getEHFrameSection());
91
92  if (MAI->is_EHSymbolPrivate())
93    O << MAI->getPrivateGlobalPrefix();
94  O << "EH_frame" << Index << ":\n";
95
96  EmitLabel("section_eh_frame", Index);
97
98  // Define base labels.
99  EmitLabel("eh_frame_common", Index);
100
101  // Define the eh frame length.
102  EmitDifference("eh_frame_common_end", Index,
103                 "eh_frame_common_begin", Index, true);
104  Asm->EOL("Length of Common Information Entry");
105
106  // EH frame header.
107  EmitLabel("eh_frame_common_begin", Index);
108  Asm->EmitInt32((int)0);
109  Asm->EOL("CIE Identifier Tag");
110  Asm->EmitInt8(dwarf::DW_CIE_VERSION);
111  Asm->EOL("CIE Version");
112
113  // The personality presence indicates that language specific information will
114  // show up in the eh frame.  Find out how we are supposed to lower the
115  // personality function reference:
116  const MCExpr *PersonalityRef = 0;
117  bool IsPersonalityIndirect = false, IsPersonalityPCRel = false;
118  if (PersonalityFn) {
119    // FIXME: HANDLE STATIC CODEGEN MODEL HERE.
120
121    // In non-static mode, ask the object file how to represent this reference.
122    PersonalityRef =
123      TLOF.getSymbolForDwarfGlobalReference(PersonalityFn, Asm->Mang,
124                                            Asm->MMI,
125                                            IsPersonalityIndirect,
126                                            IsPersonalityPCRel);
127  }
128
129  unsigned PerEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
130  if (IsPersonalityIndirect)
131    PerEncoding |= dwarf::DW_EH_PE_indirect;
132  unsigned LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
133  unsigned FDEEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
134
135  char Augmentation[5] = { 0 };
136  unsigned AugmentationSize = 0;
137  char *APtr = Augmentation + 1;
138
139  if (PersonalityRef) {
140    // There is a personality function.
141    *APtr++ = 'P';
142    AugmentationSize += 1 + SizeOfEncodedValue(PerEncoding);
143  }
144
145  if (UsesLSDA[Index]) {
146    // An LSDA pointer is in the FDE augmentation.
147    *APtr++ = 'L';
148    ++AugmentationSize;
149  }
150
151  if (FDEEncoding != dwarf::DW_EH_PE_absptr) {
152    // A non-default pointer encoding for the FDE.
153    *APtr++ = 'R';
154    ++AugmentationSize;
155  }
156
157  if (APtr != Augmentation + 1)
158    Augmentation[0] = 'z';
159
160  Asm->EmitString(Augmentation);
161  Asm->EOL("CIE Augmentation");
162
163  // Round out reader.
164  Asm->EmitULEB128Bytes(1);
165  Asm->EOL("CIE Code Alignment Factor");
166  Asm->EmitSLEB128Bytes(stackGrowth);
167  Asm->EOL("CIE Data Alignment Factor");
168  Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true));
169  Asm->EOL("CIE Return Address Column");
170
171  Asm->EmitULEB128Bytes(AugmentationSize);
172  Asm->EOL("Augmentation Size");
173
174  Asm->EmitInt8(PerEncoding);
175  Asm->EOL("Personality", PerEncoding);
176
177  // If there is a personality, we need to indicate the function's location.
178  if (PersonalityRef) {
179    // If the reference to the personality function symbol is not already
180    // pc-relative, then we need to subtract our current address from it.  Do
181    // this by emitting a label and subtracting it from the expression we
182    // already have.  This is equivalent to emitting "foo - .", but we have to
183    // emit the label for "." directly.
184    if (!IsPersonalityPCRel) {
185      SmallString<64> Name;
186      raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix()
187         << "personalityref_addr" << Asm->getFunctionNumber() << "_" << Index;
188      MCSymbol *DotSym = Asm->OutContext.GetOrCreateSymbol(Name.str());
189      Asm->OutStreamer.EmitLabel(DotSym);
190
191      PersonalityRef =
192        MCBinaryExpr::CreateSub(PersonalityRef,
193                                MCSymbolRefExpr::Create(DotSym,Asm->OutContext),
194                                Asm->OutContext);
195    }
196
197    O << MAI->getData32bitsDirective();
198    PersonalityRef->print(O, MAI);
199    Asm->EOL("Personality");
200
201    Asm->EmitInt8(LSDAEncoding);
202    Asm->EOL("LSDA Encoding", LSDAEncoding);
203
204    Asm->EmitInt8(FDEEncoding);
205    Asm->EOL("FDE Encoding", FDEEncoding);
206  }
207
208  // Indicate locations of general callee saved registers in frame.
