SelectionDAGBuilder.cpp revision 134f78cf4166841227ad125363066507f484ad5d
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/Constants.h"
24#include "llvm/CallingConv.h"
25#include "llvm/DebugInfo.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/GlobalVariable.h"
29#include "llvm/InlineAsm.h"
30#include "llvm/Instructions.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/IntrinsicInst.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Module.h"
35#include "llvm/CodeGen/Analysis.h"
36#include "llvm/CodeGen/FastISel.h"
37#include "llvm/CodeGen/FunctionLoweringInfo.h"
38#include "llvm/CodeGen/GCStrategy.h"
39#include "llvm/CodeGen/GCMetadata.h"
40#include "llvm/CodeGen/MachineFunction.h"
41#include "llvm/CodeGen/MachineFrameInfo.h"
42#include "llvm/CodeGen/MachineInstrBuilder.h"
43#include "llvm/CodeGen/MachineJumpTableInfo.h"
44#include "llvm/CodeGen/MachineModuleInfo.h"
45#include "llvm/CodeGen/MachineRegisterInfo.h"
46#include "llvm/CodeGen/SelectionDAG.h"
47#include "llvm/DataLayout.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLibraryInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetOptions.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/IntegersSubsetMapping.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/ErrorHandling.h"
58#include "llvm/Support/MathExtras.h"
59#include "llvm/Support/raw_ostream.h"
60#include <algorithm>
61using namespace llvm;
62
63/// LimitFloatPrecision - Generate low-precision inline sequences for
64/// some float libcalls (6, 8 or 12 bits).
65static unsigned LimitFloatPrecision;
66
67static cl::opt<unsigned, true>
68LimitFPPrecision("limit-float-precision",
69                 cl::desc("Generate low-precision inline sequences "
70                          "for some float libcalls"),
71                 cl::location(LimitFloatPrecision),
72                 cl::init(0));
73
74// Limit the width of DAG chains. This is important in general to prevent
75// prevent DAG-based analysis from blowing up. For example, alias analysis and
76// load clustering may not complete in reasonable time. It is difficult to
77// recognize and avoid this situation within each individual analysis, and
78// future analyses are likely to have the same behavior. Limiting DAG width is
79// the safe approach, and will be especially important with global DAGs.
80//
81// MaxParallelChains default is arbitrarily high to avoid affecting
82// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
83// sequence over this should have been converted to llvm.memcpy by the
84// frontend. It easy to induce this behavior with .ll code such as:
85// %buffer = alloca [4096 x i8]
86// %data = load [4096 x i8]* %argPtr
87// store [4096 x i8] %data, [4096 x i8]* %buffer
88static const unsigned MaxParallelChains = 64;
89
90static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
91                                      const SDValue *Parts, unsigned NumParts,
92                                      EVT PartVT, EVT ValueVT, const Value *V);
93
94/// getCopyFromParts - Create a value that contains the specified legal parts
95/// combined into the value they represent.  If the parts combine to a type
96/// larger then ValueVT then AssertOp can be used to specify whether the extra
97/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
98/// (ISD::AssertSext).
99static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
100                                const SDValue *Parts,
101                                unsigned NumParts, EVT PartVT, EVT ValueVT,
102                                const Value *V,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
106                                  PartVT, ValueVT, V);
107
108  assert(NumParts > 0 && "No parts to assemble!");
109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
110  SDValue Val = Parts[0];
111
112  if (NumParts > 1) {
113    // Assemble the value from multiple parts.
114    if (ValueVT.isInteger()) {
115      unsigned PartBits = PartVT.getSizeInBits();
116      unsigned ValueBits = ValueVT.getSizeInBits();
117
118      // Assemble the power of 2 part.
119      unsigned RoundParts = NumParts & (NumParts - 1) ?
120        1 << Log2_32(NumParts) : NumParts;
121      unsigned RoundBits = PartBits * RoundParts;
122      EVT RoundVT = RoundBits == ValueBits ?
123        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
124      SDValue Lo, Hi;
125
126      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
127
128      if (RoundParts > 2) {
129        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
130                              PartVT, HalfVT, V);
131        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
132                              RoundParts / 2, PartVT, HalfVT, V);
133      } else {
134        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
135        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
136      }
137
138      if (TLI.isBigEndian())
139        std::swap(Lo, Hi);
140
141      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
142
143      if (RoundParts < NumParts) {
144        // Assemble the trailing non-power-of-2 part.
145        unsigned OddParts = NumParts - RoundParts;
146        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
147        Hi = getCopyFromParts(DAG, DL,
148                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
149
150        // Combine the round and odd parts.
151        Lo = Val;
152        if (TLI.isBigEndian())
153          std::swap(Lo, Hi);
154        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
155        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
156        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
157                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
158                                         TLI.getPointerTy()));
159        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
160        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
161      }
162    } else if (PartVT.isFloatingPoint()) {
163      // FP split into multiple FP parts (for ppcf128)
164      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
165             "Unexpected split");
166      SDValue Lo, Hi;
167      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
168      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
169      if (TLI.isBigEndian())
170        std::swap(Lo, Hi);
171      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
172    } else {
173      // FP split into integer parts (soft fp)
174      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
175             !PartVT.isVector() && "Unexpected split");
176      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
177      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
178    }
179  }
180
181  // There is now one part, held in Val.  Correct it to match ValueVT.
182  PartVT = Val.getValueType();
183
184  if (PartVT == ValueVT)
185    return Val;
186
187  if (PartVT.isInteger() && ValueVT.isInteger()) {
188    if (ValueVT.bitsLT(PartVT)) {
189      // For a truncate, see if we have any information to
190      // indicate whether the truncated bits will always be
191      // zero or sign-extension.
192      if (AssertOp != ISD::DELETED_NODE)
193        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
194                          DAG.getValueType(ValueVT));
195      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
196    }
197    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
198  }
199
200  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
201    // FP_ROUND's are always exact here.
202    if (ValueVT.bitsLT(Val.getValueType()))
203      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
204                         DAG.getTargetConstant(1, TLI.getPointerTy()));
205
206    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
207  }
208
209  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
210    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
211
212  llvm_unreachable("Unknown mismatch!");
213}
214
215/// getCopyFromPartsVector - Create a value that contains the specified legal
216/// parts combined into the value they represent.  If the parts combine to a
217/// type larger then ValueVT then AssertOp can be used to specify whether the
218/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
219/// ValueVT (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      EVT PartVT, EVT ValueVT, const Value *V) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT, RegisterVT;
231    unsigned NumIntermediates;
232    unsigned NumRegs =
233    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
234                               NumIntermediates, RegisterVT);
235    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
236    NumParts = NumRegs; // Silence a compiler warning.
237    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
238    assert(RegisterVT == Parts[0].getValueType() &&
239           "Part type doesn't match part!");
240
241    // Assemble the parts into intermediate operands.
242    SmallVector<SDValue, 8> Ops(NumIntermediates);
243    if (NumIntermediates == NumParts) {
244      // If the register was not expanded, truncate or copy the value,
245      // as appropriate.
246      for (unsigned i = 0; i != NumParts; ++i)
247        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
248                                  PartVT, IntermediateVT, V);
249    } else if (NumParts > 0) {
250      // If the intermediate type was expanded, build the intermediate
251      // operands from the parts.
252      assert(NumParts % NumIntermediates == 0 &&
253             "Must expand into a divisible number of parts!");
254      unsigned Factor = NumParts / NumIntermediates;
255      for (unsigned i = 0; i != NumIntermediates; ++i)
256        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
257                                  PartVT, IntermediateVT, V);
258    }
259
260    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
261    // intermediate operands.
262    Val = DAG.getNode(IntermediateVT.isVector() ?
263                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
264                      ValueVT, &Ops[0], NumIntermediates);
265  }
266
267  // There is now one part, held in Val.  Correct it to match ValueVT.
268  PartVT = Val.getValueType();
269
270  if (PartVT == ValueVT)
271    return Val;
272
273  if (PartVT.isVector()) {
274    // If the element type of the source/dest vectors are the same, but the
275    // parts vector has more elements than the value vector, then we have a
276    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
277    // elements we want.
278    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
279      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
280             "Cannot narrow, it would be a lossy transformation");
281      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
282                         DAG.getIntPtrConstant(0));
283    }
284
285    // Vector/Vector bitcast.
286    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
287      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
288
289    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
290      "Cannot handle this kind of promotion");
291    // Promoted vector extract
292    bool Smaller = ValueVT.bitsLE(PartVT);
293    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
294                       DL, ValueVT, Val);
295
296  }
297
298  // Trivial bitcast if the types are the same size and the destination
299  // vector type is legal.
300  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
301      TLI.isTypeLegal(ValueVT))
302    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
303
304  // Handle cases such as i8 -> <1 x i1>
305  if (ValueVT.getVectorNumElements() != 1) {
306    LLVMContext &Ctx = *DAG.getContext();
307    Twine ErrMsg("non-trivial scalar-to-vector conversion");
308    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
309      if (const CallInst *CI = dyn_cast<CallInst>(I))
310        if (isa<InlineAsm>(CI->getCalledValue()))
311          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
312      Ctx.emitError(I, ErrMsg);
313    } else {
314      Ctx.emitError(ErrMsg);
315    }
316    report_fatal_error("Cannot handle scalar-to-vector conversion!");
317  }
318
319  if (ValueVT.getVectorNumElements() == 1 &&
320      ValueVT.getVectorElementType() != PartVT) {
321    bool Smaller = ValueVT.bitsLE(PartVT);
322    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
323                       DL, ValueVT.getScalarType(), Val);
324  }
325
326  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
327}
328
329static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
330                                 SDValue Val, SDValue *Parts, unsigned NumParts,
331                                 EVT PartVT, const Value *V);
332
333/// getCopyToParts - Create a series of nodes that contain the specified value
334/// split into legal parts.  If the parts contain more bits than Val, then, for
335/// integers, ExtendKind can be used to specify how to generate the extra bits.
336static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
337                           SDValue Val, SDValue *Parts, unsigned NumParts,
338                           EVT PartVT, const Value *V,
339                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
340  EVT ValueVT = Val.getValueType();
341
342  // Handle the vector case separately.
343  if (ValueVT.isVector())
344    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
345
346  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
347  unsigned PartBits = PartVT.getSizeInBits();
348  unsigned OrigNumParts = NumParts;
349  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
350
351  if (NumParts == 0)
352    return;
353
354  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
355  if (PartVT == ValueVT) {
356    assert(NumParts == 1 && "No-op copy with multiple parts!");
357    Parts[0] = Val;
358    return;
359  }
360
361  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
362    // If the parts cover more bits than the value has, promote the value.
363    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
364      assert(NumParts == 1 && "Do not know what to promote to!");
365      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
366    } else {
367      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
368             ValueVT.isInteger() &&
369             "Unknown mismatch!");
370      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
371      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
372      if (PartVT == MVT::x86mmx)
373        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
374    }
375  } else if (PartBits == ValueVT.getSizeInBits()) {
376    // Different types of the same size.
377    assert(NumParts == 1 && PartVT != ValueVT);
378    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
379  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
380    // If the parts cover less bits than value has, truncate the value.
381    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
382           ValueVT.isInteger() &&
383           "Unknown mismatch!");
384    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
385    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
386    if (PartVT == MVT::x86mmx)
387      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
388  }
389
390  // The value may have changed - recompute ValueVT.
391  ValueVT = Val.getValueType();
392  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
393         "Failed to tile the value with PartVT!");
394
395  if (NumParts == 1) {
396    if (PartVT != ValueVT) {
397      LLVMContext &Ctx = *DAG.getContext();
398      Twine ErrMsg("scalar-to-vector conversion failed");
399      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
400        if (const CallInst *CI = dyn_cast<CallInst>(I))
401          if (isa<InlineAsm>(CI->getCalledValue()))
402            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
403        Ctx.emitError(I, ErrMsg);
404      } else {
405        Ctx.emitError(ErrMsg);
406      }
407    }
408
409    Parts[0] = Val;
410    return;
411  }
412
413  // Expand the value into multiple parts.
414  if (NumParts & (NumParts - 1)) {
415    // The number of parts is not a power of 2.  Split off and copy the tail.
416    assert(PartVT.isInteger() && ValueVT.isInteger() &&
417           "Do not know what to expand to!");
418    unsigned RoundParts = 1 << Log2_32(NumParts);
419    unsigned RoundBits = RoundParts * PartBits;
420    unsigned OddParts = NumParts - RoundParts;
421    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
422                                 DAG.getIntPtrConstant(RoundBits));
423    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
424
425    if (TLI.isBigEndian())
426      // The odd parts were reversed by getCopyToParts - unreverse them.
427      std::reverse(Parts + RoundParts, Parts + NumParts);
428
429    NumParts = RoundParts;
430    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
431    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
432  }
433
434  // The number of parts is a power of 2.  Repeatedly bisect the value using
435  // EXTRACT_ELEMENT.
436  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
437                         EVT::getIntegerVT(*DAG.getContext(),
438                                           ValueVT.getSizeInBits()),
439                         Val);
440
441  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
442    for (unsigned i = 0; i < NumParts; i += StepSize) {
443      unsigned ThisBits = StepSize * PartBits / 2;
444      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
445      SDValue &Part0 = Parts[i];
446      SDValue &Part1 = Parts[i+StepSize/2];
447
448      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
449                          ThisVT, Part0, DAG.getIntPtrConstant(1));
450      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451                          ThisVT, Part0, DAG.getIntPtrConstant(0));
452
453      if (ThisBits == PartBits && ThisVT != PartVT) {
454        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
455        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
456      }
457    }
458  }
459
460  if (TLI.isBigEndian())
461    std::reverse(Parts, Parts + OrigNumParts);
462}
463
464
465/// getCopyToPartsVector - Create a series of nodes that contain the specified
466/// value split into legal parts.
467static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
468                                 SDValue Val, SDValue *Parts, unsigned NumParts,
469                                 EVT PartVT, const Value *V) {
470  EVT ValueVT = Val.getValueType();
471  assert(ValueVT.isVector() && "Not a vector");
472  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
473
474  if (NumParts == 1) {
475    if (PartVT == ValueVT) {
476      // Nothing to do.
477    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
478      // Bitconvert vector->vector case.
479      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
480    } else if (PartVT.isVector() &&
481               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
482               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
483      EVT ElementVT = PartVT.getVectorElementType();
484      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
485      // undef elements.
486      SmallVector<SDValue, 16> Ops;
487      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
488        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
489                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
490
491      for (unsigned i = ValueVT.getVectorNumElements(),
492           e = PartVT.getVectorNumElements(); i != e; ++i)
493        Ops.push_back(DAG.getUNDEF(ElementVT));
494
495      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
496
497      // FIXME: Use CONCAT for 2x -> 4x.
498
499      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
500      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
501    } else if (PartVT.isVector() &&
502               PartVT.getVectorElementType().bitsGE(
503                 ValueVT.getVectorElementType()) &&
504               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
505
506      // Promoted vector extract
507      bool Smaller = PartVT.bitsLE(ValueVT);
508      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
509                        DL, PartVT, Val);
510    } else{
511      // Vector -> scalar conversion.
512      assert(ValueVT.getVectorNumElements() == 1 &&
513             "Only trivial vector-to-scalar conversions should get here!");
514      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
515                        PartVT, Val, DAG.getIntPtrConstant(0));
516
517      bool Smaller = ValueVT.bitsLE(PartVT);
518      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
519                         DL, PartVT, Val);
520    }
521
522    Parts[0] = Val;
523    return;
524  }
525
526  // Handle a multi-element vector.
527  EVT IntermediateVT, RegisterVT;
528  unsigned NumIntermediates;
529  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
530                                                IntermediateVT,
531                                                NumIntermediates, RegisterVT);
532  unsigned NumElements = ValueVT.getVectorNumElements();
533
534  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
535  NumParts = NumRegs; // Silence a compiler warning.
536  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
537
538  // Split the vector into intermediate operands.
539  SmallVector<SDValue, 8> Ops(NumIntermediates);
540  for (unsigned i = 0; i != NumIntermediates; ++i) {
541    if (IntermediateVT.isVector())
542      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
543                           IntermediateVT, Val,
544                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
545    else
546      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
547                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
548  }
549
550  // Split the intermediate operands into legal parts.
551  if (NumParts == NumIntermediates) {
552    // If the register was not expanded, promote or copy the value,
553    // as appropriate.
554    for (unsigned i = 0; i != NumParts; ++i)
555      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
556  } else if (NumParts > 0) {
557    // If the intermediate type was expanded, split each the value into
558    // legal parts.
559    assert(NumParts % NumIntermediates == 0 &&
560           "Must expand into a divisible number of parts!");
561    unsigned Factor = NumParts / NumIntermediates;
562    for (unsigned i = 0; i != NumIntermediates; ++i)
563      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
564  }
565}
566
567namespace {
568  /// RegsForValue - This struct represents the registers (physical or virtual)
569  /// that a particular set of values is assigned, and the type information
570  /// about the value. The most common situation is to represent one value at a
571  /// time, but struct or array values are handled element-wise as multiple
572  /// values.  The splitting of aggregates is performed recursively, so that we
573  /// never have aggregate-typed registers. The values at this point do not
574  /// necessarily have legal types, so each value may require one or more
575  /// registers of some legal type.
576  ///
577  struct RegsForValue {
578    /// ValueVTs - The value types of the values, which may not be legal, and
579    /// may need be promoted or synthesized from one or more registers.
580    ///
581    SmallVector<EVT, 4> ValueVTs;
582
583    /// RegVTs - The value types of the registers. This is the same size as
584    /// ValueVTs and it records, for each value, what the type of the assigned
585    /// register or registers are. (Individual values are never synthesized
586    /// from more than one type of register.)
587    ///
588    /// With virtual registers, the contents of RegVTs is redundant with TLI's
589    /// getRegisterType member function, however when with physical registers
590    /// it is necessary to have a separate record of the types.
591    ///
592    SmallVector<EVT, 4> RegVTs;
593
594    /// Regs - This list holds the registers assigned to the values.
595    /// Each legal or promoted value requires one register, and each
596    /// expanded value requires multiple registers.
597    ///
598    SmallVector<unsigned, 4> Regs;
599
600    RegsForValue() {}
601
602    RegsForValue(const SmallVector<unsigned, 4> &regs,
603                 EVT regvt, EVT valuevt)
604      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
605
606    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
607                 unsigned Reg, Type *Ty) {
608      ComputeValueVTs(tli, Ty, ValueVTs);
609
610      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
611        EVT ValueVT = ValueVTs[Value];
612        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
613        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
614        for (unsigned i = 0; i != NumRegs; ++i)
615          Regs.push_back(Reg + i);
616        RegVTs.push_back(RegisterVT);
617        Reg += NumRegs;
618      }
619    }
620
621    /// areValueTypesLegal - Return true if types of all the values are legal.
622    bool areValueTypesLegal(const TargetLowering &TLI) {
623      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
624        EVT RegisterVT = RegVTs[Value];
625        if (!TLI.isTypeLegal(RegisterVT))
626          return false;
627      }
628      return true;
629    }
630
631    /// append - Add the specified values to this one.
632    void append(const RegsForValue &RHS) {
633      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
634      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
635      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
636    }
637
638    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
639    /// this value and returns the result as a ValueVTs value.  This uses
640    /// Chain/Flag as the input and updates them for the output Chain/Flag.
641    /// If the Flag pointer is NULL, no flag is used.
642    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
643                            DebugLoc dl,
644                            SDValue &Chain, SDValue *Flag,
645                            const Value *V = 0) const;
646
647    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
648    /// specified value into the registers specified by this object.  This uses
649    /// Chain/Flag as the input and updates them for the output Chain/Flag.
650    /// If the Flag pointer is NULL, no flag is used.
651    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
652                       SDValue &Chain, SDValue *Flag, const Value *V) const;
653
654    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
655    /// operand list.  This adds the code marker, matching input operand index
656    /// (if applicable), and includes the number of values added into it.
657    void AddInlineAsmOperands(unsigned Kind,
658                              bool HasMatching, unsigned MatchingIdx,
659                              SelectionDAG &DAG,
660                              std::vector<SDValue> &Ops) const;
661  };
662}
663
664/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
665/// this value and returns the result as a ValueVT value.  This uses
666/// Chain/Flag as the input and updates them for the output Chain/Flag.
667/// If the Flag pointer is NULL, no flag is used.
668SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
669                                      FunctionLoweringInfo &FuncInfo,
670                                      DebugLoc dl,
671                                      SDValue &Chain, SDValue *Flag,
672                                      const Value *V) const {
673  // A Value with type {} or [0 x %t] needs no registers.
674  if (ValueVTs.empty())
675    return SDValue();
676
677  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
678
679  // Assemble the legal parts into the final values.
680  SmallVector<SDValue, 4> Values(ValueVTs.size());
681  SmallVector<SDValue, 8> Parts;
682  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
683    // Copy the legal parts from the registers.
684    EVT ValueVT = ValueVTs[Value];
685    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
686    EVT RegisterVT = RegVTs[Value];
687
688    Parts.resize(NumRegs);
689    for (unsigned i = 0; i != NumRegs; ++i) {
690      SDValue P;
691      if (Flag == 0) {
692        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
693      } else {
694        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
695        *Flag = P.getValue(2);
696      }
697
698      Chain = P.getValue(1);
699      Parts[i] = P;
700
701      // If the source register was virtual and if we know something about it,
702      // add an assert node.
703      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
704          !RegisterVT.isInteger() || RegisterVT.isVector())
705        continue;
706
707      const FunctionLoweringInfo::LiveOutInfo *LOI =
708        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
709      if (!LOI)
710        continue;
711
712      unsigned RegSize = RegisterVT.getSizeInBits();
713      unsigned NumSignBits = LOI->NumSignBits;
714      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
715
716      // FIXME: We capture more information than the dag can represent.  For
717      // now, just use the tightest assertzext/assertsext possible.
718      bool isSExt = true;
719      EVT FromVT(MVT::Other);
720      if (NumSignBits == RegSize)
721        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
722      else if (NumZeroBits >= RegSize-1)
723        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
724      else if (NumSignBits > RegSize-8)
725        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
726      else if (NumZeroBits >= RegSize-8)
727        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
728      else if (NumSignBits > RegSize-16)
729        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
730      else if (NumZeroBits >= RegSize-16)
731        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
732      else if (NumSignBits > RegSize-32)
733        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
734      else if (NumZeroBits >= RegSize-32)
735        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
736      else
737        continue;
738
739      // Add an assertion node.
740      assert(FromVT != MVT::Other);
741      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
742                             RegisterVT, P, DAG.getValueType(FromVT));
743    }
744
745    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
746                                     NumRegs, RegisterVT, ValueVT, V);
747    Part += NumRegs;
748    Parts.clear();
749  }
750
751  return DAG.getNode(ISD::MERGE_VALUES, dl,
752                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
753                     &Values[0], ValueVTs.size());
754}
755
756/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
757/// specified value into the registers specified by this object.  This uses
758/// Chain/Flag as the input and updates them for the output Chain/Flag.
759/// If the Flag pointer is NULL, no flag is used.
760void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
761                                 SDValue &Chain, SDValue *Flag,
762                                 const Value *V) const {
763  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
764
765  // Get the list of the values's legal parts.
766  unsigned NumRegs = Regs.size();
767  SmallVector<SDValue, 8> Parts(NumRegs);
768  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
769    EVT ValueVT = ValueVTs[Value];
770    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
771    EVT RegisterVT = RegVTs[Value];
772
773    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
774                   &Parts[Part], NumParts, RegisterVT, V);
775    Part += NumParts;
776  }
777
778  // Copy the parts into the registers.
779  SmallVector<SDValue, 8> Chains(NumRegs);
780  for (unsigned i = 0; i != NumRegs; ++i) {
781    SDValue Part;
782    if (Flag == 0) {
783      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
784    } else {
785      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
786      *Flag = Part.getValue(1);
787    }
788
789    Chains[i] = Part.getValue(0);
790  }
791
792  if (NumRegs == 1 || Flag)
793    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
794    // flagged to it. That is the CopyToReg nodes and the user are considered
795    // a single scheduling unit. If we create a TokenFactor and return it as
796    // chain, then the TokenFactor is both a predecessor (operand) of the
797    // user as well as a successor (the TF operands are flagged to the user).
798    // c1, f1 = CopyToReg
799    // c2, f2 = CopyToReg
800    // c3     = TokenFactor c1, c2
801    // ...
802    //        = op c3, ..., f2
803    Chain = Chains[NumRegs-1];
804  else
805    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
806}
807
808/// AddInlineAsmOperands - Add this value to the specified inlineasm node
809/// operand list.  This adds the code marker and includes the number of
810/// values added into it.
811void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
812                                        unsigned MatchingIdx,
813                                        SelectionDAG &DAG,
814                                        std::vector<SDValue> &Ops) const {
815  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
816
817  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
818  if (HasMatching)
819    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
820  else if (!Regs.empty() &&
821           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
822    // Put the register class of the virtual registers in the flag word.  That
823    // way, later passes can recompute register class constraints for inline
824    // assembly as well as normal instructions.
825    // Don't do this for tied operands that can use the regclass information
826    // from the def.
827    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
828    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
829    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
830  }
831
832  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
833  Ops.push_back(Res);
834
835  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
836    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
837    EVT RegisterVT = RegVTs[Value];
838    for (unsigned i = 0; i != NumRegs; ++i) {
839      assert(Reg < Regs.size() && "Mismatch in # registers expected");
840      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
841    }
842  }
843}
844
845void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
846                               const TargetLibraryInfo *li) {
847  AA = &aa;
848  GFI = gfi;
849  LibInfo = li;
850  TD = DAG.getTarget().getDataLayout();
851  Context = DAG.getContext();
852  LPadToCallSiteMap.clear();
853}
854
855/// clear - Clear out the current SelectionDAG and the associated
856/// state and prepare this SelectionDAGBuilder object to be used
857/// for a new block. This doesn't clear out information about
858/// additional blocks that are needed to complete switch lowering
859/// or PHI node updating; that information is cleared out as it is
860/// consumed.
861void SelectionDAGBuilder::clear() {
862  NodeMap.clear();
863  UnusedArgNodeMap.clear();
864  PendingLoads.clear();
865  PendingExports.clear();
866  CurDebugLoc = DebugLoc();
867  HasTailCall = false;
868}
869
870/// clearDanglingDebugInfo - Clear the dangling debug information
871/// map. This function is separated from the clear so that debug
872/// information that is dangling in a basic block can be properly
873/// resolved in a different basic block. This allows the
874/// SelectionDAG to resolve dangling debug information attached
875/// to PHI nodes.
876void SelectionDAGBuilder::clearDanglingDebugInfo() {
877  DanglingDebugInfoMap.clear();
878}
879
880/// getRoot - Return the current virtual root of the Selection DAG,
881/// flushing any PendingLoad items. This must be done before emitting
882/// a store or any other node that may need to be ordered after any
883/// prior load instructions.
884///
885SDValue SelectionDAGBuilder::getRoot() {
886  if (PendingLoads.empty())
887    return DAG.getRoot();
888
889  if (PendingLoads.size() == 1) {
890    SDValue Root = PendingLoads[0];
891    DAG.setRoot(Root);
892    PendingLoads.clear();
893    return Root;
894  }
895
896  // Otherwise, we have to make a token factor node.
