DwarfException.cpp revision f2c39f52d692834fd39bfb37e942840188554463
1//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains support for writing DWARF exception info into asm files. 11// 12//===----------------------------------------------------------------------===// 13 14#include "DwarfException.h" 15#include "llvm/Module.h" 16#include "llvm/CodeGen/MachineModuleInfo.h" 17#include "llvm/CodeGen/MachineFrameInfo.h" 18#include "llvm/CodeGen/MachineFunction.h" 19#include "llvm/CodeGen/MachineLocation.h" 20#include "llvm/MC/MCSection.h" 21#include "llvm/MC/MCStreamer.h" 22#include "llvm/MC/MCAsmInfo.h" 23#include "llvm/Target/TargetData.h" 24#include "llvm/Target/TargetFrameInfo.h" 25#include "llvm/Target/TargetLoweringObjectFile.h" 26#include "llvm/Target/TargetOptions.h" 27#include "llvm/Target/TargetRegisterInfo.h" 28#include "llvm/Support/Dwarf.h" 29#include "llvm/Support/Mangler.h" 30#include "llvm/Support/Timer.h" 31#include "llvm/Support/raw_ostream.h" 32#include "llvm/ADT/SmallString.h" 33#include "llvm/ADT/StringExtras.h" 34using namespace llvm; 35 36static TimerGroup &getDwarfTimerGroup() { 37 static TimerGroup DwarfTimerGroup("DWARF Exception"); 38 return DwarfTimerGroup; 39} 40 41DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A, 42 const MCAsmInfo *T) 43 : Dwarf(OS, A, T, "eh"), shouldEmitTable(false), shouldEmitMoves(false), 44 shouldEmitTableModule(false), shouldEmitMovesModule(false), 45 ExceptionTimer(0) { 46 if (TimePassesIsEnabled) 47 ExceptionTimer = new Timer("DWARF Exception Writer", 48 getDwarfTimerGroup()); 49} 50 51DwarfException::~DwarfException() { 52 delete ExceptionTimer; 53} 54 55/// SizeOfEncodedValue - Return the size of the encoding in bytes. 56unsigned DwarfException::SizeOfEncodedValue(unsigned Encoding) { 57 if (Encoding == dwarf::DW_EH_PE_omit) 58 return 0; 59 60 switch (Encoding & 0x07) { 61 case dwarf::DW_EH_PE_absptr: 62 return TD->getPointerSize(); 63 case dwarf::DW_EH_PE_udata2: 64 return 2; 65 case dwarf::DW_EH_PE_udata4: 66 return 4; 67 case dwarf::DW_EH_PE_udata8: 68 return 8; 69 } 70 71 assert(0 && "Invalid encoded value."); 72 return 0; 73} 74 75/// EmitCIE - Emit a Common Information Entry (CIE). This holds information that 76/// is shared among many Frame Description Entries. There is at least one CIE 77/// in every non-empty .debug_frame section. 78void DwarfException::EmitCIE(const Function *Personality, unsigned Index) { 79 // Size and sign of stack growth. 80 int stackGrowth = 81 Asm->TM.getFrameInfo()->getStackGrowthDirection() == 82 TargetFrameInfo::StackGrowsUp ? 83 TD->getPointerSize() : -TD->getPointerSize(); 84 85 // Begin eh frame section. 86 Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection()); 87 88 if (MAI->is_EHSymbolPrivate()) 89 O << MAI->getPrivateGlobalPrefix(); 90 91 O << "EH_frame" << Index << ":\n"; 92 EmitLabel("section_eh_frame", Index); 93 94 // Define base labels. 95 EmitLabel("eh_frame_common", Index); 96 97 // Define the eh frame length. 98 EmitDifference("eh_frame_common_end", Index, 99 "eh_frame_common_begin", Index, true); 100 Asm->EOL("Length of Common Information Entry"); 101 102 // EH frame header. 103 EmitLabel("eh_frame_common_begin", Index); 104 Asm->EmitInt32((int)0); 105 Asm->EOL("CIE Identifier Tag"); 106 Asm->EmitInt8(dwarf::DW_CIE_VERSION); 107 Asm->EOL("CIE Version"); 108 109 // The personality presence indicates that language specific information will 110 // show up in the eh frame. 111 112 // FIXME: Don't hardcode these encodings. 113 unsigned PerEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 114 if (Personality && MAI->getNeedsIndirectEncoding()) 115 PerEncoding |= dwarf::DW_EH_PE_indirect; 116 unsigned LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 117 unsigned FDEEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 118 119 char Augmentation[5] = { 0 }; 120 unsigned AugmentationSize = 0; 121 char *APtr = Augmentation + 1; 122 123 if (Personality) { 124 // There is a personality function. 125 *APtr++ = 'P'; 126 AugmentationSize += 1 + SizeOfEncodedValue(PerEncoding); 127 } 128 129 if (UsesLSDA[Index]) { 130 // An LSDA pointer is in the FDE augmentation. 131 *APtr++ = 'L'; 132 ++AugmentationSize; 133 } 134 135 if (FDEEncoding != dwarf::DW_EH_PE_absptr) { 136 // A non-default pointer encoding for the FDE. 137 *APtr++ = 'R'; 138 ++AugmentationSize; 139 } 140 141 if (APtr != Augmentation + 1) 142 Augmentation[0] = 'z'; 143 144 Asm->EmitString(Augmentation); 145 Asm->EOL("CIE Augmentation"); 146 147 // Round out reader. 