DwarfException.cpp revision f2c39f52d692834fd39bfb37e942840188554463
1//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for writing DWARF exception info into asm files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DwarfException.h"
15#include "llvm/Module.h"
16#include "llvm/CodeGen/MachineModuleInfo.h"
17#include "llvm/CodeGen/MachineFrameInfo.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/CodeGen/MachineLocation.h"
20#include "llvm/MC/MCSection.h"
21#include "llvm/MC/MCStreamer.h"
22#include "llvm/MC/MCAsmInfo.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetFrameInfo.h"
25#include "llvm/Target/TargetLoweringObjectFile.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Support/Dwarf.h"
29#include "llvm/Support/Mangler.h"
30#include "llvm/Support/Timer.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34using namespace llvm;
35
36static TimerGroup &getDwarfTimerGroup() {
37  static TimerGroup DwarfTimerGroup("DWARF Exception");
38  return DwarfTimerGroup;
39}
40
41DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A,
42                               const MCAsmInfo *T)
43  : Dwarf(OS, A, T, "eh"), shouldEmitTable(false), shouldEmitMoves(false),
44    shouldEmitTableModule(false), shouldEmitMovesModule(false),
45    ExceptionTimer(0) {
46  if (TimePassesIsEnabled)
47    ExceptionTimer = new Timer("DWARF Exception Writer",
48                               getDwarfTimerGroup());
49}
50
51DwarfException::~DwarfException() {
52  delete ExceptionTimer;
53}
54
55/// SizeOfEncodedValue - Return the size of the encoding in bytes.
56unsigned DwarfException::SizeOfEncodedValue(unsigned Encoding) {
57  if (Encoding == dwarf::DW_EH_PE_omit)
58    return 0;
59
60  switch (Encoding & 0x07) {
61  case dwarf::DW_EH_PE_absptr:
62    return TD->getPointerSize();
63  case dwarf::DW_EH_PE_udata2:
64    return 2;
65  case dwarf::DW_EH_PE_udata4:
66    return 4;
67  case dwarf::DW_EH_PE_udata8:
68    return 8;
69  }
70
71  assert(0 && "Invalid encoded value.");
72  return 0;
73}
74
75/// EmitCIE - Emit a Common Information Entry (CIE). This holds information that
76/// is shared among many Frame Description Entries.  There is at least one CIE
77/// in every non-empty .debug_frame section.
78void DwarfException::EmitCIE(const Function *Personality, unsigned Index) {
79  // Size and sign of stack growth.
80  int stackGrowth =
81    Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
82    TargetFrameInfo::StackGrowsUp ?
83    TD->getPointerSize() : -TD->getPointerSize();
84
85  // Begin eh frame section.
86  Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection());
87
88  if (MAI->is_EHSymbolPrivate())
89    O << MAI->getPrivateGlobalPrefix();
90
91  O << "EH_frame" << Index << ":\n";
92  EmitLabel("section_eh_frame", Index);
93
94  // Define base labels.
95  EmitLabel("eh_frame_common", Index);
96
97  // Define the eh frame length.
98  EmitDifference("eh_frame_common_end", Index,
99                 "eh_frame_common_begin", Index, true);
100  Asm->EOL("Length of Common Information Entry");
101
102  // EH frame header.
103  EmitLabel("eh_frame_common_begin", Index);
104  Asm->EmitInt32((int)0);
105  Asm->EOL("CIE Identifier Tag");
106  Asm->EmitInt8(dwarf::DW_CIE_VERSION);
107  Asm->EOL("CIE Version");
108
109  // The personality presence indicates that language specific information will
110  // show up in the eh frame.
111
112  // FIXME: Don't hardcode these encodings.
113  unsigned PerEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
114  if (Personality && MAI->getNeedsIndirectEncoding())
115    PerEncoding |= dwarf::DW_EH_PE_indirect;
116  unsigned LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
117  unsigned FDEEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
118
119  char Augmentation[5] = { 0 };
120  unsigned AugmentationSize = 0;
121  char *APtr = Augmentation + 1;
122
123  if (Personality) {
124    // There is a personality function.
125    *APtr++ = 'P';
126    AugmentationSize += 1 + SizeOfEncodedValue(PerEncoding);
127  }
128
129  if (UsesLSDA[Index]) {
130    // An LSDA pointer is in the FDE augmentation.
131    *APtr++ = 'L';
132    ++AugmentationSize;
133  }
134
135  if (FDEEncoding != dwarf::DW_EH_PE_absptr) {
136    // A non-default pointer encoding for the FDE.