897  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
898                               &PendingLoads[0], PendingLoads.size());
899  PendingLoads.clear();
900  DAG.setRoot(Root);
901  return Root;
902}
903
904/// getControlRoot - Similar to getRoot, but instead of flushing all the
905/// PendingLoad items, flush all the PendingExports items. It is necessary
906/// to do this before emitting a terminator instruction.
907///
908SDValue SelectionDAGBuilder::getControlRoot() {
909  SDValue Root = DAG.getRoot();
910
911  if (PendingExports.empty())
912    return Root;
913
914  // Turn all of the CopyToReg chains into one factored node.
915  if (Root.getOpcode() != ISD::EntryToken) {
916    unsigned i = 0, e = PendingExports.size();
917    for (; i != e; ++i) {
918      assert(PendingExports[i].getNode()->getNumOperands() > 1);
919      if (PendingExports[i].getNode()->getOperand(0) == Root)
920        break;  // Don't add the root if we already indirectly depend on it.
921    }
922
923    if (i == e)
924      PendingExports.push_back(Root);
925  }
926
927  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
928                     &PendingExports[0],
929                     PendingExports.size());
930  PendingExports.clear();
931  DAG.setRoot(Root);
932  return Root;
933}
934
935void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
936  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
937  DAG.AssignOrdering(Node, SDNodeOrder);
938
939  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
940    AssignOrderingToNode(Node->getOperand(I).getNode());
941}
942
943void SelectionDAGBuilder::visit(const Instruction &I) {
944  // Set up outgoing PHI node register values before emitting the terminator.
945  if (isa<TerminatorInst>(&I))
946    HandlePHINodesInSuccessorBlocks(I.getParent());
947
948  CurDebugLoc = I.getDebugLoc();
949
950  visit(I.getOpcode(), I);
951
952  if (!isa<TerminatorInst>(&I) && !HasTailCall)
953    CopyToExportRegsIfNeeded(&I);
954
955  CurDebugLoc = DebugLoc();
956}
957
958void SelectionDAGBuilder::visitPHI(const PHINode &) {
959  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
960}
961
962void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
963  // Note: this doesn't use InstVisitor, because it has to work with
964  // ConstantExpr's in addition to instructions.
965  switch (Opcode) {
966  default: llvm_unreachable("Unknown instruction type encountered!");
967    // Build the switch statement using the Instruction.def file.
968#define HANDLE_INST(NUM, OPCODE, CLASS) \
969    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
970#include "llvm/Instruction.def"
971  }
972
973  // Assign the ordering to the freshly created DAG nodes.
974  if (NodeMap.count(&I)) {
975    ++SDNodeOrder;
976    AssignOrderingToNode(getValue(&I).getNode());
977  }
978}
979
980// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
981// generate the debug data structures now that we've seen its definition.
982void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
983                                                   SDValue Val) {
984  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
985  if (DDI.getDI()) {
986    const DbgValueInst *DI = DDI.getDI();
987    DebugLoc dl = DDI.getdl();
988    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
989    MDNode *Variable = DI->getVariable();
990    uint64_t Offset = DI->getOffset();
991    SDDbgValue *SDV;
992    if (Val.getNode()) {
993      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
994        SDV = DAG.getDbgValue(Variable, Val.getNode(),
995                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
996        DAG.AddDbgValue(SDV, Val.getNode(), false);
997      }
998    } else
999      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1000    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1001  }
1002}
1003
1004/// getValue - Return an SDValue for the given Value.
1005SDValue SelectionDAGBuilder::getValue(const Value *V) {
1006  // If we already have an SDValue for this value, use it. It's important
1007  // to do this first, so that we don't create a CopyFromReg if we already
1008  // have a regular SDValue.
1009  SDValue &N = NodeMap[V];
1010  if (N.getNode()) return N;
1011
1012  // If there's a virtual register allocated and initialized for this
1013  // value, use it.
1014  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1015  if (It != FuncInfo.ValueMap.end()) {
1016    unsigned InReg = It->second;
1017    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
1018    SDValue Chain = DAG.getEntryNode();
1019    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1020    resolveDanglingDebugInfo(V, N);
1021    return N;
1022  }
1023
1024  // Otherwise create a new SDValue and remember it.
1025  SDValue Val = getValueImpl(V);
1026  NodeMap[V] = Val;
1027  resolveDanglingDebugInfo(V, Val);
1028  return Val;
1029}
1030
1031/// getNonRegisterValue - Return an SDValue for the given Value, but
1032/// don't look in FuncInfo.ValueMap for a virtual register.
1033SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1034  // If we already have an SDValue for this value, use it.
1035  SDValue &N = NodeMap[V];
1036  if (N.getNode()) return N;
1037
1038  // Otherwise create a new SDValue and remember it.
1039  SDValue Val = getValueImpl(V);
1040  NodeMap[V] = Val;
1041  resolveDanglingDebugInfo(V, Val);
1042  return Val;
1043}
1044
1045/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1046/// Create an SDValue for the given value.
1047SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1048  if (const Constant *C = dyn_cast<Constant>(V)) {
1049    EVT VT = TLI.getValueType(V->getType(), true);
1050
1051    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1052      return DAG.getConstant(*CI, VT);
1053
1054    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1055      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1056
1057    if (isa<ConstantPointerNull>(C))
1058      return DAG.getConstant(0, TLI.getPointerTy());
1059
1060    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1061      return DAG.getConstantFP(*CFP, VT);
1062
1063    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1064      return DAG.getUNDEF(VT);
1065
1066    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1067      visit(CE->getOpcode(), *CE);
1068      SDValue N1 = NodeMap[V];
1069      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1070      return N1;
1071    }
1072
1073    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1074      SmallVector<SDValue, 4> Constants;
1075      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1076           OI != OE; ++OI) {
1077        SDNode *Val = getValue(*OI).getNode();
1078        // If the operand is an empty aggregate, there are no values.
1079        if (!Val) continue;
1080        // Add each leaf value from the operand to the Constants list
1081        // to form a flattened list of all the values.
1082        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1083          Constants.push_back(SDValue(Val, i));
1084      }
1085
1086      return DAG.getMergeValues(&Constants[0], Constants.size(),
1087                                getCurDebugLoc());
1088    }
1089
1090    if (const ConstantDataSequential *CDS =
1091          dyn_cast<ConstantDataSequential>(C)) {
1092      SmallVector<SDValue, 4> Ops;
1093      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1094        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1095        // Add each leaf value from the operand to the Constants list
1096        // to form a flattened list of all the values.
1097        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1098          Ops.push_back(SDValue(Val, i));
1099      }
1100
1101      if (isa<ArrayType>(CDS->getType()))
1102        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1103      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1104                                      VT, &Ops[0], Ops.size());
1105    }
1106
1107    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1108      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1109             "Unknown struct or array constant!");
1110
1111      SmallVector<EVT, 4> ValueVTs;
1112      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1113      unsigned NumElts = ValueVTs.size();
1114      if (NumElts == 0)
1115        return SDValue(); // empty struct
1116      SmallVector<SDValue, 4> Constants(NumElts);
1117      for (unsigned i = 0; i != NumElts; ++i) {
1118        EVT EltVT = ValueVTs[i];
1119        if (isa<UndefValue>(C))
1120          Constants[i] = DAG.getUNDEF(EltVT);
1121        else if (EltVT.isFloatingPoint())
1122          Constants[i] = DAG.getConstantFP(0, EltVT);
1123        else
1124          Constants[i] = DAG.getConstant(0, EltVT);
1125      }
1126
1127      return DAG.getMergeValues(&Constants[0], NumElts,
1128                                getCurDebugLoc());
1129    }
1130
1131    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1132      return DAG.getBlockAddress(BA, VT);
1133
1134    VectorType *VecTy = cast<VectorType>(V->getType());
1135    unsigned NumElements = VecTy->getNumElements();
1136
1137    // Now that we know the number and type of the elements, get that number of
1138    // elements into the Ops array based on what kind of constant it is.
1139    SmallVector<SDValue, 16> Ops;
1140    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1141      for (unsigned i = 0; i != NumElements; ++i)
1142        Ops.push_back(getValue(CV->getOperand(i)));
1143    } else {
1144      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1145      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1146
1147      SDValue Op;
1148      if (EltVT.isFloatingPoint())
1149        Op = DAG.getConstantFP(0, EltVT);
1150      else
1151        Op = DAG.getConstant(0, EltVT);
1152      Ops.assign(NumElements, Op);
1153    }
1154
1155    // Create a BUILD_VECTOR node.
1156    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1157                                    VT, &Ops[0], Ops.size());
1158  }
1159
1160  // If this is a static alloca, generate it as the frameindex instead of
1161  // computation.
1162  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1163    DenseMap<const AllocaInst*, int>::iterator SI =
1164      FuncInfo.StaticAllocaMap.find(AI);
1165    if (SI != FuncInfo.StaticAllocaMap.end())
1166      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1167  }
1168
1169  // If this is an instruction which fast-isel has deferred, select it now.
1170  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1171    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1172    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1173    SDValue Chain = DAG.getEntryNode();
1174    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1175  }
1176
1177  llvm_unreachable("Can't get register for value!");
1178}
1179
1180void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1181  SDValue Chain = getControlRoot();
1182  SmallVector<ISD::OutputArg, 8> Outs;
1183  SmallVector<SDValue, 8> OutVals;
1184
1185  if (!FuncInfo.CanLowerReturn) {
1186    unsigned DemoteReg = FuncInfo.DemoteRegister;
1187    const Function *F = I.getParent()->getParent();
1188
1189    // Emit a store of the return value through the virtual register.
1190    // Leave Outs empty so that LowerReturn won't try to load return
1191    // registers the usual way.
1192    SmallVector<EVT, 1> PtrValueVTs;
1193    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1194                    PtrValueVTs);
1195
1196    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1197    SDValue RetOp = getValue(I.getOperand(0));
1198
1199    SmallVector<EVT, 4> ValueVTs;
1200    SmallVector<uint64_t, 4> Offsets;
1201    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1202    unsigned NumValues = ValueVTs.size();
1203
1204    SmallVector<SDValue, 4> Chains(NumValues);
1205    for (unsigned i = 0; i != NumValues; ++i) {
1206      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1207                                RetPtr.getValueType(), RetPtr,
1208                                DAG.getIntPtrConstant(Offsets[i]));
1209      Chains[i] =
1210        DAG.getStore(Chain, getCurDebugLoc(),
1211                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1212                     // FIXME: better loc info would be nice.
1213                     Add, MachinePointerInfo(), false, false, 0);
1214    }
1215
1216    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1217                        MVT::Other, &Chains[0], NumValues);
1218  } else if (I.getNumOperands() != 0) {
1219    SmallVector<EVT, 4> ValueVTs;
1220    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1221    unsigned NumValues = ValueVTs.size();
1222    if (NumValues) {
1223      SDValue RetOp = getValue(I.getOperand(0));
1224      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1225        EVT VT = ValueVTs[j];
1226
1227        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1228
1229        const Function *F = I.getParent()->getParent();
1230        if (F->getRetAttributes().hasAttribute(Attributes::SExt))
1231          ExtendKind = ISD::SIGN_EXTEND;
1232        else if (F->getRetAttributes().hasAttribute(Attributes::ZExt))
1233          ExtendKind = ISD::ZERO_EXTEND;
1234
1235        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1236          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1237
1238        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1239        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1240        SmallVector<SDValue, 4> Parts(NumParts);
1241        getCopyToParts(DAG, getCurDebugLoc(),
1242                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1243                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1244
1245        // 'inreg' on function refers to return value
1246        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1247        if (F->getRetAttributes().hasAttribute(Attributes::InReg))
1248          Flags.setInReg();
1249
1250        // Propagate extension type if any
1251        if (ExtendKind == ISD::SIGN_EXTEND)
1252          Flags.setSExt();
1253        else if (ExtendKind == ISD::ZERO_EXTEND)
1254          Flags.setZExt();
1255
1256        for (unsigned i = 0; i < NumParts; ++i) {
1257          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1258                                        /*isfixed=*/true, 0, 0));
1259          OutVals.push_back(Parts[i]);
1260        }
1261      }
1262    }
1263  }
1264
1265  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1266  CallingConv::ID CallConv =
1267    DAG.getMachineFunction().getFunction()->getCallingConv();
1268  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1269                          Outs, OutVals, getCurDebugLoc(), DAG);
1270
1271  // Verify that the target's LowerReturn behaved as expected.
1272  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1273         "LowerReturn didn't return a valid chain!");
1274
1275  // Update the DAG with the new chain value resulting from return lowering.
1276  DAG.setRoot(Chain);
1277}
1278
1279/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1280/// created for it, emit nodes to copy the value into the virtual
1281/// registers.
1282void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1283  // Skip empty types
1284  if (V->getType()->isEmptyTy())
1285    return;
1286
1287  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1288  if (VMI != FuncInfo.ValueMap.end()) {
1289    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1290    CopyValueToVirtualRegister(V, VMI->second);
1291  }
1292}
1293
1294/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1295/// the current basic block, add it to ValueMap now so that we'll get a
1296/// CopyTo/FromReg.
1297void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1298  // No need to export constants.
1299  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1300
1301  // Already exported?
1302  if (FuncInfo.isExportedInst(V)) return;
1303
1304  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1305  CopyValueToVirtualRegister(V, Reg);
1306}
1307
1308bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1309                                                     const BasicBlock *FromBB) {
1310  // The operands of the setcc have to be in this block.  We don't know
1311  // how to export them from some other block.
1312  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1313    // Can export from current BB.
1314    if (VI->getParent() == FromBB)
1315      return true;
1316
1317    // Is already exported, noop.
1318    return FuncInfo.isExportedInst(V);
1319  }
1320
1321  // If this is an argument, we can export it if the BB is the entry block or
1322  // if it is already exported.
1323  if (isa<Argument>(V)) {
1324    if (FromBB == &FromBB->getParent()->getEntryBlock())
1325      return true;
1326
1327    // Otherwise, can only export this if it is already exported.
1328    return FuncInfo.isExportedInst(V);
1329  }
1330
1331  // Otherwise, constants can always be exported.
1332  return true;
1333}
1334
1335/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1336uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1337                                            const MachineBasicBlock *Dst) const {
1338  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1339  if (!BPI)
1340    return 0;
1341  const BasicBlock *SrcBB = Src->getBasicBlock();
1342  const BasicBlock *DstBB = Dst->getBasicBlock();
1343  return BPI->getEdgeWeight(SrcBB, DstBB);
1344}
1345
1346void SelectionDAGBuilder::
1347addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1348                       uint32_t Weight /* = 0 */) {
1349  if (!Weight)
1350    Weight = getEdgeWeight(Src, Dst);
1351  Src->addSuccessor(Dst, Weight);
1352}
1353
1354
1355static bool InBlock(const Value *V, const BasicBlock *BB) {
1356  if (const Instruction *I = dyn_cast<Instruction>(V))
1357    return I->getParent() == BB;
1358  return true;
1359}
1360
1361/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1362/// This function emits a branch and is used at the leaves of an OR or an
1363/// AND operator tree.
1364///
1365void
1366SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1367                                                  MachineBasicBlock *TBB,
1368                                                  MachineBasicBlock *FBB,
1369                                                  MachineBasicBlock *CurBB,
1370                                                  MachineBasicBlock *SwitchBB) {
1371  const BasicBlock *BB = CurBB->getBasicBlock();
1372
1373  // If the leaf of the tree is a comparison, merge the condition into
1374  // the caseblock.
1375  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1376    // The operands of the cmp have to be in this block.  We don't know
1377    // how to export them from some other block.  If this is the first block
1378    // of the sequence, no exporting is needed.
1379    if (CurBB == SwitchBB ||
1380        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1381         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1382      ISD::CondCode Condition;
1383      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1384        Condition = getICmpCondCode(IC->getPredicate());
1385      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1386        Condition = getFCmpCondCode(FC->getPredicate());
1387        if (TM.Options.NoNaNsFPMath)
1388          Condition = getFCmpCodeWithoutNaN(Condition);
1389      } else {
1390        Condition = ISD::SETEQ; // silence warning.
1391        llvm_unreachable("Unknown compare instruction");
1392      }
1393
1394      CaseBlock CB(Condition, BOp->getOperand(0),
1395                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1396      SwitchCases.push_back(CB);
1397      return;
1398    }
1399  }
1400
1401  // Create a CaseBlock record representing this branch.
1402  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1403               NULL, TBB, FBB, CurBB);
1404  SwitchCases.push_back(CB);
1405}
1406
1407/// FindMergedConditions - If Cond is an expression like
1408void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1409                                               MachineBasicBlock *TBB,
1410                                               MachineBasicBlock *FBB,
1411                                               MachineBasicBlock *CurBB,
1412                                               MachineBasicBlock *SwitchBB,
1413                                               unsigned Opc) {
1414  // If this node is not part of the or/and tree, emit it as a branch.
1415  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1416  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1417      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1418      BOp->getParent() != CurBB->getBasicBlock() ||
1419      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1420      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1421    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1422    return;
1423  }
1424
1425  //  Create TmpBB after CurBB.
1426  MachineFunction::iterator BBI = CurBB;
1427  MachineFunction &MF = DAG.getMachineFunction();
1428  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1429  CurBB->getParent()->insert(++BBI, TmpBB);
1430
1431  if (Opc == Instruction::Or) {
1432    // Codegen X | Y as:
1433    //   jmp_if_X TBB
1434    //   jmp TmpBB
1435    // TmpBB:
1436    //   jmp_if_Y TBB
1437    //   jmp FBB
1438    //
1439
1440    // Emit the LHS condition.
1441    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1442
1443    // Emit the RHS condition into TmpBB.
1444    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1445  } else {
1446    assert(Opc == Instruction::And && "Unknown merge op!");
1447    // Codegen X & Y as:
1448    //   jmp_if_X TmpBB
1449    //   jmp FBB
1450    // TmpBB:
1451    //   jmp_if_Y TBB
1452    //   jmp FBB
1453    //
1454    //  This requires creation of TmpBB after CurBB.
1455
1456    // Emit the LHS condition.
1457    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1458
1459    // Emit the RHS condition into TmpBB.
1460    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1461  }
1462}
1463
1464/// If the set of cases should be emitted as a series of branches, return true.
1465/// If we should emit this as a bunch of and/or'd together conditions, return
1466/// false.
1467bool
1468SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1469  if (Cases.size() != 2) return true;
1470
1471  // If this is two comparisons of the same values or'd or and'd together, they
1472  // will get folded into a single comparison, so don't emit two blocks.
1473  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1474       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1475      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1476       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1477    return false;
1478  }
1479
1480  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1481  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1482  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1483      Cases[0].CC == Cases[1].CC &&
1484      isa<Constant>(Cases[0].CmpRHS) &&
1485      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1486    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1487      return false;
1488    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1489      return false;
1490  }
1491
1492  return true;
1493}
1494
1495void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1496  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1497
1498  // Update machine-CFG edges.
1499  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1500
1501  // Figure out which block is immediately after the current one.
1502  MachineBasicBlock *NextBlock = 0;
1503  MachineFunction::iterator BBI = BrMBB;
1504  if (++BBI != FuncInfo.MF->end())
1505    NextBlock = BBI;
1506
1507  if (I.isUnconditional()) {
1508    // Update machine-CFG edges.
1509    BrMBB->addSuccessor(Succ0MBB);
1510
1511    // If this is not a fall-through branch, emit the branch.
1512    if (Succ0MBB != NextBlock)
1513      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1514                              MVT::Other, getControlRoot(),
1515                              DAG.getBasicBlock(Succ0MBB)));
1516
1517    return;
1518  }
1519
1520  // If this condition is one of the special cases we handle, do special stuff
1521  // now.
1522  const Value *CondVal = I.getCondition();
1523  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1524
1525  // If this is a series of conditions that are or'd or and'd together, emit
1526  // this as a sequence of branches instead of setcc's with and/or operations.
1527  // As long as jumps are not expensive, this should improve performance.
1528  // For example, instead of something like:
1529  //     cmp A, B
1530  //     C = seteq
1531  //     cmp D, E
1532  //     F = setle
1533  //     or C, F
1534  //     jnz foo
1535  // Emit:
1536  //     cmp A, B
1537  //     je foo
1538  //     cmp D, E
1539  //     jle foo
1540  //
1541  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1542    if (!TLI.isJumpExpensive() &&
1543        BOp->hasOneUse() &&
1544        (BOp->getOpcode() == Instruction::And ||
1545         BOp->getOpcode() == Instruction::Or)) {
1546      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1547                           BOp->getOpcode());
1548      // If the compares in later blocks need to use values not currently
1549      // exported from this block, export them now.  This block should always
1550      // be the first entry.
1551      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1552
1553      // Allow some cases to be rejected.
1554      if (ShouldEmitAsBranches(SwitchCases)) {
1555        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1556          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1557          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1558        }
1559
1560        // Emit the branch for this block.
1561        visitSwitchCase(SwitchCases[0], BrMBB);
1562        SwitchCases.erase(SwitchCases.begin());
1563        return;
1564      }
1565
1566      // Okay, we decided not to do this, remove any inserted MBB's and clear
1567      // SwitchCases.
1568      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1569        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1570
1571      SwitchCases.clear();
1572    }
1573  }
1574
1575  // Create a CaseBlock record representing this branch.
1576  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1577               NULL, Succ0MBB, Succ1MBB, BrMBB);
1578
1579  // Use visitSwitchCase to actually insert the fast branch sequence for this
1580  // cond branch.
1581  visitSwitchCase(CB, BrMBB);
1582}
1583
1584/// visitSwitchCase - Emits the necessary code to represent a single node in
1585/// the binary search tree resulting from lowering a switch instruction.
1586void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1587                                          MachineBasicBlock *SwitchBB) {
1588  SDValue Cond;
1589  SDValue CondLHS = getValue(CB.CmpLHS);
1590  DebugLoc dl = getCurDebugLoc();
1591
1592  // Build the setcc now.
1593  if (CB.CmpMHS == NULL) {
1594    // Fold "(X == true)" to X and "(X == false)" to !X to
1595    // handle common cases produced by branch lowering.
1596    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1597        CB.CC == ISD::SETEQ)
1598      Cond = CondLHS;
1599    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1600             CB.CC == ISD::SETEQ) {
1601      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1602      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1603    } else
1604      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1605  } else {
1606    assert(CB.CC == ISD::SETCC_INVALID &&
1607           "Condition is undefined for to-the-range belonging check.");
1608
1609    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1610    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1611
1612    SDValue CmpOp = getValue(CB.CmpMHS);
1613    EVT VT = CmpOp.getValueType();
1614
1615    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1616      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1617                          ISD::SETULE);
1618    } else {
1619      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1620                                VT, CmpOp, DAG.getConstant(Low, VT));
1621      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1622                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1623    }
1624  }
1625
1626  // Update successor info
1627  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1628  // TrueBB and FalseBB are always different unless the incoming IR is
1629  // degenerate. This only happens when running llc on weird IR.
1630  if (CB.TrueBB != CB.FalseBB)
1631    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1632
1633  // Set NextBlock to be the MBB immediately after the current one, if any.
1634  // This is used to avoid emitting unnecessary branches to the next block.
1635  MachineBasicBlock *NextBlock = 0;
1636  MachineFunction::iterator BBI = SwitchBB;
1637  if (++BBI != FuncInfo.MF->end())
1638    NextBlock = BBI;
1639
1640  // If the lhs block is the next block, invert the condition so that we can
1641  // fall through to the lhs instead of the rhs block.
1642  if (CB.TrueBB == NextBlock) {
1643    std::swap(CB.TrueBB, CB.FalseBB);
1644    SDValue True = DAG.getConstant(1, Cond.getValueType());
1645    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1646  }
1647
1648  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1649                               MVT::Other, getControlRoot(), Cond,
1650                               DAG.getBasicBlock(CB.TrueBB));
1651
1652  // Insert the false branch. Do this even if it's a fall through branch,
1653  // this makes it easier to do DAG optimizations which require inverting
1654  // the branch condition.
1655  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1656                       DAG.getBasicBlock(CB.FalseBB));
1657
1658  DAG.setRoot(BrCond);
1659}
1660
1661/// visitJumpTable - Emit JumpTable node in the current MBB
1662void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1663  // Emit the code for the jump table
1664  assert(JT.Reg != -1U && "Should lower JT Header first!");
1665  EVT PTy = TLI.getPointerTy();
1666  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1667                                     JT.Reg, PTy);
1668  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1669  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1670                                    MVT::Other, Index.getValue(1),
1671                                    Table, Index);
1672  DAG.setRoot(BrJumpTable);
1673}
1674
1675/// visitJumpTableHeader - This function emits necessary code to produce index
1676/// in the JumpTable from switch case.
1677void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1678                                               JumpTableHeader &JTH,
1679                                               MachineBasicBlock *SwitchBB) {
1680  // Subtract the lowest switch case value from the value being switched on and
1681  // conditional branch to default mbb if the result is greater than the
1682  // difference between smallest and largest cases.
1683  SDValue SwitchOp = getValue(JTH.SValue);
1684  EVT VT = SwitchOp.getValueType();
1685  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1686                            DAG.getConstant(JTH.First, VT));
1687
1688  // The SDNode we just created, which holds the value being switched on minus
1689  // the smallest case value, needs to be copied to a virtual register so it
1690  // can be used as an index into the jump table in a subsequent basic block.
1691  // This value may be smaller or larger than the target's pointer type, and
1692  // therefore require extension or truncating.
1693  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1694
1695  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1696  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1697                                    JumpTableReg, SwitchOp);
1698  JT.Reg = JumpTableReg;
1699
1700  // Emit the range check for the jump table, and branch to the default block
1701  // for the switch statement if the value being switched on exceeds the largest
1702  // case in the switch.
1703  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1704                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1705                             DAG.getConstant(JTH.Last-JTH.First,VT),
1706                             ISD::SETUGT);
1707
1708  // Set NextBlock to be the MBB immediately after the current one, if any.
1709  // This is used to avoid emitting unnecessary branches to the next block.
1710  MachineBasicBlock *NextBlock = 0;
1711  MachineFunction::iterator BBI = SwitchBB;
1712
1713  if (++BBI != FuncInfo.MF->end())
1714    NextBlock = BBI;
1715
1716  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1717                               MVT::Other, CopyTo, CMP,
1718                               DAG.getBasicBlock(JT.Default));
1719
1720  if (JT.MBB != NextBlock)
1721    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1722                         DAG.getBasicBlock(JT.MBB));
1723
1724  DAG.setRoot(BrCond);
1725}
1726
1727/// visitBitTestHeader - This function emits necessary code to produce value
1728/// suitable for "bit tests"
1729void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1730                                             MachineBasicBlock *SwitchBB) {
1731  // Subtract the minimum value
1732  SDValue SwitchOp = getValue(B.SValue);
1733  EVT VT = SwitchOp.getValueType();
1734  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1735                            DAG.getConstant(B.First, VT));
1736
1737  // Check range
1738  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1739                                  TLI.getSetCCResultType(Sub.getValueType()),
1740                                  Sub, DAG.getConstant(B.Range, VT),
1741                                  ISD::SETUGT);
1742
1743  // Determine the type of the test operands.
