SelectionDAGBuilder.cpp revision 1a54c57cf654e001c078c7064123d30e6c03e349
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/GCMetadata.h"
28#include "llvm/CodeGen/GCStrategy.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/DebugInfo.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/GlobalVariable.h"
43#include "llvm/IR/InlineAsm.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/IR/IntrinsicInst.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/LLVMContext.h"
48#include "llvm/IR/Module.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/IntegersSubsetMapping.h"
53#include "llvm/Support/MathExtras.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Target/TargetFrameLowering.h"
56#include "llvm/Target/TargetInstrInfo.h"
57#include "llvm/Target/TargetIntrinsicInfo.h"
58#include "llvm/Target/TargetLibraryInfo.h"
59#include "llvm/Target/TargetLowering.h"
60#include "llvm/Target/TargetOptions.h"
61#include <algorithm>
62using namespace llvm;
63
64/// LimitFloatPrecision - Generate low-precision inline sequences for
65/// some float libcalls (6, 8 or 12 bits).
66static unsigned LimitFloatPrecision;
67
68static cl::opt<unsigned, true>
69LimitFPPrecision("limit-float-precision",
70                 cl::desc("Generate low-precision inline sequences "
71                          "for some float libcalls"),
72                 cl::location(LimitFloatPrecision),
73                 cl::init(0));
74
75// Limit the width of DAG chains. This is important in general to prevent
76// prevent DAG-based analysis from blowing up. For example, alias analysis and
77// load clustering may not complete in reasonable time. It is difficult to
78// recognize and avoid this situation within each individual analysis, and
79// future analyses are likely to have the same behavior. Limiting DAG width is
80// the safe approach, and will be especially important with global DAGs.
81//
82// MaxParallelChains default is arbitrarily high to avoid affecting
83// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
84// sequence over this should have been converted to llvm.memcpy by the
85// frontend. It easy to induce this behavior with .ll code such as:
86// %buffer = alloca [4096 x i8]
87// %data = load [4096 x i8]* %argPtr
88// store [4096 x i8] %data, [4096 x i8]* %buffer
89static const unsigned MaxParallelChains = 64;
90
91static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
92                                      const SDValue *Parts, unsigned NumParts,
93                                      MVT PartVT, EVT ValueVT, const Value *V);
94
95/// getCopyFromParts - Create a value that contains the specified legal parts
96/// combined into the value they represent.  If the parts combine to a type
97/// larger then ValueVT then AssertOp can be used to specify whether the extra
98/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
99/// (ISD::AssertSext).
100static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
101                                const SDValue *Parts,
102                                unsigned NumParts, MVT PartVT, EVT ValueVT,
103                                const Value *V,
104                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
105  if (ValueVT.isVector())
106    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
107                                  PartVT, ValueVT, V);
108
109  assert(NumParts > 0 && "No parts to assemble!");
110  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
111  SDValue Val = Parts[0];
112
113  if (NumParts > 1) {
114    // Assemble the value from multiple parts.
115    if (ValueVT.isInteger()) {
116      unsigned PartBits = PartVT.getSizeInBits();
117      unsigned ValueBits = ValueVT.getSizeInBits();
118
119      // Assemble the power of 2 part.
120      unsigned RoundParts = NumParts & (NumParts - 1) ?
121        1 << Log2_32(NumParts) : NumParts;
122      unsigned RoundBits = PartBits * RoundParts;
123      EVT RoundVT = RoundBits == ValueBits ?
124        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
125      SDValue Lo, Hi;
126
127      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
128
129      if (RoundParts > 2) {
130        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
131                              PartVT, HalfVT, V);
132        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
133                              RoundParts / 2, PartVT, HalfVT, V);
134      } else {
135        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
136        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
137      }
138
139      if (TLI.isBigEndian())
140        std::swap(Lo, Hi);
141
142      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
143
144      if (RoundParts < NumParts) {
145        // Assemble the trailing non-power-of-2 part.
146        unsigned OddParts = NumParts - RoundParts;
147        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
148        Hi = getCopyFromParts(DAG, DL,
149                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
150
151        // Combine the round and odd parts.
152        Lo = Val;
153        if (TLI.isBigEndian())
154          std::swap(Lo, Hi);
155        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
156        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
157        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
158                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
159                                         TLI.getPointerTy()));
160        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
161        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
162      }
163    } else if (PartVT.isFloatingPoint()) {
164      // FP split into multiple FP parts (for ppcf128)
165      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
166             "Unexpected split");
167      SDValue Lo, Hi;
168      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
169      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
170      if (TLI.isBigEndian())
171        std::swap(Lo, Hi);
172      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
173    } else {
174      // FP split into integer parts (soft fp)
175      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
176             !PartVT.isVector() && "Unexpected split");
177      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
178      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
179    }
180  }
181
182  // There is now one part, held in Val.  Correct it to match ValueVT.
183  EVT PartEVT = Val.getValueType();
184
185  if (PartEVT == ValueVT)
186    return Val;
187
188  if (PartEVT.isInteger() && ValueVT.isInteger()) {
189    if (ValueVT.bitsLT(PartEVT)) {
190      // For a truncate, see if we have any information to
191      // indicate whether the truncated bits will always be
192      // zero or sign-extension.