137    *APtr++ = 'R';
138    ++AugmentationSize;
139  }
140
141  if (APtr != Augmentation + 1)
142    Augmentation[0] = 'z';
143
144  Asm->EmitString(Augmentation);
145  Asm->EOL("CIE Augmentation");
146
147  // Round out reader.
148  Asm->EmitULEB128Bytes(1);
149  Asm->EOL("CIE Code Alignment Factor");
150  Asm->EmitSLEB128Bytes(stackGrowth);
151  Asm->EOL("CIE Data Alignment Factor");
152  Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true));
153  Asm->EOL("CIE Return Address Column");
154
155  Asm->EmitULEB128Bytes(AugmentationSize);
156  Asm->EOL("Augmentation Size");
157
158  Asm->EmitInt8(PerEncoding);
159  Asm->EOL("Personality", PerEncoding);
160
161  // If there is a personality, we need to indicate the function's location.
162  if (Personality) {
163    PrintRelDirective(true);
164    O << MAI->getPersonalityPrefix();
165    Asm->EmitExternalGlobal((const GlobalVariable *)(Personality));
166    O << MAI->getPersonalitySuffix();
167    if (strcmp(MAI->getPersonalitySuffix(), "+4@GOTPCREL"))
168      O << "-" << MAI->getPCSymbol();
169    Asm->EOL("Personality");
170
171    Asm->EmitInt8(LSDAEncoding);
172    Asm->EOL("LSDA Encoding", LSDAEncoding);
173
174    Asm->EmitInt8(FDEEncoding);
175    Asm->EOL("FDE Encoding", FDEEncoding);
176  }
177
178  // Indicate locations of general callee saved registers in frame.
179  std::vector<MachineMove> Moves;
180  RI->getInitialFrameState(Moves);
181  EmitFrameMoves(NULL, 0, Moves, true);
182
183  // On Darwin the linker honors the alignment of eh_frame, which means it must
184  // be 8-byte on 64-bit targets to match what gcc does.  Otherwise you get
185  // holes which confuse readers of eh_frame.
186  Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
187                     0, 0, false);
188  EmitLabel("eh_frame_common_end", Index);
189
190  Asm->EOL();
191}
192
193/// EmitFDE - Emit the Frame Description Entry (FDE) for the function.
194void DwarfException::EmitFDE(const FunctionEHFrameInfo &EHFrameInfo) {
195  assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() &&
196         "Should not emit 'available externally' functions at all");
197
198  const Function *TheFunc = EHFrameInfo.function;
199
200  Asm->OutStreamer.SwitchSection(Asm->getObjFileLowering().getEHFrameSection());
201
202  // Externally visible entry into the functions eh frame info. If the
203  // corresponding function is static, this should not be externally visible.
204  if (!TheFunc->hasLocalLinkage())
205    if (const char *GlobalEHDirective = MAI->getGlobalEHDirective())
206      O << GlobalEHDirective << EHFrameInfo.FnName << "\n";
207
208  // If corresponding function is weak definition, this should be too.
209  if (TheFunc->isWeakForLinker() && MAI->getWeakDefDirective())
210    O << MAI->getWeakDefDirective() << EHFrameInfo.FnName << "\n";
211
212  // If there are no calls then you can't unwind.  This may mean we can omit the
213  // EH Frame, but some environments do not handle weak absolute symbols. If
214  // UnwindTablesMandatory is set we cannot do this optimization; the unwind
215  // info is to be available for non-EH uses.
216  if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory &&
217      (!TheFunc->isWeakForLinker() ||
218       !MAI->getWeakDefDirective() ||
219       MAI->getSupportsWeakOmittedEHFrame())) {
220    O << EHFrameInfo.FnName << " = 0\n";
221    // This name has no connection to the function, so it might get
222    // dead-stripped when the function is not, erroneously.  Prohibit
223    // dead-stripping unconditionally.
224    if (const char *UsedDirective = MAI->getUsedDirective())
225      O << UsedDirective << EHFrameInfo.FnName << "\n\n";
226  } else {
227    O << EHFrameInfo.FnName << ":\n";
228
229    // EH frame header.
