LiveVariables.cpp revision 44b94c2185f4c1b826ec6003d25370cf2efac219
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/Target/MRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/Config/alloca.h"
37using namespace llvm;
38
39static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis");
40
41LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
42  assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
43         "getVarInfo: not a virtual register!");
44  RegIdx -= MRegisterInfo::FirstVirtualRegister;
45  if (RegIdx >= VirtRegInfo.size()) {
46    if (RegIdx >= 2*VirtRegInfo.size())
47      VirtRegInfo.resize(RegIdx*2);
48    else
49      VirtRegInfo.resize(2*VirtRegInfo.size());
50  }
51  return VirtRegInfo[RegIdx];
52}
53
54
55
56void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
57                                            MachineBasicBlock *MBB) {
58  unsigned BBNum = MBB->getNumber();
59
60  // Check to see if this basic block is one of the killing blocks.  If so,
61  // remove it...
62  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
63    if (VRInfo.Kills[i]->getParent() == MBB) {
64      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
65      break;
66    }
67
68  if (MBB == VRInfo.DefInst->getParent()) return;  // Terminate recursion
69
70  if (VRInfo.AliveBlocks.size() <= BBNum)
71    VRInfo.AliveBlocks.resize(BBNum+1);  // Make space...
72
73  if (VRInfo.AliveBlocks[BBNum])
74    return;  // We already know the block is live
75
76  // Mark the variable known alive in this bb
77  VRInfo.AliveBlocks[BBNum] = true;
78
79  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
80         E = MBB->pred_end(); PI != E; ++PI)
81    MarkVirtRegAliveInBlock(VRInfo, *PI);
82}
83
84void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
85                                     MachineInstr *MI) {
86  assert(VRInfo.DefInst && "Register use before def!");
87
88  // Check to see if this basic block is already a kill block...
89  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
90    // Yes, this register is killed in this basic block already.  Increase the
91    // live range by updating the kill instruction.
92    VRInfo.Kills.back() = MI;
93    return;
94  }
95
96#ifndef NDEBUG
97  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
98    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
99#endif
100
101  assert(MBB != VRInfo.DefInst->getParent() &&
102         "Should have kill for defblock!");
103
104  // Add a new kill entry for this basic block.
105  VRInfo.Kills.push_back(MI);
106
107  // Update all dominating blocks to mark them known live.
108  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
109         E = MBB->pred_end(); PI != E; ++PI)
110    MarkVirtRegAliveInBlock(VRInfo, *PI);
111}
112
113void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
114  PhysRegInfo[Reg] = MI;
115  PhysRegUsed[Reg] = true;
116
117  for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
118       unsigned Alias = *AliasSet; ++AliasSet) {
119    PhysRegInfo[Alias] = MI;
120    PhysRegUsed[Alias] = true;
121  }
122}
123
124void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
125  // Does this kill a previous version of this register?
126  if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
127    if (PhysRegUsed[Reg])
128      RegistersKilled[LastUse].push_back(Reg);
129    else
130      RegistersDead[LastUse].push_back(Reg);
131  }
132  PhysRegInfo[Reg] = MI;
133  PhysRegUsed[Reg] = false;
134
135  for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
136       unsigned Alias = *AliasSet; ++AliasSet) {
137    if (MachineInstr *LastUse = PhysRegInfo[Alias]) {
138      if (PhysRegUsed[Alias])
139        RegistersKilled[LastUse].push_back(Alias);
140      else
141        RegistersDead[LastUse].push_back(Alias);
142    }
143    PhysRegInfo[Alias] = MI;
144    PhysRegUsed[Alias] = false;
145  }
146}
147
148bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
149  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
150  RegInfo = MF.getTarget().getRegisterInfo();
151  assert(RegInfo && "Target doesn't have register information?");
152
153  AllocatablePhysicalRegisters = RegInfo->getAllocatableSet(MF);
154
155  // PhysRegInfo - Keep track of which instruction was the last use of a
156  // physical register.  This is a purely local property, because all physical
157  // register references as presumed dead across basic blocks.