193      if (AssertOp != ISD::DELETED_NODE)
194        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
195                          DAG.getValueType(ValueVT));
196      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
197    }
198    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
199  }
200
201  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
202    // FP_ROUND's are always exact here.
203    if (ValueVT.bitsLT(Val.getValueType()))
204      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
205                         DAG.getTargetConstant(1, TLI.getPointerTy()));
206
207    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
208  }
209
210  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
211    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
212
213  llvm_unreachable("Unknown mismatch!");
214}
215
216/// getCopyFromPartsVector - Create a value that contains the specified legal
217/// parts combined into the value they represent.  If the parts combine to a
218/// type larger then ValueVT then AssertOp can be used to specify whether the
219/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
220/// ValueVT (ISD::AssertSext).
221static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
222                                      const SDValue *Parts, unsigned NumParts,
223                                      MVT PartVT, EVT ValueVT, const Value *V) {
224  assert(ValueVT.isVector() && "Not a vector value");
225  assert(NumParts > 0 && "No parts to assemble!");
226  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
227  SDValue Val = Parts[0];
228
229  // Handle a multi-element vector.
230  if (NumParts > 1) {
231    EVT IntermediateVT;
232    MVT RegisterVT;
233    unsigned NumIntermediates;
234    unsigned NumRegs =
235    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
236                               NumIntermediates, RegisterVT);
237    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
238    NumParts = NumRegs; // Silence a compiler warning.
239    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
240    assert(RegisterVT == Parts[0].getSimpleValueType() &&
241           "Part type doesn't match part!");
242
243    // Assemble the parts into intermediate operands.
244    SmallVector<SDValue, 8> Ops(NumIntermediates);
245    if (NumIntermediates == NumParts) {
246      // If the register was not expanded, truncate or copy the value,
247      // as appropriate.
248      for (unsigned i = 0; i != NumParts; ++i)
249        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
250                                  PartVT, IntermediateVT, V);
251    } else if (NumParts > 0) {
252      // If the intermediate type was expanded, build the intermediate
253      // operands from the parts.
254      assert(NumParts % NumIntermediates == 0 &&
255             "Must expand into a divisible number of parts!");
256      unsigned Factor = NumParts / NumIntermediates;
257      for (unsigned i = 0; i != NumIntermediates; ++i)
258        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
259                                  PartVT, IntermediateVT, V);
260    }
261
262    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
263    // intermediate operands.
264    Val = DAG.getNode(IntermediateVT.isVector() ?
265                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
266                      ValueVT, &Ops[0], NumIntermediates);
267  }
268
269  // There is now one part, held in Val.  Correct it to match ValueVT.
270  EVT PartEVT = Val.getValueType();
271
272  if (PartEVT == ValueVT)
273    return Val;
274
275  if (PartEVT.isVector()) {
276    // If the element type of the source/dest vectors are the same, but the
277    // parts vector has more elements than the value vector, then we have a
278    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
279    // elements we want.
280    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
281      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
282             "Cannot narrow, it would be a lossy transformation");
283      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
284                         DAG.getIntPtrConstant(0));
285    }
286
287    // Vector/Vector bitcast.
288    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
289      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
290
291    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
292      "Cannot handle this kind of promotion");
293    // Promoted vector extract
294    bool Smaller = ValueVT.bitsLE(PartEVT);
295    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
296                       DL, ValueVT, Val);
297
298  }
299
300  // Trivial bitcast if the types are the same size and the destination
301  // vector type is legal.
302  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
303      TLI.isTypeLegal(ValueVT))
304    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
305
306  // Handle cases such as i8 -> <1 x i1>
307  if (ValueVT.getVectorNumElements() != 1) {
308    LLVMContext &Ctx = *DAG.getContext();
309    Twine ErrMsg("non-trivial scalar-to-vector conversion");
310    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
311      if (const CallInst *CI = dyn_cast<CallInst>(I))
312        if (isa<InlineAsm>(CI->getCalledValue()))
313          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
314      Ctx.emitError(I, ErrMsg);
315    } else {
316      Ctx.emitError(ErrMsg);
317    }
318    return DAG.getUNDEF(ValueVT);
319  }
320
321  if (ValueVT.getVectorNumElements() == 1 &&
322      ValueVT.getVectorElementType() != PartEVT) {
323    bool Smaller = ValueVT.bitsLE(PartEVT);
324    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
325                       DL, ValueVT.getScalarType(), Val);
326  }
327
328  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
329}
330
331static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
332                                 SDValue Val, SDValue *Parts, unsigned NumParts,
333                                 MVT PartVT, const Value *V);
334
335/// getCopyToParts - Create a series of nodes that contain the specified value
336/// split into legal parts.  If the parts contain more bits than Val, then, for
337/// integers, ExtendKind can be used to specify how to generate the extra bits.
338static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
339                           SDValue Val, SDValue *Parts, unsigned NumParts,
340                           MVT PartVT, const Value *V,
341                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
342  EVT ValueVT = Val.getValueType();
343
344  // Handle the vector case separately.