230    EmitDifference("eh_frame_end", EHFrameInfo.Number,
231                   "eh_frame_begin", EHFrameInfo.Number, true);
232    Asm->EOL("Length of Frame Information Entry");
233
234    EmitLabel("eh_frame_begin", EHFrameInfo.Number);
235
236    EmitSectionOffset("eh_frame_begin", "eh_frame_common",
237                      EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
238                      true, true, false);
239
240    Asm->EOL("FDE CIE offset");
241
242    EmitReference("eh_func_begin", EHFrameInfo.Number, true, true);
243    Asm->EOL("FDE initial location");
244    EmitDifference("eh_func_end", EHFrameInfo.Number,
245                   "eh_func_begin", EHFrameInfo.Number, true);
246    Asm->EOL("FDE address range");
247
248    // If there is a personality and landing pads then point to the language
249    // specific data area in the exception table.
250    if (MMI->getPersonalities()[0] != NULL) {
251      bool is4Byte = TD->getPointerSize() == sizeof(int32_t);
252
253      Asm->EmitULEB128Bytes(is4Byte ? 4 : 8);
254      Asm->EOL("Augmentation size");
255
256      if (EHFrameInfo.hasLandingPads)
257        EmitReference("exception", EHFrameInfo.Number, true, false);
258      else {
259        if (is4Byte)
260          Asm->EmitInt32((int)0);
261        else
262          Asm->EmitInt64((int)0);
263      }
264      Asm->EOL("Language Specific Data Area");
265    } else {
266      Asm->EmitULEB128Bytes(0);
267      Asm->EOL("Augmentation size");
268    }
269
270    // Indicate locations of function specific callee saved registers in frame.
271    EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves,
272                   true);
273
274    // On Darwin the linker honors the alignment of eh_frame, which means it
275    // must be 8-byte on 64-bit targets to match what gcc does.  Otherwise you
276    // get holes which confuse readers of eh_frame.
277    Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
278                       0, 0, false);
279    EmitLabel("eh_frame_end", EHFrameInfo.Number);
280
281    // If the function is marked used, this table should be also.  We cannot
282    // make the mark unconditional in this case, since retaining the table also
283    // retains the function in this case, and there is code around that depends
284    // on unused functions (calling undefined externals) being dead-stripped to
285    // link correctly.  Yes, there really is.
286    if (MMI->isUsedFunction(EHFrameInfo.function))
287      if (const char *UsedDirective = MAI->getUsedDirective())
288        O << UsedDirective << EHFrameInfo.FnName << "\n\n";
289  }
290
291  Asm->EOL();
292}
293
294/// SharedTypeIds - How many leading type ids two landing pads have in common.
295unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
296                                       const LandingPadInfo *R) {
297  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
298  unsigned LSize = LIds.size(), RSize = RIds.size();
299  unsigned MinSize = LSize < RSize ? LSize : RSize;
300  unsigned Count = 0;
301
302  for (; Count != MinSize; ++Count)
303    if (LIds[Count] != RIds[Count])
304      return Count;
305
306  return Count;
307}
308
309/// PadLT - Order landing pads lexicographically by type id.
310bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
311  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
312  unsigned LSize = LIds.size(), RSize = RIds.size();
313  unsigned MinSize = LSize < RSize ? LSize : RSize;
314
315  for (unsigned i = 0; i != MinSize; ++i)
316    if (LIds[i] != RIds[i])
317      return LIds[i] < RIds[i];
318
319  return LSize < RSize;
320}
321
322/// ComputeActionsTable - Compute the actions table and gather the first action
323/// index for each landing pad site.
324unsigned DwarfException::
325ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
326                    SmallVectorImpl<ActionEntry> &Actions,
327                    SmallVectorImpl<unsigned> &FirstActions) {
328
329  // The action table follows the call-site table in the LSDA. The individual
330  // records are of two types:
331  //
332  //   * Catch clause
333  //   * Exception specification
334  //
335  // The two record kinds have the same format, with only small differences.
336  // They are distinguished by the "switch value" field: Catch clauses
337  // (TypeInfos) have strictly positive switch values, and exception
338  // specifications (FilterIds) have strictly negative switch values. Value 0
339  // indicates a catch-all clause.
340  //
341  // Negative type IDs index into FilterIds. Positive type IDs index into
342  // TypeInfos.  The value written for a positive type ID is just the type ID
343  // itself.  For a negative type ID, however, the value written is the
344  // (negative) byte offset of the corresponding FilterIds entry.  The byte
345  // offset is usually equal to the type ID (because the FilterIds entries are
346  // written using a variable width encoding, which outputs one byte per entry
347  // as long as the value written is not too large) but can differ.  This kind
348  // of complication does not occur for positive type IDs because type infos are
349  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
350  // offset corresponding to FilterIds[i].