1744  bool UsePtrType = false;
1745  if (!TLI.isTypeLegal(VT))
1746    UsePtrType = true;
1747  else {
1748    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1749      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1750        // Switch table case range are encoded into series of masks.
1751        // Just use pointer type, it's guaranteed to fit.
1752        UsePtrType = true;
1753        break;
1754      }
1755  }
1756  if (UsePtrType) {
1757    VT = TLI.getPointerTy();
1758    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1759  }
1760
1761  B.RegVT = VT;
1762  B.Reg = FuncInfo.CreateReg(VT);
1763  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1764                                    B.Reg, Sub);
1765
1766  // Set NextBlock to be the MBB immediately after the current one, if any.
1767  // This is used to avoid emitting unnecessary branches to the next block.
1768  MachineBasicBlock *NextBlock = 0;
1769  MachineFunction::iterator BBI = SwitchBB;
1770  if (++BBI != FuncInfo.MF->end())
1771    NextBlock = BBI;
1772
1773  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1774
1775  addSuccessorWithWeight(SwitchBB, B.Default);
1776  addSuccessorWithWeight(SwitchBB, MBB);
1777
1778  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1779                                MVT::Other, CopyTo, RangeCmp,
1780                                DAG.getBasicBlock(B.Default));
1781
1782  if (MBB != NextBlock)
1783    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1784                          DAG.getBasicBlock(MBB));
1785
1786  DAG.setRoot(BrRange);
1787}
1788
1789/// visitBitTestCase - this function produces one "bit test"
1790void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1791                                           MachineBasicBlock* NextMBB,
1792                                           uint32_t BranchWeightToNext,
1793                                           unsigned Reg,
1794                                           BitTestCase &B,
1795                                           MachineBasicBlock *SwitchBB) {
1796  EVT VT = BB.RegVT;
1797  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1798                                       Reg, VT);
1799  SDValue Cmp;
1800  unsigned PopCount = CountPopulation_64(B.Mask);
1801  if (PopCount == 1) {
1802    // Testing for a single bit; just compare the shift count with what it
1803    // would need to be to shift a 1 bit in that position.
1804    Cmp = DAG.getSetCC(getCurDebugLoc(),
1805                       TLI.getSetCCResultType(VT),
1806                       ShiftOp,
1807                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1808                       ISD::SETEQ);
1809  } else if (PopCount == BB.Range) {
1810    // There is only one zero bit in the range, test for it directly.
1811    Cmp = DAG.getSetCC(getCurDebugLoc(),
1812                       TLI.getSetCCResultType(VT),
1813                       ShiftOp,
1814                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1815                       ISD::SETNE);
1816  } else {
1817    // Make desired shift
1818    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1819                                    DAG.getConstant(1, VT), ShiftOp);
1820
1821    // Emit bit tests and jumps
1822    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1823                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1824    Cmp = DAG.getSetCC(getCurDebugLoc(),
1825                       TLI.getSetCCResultType(VT),
1826                       AndOp, DAG.getConstant(0, VT),
1827                       ISD::SETNE);
1828  }
1829
1830  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1831  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1832  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1833  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1834
1835  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1836                              MVT::Other, getControlRoot(),
1837                              Cmp, DAG.getBasicBlock(B.TargetBB));
1838
1839  // Set NextBlock to be the MBB immediately after the current one, if any.
1840  // This is used to avoid emitting unnecessary branches to the next block.
1841  MachineBasicBlock *NextBlock = 0;
1842  MachineFunction::iterator BBI = SwitchBB;
1843  if (++BBI != FuncInfo.MF->end())
1844    NextBlock = BBI;
1845
1846  if (NextMBB != NextBlock)
1847    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1848                        DAG.getBasicBlock(NextMBB));
1849
1850  DAG.setRoot(BrAnd);
1851}
1852
1853void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1854  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1855
1856  // Retrieve successors.
1857  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1858  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1859
1860  const Value *Callee(I.getCalledValue());
1861  const Function *Fn = dyn_cast<Function>(Callee);
1862  if (isa<InlineAsm>(Callee))
1863    visitInlineAsm(&I);
1864  else if (Fn && Fn->isIntrinsic()) {
1865    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1866    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1867  } else
1868    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1869
1870  // If the value of the invoke is used outside of its defining block, make it
1871  // available as a virtual register.
1872  CopyToExportRegsIfNeeded(&I);
1873
1874  // Update successor info
1875  addSuccessorWithWeight(InvokeMBB, Return);
1876  addSuccessorWithWeight(InvokeMBB, LandingPad);
1877
1878  // Drop into normal successor.
1879  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1880                          MVT::Other, getControlRoot(),
1881                          DAG.getBasicBlock(Return)));
1882}
1883
1884void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1885  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1886}
1887
1888void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1889  assert(FuncInfo.MBB->isLandingPad() &&
1890         "Call to landingpad not in landing pad!");
1891
1892  MachineBasicBlock *MBB = FuncInfo.MBB;
1893  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1894  AddLandingPadInfo(LP, MMI, MBB);
1895
1896  // If there aren't registers to copy the values into (e.g., during SjLj
1897  // exceptions), then don't bother to create these DAG nodes.
1898  if (TLI.getExceptionPointerRegister() == 0 &&
1899      TLI.getExceptionSelectorRegister() == 0)
1900    return;
1901
1902  SmallVector<EVT, 2> ValueVTs;
1903  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1904
1905  // Insert the EXCEPTIONADDR instruction.
1906  assert(FuncInfo.MBB->isLandingPad() &&
1907         "Call to eh.exception not in landing pad!");
1908  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1909  SDValue Ops[2];
1910  Ops[0] = DAG.getRoot();
1911  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1912  SDValue Chain = Op1.getValue(1);
1913
1914  // Insert the EHSELECTION instruction.
1915  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1916  Ops[0] = Op1;
1917  Ops[1] = Chain;
1918  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1919  Chain = Op2.getValue(1);
1920  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1921
1922  Ops[0] = Op1;
1923  Ops[1] = Op2;
1924  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1925                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1926                            &Ops[0], 2);
1927
1928  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1929  setValue(&LP, RetPair.first);
1930  DAG.setRoot(RetPair.second);
1931}
1932
1933/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1934/// small case ranges).
1935bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1936                                                 CaseRecVector& WorkList,
1937                                                 const Value* SV,
1938                                                 MachineBasicBlock *Default,
1939                                                 MachineBasicBlock *SwitchBB) {
1940  // Size is the number of Cases represented by this range.
1941  size_t Size = CR.Range.second - CR.Range.first;
1942  if (Size > 3)
1943    return false;
1944
1945  // Get the MachineFunction which holds the current MBB.  This is used when
1946  // inserting any additional MBBs necessary to represent the switch.
1947  MachineFunction *CurMF = FuncInfo.MF;
1948
1949  // Figure out which block is immediately after the current one.
1950  MachineBasicBlock *NextBlock = 0;
1951  MachineFunction::iterator BBI = CR.CaseBB;
1952
1953  if (++BBI != FuncInfo.MF->end())
1954    NextBlock = BBI;
1955
1956  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1957  // If any two of the cases has the same destination, and if one value
1958  // is the same as the other, but has one bit unset that the other has set,
1959  // use bit manipulation to do two compares at once.  For example:
1960  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1961  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1962  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1963  if (Size == 2 && CR.CaseBB == SwitchBB) {
1964    Case &Small = *CR.Range.first;
1965    Case &Big = *(CR.Range.second-1);
1966
1967    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1968      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1969      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1970
1971      // Check that there is only one bit different.
1972      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1973          (SmallValue | BigValue) == BigValue) {
1974        // Isolate the common bit.
1975        APInt CommonBit = BigValue & ~SmallValue;
1976        assert((SmallValue | CommonBit) == BigValue &&
1977               CommonBit.countPopulation() == 1 && "Not a common bit?");
1978
1979        SDValue CondLHS = getValue(SV);
1980        EVT VT = CondLHS.getValueType();
1981        DebugLoc DL = getCurDebugLoc();
1982
1983        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1984                                 DAG.getConstant(CommonBit, VT));
1985        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1986                                    Or, DAG.getConstant(BigValue, VT),
1987                                    ISD::SETEQ);
1988
1989        // Update successor info.
1990        // Both Small and Big will jump to Small.BB, so we sum up the weights.
1991        addSuccessorWithWeight(SwitchBB, Small.BB,
1992                               Small.ExtraWeight + Big.ExtraWeight);
1993        addSuccessorWithWeight(SwitchBB, Default,
1994          // The default destination is the first successor in IR.
1995          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
1996
1997        // Insert the true branch.
1998        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1999                                     getControlRoot(), Cond,
2000                                     DAG.getBasicBlock(Small.BB));
2001
2002        // Insert the false branch.
2003        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2004                             DAG.getBasicBlock(Default));
2005
2006        DAG.setRoot(BrCond);
2007        return true;
2008      }
2009    }
2010  }
2011
2012  // Order cases by weight so the most likely case will be checked first.
2013  uint32_t UnhandledWeights = 0;
2014  if (BPI) {
2015    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2016      uint32_t IWeight = I->ExtraWeight;
2017      UnhandledWeights += IWeight;
2018      for (CaseItr J = CR.Range.first; J < I; ++J) {
2019        uint32_t JWeight = J->ExtraWeight;
2020        if (IWeight > JWeight)
2021          std::swap(*I, *J);
2022      }
2023    }
2024  }
2025  // Rearrange the case blocks so that the last one falls through if possible.
2026  Case &BackCase = *(CR.Range.second-1);
2027  if (Size > 1 &&
2028      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2029    // The last case block won't fall through into 'NextBlock' if we emit the
2030    // branches in this order.  See if rearranging a case value would help.
2031    // We start at the bottom as it's the case with the least weight.
2032    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2033      if (I->BB == NextBlock) {
2034        std::swap(*I, BackCase);
2035        break;
2036      }
2037    }
2038  }
2039
2040  // Create a CaseBlock record representing a conditional branch to
2041  // the Case's target mbb if the value being switched on SV is equal
2042  // to C.
2043  MachineBasicBlock *CurBlock = CR.CaseBB;
2044  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2045    MachineBasicBlock *FallThrough;
2046    if (I != E-1) {
2047      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2048      CurMF->insert(BBI, FallThrough);
2049
2050      // Put SV in a virtual register to make it available from the new blocks.
2051      ExportFromCurrentBlock(SV);
2052    } else {
2053      // If the last case doesn't match, go to the default block.
2054      FallThrough = Default;
2055    }
2056
2057    const Value *RHS, *LHS, *MHS;
2058    ISD::CondCode CC;
2059    if (I->High == I->Low) {
2060      // This is just small small case range :) containing exactly 1 case
2061      CC = ISD::SETEQ;
2062      LHS = SV; RHS = I->High; MHS = NULL;
2063    } else {
2064      CC = ISD::SETCC_INVALID;
2065      LHS = I->Low; MHS = SV; RHS = I->High;
2066    }
2067
2068    // The false weight should be sum of all un-handled cases.
2069    UnhandledWeights -= I->ExtraWeight;
2070    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2071                 /* me */ CurBlock,
2072                 /* trueweight */ I->ExtraWeight,
2073                 /* falseweight */ UnhandledWeights);
2074
2075    // If emitting the first comparison, just call visitSwitchCase to emit the
2076    // code into the current block.  Otherwise, push the CaseBlock onto the
2077    // vector to be later processed by SDISel, and insert the node's MBB
2078    // before the next MBB.
2079    if (CurBlock == SwitchBB)
2080      visitSwitchCase(CB, SwitchBB);
2081    else
2082      SwitchCases.push_back(CB);
2083
2084    CurBlock = FallThrough;
2085  }
2086
2087  return true;
2088}
2089
2090static inline bool areJTsAllowed(const TargetLowering &TLI) {
2091  return TLI.supportJumpTables() &&
2092          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2093           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2094}
2095
2096static APInt ComputeRange(const APInt &First, const APInt &Last) {
2097  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2098  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2099  return (LastExt - FirstExt + 1ULL);
2100}
2101
2102/// handleJTSwitchCase - Emit jumptable for current switch case range
2103bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2104                                             CaseRecVector &WorkList,
2105                                             const Value *SV,
2106                                             MachineBasicBlock *Default,
2107                                             MachineBasicBlock *SwitchBB) {
2108  Case& FrontCase = *CR.Range.first;
2109  Case& BackCase  = *(CR.Range.second-1);
2110
2111  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2112  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2113
2114  APInt TSize(First.getBitWidth(), 0);
2115  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2116    TSize += I->size();
2117
2118  if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2119    return false;
2120
2121  APInt Range = ComputeRange(First, Last);
2122  // The density is TSize / Range. Require at least 40%.
2123  // It should not be possible for IntTSize to saturate for sane code, but make
2124  // sure we handle Range saturation correctly.
2125  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2126  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2127  if (IntTSize * 10 < IntRange * 4)
2128    return false;
2129
2130  DEBUG(dbgs() << "Lowering jump table\n"
2131               << "First entry: " << First << ". Last entry: " << Last << '\n'
2132               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2133
2134  // Get the MachineFunction which holds the current MBB.  This is used when
2135  // inserting any additional MBBs necessary to represent the switch.
2136  MachineFunction *CurMF = FuncInfo.MF;
2137
2138  // Figure out which block is immediately after the current one.
2139  MachineFunction::iterator BBI = CR.CaseBB;
2140  ++BBI;
2141
2142  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2143
2144  // Create a new basic block to hold the code for loading the address
2145  // of the jump table, and jumping to it.  Update successor information;
2146  // we will either branch to the default case for the switch, or the jump
2147  // table.
2148  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2149  CurMF->insert(BBI, JumpTableBB);
2150
2151  addSuccessorWithWeight(CR.CaseBB, Default);
2152  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2153
2154  // Build a vector of destination BBs, corresponding to each target
2155  // of the jump table. If the value of the jump table slot corresponds to
2156  // a case statement, push the case's BB onto the vector, otherwise, push
2157  // the default BB.
2158  std::vector<MachineBasicBlock*> DestBBs;
2159  APInt TEI = First;
2160  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2161    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2162    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2163
2164    if (Low.ule(TEI) && TEI.ule(High)) {
2165      DestBBs.push_back(I->BB);
2166      if (TEI==High)
2167        ++I;
2168    } else {
2169      DestBBs.push_back(Default);
2170    }
2171  }
2172
2173  // Calculate weight for each unique destination in CR.
2174  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2175  if (FuncInfo.BPI)
2176    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2177      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2178          DestWeights.find(I->BB);
2179      if (Itr != DestWeights.end())
2180        Itr->second += I->ExtraWeight;
2181      else
2182        DestWeights[I->BB] = I->ExtraWeight;
2183    }
2184
2185  // Update successor info. Add one edge to each unique successor.
2186  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2187  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2188         E = DestBBs.end(); I != E; ++I) {
2189    if (!SuccsHandled[(*I)->getNumber()]) {
2190      SuccsHandled[(*I)->getNumber()] = true;
2191      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2192          DestWeights.find(*I);
2193      addSuccessorWithWeight(JumpTableBB, *I,
2194                             Itr != DestWeights.end() ? Itr->second : 0);
2195    }
2196  }
2197
2198  // Create a jump table index for this jump table.
2199  unsigned JTEncoding = TLI.getJumpTableEncoding();
2200  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2201                       ->createJumpTableIndex(DestBBs);
2202
2203  // Set the jump table information so that we can codegen it as a second
2204  // MachineBasicBlock
2205  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2206  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2207  if (CR.CaseBB == SwitchBB)
2208    visitJumpTableHeader(JT, JTH, SwitchBB);
2209
2210  JTCases.push_back(JumpTableBlock(JTH, JT));
2211  return true;
2212}
2213
2214/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2215/// 2 subtrees.
2216bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2217                                                  CaseRecVector& WorkList,
2218                                                  const Value* SV,
2219                                                  MachineBasicBlock *Default,
2220                                                  MachineBasicBlock *SwitchBB) {
2221  // Get the MachineFunction which holds the current MBB.  This is used when
2222  // inserting any additional MBBs necessary to represent the switch.
2223  MachineFunction *CurMF = FuncInfo.MF;
2224
2225  // Figure out which block is immediately after the current one.
2226  MachineFunction::iterator BBI = CR.CaseBB;
2227  ++BBI;
2228
2229  Case& FrontCase = *CR.Range.first;
2230  Case& BackCase  = *(CR.Range.second-1);
2231  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2232
2233  // Size is the number of Cases represented by this range.
2234  unsigned Size = CR.Range.second - CR.Range.first;
2235
2236  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2237  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2238  double FMetric = 0;
2239  CaseItr Pivot = CR.Range.first + Size/2;
2240
2241  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2242  // (heuristically) allow us to emit JumpTable's later.
2243  APInt TSize(First.getBitWidth(), 0);
2244  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2245       I!=E; ++I)
2246    TSize += I->size();
2247
2248  APInt LSize = FrontCase.size();
2249  APInt RSize = TSize-LSize;
2250  DEBUG(dbgs() << "Selecting best pivot: \n"
2251               << "First: " << First << ", Last: " << Last <<'\n'
2252               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2253  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2254       J!=E; ++I, ++J) {
2255    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2256    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2257    APInt Range = ComputeRange(LEnd, RBegin);
2258    assert((Range - 2ULL).isNonNegative() &&
2259           "Invalid case distance");
2260    // Use volatile double here to avoid excess precision issues on some hosts,
2261    // e.g. that use 80-bit X87 registers.
2262    volatile double LDensity =
2263       (double)LSize.roundToDouble() /
2264                           (LEnd - First + 1ULL).roundToDouble();
2265    volatile double RDensity =
2266      (double)RSize.roundToDouble() /
2267                           (Last - RBegin + 1ULL).roundToDouble();
2268    double Metric = Range.logBase2()*(LDensity+RDensity);
2269    // Should always split in some non-trivial place
2270    DEBUG(dbgs() <<"=>Step\n"
2271                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2272                 << "LDensity: " << LDensity
2273                 << ", RDensity: " << RDensity << '\n'
2274                 << "Metric: " << Metric << '\n');
2275    if (FMetric < Metric) {
2276      Pivot = J;
2277      FMetric = Metric;
2278      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2279    }
2280
2281    LSize += J->size();
2282    RSize -= J->size();
2283  }
2284  if (areJTsAllowed(TLI)) {
2285    // If our case is dense we *really* should handle it earlier!
2286    assert((FMetric > 0) && "Should handle dense range earlier!");
2287  } else {
2288    Pivot = CR.Range.first + Size/2;
2289  }
2290
2291  CaseRange LHSR(CR.Range.first, Pivot);
2292  CaseRange RHSR(Pivot, CR.Range.second);
2293  const Constant *C = Pivot->Low;
2294  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2295
2296  // We know that we branch to the LHS if the Value being switched on is
2297  // less than the Pivot value, C.  We use this to optimize our binary
2298  // tree a bit, by recognizing that if SV is greater than or equal to the
2299  // LHS's Case Value, and that Case Value is exactly one less than the
2300  // Pivot's Value, then we can branch directly to the LHS's Target,
2301  // rather than creating a leaf node for it.
2302  if ((LHSR.second - LHSR.first) == 1 &&
2303      LHSR.first->High == CR.GE &&
2304      cast<ConstantInt>(C)->getValue() ==
2305      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2306    TrueBB = LHSR.first->BB;
2307  } else {
2308    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2309    CurMF->insert(BBI, TrueBB);
2310    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2311
2312    // Put SV in a virtual register to make it available from the new blocks.
2313    ExportFromCurrentBlock(SV);
2314  }
2315
2316  // Similar to the optimization above, if the Value being switched on is
2317  // known to be less than the Constant CR.LT, and the current Case Value
2318  // is CR.LT - 1, then we can branch directly to the target block for
2319  // the current Case Value, rather than emitting a RHS leaf node for it.
2320  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2321      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2322      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2323    FalseBB = RHSR.first->BB;
2324  } else {
2325    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2326    CurMF->insert(BBI, FalseBB);
2327    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2328
2329    // Put SV in a virtual register to make it available from the new blocks.
2330    ExportFromCurrentBlock(SV);
2331  }
2332
2333  // Create a CaseBlock record representing a conditional branch to
2334  // the LHS node if the value being switched on SV is less than C.
2335  // Otherwise, branch to LHS.
2336  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2337
2338  if (CR.CaseBB == SwitchBB)
2339    visitSwitchCase(CB, SwitchBB);
2340  else
2341    SwitchCases.push_back(CB);
2342
2343  return true;
2344}
2345
2346/// handleBitTestsSwitchCase - if current case range has few destination and
2347/// range span less, than machine word bitwidth, encode case range into series
2348/// of masks and emit bit tests with these masks.
2349bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2350                                                   CaseRecVector& WorkList,
2351                                                   const Value* SV,
2352                                                   MachineBasicBlock* Default,
2353                                                   MachineBasicBlock *SwitchBB){
2354  EVT PTy = TLI.getPointerTy();
2355  unsigned IntPtrBits = PTy.getSizeInBits();
2356
2357  Case& FrontCase = *CR.Range.first;
2358  Case& BackCase  = *(CR.Range.second-1);
2359
2360  // Get the MachineFunction which holds the current MBB.  This is used when
2361  // inserting any additional MBBs necessary to represent the switch.
2362  MachineFunction *CurMF = FuncInfo.MF;
2363
2364  // If target does not have legal shift left, do not emit bit tests at all.
2365  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2366    return false;
2367
2368  size_t numCmps = 0;
2369  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2370       I!=E; ++I) {
2371    // Single case counts one, case range - two.
2372    numCmps += (I->Low == I->High ? 1 : 2);
2373  }
2374
2375  // Count unique destinations
2376  SmallSet<MachineBasicBlock*, 4> Dests;
2377  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2378    Dests.insert(I->BB);
2379    if (Dests.size() > 3)
2380      // Don't bother the code below, if there are too much unique destinations
2381      return false;
2382  }
2383  DEBUG(dbgs() << "Total number of unique destinations: "
2384        << Dests.size() << '\n'
2385        << "Total number of comparisons: " << numCmps << '\n');
2386
2387  // Compute span of values.
2388  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2389  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2390  APInt cmpRange = maxValue - minValue;
2391
2392  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2393               << "Low bound: " << minValue << '\n'
2394               << "High bound: " << maxValue << '\n');
2395
2396  if (cmpRange.uge(IntPtrBits) ||
2397      (!(Dests.size() == 1 && numCmps >= 3) &&
2398       !(Dests.size() == 2 && numCmps >= 5) &&
2399       !(Dests.size() >= 3 && numCmps >= 6)))
2400    return false;
2401
2402  DEBUG(dbgs() << "Emitting bit tests\n");
2403  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2404
2405  // Optimize the case where all the case values fit in a
2406  // word without having to subtract minValue. In this case,
2407  // we can optimize away the subtraction.
2408  if (maxValue.ult(IntPtrBits)) {
2409    cmpRange = maxValue;
2410  } else {
2411    lowBound = minValue;
2412  }
2413
2414  CaseBitsVector CasesBits;
2415  unsigned i, count = 0;
2416
2417  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2418    MachineBasicBlock* Dest = I->BB;
2419    for (i = 0; i < count; ++i)
2420      if (Dest == CasesBits[i].BB)
2421        break;
2422
2423    if (i == count) {
2424      assert((count < 3) && "Too much destinations to test!");
2425      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2426      count++;
2427    }
2428
2429    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2430    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2431
2432    uint64_t lo = (lowValue - lowBound).getZExtValue();
2433    uint64_t hi = (highValue - lowBound).getZExtValue();
2434    CasesBits[i].ExtraWeight += I->ExtraWeight;
2435
2436    for (uint64_t j = lo; j <= hi; j++) {
2437      CasesBits[i].Mask |=  1ULL << j;
2438      CasesBits[i].Bits++;
2439    }
2440
2441  }
2442  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2443
2444  BitTestInfo BTC;
2445
2446  // Figure out which block is immediately after the current one.
2447  MachineFunction::iterator BBI = CR.CaseBB;
2448  ++BBI;
2449
2450  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2451
2452  DEBUG(dbgs() << "Cases:\n");
2453  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2454    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2455                 << ", Bits: " << CasesBits[i].Bits
2456                 << ", BB: " << CasesBits[i].BB << '\n');
2457
2458    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2459    CurMF->insert(BBI, CaseBB);
2460    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2461                              CaseBB,
2462                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2463
2464    // Put SV in a virtual register to make it available from the new blocks.
2465    ExportFromCurrentBlock(SV);
2466  }
2467
2468  BitTestBlock BTB(lowBound, cmpRange, SV,
2469                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2470                   CR.CaseBB, Default, BTC);
2471
2472  if (CR.CaseBB == SwitchBB)
2473    visitBitTestHeader(BTB, SwitchBB);
2474
2475  BitTestCases.push_back(BTB);
2476
2477  return true;
2478}
2479
2480/// Clusterify - Transform simple list of Cases into list of CaseRange's
2481size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2482                                       const SwitchInst& SI) {
2483
2484  /// Use a shorter form of declaration, and also
2485  /// show the we want to use CRSBuilder as Clusterifier.
2486  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2487
2488  Clusterifier TheClusterifier;
2489
2490  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2491  // Start with "simple" cases
2492  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2493       i != e; ++i) {
2494    const BasicBlock *SuccBB = i.getCaseSuccessor();
2495    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2496
2497    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2498        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2499  }
2500
2501  TheClusterifier.optimize();
2502
2503  size_t numCmps = 0;
2504  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2505       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2506    Clusterifier::Cluster &C = *i;
2507    // Update edge weight for the cluster.
2508    unsigned W = C.first.Weight;
2509
2510    // FIXME: Currently work with ConstantInt based numbers.
2511    // Changing it to APInt based is a pretty heavy for this commit.
2512    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2513                         C.first.getHigh().toConstantInt(), C.second, W));
2514
2515    if (C.first.getLow() != C.first.getHigh())
2516    // A range counts double, since it requires two compares.
2517    ++numCmps;
2518  }
2519
2520  return numCmps;
2521}
2522
2523void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2524                                           MachineBasicBlock *Last) {
2525  // Update JTCases.
2526  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2527    if (JTCases[i].first.HeaderBB == First)
2528      JTCases[i].first.HeaderBB = Last;
2529
2530  // Update BitTestCases.
2531  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2532    if (BitTestCases[i].Parent == First)
2533      BitTestCases[i].Parent = Last;
2534}
2535
2536void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2537  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2538
2539  // Figure out which block is immediately after the current one.
2540  MachineBasicBlock *NextBlock = 0;
2541  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2542
2543  // If there is only the default destination, branch to it if it is not the
2544  // next basic block.  Otherwise, just fall through.
2545  if (!SI.getNumCases()) {
2546    // Update machine-CFG edges.
2547
2548    // If this is not a fall-through branch, emit the branch.
2549    SwitchMBB->addSuccessor(Default);
2550    if (Default != NextBlock)
2551      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2552                              MVT::Other, getControlRoot(),
2553                              DAG.getBasicBlock(Default)));
2554
2555    return;
2556  }
2557
2558  // If there are any non-default case statements, create a vector of Cases
2559  // representing each one, and sort the vector so that we can efficiently
2560  // create a binary search tree from them.