158  //
159  PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) *
160                                       RegInfo->getNumRegs());
161  PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs());
162  std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0);
163
164  /// Get some space for a respectable number of registers...
165  VirtRegInfo.resize(64);
166
167  // Mark live-in registers as live-in.
168  for (MachineFunction::livein_iterator I = MF.livein_begin(),
169         E = MF.livein_end(); I != E; ++I) {
170    assert(MRegisterInfo::isPhysicalRegister(I->first) &&
171           "Cannot have a live-in virtual register!");
172    HandlePhysRegDef(I->first, 0);
173  }
174
175  // Calculate live variable information in depth first order on the CFG of the
176  // function.  This guarantees that we will see the definition of a virtual
177  // register before its uses due to dominance properties of SSA (except for PHI
178  // nodes, which are treated as a special case).
179  //
180  MachineBasicBlock *Entry = MF.begin();
181  std::set<MachineBasicBlock*> Visited;
182  for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited),
183         E = df_ext_end(Entry, Visited); DFI != E; ++DFI) {
184    MachineBasicBlock *MBB = *DFI;
185    unsigned BBNum = MBB->getNumber();
186
187    // Loop over all of the instructions, processing them.
188    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
189         I != E; ++I) {
190      MachineInstr *MI = I;
191      const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
192
193      // Process all of the operands of the instruction...
194      unsigned NumOperandsToProcess = MI->getNumOperands();
195
196      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
197      // of the uses.  They will be handled in other basic blocks.
198      if (MI->getOpcode() == TargetInstrInfo::PHI)
199        NumOperandsToProcess = 1;
200
201      // Loop over implicit uses, using them.
202      for (const unsigned *ImplicitUses = MID.ImplicitUses;
203           *ImplicitUses; ++ImplicitUses)
204        HandlePhysRegUse(*ImplicitUses, MI);
205
206      // Process all explicit uses...
207      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
208        MachineOperand &MO = MI->getOperand(i);
209        if (MO.isUse() && MO.isRegister() && MO.getReg()) {
210          if (MRegisterInfo::isVirtualRegister(MO.getReg())){
211            HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
212          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
213                     AllocatablePhysicalRegisters[MO.getReg()]) {
214            HandlePhysRegUse(MO.getReg(), MI);
215          }
216        }
217      }
218
219      // Loop over implicit defs, defining them.
220      for (const unsigned *ImplicitDefs = MID.ImplicitDefs;
221           *ImplicitDefs; ++ImplicitDefs)
222        HandlePhysRegDef(*ImplicitDefs, MI);
223
224      // Process all explicit defs...
225      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
226        MachineOperand &MO = MI->getOperand(i);
227        if (MO.isDef() && MO.isRegister() && MO.getReg()) {
228          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
229            VarInfo &VRInfo = getVarInfo(MO.getReg());
230
231            assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
232            VRInfo.DefInst = MI;
233            // Defaults to dead
234            VRInfo.Kills.push_back(MI);
235          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
236                     AllocatablePhysicalRegisters[MO.getReg()]) {
237            HandlePhysRegDef(MO.getReg(), MI);
238          }
239        }
240      }
241    }
242
243    // Handle any virtual assignments from PHI nodes which might be at the
244    // bottom of this basic block.  We check all of our successor blocks to see
245    // if they have PHI nodes, and if so, we simulate an assignment at the end
246    // of the current block.
247    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
248           E = MBB->succ_end(); SI != E; ++SI) {
249      MachineBasicBlock *Succ = *SI;
250
251      // PHI nodes are guaranteed to be at the top of the block...
252      for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end();
253           MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) {
254        for (unsigned i = 1; ; i += 2) {
255          assert(MI->getNumOperands() > i+1 &&
256                 "Didn't find an entry for our predecessor??");
257          if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
258            MachineOperand &MO = MI->getOperand(i);
259            if (!MO.getVRegValueOrNull()) {
260              VarInfo &VRInfo = getVarInfo(MO.getReg());
261
262              // Only mark it alive only in the block we are representing...