148 Asm->EmitULEB128Bytes(1); 149 Asm->EOL("CIE Code Alignment Factor"); 150 Asm->EmitSLEB128Bytes(stackGrowth); 151 Asm->EOL("CIE Data Alignment Factor"); 152 Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true)); 153 Asm->EOL("CIE Return Address Column"); 154 155 Asm->EmitULEB128Bytes(AugmentationSize); 156 Asm->EOL("Augmentation Size"); 157 158 Asm->EmitInt8(PerEncoding); 159 Asm->EOL("Personality", PerEncoding); 160 161 // If there is a personality, we need to indicate the function's location. 162 if (Personality) { 163 PrintRelDirective(true); 164 O << MAI->getPersonalityPrefix(); 165 Asm->EmitExternalGlobal((const GlobalVariable *)(Personality)); 166 O << MAI->getPersonalitySuffix(); 167 if (strcmp(MAI->getPersonalitySuffix(), "+4@GOTPCREL")) 168 O << "-" << MAI->getPCSymbol(); 169 Asm->EOL("Personality"); 170 171 Asm->EmitInt8(LSDAEncoding); 172 Asm->EOL("LSDA Encoding", LSDAEncoding); 173 174 Asm->EmitInt8(FDEEncoding); 175 Asm->EOL("FDE Encoding", FDEEncoding); 176 } 177 178 // Indicate locations of general callee saved registers in frame. 179 std::vector<MachineMove> Moves; 180 RI->getInitialFrameState(Moves); 181 EmitFrameMoves(NULL, 0, Moves, true); 182 183 // On Darwin the linker honors the alignment of eh_frame, which means it must 184 // be 8-byte on 64-bit targets to match what gcc does. Otherwise you get 185 // holes which confuse readers of eh_frame. 186 Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3, 187 0, 0, false); 188 EmitLabel("eh_frame_common_end", Index); 189 190 Asm->EOL(); 191} 192 193/// EmitFDE - Emit the Frame Description Entry (FDE) for the function. 194void DwarfException::EmitFDE(const FunctionEHFrameInfo &EHFrameInfo) { 195 assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() && 196 "Should not emit 'available externally' functions at all"); 197 198 const Function *TheFunc = EHFrameInfo.function; 199 200 Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection()); 201 202 // Externally visible entry into the functions eh frame info. If the 203 // corresponding function is static, this should not be externally visible. 204 if (!TheFunc->hasLocalLinkage()) 205 if (const char *GlobalEHDirective = MAI->getGlobalEHDirective()) 206 O << GlobalEHDirective << EHFrameInfo.FnName << "\n"; 207 208 // If corresponding function is weak definition, this should be too. 209 if (TheFunc->isWeakForLinker() && MAI->getWeakDefDirective()) 210 O << MAI->getWeakDefDirective() << EHFrameInfo.FnName << "\n"; 211 212 // If there are no calls then you can't unwind. This may mean we can omit the 213 // EH Frame, but some environments do not handle weak absolute symbols. If 214 // UnwindTablesMandatory is set we cannot do this optimization; the unwind 215 // info is to be available for non-EH uses. 216 if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory && 217 (!TheFunc->isWeakForLinker() || 218 !MAI->getWeakDefDirective() || 219 MAI->getSupportsWeakOmittedEHFrame())) { 220 O << EHFrameInfo.FnName << " = 0\n"; 221 // This name has no connection to the function, so it might get 222 // dead-stripped when the function is not, erroneously. Prohibit 223 // dead-stripping unconditionally. 224 if (const char *UsedDirective = MAI->getUsedDirective()) 225 O << UsedDirective << EHFrameInfo.FnName << "\n\n"; 226 } else { 227 O << EHFrameInfo.FnName << ":\n"; 228 229 // EH frame header. 230 EmitDifference("eh_frame_end", EHFrameInfo.Number, 231 "eh_frame_begin", EHFrameInfo.Number, true); 232 Asm->EOL("Length of Frame Information Entry"); 233 234 EmitLabel("eh_frame_begin", EHFrameInfo.Number); 235 236 EmitSectionOffset("eh_frame_begin", "eh_frame_common", 237 EHFrameInfo.Number, EHFrameInfo.PersonalityIndex, 238 true, true, false); 239 240 Asm->EOL("FDE CIE offset"); 241 242 EmitReference("eh_func_begin", EHFrameInfo.Number, true, true); 243 Asm->EOL("FDE initial location"); 244 EmitDifference("eh_func_end", EHFrameInfo.Number, 245 "eh_func_begin", EHFrameInfo.Number, true); 246 Asm->EOL("FDE address range"); 247 248 // If there is a personality and landing pads then point to the language 249 // specific data area in the exception table. 250 if (MMI->getPersonalities()[0] != NULL) { 251 bool is4Byte = TD->getPointerSize() == sizeof(int32_t); 252 253 Asm->EmitULEB128Bytes(is4Byte ? 4 : 8); 254 Asm->EOL("Augmentation size"); 255 256 if (EHFrameInfo.hasLandingPads) 257 EmitReference("exception", EHFrameInfo.Number, true, false); 258 else { 259 if (is4Byte) 260 Asm->EmitInt32((int)0); 261 else 262 Asm->EmitInt64((int)0); 263 } 264 Asm->EOL("Language Specific Data Area"); 265 } else { 266 Asm->EmitULEB128Bytes(0); 267 Asm->EOL("Augmentation size"); 268 } 269 270 // Indicate locations of function specific callee saved registers in frame. 