345  if (ValueVT.isVector())
346    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
347
348  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
349  unsigned PartBits = PartVT.getSizeInBits();
350  unsigned OrigNumParts = NumParts;
351  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
352
353  if (NumParts == 0)
354    return;
355
356  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
357  EVT PartEVT = PartVT;
358  if (PartEVT == ValueVT) {
359    assert(NumParts == 1 && "No-op copy with multiple parts!");
360    Parts[0] = Val;
361    return;
362  }
363
364  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
365    // If the parts cover more bits than the value has, promote the value.
366    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
367      assert(NumParts == 1 && "Do not know what to promote to!");
368      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
369    } else {
370      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
371             ValueVT.isInteger() &&
372             "Unknown mismatch!");
373      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
374      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
375      if (PartVT == MVT::x86mmx)
376        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
377    }
378  } else if (PartBits == ValueVT.getSizeInBits()) {
379    // Different types of the same size.
380    assert(NumParts == 1 && PartEVT != ValueVT);
381    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
382  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
383    // If the parts cover less bits than value has, truncate the value.
384    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
385           ValueVT.isInteger() &&
386           "Unknown mismatch!");
387    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
388    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
389    if (PartVT == MVT::x86mmx)
390      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
391  }
392
393  // The value may have changed - recompute ValueVT.
394  ValueVT = Val.getValueType();
395  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
396         "Failed to tile the value with PartVT!");
397
398  if (NumParts == 1) {
399    if (PartEVT != ValueVT) {
400      LLVMContext &Ctx = *DAG.getContext();
401      Twine ErrMsg("scalar-to-vector conversion failed");
402      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
403        if (const CallInst *CI = dyn_cast<CallInst>(I))
404          if (isa<InlineAsm>(CI->getCalledValue()))
405            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
406        Ctx.emitError(I, ErrMsg);
407      } else {
408        Ctx.emitError(ErrMsg);
409      }
410    }
411
412    Parts[0] = Val;
413    return;
414  }
415
416  // Expand the value into multiple parts.
417  if (NumParts & (NumParts - 1)) {
418    // The number of parts is not a power of 2.  Split off and copy the tail.
419    assert(PartVT.isInteger() && ValueVT.isInteger() &&
420           "Do not know what to expand to!");
421    unsigned RoundParts = 1 << Log2_32(NumParts);
422    unsigned RoundBits = RoundParts * PartBits;
423    unsigned OddParts = NumParts - RoundParts;
424    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
425                                 DAG.getIntPtrConstant(RoundBits));
426    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
427
428    if (TLI.isBigEndian())
429      // The odd parts were reversed by getCopyToParts - unreverse them.
430      std::reverse(Parts + RoundParts, Parts + NumParts);
431
432    NumParts = RoundParts;
433    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
434    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
435  }
436
437  // The number of parts is a power of 2.  Repeatedly bisect the value using
438  // EXTRACT_ELEMENT.
439  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
440                         EVT::getIntegerVT(*DAG.getContext(),
441                                           ValueVT.getSizeInBits()),
442                         Val);
443
444  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
445    for (unsigned i = 0; i < NumParts; i += StepSize) {
446      unsigned ThisBits = StepSize * PartBits / 2;
447      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
448      SDValue &Part0 = Parts[i];
449      SDValue &Part1 = Parts[i+StepSize/2];
450
451      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
452                          ThisVT, Part0, DAG.getIntPtrConstant(1));
453      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
454                          ThisVT, Part0, DAG.getIntPtrConstant(0));
455
456      if (ThisBits == PartBits && ThisVT != PartVT) {
457        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
458        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
459      }
460    }
461  }
462
463  if (TLI.isBigEndian())
464    std::reverse(Parts, Parts + OrigNumParts);
465}
466
467
468/// getCopyToPartsVector - Create a series of nodes that contain the specified
469/// value split into legal parts.
470static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
471                                 SDValue Val, SDValue *Parts, unsigned NumParts,
472                                 MVT PartVT, const Value *V) {
473  EVT ValueVT = Val.getValueType();
474  assert(ValueVT.isVector() && "Not a vector");
475  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
476
477  if (NumParts == 1) {
478    EVT PartEVT = PartVT;
479    if (PartEVT == ValueVT) {
480      // Nothing to do.
481    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
482      // Bitconvert vector->vector case.
483      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
484    } else if (PartVT.isVector() &&
485               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
486               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
487      EVT ElementVT = PartVT.getVectorElementType();
488      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
489      // undef elements.
490      SmallVector<SDValue, 16> Ops;
491      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
492        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
493                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
494
495      for (unsigned i = ValueVT.getVectorNumElements(),
496           e = PartVT.getVectorNumElements(); i != e; ++i)
497        Ops.push_back(DAG.getUNDEF(ElementVT));
498
499      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
500
501      // FIXME: Use CONCAT for 2x -> 4x.