2561  CaseVector Cases;
2562  size_t numCmps = Clusterify(Cases, SI);
2563  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2564               << ". Total compares: " << numCmps << '\n');
2565  (void)numCmps;
2566
2567  // Get the Value to be switched on and default basic blocks, which will be
2568  // inserted into CaseBlock records, representing basic blocks in the binary
2569  // search tree.
2570  const Value *SV = SI.getCondition();
2571
2572  // Push the initial CaseRec onto the worklist
2573  CaseRecVector WorkList;
2574  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2575                             CaseRange(Cases.begin(),Cases.end())));
2576
2577  while (!WorkList.empty()) {
2578    // Grab a record representing a case range to process off the worklist
2579    CaseRec CR = WorkList.back();
2580    WorkList.pop_back();
2581
2582    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2583      continue;
2584
2585    // If the range has few cases (two or less) emit a series of specific
2586    // tests.
2587    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2588      continue;
2589
2590    // If the switch has more than N blocks, and is at least 40% dense, and the
2591    // target supports indirect branches, then emit a jump table rather than
2592    // lowering the switch to a binary tree of conditional branches.
2593    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2594    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2595      continue;
2596
2597    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2598    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2599    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2600  }
2601}
2602
2603void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2604  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2605
2606  // Update machine-CFG edges with unique successors.
2607  SmallSet<BasicBlock*, 32> Done;
2608  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2609    BasicBlock *BB = I.getSuccessor(i);
2610    bool Inserted = Done.insert(BB);
2611    if (!Inserted)
2612        continue;
2613
2614    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2615    addSuccessorWithWeight(IndirectBrMBB, Succ);
2616  }
2617
2618  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2619                          MVT::Other, getControlRoot(),
2620                          getValue(I.getAddress())));
2621}
2622
2623void SelectionDAGBuilder::visitFSub(const User &I) {
2624  // -0.0 - X --> fneg
2625  Type *Ty = I.getType();
2626  if (isa<Constant>(I.getOperand(0)) &&
2627      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2628    SDValue Op2 = getValue(I.getOperand(1));
2629    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2630                             Op2.getValueType(), Op2));
2631    return;
2632  }
2633
2634  visitBinary(I, ISD::FSUB);
2635}
2636
2637void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2638  SDValue Op1 = getValue(I.getOperand(0));
2639  SDValue Op2 = getValue(I.getOperand(1));
2640  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2641                           Op1.getValueType(), Op1, Op2));
2642}
2643
2644void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2645  SDValue Op1 = getValue(I.getOperand(0));
2646  SDValue Op2 = getValue(I.getOperand(1));
2647
2648  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2649
2650  // Coerce the shift amount to the right type if we can.
2651  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2652    unsigned ShiftSize = ShiftTy.getSizeInBits();
2653    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2654    DebugLoc DL = getCurDebugLoc();
2655
2656    // If the operand is smaller than the shift count type, promote it.
2657    if (ShiftSize > Op2Size)
2658      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2659
2660    // If the operand is larger than the shift count type but the shift
2661    // count type has enough bits to represent any shift value, truncate
2662    // it now. This is a common case and it exposes the truncate to
2663    // optimization early.
2664    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2665      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2666    // Otherwise we'll need to temporarily settle for some other convenient
2667    // type.  Type legalization will make adjustments once the shiftee is split.
2668    else
2669      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2670  }
2671
2672  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2673                           Op1.getValueType(), Op1, Op2));
2674}
2675
2676void SelectionDAGBuilder::visitSDiv(const User &I) {
2677  SDValue Op1 = getValue(I.getOperand(0));
2678  SDValue Op2 = getValue(I.getOperand(1));
2679
2680  // Turn exact SDivs into multiplications.
2681  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2682  // exact bit.
2683  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2684      !isa<ConstantSDNode>(Op1) &&
2685      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2686    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2687  else
2688    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2689                             Op1, Op2));
2690}
2691
2692void SelectionDAGBuilder::visitICmp(const User &I) {
2693  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2694  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2695    predicate = IC->getPredicate();
2696  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2697    predicate = ICmpInst::Predicate(IC->getPredicate());
2698  SDValue Op1 = getValue(I.getOperand(0));
2699  SDValue Op2 = getValue(I.getOperand(1));
2700  ISD::CondCode Opcode = getICmpCondCode(predicate);
2701
2702  EVT DestVT = TLI.getValueType(I.getType());
2703  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2704}
2705
2706void SelectionDAGBuilder::visitFCmp(const User &I) {
2707  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2708  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2709    predicate = FC->getPredicate();
2710  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2711    predicate = FCmpInst::Predicate(FC->getPredicate());
2712  SDValue Op1 = getValue(I.getOperand(0));
2713  SDValue Op2 = getValue(I.getOperand(1));
2714  ISD::CondCode Condition = getFCmpCondCode(predicate);
2715  if (TM.Options.NoNaNsFPMath)
2716    Condition = getFCmpCodeWithoutNaN(Condition);
2717  EVT DestVT = TLI.getValueType(I.getType());
2718  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2719}
2720
2721void SelectionDAGBuilder::visitSelect(const User &I) {
2722  SmallVector<EVT, 4> ValueVTs;
2723  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2724  unsigned NumValues = ValueVTs.size();
2725  if (NumValues == 0) return;
2726
2727  SmallVector<SDValue, 4> Values(NumValues);
2728  SDValue Cond     = getValue(I.getOperand(0));
2729  SDValue TrueVal  = getValue(I.getOperand(1));
2730  SDValue FalseVal = getValue(I.getOperand(2));
2731  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2732    ISD::VSELECT : ISD::SELECT;
2733
2734  for (unsigned i = 0; i != NumValues; ++i)
2735    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2736                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2737                            Cond,
2738                            SDValue(TrueVal.getNode(),
2739                                    TrueVal.getResNo() + i),
2740                            SDValue(FalseVal.getNode(),
2741                                    FalseVal.getResNo() + i));
2742
2743  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2744                           DAG.getVTList(&ValueVTs[0], NumValues),
2745                           &Values[0], NumValues));
2746}
2747
2748void SelectionDAGBuilder::visitTrunc(const User &I) {
2749  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2750  SDValue N = getValue(I.getOperand(0));
2751  EVT DestVT = TLI.getValueType(I.getType());
2752  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2753}
2754
2755void SelectionDAGBuilder::visitZExt(const User &I) {
2756  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2757  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2758  SDValue N = getValue(I.getOperand(0));
2759  EVT DestVT = TLI.getValueType(I.getType());
2760  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2761}
2762
2763void SelectionDAGBuilder::visitSExt(const User &I) {
2764  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2765  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2766  SDValue N = getValue(I.getOperand(0));
2767  EVT DestVT = TLI.getValueType(I.getType());
2768  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2769}
2770
2771void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2772  // FPTrunc is never a no-op cast, no need to check
2773  SDValue N = getValue(I.getOperand(0));
2774  EVT DestVT = TLI.getValueType(I.getType());
2775  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2776                           DestVT, N,
2777                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2778}
2779
2780void SelectionDAGBuilder::visitFPExt(const User &I){
2781  // FPExt is never a no-op cast, no need to check
2782  SDValue N = getValue(I.getOperand(0));
2783  EVT DestVT = TLI.getValueType(I.getType());
2784  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2785}
2786
2787void SelectionDAGBuilder::visitFPToUI(const User &I) {
2788  // FPToUI is never a no-op cast, no need to check
2789  SDValue N = getValue(I.getOperand(0));
2790  EVT DestVT = TLI.getValueType(I.getType());
2791  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2792}
2793
2794void SelectionDAGBuilder::visitFPToSI(const User &I) {
2795  // FPToSI is never a no-op cast, no need to check
2796  SDValue N = getValue(I.getOperand(0));
2797  EVT DestVT = TLI.getValueType(I.getType());
2798  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2799}
2800
2801void SelectionDAGBuilder::visitUIToFP(const User &I) {
2802  // UIToFP is never a no-op cast, no need to check
2803  SDValue N = getValue(I.getOperand(0));
2804  EVT DestVT = TLI.getValueType(I.getType());
2805  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2806}
2807
2808void SelectionDAGBuilder::visitSIToFP(const User &I){
2809  // SIToFP is never a no-op cast, no need to check
2810  SDValue N = getValue(I.getOperand(0));
2811  EVT DestVT = TLI.getValueType(I.getType());
2812  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2813}
2814
2815void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2816  // What to do depends on the size of the integer and the size of the pointer.
2817  // We can either truncate, zero extend, or no-op, accordingly.
2818  SDValue N = getValue(I.getOperand(0));
2819  EVT DestVT = TLI.getValueType(I.getType());
2820  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2821}
2822
2823void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2824  // What to do depends on the size of the integer and the size of the pointer.
2825  // We can either truncate, zero extend, or no-op, accordingly.
2826  SDValue N = getValue(I.getOperand(0));
2827  EVT DestVT = TLI.getValueType(I.getType());
2828  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2829}
2830
2831void SelectionDAGBuilder::visitBitCast(const User &I) {
2832  SDValue N = getValue(I.getOperand(0));
2833  EVT DestVT = TLI.getValueType(I.getType());
2834
2835  // BitCast assures us that source and destination are the same size so this is
2836  // either a BITCAST or a no-op.
2837  if (DestVT != N.getValueType())
2838    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2839                             DestVT, N)); // convert types.
2840  else
2841    setValue(&I, N);            // noop cast.
2842}
2843
2844void SelectionDAGBuilder::visitInsertElement(const User &I) {
2845  SDValue InVec = getValue(I.getOperand(0));
2846  SDValue InVal = getValue(I.getOperand(1));
2847  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2848                              TLI.getPointerTy(),
2849                              getValue(I.getOperand(2)));
2850  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2851                           TLI.getValueType(I.getType()),
2852                           InVec, InVal, InIdx));
2853}
2854
2855void SelectionDAGBuilder::visitExtractElement(const User &I) {
2856  SDValue InVec = getValue(I.getOperand(0));
2857  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2858                              TLI.getPointerTy(),
2859                              getValue(I.getOperand(1)));
2860  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2861                           TLI.getValueType(I.getType()), InVec, InIdx));
2862}
2863
2864// Utility for visitShuffleVector - Return true if every element in Mask,
2865// beginning from position Pos and ending in Pos+Size, falls within the
2866// specified sequential range [L, L+Pos). or is undef.
2867static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2868                                unsigned Pos, unsigned Size, int Low) {
2869  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2870    if (Mask[i] >= 0 && Mask[i] != Low)
2871      return false;
2872  return true;
2873}
2874
2875void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2876  SDValue Src1 = getValue(I.getOperand(0));
2877  SDValue Src2 = getValue(I.getOperand(1));
2878
2879  SmallVector<int, 8> Mask;
2880  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2881  unsigned MaskNumElts = Mask.size();
2882
2883  EVT VT = TLI.getValueType(I.getType());
2884  EVT SrcVT = Src1.getValueType();
2885  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2886
2887  if (SrcNumElts == MaskNumElts) {
2888    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2889                                      &Mask[0]));
2890    return;
2891  }
2892
2893  // Normalize the shuffle vector since mask and vector length don't match.
2894  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2895    // Mask is longer than the source vectors and is a multiple of the source
2896    // vectors.  We can use concatenate vector to make the mask and vectors
2897    // lengths match.
2898    if (SrcNumElts*2 == MaskNumElts) {
2899      // First check for Src1 in low and Src2 in high
2900      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2901          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2902        // The shuffle is concatenating two vectors together.
2903        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2904                                 VT, Src1, Src2));
2905        return;
2906      }
2907      // Then check for Src2 in low and Src1 in high
2908      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2909          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2910        // The shuffle is concatenating two vectors together.
2911        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2912                                 VT, Src2, Src1));
2913        return;
2914      }
2915    }
2916
2917    // Pad both vectors with undefs to make them the same length as the mask.
2918    unsigned NumConcat = MaskNumElts / SrcNumElts;
2919    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2920    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2921    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2922
2923    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2924    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2925    MOps1[0] = Src1;
2926    MOps2[0] = Src2;
2927
2928    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2929                                                  getCurDebugLoc(), VT,
2930                                                  &MOps1[0], NumConcat);
2931    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2932                                                  getCurDebugLoc(), VT,
2933                                                  &MOps2[0], NumConcat);
2934
2935    // Readjust mask for new input vector length.
2936    SmallVector<int, 8> MappedOps;
2937    for (unsigned i = 0; i != MaskNumElts; ++i) {
2938      int Idx = Mask[i];
2939      if (Idx >= (int)SrcNumElts)
2940        Idx -= SrcNumElts - MaskNumElts;
2941      MappedOps.push_back(Idx);
2942    }
2943
2944    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2945                                      &MappedOps[0]));
2946    return;
2947  }
2948
2949  if (SrcNumElts > MaskNumElts) {
2950    // Analyze the access pattern of the vector to see if we can extract
2951    // two subvectors and do the shuffle. The analysis is done by calculating
2952    // the range of elements the mask access on both vectors.
2953    int MinRange[2] = { static_cast<int>(SrcNumElts),
2954                        static_cast<int>(SrcNumElts)};
2955    int MaxRange[2] = {-1, -1};
2956
2957    for (unsigned i = 0; i != MaskNumElts; ++i) {
2958      int Idx = Mask[i];
2959      unsigned Input = 0;
2960      if (Idx < 0)
2961        continue;
2962
2963      if (Idx >= (int)SrcNumElts) {
2964        Input = 1;
2965        Idx -= SrcNumElts;
2966      }
2967      if (Idx > MaxRange[Input])
2968        MaxRange[Input] = Idx;
2969      if (Idx < MinRange[Input])
2970        MinRange[Input] = Idx;
2971    }
2972
2973    // Check if the access is smaller than the vector size and can we find
2974    // a reasonable extract index.
2975    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2976                                   // Extract.
2977    int StartIdx[2];  // StartIdx to extract from
2978    for (unsigned Input = 0; Input < 2; ++Input) {
2979      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2980        RangeUse[Input] = 0; // Unused
2981        StartIdx[Input] = 0;
2982        continue;
2983      }
2984
2985      // Find a good start index that is a multiple of the mask length. Then
2986      // see if the rest of the elements are in range.
2987      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2988      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2989          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2990        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2991    }
2992
2993    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2994      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2995      return;
2996    }
2997    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2998      // Extract appropriate subvector and generate a vector shuffle
2999      for (unsigned Input = 0; Input < 2; ++Input) {
3000        SDValue &Src = Input == 0 ? Src1 : Src2;
3001        if (RangeUse[Input] == 0)
3002          Src = DAG.getUNDEF(VT);
3003        else
3004          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
3005                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
3006      }
3007
3008      // Calculate new mask.
3009      SmallVector<int, 8> MappedOps;
3010      for (unsigned i = 0; i != MaskNumElts; ++i) {
3011        int Idx = Mask[i];
3012        if (Idx >= 0) {
3013          if (Idx < (int)SrcNumElts)
3014            Idx -= StartIdx[0];
3015          else
3016            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3017        }
3018        MappedOps.push_back(Idx);
3019      }
3020
3021      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
3022                                        &MappedOps[0]));
3023      return;
3024    }
3025  }
3026
3027  // We can't use either concat vectors or extract subvectors so fall back to
3028  // replacing the shuffle with extract and build vector.
3029  // to insert and build vector.
3030  EVT EltVT = VT.getVectorElementType();
3031  EVT PtrVT = TLI.getPointerTy();
3032  SmallVector<SDValue,8> Ops;
3033  for (unsigned i = 0; i != MaskNumElts; ++i) {
3034    int Idx = Mask[i];
3035    SDValue Res;
3036
3037    if (Idx < 0) {
3038      Res = DAG.getUNDEF(EltVT);
3039    } else {
3040      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3041      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3042
3043      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
3044                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3045    }
3046
3047    Ops.push_back(Res);
3048  }
3049
3050  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
3051                           VT, &Ops[0], Ops.size()));
3052}
3053
3054void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3055  const Value *Op0 = I.getOperand(0);
3056  const Value *Op1 = I.getOperand(1);
3057  Type *AggTy = I.getType();
3058  Type *ValTy = Op1->getType();
3059  bool IntoUndef = isa<UndefValue>(Op0);
3060  bool FromUndef = isa<UndefValue>(Op1);
3061
3062  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3063
3064  SmallVector<EVT, 4> AggValueVTs;
3065  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3066  SmallVector<EVT, 4> ValValueVTs;
3067  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3068
3069  unsigned NumAggValues = AggValueVTs.size();
3070  unsigned NumValValues = ValValueVTs.size();
3071  SmallVector<SDValue, 4> Values(NumAggValues);
3072
3073  SDValue Agg = getValue(Op0);
3074  unsigned i = 0;
3075  // Copy the beginning value(s) from the original aggregate.
3076  for (; i != LinearIndex; ++i)
3077    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3078                SDValue(Agg.getNode(), Agg.getResNo() + i);
3079  // Copy values from the inserted value(s).
3080  if (NumValValues) {
3081    SDValue Val = getValue(Op1);
3082    for (; i != LinearIndex + NumValValues; ++i)
3083      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3084                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3085  }
3086  // Copy remaining value(s) from the original aggregate.
3087  for (; i != NumAggValues; ++i)
3088    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3089                SDValue(Agg.getNode(), Agg.getResNo() + i);
3090
3091  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3092                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3093                           &Values[0], NumAggValues));
3094}
3095
3096void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3097  const Value *Op0 = I.getOperand(0);
3098  Type *AggTy = Op0->getType();
3099  Type *ValTy = I.getType();
3100  bool OutOfUndef = isa<UndefValue>(Op0);
3101
3102  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3103
3104  SmallVector<EVT, 4> ValValueVTs;
3105  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3106
3107  unsigned NumValValues = ValValueVTs.size();
3108
3109  // Ignore a extractvalue that produces an empty object
3110  if (!NumValValues) {
3111    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3112    return;
3113  }
3114
3115  SmallVector<SDValue, 4> Values(NumValValues);
3116
3117  SDValue Agg = getValue(Op0);
3118  // Copy out the selected value(s).
3119  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3120    Values[i - LinearIndex] =
3121      OutOfUndef ?
3122        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3123        SDValue(Agg.getNode(), Agg.getResNo() + i);
3124
3125  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3126                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3127                           &Values[0], NumValValues));
3128}
3129
3130void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3131  SDValue N = getValue(I.getOperand(0));
3132  // Note that the pointer operand may be a vector of pointers. Take the scalar
3133  // element which holds a pointer.
3134  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3135
3136  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3137       OI != E; ++OI) {
3138    const Value *Idx = *OI;
3139    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3140      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3141      if (Field) {
3142        // N = N + Offset
3143        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3144        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3145                        DAG.getConstant(Offset, N.getValueType()));
3146      }
3147
3148      Ty = StTy->getElementType(Field);
3149    } else {
3150      Ty = cast<SequentialType>(Ty)->getElementType();
3151
3152      // If this is a constant subscript, handle it quickly.
3153      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3154        if (CI->isZero()) continue;
3155        uint64_t Offs =
3156            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3157        SDValue OffsVal;
3158        EVT PTy = TLI.getPointerTy();
3159        unsigned PtrBits = PTy.getSizeInBits();
3160        if (PtrBits < 64)
3161          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3162                                TLI.getPointerTy(),
3163                                DAG.getConstant(Offs, MVT::i64));
3164        else
3165          OffsVal = DAG.getIntPtrConstant(Offs);
3166
3167        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3168                        OffsVal);
3169        continue;
3170      }
3171
3172      // N = N + Idx * ElementSize;
3173      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3174                                TD->getTypeAllocSize(Ty));
3175      SDValue IdxN = getValue(Idx);
3176
3177      // If the index is smaller or larger than intptr_t, truncate or extend
3178      // it.
3179      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3180
3181      // If this is a multiply by a power of two, turn it into a shl
3182      // immediately.  This is a very common case.
3183      if (ElementSize != 1) {
3184        if (ElementSize.isPowerOf2()) {
3185          unsigned Amt = ElementSize.logBase2();
3186          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3187                             N.getValueType(), IdxN,
3188                             DAG.getConstant(Amt, IdxN.getValueType()));
3189        } else {
3190          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3191          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3192                             N.getValueType(), IdxN, Scale);
3193        }
3194      }
3195
3196      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3197                      N.getValueType(), N, IdxN);
3198    }
3199  }
3200
3201  setValue(&I, N);
3202}
3203
3204void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3205  // If this is a fixed sized alloca in the entry block of the function,
3206  // allocate it statically on the stack.
3207  if (FuncInfo.StaticAllocaMap.count(&I))
3208    return;   // getValue will auto-populate this.
3209
3210  Type *Ty = I.getAllocatedType();
3211  uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3212  unsigned Align =
3213    std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3214             I.getAlignment());
3215
3216  SDValue AllocSize = getValue(I.getArraySize());
3217
3218  EVT IntPtr = TLI.getPointerTy();
3219  if (AllocSize.getValueType() != IntPtr)
3220    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3221
3222  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3223                          AllocSize,
3224                          DAG.getConstant(TySize, IntPtr));
3225
3226  // Handle alignment.  If the requested alignment is less than or equal to
3227  // the stack alignment, ignore it.  If the size is greater than or equal to
3228  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3229  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3230  if (Align <= StackAlign)
3231    Align = 0;
3232
3233  // Round the size of the allocation up to the stack alignment size
3234  // by add SA-1 to the size.
3235  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3236                          AllocSize.getValueType(), AllocSize,
3237                          DAG.getIntPtrConstant(StackAlign-1));
3238
3239  // Mask out the low bits for alignment purposes.
3240  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3241                          AllocSize.getValueType(), AllocSize,
3242                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3243
3244  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3245  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3246  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3247                            VTs, Ops, 3);
3248  setValue(&I, DSA);
3249  DAG.setRoot(DSA.getValue(1));
3250
3251  // Inform the Frame Information that we have just allocated a variable-sized
3252  // object.
3253  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3254}
3255
3256void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3257  if (I.isAtomic())
3258    return visitAtomicLoad(I);
3259
3260  const Value *SV = I.getOperand(0);
3261  SDValue Ptr = getValue(SV);
3262
3263  Type *Ty = I.getType();
3264
3265  bool isVolatile = I.isVolatile();
3266  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3267  bool isInvariant = I.getMetadata("invariant.load") != 0;
3268  unsigned Alignment = I.getAlignment();
3269  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3270  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3271
3272  SmallVector<EVT, 4> ValueVTs;
3273  SmallVector<uint64_t, 4> Offsets;
3274  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3275  unsigned NumValues = ValueVTs.size();
3276  if (NumValues == 0)
3277    return;
3278
3279  SDValue Root;
3280  bool ConstantMemory = false;
3281  if (I.isVolatile() || NumValues > MaxParallelChains)
3282    // Serialize volatile loads with other side effects.
3283    Root = getRoot();
3284  else if (AA->pointsToConstantMemory(
3285             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3286    // Do not serialize (non-volatile) loads of constant memory with anything.
3287    Root = DAG.getEntryNode();
3288    ConstantMemory = true;
3289  } else {
3290    // Do not serialize non-volatile loads against each other.
3291    Root = DAG.getRoot();
3292  }
3293
3294  SmallVector<SDValue, 4> Values(NumValues);
3295  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3296                                          NumValues));
3297  EVT PtrVT = Ptr.getValueType();
3298  unsigned ChainI = 0;
3299  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3300    // Serializing loads here may result in excessive register pressure, and
3301    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3302    // could recover a bit by hoisting nodes upward in the chain by recognizing
3303    // they are side-effect free or do not alias. The optimizer should really
3304    // avoid this case by converting large object/array copies to llvm.memcpy
3305    // (MaxParallelChains should always remain as failsafe).
3306    if (ChainI == MaxParallelChains) {
3307      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3308      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3309                                  MVT::Other, &Chains[0], ChainI);
3310      Root = Chain;
3311      ChainI = 0;
3312    }
3313    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3314                            PtrVT, Ptr,
3315                            DAG.getConstant(Offsets[i], PtrVT));
3316    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3317                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3318                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3319                            Ranges);
3320
3321    Values[i] = L;
3322    Chains[ChainI] = L.getValue(1);
3323  }
3324
3325  if (!ConstantMemory) {
3326    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3327                                MVT::Other, &Chains[0], ChainI);
3328    if (isVolatile)
3329      DAG.setRoot(Chain);
3330    else
3331      PendingLoads.push_back(Chain);
3332  }
3333
3334  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3335                           DAG.getVTList(&ValueVTs[0], NumValues),
3336                           &Values[0], NumValues));
3337}
3338
3339void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3340  if (I.isAtomic())
3341    return visitAtomicStore(I);
3342
3343  const Value *SrcV = I.getOperand(0);
3344  const Value *PtrV = I.getOperand(1);
3345
3346  SmallVector<EVT, 4> ValueVTs;
3347  SmallVector<uint64_t, 4> Offsets;
3348  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3349  unsigned NumValues = ValueVTs.size();
3350  if (NumValues == 0)
3351    return;
3352
3353  // Get the lowered operands. Note that we do this after
3354  // checking if NumResults is zero, because with zero results
3355  // the operands won't have values in the map.
3356  SDValue Src = getValue(SrcV);
3357  SDValue Ptr = getValue(PtrV);
3358
3359  SDValue Root = getRoot();
3360  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3361                                          NumValues));
3362  EVT PtrVT = Ptr.getValueType();
3363  bool isVolatile = I.isVolatile();
3364  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3365  unsigned Alignment = I.getAlignment();
3366  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3367
3368  unsigned ChainI = 0;
3369  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3370    // See visitLoad comments.