271 EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves, 272 true); 273 274 // On Darwin the linker honors the alignment of eh_frame, which means it 275 // must be 8-byte on 64-bit targets to match what gcc does. Otherwise you 276 // get holes which confuse readers of eh_frame. 277 Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3, 278 0, 0, false); 279 EmitLabel("eh_frame_end", EHFrameInfo.Number); 280 281 // If the function is marked used, this table should be also. We cannot 282 // make the mark unconditional in this case, since retaining the table also 283 // retains the function in this case, and there is code around that depends 284 // on unused functions (calling undefined externals) being dead-stripped to 285 // link correctly. Yes, there really is. 286 if (MMI->isUsedFunction(EHFrameInfo.function)) 287 if (const char *UsedDirective = MAI->getUsedDirective()) 288 O << UsedDirective << EHFrameInfo.FnName << "\n\n"; 289 } 290 291 Asm->EOL(); 292} 293 294/// SharedTypeIds - How many leading type ids two landing pads have in common. 295unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L, 296 const LandingPadInfo *R) { 297 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 298 unsigned LSize = LIds.size(), RSize = RIds.size(); 299 unsigned MinSize = LSize < RSize ? LSize : RSize; 300 unsigned Count = 0; 301 302 for (; Count != MinSize; ++Count) 303 if (LIds[Count] != RIds[Count]) 304 return Count; 305 306 return Count; 307} 308 309/// PadLT - Order landing pads lexicographically by type id. 310bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) { 311 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 312 unsigned LSize = LIds.size(), RSize = RIds.size(); 313 unsigned MinSize = LSize < RSize ? LSize : RSize; 314 315 for (unsigned i = 0; i != MinSize; ++i) 316 if (LIds[i] != RIds[i]) 317 return LIds[i] < RIds[i]; 318 319 return LSize < RSize; 320} 321 322/// ComputeActionsTable - Compute the actions table and gather the first action 323/// index for each landing pad site. 324unsigned DwarfException:: 325ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads, 326 SmallVectorImpl<ActionEntry> &Actions, 327 SmallVectorImpl<unsigned> &FirstActions) { 328 329 // The action table follows the call-site table in the LSDA. The individual 330 // records are of two types: 331 // 332 // * Catch clause 333 // * Exception specification 334 // 335 // The two record kinds have the same format, with only small differences. 336 // They are distinguished by the "switch value" field: Catch clauses 337 // (TypeInfos) have strictly positive switch values, and exception 338 // specifications (FilterIds) have strictly negative switch values. Value 0 339 // indicates a catch-all clause. 340 // 341 // Negative type IDs index into FilterIds. Positive type IDs index into 342 // TypeInfos. The value written for a positive type ID is just the type ID 343 // itself. For a negative type ID, however, the value written is the 344 // (negative) byte offset of the corresponding FilterIds entry. The byte 345 // offset is usually equal to the type ID (because the FilterIds entries are 346 // written using a variable width encoding, which outputs one byte per entry 347 // as long as the value written is not too large) but can differ. This kind 348 // of complication does not occur for positive type IDs because type infos are 349 // output using a fixed width encoding. FilterOffsets[i] holds the byte 350 // offset corresponding to FilterIds[i]. 351 352 const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); 353 SmallVector<int, 16> FilterOffsets; 354 FilterOffsets.reserve(FilterIds.size()); 355 int Offset = -1; 356 357 for (std::vector<unsigned>::const_iterator 358 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { 359 FilterOffsets.push_back(Offset); 360 Offset -= MCAsmInfo::getULEB128Size(*I); 361 } 362 363 FirstActions.reserve(LandingPads.size()); 364 365 int FirstAction = 0; 366 unsigned SizeActions = 0; 367 const LandingPadInfo *PrevLPI = 0; 368 369 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator 370 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) { 371 const LandingPadInfo *LPI = *I; 372 const std::vector<int> &TypeIds = LPI->TypeIds; 373 const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0; 374 unsigned SizeSiteActions = 0; 375 376 if (NumShared < TypeIds.size()) { 377 unsigned SizeAction = 0; 378 ActionEntry *PrevAction = 0; 379 380 if (NumShared) { 381 const unsigned SizePrevIds = PrevLPI->TypeIds.size(); 382 assert(Actions.size()); 383 PrevAction = &Actions.back(); 384 SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) + 385 MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); 386 387 for (unsigned j = NumShared; j != SizePrevIds; ++j) { 388 SizeAction -= 389 MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); 390 SizeAction += -PrevAction->NextAction; 391 PrevAction = PrevAction->Previous; 392 } 393 } 394 395 // Compute the actions. 