209  std::vector<MachineMove> Moves;
210  RI->getInitialFrameState(Moves);
211  EmitFrameMoves(NULL, 0, Moves, true);
212
213  // On Darwin the linker honors the alignment of eh_frame, which means it must
214  // be 8-byte on 64-bit targets to match what gcc does.  Otherwise you get
215  // holes which confuse readers of eh_frame.
216  Asm->EmitAlignment(TD->getPointerSize() == 4 ? 2 : 3, 0, 0, false);
217  EmitLabel("eh_frame_common_end", Index);
218
219  Asm->EOL();
220}
221
222/// EmitFDE - Emit the Frame Description Entry (FDE) for the function.
223void DwarfException::EmitFDE(const FunctionEHFrameInfo &EHFrameInfo) {
224  assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() &&
225         "Should not emit 'available externally' functions at all");
226
227  const Function *TheFunc = EHFrameInfo.function;
228
229  Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection());
230
231  // Externally visible entry into the functions eh frame info. If the
232  // corresponding function is static, this should not be externally visible.
233  if (!TheFunc->hasLocalLinkage())
234    if (const char *GlobalEHDirective = MAI->getGlobalEHDirective())
235      O << GlobalEHDirective << EHFrameInfo.FnName << '\n';
236
237  // If corresponding function is weak definition, this should be too.
238  if (TheFunc->isWeakForLinker() && MAI->getWeakDefDirective())
239    O << MAI->getWeakDefDirective() << EHFrameInfo.FnName << '\n';
240
241  // If corresponding function is hidden, this should be too.
242  if (TheFunc->hasHiddenVisibility())
243    if (const char *HiddenDirective = MAI->getHiddenDirective())
244      O << HiddenDirective << EHFrameInfo.FnName << '\n' ;
245
246  // If there are no calls then you can't unwind.  This may mean we can omit the
247  // EH Frame, but some environments do not handle weak absolute symbols. If
248  // UnwindTablesMandatory is set we cannot do this optimization; the unwind
249  // info is to be available for non-EH uses.
250  if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory &&
251      (!TheFunc->isWeakForLinker() ||
252       !MAI->getWeakDefDirective() ||
253       MAI->getSupportsWeakOmittedEHFrame())) {
254    O << EHFrameInfo.FnName << " = 0\n";
255    // This name has no connection to the function, so it might get
256    // dead-stripped when the function is not, erroneously.  Prohibit
257    // dead-stripping unconditionally.
258    if (const char *UsedDirective = MAI->getUsedDirective())
259      O << UsedDirective << EHFrameInfo.FnName << "\n\n";
260  } else {
261    O << EHFrameInfo.FnName << ":\n";
262
263    // EH frame header.
264    EmitDifference("eh_frame_end", EHFrameInfo.Number,
265                   "eh_frame_begin", EHFrameInfo.Number, true);
266    Asm->EOL("Length of Frame Information Entry");
267
268    EmitLabel("eh_frame_begin", EHFrameInfo.Number);
269
270    EmitSectionOffset("eh_frame_begin", "eh_frame_common",
271                      EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
272                      true, true, false);
273
274    Asm->EOL("FDE CIE offset");
275
276    EmitReference("eh_func_begin", EHFrameInfo.Number, true, true);
277    Asm->EOL("FDE initial location");
278    EmitDifference("eh_func_end", EHFrameInfo.Number,
279                   "eh_func_begin", EHFrameInfo.Number, true);
280    Asm->EOL("FDE address range");
281
282    // If there is a personality and landing pads then point to the language
283    // specific data area in the exception table.