502
503      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
504      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
505    } else if (PartVT.isVector() &&
506               PartEVT.getVectorElementType().bitsGE(
507                 ValueVT.getVectorElementType()) &&
508               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
509
510      // Promoted vector extract
511      bool Smaller = PartEVT.bitsLE(ValueVT);
512      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
513                        DL, PartVT, Val);
514    } else{
515      // Vector -> scalar conversion.
516      assert(ValueVT.getVectorNumElements() == 1 &&
517             "Only trivial vector-to-scalar conversions should get here!");
518      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
519                        PartVT, Val, DAG.getIntPtrConstant(0));
520
521      bool Smaller = ValueVT.bitsLE(PartVT);
522      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
523                         DL, PartVT, Val);
524    }
525
526    Parts[0] = Val;
527    return;
528  }
529
530  // Handle a multi-element vector.
531  EVT IntermediateVT;
532  MVT RegisterVT;
533  unsigned NumIntermediates;
534  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
535                                                IntermediateVT,
536                                                NumIntermediates, RegisterVT);
537  unsigned NumElements = ValueVT.getVectorNumElements();
538
539  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
540  NumParts = NumRegs; // Silence a compiler warning.
541  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
542
543  // Split the vector into intermediate operands.
544  SmallVector<SDValue, 8> Ops(NumIntermediates);
545  for (unsigned i = 0; i != NumIntermediates; ++i) {
546    if (IntermediateVT.isVector())
547      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
548                           IntermediateVT, Val,
549                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
550    else
551      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
552                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
553  }
554
555  // Split the intermediate operands into legal parts.
556  if (NumParts == NumIntermediates) {
557    // If the register was not expanded, promote or copy the value,
558    // as appropriate.
559    for (unsigned i = 0; i != NumParts; ++i)
560      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
561  } else if (NumParts > 0) {
562    // If the intermediate type was expanded, split each the value into
563    // legal parts.
564    assert(NumParts % NumIntermediates == 0 &&
565           "Must expand into a divisible number of parts!");
566    unsigned Factor = NumParts / NumIntermediates;
567    for (unsigned i = 0; i != NumIntermediates; ++i)
568      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
569  }
570}
571
572namespace {
573  /// RegsForValue - This struct represents the registers (physical or virtual)
574  /// that a particular set of values is assigned, and the type information
575  /// about the value. The most common situation is to represent one value at a
576  /// time, but struct or array values are handled element-wise as multiple
577  /// values.  The splitting of aggregates is performed recursively, so that we
578  /// never have aggregate-typed registers. The values at this point do not
579  /// necessarily have legal types, so each value may require one or more
580  /// registers of some legal type.
581  ///
582  struct RegsForValue {
583    /// ValueVTs - The value types of the values, which may not be legal, and
584    /// may need be promoted or synthesized from one or more registers.
585    ///
586    SmallVector<EVT, 4> ValueVTs;
587
588    /// RegVTs - The value types of the registers. This is the same size as
589    /// ValueVTs and it records, for each value, what the type of the assigned
590    /// register or registers are. (Individual values are never synthesized
591    /// from more than one type of register.)
592    ///
593    /// With virtual registers, the contents of RegVTs is redundant with TLI's
594    /// getRegisterType member function, however when with physical registers
595    /// it is necessary to have a separate record of the types.
596    ///
597    SmallVector<MVT, 4> RegVTs;
598
599    /// Regs - This list holds the registers assigned to the values.
600    /// Each legal or promoted value requires one register, and each
601    /// expanded value requires multiple registers.
602    ///
603    SmallVector<unsigned, 4> Regs;
604
605    RegsForValue() {}
606
607    RegsForValue(const SmallVector<unsigned, 4> &regs,
608                 MVT regvt, EVT valuevt)
609      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
610
611    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
612                 unsigned Reg, Type *Ty) {
613      ComputeValueVTs(tli, Ty, ValueVTs);
614
615      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
616        EVT ValueVT = ValueVTs[Value];
617        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
618        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
619        for (unsigned i = 0; i != NumRegs; ++i)
620          Regs.push_back(Reg + i);
621        RegVTs.push_back(RegisterVT);
622        Reg += NumRegs;
623      }
624    }
625
626    /// areValueTypesLegal - Return true if types of all the values are legal.
627    bool areValueTypesLegal(const TargetLowering &TLI) {
628      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
629        MVT RegisterVT = RegVTs[Value];
630        if (!TLI.isTypeLegal(RegisterVT))
631          return false;
632      }
633      return true;
634    }
635
636    /// append - Add the specified values to this one.
637    void append(const RegsForValue &RHS) {
638      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
639      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
640      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
641    }
642
643    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
644    /// this value and returns the result as a ValueVTs value.  This uses
645    /// Chain/Flag as the input and updates them for the output Chain/Flag.
646    /// If the Flag pointer is NULL, no flag is used.
647    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
648                            SDLoc dl,
649                            SDValue &Chain, SDValue *Flag,
650                            const Value *V = 0) const;
651
652    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
653    /// specified value into the registers specified by this object.  This uses
654    /// Chain/Flag as the input and updates them for the output Chain/Flag.
655    /// If the Flag pointer is NULL, no flag is used.