396 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) { 397 int TypeID = TypeIds[J]; 398 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); 399 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; 400 unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); 401 402 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; 403 SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); 404 SizeSiteActions += SizeAction; 405 406 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction }; 407 Actions.push_back(Action); 408 PrevAction = &Actions.back(); 409 } 410 411 // Record the first action of the landing pad site. 412 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; 413 } // else identical - re-use previous FirstAction 414 415 // Information used when created the call-site table. The action record 416 // field of the call site record is the offset of the first associated 417 // action record, relative to the start of the actions table. This value is 418 // biased by 1 (1 in dicating the start of the actions table), and 0 419 // indicates that there are no actions. 420 FirstActions.push_back(FirstAction); 421 422 // Compute this sites contribution to size. 423 SizeActions += SizeSiteActions; 424 425 PrevLPI = LPI; 426 } 427 428 return SizeActions; 429} 430 431/// ComputeCallSiteTable - Compute the call-site table. The entry for an invoke 432/// has a try-range containing the call, a non-zero landing pad, and an 433/// appropriate action. The entry for an ordinary call has a try-range 434/// containing the call and zero for the landing pad and the action. Calls 435/// marked 'nounwind' have no entry and must not be contained in the try-range 436/// of any entry - they form gaps in the table. Entries must be ordered by 437/// try-range address. 438void DwarfException:: 439ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, 440 const RangeMapType &PadMap, 441 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 442 const SmallVectorImpl<unsigned> &FirstActions) { 443 // The end label of the previous invoke or nounwind try-range. 444 unsigned LastLabel = 0; 445 446 // Whether there is a potentially throwing instruction (currently this means 447 // an ordinary call) between the end of the previous try-range and now. 448 bool SawPotentiallyThrowing = false; 449 450 // Whether the last CallSite entry was for an invoke. 451 bool PreviousIsInvoke = false; 452 453 // Visit all instructions in order of address. 454 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 455 I != E; ++I) { 456 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); 457 MI != E; ++MI) { 458 if (!MI->isLabel()) { 459 SawPotentiallyThrowing |= MI->getDesc().isCall(); 460 continue; 461 } 462 463 unsigned BeginLabel = MI->getOperand(0).getImm(); 464 assert(BeginLabel && "Invalid label!"); 465 466 // End of the previous try-range? 467 if (BeginLabel == LastLabel) 468 SawPotentiallyThrowing = false; 469 470 // Beginning of a new try-range? 471 RangeMapType::iterator L = PadMap.find(BeginLabel); 472 if (L == PadMap.end()) 473 // Nope, it was just some random label. 474 continue; 475 476 const PadRange &P = L->second; 477 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; 478 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && 479 "Inconsistent landing pad map!"); 480 481 // For Dwarf exception handling (SjLj handling doesn't use this). If some 482 // instruction between the previous try-range and this one may throw, 483 // create a call-site entry with no landing pad for the region between the 484 // try-ranges. 485 if (SawPotentiallyThrowing && 486 MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) { 487 CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 }; 488 CallSites.push_back(Site); 489 PreviousIsInvoke = false; 490 } 491 492 LastLabel = LandingPad->EndLabels[P.RangeIndex]; 493 assert(BeginLabel && LastLabel && "Invalid landing pad!"); 494 495 if (LandingPad->LandingPadLabel) { 496 // This try-range is for an invoke. 