263              MarkVirtRegAliveInBlock(VRInfo, MBB);
264              break;   // Found the PHI entry for this block...
265            }
266          }
267        }
268      }
269    }
270
271    // Finally, if the last block in the function is a return, make sure to mark
272    // it as using all of the live-out values in the function.
273    if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
274      MachineInstr *Ret = &MBB->back();
275      for (MachineFunction::liveout_iterator I = MF.liveout_begin(),
276             E = MF.liveout_end(); I != E; ++I) {
277        assert(MRegisterInfo::isPhysicalRegister(*I) &&
278               "Cannot have a live-in virtual register!");
279        HandlePhysRegUse(*I, Ret);
280      }
281    }
282
283    // Loop over PhysRegInfo, killing any registers that are available at the
284    // end of the basic block.  This also resets the PhysRegInfo map.
285    for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
286      if (PhysRegInfo[i])
287        HandlePhysRegDef(i, 0);
288  }
289
290  // Convert the information we have gathered into VirtRegInfo and transform it
291  // into a form usable by RegistersKilled.
292  //
293  for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
294    for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
295      if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
296        RegistersDead[VirtRegInfo[i].Kills[j]].push_back(
297                                    i + MRegisterInfo::FirstVirtualRegister);
298
299      else
300        RegistersKilled[VirtRegInfo[i].Kills[j]].push_back(
301                                    i + MRegisterInfo::FirstVirtualRegister);
302    }
303
304  // Check to make sure there are no unreachable blocks in the MC CFG for the
305  // function.  If so, it is due to a bug in the instruction selector or some
306  // other part of the code generator if this happens.
307#ifndef NDEBUG
308  for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i)
309    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
310#endif
311
312  return false;
313}
314
315/// instructionChanged - When the address of an instruction changes, this
316/// method should be called so that live variables can update its internal
317/// data structures.  This removes the records for OldMI, transfering them to
318/// the records for NewMI.
319void LiveVariables::instructionChanged(MachineInstr *OldMI,
320                                       MachineInstr *NewMI) {
321  // If the instruction defines any virtual registers, update the VarInfo for
322  // the instruction.
323  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
324    MachineOperand &MO = OldMI->getOperand(i);
325    if (MO.isRegister() && MO.getReg() &&
326        MRegisterInfo::isVirtualRegister(MO.getReg())) {
327      unsigned Reg = MO.getReg();
328      VarInfo &VI = getVarInfo(Reg);
329      if (MO.isDef()) {
330        // Update the defining instruction.
331        if (VI.DefInst == OldMI)
332          VI.DefInst = NewMI;
333      }
334      if (MO.isUse()) {
335        // If this is a kill of the value, update the VI kills list.
336        if (VI.removeKill(OldMI))
337          VI.Kills.push_back(NewMI);   // Yes, there was a kill of it
338      }
339    }
340  }
341
342  // Move the killed information over...
343  killed_iterator I, E;
344  tie(I, E) = killed_range(OldMI);
345  if (I != E) {
346    std::vector<unsigned> &V = RegistersKilled[NewMI];
347    bool WasEmpty = V.empty();
348    V.insert(V.end(), I, E);
349    if (!WasEmpty)
350      std::sort(V.begin(), V.end());   // Keep the reg list sorted.
351    RegistersKilled.erase(OldMI);
352  }
353
354  // Move the dead information over...
355  tie(I, E) = dead_range(OldMI);
356  if (I != E) {
357    std::vector<unsigned> &V = RegistersDead[NewMI];
358    bool WasEmpty = V.empty();
359    V.insert(V.end(), I, E);
360    if (!WasEmpty)
361      std::sort(V.begin(), V.end());   // Keep the reg list sorted.
362    RegistersDead.erase(OldMI);
363  }
364}
365