LiveVariables.cpp revision 1d5e8196c02ade7d2253165e99436ce415de9fda
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/ADT/DepthFirstIterator.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/Config/alloca.h"
39#include <algorithm>
40using namespace llvm;
41
42char LiveVariables::ID = 0;
43static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
44
45void LiveVariables::VarInfo::dump() const {
46  cerr << "  Alive in blocks: ";
47  for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
48    if (AliveBlocks[i]) cerr << i << ", ";
49  cerr << "  Used in blocks: ";
50  for (unsigned i = 0, e = UsedBlocks.size(); i != e; ++i)
51    if (UsedBlocks[i]) cerr << i << ", ";
52  cerr << "\n  Killed by:";
53  if (Kills.empty())
54    cerr << " No instructions.\n";
55  else {
56    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
57      cerr << "\n    #" << i << ": " << *Kills[i];
58    cerr << "\n";
59  }
60}
61
62/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
63LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
64  assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
65         "getVarInfo: not a virtual register!");
66  RegIdx -= TargetRegisterInfo::FirstVirtualRegister;
67  if (RegIdx >= VirtRegInfo.size()) {
68    if (RegIdx >= 2*VirtRegInfo.size())
69      VirtRegInfo.resize(RegIdx*2);
70    else
71      VirtRegInfo.resize(2*VirtRegInfo.size());
72  }
73  VarInfo &VI = VirtRegInfo[RegIdx];
74  VI.AliveBlocks.resize(MF->getNumBlockIDs());
75  VI.UsedBlocks.resize(MF->getNumBlockIDs());
76  return VI;
77}
78
79/// KillsRegister - Returns true if the machine instruction kills the specified
80/// register.
81bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
82  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
83    const MachineOperand &MO = MI->getOperand(i);
84    if (MO.isRegister() && MO.isKill()) {
85      unsigned MOReg = MO.getReg();
86      if (MOReg == Reg ||
87          (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
88           TargetRegisterInfo::isPhysicalRegister(Reg) &&
89           RegInfo->isSubRegister(MOReg, Reg)))
90        return true;
91    }
92  }
93  return false;
94}
95
96/// RegisterDefIsDead - Returns true if the register is dead in this machine
97/// instruction.
98bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
99  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
100    const MachineOperand &MO = MI->getOperand(i);
101    if (MO.isRegister() && MO.isDead()) {
102      unsigned MOReg = MO.getReg();
103      if ((MOReg == Reg) ||
104          (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
105           TargetRegisterInfo::isPhysicalRegister(Reg) &&
106           RegInfo->isSubRegister(MOReg, Reg)))
107        return true;
108    }
109  }
110  return false;
111}
112
113/// ModifiesRegister - Returns true if the machine instruction modifies the
114/// register.
115bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const {
116  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
117    const MachineOperand &MO = MI->getOperand(i);
118    if (MO.isRegister() && MO.isDef() && MO.getReg() == Reg)
119      return true;
120  }
121  return false;
122}
123
124void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
125                                            MachineBasicBlock *DefBlock,
126                                            MachineBasicBlock *MBB,
127                                    std::vector<MachineBasicBlock*> &WorkList) {
128  unsigned BBNum = MBB->getNumber();
129
130  // Check to see if this basic block is one of the killing blocks.  If so,
131  // remove it.
132  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
133    if (VRInfo.Kills[i]->getParent() == MBB) {
134      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
135      break;
136    }
137
138  if (MBB == DefBlock) return;  // Terminate recursion
139
140  if (VRInfo.AliveBlocks[BBNum])
141    return;  // We already know the block is live
142
143  // Mark the variable known alive in this bb
144  VRInfo.AliveBlocks[BBNum] = true;
145
146  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
147         E = MBB->pred_rend(); PI != E; ++PI)
148    WorkList.push_back(*PI);
149}
150
151void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
152                                            MachineBasicBlock *DefBlock,
153                                            MachineBasicBlock *MBB) {
154  std::vector<MachineBasicBlock*> WorkList;
155  MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
156
157  while (!WorkList.empty()) {
158    MachineBasicBlock *Pred = WorkList.back();
159    WorkList.pop_back();
160    MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
161  }
162}
163
164void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
165                                     MachineInstr *MI) {
166  const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
167  assert(MRI.getVRegDef(reg) && "Register use before def!");
168
169  unsigned BBNum = MBB->getNumber();
170
171  VarInfo& VRInfo = getVarInfo(reg);
172  VRInfo.UsedBlocks[BBNum] = true;
173  VRInfo.NumUses++;
174
175  // Check to see if this basic block is already a kill block.
