DwarfException.cpp revision f9f4d5a172b1bbde0bc5d9a89bbb7b93c8616d7e
1//===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for writing dwarf exception info into asm files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "DwarfException.h"
15#include "llvm/Module.h"
16#include "llvm/CodeGen/MachineModuleInfo.h"
17#include "llvm/CodeGen/MachineFrameInfo.h"
18#include "llvm/CodeGen/MachineLocation.h"
19#include "llvm/Support/Dwarf.h"
20#include "llvm/Support/Timer.h"
21#include "llvm/Support/raw_ostream.h"
22#include "llvm/Target/TargetAsmInfo.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetFrameInfo.h"
25#include "llvm/Target/TargetLoweringObjectFile.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/ADT/StringExtras.h"
29using namespace llvm;
30
31static TimerGroup &getDwarfTimerGroup() {
32  static TimerGroup DwarfTimerGroup("Dwarf Exception");
33  return DwarfTimerGroup;
34}
35
36DwarfException::DwarfException(raw_ostream &OS, AsmPrinter *A,
37                               const TargetAsmInfo *T)
38  : Dwarf(OS, A, T, "eh"), shouldEmitTable(false), shouldEmitMoves(false),
39    shouldEmitTableModule(false), shouldEmitMovesModule(false),
40    ExceptionTimer(0) {
41  if (TimePassesIsEnabled)
42    ExceptionTimer = new Timer("Dwarf Exception Writer",
43                               getDwarfTimerGroup());
44}
45
46DwarfException::~DwarfException() {
47  delete ExceptionTimer;
48}
49
50void DwarfException::EmitCommonEHFrame(const Function *Personality,
51                                       unsigned Index) {
52  // Size and sign of stack growth.
53  int stackGrowth =
54    Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
55    TargetFrameInfo::StackGrowsUp ?
56    TD->getPointerSize() : -TD->getPointerSize();
57
58  // Begin eh frame section.
59  Asm->SwitchToTextSection(TAI->getDwarfEHFrameSection());
60
61  if (TAI->is_EHSymbolPrivate())
62    O << TAI->getPrivateGlobalPrefix();
63
64  O << "EH_frame" << Index << ":\n";
65  EmitLabel("section_eh_frame", Index);
66
67  // Define base labels.
68  EmitLabel("eh_frame_common", Index);
69
70  // Define the eh frame length.
71  EmitDifference("eh_frame_common_end", Index,
72                 "eh_frame_common_begin", Index, true);
73  Asm->EOL("Length of Common Information Entry");
74
75  // EH frame header.
76  EmitLabel("eh_frame_common_begin", Index);
77  Asm->EmitInt32((int)0);
78  Asm->EOL("CIE Identifier Tag");
79  Asm->EmitInt8(dwarf::DW_CIE_VERSION);
80  Asm->EOL("CIE Version");
81
82  // The personality presence indicates that language specific information will
83  // show up in the eh frame.
84  Asm->EmitString(Personality ? "zPLR" : "zR");
85  Asm->EOL("CIE Augmentation");
86
87  // Round out reader.
88  Asm->EmitULEB128Bytes(1);
89  Asm->EOL("CIE Code Alignment Factor");
90  Asm->EmitSLEB128Bytes(stackGrowth);
91  Asm->EOL("CIE Data Alignment Factor");
92  Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister(), true));
93  Asm->EOL("CIE Return Address Column");
94
95  // If there is a personality, we need to indicate the functions location.
96  if (Personality) {
97    Asm->EmitULEB128Bytes(7);
98    Asm->EOL("Augmentation Size");
99
100    if (TAI->getNeedsIndirectEncoding()) {
101      Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4 |
102                    dwarf::DW_EH_PE_indirect);
103      Asm->EOL("Personality (pcrel sdata4 indirect)");
104    } else {
105      Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
106      Asm->EOL("Personality (pcrel sdata4)");
107    }
108
109    PrintRelDirective(true);
110    O << TAI->getPersonalityPrefix();
111    Asm->EmitExternalGlobal((const GlobalVariable *)(Personality));
112    O << TAI->getPersonalitySuffix();
113    if (strcmp(TAI->getPersonalitySuffix(), "+4@GOTPCREL"))
114      O << "-" << TAI->getPCSymbol();
115    Asm->EOL("Personality");
116
117    Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
118    Asm->EOL("LSDA Encoding (pcrel sdata4)");
119
120    Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
121    Asm->EOL("FDE Encoding (pcrel sdata4)");
122  } else {
123    Asm->EmitULEB128Bytes(1);
124    Asm->EOL("Augmentation Size");
125
126    Asm->EmitInt8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
127    Asm->EOL("FDE Encoding (pcrel sdata4)");
128  }
129
130  // Indicate locations of general callee saved registers in frame.