351
352  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
353  SmallVector<int, 16> FilterOffsets;
354  FilterOffsets.reserve(FilterIds.size());
355  int Offset = -1;
356
357  for (std::vector<unsigned>::const_iterator
358         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
359    FilterOffsets.push_back(Offset);
360    Offset -= MCAsmInfo::getULEB128Size(*I);
361  }
362
363  FirstActions.reserve(LandingPads.size());
364
365  int FirstAction = 0;
366  unsigned SizeActions = 0;
367  const LandingPadInfo *PrevLPI = 0;
368
369  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
370         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
371    const LandingPadInfo *LPI = *I;
372    const std::vector<int> &TypeIds = LPI->TypeIds;
373    const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
374    unsigned SizeSiteActions = 0;
375
376    if (NumShared < TypeIds.size()) {
377      unsigned SizeAction = 0;
378      ActionEntry *PrevAction = 0;
379
380      if (NumShared) {
381        const unsigned SizePrevIds = PrevLPI->TypeIds.size();
382        assert(Actions.size());
383        PrevAction = &Actions.back();
384        SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
385          MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
386
387        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
388          SizeAction -=
389            MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
390          SizeAction += -PrevAction->NextAction;
391          PrevAction = PrevAction->Previous;
392        }
393      }
394
395      // Compute the actions.
396      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
397        int TypeID = TypeIds[J];
398        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
399        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
400        unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
401
402        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
403        SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
404        SizeSiteActions += SizeAction;
405
406        ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
407        Actions.push_back(Action);
408        PrevAction = &Actions.back();
409      }
410
411      // Record the first action of the landing pad site.
412      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
413    } // else identical - re-use previous FirstAction
414
415    // Information used when created the call-site table. The action record
416    // field of the call site record is the offset of the first associated
417    // action record, relative to the start of the actions table. This value is
418    // biased by 1 (1 in dicating the start of the actions table), and 0
419    // indicates that there are no actions.
420    FirstActions.push_back(FirstAction);
421
422    // Compute this sites contribution to size.
423    SizeActions += SizeSiteActions;
424
425    PrevLPI = LPI;
426  }
427
428  return SizeActions;
429}
430
431/// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
432/// has a try-range containing the call, a non-zero landing pad, and an
433/// appropriate action.  The entry for an ordinary call has a try-range
434/// containing the call and zero for the landing pad and the action.  Calls
435/// marked 'nounwind' have no entry and must not be contained in the try-range
436/// of any entry - they form gaps in the table.  Entries must be ordered by
437/// try-range address.
438void DwarfException::
439ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
440                     const RangeMapType &PadMap,
441                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
442                     const SmallVectorImpl<unsigned> &FirstActions) {
443  // The end label of the previous invoke or nounwind try-range.
444  unsigned LastLabel = 0;
445
446  // Whether there is a potentially throwing instruction (currently this means
447  // an ordinary call) between the end of the previous try-range and now.
448  bool SawPotentiallyThrowing = false;
449
450  // Whether the last CallSite entry was for an invoke.
451  bool PreviousIsInvoke = false;
452
453  // Visit all instructions in order of address.
454  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
455       I != E; ++I) {
456    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
457         MI != E; ++MI) {
458      if (!MI->isLabel()) {
459        SawPotentiallyThrowing |= MI->getDesc().isCall();
460        continue;
461      }
462
463      unsigned BeginLabel = MI->getOperand(0).getImm();
464      assert(BeginLabel && "Invalid label!");
465
466      // End of the previous try-range?
467      if (BeginLabel == LastLabel)
468        SawPotentiallyThrowing = false;
469
470      // Beginning of a new try-range?
471      RangeMapType::iterator L = PadMap.find(BeginLabel);
472      if (L == PadMap.end())
473        // Nope, it was just some random label.
474        continue;
475
476      const PadRange &P = L->second;
477      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
478      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
479             "Inconsistent landing pad map!");
480
481      // For Dwarf exception handling (SjLj handling doesn't use this). If some
482      // instruction between the previous try-range and this one may throw,
483      // create a call-site entry with no landing pad for the region between the
484      // try-ranges.
485      if (SawPotentiallyThrowing &&
486          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
487        CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
488        CallSites.push_back(Site);
489        PreviousIsInvoke = false;
490      }
491
492      LastLabel = LandingPad->EndLabels[P.RangeIndex];
493      assert(BeginLabel && LastLabel && "Invalid landing pad!");
494
495      if (LandingPad->LandingPadLabel) {
496        // This try-range is for an invoke.