497 CallSiteEntry Site = { 498 BeginLabel, 499 LastLabel, 500 LandingPad->LandingPadLabel, 501 FirstActions[P.PadIndex] 502 }; 503 504 // Try to merge with the previous call-site. SJLJ doesn't do this 505 if (PreviousIsInvoke && 506 MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) { 507 CallSiteEntry &Prev = CallSites.back(); 508 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { 509 // Extend the range of the previous entry. 510 Prev.EndLabel = Site.EndLabel; 511 continue; 512 } 513 } 514 515 // Otherwise, create a new call-site. 516 CallSites.push_back(Site); 517 PreviousIsInvoke = true; 518 } else { 519 // Create a gap. 520 PreviousIsInvoke = false; 521 } 522 } 523 } 524 525 // If some instruction between the previous try-range and the end of the 526 // function may throw, create a call-site entry with no landing pad for the 527 // region following the try-range. 528 if (SawPotentiallyThrowing && 529 MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) { 530 CallSiteEntry Site = { LastLabel, 0, 0, 0 }; 531 CallSites.push_back(Site); 532 } 533} 534 535/// EmitExceptionTable - Emit landing pads and actions. 536/// 537/// The general organization of the table is complex, but the basic concepts are 538/// easy. First there is a header which describes the location and organization 539/// of the three components that follow. 540/// 541/// 1. The landing pad site information describes the range of code covered by 542/// the try. In our case it's an accumulation of the ranges covered by the 543/// invokes in the try. There is also a reference to the landing pad that 544/// handles the exception once processed. Finally an index into the actions 545/// table. 546/// 2. The action table, in our case, is composed of pairs of type IDs and next 547/// action offset. Starting with the action index from the landing pad 548/// site, each type ID is checked for a match to the current exception. If 549/// it matches then the exception and type id are passed on to the landing 550/// pad. Otherwise the next action is looked up. This chain is terminated 551/// with a next action of zero. If no type id is found then the frame is 552/// unwound and handling continues. 553/// 3. Type ID table contains references to all the C++ typeinfo for all 554/// catches in the function. This tables is reverse indexed base 1. 555void DwarfException::EmitExceptionTable() { 556 const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); 557 const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); 558 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); 559 if (PadInfos.empty()) return; 560 561 // Sort the landing pads in order of their type ids. This is used to fold 562 // duplicate actions. 563 SmallVector<const LandingPadInfo *, 64> LandingPads; 564 LandingPads.reserve(PadInfos.size()); 565 566 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) 567 LandingPads.push_back(&PadInfos[i]); 568 569 std::sort(LandingPads.begin(), LandingPads.end(), PadLT); 570 571 // Compute the actions table and gather the first action index for each 572 // landing pad site. 573 SmallVector<ActionEntry, 32> Actions; 574 SmallVector<unsigned, 64> FirstActions; 575 unsigned SizeActions = ComputeActionsTable(LandingPads, Actions, 576 FirstActions); 577 578 // Invokes and nounwind calls have entries in PadMap (due to being bracketed 579 // by try-range labels when lowered). Ordinary calls do not, so appropriate 580 // try-ranges for them need be deduced when using DWARF exception handling. 581 RangeMapType PadMap; 582 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { 583 const LandingPadInfo *LandingPad = LandingPads[i]; 584 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { 585 unsigned BeginLabel = LandingPad->BeginLabels[j]; 586 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); 587 PadRange P = { i, j }; 588 PadMap[BeginLabel] = P; 589 } 590 } 591 592 // Compute the call-site table. 593 SmallVector<CallSiteEntry, 64> CallSites; 594 ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions); 595 596 // Final tallies. 597 598 // Call sites. 599 const unsigned SiteStartSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4); 600 const unsigned SiteLengthSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4); 601 const unsigned LandingPadSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4); 602 bool IsSJLJ = MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 603 bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true; 604 unsigned SizeSites; 605 606 if (IsSJLJ) 607 SizeSites = 0; 608 else 609 SizeSites = CallSites.size() * 610 (SiteStartSize + SiteLengthSize + LandingPadSize); 611 612 for (unsigned i = 0, e = CallSites.size(); i < e; ++i) { 613 SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action); 614 if (IsSJLJ) 615 SizeSites += MCAsmInfo::getULEB128Size(i); 616 } 617 618 // Type infos. 