131  std::vector<MachineMove> Moves;
132  RI->getInitialFrameState(Moves);
133  EmitFrameMoves(NULL, 0, Moves, true);
134
135  // On Darwin the linker honors the alignment of eh_frame, which means it must
136  // be 8-byte on 64-bit targets to match what gcc does.  Otherwise you get
137  // holes which confuse readers of eh_frame.
138  Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
139                     0, 0, false);
140  EmitLabel("eh_frame_common_end", Index);
141
142  Asm->EOL();
143}
144
145/// EmitEHFrame - Emit function exception frame information.
146///
147void DwarfException::EmitEHFrame(const FunctionEHFrameInfo &EHFrameInfo) {
148  assert(!EHFrameInfo.function->hasAvailableExternallyLinkage() &&
149         "Should not emit 'available externally' functions at all");
150
151  const Function *TheFunc = EHFrameInfo.function;
152
153  Asm->SwitchToTextSection(TAI->getDwarfEHFrameSection());
154
155  // Externally visible entry into the functions eh frame info. If the
156  // corresponding function is static, this should not be externally visible.
157  if (!TheFunc->hasLocalLinkage())
158    if (const char *GlobalEHDirective = TAI->getGlobalEHDirective())
159      O << GlobalEHDirective << EHFrameInfo.FnName << "\n";
160
161  // If corresponding function is weak definition, this should be too.
162  if (TheFunc->isWeakForLinker() && TAI->getWeakDefDirective())
163    O << TAI->getWeakDefDirective() << EHFrameInfo.FnName << "\n";
164
165  // If there are no calls then you can't unwind.  This may mean we can omit the
166  // EH Frame, but some environments do not handle weak absolute symbols. If
167  // UnwindTablesMandatory is set we cannot do this optimization; the unwind
168  // info is to be available for non-EH uses.
169  if (!EHFrameInfo.hasCalls && !UnwindTablesMandatory &&
170      (!TheFunc->isWeakForLinker() ||
171       !TAI->getWeakDefDirective() ||
172       TAI->getSupportsWeakOmittedEHFrame())) {
173    O << EHFrameInfo.FnName << " = 0\n";
174    // This name has no connection to the function, so it might get
175    // dead-stripped when the function is not, erroneously.  Prohibit
176    // dead-stripping unconditionally.
177    if (const char *UsedDirective = TAI->getUsedDirective())
178      O << UsedDirective << EHFrameInfo.FnName << "\n\n";
179  } else {
180    O << EHFrameInfo.FnName << ":\n";
181
182    // EH frame header.
183    EmitDifference("eh_frame_end", EHFrameInfo.Number,
184                   "eh_frame_begin", EHFrameInfo.Number, true);
185    Asm->EOL("Length of Frame Information Entry");
186
187    EmitLabel("eh_frame_begin", EHFrameInfo.Number);
188
189    EmitSectionOffset("eh_frame_begin", "eh_frame_common",
190                      EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
191                      true, true, false);
192
193    Asm->EOL("FDE CIE offset");
194
195    EmitReference("eh_func_begin", EHFrameInfo.Number, true, true);
196    Asm->EOL("FDE initial location");
197    EmitDifference("eh_func_end", EHFrameInfo.Number,
198                   "eh_func_begin", EHFrameInfo.Number, true);
199    Asm->EOL("FDE address range");
200
201    // If there is a personality and landing pads then point to the language
202    // specific data area in the exception table.