497        CallSiteEntry Site = {
498          BeginLabel,
499          LastLabel,
500          LandingPad->LandingPadLabel,
501          FirstActions[P.PadIndex]
502        };
503
504        // Try to merge with the previous call-site. SJLJ doesn't do this
505        if (PreviousIsInvoke &&
506          MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
507          CallSiteEntry &Prev = CallSites.back();
508          if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
509            // Extend the range of the previous entry.
510            Prev.EndLabel = Site.EndLabel;
511            continue;
512          }
513        }
514
515        // Otherwise, create a new call-site.
516        CallSites.push_back(Site);
517        PreviousIsInvoke = true;
518      } else {
519        // Create a gap.
520        PreviousIsInvoke = false;
521      }
522    }
523  }
524
525  // If some instruction between the previous try-range and the end of the
526  // function may throw, create a call-site entry with no landing pad for the
527  // region following the try-range.
528  if (SawPotentiallyThrowing &&
529      MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) {
530    CallSiteEntry Site = { LastLabel, 0, 0, 0 };
531    CallSites.push_back(Site);
532  }
533}
534
535/// EmitExceptionTable - Emit landing pads and actions.
536///
537/// The general organization of the table is complex, but the basic concepts are
538/// easy.  First there is a header which describes the location and organization
539/// of the three components that follow.
540///
541///  1. The landing pad site information describes the range of code covered by
542///     the try.  In our case it's an accumulation of the ranges covered by the
543///     invokes in the try.  There is also a reference to the landing pad that
544///     handles the exception once processed.  Finally an index into the actions
545///     table.
546///  2. The action table, in our case, is composed of pairs of type IDs and next
547///     action offset.  Starting with the action index from the landing pad
548///     site, each type ID is checked for a match to the current exception.  If
549///     it matches then the exception and type id are passed on to the landing
550///     pad.  Otherwise the next action is looked up.  This chain is terminated
551///     with a next action of zero.  If no type id is found then the frame is
552///     unwound and handling continues.
553///  3. Type ID table contains references to all the C++ typeinfo for all
554///     catches in the function.  This tables is reverse indexed base 1.
555void DwarfException::EmitExceptionTable() {
556  const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
557  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
558  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
559  if (PadInfos.empty()) return;
560
561  // Sort the landing pads in order of their type ids.  This is used to fold
562  // duplicate actions.
563  SmallVector<const LandingPadInfo *, 64> LandingPads;
564  LandingPads.reserve(PadInfos.size());
565
566  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
567    LandingPads.push_back(&PadInfos[i]);
568
569  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
570
571  // Compute the actions table and gather the first action index for each
572  // landing pad site.
573  SmallVector<ActionEntry, 32> Actions;
574  SmallVector<unsigned, 64> FirstActions;
575  unsigned SizeActions = ComputeActionsTable(LandingPads, Actions,
576                                             FirstActions);
577
578  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
579  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
580  // try-ranges for them need be deduced when using DWARF exception handling.
581  RangeMapType PadMap;
582  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
583    const LandingPadInfo *LandingPad = LandingPads[i];
584    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
585      unsigned BeginLabel = LandingPad->BeginLabels[j];
586      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
587      PadRange P = { i, j };
588      PadMap[BeginLabel] = P;
589    }
590  }
591
592  // Compute the call-site table.
593  SmallVector<CallSiteEntry, 64> CallSites;
594  ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
595
596  // Final tallies.
597
598  // Call sites.
599  const unsigned SiteStartSize  = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
600  const unsigned SiteLengthSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
601  const unsigned LandingPadSize = SizeOfEncodedValue(dwarf::DW_EH_PE_udata4);
602  bool IsSJLJ = MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
603  bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
604  unsigned SizeSites;
605
606  if (IsSJLJ)
607    SizeSites = 0;
608  else
609    SizeSites = CallSites.size() *
610      (SiteStartSize + SiteLengthSize + LandingPadSize);
611
612  for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
613    SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
614    if (IsSJLJ)
615      SizeSites += MCAsmInfo::getULEB128Size(i);
616  }
617
618  // Type infos.
619  const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
620  unsigned TTypeFormat;
621  unsigned TypeFormatSize;
622
623  if (!HaveTTData) {
624    // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
625    // that we're omitting that bit.