3371    if (ChainI == MaxParallelChains) {
3372      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3373                                  MVT::Other, &Chains[0], ChainI);
3374      Root = Chain;
3375      ChainI = 0;
3376    }
3377    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3378                              DAG.getConstant(Offsets[i], PtrVT));
3379    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3380                              SDValue(Src.getNode(), Src.getResNo() + i),
3381                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3382                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3383    Chains[ChainI] = St;
3384  }
3385
3386  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3387                                  MVT::Other, &Chains[0], ChainI);
3388  ++SDNodeOrder;
3389  AssignOrderingToNode(StoreNode.getNode());
3390  DAG.setRoot(StoreNode);
3391}
3392
3393static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3394                                    SynchronizationScope Scope,
3395                                    bool Before, DebugLoc dl,
3396                                    SelectionDAG &DAG,
3397                                    const TargetLowering &TLI) {
3398  // Fence, if necessary
3399  if (Before) {
3400    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3401      Order = Release;
3402    else if (Order == Acquire || Order == Monotonic)
3403      return Chain;
3404  } else {
3405    if (Order == AcquireRelease)
3406      Order = Acquire;
3407    else if (Order == Release || Order == Monotonic)
3408      return Chain;
3409  }
3410  SDValue Ops[3];
3411  Ops[0] = Chain;
3412  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3413  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3414  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3415}
3416
3417void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3418  DebugLoc dl = getCurDebugLoc();
3419  AtomicOrdering Order = I.getOrdering();
3420  SynchronizationScope Scope = I.getSynchScope();
3421
3422  SDValue InChain = getRoot();
3423
3424  if (TLI.getInsertFencesForAtomic())
3425    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3426                                   DAG, TLI);
3427
3428  SDValue L =
3429    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3430                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3431                  InChain,
3432                  getValue(I.getPointerOperand()),
3433                  getValue(I.getCompareOperand()),
3434                  getValue(I.getNewValOperand()),
3435                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3436                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3437                  Scope);
3438
3439  SDValue OutChain = L.getValue(1);
3440
3441  if (TLI.getInsertFencesForAtomic())
3442    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3443                                    DAG, TLI);
3444
3445  setValue(&I, L);
3446  DAG.setRoot(OutChain);
3447}
3448
3449void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3450  DebugLoc dl = getCurDebugLoc();
3451  ISD::NodeType NT;
3452  switch (I.getOperation()) {
3453  default: llvm_unreachable("Unknown atomicrmw operation");
3454  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3455  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3456  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3457  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3458  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3459  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3460  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3461  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3462  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3463  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3464  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3465  }
3466  AtomicOrdering Order = I.getOrdering();
3467  SynchronizationScope Scope = I.getSynchScope();
3468
3469  SDValue InChain = getRoot();
3470
3471  if (TLI.getInsertFencesForAtomic())
3472    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3473                                   DAG, TLI);
3474
3475  SDValue L =
3476    DAG.getAtomic(NT, dl,
3477                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3478                  InChain,
3479                  getValue(I.getPointerOperand()),
3480                  getValue(I.getValOperand()),
3481                  I.getPointerOperand(), 0 /* Alignment */,
3482                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3483                  Scope);
3484
3485  SDValue OutChain = L.getValue(1);
3486
3487  if (TLI.getInsertFencesForAtomic())
3488    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3489                                    DAG, TLI);
3490
3491  setValue(&I, L);
3492  DAG.setRoot(OutChain);
3493}
3494
3495void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3496  DebugLoc dl = getCurDebugLoc();
3497  SDValue Ops[3];
3498  Ops[0] = getRoot();
3499  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3500  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3501  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3502}
3503
3504void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3505  DebugLoc dl = getCurDebugLoc();
3506  AtomicOrdering Order = I.getOrdering();
3507  SynchronizationScope Scope = I.getSynchScope();
3508
3509  SDValue InChain = getRoot();
3510
3511  EVT VT = TLI.getValueType(I.getType());
3512
3513  if (I.getAlignment() * 8 < VT.getSizeInBits())
3514    report_fatal_error("Cannot generate unaligned atomic load");
3515
3516  SDValue L =
3517    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3518                  getValue(I.getPointerOperand()),
3519                  I.getPointerOperand(), I.getAlignment(),
3520                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3521                  Scope);
3522
3523  SDValue OutChain = L.getValue(1);
3524
3525  if (TLI.getInsertFencesForAtomic())
3526    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3527                                    DAG, TLI);
3528
3529  setValue(&I, L);
3530  DAG.setRoot(OutChain);
3531}
3532
3533void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3534  DebugLoc dl = getCurDebugLoc();
3535
3536  AtomicOrdering Order = I.getOrdering();
3537  SynchronizationScope Scope = I.getSynchScope();
3538
3539  SDValue InChain = getRoot();
3540
3541  EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3542
3543  if (I.getAlignment() * 8 < VT.getSizeInBits())
3544    report_fatal_error("Cannot generate unaligned atomic store");
3545
3546  if (TLI.getInsertFencesForAtomic())
3547    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3548                                   DAG, TLI);
3549
3550  SDValue OutChain =
3551    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3552                  InChain,
3553                  getValue(I.getPointerOperand()),
3554                  getValue(I.getValueOperand()),
3555                  I.getPointerOperand(), I.getAlignment(),
3556                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3557                  Scope);
3558
3559  if (TLI.getInsertFencesForAtomic())
3560    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3561                                    DAG, TLI);
3562
3563  DAG.setRoot(OutChain);
3564}
3565
3566/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3567/// node.
3568void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3569                                               unsigned Intrinsic) {
3570  bool HasChain = !I.doesNotAccessMemory();
3571  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3572
3573  // Build the operand list.
3574  SmallVector<SDValue, 8> Ops;
3575  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3576    if (OnlyLoad) {
3577      // We don't need to serialize loads against other loads.
3578      Ops.push_back(DAG.getRoot());
3579    } else {
3580      Ops.push_back(getRoot());
3581    }
3582  }
3583
3584  // Info is set by getTgtMemInstrinsic
3585  TargetLowering::IntrinsicInfo Info;
3586  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3587
3588  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3589  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3590      Info.opc == ISD::INTRINSIC_W_CHAIN)
3591    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3592
3593  // Add all operands of the call to the operand list.
3594  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3595    SDValue Op = getValue(I.getArgOperand(i));
3596    Ops.push_back(Op);
3597  }
3598
3599  SmallVector<EVT, 4> ValueVTs;
3600  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3601
3602  if (HasChain)
3603    ValueVTs.push_back(MVT::Other);
3604
3605  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3606
3607  // Create the node.
3608  SDValue Result;
3609  if (IsTgtIntrinsic) {
3610    // This is target intrinsic that touches memory
3611    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3612                                     VTs, &Ops[0], Ops.size(),
3613                                     Info.memVT,
3614                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3615                                     Info.align, Info.vol,
3616                                     Info.readMem, Info.writeMem);
3617  } else if (!HasChain) {
3618    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3619                         VTs, &Ops[0], Ops.size());
3620  } else if (!I.getType()->isVoidTy()) {
3621    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3622                         VTs, &Ops[0], Ops.size());
3623  } else {
3624    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3625                         VTs, &Ops[0], Ops.size());
3626  }
3627
3628  if (HasChain) {
3629    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3630    if (OnlyLoad)
3631      PendingLoads.push_back(Chain);
3632    else
3633      DAG.setRoot(Chain);
3634  }
3635
3636  if (!I.getType()->isVoidTy()) {
3637    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3638      EVT VT = TLI.getValueType(PTy);
3639      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3640    }
3641
3642    setValue(&I, Result);
3643  } else {
3644    // Assign order to result here. If the intrinsic does not produce a result,
3645    // it won't be mapped to a SDNode and visit() will not assign it an order
3646    // number.
3647    ++SDNodeOrder;
3648    AssignOrderingToNode(Result.getNode());
3649  }
3650}
3651
3652/// GetSignificand - Get the significand and build it into a floating-point
3653/// number with exponent of 1:
3654///
3655///   Op = (Op & 0x007fffff) | 0x3f800000;
3656///
3657/// where Op is the hexidecimal representation of floating point value.
3658static SDValue
3659GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3660  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3661                           DAG.getConstant(0x007fffff, MVT::i32));
3662  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3663                           DAG.getConstant(0x3f800000, MVT::i32));
3664  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3665}
3666
3667/// GetExponent - Get the exponent:
3668///
3669///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3670///
3671/// where Op is the hexidecimal representation of floating point value.
3672static SDValue
3673GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3674            DebugLoc dl) {
3675  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3676                           DAG.getConstant(0x7f800000, MVT::i32));
3677  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3678                           DAG.getConstant(23, TLI.getPointerTy()));
3679  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3680                           DAG.getConstant(127, MVT::i32));
3681  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3682}
3683
3684/// getF32Constant - Get 32-bit floating point constant.
3685static SDValue
3686getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3687  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3688}
3689
3690/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3691/// limited-precision mode.
3692static SDValue expandExp(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3693                         const TargetLowering &TLI) {
3694  if (Op.getValueType() == MVT::f32 &&
3695      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3696
3697    // Put the exponent in the right bit position for later addition to the
3698    // final result:
3699    //
3700    //   #define LOG2OFe 1.4426950f
3701    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3702    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3703                             getF32Constant(DAG, 0x3fb8aa3b));
3704    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3705
3706    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3707    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3708    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3709
3710    //   IntegerPartOfX <<= 23;
3711    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3712                                 DAG.getConstant(23, TLI.getPointerTy()));
3713
3714    SDValue TwoToFracPartOfX;
3715    if (LimitFloatPrecision <= 6) {
3716      // For floating-point precision of 6:
3717      //
3718      //   TwoToFractionalPartOfX =
3719      //     0.997535578f +
3720      //       (0.735607626f + 0.252464424f * x) * x;
3721      //
3722      // error 0.0144103317, which is 6 bits
3723      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3724                               getF32Constant(DAG, 0x3e814304));
3725      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3726                               getF32Constant(DAG, 0x3f3c50c8));
3727      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3728      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3729                                     getF32Constant(DAG, 0x3f7f5e7e));
3730    } else if (LimitFloatPrecision <= 12) {
3731      // For floating-point precision of 12:
3732      //
3733      //   TwoToFractionalPartOfX =
3734      //     0.999892986f +
3735      //       (0.696457318f +
3736      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3737      //
3738      // 0.000107046256 error, which is 13 to 14 bits
3739      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3740                               getF32Constant(DAG, 0x3da235e3));
3741      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3742                               getF32Constant(DAG, 0x3e65b8f3));
3743      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3744      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3745                               getF32Constant(DAG, 0x3f324b07));
3746      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3747      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3748                                     getF32Constant(DAG, 0x3f7ff8fd));
3749    } else { // LimitFloatPrecision <= 18
3750      // For floating-point precision of 18:
3751      //
3752      //   TwoToFractionalPartOfX =
3753      //     0.999999982f +
3754      //       (0.693148872f +
3755      //         (0.240227044f +
3756      //           (0.554906021e-1f +
3757      //             (0.961591928e-2f +
3758      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3759      //
3760      // error 2.47208000*10^(-7), which is better than 18 bits
3761      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3762                               getF32Constant(DAG, 0x3924b03e));
3763      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3764                               getF32Constant(DAG, 0x3ab24b87));
3765      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3766      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3767                               getF32Constant(DAG, 0x3c1d8c17));
3768      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3769      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3770                               getF32Constant(DAG, 0x3d634a1d));
3771      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3772      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3773                               getF32Constant(DAG, 0x3e75fe14));
3774      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3775      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3776                                getF32Constant(DAG, 0x3f317234));
3777      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3778      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3779                                     getF32Constant(DAG, 0x3f800000));
3780    }
3781
3782    // Add the exponent into the result in integer domain.
3783    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3784    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3785                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3786                                   t13, IntegerPartOfX));
3787  }
3788
3789  // No special expansion.
3790  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3791}
3792
3793/// expandLog - Lower a log intrinsic. Handles the special sequences for
3794/// limited-precision mode.
3795static SDValue expandLog(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3796                         const TargetLowering &TLI) {
3797  if (Op.getValueType() == MVT::f32 &&
3798      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3799    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3800
3801    // Scale the exponent by log(2) [0.69314718f].
3802    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3803    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3804                                        getF32Constant(DAG, 0x3f317218));
3805
3806    // Get the significand and build it into a floating-point number with
3807    // exponent of 1.
3808    SDValue X = GetSignificand(DAG, Op1, dl);
3809
3810    SDValue LogOfMantissa;
3811    if (LimitFloatPrecision <= 6) {
3812      // For floating-point precision of 6:
3813      //
3814      //   LogofMantissa =
3815      //     -1.1609546f +
3816      //       (1.4034025f - 0.23903021f * x) * x;
3817      //
3818      // error 0.0034276066, which is better than 8 bits
3819      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3820                               getF32Constant(DAG, 0xbe74c456));
3821      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3822                               getF32Constant(DAG, 0x3fb3a2b1));
3823      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3824      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3825                                  getF32Constant(DAG, 0x3f949a29));
3826    } else if (LimitFloatPrecision <= 12) {
3827      // For floating-point precision of 12:
3828      //
3829      //   LogOfMantissa =
3830      //     -1.7417939f +
3831      //       (2.8212026f +
3832      //         (-1.4699568f +
3833      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3834      //
3835      // error 0.000061011436, which is 14 bits
3836      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3837                               getF32Constant(DAG, 0xbd67b6d6));
3838      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3839                               getF32Constant(DAG, 0x3ee4f4b8));
3840      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3841      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3842                               getF32Constant(DAG, 0x3fbc278b));
3843      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3844      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3845                               getF32Constant(DAG, 0x40348e95));
3846      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3847      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3848                                  getF32Constant(DAG, 0x3fdef31a));
3849    } else { // LimitFloatPrecision <= 18
3850      // For floating-point precision of 18:
3851      //
3852      //   LogOfMantissa =
3853      //     -2.1072184f +
3854      //       (4.2372794f +
3855      //         (-3.7029485f +
3856      //           (2.2781945f +
3857      //             (-0.87823314f +
3858      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3859      //
3860      // error 0.0000023660568, which is better than 18 bits
3861      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3862                               getF32Constant(DAG, 0xbc91e5ac));
3863      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3864                               getF32Constant(DAG, 0x3e4350aa));
3865      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3866      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3867                               getF32Constant(DAG, 0x3f60d3e3));
3868      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3869      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3870                               getF32Constant(DAG, 0x4011cdf0));
3871      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3872      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3873                               getF32Constant(DAG, 0x406cfd1c));
3874      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3875      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3876                               getF32Constant(DAG, 0x408797cb));
3877      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3878      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3879                                  getF32Constant(DAG, 0x4006dcab));
3880    }
3881
3882    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3883  }
3884
3885  // No special expansion.
3886  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3887}
3888
3889/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3890/// limited-precision mode.
3891static SDValue expandLog2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3892                          const TargetLowering &TLI) {
3893  if (Op.getValueType() == MVT::f32 &&
3894      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3895    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3896
3897    // Get the exponent.
3898    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3899
3900    // Get the significand and build it into a floating-point number with
3901    // exponent of 1.
3902    SDValue X = GetSignificand(DAG, Op1, dl);
3903
3904    // Different possible minimax approximations of significand in
3905    // floating-point for various degrees of accuracy over [1,2].
3906    SDValue Log2ofMantissa;
3907    if (LimitFloatPrecision <= 6) {
3908      // For floating-point precision of 6:
3909      //
3910      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3911      //
3912      // error 0.0049451742, which is more than 7 bits
3913      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3914                               getF32Constant(DAG, 0xbeb08fe0));
3915      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3916                               getF32Constant(DAG, 0x40019463));
3917      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3918      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3919                                   getF32Constant(DAG, 0x3fd6633d));
3920    } else if (LimitFloatPrecision <= 12) {
3921      // For floating-point precision of 12:
3922      //
3923      //   Log2ofMantissa =
3924      //     -2.51285454f +
3925      //       (4.07009056f +
3926      //         (-2.12067489f +
3927      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3928      //
3929      // error 0.0000876136000, which is better than 13 bits
3930      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3931                               getF32Constant(DAG, 0xbda7262e));
3932      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3933                               getF32Constant(DAG, 0x3f25280b));
3934      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3935      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3936                               getF32Constant(DAG, 0x4007b923));
3937      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3938      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3939                               getF32Constant(DAG, 0x40823e2f));
3940      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3941      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3942                                   getF32Constant(DAG, 0x4020d29c));
3943    } else { // LimitFloatPrecision <= 18
3944      // For floating-point precision of 18:
3945      //
3946      //   Log2ofMantissa =
3947      //     -3.0400495f +
3948      //       (6.1129976f +
3949      //         (-5.3420409f +
3950      //           (3.2865683f +
3951      //             (-1.2669343f +
3952      //               (0.27515199f -
3953      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3954      //
3955      // error 0.0000018516, which is better than 18 bits
3956      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3957                               getF32Constant(DAG, 0xbcd2769e));
3958      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3959                               getF32Constant(DAG, 0x3e8ce0b9));
3960      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3961      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3962                               getF32Constant(DAG, 0x3fa22ae7));
3963      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3964      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3965                               getF32Constant(DAG, 0x40525723));
3966      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3967      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3968                               getF32Constant(DAG, 0x40aaf200));
3969      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3970      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3971                               getF32Constant(DAG, 0x40c39dad));
3972      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3973      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3974                                   getF32Constant(DAG, 0x4042902c));
3975    }
3976
3977    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3978  }
3979
3980  // No special expansion.
3981  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
3982}
3983
3984/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
3985/// limited-precision mode.
3986static SDValue expandLog10(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3987                           const TargetLowering &TLI) {
3988  if (Op.getValueType() == MVT::f32 &&
3989      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3990    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3991
3992    // Scale the exponent by log10(2) [0.30102999f].
3993    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3994    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3995                                        getF32Constant(DAG, 0x3e9a209a));
3996
3997    // Get the significand and build it into a floating-point number with
3998    // exponent of 1.
3999    SDValue X = GetSignificand(DAG, Op1, dl);
4000
4001    SDValue Log10ofMantissa;
4002    if (LimitFloatPrecision <= 6) {
4003      // For floating-point precision of 6:
4004      //
4005      //   Log10ofMantissa =
4006      //     -0.50419619f +
4007      //       (0.60948995f - 0.10380950f * x) * x;
4008      //
4009      // error 0.0014886165, which is 6 bits
4010      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4011                               getF32Constant(DAG, 0xbdd49a13));
4012      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4013                               getF32Constant(DAG, 0x3f1c0789));
4014      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4015      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4016                                    getF32Constant(DAG, 0x3f011300));
4017    } else if (LimitFloatPrecision <= 12) {
4018      // For floating-point precision of 12:
4019      //
4020      //   Log10ofMantissa =
4021      //     -0.64831180f +
4022      //       (0.91751397f +
4023      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4024      //
4025      // error 0.00019228036, which is better than 12 bits
4026      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4027                               getF32Constant(DAG, 0x3d431f31));
4028      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4029                               getF32Constant(DAG, 0x3ea21fb2));
4030      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4031      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4032                               getF32Constant(DAG, 0x3f6ae232));
4033      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4034      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4035                                    getF32Constant(DAG, 0x3f25f7c3));
4036    } else { // LimitFloatPrecision <= 18
4037      // For floating-point precision of 18:
4038      //
4039      //   Log10ofMantissa =
4040      //     -0.84299375f +
4041      //       (1.5327582f +
4042      //         (-1.0688956f +
4043      //           (0.49102474f +
4044      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4045      //
4046      // error 0.0000037995730, which is better than 18 bits
4047      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4048                               getF32Constant(DAG, 0x3c5d51ce));
4049      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4050                               getF32Constant(DAG, 0x3e00685a));
4051      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4052      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4053                               getF32Constant(DAG, 0x3efb6798));
4054      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4055      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4056                               getF32Constant(DAG, 0x3f88d192));
4057      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4058      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4059                               getF32Constant(DAG, 0x3fc4316c));
4060      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4061      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4062                                    getF32Constant(DAG, 0x3f57ce70));
4063    }
4064
4065    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4066  }
4067
4068  // No special expansion.
4069  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4070}
4071
4072/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4073/// limited-precision mode.
4074static SDValue expandExp2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
4075                          const TargetLowering &TLI) {
4076  if (Op.getValueType() == MVT::f32 &&
4077      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4078    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4079
4080    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4081    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4082    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4083
4084    //   IntegerPartOfX <<= 23;
4085    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4086                                 DAG.getConstant(23, TLI.getPointerTy()));
4087
4088    SDValue TwoToFractionalPartOfX;
4089    if (LimitFloatPrecision <= 6) {
4090      // For floating-point precision of 6:
4091      //
4092      //   TwoToFractionalPartOfX =
4093      //     0.997535578f +
4094      //       (0.735607626f + 0.252464424f * x) * x;
4095      //
4096      // error 0.0144103317, which is 6 bits
4097      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4098                               getF32Constant(DAG, 0x3e814304));
4099      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4100                               getF32Constant(DAG, 0x3f3c50c8));
4101      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4102      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4103                                           getF32Constant(DAG, 0x3f7f5e7e));
4104    } else if (LimitFloatPrecision <= 12) {
4105      // For floating-point precision of 12:
4106      //
4107      //   TwoToFractionalPartOfX =
4108      //     0.999892986f +
4109      //       (0.696457318f +
4110      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4111      //
4112      // error 0.000107046256, which is 13 to 14 bits
4113      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4114                               getF32Constant(DAG, 0x3da235e3));
4115      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4116                               getF32Constant(DAG, 0x3e65b8f3));
4117      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4118      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4119                               getF32Constant(DAG, 0x3f324b07));
4120      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4121      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4122                                           getF32Constant(DAG, 0x3f7ff8fd));
4123    } else { // LimitFloatPrecision <= 18
4124      // For floating-point precision of 18:
4125      //
4126      //   TwoToFractionalPartOfX =
4127      //     0.999999982f +
4128      //       (0.693148872f +
4129      //         (0.240227044f +
4130      //           (0.554906021e-1f +
4131      //             (0.961591928e-2f +
4132      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4133      // error 2.47208000*10^(-7), which is better than 18 bits
4134      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4135                               getF32Constant(DAG, 0x3924b03e));
4136      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4137                               getF32Constant(DAG, 0x3ab24b87));
4138      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4139      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4140                               getF32Constant(DAG, 0x3c1d8c17));
4141      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4142      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4143                               getF32Constant(DAG, 0x3d634a1d));
4144      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4145      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4146                               getF32Constant(DAG, 0x3e75fe14));
4147      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4148      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4149                                getF32Constant(DAG, 0x3f317234));
4150      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4151      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4152                                           getF32Constant(DAG, 0x3f800000));
4153    }
4154
4155    // Add the exponent into the result in integer domain.
4156    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4157                              TwoToFractionalPartOfX);
4158    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4159                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4160                                   t13, IntegerPartOfX));
4161  }
4162
4163  // No special expansion.
4164  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4165}
4166
4167/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4168/// limited-precision mode with x == 10.0f.
4169void
4170SelectionDAGBuilder::visitPow(const CallInst &I) {
4171  SDValue result;
4172  const Value *Val = I.getArgOperand(0);
4173  DebugLoc dl = getCurDebugLoc();
4174  bool IsExp10 = false;
4175
4176  if (getValue(Val).getValueType() == MVT::f32 &&
4177      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4178      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4179    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4180      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4181        APFloat Ten(10.0f);
4182        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4183      }
4184    }
4185  }
4186
4187  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4188    SDValue Op = getValue(I.getArgOperand(1));
4189
4190    // Put the exponent in the right bit position for later addition to the
4191    // final result:
4192    //
4193    //   #define LOG2OF10 3.3219281f
4194    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4195    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4196                             getF32Constant(DAG, 0x40549a78));
4197    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4198
4199    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4200    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4201    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4202
4203    //   IntegerPartOfX <<= 23;
4204    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4205                                 DAG.getConstant(23, TLI.getPointerTy()));
4206
4207    if (LimitFloatPrecision <= 6) {
4208      // For floating-point precision of 6:
4209      //
4210      //   twoToFractionalPartOfX =
4211      //     0.997535578f +
4212      //       (0.735607626f + 0.252464424f * x) * x;
4213      //
4214      // error 0.0144103317, which is 6 bits
4215      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4216                               getF32Constant(DAG, 0x3e814304));
4217      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4218                               getF32Constant(DAG, 0x3f3c50c8));
4219      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4220      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4221                               getF32Constant(DAG, 0x3f7f5e7e));
4222      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4223      SDValue TwoToFractionalPartOfX =
4224        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4225
4226      result = DAG.getNode(ISD::BITCAST, dl,
4227                           MVT::f32, TwoToFractionalPartOfX);
4228    } else if (LimitFloatPrecision <= 12) {
4229      // For floating-point precision of 12:
4230      //
4231      //   TwoToFractionalPartOfX =
4232      //     0.999892986f +
4233      //       (0.696457318f +
4234      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4235      //
4236      // error 0.000107046256, which is 13 to 14 bits
4237      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4238                               getF32Constant(DAG, 0x3da235e3));
4239      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4240                               getF32Constant(DAG, 0x3e65b8f3));
4241      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4242      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4243                               getF32Constant(DAG, 0x3f324b07));
4244      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4245      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4246                               getF32Constant(DAG, 0x3f7ff8fd));
4247      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4248      SDValue TwoToFractionalPartOfX =
4249        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4250
4251      result = DAG.getNode(ISD::BITCAST, dl,
4252                           MVT::f32, TwoToFractionalPartOfX);
4253    } else { // LimitFloatPrecision <= 18
4254      // For floating-point precision of 18:
4255      //
4256      //   TwoToFractionalPartOfX =
4257      //     0.999999982f +
4258      //       (0.693148872f +
4259      //         (0.240227044f +
4260      //           (0.554906021e-1f +
4261      //             (0.961591928e-2f +
4262      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4263      // error 2.47208000*10^(-7), which is better than 18 bits
4264      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4265                               getF32Constant(DAG, 0x3924b03e));
4266      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4267                               getF32Constant(DAG, 0x3ab24b87));
4268      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4269      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4270                               getF32Constant(DAG, 0x3c1d8c17));
4271      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4272      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4273                               getF32Constant(DAG, 0x3d634a1d));
4274      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4275      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4276                               getF32Constant(DAG, 0x3e75fe14));
4277      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4278      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4279                                getF32Constant(DAG, 0x3f317234));
4280      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4281      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4282                                getF32Constant(DAG, 0x3f800000));
4283      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4284      SDValue TwoToFractionalPartOfX =
4285        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4286
4287      result = DAG.getNode(ISD::BITCAST, dl,
4288                           MVT::f32, TwoToFractionalPartOfX);
4289    }
4290  } else {
4291    // No special expansion.
4292    result = DAG.getNode(ISD::FPOW, dl,
4293                         getValue(I.getArgOperand(0)).getValueType(),
4294                         getValue(I.getArgOperand(0)),
4295                         getValue(I.getArgOperand(1)));
4296  }
4297
4298  setValue(&I, result);
4299}
4300
4301
4302/// ExpandPowI - Expand a llvm.powi intrinsic.
4303static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4304                          SelectionDAG &DAG) {
4305  // If RHS is a constant, we can expand this out to a multiplication tree,
4306  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4307  // optimizing for size, we only want to do this if the expansion would produce
4308  // a small number of multiplies, otherwise we do the full expansion.
4309  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4310    // Get the exponent as a positive value.
4311    unsigned Val = RHSC->getSExtValue();
4312    if ((int)Val < 0) Val = -Val;
4313
4314    // powi(x, 0) -> 1.0
4315    if (Val == 0)
4316      return DAG.getConstantFP(1.0, LHS.getValueType());
4317
4318    const Function *F = DAG.getMachineFunction().getFunction();
4319    if (!F->getFnAttributes().hasAttribute(Attributes::OptimizeForSize) ||
4320        // If optimizing for size, don't insert too many multiplies.  This
4321        // inserts up to 5 multiplies.
4322        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4323      // We use the simple binary decomposition method to generate the multiply
4324      // sequence.  There are more optimal ways to do this (for example,
4325      // powi(x,15) generates one more multiply than it should), but this has
4326      // the benefit of being both really simple and much better than a libcall.
4327      SDValue Res;  // Logically starts equal to 1.0
4328      SDValue CurSquare = LHS;
4329      while (Val) {
4330        if (Val & 1) {
4331          if (Res.getNode())
4332            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4333          else
4334            Res = CurSquare;  // 1.0*CurSquare.
4335        }
4336
4337        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4338                                CurSquare, CurSquare);
4339        Val >>= 1;
4340      }
4341
4342      // If the original was negative, invert the result, producing 1/(x*x*x).
4343      if (RHSC->getSExtValue() < 0)
4344        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4345                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4346      return Res;
4347    }
4348  }
4349
4350  // Otherwise, expand to a libcall.
4351  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4352}
4353
4354// getTruncatedArgReg - Find underlying register used for an truncated
4355// argument.