176  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
177    // Yes, this register is killed in this basic block already. Increase the
178    // live range by updating the kill instruction.
179    VRInfo.Kills.back() = MI;
180    return;
181  }
182
183#ifndef NDEBUG
184  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
185    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
186#endif
187
188  assert(MBB != MRI.getVRegDef(reg)->getParent() &&
189         "Should have kill for defblock!");
190
191  // Add a new kill entry for this basic block. If this virtual register is
192  // already marked as alive in this basic block, that means it is alive in at
193  // least one of the successor blocks, it's not a kill.
194  if (!VRInfo.AliveBlocks[BBNum])
195    VRInfo.Kills.push_back(MI);
196
197  // Update all dominating blocks to mark them as "known live".
198  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
199         E = MBB->pred_end(); PI != E; ++PI)
200    MarkVirtRegAliveInBlock(VRInfo, MRI.getVRegDef(reg)->getParent(), *PI);
201}
202
203/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
204/// implicit defs to a machine instruction if there was an earlier def of its
205/// super-register.
206void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
207  // Turn previous partial def's into read/mod/write.
208  for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) {
209    MachineInstr *Def = PhysRegPartDef[Reg][i];
210
211    // First one is just a def. This means the use is reading some undef bits.
212    if (i != 0)
213      Def->addOperand(MachineOperand::CreateReg(Reg,
214                                                false /*IsDef*/,
215                                                true  /*IsImp*/,
216                                                true  /*IsKill*/));
217
218    Def->addOperand(MachineOperand::CreateReg(Reg,
219                                              true  /*IsDef*/,
220                                              true  /*IsImp*/));
221  }
222
223  PhysRegPartDef[Reg].clear();
224
225  // There was an earlier def of a super-register. Add implicit def to that MI.
226  //
227  //   A: EAX = ...
228  //   B: ... = AX
229  //
230  // Add implicit def to A.
231  if (PhysRegInfo[Reg] && PhysRegInfo[Reg] != PhysRegPartUse[Reg] &&
232      !PhysRegUsed[Reg]) {
233    MachineInstr *Def = PhysRegInfo[Reg];
234
235    if (!Def->findRegisterDefOperand(Reg))
236      Def->addOperand(MachineOperand::CreateReg(Reg,
237                                                true  /*IsDef*/,
238                                                true  /*IsImp*/));
239  }
240
241  // There is a now a proper use, forget about the last partial use.
242  PhysRegPartUse[Reg] = NULL;
243  PhysRegInfo[Reg] = MI;
244  PhysRegUsed[Reg] = true;
245
246  // Now reset the use information for the sub-registers.
247  for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
248       unsigned SubReg = *SubRegs; ++SubRegs) {
249    PhysRegPartUse[SubReg] = NULL;
250    PhysRegInfo[SubReg] = MI;
251    PhysRegUsed[SubReg] = true;
252  }
253
254  for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
255       unsigned SuperReg = *SuperRegs; ++SuperRegs) {
256    // Remember the partial use of this super-register if it was previously
257    // defined.
258    bool HasPrevDef = PhysRegInfo[SuperReg] != NULL;
259
260    if (!HasPrevDef)
261      // No need to go up more levels. A def of a register also sets its sub-
262      // registers. So if PhysRegInfo[SuperReg] is NULL, it means SuperReg's
263      // super-registers are not previously defined.
264      for (const unsigned *SSRegs = RegInfo->getSuperRegisters(SuperReg);
265           unsigned SSReg = *SSRegs; ++SSRegs)
266        if (PhysRegInfo[SSReg] != NULL) {
267          HasPrevDef = true;
268          break;
269        }
270
271    if (HasPrevDef) {
272      PhysRegInfo[SuperReg] = MI;
273      PhysRegPartUse[SuperReg] = MI;
274    }
275  }
276}
277
278/// addRegisterKills - For all of a register's sub-registers that are killed in
279/// at this machine instruction, mark them as "killed". (If the machine operand
280/// isn't found, add it first.)
281void LiveVariables::addRegisterKills(unsigned Reg, MachineInstr *MI,
282                                     SmallSet<unsigned, 4> &SubKills) {
283  if (SubKills.count(Reg) == 0) {
284    MI->addRegisterKilled(Reg, RegInfo, true);
285    return;
286  }
287
288  for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
289       unsigned SubReg = *SubRegs; ++SubRegs)
290    addRegisterKills(SubReg, MI, SubKills);
291}
292
293/// HandlePhysRegKill - The recursive version of HandlePhysRegKill. Returns true
294/// if:
295///
296///   - The register has no sub-registers and the machine instruction is the
297///     last def/use of the register, or
298///   - The register has sub-registers and none of them are killed elsewhere.