656    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
657                       SDValue &Chain, SDValue *Flag, const Value *V) const;
658
659    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
660    /// operand list.  This adds the code marker, matching input operand index
661    /// (if applicable), and includes the number of values added into it.
662    void AddInlineAsmOperands(unsigned Kind,
663                              bool HasMatching, unsigned MatchingIdx,
664                              SelectionDAG &DAG,
665                              std::vector<SDValue> &Ops) const;
666  };
667}
668
669/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
670/// this value and returns the result as a ValueVT value.  This uses
671/// Chain/Flag as the input and updates them for the output Chain/Flag.
672/// If the Flag pointer is NULL, no flag is used.
673SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
674                                      FunctionLoweringInfo &FuncInfo,
675                                      SDLoc dl,
676                                      SDValue &Chain, SDValue *Flag,
677                                      const Value *V) const {
678  // A Value with type {} or [0 x %t] needs no registers.
679  if (ValueVTs.empty())
680    return SDValue();
681
682  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
683
684  // Assemble the legal parts into the final values.
685  SmallVector<SDValue, 4> Values(ValueVTs.size());
686  SmallVector<SDValue, 8> Parts;
687  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
688    // Copy the legal parts from the registers.
689    EVT ValueVT = ValueVTs[Value];
690    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
691    MVT RegisterVT = RegVTs[Value];
692
693    Parts.resize(NumRegs);
694    for (unsigned i = 0; i != NumRegs; ++i) {
695      SDValue P;
696      if (Flag == 0) {
697        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
698      } else {
699        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
700        *Flag = P.getValue(2);
701      }
702
703      Chain = P.getValue(1);
704      Parts[i] = P;
705
706      // If the source register was virtual and if we know something about it,
707      // add an assert node.
708      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
709          !RegisterVT.isInteger() || RegisterVT.isVector())
710        continue;
711
712      const FunctionLoweringInfo::LiveOutInfo *LOI =
713        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
714      if (!LOI)
715        continue;
716
717      unsigned RegSize = RegisterVT.getSizeInBits();
718      unsigned NumSignBits = LOI->NumSignBits;
719      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
720
721      if (NumZeroBits == RegSize) {
722        // The current value is a zero.
723        // Explicitly express that as it would be easier for
724        // optimizations to kick in.
725        Parts[i] = DAG.getConstant(0, RegisterVT);
726        continue;
727      }
728
729      // FIXME: We capture more information than the dag can represent.  For
730      // now, just use the tightest assertzext/assertsext possible.
731      bool isSExt = true;
732      EVT FromVT(MVT::Other);
733      if (NumSignBits == RegSize)
734        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
735      else if (NumZeroBits >= RegSize-1)
736        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
737      else if (NumSignBits > RegSize-8)
738        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
739      else if (NumZeroBits >= RegSize-8)
740        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
741      else if (NumSignBits > RegSize-16)
742        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
743      else if (NumZeroBits >= RegSize-16)
744        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
745      else if (NumSignBits > RegSize-32)
746        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
747      else if (NumZeroBits >= RegSize-32)
748        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
749      else
750        continue;
751
752      // Add an assertion node.
753      assert(FromVT != MVT::Other);
754      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
755                             RegisterVT, P, DAG.getValueType(FromVT));
756    }
757
758    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
759                                     NumRegs, RegisterVT, ValueVT, V);
760    Part += NumRegs;
761    Parts.clear();
762  }
763
764  return DAG.getNode(ISD::MERGE_VALUES, dl,
765                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
766                     &Values[0], ValueVTs.size());
767}
768
769/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
770/// specified value into the registers specified by this object.  This uses
771/// Chain/Flag as the input and updates them for the output Chain/Flag.
772/// If the Flag pointer is NULL, no flag is used.
773void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
774                                 SDValue &Chain, SDValue *Flag,
775                                 const Value *V) const {
776  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
777
778  // Get the list of the values's legal parts.
779  unsigned NumRegs = Regs.size();
780  SmallVector<SDValue, 8> Parts(NumRegs);
781  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
782    EVT ValueVT = ValueVTs[Value];
783    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
784    MVT RegisterVT = RegVTs[Value];
785    ISD::NodeType ExtendKind =
786      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
787
788    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
789                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
790    Part += NumParts;
791  }
792
793  // Copy the parts into the registers.
794  SmallVector<SDValue, 8> Chains(NumRegs);
795  for (unsigned i = 0; i != NumRegs; ++i) {
796    SDValue Part;
797    if (Flag == 0) {
798      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
799    } else {
800      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
801      *Flag = Part.getValue(1);
802    }
803
804    Chains[i] = Part.getValue(0);
805  }
806
807  if (NumRegs == 1 || Flag)
808    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
809    // flagged to it. That is the CopyToReg nodes and the user are considered
810    // a single scheduling unit. If we create a TokenFactor and return it as
811    // chain, then the TokenFactor is both a predecessor (operand) of the
812    // user as well as a successor (the TF operands are flagged to the user).
813    // c1, f1 = CopyToReg
814    // c2, f2 = CopyToReg
815    // c3     = TokenFactor c1, c2
816    // ...