4356static unsigned getTruncatedArgReg(const SDValue &N) {
4357  if (N.getOpcode() != ISD::TRUNCATE)
4358    return 0;
4359
4360  const SDValue &Ext = N.getOperand(0);
4361  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4362    const SDValue &CFR = Ext.getOperand(0);
4363    if (CFR.getOpcode() == ISD::CopyFromReg)
4364      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4365    if (CFR.getOpcode() == ISD::TRUNCATE)
4366      return getTruncatedArgReg(CFR);
4367  }
4368  return 0;
4369}
4370
4371/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4372/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4373/// At the end of instruction selection, they will be inserted to the entry BB.
4374bool
4375SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4376                                              int64_t Offset,
4377                                              const SDValue &N) {
4378  const Argument *Arg = dyn_cast<Argument>(V);
4379  if (!Arg)
4380    return false;
4381
4382  MachineFunction &MF = DAG.getMachineFunction();
4383  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4384  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4385
4386  // Ignore inlined function arguments here.
4387  DIVariable DV(Variable);
4388  if (DV.isInlinedFnArgument(MF.getFunction()))
4389    return false;
4390
4391  unsigned Reg = 0;
4392  // Some arguments' frame index is recorded during argument lowering.
4393  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4394  if (Offset)
4395    Reg = TRI->getFrameRegister(MF);
4396
4397  if (!Reg && N.getNode()) {
4398    if (N.getOpcode() == ISD::CopyFromReg)
4399      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4400    else
4401      Reg = getTruncatedArgReg(N);
4402    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4403      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4404      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4405      if (PR)
4406        Reg = PR;
4407    }
4408  }
4409
4410  if (!Reg) {
4411    // Check if ValueMap has reg number.
4412    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4413    if (VMI != FuncInfo.ValueMap.end())
4414      Reg = VMI->second;
4415  }
4416
4417  if (!Reg && N.getNode()) {
4418    // Check if frame index is available.
4419    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4420      if (FrameIndexSDNode *FINode =
4421          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4422        Reg = TRI->getFrameRegister(MF);
4423        Offset = FINode->getIndex();
4424      }
4425  }
4426
4427  if (!Reg)
4428    return false;
4429
4430  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4431                                    TII->get(TargetOpcode::DBG_VALUE))
4432    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4433  FuncInfo.ArgDbgValues.push_back(&*MIB);
4434  return true;
4435}
4436
4437// VisualStudio defines setjmp as _setjmp
4438#if defined(_MSC_VER) && defined(setjmp) && \
4439                         !defined(setjmp_undefined_for_msvc)
4440#  pragma push_macro("setjmp")
4441#  undef setjmp
4442#  define setjmp_undefined_for_msvc
4443#endif
4444
4445/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4446/// we want to emit this as a call to a named external function, return the name
4447/// otherwise lower it and return null.
4448const char *
4449SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4450  DebugLoc dl = getCurDebugLoc();
4451  SDValue Res;
4452
4453  switch (Intrinsic) {
4454  default:
4455    // By default, turn this into a target intrinsic node.
4456    visitTargetIntrinsic(I, Intrinsic);
4457    return 0;
4458  case Intrinsic::vastart:  visitVAStart(I); return 0;
4459  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4460  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4461  case Intrinsic::returnaddress:
4462    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4463                             getValue(I.getArgOperand(0))));
4464    return 0;
4465  case Intrinsic::frameaddress:
4466    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4467                             getValue(I.getArgOperand(0))));
4468    return 0;
4469  case Intrinsic::setjmp:
4470    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4471  case Intrinsic::longjmp:
4472    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4473  case Intrinsic::memcpy: {
4474    // Assert for address < 256 since we support only user defined address
4475    // spaces.
4476    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4477           < 256 &&
4478           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4479           < 256 &&
4480           "Unknown address space");
4481    SDValue Op1 = getValue(I.getArgOperand(0));
4482    SDValue Op2 = getValue(I.getArgOperand(1));
4483    SDValue Op3 = getValue(I.getArgOperand(2));
4484    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4485    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4486    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4487                              MachinePointerInfo(I.getArgOperand(0)),
4488                              MachinePointerInfo(I.getArgOperand(1))));
4489    return 0;
4490  }
4491  case Intrinsic::memset: {
4492    // Assert for address < 256 since we support only user defined address
4493    // spaces.
4494    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4495           < 256 &&
4496           "Unknown address space");
4497    SDValue Op1 = getValue(I.getArgOperand(0));
4498    SDValue Op2 = getValue(I.getArgOperand(1));
4499    SDValue Op3 = getValue(I.getArgOperand(2));
4500    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4501    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4502    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4503                              MachinePointerInfo(I.getArgOperand(0))));
4504    return 0;
4505  }
4506  case Intrinsic::memmove: {
4507    // Assert for address < 256 since we support only user defined address
4508    // spaces.
4509    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4510           < 256 &&
4511           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4512           < 256 &&
4513           "Unknown address space");
4514    SDValue Op1 = getValue(I.getArgOperand(0));
4515    SDValue Op2 = getValue(I.getArgOperand(1));
4516    SDValue Op3 = getValue(I.getArgOperand(2));
4517    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4518    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4519    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4520                               MachinePointerInfo(I.getArgOperand(0)),
4521                               MachinePointerInfo(I.getArgOperand(1))));
4522    return 0;
4523  }
4524  case Intrinsic::dbg_declare: {
4525    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4526    MDNode *Variable = DI.getVariable();
4527    const Value *Address = DI.getAddress();
4528    if (!Address || !DIVariable(Variable).Verify()) {
4529      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4530      return 0;
4531    }
4532
4533    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4534    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4535    // absolute, but not relative, values are different depending on whether
4536    // debug info exists.
4537    ++SDNodeOrder;
4538
4539    // Check if address has undef value.
4540    if (isa<UndefValue>(Address) ||
4541        (Address->use_empty() && !isa<Argument>(Address))) {
4542      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4543      return 0;
4544    }
4545
4546    SDValue &N = NodeMap[Address];
4547    if (!N.getNode() && isa<Argument>(Address))
4548      // Check unused arguments map.
4549      N = UnusedArgNodeMap[Address];
4550    SDDbgValue *SDV;
4551    if (N.getNode()) {
4552      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4553        Address = BCI->getOperand(0);
4554      // Parameters are handled specially.
4555      bool isParameter =
4556        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4557         isa<Argument>(Address));
4558
4559      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4560
4561      if (isParameter && !AI) {
4562        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4563        if (FINode)
4564          // Byval parameter.  We have a frame index at this point.
4565          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4566                                0, dl, SDNodeOrder);
4567        else {
4568          // Address is an argument, so try to emit its dbg value using
4569          // virtual register info from the FuncInfo.ValueMap.
4570          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4571          return 0;
4572        }
4573      } else if (AI)
4574        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4575                              0, dl, SDNodeOrder);
4576      else {
4577        // Can't do anything with other non-AI cases yet.
4578        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4579        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4580        DEBUG(Address->dump());
4581        return 0;
4582      }
4583      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4584    } else {
4585      // If Address is an argument then try to emit its dbg value using
4586      // virtual register info from the FuncInfo.ValueMap.
4587      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4588        // If variable is pinned by a alloca in dominating bb then
4589        // use StaticAllocaMap.
4590        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4591          if (AI->getParent() != DI.getParent()) {
4592            DenseMap<const AllocaInst*, int>::iterator SI =
4593              FuncInfo.StaticAllocaMap.find(AI);
4594            if (SI != FuncInfo.StaticAllocaMap.end()) {
4595              SDV = DAG.getDbgValue(Variable, SI->second,
4596                                    0, dl, SDNodeOrder);
4597              DAG.AddDbgValue(SDV, 0, false);
4598              return 0;
4599            }
4600          }
4601        }
4602        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4603      }
4604    }
4605    return 0;
4606  }
4607  case Intrinsic::dbg_value: {
4608    const DbgValueInst &DI = cast<DbgValueInst>(I);
4609    if (!DIVariable(DI.getVariable()).Verify())
4610      return 0;
4611
4612    MDNode *Variable = DI.getVariable();
4613    uint64_t Offset = DI.getOffset();
4614    const Value *V = DI.getValue();
4615    if (!V)
4616      return 0;
4617
4618    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4619    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4620    // absolute, but not relative, values are different depending on whether
4621    // debug info exists.
4622    ++SDNodeOrder;
4623    SDDbgValue *SDV;
4624    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4625      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4626      DAG.AddDbgValue(SDV, 0, false);
4627    } else {
4628      // Do not use getValue() in here; we don't want to generate code at
4629      // this point if it hasn't been done yet.
4630      SDValue N = NodeMap[V];
4631      if (!N.getNode() && isa<Argument>(V))
4632        // Check unused arguments map.
4633        N = UnusedArgNodeMap[V];
4634      if (N.getNode()) {
4635        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4636          SDV = DAG.getDbgValue(Variable, N.getNode(),
4637                                N.getResNo(), Offset, dl, SDNodeOrder);
4638          DAG.AddDbgValue(SDV, N.getNode(), false);
4639        }
4640      } else if (!V->use_empty() ) {
4641        // Do not call getValue(V) yet, as we don't want to generate code.
4642        // Remember it for later.
4643        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4644        DanglingDebugInfoMap[V] = DDI;
4645      } else {
4646        // We may expand this to cover more cases.  One case where we have no
4647        // data available is an unreferenced parameter.
4648        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4649      }
4650    }
4651
4652    // Build a debug info table entry.
4653    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4654      V = BCI->getOperand(0);
4655    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4656    // Don't handle byval struct arguments or VLAs, for example.
4657    if (!AI) {
4658      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4659      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4660      return 0;
4661    }
4662    DenseMap<const AllocaInst*, int>::iterator SI =
4663      FuncInfo.StaticAllocaMap.find(AI);
4664    if (SI == FuncInfo.StaticAllocaMap.end())
4665      return 0; // VLAs.
4666    int FI = SI->second;
4667
4668    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4669    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4670      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4671    return 0;
4672  }
4673
4674  case Intrinsic::eh_typeid_for: {
4675    // Find the type id for the given typeinfo.
4676    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4677    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4678    Res = DAG.getConstant(TypeID, MVT::i32);
4679    setValue(&I, Res);
4680    return 0;
4681  }
4682
4683  case Intrinsic::eh_return_i32:
4684  case Intrinsic::eh_return_i64:
4685    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4686    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4687                            MVT::Other,
4688                            getControlRoot(),
4689                            getValue(I.getArgOperand(0)),
4690                            getValue(I.getArgOperand(1))));
4691    return 0;
4692  case Intrinsic::eh_unwind_init:
4693    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4694    return 0;
4695  case Intrinsic::eh_dwarf_cfa: {
4696    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4697                                        TLI.getPointerTy());
4698    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4699                                 TLI.getPointerTy(),
4700                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4701                                             TLI.getPointerTy()),
4702                                 CfaArg);
4703    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4704                             TLI.getPointerTy(),
4705                             DAG.getConstant(0, TLI.getPointerTy()));
4706    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4707                             FA, Offset));
4708    return 0;
4709  }
4710  case Intrinsic::eh_sjlj_callsite: {
4711    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4712    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4713    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4714    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4715
4716    MMI.setCurrentCallSite(CI->getZExtValue());
4717    return 0;
4718  }
4719  case Intrinsic::eh_sjlj_functioncontext: {
4720    // Get and store the index of the function context.
4721    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4722    AllocaInst *FnCtx =
4723      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4724    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4725    MFI->setFunctionContextIndex(FI);
4726    return 0;
4727  }
4728  case Intrinsic::eh_sjlj_setjmp: {
4729    SDValue Ops[2];
4730    Ops[0] = getRoot();
4731    Ops[1] = getValue(I.getArgOperand(0));
4732    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4733                             DAG.getVTList(MVT::i32, MVT::Other),
4734                             Ops, 2);
4735    setValue(&I, Op.getValue(0));
4736    DAG.setRoot(Op.getValue(1));
4737    return 0;
4738  }
4739  case Intrinsic::eh_sjlj_longjmp: {
4740    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4741                            getRoot(), getValue(I.getArgOperand(0))));
4742    return 0;
4743  }
4744
4745  case Intrinsic::x86_mmx_pslli_w:
4746  case Intrinsic::x86_mmx_pslli_d:
4747  case Intrinsic::x86_mmx_pslli_q:
4748  case Intrinsic::x86_mmx_psrli_w:
4749  case Intrinsic::x86_mmx_psrli_d:
4750  case Intrinsic::x86_mmx_psrli_q:
4751  case Intrinsic::x86_mmx_psrai_w:
4752  case Intrinsic::x86_mmx_psrai_d: {
4753    SDValue ShAmt = getValue(I.getArgOperand(1));
4754    if (isa<ConstantSDNode>(ShAmt)) {
4755      visitTargetIntrinsic(I, Intrinsic);
4756      return 0;
4757    }
4758    unsigned NewIntrinsic = 0;
4759    EVT ShAmtVT = MVT::v2i32;
4760    switch (Intrinsic) {
4761    case Intrinsic::x86_mmx_pslli_w:
4762      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4763      break;
4764    case Intrinsic::x86_mmx_pslli_d:
4765      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4766      break;
4767    case Intrinsic::x86_mmx_pslli_q:
4768      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4769      break;
4770    case Intrinsic::x86_mmx_psrli_w:
4771      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4772      break;
4773    case Intrinsic::x86_mmx_psrli_d:
4774      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4775      break;
4776    case Intrinsic::x86_mmx_psrli_q:
4777      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4778      break;
4779    case Intrinsic::x86_mmx_psrai_w:
4780      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4781      break;
4782    case Intrinsic::x86_mmx_psrai_d:
4783      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4784      break;
4785    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4786    }
4787
4788    // The vector shift intrinsics with scalars uses 32b shift amounts but
4789    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4790    // to be zero.
4791    // We must do this early because v2i32 is not a legal type.
4792    SDValue ShOps[2];
4793    ShOps[0] = ShAmt;
4794    ShOps[1] = DAG.getConstant(0, MVT::i32);
4795    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4796    EVT DestVT = TLI.getValueType(I.getType());
4797    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4798    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4799                       DAG.getConstant(NewIntrinsic, MVT::i32),
4800                       getValue(I.getArgOperand(0)), ShAmt);
4801    setValue(&I, Res);
4802    return 0;
4803  }
4804  case Intrinsic::x86_avx_vinsertf128_pd_256:
4805  case Intrinsic::x86_avx_vinsertf128_ps_256:
4806  case Intrinsic::x86_avx_vinsertf128_si_256:
4807  case Intrinsic::x86_avx2_vinserti128: {
4808    EVT DestVT = TLI.getValueType(I.getType());
4809    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4810    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4811                   ElVT.getVectorNumElements();
4812    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4813                      getValue(I.getArgOperand(0)),
4814                      getValue(I.getArgOperand(1)),
4815                      DAG.getIntPtrConstant(Idx));
4816    setValue(&I, Res);
4817    return 0;
4818  }
4819  case Intrinsic::x86_avx_vextractf128_pd_256:
4820  case Intrinsic::x86_avx_vextractf128_ps_256:
4821  case Intrinsic::x86_avx_vextractf128_si_256:
4822  case Intrinsic::x86_avx2_vextracti128: {
4823    EVT DestVT = TLI.getValueType(I.getType());
4824    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4825                   DestVT.getVectorNumElements();
4826    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4827                      getValue(I.getArgOperand(0)),
4828                      DAG.getIntPtrConstant(Idx));
4829    setValue(&I, Res);
4830    return 0;
4831  }
4832  case Intrinsic::convertff:
4833  case Intrinsic::convertfsi:
4834  case Intrinsic::convertfui:
4835  case Intrinsic::convertsif:
4836  case Intrinsic::convertuif:
4837  case Intrinsic::convertss:
4838  case Intrinsic::convertsu:
4839  case Intrinsic::convertus:
4840  case Intrinsic::convertuu: {
4841    ISD::CvtCode Code = ISD::CVT_INVALID;
4842    switch (Intrinsic) {
4843    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4844    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4845    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4846    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4847    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4848    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4849    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4850    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4851    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4852    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4853    }
4854    EVT DestVT = TLI.getValueType(I.getType());
4855    const Value *Op1 = I.getArgOperand(0);
4856    Res = DAG.getConvertRndSat(DestVT, dl, getValue(Op1),
4857                               DAG.getValueType(DestVT),
4858                               DAG.getValueType(getValue(Op1).getValueType()),
4859                               getValue(I.getArgOperand(1)),
4860                               getValue(I.getArgOperand(2)),
4861                               Code);
4862    setValue(&I, Res);
4863    return 0;
4864  }
4865  case Intrinsic::powi:
4866    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4867                            getValue(I.getArgOperand(1)), DAG));
4868    return 0;
4869  case Intrinsic::log:
4870    setValue(&I, expandLog(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4871    return 0;
4872  case Intrinsic::log2:
4873    setValue(&I, expandLog2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4874    return 0;
4875  case Intrinsic::log10:
4876    setValue(&I, expandLog10(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4877    return 0;
4878  case Intrinsic::exp:
4879    setValue(&I, expandExp(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4880    return 0;
4881  case Intrinsic::exp2:
4882    setValue(&I, expandExp2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4883    return 0;
4884  case Intrinsic::pow:
4885    visitPow(I);
4886    return 0;
4887  case Intrinsic::sqrt:
4888  case Intrinsic::fabs:
4889  case Intrinsic::sin:
4890  case Intrinsic::cos:
4891  case Intrinsic::floor:
4892  case Intrinsic::ceil:
4893  case Intrinsic::trunc:
4894  case Intrinsic::rint:
4895  case Intrinsic::nearbyint: {
4896    unsigned Opcode;
4897    switch (Intrinsic) {
4898    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4899    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4900    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4901    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4902    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4903    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4904    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4905    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4906    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4907    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4908    }
4909
4910    setValue(&I, DAG.getNode(Opcode, dl,
4911                             getValue(I.getArgOperand(0)).getValueType(),
4912                             getValue(I.getArgOperand(0))));
4913    return 0;
4914  }
4915  case Intrinsic::fma:
4916    setValue(&I, DAG.getNode(ISD::FMA, dl,
4917                             getValue(I.getArgOperand(0)).getValueType(),
4918                             getValue(I.getArgOperand(0)),
4919                             getValue(I.getArgOperand(1)),
4920                             getValue(I.getArgOperand(2))));
4921    return 0;
4922  case Intrinsic::fmuladd: {
4923    EVT VT = TLI.getValueType(I.getType());
4924    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4925        TLI.isOperationLegalOrCustom(ISD::FMA, VT) &&
4926        TLI.isFMAFasterThanMulAndAdd(VT)){
4927      setValue(&I, DAG.getNode(ISD::FMA, dl,
4928                               getValue(I.getArgOperand(0)).getValueType(),
4929                               getValue(I.getArgOperand(0)),
4930                               getValue(I.getArgOperand(1)),
4931                               getValue(I.getArgOperand(2))));
4932    } else {
4933      SDValue Mul = DAG.getNode(ISD::FMUL, dl,
4934                                getValue(I.getArgOperand(0)).getValueType(),
4935                                getValue(I.getArgOperand(0)),
4936                                getValue(I.getArgOperand(1)));
4937      SDValue Add = DAG.getNode(ISD::FADD, dl,
4938                                getValue(I.getArgOperand(0)).getValueType(),
4939                                Mul,
4940                                getValue(I.getArgOperand(2)));
4941      setValue(&I, Add);
4942    }
4943    return 0;
4944  }
4945  case Intrinsic::convert_to_fp16:
4946    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4947                             MVT::i16, getValue(I.getArgOperand(0))));
4948    return 0;
4949  case Intrinsic::convert_from_fp16:
4950    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4951                             MVT::f32, getValue(I.getArgOperand(0))));
4952    return 0;
4953  case Intrinsic::pcmarker: {
4954    SDValue Tmp = getValue(I.getArgOperand(0));
4955    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4956    return 0;
4957  }
4958  case Intrinsic::readcyclecounter: {
4959    SDValue Op = getRoot();
4960    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4961                      DAG.getVTList(MVT::i64, MVT::Other),
4962                      &Op, 1);
4963    setValue(&I, Res);
4964    DAG.setRoot(Res.getValue(1));
4965    return 0;
4966  }
4967  case Intrinsic::bswap:
4968    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4969                             getValue(I.getArgOperand(0)).getValueType(),
4970                             getValue(I.getArgOperand(0))));
4971    return 0;
4972  case Intrinsic::cttz: {
4973    SDValue Arg = getValue(I.getArgOperand(0));
4974    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4975    EVT Ty = Arg.getValueType();
4976    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4977                             dl, Ty, Arg));
4978    return 0;
4979  }
4980  case Intrinsic::ctlz: {
4981    SDValue Arg = getValue(I.getArgOperand(0));
4982    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4983    EVT Ty = Arg.getValueType();
4984    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4985                             dl, Ty, Arg));
4986    return 0;
4987  }
4988  case Intrinsic::ctpop: {
4989    SDValue Arg = getValue(I.getArgOperand(0));
4990    EVT Ty = Arg.getValueType();
4991    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4992    return 0;
4993  }
4994  case Intrinsic::stacksave: {
4995    SDValue Op = getRoot();
4996    Res = DAG.getNode(ISD::STACKSAVE, dl,
4997                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4998    setValue(&I, Res);
4999    DAG.setRoot(Res.getValue(1));
5000    return 0;
5001  }
5002  case Intrinsic::stackrestore: {
5003    Res = getValue(I.getArgOperand(0));
5004    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
5005    return 0;
5006  }
5007  case Intrinsic::stackprotector: {
5008    // Emit code into the DAG to store the stack guard onto the stack.
5009    MachineFunction &MF = DAG.getMachineFunction();
5010    MachineFrameInfo *MFI = MF.getFrameInfo();
5011    EVT PtrTy = TLI.getPointerTy();
5012
5013    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5014    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5015
5016    int FI = FuncInfo.StaticAllocaMap[Slot];
5017    MFI->setStackProtectorIndex(FI);
5018
5019    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5020
5021    // Store the stack protector onto the stack.
5022    Res = DAG.getStore(getRoot(), dl, Src, FIN,
5023                       MachinePointerInfo::getFixedStack(FI),
5024                       true, false, 0);
5025    setValue(&I, Res);
5026    DAG.setRoot(Res);
5027    return 0;
5028  }
5029  case Intrinsic::objectsize: {
5030    // If we don't know by now, we're never going to know.
5031    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5032
5033    assert(CI && "Non-constant type in __builtin_object_size?");
5034
5035    SDValue Arg = getValue(I.getCalledValue());
5036    EVT Ty = Arg.getValueType();
5037
5038    if (CI->isZero())
5039      Res = DAG.getConstant(-1ULL, Ty);
5040    else
5041      Res = DAG.getConstant(0, Ty);
5042
5043    setValue(&I, Res);
5044    return 0;
5045  }
5046  case Intrinsic::var_annotation:
5047    // Discard annotate attributes
5048    return 0;
5049
5050  case Intrinsic::init_trampoline: {
5051    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5052
5053    SDValue Ops[6];
5054    Ops[0] = getRoot();
5055    Ops[1] = getValue(I.getArgOperand(0));
5056    Ops[2] = getValue(I.getArgOperand(1));
5057    Ops[3] = getValue(I.getArgOperand(2));
5058    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5059    Ops[5] = DAG.getSrcValue(F);
5060
5061    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5062
5063    DAG.setRoot(Res);
5064    return 0;
5065  }
5066  case Intrinsic::adjust_trampoline: {
5067    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5068                             TLI.getPointerTy(),
5069                             getValue(I.getArgOperand(0))));
5070    return 0;
5071  }
5072  case Intrinsic::gcroot:
5073    if (GFI) {
5074      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5075      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5076
5077      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5078      GFI->addStackRoot(FI->getIndex(), TypeMap);
5079    }
5080    return 0;
5081  case Intrinsic::gcread:
5082  case Intrinsic::gcwrite:
5083    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5084  case Intrinsic::flt_rounds:
5085    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5086    return 0;
5087
5088  case Intrinsic::expect: {
5089    // Just replace __builtin_expect(exp, c) with EXP.
5090    setValue(&I, getValue(I.getArgOperand(0)));
5091    return 0;
5092  }
5093
5094  case Intrinsic::debugtrap:
5095  case Intrinsic::trap: {
5096    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5097    if (TrapFuncName.empty()) {
5098      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5099        ISD::TRAP : ISD::DEBUGTRAP;
5100      DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot()));
5101      return 0;
5102    }
5103    TargetLowering::ArgListTy Args;
5104    TargetLowering::
5105    CallLoweringInfo CLI(getRoot(), I.getType(),
5106                 false, false, false, false, 0, CallingConv::C,
5107                 /*isTailCall=*/false,
5108                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5109                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5110                 Args, DAG, dl);
5111    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5112    DAG.setRoot(Result.second);
5113    return 0;
5114  }
5115
5116  case Intrinsic::uadd_with_overflow:
5117  case Intrinsic::sadd_with_overflow:
5118  case Intrinsic::usub_with_overflow:
5119  case Intrinsic::ssub_with_overflow:
5120  case Intrinsic::umul_with_overflow:
5121  case Intrinsic::smul_with_overflow: {
5122    ISD::NodeType Op;
5123    switch (Intrinsic) {
5124    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5125    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5126    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5127    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5128    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5129    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5130    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5131    }
5132    SDValue Op1 = getValue(I.getArgOperand(0));
5133    SDValue Op2 = getValue(I.getArgOperand(1));
5134
5135    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5136    setValue(&I, DAG.getNode(Op, dl, VTs, Op1, Op2));
5137    return 0;
5138  }
5139  case Intrinsic::prefetch: {
5140    SDValue Ops[5];
5141    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5142    Ops[0] = getRoot();
5143    Ops[1] = getValue(I.getArgOperand(0));
5144    Ops[2] = getValue(I.getArgOperand(1));
5145    Ops[3] = getValue(I.getArgOperand(2));
5146    Ops[4] = getValue(I.getArgOperand(3));
5147    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5148                                        DAG.getVTList(MVT::Other),
5149                                        &Ops[0], 5,
5150                                        EVT::getIntegerVT(*Context, 8),
5151                                        MachinePointerInfo(I.getArgOperand(0)),
5152                                        0, /* align */
5153                                        false, /* volatile */
5154                                        rw==0, /* read */
5155                                        rw==1)); /* write */
5156    return 0;
5157  }
5158  case Intrinsic::lifetime_start:
5159  case Intrinsic::lifetime_end: {
5160    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5161    // Stack coloring is not enabled in O0, discard region information.
5162    if (TM.getOptLevel() == CodeGenOpt::None)
5163      return 0;
5164
5165    SmallVector<Value *, 4> Allocas;
5166    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5167
5168    for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
5169         E = Allocas.end(); Object != E; ++Object) {
5170      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5171
5172      // Could not find an Alloca.
5173      if (!LifetimeObject)
5174        continue;
5175
5176      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5177
5178      SDValue Ops[2];
5179      Ops[0] = getRoot();
5180      Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5181      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5182
5183      Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2);
5184      DAG.setRoot(Res);
5185    }
5186  }
5187  case Intrinsic::invariant_start:
5188    // Discard region information.