626    TTypeFormat = dwarf::DW_EH_PE_omit;
627    TypeFormatSize = SizeOfEncodedValue(dwarf::DW_EH_PE_absptr);
628  } else {
629    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
630    // pick a type encoding for them.  We're about to emit a list of pointers to
631    // typeinfo objects at the end of the LSDA.  However, unless we're in static
632    // mode, this reference will require a relocation by the dynamic linker.
633    //
634    // Because of this, we have a couple of options:
635    //
636    //   1) If we are in -static mode, we can always use an absolute reference
637    //      from the LSDA, because the static linker will resolve it.
638    //
639    //   2) Otherwise, if the LSDA section is writable, we can output the direct
640    //      reference to the typeinfo and allow the dynamic linker to relocate
641    //      it.  Since it is in a writable section, the dynamic linker won't
642    //      have a problem.
643    //
644    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
645    //      we need to use some form of indirection.  For example, on Darwin,
646    //      we can output a statically-relocatable reference to a dyld stub. The
647    //      offset to the stub is constant, but the contents are in a section
648    //      that is updated by the dynamic linker.  This is easy enough, but we
649    //      need to tell the personality function of the unwinder to indirect
650    //      through the dyld stub.
651    //
652    // FIXME: When (3) is actually implemented, we'll have to emit the stubs
653    // somewhere.  This predicate should be moved to a shared location that is
654    // in target-independent code.
655    //
656    if (LSDASection->getKind().isWriteable() ||
657        Asm->TM.getRelocationModel() == Reloc::Static)
658      TTypeFormat = dwarf::DW_EH_PE_absptr;
659    else
660      TTypeFormat = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
661        dwarf::DW_EH_PE_sdata4;
662
663    TypeFormatSize = SizeOfEncodedValue(TTypeFormat);
664  }
665
666  // Begin the exception table.
667  Asm->OutStreamer.SwitchSection(LSDASection);
668  Asm->EmitAlignment(2, 0, 0, false);
669
670  O << "GCC_except_table" << SubprogramCount << ":\n";
671
672  // The type infos need to be aligned. GCC does this by inserting padding just
673  // before the type infos. However, this changes the size of the exception
674  // table, so you need to take this into account when you output the exception
675  // table size. However, the size is output using a variable length encoding.
676  // So by increasing the size by inserting padding, you may increase the number
677  // of bytes used for writing the size. If it increases, say by one byte, then
678  // you now need to output one less byte of padding to get the type infos
679  // aligned.  However this decreases the size of the exception table. This
680  // changes the value you have to output for the exception table size. Due to
681  // the variable length encoding, the number of bytes used for writing the
682  // length may decrease. If so, you then have to increase the amount of
683  // padding. And so on. If you look carefully at the GCC code you will see that
684  // it indeed does this in a loop, going on and on until the values stabilize.
685  // We chose another solution: don't output padding inside the table like GCC
686  // does, instead output it before the table.
687  unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
688  unsigned TyOffset = sizeof(int8_t) +          // Call site format
689    MCAsmInfo::getULEB128Size(SizeSites) +      // Call-site table length
690    SizeSites + SizeActions + SizeTypes;
691  unsigned TotalSize = sizeof(int8_t) +         // LPStart format
692                       sizeof(int8_t) +         // TType format
693    (HaveTTData ?
694     MCAsmInfo::getULEB128Size(TyOffset) : 0) + // TType base offset
695    TyOffset;
696  unsigned SizeAlign = (4 - TotalSize) & 3;
697
698  for (unsigned i = 0; i != SizeAlign; ++i) {
699    Asm->EmitInt8(0);
700    Asm->EOL("Padding");
701  }
702
703  EmitLabel("exception", SubprogramCount);
704
705  if (IsSJLJ) {
706    SmallString<16> LSDAName;
707    raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() <<
708      "_LSDA_" << Asm->getFunctionNumber();
709    O << LSDAName.str() << ":\n";
710  }
711
712  // Emit the header.
713  Asm->EmitInt8(dwarf::DW_EH_PE_omit);
714  Asm->EOL("@LPStart format", dwarf::DW_EH_PE_omit);
715
716  Asm->EmitInt8(TTypeFormat);
717  Asm->EOL("@TType format", TTypeFormat);
718
719  if (HaveTTData) {
720    Asm->EmitULEB128Bytes(TyOffset);
721    Asm->EOL("@TType base offset");
722  }
723
724  // SjLj Exception handling
725  if (IsSJLJ) {
726    Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
727    Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4);
728    Asm->EmitULEB128Bytes(SizeSites);
729    Asm->EOL("Call site table length");
730
731    // Emit the landing pad site information.