284    if (MMI->getPersonalities()[0] != NULL) {
285      bool is4Byte = TD->getPointerSize() == sizeof(int32_t);
286
287      Asm->EmitULEB128Bytes(is4Byte ? 4 : 8);
288      Asm->EOL("Augmentation size");
289
290      if (EHFrameInfo.hasLandingPads)
291        EmitReference("exception", EHFrameInfo.Number, true, false);
292      else {
293        if (is4Byte)
294          Asm->EmitInt32((int)0);
295        else
296          Asm->EmitInt64((int)0);
297      }
298      Asm->EOL("Language Specific Data Area");
299    } else {
300      Asm->EmitULEB128Bytes(0);
301      Asm->EOL("Augmentation size");
302    }
303
304    // Indicate locations of function specific callee saved registers in frame.
305    EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves,
306                   true);
307
308    // On Darwin the linker honors the alignment of eh_frame, which means it
309    // must be 8-byte on 64-bit targets to match what gcc does.  Otherwise you
310    // get holes which confuse readers of eh_frame.
311    Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
312                       0, 0, false);
313    EmitLabel("eh_frame_end", EHFrameInfo.Number);
314
315    // If the function is marked used, this table should be also.  We cannot
316    // make the mark unconditional in this case, since retaining the table also
317    // retains the function in this case, and there is code around that depends
318    // on unused functions (calling undefined externals) being dead-stripped to
319    // link correctly.  Yes, there really is.
320    if (MMI->isUsedFunction(EHFrameInfo.function))
321      if (const char *UsedDirective = MAI->getUsedDirective())
322        O << UsedDirective << EHFrameInfo.FnName << "\n\n";
323  }
324
325  Asm->EOL();
326}
327
328/// SharedTypeIds - How many leading type ids two landing pads have in common.
329unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
330                                       const LandingPadInfo *R) {
331  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
332  unsigned LSize = LIds.size(), RSize = RIds.size();
333  unsigned MinSize = LSize < RSize ? LSize : RSize;
334  unsigned Count = 0;
335
336  for (; Count != MinSize; ++Count)
337    if (LIds[Count] != RIds[Count])
338      return Count;
339
340  return Count;
341}
342
343/// PadLT - Order landing pads lexicographically by type id.
344bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
345  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
346  unsigned LSize = LIds.size(), RSize = RIds.size();
347  unsigned MinSize = LSize < RSize ? LSize : RSize;
348
349  for (unsigned i = 0; i != MinSize; ++i)
350    if (LIds[i] != RIds[i])
351      return LIds[i] < RIds[i];
352
353  return LSize < RSize;
354}
355
356/// ComputeActionsTable - Compute the actions table and gather the first action
357/// index for each landing pad site.
358unsigned DwarfException::
359ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
360                    SmallVectorImpl<ActionEntry> &Actions,
361                    SmallVectorImpl<unsigned> &FirstActions) {
362
363  // The action table follows the call-site table in the LSDA. The individual
364  // records are of two types:
365  //
366  //   * Catch clause
367  //   * Exception specification
368  //
369  // The two record kinds have the same format, with only small differences.
370  // They are distinguished by the "switch value" field: Catch clauses
371  // (TypeInfos) have strictly positive switch values, and exception
372  // specifications (FilterIds) have strictly negative switch values. Value 0
373  // indicates a catch-all clause.
374  //
375  // Negative type IDs index into FilterIds. Positive type IDs index into
376  // TypeInfos.  The value written for a positive type ID is just the type ID
377  // itself.  For a negative type ID, however, the value written is the
378  // (negative) byte offset of the corresponding FilterIds entry.  The byte
379  // offset is usually equal to the type ID (because the FilterIds entries are
380  // written using a variable width encoding, which outputs one byte per entry
381  // as long as the value written is not too large) but can differ.  This kind
382  // of complication does not occur for positive type IDs because type infos are
383  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
384  // offset corresponding to FilterIds[i].