817    //        = op c3, ..., f2
818    Chain = Chains[NumRegs-1];
819  else
820    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
821}
822
823/// AddInlineAsmOperands - Add this value to the specified inlineasm node
824/// operand list.  This adds the code marker and includes the number of
825/// values added into it.
826void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
827                                        unsigned MatchingIdx,
828                                        SelectionDAG &DAG,
829                                        std::vector<SDValue> &Ops) const {
830  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
831
832  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
833  if (HasMatching)
834    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
835  else if (!Regs.empty() &&
836           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
837    // Put the register class of the virtual registers in the flag word.  That
838    // way, later passes can recompute register class constraints for inline
839    // assembly as well as normal instructions.
840    // Don't do this for tied operands that can use the regclass information
841    // from the def.
842    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
843    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
844    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
845  }
846
847  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
848  Ops.push_back(Res);
849
850  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
851    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
852    MVT RegisterVT = RegVTs[Value];
853    for (unsigned i = 0; i != NumRegs; ++i) {
854      assert(Reg < Regs.size() && "Mismatch in # registers expected");
855      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
856    }
857  }
858}
859
860void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
861                               const TargetLibraryInfo *li) {
862  AA = &aa;
863  GFI = gfi;
864  LibInfo = li;
865  TD = DAG.getTarget().getDataLayout();
866  Context = DAG.getContext();
867  LPadToCallSiteMap.clear();
868}
869
870/// clear - Clear out the current SelectionDAG and the associated
871/// state and prepare this SelectionDAGBuilder object to be used
872/// for a new block. This doesn't clear out information about
873/// additional blocks that are needed to complete switch lowering
874/// or PHI node updating; that information is cleared out as it is
875/// consumed.
876void SelectionDAGBuilder::clear() {
877  NodeMap.clear();
878  UnusedArgNodeMap.clear();
879  PendingLoads.clear();
880  PendingExports.clear();
881  CurInst = NULL;
882  HasTailCall = false;
883}
884
885/// clearDanglingDebugInfo - Clear the dangling debug information
886/// map. This function is separated from the clear so that debug
887/// information that is dangling in a basic block can be properly
888/// resolved in a different basic block. This allows the
889/// SelectionDAG to resolve dangling debug information attached
890/// to PHI nodes.
891void SelectionDAGBuilder::clearDanglingDebugInfo() {
892  DanglingDebugInfoMap.clear();
893}
894
895/// getRoot - Return the current virtual root of the Selection DAG,
896/// flushing any PendingLoad items. This must be done before emitting
897/// a store or any other node that may need to be ordered after any
898/// prior load instructions.
899///
900SDValue SelectionDAGBuilder::getRoot() {
901  if (PendingLoads.empty())
902    return DAG.getRoot();
903
904  if (PendingLoads.size() == 1) {
905    SDValue Root = PendingLoads[0];
906    DAG.setRoot(Root);
907    PendingLoads.clear();
908    return Root;
909  }
910
911  // Otherwise, we have to make a token factor node.
912  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
913                               &PendingLoads[0], PendingLoads.size());
914  PendingLoads.clear();
915  DAG.setRoot(Root);
916  return Root;
917}
918
919/// getControlRoot - Similar to getRoot, but instead of flushing all the
920/// PendingLoad items, flush all the PendingExports items. It is necessary
921/// to do this before emitting a terminator instruction.
922///
923SDValue SelectionDAGBuilder::getControlRoot() {
924  SDValue Root = DAG.getRoot();
925
926  if (PendingExports.empty())
927    return Root;
928
929  // Turn all of the CopyToReg chains into one factored node.
930  if (Root.getOpcode() != ISD::EntryToken) {
931    unsigned i = 0, e = PendingExports.size();
932    for (; i != e; ++i) {
933      assert(PendingExports[i].getNode()->getNumOperands() > 1);
934      if (PendingExports[i].getNode()->getOperand(0) == Root)
935        break;  // Don't add the root if we already indirectly depend on it.
936    }
937
938    if (i == e)
939      PendingExports.push_back(Root);
940  }
941
942  Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
943                     &PendingExports[0],
944                     PendingExports.size());
945  PendingExports.clear();
946  DAG.setRoot(Root);
947  return Root;
948}
949
950void SelectionDAGBuilder::visit(const Instruction &I) {
951  // Set up outgoing PHI node register values before emitting the terminator.
952  if (isa<TerminatorInst>(&I))
953    HandlePHINodesInSuccessorBlocks(I.getParent());
954
955  ++SDNodeOrder;
956
957  CurInst = &I;
958
959  visit(I.getOpcode(), I);
960
961  if (!isa<TerminatorInst>(&I) && !HasTailCall)
962    CopyToExportRegsIfNeeded(&I);
963
964  CurInst = NULL;
965}
966
967void SelectionDAGBuilder::visitPHI(const PHINode &) {
968  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
969}
970
971void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
972  // Note: this doesn't use InstVisitor, because it has to work with
973  // ConstantExpr's in addition to instructions.
974  switch (Opcode) {
975  default: llvm_unreachable("Unknown instruction type encountered!");
976    // Build the switch statement using the Instruction.def file.