732    unsigned idx = 0;
733    for (SmallVectorImpl<CallSiteEntry>::const_iterator
734         I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
735      const CallSiteEntry &S = *I;
736
737      // Offset of the landing pad, counted in 16-byte bundles relative to the
738      // @LPStart address.
739      Asm->EmitULEB128Bytes(idx);
740      Asm->EOL("Landing pad");
741
742      // Offset of the first associated action record, relative to the start of
743      // the action table. This value is biased by 1 (1 indicates the start of
744      // the action table), and 0 indicates that there are no actions.
745      Asm->EmitULEB128Bytes(S.Action);
746      Asm->EOL("Action");
747    }
748  } else {
749    // DWARF Exception handling
750    assert(MAI->getExceptionHandlingType() == ExceptionHandling::Dwarf);
751
752    // The call-site table is a list of all call sites that may throw an
753    // exception (including C++ 'throw' statements) in the procedure
754    // fragment. It immediately follows the LSDA header. Each entry indicates,
755    // for a given call, the first corresponding action record and corresponding
756    // landing pad.
757    //
758    // The table begins with the number of bytes, stored as an LEB128
759    // compressed, unsigned integer. The records immediately follow the record
760    // count. They are sorted in increasing call-site address. Each record
761    // indicates:
762    //
763    //   * The position of the call-site.
764    //   * The position of the landing pad.
765    //   * The first action record for that call site.
766    //
767    // A missing entry in the call-site table indicates that a call is not
768    // supposed to throw.
769
770    // Emit the landing pad call site table.
771    Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
772    Asm->EOL("Call site format", dwarf::DW_EH_PE_udata4);
773    Asm->EmitULEB128Bytes(SizeSites);
774    Asm->EOL("Call site table size");
775
776    for (SmallVectorImpl<CallSiteEntry>::const_iterator
777         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
778      const CallSiteEntry &S = *I;
779      const char *BeginTag;
780      unsigned BeginNumber;
781
782      if (!S.BeginLabel) {
783        BeginTag = "eh_func_begin";
784        BeginNumber = SubprogramCount;
785      } else {
786        BeginTag = "label";
787        BeginNumber = S.BeginLabel;
788      }
789
790      // Offset of the call site relative to the previous call site, counted in
791      // number of 16-byte bundles. The first call site is counted relative to
792      // the start of the procedure fragment.
793      EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount,
794                        true, true);
795      Asm->EOL("Region start");
796
797      if (!S.EndLabel)
798        EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber,
799                       true);
800      else
801        EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true);
802
803      Asm->EOL("Region length");
804
805      // Offset of the landing pad, counted in 16-byte bundles relative to the
806      // @LPStart address.
807      if (!S.PadLabel)
808        Asm->EmitInt32(0);
809      else
810        EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount,
811                          true, true);
812
813      Asm->EOL("Landing pad");
814
815      // Offset of the first associated action record, relative to the start of
816      // the action table. This value is biased by 1 (1 indicates the start of
817      // the action table), and 0 indicates that there are no actions.
818      Asm->EmitULEB128Bytes(S.Action);
819      Asm->EOL("Action");
820    }
821  }
822
823  // Emit the Action Table.
824  for (SmallVectorImpl<ActionEntry>::const_iterator
825         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
826    const ActionEntry &Action = *I;
827
828    // Type Filter
829    //
830    //   Used by the runtime to match the type of the thrown exception to the
831    //   type of the catch clauses or the types in the exception specification.
832
833    Asm->EmitSLEB128Bytes(Action.ValueForTypeID);
834    Asm->EOL("TypeInfo index");
835
836    // Action Record
837    //
838    //   Self-relative signed displacement in bytes of the next action record,
839    //   or 0 if there is no next action record.
840
841    Asm->EmitSLEB128Bytes(Action.NextAction);
842    Asm->EOL("Next action");
843  }
844
845  // Emit the Catch Clauses. The code for the catch clauses following the same
846  // try is similar to a switch statement. The catch clause action record
847  // informs the runtime about the type of a catch clause and about the
848  // associated switch value.