385
386  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
387  SmallVector<int, 16> FilterOffsets;
388  FilterOffsets.reserve(FilterIds.size());
389  int Offset = -1;
390
391  for (std::vector<unsigned>::const_iterator
392         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
393    FilterOffsets.push_back(Offset);
394    Offset -= MCAsmInfo::getULEB128Size(*I);
395  }
396
397  FirstActions.reserve(LandingPads.size());
398
399  int FirstAction = 0;
400  unsigned SizeActions = 0;
401  const LandingPadInfo *PrevLPI = 0;
402
403  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
404         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
405    const LandingPadInfo *LPI = *I;
406    const std::vector<int> &TypeIds = LPI->TypeIds;
407    const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
408    unsigned SizeSiteActions = 0;
409
410    if (NumShared < TypeIds.size()) {
411      unsigned SizeAction = 0;
412      ActionEntry *PrevAction = 0;
413
414      if (NumShared) {
415        const unsigned SizePrevIds = PrevLPI->TypeIds.size();
416        assert(Actions.size());
417        PrevAction = &Actions.back();
418        SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
419          MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
420
421        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
422          SizeAction -=
423            MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
424          SizeAction += -PrevAction->NextAction;
425          PrevAction = PrevAction->Previous;
426        }
427      }
428
429      // Compute the actions.
430      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
431        int TypeID = TypeIds[J];
432        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
433        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
434        unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
435
436        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
437        SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
438        SizeSiteActions += SizeAction;
439
440        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
441        Actions.push_back(Action);
442        PrevAction = &Actions.back();
443      }
444
445      // Record the first action of the landing pad site.
446      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
447    } // else identical - re-use previous FirstAction
448
449    // Information used when created the call-site table. The action record
450    // field of the call site record is the offset of the first associated
451    // action record, relative to the start of the actions table. This value is
452    // biased by 1 (1 in dicating the start of the actions table), and 0
453    // indicates that there are no actions.
454    FirstActions.push_back(FirstAction);
455
456    // Compute this sites contribution to size.
457    SizeActions += SizeSiteActions;
458
459    PrevLPI = LPI;
460  }
461
462  return SizeActions;
463}
464
465/// CallToNoUnwindFunction - Return `true' if this is a call to a function
466/// marked `nounwind'. Return `false' otherwise.
467bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) {
468  assert(MI->getDesc().isCall() && "This should be a call instruction!");
469
470  bool MarkedNoUnwind = false;
471  bool SawFunc = false;
472
473  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
474    const MachineOperand &MO = MI->getOperand(I);
475
476    if (MO.isGlobal()) {
477      if (Function *F = dyn_cast<Function>(MO.getGlobal())) {
478        if (SawFunc) {
479          // Be conservative. If we have more than one function operand for this
480          // call, then we can't make the assumption that it's the callee and
481          // not a parameter to the call.
482          //
483          // FIXME: Determine if there's a way to say that `F' is the callee or
484          // parameter.
485          MarkedNoUnwind = false;
486          break;
487        }
488
489        MarkedNoUnwind = F->doesNotThrow();
490        SawFunc = true;
491      }
492    }
493  }
494
495  return MarkedNoUnwind;
496}
497
498/// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
499/// has a try-range containing the call, a non-zero landing pad, and an
500/// appropriate action.  The entry for an ordinary call has a try-range
501/// containing the call and zero for the landing pad and the action.  Calls
502/// marked 'nounwind' have no entry and must not be contained in the try-range
503/// of any entry - they form gaps in the table.  Entries must be ordered by
504/// try-range address.
505void DwarfException::
506ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
507                     const RangeMapType &PadMap,
508                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
509                     const SmallVectorImpl<unsigned> &FirstActions) {
510  // The end label of the previous invoke or nounwind try-range.
511  unsigned LastLabel = 0;
512
513  // Whether there is a potentially throwing instruction (currently this means
514  // an ordinary call) between the end of the previous try-range and now.
515  bool SawPotentiallyThrowing = false;
516
517  // Whether the last CallSite entry was for an invoke.
518  bool PreviousIsInvoke = false;
519
520  // Visit all instructions in order of address.
521  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
522       I != E; ++I) {
523    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
524         MI != E; ++MI) {
525      if (!MI->isLabel()) {
526        if (MI->getDesc().isCall())
527          SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
528
529        continue;
530      }
531
532      unsigned BeginLabel = MI->getOperand(0).getImm();
533      assert(BeginLabel && "Invalid label!");
534
535      // End of the previous try-range?
536      if (BeginLabel == LastLabel)
537        SawPotentiallyThrowing = false;
538
539      // Beginning of a new try-range?
540      RangeMapType::const_iterator L = PadMap.find(BeginLabel);
541      if (L == PadMap.end())
542        // Nope, it was just some random label.