977#define HANDLE_INST(NUM, OPCODE, CLASS) \
978    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
979#include "llvm/IR/Instruction.def"
980  }
981}
982
983// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
984// generate the debug data structures now that we've seen its definition.
985void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
986                                                   SDValue Val) {
987  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
988  if (DDI.getDI()) {
989    const DbgValueInst *DI = DDI.getDI();
990    DebugLoc dl = DDI.getdl();
991    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
992    MDNode *Variable = DI->getVariable();
993    uint64_t Offset = DI->getOffset();
994    SDDbgValue *SDV;
995    if (Val.getNode()) {
996      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
997        SDV = DAG.getDbgValue(Variable, Val.getNode(),
998                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
999        DAG.AddDbgValue(SDV, Val.getNode(), false);
1000      }
1001    } else
1002      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1003    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1004  }
1005}
1006
1007/// getValue - Return an SDValue for the given Value.
1008SDValue SelectionDAGBuilder::getValue(const Value *V) {
1009  // If we already have an SDValue for this value, use it. It's important
1010  // to do this first, so that we don't create a CopyFromReg if we already
1011  // have a regular SDValue.
1012  SDValue &N = NodeMap[V];
1013  if (N.getNode()) return N;
1014
1015  // If there's a virtual register allocated and initialized for this
1016  // value, use it.
1017  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1018  if (It != FuncInfo.ValueMap.end()) {
1019    unsigned InReg = It->second;
1020    RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
1021                     InReg, V->getType());
1022    SDValue Chain = DAG.getEntryNode();
1023    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1024    resolveDanglingDebugInfo(V, N);
1025    return N;
1026  }
1027
1028  // Otherwise create a new SDValue and remember it.
1029  SDValue Val = getValueImpl(V);
1030  NodeMap[V] = Val;
1031  resolveDanglingDebugInfo(V, Val);
1032  return Val;
1033}
1034
1035/// getNonRegisterValue - Return an SDValue for the given Value, but
1036/// don't look in FuncInfo.ValueMap for a virtual register.
1037SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1038  // If we already have an SDValue for this value, use it.
1039  SDValue &N = NodeMap[V];
1040  if (N.getNode()) return N;
1041
1042  // Otherwise create a new SDValue and remember it.
1043  SDValue Val = getValueImpl(V);
1044  NodeMap[V] = Val;
1045  resolveDanglingDebugInfo(V, Val);
1046  return Val;
1047}
1048
1049/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1050/// Create an SDValue for the given value.
1051SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1052  const TargetLowering *TLI = TM.getTargetLowering();
1053
1054  if (const Constant *C = dyn_cast<Constant>(V)) {
1055    EVT VT = TLI->getValueType(V->getType(), true);
1056
1057    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1058      return DAG.getConstant(*CI, VT);
1059
1060    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1061      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1062
1063    if (isa<ConstantPointerNull>(C))
1064      return DAG.getConstant(0, TLI->getPointerTy());
1065
1066    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1067      return DAG.getConstantFP(*CFP, VT);
1068
1069    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1070      return DAG.getUNDEF(VT);
1071
1072    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1073      visit(CE->getOpcode(), *CE);
1074      SDValue N1 = NodeMap[V];
1075      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1076      return N1;
1077    }
1078
1079    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1080      SmallVector<SDValue, 4> Constants;
1081      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1082           OI != OE; ++OI) {
1083        SDNode *Val = getValue(*OI).getNode();
1084        // If the operand is an empty aggregate, there are no values.
1085        if (!Val) continue;
1086        // Add each leaf value from the operand to the Constants list
1087        // to form a flattened list of all the values.
1088        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1089          Constants.push_back(SDValue(Val, i));
1090      }
1091
1092      return DAG.getMergeValues(&Constants[0], Constants.size(),
1093                                getCurSDLoc());
1094    }
1095
1096    if (const ConstantDataSequential *CDS =
1097          dyn_cast<ConstantDataSequential>(C)) {
1098      SmallVector<SDValue, 4> Ops;
1099      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1100        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1101        // Add each leaf value from the operand to the Constants list
1102        // to form a flattened list of all the values.
1103        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1104          Ops.push_back(SDValue(Val, i));
1105      }
1106
1107      if (isa<ArrayType>(CDS->getType()))
1108        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
1109      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1110                                      VT, &Ops[0], Ops.size());
1111    }
1112
1113    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1114      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1115             "Unknown struct or array constant!");
1116
1117      SmallVector<EVT, 4> ValueVTs;
1118      ComputeValueVTs(*TLI, C->getType(), ValueVTs);
1119      unsigned NumElts = ValueVTs.size();
1120      if (NumElts == 0)
1121        return SDValue(); // empty struct
1122      SmallVector<SDValue, 4> Constants(NumElts);
1123      for (unsigned i = 0; i != NumElts; ++i) {
1124        EVT EltVT = ValueVTs[i];
1125        if (isa<UndefValue>(C))
1126          Constants[i] = DAG.getUNDEF(EltVT);
1127        else if (EltVT.isFloatingPoint())
1128          Constants[i] = DAG.getConstantFP(0, EltVT);
1129        else
1130          Constants[i] = DAG.getConstant(0, EltVT);
1131      }
1132
1133      return DAG.getMergeValues(&Constants[0], NumElts,
1134                                getCurSDLoc());
1135    }
1136
1137    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1138      return DAG.getBlockAddress(BA, VT);
1139
1140    VectorType *VecTy = cast<VectorType>(V->getType());
1141    unsigned NumElements = VecTy->getNumElements();
1142
1143    // Now that we know the number and type of the elements, get that number of
1144    // elements into the Ops array based on what kind of constant it is.