619 const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection(); 620 unsigned TTypeFormat; 621 unsigned TypeFormatSize; 622 623 if (!HaveTTData) { 624 // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say 625 // that we're omitting that bit. 626 TTypeFormat = dwarf::DW_EH_PE_omit; 627 TypeFormatSize = SizeOfEncodedValue(dwarf::DW_EH_PE_absptr); 628 } else { 629 // Okay, we have actual filters or typeinfos to emit. As such, we need to 630 // pick a type encoding for them. We're about to emit a list of pointers to 631 // typeinfo objects at the end of the LSDA. However, unless we're in static 632 // mode, this reference will require a relocation by the dynamic linker. 633 // 634 // Because of this, we have a couple of options: 635 // 636 // 1) If we are in -static mode, we can always use an absolute reference 637 // from the LSDA, because the static linker will resolve it. 638 // 639 // 2) Otherwise, if the LSDA section is writable, we can output the direct 640 // reference to the typeinfo and allow the dynamic linker to relocate 641 // it. Since it is in a writable section, the dynamic linker won't 642 // have a problem. 643 // 644 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable, 645 // we need to use some form of indirection. For example, on Darwin, 646 // we can output a statically-relocatable reference to a dyld stub. The 647 // offset to the stub is constant, but the contents are in a section 648 // that is updated by the dynamic linker. This is easy enough, but we 649 // need to tell the personality function of the unwinder to indirect 650 // through the dyld stub. 651 // 652 // FIXME: When (3) is actually implemented, we'll have to emit the stubs 653 // somewhere. This predicate should be moved to a shared location that is 654 // in target-independent code. 655 // 656 if (LSDASection->getKind().isWriteable() || 657 Asm->TM.getRelocationModel() == Reloc::Static) 658 TTypeFormat = dwarf::DW_EH_PE_absptr; 659 else 660 TTypeFormat = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 661 dwarf::DW_EH_PE_sdata4; 662 663 TypeFormatSize = SizeOfEncodedValue(TTypeFormat); 664 } 665 666 // Begin the exception table. 667 Asm->OutStreamer.SwitchSection(LSDASection); 668 Asm->EmitAlignment(2, 0, 0, false); 669 670 O << "GCC_except_table" << SubprogramCount << ":\n"; 671 672 // The type infos need to be aligned. GCC does this by inserting padding just 673 // before the type infos. However, this changes the size of the exception 674 // table, so you need to take this into account when you output the exception 675 // table size. However, the size is output using a variable length encoding. 676 // So by increasing the size by inserting padding, you may increase the number 677 // of bytes used for writing the size. If it increases, say by one byte, then 678 // you now need to output one less byte of padding to get the type infos 679 // aligned. However this decreases the size of the exception table. This 680 // changes the value you have to output for the exception table size. Due to 681 // the variable length encoding, the number of bytes used for writing the 682 // length may decrease. If so, you then have to increase the amount of 683 // padding. And so on. If you look carefully at the GCC code you will see that 684 // it indeed does this in a loop, going on and on until the values stabilize. 685 // We chose another solution: don't output padding inside the table like GCC 686 // does, instead output it before the table. 687 unsigned SizeTypes = TypeInfos.size() * TypeFormatSize; 688 unsigned TyOffset = sizeof(int8_t) + // Call site format 689 MCAsmInfo::getULEB128Size(SizeSites) + // Call-site table length 690 SizeSites + SizeActions + SizeTypes; 691 unsigned TotalSize = sizeof(int8_t) + // LPStart format 692 sizeof(int8_t) + // TType format 693 (HaveTTData ? 694 MCAsmInfo::getULEB128Size(TyOffset) : 0) + // TType base offset 695 TyOffset; 696 unsigned SizeAlign = (4 - TotalSize) & 3; 697 698 for (unsigned i = 0; i != SizeAlign; ++i) { 699 Asm->EmitInt8(0); 700 Asm->EOL("Padding"); 701 } 702 703 EmitLabel("exception", SubprogramCount); 704 705 if (IsSJLJ) { 706 SmallString<16> LSDAName; 707 raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() << 708 "_LSDA_" << Asm->getFunctionNumber(); 709 O << LSDAName.str() << ":\n"; 710 } 711 712 // Emit the header. 