543        continue;
544
545      const PadRange &P = L->second;
546      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
547      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
548             "Inconsistent landing pad map!");
549
550      // For Dwarf exception handling (SjLj handling doesn't use this). If some
551      // instruction between the previous try-range and this one may throw,
552      // create a call-site entry with no landing pad for the region between the
553      // try-ranges.
554      if (SawPotentiallyThrowing &&
555          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
556        CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
557        CallSites.push_back(Site);
558        PreviousIsInvoke = false;
559      }
560
561      LastLabel = LandingPad->EndLabels[P.RangeIndex];
562      assert(BeginLabel && LastLabel && "Invalid landing pad!");
563
564      if (LandingPad->LandingPadLabel) {
565        // This try-range is for an invoke.
566        CallSiteEntry Site = {
567          BeginLabel,
568          LastLabel,
569          LandingPad->LandingPadLabel,
570          FirstActions[P.PadIndex]
571        };
572
573        // Try to merge with the previous call-site. SJLJ doesn't do this
574        if (PreviousIsInvoke &&
575          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
576          CallSiteEntry &Prev = CallSites.back();
577          if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
578            // Extend the range of the previous entry.
579            Prev.EndLabel = Site.EndLabel;
580            continue;
581          }
582        }
583
584        // Otherwise, create a new call-site.
585        CallSites.push_back(Site);
586        PreviousIsInvoke = true;
587      } else {
588        // Create a gap.
589        PreviousIsInvoke = false;
590      }
591    }
592  }
593
594  // If some instruction between the previous try-range and the end of the
595  // function may throw, create a call-site entry with no landing pad for the
596  // region following the try-range.
597  if (SawPotentiallyThrowing &&
598      MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
599    CallSiteEntry Site = { LastLabel, 0, 0, 0 };
600    CallSites.push_back(Site);
601  }
602}
603
604/// EmitExceptionTable - Emit landing pads and actions.
605///
606/// The general organization of the table is complex, but the basic concepts are
607/// easy.  First there is a header which describes the location and organization
608/// of the three components that follow.
609///
610///  1. The landing pad site information describes the range of code covered by
611///     the try.  In our case it's an accumulation of the ranges covered by the
612///     invokes in the try.  There is also a reference to the landing pad that
613///     handles the exception once processed.  Finally an index into the actions
614///     table.
615///  2. The action table, in our case, is composed of pairs of type IDs and next
616///     action offset.  Starting with the action index from the landing pad
617///     site, each type ID is checked for a match to the current exception.  If
618///     it matches then the exception and type id are passed on to the landing
619///     pad.  Otherwise the next action is looked up.  This chain is terminated
620///     with a next action of zero.  If no type id is found then the frame is
621///     unwound and handling continues.
622///  3. Type ID table contains references to all the C++ typeinfo for all
623///     catches in the function.  This tables is reverse indexed base 1.
624void DwarfException::EmitExceptionTable() {
625  const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
626  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
627  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
628  if (PadInfos.empty()) return;
629
630  // Sort the landing pads in order of their type ids.  This is used to fold
631  // duplicate actions.
632  SmallVector<const LandingPadInfo *, 64> LandingPads;
633  LandingPads.reserve(PadInfos.size());
634
635  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
636    LandingPads.push_back(&PadInfos[i]);
637
638  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
639
640  // Compute the actions table and gather the first action index for each
641  // landing pad site.
642  SmallVector<ActionEntry, 32> Actions;
643  SmallVector<unsigned, 64> FirstActions;
644  unsigned SizeActions = ComputeActionsTable(LandingPads, Actions,
645                                             FirstActions);
646
647  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
648  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
649  // try-ranges for them need be deduced when using DWARF exception handling.
650  RangeMapType PadMap;
651  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
652    const LandingPadInfo *LandingPad = LandingPads[i];
653    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
654      unsigned BeginLabel = LandingPad->BeginLabels[j];
655      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
656      PadRange P = { i, j };
657      PadMap[BeginLabel] = P;
658    }
659  }
660
661  // Compute the call-site table.
662  SmallVector<CallSiteEntry, 64> CallSites;
663  ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
664
665  // Final tallies.
666
667  // Call sites.