203    if (EHFrameInfo.PersonalityIndex) {
204      Asm->EmitULEB128Bytes(4);
205      Asm->EOL("Augmentation size");
206
207      if (EHFrameInfo.hasLandingPads)
208        EmitReference("exception", EHFrameInfo.Number, true, true);
209      else
210        Asm->EmitInt32((int)0);
211      Asm->EOL("Language Specific Data Area");
212    } else {
213      Asm->EmitULEB128Bytes(0);
214      Asm->EOL("Augmentation size");
215    }
216
217    // Indicate locations of function specific callee saved registers in frame.
218    EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves,
219                   true);
220
221    // On Darwin the linker honors the alignment of eh_frame, which means it
222    // must be 8-byte on 64-bit targets to match what gcc does.  Otherwise you
223    // get holes which confuse readers of eh_frame.
224    Asm->EmitAlignment(TD->getPointerSize() == sizeof(int32_t) ? 2 : 3,
225                       0, 0, false);
226    EmitLabel("eh_frame_end", EHFrameInfo.Number);
227
228    // If the function is marked used, this table should be also.  We cannot
229    // make the mark unconditional in this case, since retaining the table also
230    // retains the function in this case, and there is code around that depends
231    // on unused functions (calling undefined externals) being dead-stripped to
232    // link correctly.  Yes, there really is.
233    if (MMI->isUsedFunction(EHFrameInfo.function))
234      if (const char *UsedDirective = TAI->getUsedDirective())
235        O << UsedDirective << EHFrameInfo.FnName << "\n\n";
236  }
237}
238
239/// SharedTypeIds - How many leading type ids two landing pads have in common.
240unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
241                                       const LandingPadInfo *R) {
242  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
243  unsigned LSize = LIds.size(), RSize = RIds.size();
244  unsigned MinSize = LSize < RSize ? LSize : RSize;
245  unsigned Count = 0;
246
247  for (; Count != MinSize; ++Count)
248    if (LIds[Count] != RIds[Count])
249      return Count;
250
251  return Count;
252}
253
254/// PadLT - Order landing pads lexicographically by type id.
255bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
256  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
257  unsigned LSize = LIds.size(), RSize = RIds.size();
258  unsigned MinSize = LSize < RSize ? LSize : RSize;
259
260  for (unsigned i = 0; i != MinSize; ++i)
261    if (LIds[i] != RIds[i])
262      return LIds[i] < RIds[i];
263
264  return LSize < RSize;
265}
266
267/// ComputeActionsTable - Compute the actions table and gather the first action
268/// index for each landing pad site.
269unsigned DwarfException::
270ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
271                    SmallVectorImpl<ActionEntry> &Actions,
272                    SmallVectorImpl<unsigned> &FirstActions) {
273  // Negative type IDs index into FilterIds. Positive type IDs index into
274  // TypeInfos.  The value written for a positive type ID is just the type ID
275  // itself.  For a negative type ID, however, the value written is the
276  // (negative) byte offset of the corresponding FilterIds entry.  The byte
277  // offset is usually equal to the type ID (because the FilterIds entries are
278  // written using a variable width encoding, which outputs one byte per entry
279  // as long as the value written is not too large) but can differ.  This kind
280  // of complication does not occur for positive type IDs because type infos are
281  // output using a fixed width encoding.  FilterOffsets[i] holds the byte
282  // offset corresponding to FilterIds[i].
283
284  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
285  SmallVector<int, 16> FilterOffsets;
286  FilterOffsets.reserve(FilterIds.size());
287  int Offset = -1;
288
289  for (std::vector<unsigned>::const_iterator
290         I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
291    FilterOffsets.push_back(Offset);
292    Offset -= TargetAsmInfo::getULEB128Size(*I);
293  }
294
295  FirstActions.reserve(LandingPads.size());
296
297  int FirstAction = 0;
298  unsigned SizeActions = 0;
299  const LandingPadInfo *PrevLPI = 0;
300
301  for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
302         I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
303    const LandingPadInfo *LPI = *I;
304    const std::vector<int> &TypeIds = LPI->TypeIds;
305    const unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
306    unsigned SizeSiteActions = 0;
307
308    if (NumShared < TypeIds.size()) {
309      unsigned SizeAction = 0;
310      ActionEntry *PrevAction = 0;
311
312      if (NumShared) {
313        const unsigned SizePrevIds = PrevLPI->TypeIds.size();
314        assert(Actions.size());
315        PrevAction = &Actions.back();
316        SizeAction = TargetAsmInfo::getSLEB128Size(PrevAction->NextAction) +
317          TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
318
319        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
320          SizeAction -=
321            TargetAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
322          SizeAction += -PrevAction->NextAction;
323          PrevAction = PrevAction->Previous;
324        }
325      }
326
327      // Compute the actions.