849  //
850  //  Action Record Fields:
851  //
852  //   * Filter Value
853  //     Positive value, starting at 1. Index in the types table of the
854  //     __typeinfo for the catch-clause type. 1 is the first word preceding
855  //     TTBase, 2 is the second word, and so on. Used by the runtime to check
856  //     if the thrown exception type matches the catch-clause type. Back-end
857  //     generated switch statements check against this value.
858  //
859  //   * Next
860  //     Signed offset, in bytes from the start of this field, to the next
861  //     chained action record, or zero if none.
862  //
863  // The order of the action records determined by the next field is the order
864  // of the catch clauses as they appear in the source code, and must be kept in
865  // the same order. As a result, changing the order of the catch clause would
866  // change the semantics of the program.
867  for (std::vector<GlobalVariable *>::const_reverse_iterator
868         I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
869    const GlobalVariable *GV = *I;
870    PrintRelDirective();
871
872    if (GV) {
873      std::string GLN;
874      O << Asm->getGlobalLinkName(GV, GLN);
875    } else {
876      O << "0x0";
877    }
878
879    Asm->EOL("TypeInfo");
880  }
881
882  // Emit the Type Table.
883  for (std::vector<unsigned>::const_iterator
884         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
885    unsigned TypeID = *I;
886    Asm->EmitULEB128Bytes(TypeID);
887    Asm->EOL("Filter TypeInfo index");
888  }
889
890  Asm->EmitAlignment(2, 0, 0, false);
891}
892
893/// EndModule - Emit all exception information that should come after the
894/// content.
895void DwarfException::EndModule() {
896  if (MAI->getExceptionHandlingType() != ExceptionHandling::Dwarf)
897    return;
898
899  if (!shouldEmitMovesModule && !shouldEmitTableModule)
900    return;
901
902  if (TimePassesIsEnabled)
903    ExceptionTimer->startTimer();
904
905  const std::vector<Function *> Personalities = MMI->getPersonalities();
906
907  for (unsigned I = 0, E = Personalities.size(); I < E; ++I)
908    EmitCIE(Personalities[I], I);
909
910  for (std::vector<FunctionEHFrameInfo>::iterator
911         I = EHFrames.begin(), E = EHFrames.end(); I != E; ++I)
912    EmitFDE(*I);
913
914  if (TimePassesIsEnabled)
915    ExceptionTimer->stopTimer();
916}
917
918/// BeginFunction - Gather pre-function exception information. Assumes it's
919/// being emitted immediately after the function entry point.
920void DwarfException::BeginFunction(MachineFunction *MF) {
921  if (!MMI || !MAI->doesSupportExceptionHandling()) return;
922
923  if (TimePassesIsEnabled)
924    ExceptionTimer->startTimer();
925
926  this->MF = MF;
927  shouldEmitTable = shouldEmitMoves = false;
928
929  // Map all labels and get rid of any dead landing pads.
930  MMI->TidyLandingPads();
931
932  // If any landing pads survive, we need an EH table.
933  if (!MMI->getLandingPads().empty())
934    shouldEmitTable = true;
935
936  // See if we need frame move info.
937  if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory)
938    shouldEmitMoves = true;
939
940  if (shouldEmitMoves || shouldEmitTable)
941    // Assumes in correct section after the entry point.
942    EmitLabel("eh_func_begin", ++SubprogramCount);
943
944  shouldEmitTableModule |= shouldEmitTable;
945  shouldEmitMovesModule |= shouldEmitMoves;
946
947  if (TimePassesIsEnabled)
948    ExceptionTimer->stopTimer();
949}
950
951/// EndFunction - Gather and emit post-function exception information.
952///
953void DwarfException::EndFunction() {
954  if (!shouldEmitMoves && !shouldEmitTable) return;
955
956  if (TimePassesIsEnabled)
957    ExceptionTimer->startTimer();
958
959  EmitLabel("eh_func_end", SubprogramCount);
960  EmitExceptionTable();
961
962  // Save EH frame information
963  EHFrames.push_back(FunctionEHFrameInfo(getAsm()->getCurrentFunctionEHName(MF),
964                                         SubprogramCount,
965                                         MMI->getPersonalityIndex(),
966                                         MF->getFrameInfo()->hasCalls(),
967                                         !MMI->getLandingPads().empty(),
968                                         MMI->getFrameMoves(),
969                                         MF->getFunction()));
970
971  // Record if this personality index uses a landing pad.
972  UsesLSDA[MMI->getPersonalityIndex()] |= !MMI->getLandingPads().empty();
973
974  if (TimePassesIsEnabled)
975    ExceptionTimer->stopTimer();
976}
977