5189    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5190    return 0;
5191  case Intrinsic::invariant_end:
5192    // Discard region information.
5193    return 0;
5194  case Intrinsic::donothing:
5195    // ignore
5196    return 0;
5197  }
5198}
5199
5200void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5201                                      bool isTailCall,
5202                                      MachineBasicBlock *LandingPad) {
5203  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5204  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5205  Type *RetTy = FTy->getReturnType();
5206  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5207  MCSymbol *BeginLabel = 0;
5208
5209  TargetLowering::ArgListTy Args;
5210  TargetLowering::ArgListEntry Entry;
5211  Args.reserve(CS.arg_size());
5212
5213  // Check whether the function can return without sret-demotion.
5214  SmallVector<ISD::OutputArg, 4> Outs;
5215  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5216                Outs, TLI);
5217
5218  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5219                                           DAG.getMachineFunction(),
5220                                           FTy->isVarArg(), Outs,
5221                                           FTy->getContext());
5222
5223  SDValue DemoteStackSlot;
5224  int DemoteStackIdx = -100;
5225
5226  if (!CanLowerReturn) {
5227    uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(
5228                      FTy->getReturnType());
5229    unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(
5230                      FTy->getReturnType());
5231    MachineFunction &MF = DAG.getMachineFunction();
5232    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5233    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5234
5235    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5236    Entry.Node = DemoteStackSlot;
5237    Entry.Ty = StackSlotPtrType;
5238    Entry.isSExt = false;
5239    Entry.isZExt = false;
5240    Entry.isInReg = false;
5241    Entry.isSRet = true;
5242    Entry.isNest = false;
5243    Entry.isByVal = false;
5244    Entry.Alignment = Align;
5245    Args.push_back(Entry);
5246    RetTy = Type::getVoidTy(FTy->getContext());
5247  }
5248
5249  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5250       i != e; ++i) {
5251    const Value *V = *i;
5252
5253    // Skip empty types
5254    if (V->getType()->isEmptyTy())
5255      continue;
5256
5257    SDValue ArgNode = getValue(V);
5258    Entry.Node = ArgNode; Entry.Ty = V->getType();
5259
5260    unsigned attrInd = i - CS.arg_begin() + 1;
5261    Entry.isSExt  = CS.paramHasAttr(attrInd, Attributes::SExt);
5262    Entry.isZExt  = CS.paramHasAttr(attrInd, Attributes::ZExt);
5263    Entry.isInReg = CS.paramHasAttr(attrInd, Attributes::InReg);
5264    Entry.isSRet  = CS.paramHasAttr(attrInd, Attributes::StructRet);
5265    Entry.isNest  = CS.paramHasAttr(attrInd, Attributes::Nest);
5266    Entry.isByVal = CS.paramHasAttr(attrInd, Attributes::ByVal);
5267    Entry.Alignment = CS.getParamAlignment(attrInd);
5268    Args.push_back(Entry);
5269  }
5270
5271  if (LandingPad) {
5272    // Insert a label before the invoke call to mark the try range.  This can be
5273    // used to detect deletion of the invoke via the MachineModuleInfo.
5274    BeginLabel = MMI.getContext().CreateTempSymbol();
5275
5276    // For SjLj, keep track of which landing pads go with which invokes
5277    // so as to maintain the ordering of pads in the LSDA.
5278    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5279    if (CallSiteIndex) {
5280      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5281      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5282
5283      // Now that the call site is handled, stop tracking it.
5284      MMI.setCurrentCallSite(0);
5285    }
5286
5287    // Both PendingLoads and PendingExports must be flushed here;
5288    // this call might not return.
5289    (void)getRoot();
5290    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5291  }
5292
5293  // Check if target-independent constraints permit a tail call here.
5294  // Target-dependent constraints are checked within TLI.LowerCallTo.
5295  if (isTailCall &&
5296      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5297    isTailCall = false;
5298
5299  // If there's a possibility that fast-isel has already selected some amount
5300  // of the current basic block, don't emit a tail call.
5301  if (isTailCall && TM.Options.EnableFastISel)
5302    isTailCall = false;
5303
5304  TargetLowering::
5305  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5306                       getCurDebugLoc(), CS);
5307  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5308  assert((isTailCall || Result.second.getNode()) &&
5309         "Non-null chain expected with non-tail call!");
5310  assert((Result.second.getNode() || !Result.first.getNode()) &&
5311         "Null value expected with tail call!");
5312  if (Result.first.getNode()) {
5313    setValue(CS.getInstruction(), Result.first);
5314  } else if (!CanLowerReturn && Result.second.getNode()) {
5315    // The instruction result is the result of loading from the
5316    // hidden sret parameter.
5317    SmallVector<EVT, 1> PVTs;
5318    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5319
5320    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5321    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5322    EVT PtrVT = PVTs[0];
5323
5324    SmallVector<EVT, 4> RetTys;
5325    SmallVector<uint64_t, 4> Offsets;
5326    RetTy = FTy->getReturnType();
5327    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5328
5329    unsigned NumValues = RetTys.size();
5330    SmallVector<SDValue, 4> Values(NumValues);
5331    SmallVector<SDValue, 4> Chains(NumValues);
5332
5333    for (unsigned i = 0; i < NumValues; ++i) {
5334      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5335                                DemoteStackSlot,
5336                                DAG.getConstant(Offsets[i], PtrVT));
5337      SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5338                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5339                              false, false, false, 1);
5340      Values[i] = L;
5341      Chains[i] = L.getValue(1);
5342    }
5343
5344    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5345                                MVT::Other, &Chains[0], NumValues);
5346    PendingLoads.push_back(Chain);
5347
5348    setValue(CS.getInstruction(),
5349             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5350                         DAG.getVTList(&RetTys[0], RetTys.size()),
5351                         &Values[0], Values.size()));
5352  }
5353
5354  // Assign order to nodes here. If the call does not produce a result, it won't
5355  // be mapped to a SDNode and visit() will not assign it an order number.
5356  if (!Result.second.getNode()) {
5357    // As a special case, a null chain means that a tail call has been emitted and
5358    // the DAG root is already updated.
5359    HasTailCall = true;
5360    ++SDNodeOrder;
5361    AssignOrderingToNode(DAG.getRoot().getNode());
5362  } else {
5363    DAG.setRoot(Result.second);
5364    ++SDNodeOrder;
5365    AssignOrderingToNode(Result.second.getNode());
5366  }
5367
5368  if (LandingPad) {
5369    // Insert a label at the end of the invoke call to mark the try range.  This
5370    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5371    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5372    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5373
5374    // Inform MachineModuleInfo of range.
5375    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5376  }
5377}
5378
5379/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5380/// value is equal or not-equal to zero.
5381static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5382  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5383       UI != E; ++UI) {
5384    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5385      if (IC->isEquality())
5386        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5387          if (C->isNullValue())
5388            continue;
5389    // Unknown instruction.
5390    return false;
5391  }
5392  return true;
5393}
5394
5395static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5396                             Type *LoadTy,
5397                             SelectionDAGBuilder &Builder) {
5398
5399  // Check to see if this load can be trivially constant folded, e.g. if the
5400  // input is from a string literal.
5401  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5402    // Cast pointer to the type we really want to load.
5403    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5404                                         PointerType::getUnqual(LoadTy));
5405
5406    if (const Constant *LoadCst =
5407          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5408                                       Builder.TD))
5409      return Builder.getValue(LoadCst);
5410  }
5411
5412  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5413  // still constant memory, the input chain can be the entry node.
5414  SDValue Root;
5415  bool ConstantMemory = false;
5416
5417  // Do not serialize (non-volatile) loads of constant memory with anything.
5418  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5419    Root = Builder.DAG.getEntryNode();
5420    ConstantMemory = true;
5421  } else {
5422    // Do not serialize non-volatile loads against each other.
5423    Root = Builder.DAG.getRoot();
5424  }
5425
5426  SDValue Ptr = Builder.getValue(PtrVal);
5427  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5428                                        Ptr, MachinePointerInfo(PtrVal),
5429                                        false /*volatile*/,
5430                                        false /*nontemporal*/,
5431                                        false /*isinvariant*/, 1 /* align=1 */);
5432
5433  if (!ConstantMemory)
5434    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5435  return LoadVal;
5436}
5437
5438
5439/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5440/// If so, return true and lower it, otherwise return false and it will be
5441/// lowered like a normal call.
5442bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5443  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5444  if (I.getNumArgOperands() != 3)
5445    return false;
5446
5447  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5448  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5449      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5450      !I.getType()->isIntegerTy())
5451    return false;
5452
5453  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5454
5455  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5456  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5457  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5458    bool ActuallyDoIt = true;
5459    MVT LoadVT;
5460    Type *LoadTy;
5461    switch (Size->getZExtValue()) {
5462    default:
5463      LoadVT = MVT::Other;
5464      LoadTy = 0;
5465      ActuallyDoIt = false;
5466      break;
5467    case 2:
5468      LoadVT = MVT::i16;
5469      LoadTy = Type::getInt16Ty(Size->getContext());
5470      break;
5471    case 4:
5472      LoadVT = MVT::i32;
5473      LoadTy = Type::getInt32Ty(Size->getContext());
5474      break;
5475    case 8:
5476      LoadVT = MVT::i64;
5477      LoadTy = Type::getInt64Ty(Size->getContext());
5478      break;
5479        /*
5480    case 16:
5481      LoadVT = MVT::v4i32;
5482      LoadTy = Type::getInt32Ty(Size->getContext());
5483      LoadTy = VectorType::get(LoadTy, 4);
5484      break;
5485         */
5486    }
5487
5488    // This turns into unaligned loads.  We only do this if the target natively
5489    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5490    // we'll only produce a small number of byte loads.
5491
5492    // Require that we can find a legal MVT, and only do this if the target
5493    // supports unaligned loads of that type.  Expanding into byte loads would
5494    // bloat the code.
5495    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5496      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5497      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5498      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5499        ActuallyDoIt = false;
5500    }
5501
5502    if (ActuallyDoIt) {
5503      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5504      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5505
5506      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5507                                 ISD::SETNE);
5508      EVT CallVT = TLI.getValueType(I.getType(), true);
5509      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5510      return true;
5511    }
5512  }
5513
5514
5515  return false;
5516}
5517
5518/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5519/// operation (as expected), translate it to an SDNode with the specified opcode
5520/// and return true.
5521bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5522                                              unsigned Opcode) {
5523  // Sanity check that it really is a unary floating-point call.
5524  if (I.getNumArgOperands() != 1 ||
5525      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5526      I.getType() != I.getArgOperand(0)->getType() ||
5527      !I.onlyReadsMemory())
5528    return false;
5529
5530  SDValue Tmp = getValue(I.getArgOperand(0));
5531  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp));
5532  return true;
5533}
5534
5535void SelectionDAGBuilder::visitCall(const CallInst &I) {
5536  // Handle inline assembly differently.
5537  if (isa<InlineAsm>(I.getCalledValue())) {
5538    visitInlineAsm(&I);
5539    return;
5540  }
5541
5542  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5543  ComputeUsesVAFloatArgument(I, &MMI);
5544
5545  const char *RenameFn = 0;
5546  if (Function *F = I.getCalledFunction()) {
5547    if (F->isDeclaration()) {
5548      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5549        if (unsigned IID = II->getIntrinsicID(F)) {
5550          RenameFn = visitIntrinsicCall(I, IID);
5551          if (!RenameFn)
5552            return;
5553        }
5554      }
5555      if (unsigned IID = F->getIntrinsicID()) {
5556        RenameFn = visitIntrinsicCall(I, IID);
5557        if (!RenameFn)
5558          return;
5559      }
5560    }
5561
5562    // Check for well-known libc/libm calls.  If the function is internal, it
5563    // can't be a library call.
5564    LibFunc::Func Func;
5565    if (!F->hasLocalLinkage() && F->hasName() &&
5566        LibInfo->getLibFunc(F->getName(), Func) &&
5567        LibInfo->hasOptimizedCodeGen(Func)) {
5568      switch (Func) {
5569      default: break;
5570      case LibFunc::copysign:
5571      case LibFunc::copysignf:
5572      case LibFunc::copysignl:
5573        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5574            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5575            I.getType() == I.getArgOperand(0)->getType() &&
5576            I.getType() == I.getArgOperand(1)->getType() &&
5577            I.onlyReadsMemory()) {
5578          SDValue LHS = getValue(I.getArgOperand(0));
5579          SDValue RHS = getValue(I.getArgOperand(1));
5580          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5581                                   LHS.getValueType(), LHS, RHS));
5582          return;
5583        }
5584        break;
5585      case LibFunc::fabs:
5586      case LibFunc::fabsf:
5587      case LibFunc::fabsl:
5588        if (visitUnaryFloatCall(I, ISD::FABS))
5589          return;
5590        break;
5591      case LibFunc::sin:
5592      case LibFunc::sinf:
5593      case LibFunc::sinl:
5594        if (visitUnaryFloatCall(I, ISD::FSIN))
5595          return;
5596        break;
5597      case LibFunc::cos:
5598      case LibFunc::cosf:
5599      case LibFunc::cosl:
5600        if (visitUnaryFloatCall(I, ISD::FCOS))
5601          return;
5602        break;
5603      case LibFunc::sqrt:
5604      case LibFunc::sqrtf:
5605      case LibFunc::sqrtl:
5606        if (visitUnaryFloatCall(I, ISD::FSQRT))
5607          return;
5608        break;
5609      case LibFunc::floor:
5610      case LibFunc::floorf:
5611      case LibFunc::floorl:
5612        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5613          return;
5614        break;
5615      case LibFunc::nearbyint:
5616      case LibFunc::nearbyintf:
5617      case LibFunc::nearbyintl:
5618        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5619          return;
5620        break;
5621      case LibFunc::ceil:
5622      case LibFunc::ceilf:
5623      case LibFunc::ceill:
5624        if (visitUnaryFloatCall(I, ISD::FCEIL))
5625          return;
5626        break;
5627      case LibFunc::rint:
5628      case LibFunc::rintf:
5629      case LibFunc::rintl:
5630        if (visitUnaryFloatCall(I, ISD::FRINT))
5631          return;
5632        break;
5633      case LibFunc::trunc:
5634      case LibFunc::truncf:
5635      case LibFunc::truncl:
5636        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5637          return;
5638        break;
5639      case LibFunc::log2:
5640      case LibFunc::log2f:
5641      case LibFunc::log2l:
5642        if (visitUnaryFloatCall(I, ISD::FLOG2))
5643          return;
5644        break;
5645      case LibFunc::exp2:
5646      case LibFunc::exp2f:
5647      case LibFunc::exp2l:
5648        if (visitUnaryFloatCall(I, ISD::FEXP2))
5649          return;
5650        break;
5651      case LibFunc::memcmp:
5652        if (visitMemCmpCall(I))
5653          return;
5654        break;
5655      }
5656    }
5657  }
5658
5659  SDValue Callee;
5660  if (!RenameFn)
5661    Callee = getValue(I.getCalledValue());
5662  else
5663    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5664
5665  // Check if we can potentially perform a tail call. More detailed checking is
5666  // be done within LowerCallTo, after more information about the call is known.
5667  LowerCallTo(&I, Callee, I.isTailCall());
5668}
5669
5670namespace {
5671
5672/// AsmOperandInfo - This contains information for each constraint that we are
5673/// lowering.
5674class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5675public:
5676  /// CallOperand - If this is the result output operand or a clobber
5677  /// this is null, otherwise it is the incoming operand to the CallInst.
5678  /// This gets modified as the asm is processed.
5679  SDValue CallOperand;
5680
5681  /// AssignedRegs - If this is a register or register class operand, this
5682  /// contains the set of register corresponding to the operand.
5683  RegsForValue AssignedRegs;
5684
5685  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5686    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5687  }
5688
5689  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5690  /// corresponds to.  If there is no Value* for this operand, it returns
5691  /// MVT::Other.
5692  EVT getCallOperandValEVT(LLVMContext &Context,
5693                           const TargetLowering &TLI,
5694                           const DataLayout *TD) const {
5695    if (CallOperandVal == 0) return MVT::Other;
5696
5697    if (isa<BasicBlock>(CallOperandVal))
5698      return TLI.getPointerTy();
5699
5700    llvm::Type *OpTy = CallOperandVal->getType();
5701
5702    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5703    // If this is an indirect operand, the operand is a pointer to the
5704    // accessed type.
5705    if (isIndirect) {
5706      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5707      if (!PtrTy)
5708        report_fatal_error("Indirect operand for inline asm not a pointer!");
5709      OpTy = PtrTy->getElementType();
5710    }
5711
5712    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5713    if (StructType *STy = dyn_cast<StructType>(OpTy))
5714      if (STy->getNumElements() == 1)
5715        OpTy = STy->getElementType(0);
5716
5717    // If OpTy is not a single value, it may be a struct/union that we
5718    // can tile with integers.
5719    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5720      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5721      switch (BitSize) {
5722      default: break;
5723      case 1:
5724      case 8:
5725      case 16:
5726      case 32:
5727      case 64:
5728      case 128:
5729        OpTy = IntegerType::get(Context, BitSize);
5730        break;
5731      }
5732    }
5733
5734    return TLI.getValueType(OpTy, true);
5735  }
5736};
5737
5738typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5739
5740} // end anonymous namespace
5741
5742/// GetRegistersForValue - Assign registers (virtual or physical) for the
5743/// specified operand.  We prefer to assign virtual registers, to allow the
5744/// register allocator to handle the assignment process.  However, if the asm
5745/// uses features that we can't model on machineinstrs, we have SDISel do the
5746/// allocation.  This produces generally horrible, but correct, code.
5747///
5748///   OpInfo describes the operand.
5749///
5750static void GetRegistersForValue(SelectionDAG &DAG,
5751                                 const TargetLowering &TLI,
5752                                 DebugLoc DL,
5753                                 SDISelAsmOperandInfo &OpInfo) {
5754  LLVMContext &Context = *DAG.getContext();
5755
5756  MachineFunction &MF = DAG.getMachineFunction();
5757  SmallVector<unsigned, 4> Regs;
5758
5759  // If this is a constraint for a single physreg, or a constraint for a
5760  // register class, find it.
5761  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5762    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5763                                     OpInfo.ConstraintVT);
5764
5765  unsigned NumRegs = 1;
5766  if (OpInfo.ConstraintVT != MVT::Other) {
5767    // If this is a FP input in an integer register (or visa versa) insert a bit
5768    // cast of the input value.  More generally, handle any case where the input
5769    // value disagrees with the register class we plan to stick this in.
5770    if (OpInfo.Type == InlineAsm::isInput &&
5771        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5772      // Try to convert to the first EVT that the reg class contains.  If the
5773      // types are identical size, use a bitcast to convert (e.g. two differing
5774      // vector types).
5775      EVT RegVT = *PhysReg.second->vt_begin();
5776      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5777        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5778                                         RegVT, OpInfo.CallOperand);
5779        OpInfo.ConstraintVT = RegVT;
5780      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5781        // If the input is a FP value and we want it in FP registers, do a
5782        // bitcast to the corresponding integer type.  This turns an f64 value
5783        // into i64, which can be passed with two i32 values on a 32-bit
5784        // machine.
5785        RegVT = EVT::getIntegerVT(Context,
5786                                  OpInfo.ConstraintVT.getSizeInBits());
5787        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5788                                         RegVT, OpInfo.CallOperand);
5789        OpInfo.ConstraintVT = RegVT;
5790      }
5791    }
5792
5793    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5794  }
5795
5796  EVT RegVT;
5797  EVT ValueVT = OpInfo.ConstraintVT;
5798
5799  // If this is a constraint for a specific physical register, like {r17},
5800  // assign it now.
5801  if (unsigned AssignedReg = PhysReg.first) {
5802    const TargetRegisterClass *RC = PhysReg.second;
5803    if (OpInfo.ConstraintVT == MVT::Other)
5804      ValueVT = *RC->vt_begin();
5805
5806    // Get the actual register value type.  This is important, because the user
5807    // may have asked for (e.g.) the AX register in i32 type.  We need to
5808    // remember that AX is actually i16 to get the right extension.
5809    RegVT = *RC->vt_begin();
5810
5811    // This is a explicit reference to a physical register.
5812    Regs.push_back(AssignedReg);
5813
5814    // If this is an expanded reference, add the rest of the regs to Regs.
5815    if (NumRegs != 1) {
5816      TargetRegisterClass::iterator I = RC->begin();
5817      for (; *I != AssignedReg; ++I)
5818        assert(I != RC->end() && "Didn't find reg!");
5819
5820      // Already added the first reg.
5821      --NumRegs; ++I;
5822      for (; NumRegs; --NumRegs, ++I) {
5823        assert(I != RC->end() && "Ran out of registers to allocate!");
5824        Regs.push_back(*I);
5825      }
5826    }
5827
5828    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5829    return;
5830  }
5831
5832  // Otherwise, if this was a reference to an LLVM register class, create vregs
5833  // for this reference.
5834  if (const TargetRegisterClass *RC = PhysReg.second) {
5835    RegVT = *RC->vt_begin();
5836    if (OpInfo.ConstraintVT == MVT::Other)
5837      ValueVT = RegVT;
5838
5839    // Create the appropriate number of virtual registers.
5840    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5841    for (; NumRegs; --NumRegs)
5842      Regs.push_back(RegInfo.createVirtualRegister(RC));
5843
5844    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5845    return;
5846  }
5847
5848  // Otherwise, we couldn't allocate enough registers for this.
5849}
5850
5851/// visitInlineAsm - Handle a call to an InlineAsm object.
5852///
5853void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5854  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5855
5856  /// ConstraintOperands - Information about all of the constraints.
5857  SDISelAsmOperandInfoVector ConstraintOperands;
5858
5859  TargetLowering::AsmOperandInfoVector
5860    TargetConstraints = TLI.ParseConstraints(CS);
5861
5862  bool hasMemory = false;
5863
5864  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5865  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5866  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5867    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5868    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5869
5870    EVT OpVT = MVT::Other;
5871
5872    // Compute the value type for each operand.
5873    switch (OpInfo.Type) {
5874    case InlineAsm::isOutput:
5875      // Indirect outputs just consume an argument.
5876      if (OpInfo.isIndirect) {
5877        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5878        break;
5879      }
5880
5881      // The return value of the call is this value.  As such, there is no
5882      // corresponding argument.
5883      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5884      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5885        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5886      } else {
5887        assert(ResNo == 0 && "Asm only has one result!");
5888        OpVT = TLI.getValueType(CS.getType());
5889      }
5890      ++ResNo;
5891      break;
5892    case InlineAsm::isInput:
5893      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5894      break;
5895    case InlineAsm::isClobber:
5896      // Nothing to do.
5897      break;
5898    }
5899
5900    // If this is an input or an indirect output, process the call argument.
5901    // BasicBlocks are labels, currently appearing only in asm's.
5902    if (OpInfo.CallOperandVal) {
5903      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5904        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5905      } else {
5906        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5907      }
5908
5909      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5910    }
5911
5912    OpInfo.ConstraintVT = OpVT;
5913
5914    // Indirect operand accesses access memory.
5915    if (OpInfo.isIndirect)
5916      hasMemory = true;
5917    else {
5918      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5919        TargetLowering::ConstraintType
5920          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5921        if (CType == TargetLowering::C_Memory) {
5922          hasMemory = true;
5923          break;
5924        }
5925      }
5926    }
5927  }
5928
5929  SDValue Chain, Flag;
5930
5931  // We won't need to flush pending loads if this asm doesn't touch
5932  // memory and is nonvolatile.
5933  if (hasMemory || IA->hasSideEffects())
5934    Chain = getRoot();
5935  else
5936    Chain = DAG.getRoot();
5937
5938  // Second pass over the constraints: compute which constraint option to use
5939  // and assign registers to constraints that want a specific physreg.
5940  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5941    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5942
5943    // If this is an output operand with a matching input operand, look up the
5944    // matching input. If their types mismatch, e.g. one is an integer, the
5945    // other is floating point, or their sizes are different, flag it as an
5946    // error.
5947    if (OpInfo.hasMatchingInput()) {
5948      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5949
5950      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5951        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5952          TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5953                                           OpInfo.ConstraintVT);
5954        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5955          TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5956                                           Input.ConstraintVT);
5957        if ((OpInfo.ConstraintVT.isInteger() !=
5958             Input.ConstraintVT.isInteger()) ||
5959            (MatchRC.second != InputRC.second)) {
5960          report_fatal_error("Unsupported asm: input constraint"
5961                             " with a matching output constraint of"
5962                             " incompatible type!");
5963        }
5964        Input.ConstraintVT = OpInfo.ConstraintVT;
5965      }
5966    }
5967
5968    // Compute the constraint code and ConstraintType to use.
5969    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5970
5971    // If this is a memory input, and if the operand is not indirect, do what we
5972    // need to to provide an address for the memory input.
5973    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5974        !OpInfo.isIndirect) {
5975      assert((OpInfo.isMultipleAlternative ||
5976              (OpInfo.Type == InlineAsm::isInput)) &&
5977             "Can only indirectify direct input operands!");
5978
5979      // Memory operands really want the address of the value.  If we don't have
5980      // an indirect input, put it in the constpool if we can, otherwise spill
5981      // it to a stack slot.
5982      // TODO: This isn't quite right. We need to handle these according to
5983      // the addressing mode that the constraint wants. Also, this may take
5984      // an additional register for the computation and we don't want that
5985      // either.
5986
5987      // If the operand is a float, integer, or vector constant, spill to a
5988      // constant pool entry to get its address.
5989      const Value *OpVal = OpInfo.CallOperandVal;
5990      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5991          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5992        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5993                                                 TLI.getPointerTy());
5994      } else {
5995        // Otherwise, create a stack slot and emit a store to it before the
5996        // asm.
5997        Type *Ty = OpVal->getType();
5998        uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
5999        unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
6000        MachineFunction &MF = DAG.getMachineFunction();
6001        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6002        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6003        Chain = DAG.getStore(Chain, getCurDebugLoc(),
6004                             OpInfo.CallOperand, StackSlot,
6005                             MachinePointerInfo::getFixedStack(SSFI),
6006                             false, false, 0);
6007        OpInfo.CallOperand = StackSlot;
6008      }
6009
6010      // There is no longer a Value* corresponding to this operand.
6011      OpInfo.CallOperandVal = 0;
6012
6013      // It is now an indirect operand.
6014      OpInfo.isIndirect = true;
6015    }
6016
6017    // If this constraint is for a specific register, allocate it before
6018    // anything else.
6019    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6020      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6021  }
6022
6023  // Second pass - Loop over all of the operands, assigning virtual or physregs
6024  // to register class operands.
6025  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6026    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6027
6028    // C_Register operands have already been allocated, Other/Memory don't need
6029    // to be.
6030    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6031      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6032  }
6033
6034  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6035  std::vector<SDValue> AsmNodeOperands;
6036  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6037  AsmNodeOperands.push_back(
6038          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6039                                      TLI.getPointerTy()));
6040
6041  // If we have a !srcloc metadata node associated with it, we want to attach
6042  // this to the ultimately generated inline asm machineinstr.  To do this, we
6043  // pass in the third operand as this (potentially null) inline asm MDNode.
6044  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6045  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6046
6047  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6048  // bits as operand 3.