328      for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
329        int TypeID = TypeIds[J];
330        assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
331        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
332        unsigned SizeTypeID = TargetAsmInfo::getSLEB128Size(ValueForTypeID);
333
334        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
335        SizeAction = SizeTypeID + TargetAsmInfo::getSLEB128Size(NextAction);
336        SizeSiteActions += SizeAction;
337
338        ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
339        Actions.push_back(Action);
340        PrevAction = &Actions.back();
341      }
342
343      // Record the first action of the landing pad site.
344      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
345    } // else identical - re-use previous FirstAction
346
347    FirstActions.push_back(FirstAction);
348
349    // Compute this sites contribution to size.
350    SizeActions += SizeSiteActions;
351
352    PrevLPI = LPI;
353  }
354
355  return SizeActions;
356}
357
358/// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
359/// has a try-range containing the call, a non-zero landing pad and an
360/// appropriate action.  The entry for an ordinary call has a try-range
361/// containing the call and zero for the landing pad and the action.  Calls
362/// marked 'nounwind' have no entry and must not be contained in the try-range
363/// of any entry - they form gaps in the table.  Entries must be ordered by
364/// try-range address.
365void DwarfException::
366ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
367                     const RangeMapType &PadMap,
368                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
369                     const SmallVectorImpl<unsigned> &FirstActions) {
370  // The end label of the previous invoke or nounwind try-range.
371  unsigned LastLabel = 0;
372
373  // Whether there is a potentially throwing instruction (currently this means
374  // an ordinary call) between the end of the previous try-range and now.
375  bool SawPotentiallyThrowing = false;
376
377  // Whether the last CallSite entry was for an invoke.
378  bool PreviousIsInvoke = false;
379
380  // Visit all instructions in order of address.
381  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
382       I != E; ++I) {
383    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
384         MI != E; ++MI) {
385      if (!MI->isLabel()) {
386        SawPotentiallyThrowing |= MI->getDesc().isCall();
387        continue;
388      }
389
390      unsigned BeginLabel = MI->getOperand(0).getImm();
391      assert(BeginLabel && "Invalid label!");
392
393      // End of the previous try-range?
394      if (BeginLabel == LastLabel)
395        SawPotentiallyThrowing = false;
396
397      // Beginning of a new try-range?
398      RangeMapType::iterator L = PadMap.find(BeginLabel);
399      if (L == PadMap.end())
400        // Nope, it was just some random label.
401        continue;
402
403      PadRange P = L->second;
404      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
405      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
406             "Inconsistent landing pad map!");
407
408      // If some instruction between the previous try-range and this one may
409      // throw, create a call-site entry with no landing pad for the region
410      // between the try-ranges.
411      if (SawPotentiallyThrowing) {
412        CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
413        CallSites.push_back(Site);
414        PreviousIsInvoke = false;
415      }
416
417      LastLabel = LandingPad->EndLabels[P.RangeIndex];
418      assert(BeginLabel && LastLabel && "Invalid landing pad!");
419
420      if (LandingPad->LandingPadLabel) {
421        // This try-range is for an invoke.
422        CallSiteEntry Site = {BeginLabel, LastLabel,
423                              LandingPad->LandingPadLabel,
424                              FirstActions[P.PadIndex]};
425
426        // Try to merge with the previous call-site.
427        if (PreviousIsInvoke) {
428          CallSiteEntry &Prev = CallSites.back();
429          if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
430            // Extend the range of the previous entry.
431            Prev.EndLabel = Site.EndLabel;
432            continue;
433          }
434        }
435
436        // Otherwise, create a new call-site.
437        CallSites.push_back(Site);
438        PreviousIsInvoke = true;
439      } else {
440        // Create a gap.
441        PreviousIsInvoke = false;
442      }
443    }
444  }
445
446  // If some instruction between the previous try-range and the end of the
447  // function may throw, create a call-site entry with no landing pad for the
448  // region following the try-range.