668  const unsigned SiteStartSize  = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
669  const unsigned SiteLengthSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
670  const unsigned LandingPadSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
671  bool IsSJLJ = MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
672  bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
673  unsigned SizeSites;
674
675  if (IsSJLJ)
676    SizeSites = 0;
677  else
678    SizeSites = CallSites.size() *
679      (SiteStartSize + SiteLengthSize + LandingPadSize);
680
681  for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
682    SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
683    if (IsSJLJ)
684      SizeSites += MCAsmInfo::getULEB128Size(i);
685  }
686
687  // Type infos.
688  const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
689  unsigned TTypeFormat;
690  unsigned TypeFormatSize;
691
692  if (!HaveTTData) {
693    // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
694    // that we're omitting that bit.
695    TTypeFormat = dwarf::DW_EH_PE_omit;
696    TypeFormatSize = SizeOfEncodedValue(dwarf::DW_EH_PE_absptr);
697  } else {
698    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
699    // pick a type encoding for them.  We're about to emit a list of pointers to
700    // typeinfo objects at the end of the LSDA.  However, unless we're in static
701    // mode, this reference will require a relocation by the dynamic linker.
702    //
703    // Because of this, we have a couple of options:
704    //
705    //   1) If we are in -static mode, we can always use an absolute reference
706    //      from the LSDA, because the static linker will resolve it.
707    //
708    //   2) Otherwise, if the LSDA section is writable, we can output the direct
709    //      reference to the typeinfo and allow the dynamic linker to relocate
710    //      it.  Since it is in a writable section, the dynamic linker won't
711    //      have a problem.
712    //
713    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
714    //      we need to use some form of indirection.  For example, on Darwin,
715    //      we can output a statically-relocatable reference to a dyld stub. The
716    //      offset to the stub is constant, but the contents are in a section
717    //      that is updated by the dynamic linker.  This is easy enough, but we
718    //      need to tell the personality function of the unwinder to indirect
719    //      through the dyld stub.
720    //
721    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
722    // somewhere.  This predicate should be moved to a shared location that is
723    // in target-independent code.
724    //
725    if (LSDASection->getKind().isWriteable() ||
726        Asm->TM.getRelocationModel() == Reloc::Static)
727      TTypeFormat = dwarf::DW_EH_PE_absptr;
728    else
729      TTypeFormat = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
730        dwarf::DW_EH_PE_sdata4;
731
732    TypeFormatSize = SizeOfEncodedValue(TTypeFormat);
733  }
734
735  // Begin the exception table.
736  Asm->OutStreamer.SwitchSection(LSDASection);
737  Asm->EmitAlignment(2, 0, 0, false);
738
739  O << "GCC_except_table" << SubprogramCount << ":\n";
740
741  // The type infos need to be aligned. GCC does this by inserting padding just
742  // before the type infos. However, this changes the size of the exception
743  // table, so you need to take this into account when you output the exception
744  // table size. However, the size is output using a variable length encoding.
745  // So by increasing the size by inserting padding, you may increase the number
746  // of bytes used for writing the size. If it increases, say by one byte, then
747  // you now need to output one less byte of padding to get the type infos
748  // aligned.  However this decreases the size of the exception table. This
749  // changes the value you have to output for the exception table size. Due to
750  // the variable length encoding, the number of bytes used for writing the
751  // length may decrease. If so, you then have to increase the amount of
752  // padding. And so on. If you look carefully at the GCC code you will see that
753  // it indeed does this in a loop, going on and on until the values stabilize.
754  // We chose another solution: don't output padding inside the table like GCC
755  // does, instead output it before the table.
756  unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
757  unsigned TyOffset = sizeof(int8_t) +          // Call site format
758    MCAsmInfo::getULEB128Size(SizeSites) +      // Call-site table length
759    SizeSites + SizeActions + SizeTypes;
760  unsigned TotalSize = sizeof(int8_t) +         // LPStart format
761                       sizeof(int8_t) +         // TType format
762    (HaveTTData ?
763     MCAsmInfo::getULEB128Size(TyOffset) : 0) + // TType base offset
764    TyOffset;
765  unsigned SizeAlign = (4 - TotalSize) & 3;
766
767  for (unsigned i = 0; i != SizeAlign; ++i) {
768    Asm->EmitInt8(0);
769    Asm->EOL("Padding");
770  }
771
772  EmitLabel("exception", SubprogramCount);
773
774  if (IsSJLJ) {
775    SmallString<16> LSDAName;
776    raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() <<
777      "_LSDA_" << Asm->getFunctionNumber();
778    O << LSDAName.str() << ":\n";
779  }
780
781  // Emit the header.