6049  unsigned ExtraInfo = 0;
6050  if (IA->hasSideEffects())
6051    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6052  if (IA->isAlignStack())
6053    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6054  // Set the asm dialect.
6055  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6056
6057  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6058  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6059    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6060
6061    // Compute the constraint code and ConstraintType to use.
6062    TLI.ComputeConstraintToUse(OpInfo, SDValue());
6063
6064    // Ideally, we would only check against memory constraints.  However, the
6065    // meaning of an other constraint can be target-specific and we can't easily
6066    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6067    // for other constriants as well.
6068    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6069        OpInfo.ConstraintType == TargetLowering::C_Other) {
6070      if (OpInfo.Type == InlineAsm::isInput)
6071        ExtraInfo |= InlineAsm::Extra_MayLoad;
6072      else if (OpInfo.Type == InlineAsm::isOutput)
6073        ExtraInfo |= InlineAsm::Extra_MayStore;
6074    }
6075  }
6076
6077  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6078                                                  TLI.getPointerTy()));
6079
6080  // Loop over all of the inputs, copying the operand values into the
6081  // appropriate registers and processing the output regs.
6082  RegsForValue RetValRegs;
6083
6084  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6085  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6086
6087  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6088    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6089
6090    switch (OpInfo.Type) {
6091    case InlineAsm::isOutput: {
6092      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6093          OpInfo.ConstraintType != TargetLowering::C_Register) {
6094        // Memory output, or 'other' output (e.g. 'X' constraint).
6095        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6096
6097        // Add information to the INLINEASM node to know about this output.
6098        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6099        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6100                                                        TLI.getPointerTy()));
6101        AsmNodeOperands.push_back(OpInfo.CallOperand);
6102        break;
6103      }
6104
6105      // Otherwise, this is a register or register class output.
6106
6107      // Copy the output from the appropriate register.  Find a register that
6108      // we can use.
6109      if (OpInfo.AssignedRegs.Regs.empty()) {
6110        LLVMContext &Ctx = *DAG.getContext();
6111        Ctx.emitError(CS.getInstruction(),
6112                      "couldn't allocate output register for constraint '" +
6113                           Twine(OpInfo.ConstraintCode) + "'");
6114        break;
6115      }
6116
6117      // If this is an indirect operand, store through the pointer after the
6118      // asm.
6119      if (OpInfo.isIndirect) {
6120        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6121                                                      OpInfo.CallOperandVal));
6122      } else {
6123        // This is the result value of the call.
6124        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6125        // Concatenate this output onto the outputs list.
6126        RetValRegs.append(OpInfo.AssignedRegs);
6127      }
6128
6129      // Add information to the INLINEASM node to know that this register is
6130      // set.
6131      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6132                                           InlineAsm::Kind_RegDefEarlyClobber :
6133                                               InlineAsm::Kind_RegDef,
6134                                               false,
6135                                               0,
6136                                               DAG,
6137                                               AsmNodeOperands);
6138      break;
6139    }
6140    case InlineAsm::isInput: {
6141      SDValue InOperandVal = OpInfo.CallOperand;
6142
6143      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6144        // If this is required to match an output register we have already set,
6145        // just use its register.
6146        unsigned OperandNo = OpInfo.getMatchedOperand();
6147
6148        // Scan until we find the definition we already emitted of this operand.
6149        // When we find it, create a RegsForValue operand.
6150        unsigned CurOp = InlineAsm::Op_FirstOperand;
6151        for (; OperandNo; --OperandNo) {
6152          // Advance to the next operand.
6153          unsigned OpFlag =
6154            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6155          assert((InlineAsm::isRegDefKind(OpFlag) ||
6156                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6157                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6158          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6159        }
6160
6161        unsigned OpFlag =
6162          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6163        if (InlineAsm::isRegDefKind(OpFlag) ||
6164            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6165          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6166          if (OpInfo.isIndirect) {
6167            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6168            LLVMContext &Ctx = *DAG.getContext();
6169            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6170                          " don't know how to handle tied "
6171                          "indirect register inputs");
6172          }
6173
6174          RegsForValue MatchedRegs;
6175          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6176          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6177          MatchedRegs.RegVTs.push_back(RegVT);
6178          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6179          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6180               i != e; ++i)
6181            MatchedRegs.Regs.push_back
6182              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6183
6184          // Use the produced MatchedRegs object to
6185          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6186                                    Chain, &Flag, CS.getInstruction());
6187          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6188                                           true, OpInfo.getMatchedOperand(),
6189                                           DAG, AsmNodeOperands);
6190          break;
6191        }
6192
6193        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6194        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6195               "Unexpected number of operands");
6196        // Add information to the INLINEASM node to know about this input.
6197        // See InlineAsm.h isUseOperandTiedToDef.
6198        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6199                                                    OpInfo.getMatchedOperand());
6200        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6201                                                        TLI.getPointerTy()));
6202        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6203        break;
6204      }
6205
6206      // Treat indirect 'X' constraint as memory.
6207      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6208          OpInfo.isIndirect)
6209        OpInfo.ConstraintType = TargetLowering::C_Memory;
6210
6211      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6212        std::vector<SDValue> Ops;
6213        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6214                                         Ops, DAG);
6215        if (Ops.empty()) {
6216          LLVMContext &Ctx = *DAG.getContext();
6217          Ctx.emitError(CS.getInstruction(),
6218                        "invalid operand for inline asm constraint '" +
6219                        Twine(OpInfo.ConstraintCode) + "'");
6220          break;
6221        }
6222
6223        // Add information to the INLINEASM node to know about this input.
6224        unsigned ResOpType =
6225          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6226        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6227                                                        TLI.getPointerTy()));
6228        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6229        break;
6230      }
6231
6232      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6233        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6234        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6235               "Memory operands expect pointer values");
6236
6237        // Add information to the INLINEASM node to know about this input.
6238        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6239        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6240                                                        TLI.getPointerTy()));
6241        AsmNodeOperands.push_back(InOperandVal);
6242        break;
6243      }
6244
6245      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6246              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6247             "Unknown constraint type!");
6248
6249      // TODO: Support this.
6250      if (OpInfo.isIndirect) {
6251        LLVMContext &Ctx = *DAG.getContext();
6252        Ctx.emitError(CS.getInstruction(),
6253                      "Don't know how to handle indirect register inputs yet "
6254                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6255        break;
6256      }
6257
6258      // Copy the input into the appropriate registers.
6259      if (OpInfo.AssignedRegs.Regs.empty()) {
6260        LLVMContext &Ctx = *DAG.getContext();
6261        Ctx.emitError(CS.getInstruction(),
6262                      "couldn't allocate input reg for constraint '" +
6263                           Twine(OpInfo.ConstraintCode) + "'");
6264        break;
6265      }
6266
6267      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6268                                        Chain, &Flag, CS.getInstruction());
6269
6270      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6271                                               DAG, AsmNodeOperands);
6272      break;
6273    }
6274    case InlineAsm::isClobber: {
6275      // Add the clobbered value to the operand list, so that the register
6276      // allocator is aware that the physreg got clobbered.
6277      if (!OpInfo.AssignedRegs.Regs.empty())
6278        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6279                                                 false, 0, DAG,
6280                                                 AsmNodeOperands);
6281      break;
6282    }
6283    }
6284  }
6285
6286  // Finish up input operands.  Set the input chain and add the flag last.
6287  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6288  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6289
6290  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6291                      DAG.getVTList(MVT::Other, MVT::Glue),
6292                      &AsmNodeOperands[0], AsmNodeOperands.size());
6293  Flag = Chain.getValue(1);
6294
6295  // If this asm returns a register value, copy the result from that register
6296  // and set it as the value of the call.
6297  if (!RetValRegs.Regs.empty()) {
6298    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6299                                             Chain, &Flag, CS.getInstruction());
6300
6301    // FIXME: Why don't we do this for inline asms with MRVs?
6302    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6303      EVT ResultType = TLI.getValueType(CS.getType());
6304
6305      // If any of the results of the inline asm is a vector, it may have the
6306      // wrong width/num elts.  This can happen for register classes that can
6307      // contain multiple different value types.  The preg or vreg allocated may
6308      // not have the same VT as was expected.  Convert it to the right type
6309      // with bit_convert.
6310      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6311        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6312                          ResultType, Val);
6313
6314      } else if (ResultType != Val.getValueType() &&
6315                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6316        // If a result value was tied to an input value, the computed result may
6317        // have a wider width than the expected result.  Extract the relevant
6318        // portion.
6319        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6320      }
6321
6322      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6323    }
6324
6325    setValue(CS.getInstruction(), Val);
6326    // Don't need to use this as a chain in this case.
6327    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6328      return;
6329  }
6330
6331  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6332
6333  // Process indirect outputs, first output all of the flagged copies out of
6334  // physregs.
6335  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6336    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6337    const Value *Ptr = IndirectStoresToEmit[i].second;
6338    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6339                                             Chain, &Flag, IA);
6340    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6341  }
6342
6343  // Emit the non-flagged stores from the physregs.
6344  SmallVector<SDValue, 8> OutChains;
6345  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6346    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6347                               StoresToEmit[i].first,
6348                               getValue(StoresToEmit[i].second),
6349                               MachinePointerInfo(StoresToEmit[i].second),
6350                               false, false, 0);
6351    OutChains.push_back(Val);
6352  }
6353
6354  if (!OutChains.empty())
6355    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6356                        &OutChains[0], OutChains.size());
6357
6358  DAG.setRoot(Chain);
6359}
6360
6361void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6362  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6363                          MVT::Other, getRoot(),
6364                          getValue(I.getArgOperand(0)),
6365                          DAG.getSrcValue(I.getArgOperand(0))));
6366}
6367
6368void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6369  const DataLayout &TD = *TLI.getDataLayout();
6370  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6371                           getRoot(), getValue(I.getOperand(0)),
6372                           DAG.getSrcValue(I.getOperand(0)),
6373                           TD.getABITypeAlignment(I.getType()));
6374  setValue(&I, V);
6375  DAG.setRoot(V.getValue(1));
6376}
6377
6378void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6379  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6380                          MVT::Other, getRoot(),
6381                          getValue(I.getArgOperand(0)),
6382                          DAG.getSrcValue(I.getArgOperand(0))));
6383}
6384
6385void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6386  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6387                          MVT::Other, getRoot(),
6388                          getValue(I.getArgOperand(0)),
6389                          getValue(I.getArgOperand(1)),
6390                          DAG.getSrcValue(I.getArgOperand(0)),
6391                          DAG.getSrcValue(I.getArgOperand(1))));
6392}
6393
6394/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6395/// implementation, which just calls LowerCall.
6396/// FIXME: When all targets are
6397/// migrated to using LowerCall, this hook should be integrated into SDISel.
6398std::pair<SDValue, SDValue>
6399TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6400  // Handle all of the outgoing arguments.
6401  CLI.Outs.clear();
6402  CLI.OutVals.clear();
6403  ArgListTy &Args = CLI.Args;
6404  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6405    SmallVector<EVT, 4> ValueVTs;
6406    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6407    for (unsigned Value = 0, NumValues = ValueVTs.size();
6408         Value != NumValues; ++Value) {
6409      EVT VT = ValueVTs[Value];
6410      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6411      SDValue Op = SDValue(Args[i].Node.getNode(),
6412                           Args[i].Node.getResNo() + Value);
6413      ISD::ArgFlagsTy Flags;
6414      unsigned OriginalAlignment =
6415        getDataLayout()->getABITypeAlignment(ArgTy);
6416
6417      if (Args[i].isZExt)
6418        Flags.setZExt();
6419      if (Args[i].isSExt)
6420        Flags.setSExt();
6421      if (Args[i].isInReg)
6422        Flags.setInReg();
6423      if (Args[i].isSRet)
6424        Flags.setSRet();
6425      if (Args[i].isByVal) {
6426        Flags.setByVal();
6427        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6428        Type *ElementTy = Ty->getElementType();
6429        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6430        // For ByVal, alignment should come from FE.  BE will guess if this
6431        // info is not there but there are cases it cannot get right.
6432        unsigned FrameAlign;
6433        if (Args[i].Alignment)
6434          FrameAlign = Args[i].Alignment;
6435        else
6436          FrameAlign = getByValTypeAlignment(ElementTy);
6437        Flags.setByValAlign(FrameAlign);
6438      }
6439      if (Args[i].isNest)
6440        Flags.setNest();
6441      Flags.setOrigAlign(OriginalAlignment);
6442
6443      EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6444      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6445      SmallVector<SDValue, 4> Parts(NumParts);
6446      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6447
6448      if (Args[i].isSExt)
6449        ExtendKind = ISD::SIGN_EXTEND;
6450      else if (Args[i].isZExt)
6451        ExtendKind = ISD::ZERO_EXTEND;
6452
6453      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6454                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6455
6456      for (unsigned j = 0; j != NumParts; ++j) {
6457        // if it isn't first piece, alignment must be 1
6458        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6459                               i < CLI.NumFixedArgs,
6460                               i, j*Parts[j].getValueType().getStoreSize());
6461        if (NumParts > 1 && j == 0)
6462          MyFlags.Flags.setSplit();
6463        else if (j != 0)
6464          MyFlags.Flags.setOrigAlign(1);
6465
6466        CLI.Outs.push_back(MyFlags);
6467        CLI.OutVals.push_back(Parts[j]);
6468      }
6469    }
6470  }
6471
6472  // Handle the incoming return values from the call.
6473  CLI.Ins.clear();
6474  SmallVector<EVT, 4> RetTys;
6475  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6476  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6477    EVT VT = RetTys[I];
6478    EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6479    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6480    for (unsigned i = 0; i != NumRegs; ++i) {
6481      ISD::InputArg MyFlags;
6482      MyFlags.VT = RegisterVT.getSimpleVT();
6483      MyFlags.Used = CLI.IsReturnValueUsed;
6484      if (CLI.RetSExt)
6485        MyFlags.Flags.setSExt();
6486      if (CLI.RetZExt)
6487        MyFlags.Flags.setZExt();
6488      if (CLI.IsInReg)
6489        MyFlags.Flags.setInReg();
6490      CLI.Ins.push_back(MyFlags);
6491    }
6492  }
6493
6494  SmallVector<SDValue, 4> InVals;
6495  CLI.Chain = LowerCall(CLI, InVals);
6496
6497  // Verify that the target's LowerCall behaved as expected.
6498  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6499         "LowerCall didn't return a valid chain!");
6500  assert((!CLI.IsTailCall || InVals.empty()) &&
6501         "LowerCall emitted a return value for a tail call!");
6502  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6503         "LowerCall didn't emit the correct number of values!");
6504
6505  // For a tail call, the return value is merely live-out and there aren't
6506  // any nodes in the DAG representing it. Return a special value to
6507  // indicate that a tail call has been emitted and no more Instructions
6508  // should be processed in the current block.
6509  if (CLI.IsTailCall) {
6510    CLI.DAG.setRoot(CLI.Chain);
6511    return std::make_pair(SDValue(), SDValue());
6512  }
6513
6514  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6515          assert(InVals[i].getNode() &&
6516                 "LowerCall emitted a null value!");
6517          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6518                 "LowerCall emitted a value with the wrong type!");
6519        });
6520
6521  // Collect the legal value parts into potentially illegal values
6522  // that correspond to the original function's return values.
6523  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6524  if (CLI.RetSExt)
6525    AssertOp = ISD::AssertSext;
6526  else if (CLI.RetZExt)
6527    AssertOp = ISD::AssertZext;
6528  SmallVector<SDValue, 4> ReturnValues;
6529  unsigned CurReg = 0;
6530  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6531    EVT VT = RetTys[I];
6532    EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6533    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6534
6535    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6536                                            NumRegs, RegisterVT, VT, NULL,
6537                                            AssertOp));
6538    CurReg += NumRegs;
6539  }
6540
6541  // For a function returning void, there is no return value. We can't create
6542  // such a node, so we just return a null return value in that case. In
6543  // that case, nothing will actually look at the value.
6544  if (ReturnValues.empty())
6545    return std::make_pair(SDValue(), CLI.Chain);
6546
6547  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6548                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6549                            &ReturnValues[0], ReturnValues.size());
6550  return std::make_pair(Res, CLI.Chain);
6551}
6552
6553void TargetLowering::LowerOperationWrapper(SDNode *N,
6554                                           SmallVectorImpl<SDValue> &Results,
6555                                           SelectionDAG &DAG) const {
6556  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6557  if (Res.getNode())
6558    Results.push_back(Res);
6559}
6560
6561SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6562  llvm_unreachable("LowerOperation not implemented for this target!");
6563}
6564
6565void
6566SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6567  SDValue Op = getNonRegisterValue(V);
6568  assert((Op.getOpcode() != ISD::CopyFromReg ||
6569          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6570         "Copy from a reg to the same reg!");
6571  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6572
6573  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6574  SDValue Chain = DAG.getEntryNode();
6575  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V);
6576  PendingExports.push_back(Chain);
6577}
6578
6579#include "llvm/CodeGen/SelectionDAGISel.h"
6580
6581/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6582/// entry block, return true.  This includes arguments used by switches, since
6583/// the switch may expand into multiple basic blocks.
6584static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6585  // With FastISel active, we may be splitting blocks, so force creation
6586  // of virtual registers for all non-dead arguments.
6587  if (FastISel)
6588    return A->use_empty();
6589
6590  const BasicBlock *Entry = A->getParent()->begin();
6591  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6592       UI != E; ++UI) {
6593    const User *U = *UI;
6594    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6595      return false;  // Use not in entry block.
6596  }
6597  return true;
6598}
6599
6600void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6601  // If this is the entry block, emit arguments.
6602  const Function &F = *LLVMBB->getParent();
6603  SelectionDAG &DAG = SDB->DAG;
6604  DebugLoc dl = SDB->getCurDebugLoc();
6605  const DataLayout *TD = TLI.getDataLayout();
6606  SmallVector<ISD::InputArg, 16> Ins;
6607
6608  // Check whether the function can return without sret-demotion.
6609  SmallVector<ISD::OutputArg, 4> Outs;
6610  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6611                Outs, TLI);
6612
6613  if (!FuncInfo->CanLowerReturn) {
6614    // Put in an sret pointer parameter before all the other parameters.
6615    SmallVector<EVT, 1> ValueVTs;
6616    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6617
6618    // NOTE: Assuming that a pointer will never break down to more than one VT
6619    // or one register.
6620    ISD::ArgFlagsTy Flags;
6621    Flags.setSRet();
6622    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6623    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6624    Ins.push_back(RetArg);
6625  }
6626
6627  // Set up the incoming argument description vector.
6628  unsigned Idx = 1;
6629  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6630       I != E; ++I, ++Idx) {
6631    SmallVector<EVT, 4> ValueVTs;
6632    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6633    bool isArgValueUsed = !I->use_empty();
6634    for (unsigned Value = 0, NumValues = ValueVTs.size();
6635         Value != NumValues; ++Value) {
6636      EVT VT = ValueVTs[Value];
6637      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6638      ISD::ArgFlagsTy Flags;
6639      unsigned OriginalAlignment =
6640        TD->getABITypeAlignment(ArgTy);
6641
6642      if (F.getParamAttributes(Idx).hasAttribute(Attributes::ZExt))
6643        Flags.setZExt();
6644      if (F.getParamAttributes(Idx).hasAttribute(Attributes::SExt))
6645        Flags.setSExt();
6646      if (F.getParamAttributes(Idx).hasAttribute(Attributes::InReg))
6647        Flags.setInReg();
6648      if (F.getParamAttributes(Idx).hasAttribute(Attributes::StructRet))
6649        Flags.setSRet();
6650      if (F.getParamAttributes(Idx).hasAttribute(Attributes::ByVal)) {
6651        Flags.setByVal();
6652        PointerType *Ty = cast<PointerType>(I->getType());
6653        Type *ElementTy = Ty->getElementType();
6654        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6655        // For ByVal, alignment should be passed from FE.  BE will guess if
6656        // this info is not there but there are cases it cannot get right.
6657        unsigned FrameAlign;
6658        if (F.getParamAlignment(Idx))
6659          FrameAlign = F.getParamAlignment(Idx);
6660        else
6661          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6662        Flags.setByValAlign(FrameAlign);
6663      }
6664      if (F.getParamAttributes(Idx).hasAttribute(Attributes::Nest))
6665        Flags.setNest();
6666      Flags.setOrigAlign(OriginalAlignment);
6667
6668      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6669      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6670      for (unsigned i = 0; i != NumRegs; ++i) {
6671        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6672                              Idx-1, i*RegisterVT.getStoreSize());
6673        if (NumRegs > 1 && i == 0)
6674          MyFlags.Flags.setSplit();
6675        // if it isn't first piece, alignment must be 1
6676        else if (i > 0)
6677          MyFlags.Flags.setOrigAlign(1);
6678        Ins.push_back(MyFlags);
6679      }
6680    }
6681  }
6682
6683  // Call the target to set up the argument values.
6684  SmallVector<SDValue, 8> InVals;
6685  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6686                                             F.isVarArg(), Ins,
6687                                             dl, DAG, InVals);
6688
6689  // Verify that the target's LowerFormalArguments behaved as expected.
6690  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6691         "LowerFormalArguments didn't return a valid chain!");
6692  assert(InVals.size() == Ins.size() &&
6693         "LowerFormalArguments didn't emit the correct number of values!");
6694  DEBUG({
6695      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6696        assert(InVals[i].getNode() &&
6697               "LowerFormalArguments emitted a null value!");
6698        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6699               "LowerFormalArguments emitted a value with the wrong type!");
6700      }
6701    });
6702
6703  // Update the DAG with the new chain value resulting from argument lowering.
6704  DAG.setRoot(NewRoot);
6705
6706  // Set up the argument values.
6707  unsigned i = 0;
6708  Idx = 1;
6709  if (!FuncInfo->CanLowerReturn) {
6710    // Create a virtual register for the sret pointer, and put in a copy
6711    // from the sret argument into it.
6712    SmallVector<EVT, 1> ValueVTs;
6713    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6714    EVT VT = ValueVTs[0];
6715    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6716    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6717    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6718                                        RegVT, VT, NULL, AssertOp);
6719
6720    MachineFunction& MF = SDB->DAG.getMachineFunction();
6721    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6722    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6723    FuncInfo->DemoteRegister = SRetReg;
6724    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6725                                    SRetReg, ArgValue);
6726    DAG.setRoot(NewRoot);
6727
6728    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6729    // Idx indexes LLVM arguments.  Don't touch it.
6730    ++i;
6731  }
6732
6733  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6734      ++I, ++Idx) {
6735    SmallVector<SDValue, 4> ArgValues;
6736    SmallVector<EVT, 4> ValueVTs;
6737    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6738    unsigned NumValues = ValueVTs.size();
6739
6740    // If this argument is unused then remember its value. It is used to generate
6741    // debugging information.
6742    if (I->use_empty() && NumValues)
6743      SDB->setUnusedArgValue(I, InVals[i]);
6744
6745    for (unsigned Val = 0; Val != NumValues; ++Val) {
6746      EVT VT = ValueVTs[Val];
6747      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6748      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6749
6750      if (!I->use_empty()) {
6751        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6752        if (F.getParamAttributes(Idx).hasAttribute(Attributes::SExt))
6753          AssertOp = ISD::AssertSext;
6754        else if (F.getParamAttributes(Idx).hasAttribute(Attributes::ZExt))
6755          AssertOp = ISD::AssertZext;
6756
6757        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6758                                             NumParts, PartVT, VT,
6759                                             NULL, AssertOp));
6760      }
6761
6762      i += NumParts;
6763    }
6764
6765    // We don't need to do anything else for unused arguments.
6766    if (ArgValues.empty())
6767      continue;
6768
6769    // Note down frame index.
6770    if (FrameIndexSDNode *FI =
6771        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6772      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6773
6774    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6775                                     SDB->getCurDebugLoc());
6776
6777    SDB->setValue(I, Res);
6778    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6779      if (LoadSDNode *LNode =
6780          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6781        if (FrameIndexSDNode *FI =
6782            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6783        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6784    }
6785
6786    // If this argument is live outside of the entry block, insert a copy from
6787    // wherever we got it to the vreg that other BB's will reference it as.
6788    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6789      // If we can, though, try to skip creating an unnecessary vreg.
6790      // FIXME: This isn't very clean... it would be nice to make this more
6791      // general.  It's also subtly incompatible with the hacks FastISel
6792      // uses with vregs.
6793      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6794      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6795        FuncInfo->ValueMap[I] = Reg;
6796        continue;
6797      }
6798    }
6799    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6800      FuncInfo->InitializeRegForValue(I);
6801      SDB->CopyToExportRegsIfNeeded(I);
6802    }
6803  }
6804
6805  assert(i == InVals.size() && "Argument register count mismatch!");
6806
6807  // Finally, if the target has anything special to do, allow it to do so.
6808  // FIXME: this should insert code into the DAG!
6809  EmitFunctionEntryCode();
6810}
6811
6812/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6813/// ensure constants are generated when needed.  Remember the virtual registers
6814/// that need to be added to the Machine PHI nodes as input.  We cannot just
6815/// directly add them, because expansion might result in multiple MBB's for one
6816/// BB.  As such, the start of the BB might correspond to a different MBB than
6817/// the end.
6818///
6819void
6820SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6821  const TerminatorInst *TI = LLVMBB->getTerminator();
6822
6823  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6824
6825  // Check successor nodes' PHI nodes that expect a constant to be available
6826  // from this block.
6827  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6828    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6829    if (!isa<PHINode>(SuccBB->begin())) continue;
6830    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6831
6832    // If this terminator has multiple identical successors (common for
6833    // switches), only handle each succ once.
6834    if (!SuccsHandled.insert(SuccMBB)) continue;
6835
6836    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6837
6838    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6839    // nodes and Machine PHI nodes, but the incoming operands have not been
6840    // emitted yet.
6841    for (BasicBlock::const_iterator I = SuccBB->begin();
6842         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6843      // Ignore dead phi's.
6844      if (PN->use_empty()) continue;
6845
6846      // Skip empty types
6847      if (PN->getType()->isEmptyTy())
6848        continue;
6849
6850      unsigned Reg;
6851      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6852
6853      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6854        unsigned &RegOut = ConstantsOut[C];
6855        if (RegOut == 0) {
6856          RegOut = FuncInfo.CreateRegs(C->getType());
6857          CopyValueToVirtualRegister(C, RegOut);
6858        }
6859        Reg = RegOut;
6860      } else {
6861        DenseMap<const Value *, unsigned>::iterator I =
6862          FuncInfo.ValueMap.find(PHIOp);
6863        if (I != FuncInfo.ValueMap.end())
6864          Reg = I->second;
6865        else {
6866          assert(isa<AllocaInst>(PHIOp) &&
6867                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6868                 "Didn't codegen value into a register!??");
6869          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6870          CopyValueToVirtualRegister(PHIOp, Reg);
6871        }
6872      }
6873
6874      // Remember that this register needs to added to the machine PHI node as
6875      // the input for this MBB.
6876      SmallVector<EVT, 4> ValueVTs;
6877      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6878      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6879        EVT VT = ValueVTs[vti];
6880        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6881        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6882          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6883        Reg += NumRegisters;
6884      }
6885    }
6886  }
6887  ConstantsOut.clear();
6888}
6889