449  if (SawPotentiallyThrowing) {
450    CallSiteEntry Site = {LastLabel, 0, 0, 0};
451    CallSites.push_back(Site);
452  }
453}
454
455/// EmitExceptionTable - Emit landing pads and actions.
456///
457/// The general organization of the table is complex, but the basic concepts are
458/// easy.  First there is a header which describes the location and organization
459/// of the three components that follow.
460///
461///  1. The landing pad site information describes the range of code covered by
462///     the try.  In our case it's an accumulation of the ranges covered by the
463///     invokes in the try.  There is also a reference to the landing pad that
464///     handles the exception once processed.  Finally an index into the actions
465///     table.
466///  2. The action table, in our case, is composed of pairs of type ids and next
467///     action offset.  Starting with the action index from the landing pad
468///     site, each type Id is checked for a match to the current exception.  If
469///     it matches then the exception and type id are passed on to the landing
470///     pad.  Otherwise the next action is looked up.  This chain is terminated
471///     with a next action of zero.  If no type id is found the the frame is
472///     unwound and handling continues.
473///  3. Type id table contains references to all the C++ typeinfo for all
474///     catches in the function.  This tables is reversed indexed base 1.
475void DwarfException::EmitExceptionTable() {
476  const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
477  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
478  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
479  if (PadInfos.empty()) return;
480
481  // Sort the landing pads in order of their type ids.  This is used to fold
482  // duplicate actions.
483  SmallVector<const LandingPadInfo *, 64> LandingPads;
484  LandingPads.reserve(PadInfos.size());
485
486  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
487    LandingPads.push_back(&PadInfos[i]);
488
489  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
490
491  // Compute the actions table and gather the first action index for each
492  // landing pad site.
493  SmallVector<ActionEntry, 32> Actions;
494  SmallVector<unsigned, 64> FirstActions;
495  unsigned SizeActions = ComputeActionsTable(LandingPads, Actions, FirstActions);
496
497  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
498  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
499  // try-ranges for them need be deduced.
500  RangeMapType PadMap;
501  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
502    const LandingPadInfo *LandingPad = LandingPads[i];
503    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
504      unsigned BeginLabel = LandingPad->BeginLabels[j];
505      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
506      PadRange P = { i, j };
507      PadMap[BeginLabel] = P;
508    }
509  }
510
511  // Compute the call-site table.
512  SmallVector<CallSiteEntry, 64> CallSites;
513  ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
514
515  // Final tallies.
516
517  // Call sites.
518  const unsigned SiteStartSize  = sizeof(int32_t); // DW_EH_PE_udata4
519  const unsigned SiteLengthSize = sizeof(int32_t); // DW_EH_PE_udata4
520  const unsigned LandingPadSize = sizeof(int32_t); // DW_EH_PE_udata4
521  unsigned SizeSites = CallSites.size() * (SiteStartSize +
522                                           SiteLengthSize +
523                                           LandingPadSize);
524  for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
525    SizeSites += TargetAsmInfo::getULEB128Size(CallSites[i].Action);
526
527  // Type infos.
528  const unsigned TypeInfoSize = TD->getPointerSize(); // DW_EH_PE_absptr
529  unsigned SizeTypes = TypeInfos.size() * TypeInfoSize;
530
531  unsigned TypeOffset = sizeof(int8_t) + // Call site format
532    TargetAsmInfo::getULEB128Size(SizeSites) + // Call-site table length
533    SizeSites + SizeActions + SizeTypes;
534
535  unsigned TotalSize = sizeof(int8_t) + // LPStart format
536                       sizeof(int8_t) + // TType format
537           TargetAsmInfo::getULEB128Size(TypeOffset) + // TType base offset
538                       TypeOffset;
539
540  unsigned SizeAlign = (4 - TotalSize) & 3;
541
542  // Begin the exception table.
543  const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
544  Asm->SwitchToSection(LSDASection);
545  Asm->EmitAlignment(2, 0, 0, false);
546  O << "GCC_except_table" << SubprogramCount << ":\n";
547
548  for (unsigned i = 0; i != SizeAlign; ++i) {
549    Asm->EmitInt8(0);
550    Asm->EOL("Padding");
551  }
552
553  EmitLabel("exception", SubprogramCount);
554
555  // Emit the header.