782  Asm->EmitInt8(dwarf::DW_EH_PE_omit);
783  Asm->EOL("@LPStart format", dwarf::DW_EH_PE_omit);
784
785  Asm->EmitInt8(TTypeFormat);
786  Asm->EOL("@TType format", TTypeFormat);
787
788  if (HaveTTData) {
789    Asm->EmitULEB128Bytes(TyOffset);
790    Asm->EOL("@TType base offset");
791  }
792
793  // SjLj Exception handling
794  if (IsSJLJ) {
795    Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
796    Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4);
797    Asm->EmitULEB128Bytes(SizeSites);
798    Asm->EOL("Call site table length");
799
800    // Emit the landing pad site information.
801    unsigned idx = 0;
802    for (SmallVectorImpl<CallSiteEntry>::const_iterator
803         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
804      const CallSiteEntry &S = *I;
805
806      // Offset of the landing pad, counted in 16-byte bundles relative to the
807      // @LPStart address.
808      Asm->EmitULEB128Bytes(idx);
809      Asm->EOL("Landing pad");
810
811      // Offset of the first associated action record, relative to the start of
812      // the action table. This value is biased by 1 (1 indicates the start of
813      // the action table), and 0 indicates that there are no actions.
814      Asm->EmitULEB128Bytes(S.Action);
815      Asm->EOL("Action");
816    }
817  } else {
818    // DWARF Exception handling
819    assert(MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf);
820
821    // The call-site table is a list of all call sites that may throw an
822    // exception (including C++ 'throw' statements) in the procedure
823    // fragment. It immediately follows the LSDA header. Each entry indicates,
824    // for a given call, the first corresponding action record and corresponding
825    // landing pad.
826    //
827    // The table begins with the number of bytes, stored as an LEB128
828    // compressed, unsigned integer. The records immediately follow the record
829    // count. They are sorted in increasing call-site address. Each record
830    // indicates:
831    //
832    //   * The position of the call-site.
833    //   * The position of the landing pad.
834    //   * The first action record for that call site.
835    //
836    // A missing entry in the call-site table indicates that a call is not
837    // supposed to throw.
838
839    // Emit the landing pad call site table.
840    Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
841    Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4);
842    Asm->EmitULEB128Bytes(SizeSites);
843    Asm->EOL("Call site table size");
844
845    for (SmallVectorImpl<CallSiteEntry>::const_iterator
846         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
847      const CallSiteEntry &S = *I;
848      const char *BeginTag;
849      unsigned BeginNumber;
850
851      if (!S.BeginLabel) {
852        BeginTag = "eh_func_begin";
853        BeginNumber = SubprogramCount;
854      } else {
855        BeginTag = "label";
856        BeginNumber = S.BeginLabel;
857      }
858
859      // Offset of the call site relative to the previous call site, counted in
860      // number of 16-byte bundles. The first call site is counted relative to
861      // the start of the procedure fragment.
862      EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount,
863                        true, true);
864      Asm->EOL("Region start");
865
866      if (!S.EndLabel)
867        EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber,
868                       true);
869      else
870        EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true);
871
872      Asm->EOL("Region length");
873
874      // Offset of the landing pad, counted in 16-byte bundles relative to the
875      // @LPStart address.
876      if (!S.PadLabel)
877        Asm->EmitInt32(0);
878      else
879        EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount,
880                          true, true);
881
882      Asm->EOL("Landing pad");
883
884      // Offset of the first associated action record, relative to the start of
885      // the action table. This value is biased by 1 (1 indicates the start of
886      // the action table), and 0 indicates that there are no actions.
887      Asm->EmitULEB128Bytes(S.Action);
888      Asm->EOL("Action");
889    }
890  }
891
892  // Emit the Action Table.
893  for (SmallVectorImpl<ActionEntry>::const_iterator
894         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
895    const ActionEntry &Action = *I;
896
897    // Type Filter
898    //
899    //   Used by the runtime to match the type of the thrown exception to the
900    //   type of the catch clauses or the types in the exception specification.
901
902    Asm->EmitSLEB128Bytes(Action.ValueForTypeID);
903    Asm->EOL("TypeInfo index");
904
905    // Action Record
906    //
907    //   Self-relative signed displacement in bytes of the next action record,
908    //   or 0 if there is no next action record.