299///
300/// SubKills is filled with the set of sub-registers that are killed elsewhere.
301bool LiveVariables::HandlePhysRegKill(unsigned Reg, const MachineInstr *RefMI,
302                                      SmallSet<unsigned, 4> &SubKills) {
303  const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
304
305  for (; unsigned SubReg = *SubRegs; ++SubRegs) {
306    const MachineInstr *LastRef = PhysRegInfo[SubReg];
307
308    if (LastRef != RefMI ||
309        !HandlePhysRegKill(SubReg, RefMI, SubKills))
310      SubKills.insert(SubReg);
311  }
312
313  if (*SubRegs == 0) {
314    // No sub-registers, just check if reg is killed by RefMI.
315    if (PhysRegInfo[Reg] == RefMI)
316      return true;
317  } else if (SubKills.empty()) {
318    // None of the sub-registers are killed elsewhere.
319    return true;
320  }
321
322  return false;
323}
324
325/// HandlePhysRegKill - Returns true if the whole register is killed in the
326/// machine instruction. If only some of its sub-registers are killed in this
327/// machine instruction, then mark those as killed and return false.
328bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI) {
329  SmallSet<unsigned, 4> SubKills;
330
331  if (HandlePhysRegKill(Reg, RefMI, SubKills)) {
332    // This machine instruction kills this register.
333    RefMI->addRegisterKilled(Reg, RegInfo, true);
334    return true;
335  }
336
337  // Some sub-registers are killed by another machine instruction.
338  for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
339       unsigned SubReg = *SubRegs; ++SubRegs)
340    addRegisterKills(SubReg, RefMI, SubKills);
341
342  return false;
343}
344
345void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
346  // Does this kill a previous version of this register?
347  if (MachineInstr *LastRef = PhysRegInfo[Reg]) {
348    if (PhysRegUsed[Reg]) {
349      if (!HandlePhysRegKill(Reg, LastRef)) {
350        if (PhysRegPartUse[Reg])
351          PhysRegPartUse[Reg]->addRegisterKilled(Reg, RegInfo, true);
352      }
353    } else if (PhysRegPartUse[Reg]) {
354      // Add implicit use / kill to last partial use.
355      PhysRegPartUse[Reg]->addRegisterKilled(Reg, RegInfo, true);
356    } else if (LastRef != MI) {
357      // Defined, but not used. However, watch out for cases where a super-reg
358      // is also defined on the same MI.
359      LastRef->addRegisterDead(Reg, RegInfo);
360    }
361  }
362
363  for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
364       unsigned SubReg = *SubRegs; ++SubRegs) {
365    if (MachineInstr *LastRef = PhysRegInfo[SubReg]) {
366      if (PhysRegUsed[SubReg]) {
367        if (!HandlePhysRegKill(SubReg, LastRef)) {
368          if (PhysRegPartUse[SubReg])
369            PhysRegPartUse[SubReg]->addRegisterKilled(SubReg, RegInfo, true);
370        }
371      } else if (PhysRegPartUse[SubReg]) {
372        // Add implicit use / kill to last use of a sub-register.
373        PhysRegPartUse[SubReg]->addRegisterKilled(SubReg, RegInfo, true);
374      } else if (LastRef != MI) {
375        // This must be a def of the subreg on the same MI.
376        LastRef->addRegisterDead(SubReg, RegInfo);
377      }
378    }
379  }
380
381  if (MI) {
382    for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
383         unsigned SuperReg = *SuperRegs; ++SuperRegs) {
384      if (PhysRegInfo[SuperReg] && PhysRegInfo[SuperReg] != MI) {
385        // The larger register is previously defined. Now a smaller part is
386        // being re-defined. Treat it as read/mod/write.
387        // EAX =
388        // AX  =        EAX<imp-use,kill>, EAX<imp-def>
389        MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/,
390                                                 true/*IsImp*/,true/*IsKill*/));
391        MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/,
392                                                 true/*IsImp*/));
393        PhysRegInfo[SuperReg] = MI;
394        PhysRegUsed[SuperReg] = false;
395        PhysRegPartUse[SuperReg] = NULL;
396      } else {
397        // Remember this partial def.