556  Asm->EmitInt8(dwarf::DW_EH_PE_omit);
557  Asm->EOL("LPStart format (DW_EH_PE_omit)");
558
559#if 0
560  if (TypeInfos.empty() && FilterIds.empty()) {
561    // If there are no typeinfos or filters, there is nothing to emit, optimize
562    // by specifying the "omit" encoding.
563    Asm->EmitInt8(dwarf::DW_EH_PE_omit);
564    Asm->EOL("TType format (DW_EH_PE_omit)");
565  } else {
566    // Okay, we have actual filters or typeinfos to emit.  As such, we need to
567    // pick a type encoding for them.  We're about to emit a list of pointers to
568    // typeinfo objects at the end of the LSDA.  However, unless we're in static
569    // mode, this reference will require a relocation by the dynamic linker.
570    //
571    // Because of this, we have a couple of options:
572    //   1) If we are in -static mode, we can always use an absolute reference
573    //      from the LSDA, because the static linker will resolve it.
574    //   2) Otherwise, if the LSDA section is writable, we can output the direct
575    //      reference to the typeinfo and allow the dynamic linker to relocate
576    //      it.  Since it is in a writable section, the dynamic linker won't
577    //      have a problem.
578    //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
579    //      we need to use some form of indirection.  For example, on Darwin,
580    //      we can output a statically-relocatable reference to a dyld stub. The
581    //      offset to the stub is constant, but the contents are in a section
582    //      that is updated by the dynamic linker.  This is easy enough, but we
583    //      need to tell the personality function of the unwinder to indirect
584    //      through the dyld stub.
585    //
586    // FIXME: When this is actually implemented, we'll have to emit the stubs
587    // somewhere.  This predicate should be moved to a shared location that is
588    // in target-independent code.
589    //
590    if (LSDASection->isWritable() ||
591        Asm->TM.getRelocationModel() == Reloc::Static) {
592      Asm->EmitInt8(DW_EH_PE_absptr);
593      Asm->EOL("TType format (DW_EH_PE_absptr)");
594    } else {
595      Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_indirect | DW_EH_PE_sdata4);
596      Asm->EOL("TType format (DW_EH_PE_pcrel | DW_EH_PE_indirect"
597               " | DW_EH_PE_sdata4)");
598    }
599    Asm->EmitULEB128Bytes(TypeOffset);
600    Asm->EOL("TType base offset");
601  }
602#else
603  Asm->EmitInt8(dwarf::DW_EH_PE_absptr);
604  Asm->EOL("TType format (DW_EH_PE_absptr)");
605  Asm->EmitULEB128Bytes(TypeOffset);
606  Asm->EOL("TType base offset");
607#endif
608
609  Asm->EmitInt8(dwarf::DW_EH_PE_udata4);
610  Asm->EOL("Call site format (DW_EH_PE_udata4)");
611  Asm->EmitULEB128Bytes(SizeSites);
612  Asm->EOL("Call-site table length");
613
614  // Emit the landing pad site information.
615  for (SmallVectorImpl<CallSiteEntry>::const_iterator
616         I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
617    const CallSiteEntry &S = *I;
618    const char *BeginTag;
619    unsigned BeginNumber;
620
621    if (!S.BeginLabel) {
622      BeginTag = "eh_func_begin";
623      BeginNumber = SubprogramCount;
624    } else {
625      BeginTag = "label";
626      BeginNumber = S.BeginLabel;
627    }
628
629    EmitSectionOffset(BeginTag, "eh_func_begin", BeginNumber, SubprogramCount,
630                      true, true);
631    Asm->EOL("Region start");
632
633    if (!S.EndLabel)
634      EmitDifference("eh_func_end", SubprogramCount, BeginTag, BeginNumber,
635                     true);
636    else
637      EmitDifference("label", S.EndLabel, BeginTag, BeginNumber, true);
638
639    Asm->EOL("Region length");
640
641    if (!S.PadLabel)
642      Asm->EmitInt32(0);
643    else
644      EmitSectionOffset("label", "eh_func_begin", S.PadLabel, SubprogramCount,
645                        true, true);
646
647    Asm->EOL("Landing pad");
648
649    Asm->EmitULEB128Bytes(S.Action);
650    Asm->EOL("Action");
651  }
652
653  // Emit the actions.