909
910    Asm->EmitSLEB128Bytes(Action.NextAction);
911    Asm->EOL("Next action");
912  }
913
914  // Emit the Catch TypeInfos.
915  for (std::vector<GlobalVariable *>::const_reverse_iterator
916         I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
917    const GlobalVariable *GV = *I;
918    PrintRelDirective();
919
920    if (GV) {
921      O << Asm->Mang->getMangledName(GV);
922    } else {
923      O << "0x0";
924    }
925
926    Asm->EOL("TypeInfo");
927  }
928
929  // Emit the Exception Specifications.
930  for (std::vector<unsigned>::const_iterator
931         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
932    unsigned TypeID = *I;
933    Asm->EmitULEB128Bytes(TypeID);
934    if (TypeID != 0)
935      Asm->EOL("Exception specification");
936    else
937      Asm->EOL();
938  }
939
940  Asm->EmitAlignment(2, 0, 0, false);
941}
942
943/// EndModule - Emit all exception information that should come after the
944/// content.
945void DwarfException::EndModule() {
946  if (MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf)
947    return;
948
949  if (!shouldEmitMovesModule && !shouldEmitTableModule)
950    return;
951
952  if (TimePassesIsEnabled)
953    ExceptionTimer->startTimer();
954
955  const std::vector<Function *> Personalities = MMI->getPersonalities();
956
957  for (unsigned I = 0, E = Personalities.size(); I < E; ++I)
958    EmitCIE(Personalities[I], I);
959
960  for (std::vector<FunctionEHFrameInfo>::iterator
961         I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I)
962    EmitFDE(*I);
963
964  if (TimePassesIsEnabled)
965    ExceptionTimer->stopTimer();
966}
967
968/// BeginFunction - Gather pre-function exception information. Assumes it's
969/// being emitted immediately after the function entry point.
970void DwarfException::BeginFunction(MachineFunction *MF) {
971  if (!MMI || !MAI->doesSupportExceptionHandling()) return;
972
973  if (TimePassesIsEnabled)
974    ExceptionTimer->startTimer();
975
976  this->MF = MF;
977  shouldEmitTable = shouldEmitMoves = false;
978
979  // Map all labels and get rid of any dead landing pads.
980  MMI->TidyLandingPads();
981
982  // If any landing pads survive, we need an EH table.
983  if (!MMI->getLandingPads().empty())
984    shouldEmitTable = true;
985
986  // See if we need frame move info.
987  if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory)
988    shouldEmitMoves = true;
989
990  if (shouldEmitMoves || shouldEmitTable)
991    // Assumes in correct section after the entry point.
992    EmitLabel("eh_func_begin", ++SubprogramCount);
993
994  shouldEmitTableModule |= shouldEmitTable;
995  shouldEmitMovesModule |= shouldEmitMoves;
996
997  if (TimePassesIsEnabled)
998    ExceptionTimer->stopTimer();
999}
1000
1001/// EndFunction - Gather and emit post-function exception information.
1002///
1003void DwarfException::EndFunction() {
1004  if (!shouldEmitMoves && !shouldEmitTable) return;
1005
1006  if (TimePassesIsEnabled)
1007    ExceptionTimer->startTimer();
1008
1009  EmitLabel("eh_func_end", SubprogramCount);
1010  EmitExceptionTable();
1011
1012  std::string FunctionEHName =
1013    Asm->Mang->getMangledName(MF->getFunction(), ".eh",
1014                              Asm->MAI->is_EHSymbolPrivate());
1015
1016  // Save EH frame information
1017  EHFrames.push_back(FunctionEHFrameInfo(FunctionEHName, SubprogramCount,
1018                                         MMI->getPersonalityIndex(),
1019                                         MF->getFrameInfo()->hasCalls(),
1020                                         !MMI->getLandingPads().empty(),
1021                                         MMI->getFrameMoves(),
1022                                         MF->getFunction()));
1023
1024  // Record if this personality index uses a landing pad.
1025  UsesLSDA[MMI->getPersonalityIndex()] |= !MMI->getLandingPads().empty();
1026
1027  if (TimePassesIsEnabled)
1028    ExceptionTimer->stopTimer();
1029}
1030