398        PhysRegPartDef[SuperReg].push_back(MI);
399      }
400    }
401
402    PhysRegInfo[Reg] = MI;
403    PhysRegUsed[Reg] = false;
404    PhysRegPartDef[Reg].clear();
405    PhysRegPartUse[Reg] = NULL;
406
407    for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
408         unsigned SubReg = *SubRegs; ++SubRegs) {
409      PhysRegInfo[SubReg] = MI;
410      PhysRegUsed[SubReg] = false;
411      PhysRegPartDef[SubReg].clear();
412      PhysRegPartUse[SubReg] = NULL;
413    }
414  }
415}
416
417bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
418  MF = &mf;
419  RegInfo = MF->getTarget().getRegisterInfo();
420  MachineRegisterInfo& MRI = mf.getRegInfo();
421  assert(RegInfo && "Target doesn't have register information?");
422
423  ReservedRegisters = RegInfo->getReservedRegs(mf);
424
425  unsigned NumRegs = RegInfo->getNumRegs();
426  PhysRegInfo = new MachineInstr*[NumRegs];
427  PhysRegUsed = new bool[NumRegs];
428  PhysRegPartUse = new MachineInstr*[NumRegs];
429  PhysRegPartDef = new SmallVector<MachineInstr*,4>[NumRegs];
430  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
431  std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
432  std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
433  std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
434
435  /// Get some space for a respectable number of registers.
436  VirtRegInfo.resize(64);
437
438  analyzePHINodes(mf);
439
440  // Calculate live variable information in depth first order on the CFG of the
441  // function.  This guarantees that we will see the definition of a virtual
442  // register before its uses due to dominance properties of SSA (except for PHI
443  // nodes, which are treated as a special case).
444  MachineBasicBlock *Entry = MF->begin();
445  SmallPtrSet<MachineBasicBlock*,16> Visited;
446
447  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
448         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
449       DFI != E; ++DFI) {
450    MachineBasicBlock *MBB = *DFI;
451
452    // Mark live-in registers as live-in.
453    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
454           EE = MBB->livein_end(); II != EE; ++II) {
455      assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
456             "Cannot have a live-in virtual register!");
457      HandlePhysRegDef(*II, 0);
458    }
459
460    // Loop over all of the instructions, processing them.
461    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
462         I != E; ++I) {
463      MachineInstr *MI = I;
464
465      // Process all of the operands of the instruction...
466      unsigned NumOperandsToProcess = MI->getNumOperands();
467
468      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
469      // of the uses.  They will be handled in other basic blocks.
470      if (MI->getOpcode() == TargetInstrInfo::PHI)
471        NumOperandsToProcess = 1;
472
473      // Process all uses.
474      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
475        const MachineOperand &MO = MI->getOperand(i);
476
477        if (MO.isRegister() && MO.isUse() && MO.getReg()) {
478          unsigned MOReg = MO.getReg();
479
480          if (TargetRegisterInfo::isVirtualRegister(MOReg))
481            HandleVirtRegUse(MOReg, MBB, MI);
482          else if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
483                   !ReservedRegisters[MOReg])
484            HandlePhysRegUse(MOReg, MI);
485        }
486      }
487
488      // Process all defs.
489      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
490        const MachineOperand &MO = MI->getOperand(i);
491
492        if (MO.isRegister() && MO.isDef() && MO.getReg()) {
493          unsigned MOReg = MO.getReg();
494
495          if (TargetRegisterInfo::isVirtualRegister(MOReg)) {
496            VarInfo &VRInfo = getVarInfo(MOReg);
497
498            if (VRInfo.AliveBlocks.none())
499              // If vr is not alive in any block, then defaults to dead.
500              VRInfo.Kills.push_back(MI);
501          } else if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
502                     !ReservedRegisters[MOReg]) {
503            HandlePhysRegDef(MOReg, MI);
504          }
505        }
506      }
507    }
508
509    // Handle any virtual assignments from PHI nodes which might be at the
510    // bottom of this basic block.  We check all of our successor blocks to see
511    // if they have PHI nodes, and if so, we simulate an assignment at the end
512    // of the current block.
513    if (!PHIVarInfo[MBB->getNumber()].empty()) {
514      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
515
516      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
517             E = VarInfoVec.end(); I != E; ++I)
518        // Mark it alive only in the block we are representing.
519        MarkVirtRegAliveInBlock(getVarInfo(*I), MRI.getVRegDef(*I)->getParent(),
520                                MBB);
521    }
522
523    // Finally, if the last instruction in the block is a return, make sure to
524    // mark it as using all of the live-out values in the function.