654  for (SmallVectorImpl<ActionEntry>::const_iterator
655         I = Actions.begin(), E = Actions.end(); I != E; ++I) {
656    const ActionEntry &Action = *I;
657    Asm->EmitSLEB128Bytes(Action.ValueForTypeID);
658    Asm->EOL("TypeInfo index");
659    Asm->EmitSLEB128Bytes(Action.NextAction);
660    Asm->EOL("Next action");
661  }
662
663  // Emit the type ids.
664  for (std::vector<GlobalVariable *>::const_reverse_iterator
665         I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
666    GlobalVariable *GV = *I;
667    PrintRelDirective();
668
669    if (GV) {
670      std::string GLN;
671      O << Asm->getGlobalLinkName(GV, GLN);
672    } else {
673      O << "0";
674    }
675
676    Asm->EOL("TypeInfo");
677  }
678
679  // Emit the filter typeids.
680  for (std::vector<unsigned>::const_iterator
681         I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
682    unsigned TypeID = *I;
683    Asm->EmitULEB128Bytes(TypeID);
684    Asm->EOL("Filter TypeInfo index");
685  }
686
687  Asm->EmitAlignment(2, 0, 0, false);
688}
689
690/// EndModule - Emit all exception information that should come after the
691/// content.
692void DwarfException::EndModule() {
693  if (TimePassesIsEnabled)
694    ExceptionTimer->startTimer();
695
696  if (shouldEmitMovesModule || shouldEmitTableModule) {
697    const std::vector<Function *> Personalities = MMI->getPersonalities();
698    for (unsigned i = 0; i < Personalities.size(); ++i)
699      EmitCommonEHFrame(Personalities[i], i);
700
701    for (std::vector<FunctionEHFrameInfo>::iterator I = EHFrames.begin(),
702           E = EHFrames.end(); I != E; ++I)
703      EmitEHFrame(*I);
704  }
705
706  if (TimePassesIsEnabled)
707    ExceptionTimer->stopTimer();
708}
709
710/// BeginFunction - Gather pre-function exception information.  Assumes being
711/// emitted immediately after the function entry point.
712void DwarfException::BeginFunction(MachineFunction *MF) {
713  if (TimePassesIsEnabled)
714    ExceptionTimer->startTimer();
715
716  this->MF = MF;
717  shouldEmitTable = shouldEmitMoves = false;
718
719  if (MMI && TAI->doesSupportExceptionHandling()) {
720    // Map all labels and get rid of any dead landing pads.
721    MMI->TidyLandingPads();
722
723    // If any landing pads survive, we need an EH table.
724    if (MMI->getLandingPads().size())
725      shouldEmitTable = true;
726
727    // See if we need frame move info.
728    if (!MF->getFunction()->doesNotThrow() || UnwindTablesMandatory)
729      shouldEmitMoves = true;
730
731    if (shouldEmitMoves || shouldEmitTable)
732      // Assumes in correct section after the entry point.
733      EmitLabel("eh_func_begin", ++SubprogramCount);
734  }
735
736  shouldEmitTableModule |= shouldEmitTable;
737  shouldEmitMovesModule |= shouldEmitMoves;
738
739  if (TimePassesIsEnabled)
740    ExceptionTimer->stopTimer();
741}
742
743/// EndFunction - Gather and emit post-function exception information.
744///
745void DwarfException::EndFunction() {
746  if (TimePassesIsEnabled)
747    ExceptionTimer->startTimer();
748
749  if (shouldEmitMoves || shouldEmitTable) {
750    EmitLabel("eh_func_end", SubprogramCount);
751    EmitExceptionTable();
752
753    // Save EH frame information
754    EHFrames.push_back(
755        FunctionEHFrameInfo(getAsm()->getCurrentFunctionEHName(MF),
756                            SubprogramCount,
757                            MMI->getPersonalityIndex(),
758                            MF->getFrameInfo()->hasCalls(),
759                            !MMI->getLandingPads().empty(),
760                            MMI->getFrameMoves(),
761                            MF->getFunction()));
762  }
763
764  if (TimePassesIsEnabled)
765    ExceptionTimer->stopTimer();
766}
767