713 Asm->EmitInt8(dwarf::DW_EH_PE_omit); 714 Asm->EOL("@LPStart format", dwarf::DW_EH_PE_omit); 715 716 Asm->EmitInt8(TTypeFormat); 717 Asm->EOL("@TType format", TTypeFormat); 718 719 if (HaveTTData) { 720 Asm->EmitULEB128Bytes(TyOffset); 721 Asm->EOL("@TType base offset"); 722 } 723 724 // SjLj Exception handling 725 if (IsSJLJ) { 726 Asm->EmitInt8(dwarf::DW_EH_PE_udata4); 727 Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4); 728 Asm->EmitULEB128Bytes(SizeSites); 729 Asm->EOL("Call site table length"); 730 731 // Emit the landing pad site information. 732 unsigned idx = 0; 733 for (SmallVectorImpl<CallSiteEntry>::const_iterator 734 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) { 735 const CallSiteEntry &S = *I; 736 737 // Offset of the landing pad, counted in 16-byte bundles relative to the 738 // @LPStart address. 739 Asm->EmitULEB128Bytes(idx); 740 Asm->EOL("Landing pad"); 741 742 // Offset of the first associated action record, relative to the start of 743 // the action table. This value is biased by 1 (1 indicates the start of 744 // the action table), and 0 indicates that there are no actions. 745 Asm->EmitULEB128Bytes(S.Action); 746 Asm->EOL("Action"); 747 } 748 } else { 749 // DWARF Exception handling 750 assert(MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf); 751 752 // The call-site table is a list of all call sites that may throw an 753 // exception (including C++ 'throw' statements) in the procedure 754 // fragment. It immediately follows the LSDA header. Each entry indicates, 755 // for a given call, the first corresponding action record and corresponding 756 // landing pad. 757 // 758 // The table begins with the number of bytes, stored as an LEB128 759 // compressed, unsigned integer. The records immediately follow the record 760 // count. They are sorted in increasing call-site address. Each record 761 // indicates: 762 // 763 // * The position of the call-site. 764 // * The position of the landing pad. 765 // * The first action record for that call site. 766 // 767 // A missing entry in the call-site table indicates that a call is not 768 // supposed to throw. 769 770 // Emit the landing pad call site table. 771 Asm->EmitInt8(dwarf::DW_EH_PE_udata4); 772 Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4); 773 Asm->EmitULEB128Bytes(SizeSites); 774 Asm->EOL("Call site table size"); 775 776 for (SmallVectorImpl<CallSiteEntry>::const_iterator 777 I = CallSites.begin(), E = CallSites.end(); I != E; ++I) { 778 const CallSiteEntry &S = *I; 779 const char *BeginTag; 780 unsigned BeginNumber; 781 782 if (!S.BeginLabel) { 783 BeginTag = "eh_func_begin"; 784 BeginNumber = SubprogramCount; 785 } else { 786 BeginTag = "label"; 787 BeginNumber = S.BeginLabel; 788 } 789 790 // Offset of the call site relative to the previous call site, counted in 791 // number of 16-byte bundles. The first call site is counted relative to 792 // the start of the procedure fragment. 793 EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount, 794 true, true); 795 Asm->EOL("Region start"); 796 797 if (!S.EndLabel) 798 EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber, 799 true); 800 else 801 EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true); 802 803 Asm->EOL("Region length"); 804 805 // Offset of the landing pad, counted in 16-byte bundles relative to the 806 // @LPStart address. 807 if (!S.PadLabel) 808 Asm->EmitInt32(0); 809 else 810 EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount, 811 true, true); 812 813 Asm->EOL("Landing pad"); 814 815 // Offset of the first associated action record, relative to the start of 816 // the action table. This value is biased by 1 (1 indicates the start of 817 // the action table), and 0 indicates that there are no actions. 818 Asm->EmitULEB128Bytes(S.Action); 819 Asm->EOL("Action"); 820 } 821 } 822 823 // Emit the Action Table. 824 for (SmallVectorImpl<ActionEntry>::const_iterator 825 I = Actions.begin(), E = Actions.end(); I != E; ++I) { 826 const ActionEntry &Action = *I; 827 828 // Type Filter 829 // 830 // Used by the runtime to match the type of the thrown exception to the 831 // type of the catch clauses or the types in the exception specification. 832 833 Asm->EmitSLEB128Bytes(Action.ValueForTypeID); 834 Asm->EOL("TypeInfo index"); 835 836 // Action Record 837 // 838 // Self-relative signed displacement in bytes of the next action record, 839 // or 0 if there is no next action record. 