525    if (!MBB->empty() && MBB->back().getDesc().isReturn()) {
526      MachineInstr *Ret = &MBB->back();
527
528      for (MachineRegisterInfo::liveout_iterator
529           I = MF->getRegInfo().liveout_begin(),
530           E = MF->getRegInfo().liveout_end(); I != E; ++I) {
531        assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
532               "Cannot have a live-in virtual register!");
533        HandlePhysRegUse(*I, Ret);
534
535        // Add live-out registers as implicit uses.
536        if (Ret->findRegisterUseOperandIdx(*I) == -1)
537          Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
538      }
539    }
540
541    // Loop over PhysRegInfo, killing any registers that are available at the
542    // end of the basic block. This also resets the PhysRegInfo map.
543    for (unsigned i = 0; i != NumRegs; ++i)
544      if (PhysRegInfo[i])
545        HandlePhysRegDef(i, 0);
546
547    // Clear some states between BB's. These are purely local information.
548    for (unsigned i = 0; i != NumRegs; ++i)
549      PhysRegPartDef[i].clear();
550
551    std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
552    std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
553    std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
554  }
555
556  // Convert and transfer the dead / killed information we have gathered into
557  // VirtRegInfo onto MI's.
558  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
559    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j)
560      if (VirtRegInfo[i].Kills[j] ==
561          MRI.getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister))
562        VirtRegInfo[i]
563          .Kills[j]->addRegisterDead(i +
564                                     TargetRegisterInfo::FirstVirtualRegister,
565                                     RegInfo);
566      else
567        VirtRegInfo[i]
568          .Kills[j]->addRegisterKilled(i +
569                                       TargetRegisterInfo::FirstVirtualRegister,
570                                       RegInfo);
571
572  // Check to make sure there are no unreachable blocks in the MC CFG for the
573  // function.  If so, it is due to a bug in the instruction selector or some
574  // other part of the code generator if this happens.
575#ifndef NDEBUG
576  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
577    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
578#endif
579
580  delete[] PhysRegInfo;
581  delete[] PhysRegUsed;
582  delete[] PhysRegPartUse;
583  delete[] PhysRegPartDef;
584  delete[] PHIVarInfo;
585
586  return false;
587}
588
589/// instructionChanged - When the address of an instruction changes, this method
590/// should be called so that live variables can update its internal data
591/// structures.  This removes the records for OldMI, transfering them to the
592/// records for NewMI.
593void LiveVariables::instructionChanged(MachineInstr *OldMI,
594                                       MachineInstr *NewMI) {
595  // If the instruction defines any virtual registers, update the VarInfo,
596  // kill and dead information for the instruction.
597  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
598    MachineOperand &MO = OldMI->getOperand(i);
599    if (MO.isRegister() && MO.getReg() &&
600        TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
601      unsigned Reg = MO.getReg();
602      VarInfo &VI = getVarInfo(Reg);
603      if (MO.isDef()) {
604        if (MO.isDead()) {
605          MO.setIsDead(false);
606          addVirtualRegisterDead(Reg, NewMI);
607        }
608      }
609      if (MO.isKill()) {
610        MO.setIsKill(false);
611        addVirtualRegisterKilled(Reg, NewMI);
612      }
613      // If this is a kill of the value, update the VI kills list.
614      if (VI.removeKill(OldMI))
615        VI.Kills.push_back(NewMI);   // Yes, there was a kill of it
616    }
617  }
618}
619
620/// removeVirtualRegistersKilled - Remove all killed info for the specified
621/// instruction.
622void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
623  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
624    MachineOperand &MO = MI->getOperand(i);
625    if (MO.isRegister() && MO.isKill()) {
626      MO.setIsKill(false);
627      unsigned Reg = MO.getReg();
628      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
629        bool removed = getVarInfo(Reg).removeKill(MI);
630        assert(removed && "kill not in register's VarInfo?");
631      }
632    }
633  }
634}
635
636/// removeVirtualRegistersDead - Remove all of the dead registers for the
637/// specified instruction from the live variable information.
638void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) {
639  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
640    MachineOperand &MO = MI->getOperand(i);
641    if (MO.isRegister() && MO.isDead()) {
642      MO.setIsDead(false);
643      unsigned Reg = MO.getReg();
644      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
645        bool removed = getVarInfo(Reg).removeKill(MI);
646        assert(removed && "kill not in register's VarInfo?");
647      }
648    }
649  }
650}
651
652/// analyzePHINodes - Gather information about the PHI nodes in here. In
653/// particular, we want to map the variable information of a virtual register
654/// which is used in a PHI node. We map that to the BB the vreg is coming from.
655///
656void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
657  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
658       I != E; ++I)
659    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
660         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
661      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
662        PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
663          .push_back(BBI->getOperand(i).getReg());
664}
665