840 841 Asm->EmitSLEB128Bytes(Action.NextAction); 842 Asm->EOL("Next action"); 843 } 844 845 // Emit the Catch Clauses. The code for the catch clauses following the same 846 // try is similar to a switch statement. The catch clause action record 847 // informs the runtime about the type of a catch clause and about the 848 // associated switch value. 849 // 850 // Action Record Fields: 851 // 852 // * Filter Value 853 // Positive value, starting at 1. Index in the types table of the 854 // __typeinfo for the catch-clause type. 1 is the first word preceding 855 // TTBase, 2 is the second word, and so on. Used by the runtime to check 856 // if the thrown exception type matches the catch-clause type. Back-end 857 // generated switch statements check against this value. 858 // 859 // * Next 860 // Signed offset, in bytes from the start of this field, to the next 861 // chained action record, or zero if none. 862 // 863 // The order of the action records determined by the next field is the order 864 // of the catch clauses as they appear in the source code, and must be kept in 865 // the same order. As a result, changing the order of the catch clause would 866 // change the semantics of the program. 867 for (std::vector<GlobalVariable *>::const_reverse_iterator 868 I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) { 869 const GlobalVariable *GV = *I; 870 PrintRelDirective(); 871 872 if (GV) { 873 std::string GLN; 874 O << Asm->getGlobalLinkName(GV, GLN); 875 } else { 876 O << "0x0"; 877 } 878 879 Asm->EOL("TypeInfo"); 880 } 881 882 // Emit the Type Table. 883 for (std::vector<unsigned>::const_iterator 884 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) { 885 unsigned TypeID = *I; 886 Asm->EmitULEB128Bytes(TypeID); 887 Asm->EOL("Filter TypeInfo index"); 888 } 889 890 Asm->EmitAlignment(2, 0, 0, false); 891} 892 893/// EndModule - Emit all exception information that should come after the 894/// content. 895void DwarfException::EndModule() { 896 if (MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf) 897 return; 898 899 if (!shouldEmitMovesModule && !shouldEmitTableModule) 900 return; 901 902 if (TimePassesIsEnabled) 903 ExceptionTimer->startTimer(); 904 905 const std::vector<Function *> Personalities = MMI->getPersonalities(); 906 907 for (unsigned I = 0, E = Personalities.size(); I < E; ++I) 908 EmitCIE(Personalities[I], I); 909 910 for (std::vector<FunctionEHFrameInfo>::iterator 911 I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I) 912 EmitFDE(*I); 913 914 if (TimePassesIsEnabled) 915 ExceptionTimer->stopTimer(); 916} 917 918/// BeginFunction - Gather pre-function exception information. Assumes it's 919/// being emitted immediately after the function entry point. 920void DwarfException::BeginFunction(MachineFunction *MF) { 921 if (!MMI || !MAI->doesSupportExceptionHandling()) return; 922 923 if (TimePassesIsEnabled) 924 ExceptionTimer->startTimer(); 925 926 this->MF = MF; 927 shouldEmitTable = shouldEmitMoves = false; 928 929 // Map all labels and get rid of any dead landing pads. 930 MMI->TidyLandingPads(); 931 932 // If any landing pads survive, we need an EH table. 933 if (!MMI->getLandingPads().empty()) 934 shouldEmitTable = true; 935 936 // See if we need frame move info. 937 if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory) 938 shouldEmitMoves = true; 939 940 if (shouldEmitMoves || shouldEmitTable) 941 // Assumes in correct section after the entry point. 942 EmitLabel("eh_func_begin", ++SubprogramCount); 943 944 shouldEmitTableModule |= shouldEmitTable; 945 shouldEmitMovesModule |= shouldEmitMoves; 946 947 if (TimePassesIsEnabled) 948 ExceptionTimer->stopTimer(); 949} 950 951/// EndFunction - Gather and emit post-function exception information. 952/// 953void DwarfException::EndFunction() { 954 if (!shouldEmitMoves && !shouldEmitTable) return; 955 956 if (TimePassesIsEnabled) 957 ExceptionTimer->startTimer(); 958 959 EmitLabel("eh_func_end", SubprogramCount); 960 EmitExceptionTable(); 961 962 // Save EH frame information 963 EHFrames.push_back(FunctionEHFrameInfo(getAsm()->getCurrentFunctionEHName(MF), 964 SubprogramCount, 965 MMI->getPersonalityIndex(), 966 MF->getFrameInfo()->hasCalls(), 967 !MMI->getLandingPads().empty(), 968 MMI->getFrameMoves(), 969 MF->getFunction())); 970 971 // Record if this personality index uses a landing pad. 972 UsesLSDA[MMI->getPersonalityIndex()] |= !MMI->getLandingPads().empty(); 973 974 if (TimePassesIsEnabled) 975 ExceptionTimer->stopTimer(); 976} 977