1145    SmallVector<SDValue, 16> Ops;
1146    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1147      for (unsigned i = 0; i != NumElements; ++i)
1148        Ops.push_back(getValue(CV->getOperand(i)));
1149    } else {
1150      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1151      EVT EltVT = TLI->getValueType(VecTy->getElementType());
1152
1153      SDValue Op;
1154      if (EltVT.isFloatingPoint())
1155        Op = DAG.getConstantFP(0, EltVT);
1156      else
1157        Op = DAG.getConstant(0, EltVT);
1158      Ops.assign(NumElements, Op);
1159    }
1160
1161    // Create a BUILD_VECTOR node.
1162    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1163                                    VT, &Ops[0], Ops.size());
1164  }
1165
1166  // If this is a static alloca, generate it as the frameindex instead of
1167  // computation.
1168  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169    DenseMap<const AllocaInst*, int>::iterator SI =
1170      FuncInfo.StaticAllocaMap.find(AI);
1171    if (SI != FuncInfo.StaticAllocaMap.end())
1172      return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
1173  }
1174
1175  // If this is an instruction which fast-isel has deferred, select it now.
1176  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1177    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1178    RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
1179    SDValue Chain = DAG.getEntryNode();
1180    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1181  }
1182
1183  llvm_unreachable("Can't get register for value!");
1184}
1185
1186void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1187  const TargetLowering *TLI = TM.getTargetLowering();
1188  SDValue Chain = getControlRoot();
1189  SmallVector<ISD::OutputArg, 8> Outs;
1190  SmallVector<SDValue, 8> OutVals;
1191
1192  if (!FuncInfo.CanLowerReturn) {
1193    unsigned DemoteReg = FuncInfo.DemoteRegister;
1194    const Function *F = I.getParent()->getParent();
1195
1196    // Emit a store of the return value through the virtual register.
1197    // Leave Outs empty so that LowerReturn won't try to load return
1198    // registers the usual way.
1199    SmallVector<EVT, 1> PtrValueVTs;
1200    ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
1201                    PtrValueVTs);
1202
1203    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1204    SDValue RetOp = getValue(I.getOperand(0));
1205
1206    SmallVector<EVT, 4> ValueVTs;
1207    SmallVector<uint64_t, 4> Offsets;
1208    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1209    unsigned NumValues = ValueVTs.size();
1210
1211    SmallVector<SDValue, 4> Chains(NumValues);
1212    for (unsigned i = 0; i != NumValues; ++i) {
1213      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1214                                RetPtr.getValueType(), RetPtr,
1215                                DAG.getIntPtrConstant(Offsets[i]));
1216      Chains[i] =
1217        DAG.getStore(Chain, getCurSDLoc(),
1218                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1219                     // FIXME: better loc info would be nice.
1220                     Add, MachinePointerInfo(), false, false, 0);
1221    }
1222
1223    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1224                        MVT::Other, &Chains[0], NumValues);
1225  } else if (I.getNumOperands() != 0) {
1226    SmallVector<EVT, 4> ValueVTs;
1227    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
1228    unsigned NumValues = ValueVTs.size();
1229    if (NumValues) {
1230      SDValue RetOp = getValue(I.getOperand(0));
1231      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1232        EVT VT = ValueVTs[j];
1233
1234        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1235
1236        const Function *F = I.getParent()->getParent();
1237        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1238                                            Attribute::SExt))
1239          ExtendKind = ISD::SIGN_EXTEND;
1240        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1241                                                 Attribute::ZExt))
1242          ExtendKind = ISD::ZERO_EXTEND;
1243
1244        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1245          VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1246
1247        unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
1248        MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
1249        SmallVector<SDValue, 4> Parts(NumParts);
1250        getCopyToParts(DAG, getCurSDLoc(),
1251                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1252                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1253
1254        // 'inreg' on function refers to return value
1255        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1256        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1257                                            Attribute::InReg))
1258          Flags.setInReg();
1259
1260        // Propagate extension type if any
1261        if (ExtendKind == ISD::SIGN_EXTEND)
1262          Flags.setSExt();
1263        else if (ExtendKind == ISD::ZERO_EXTEND)
1264          Flags.setZExt();
1265
1266        for (unsigned i = 0; i < NumParts; ++i) {
1267          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1268                                        /*isfixed=*/true, 0, 0));
1269          OutVals.push_back(Parts[i]);
1270        }
1271      }
1272    }
1273  }
1274
1275  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1276  CallingConv::ID CallConv =
1277    DAG.getMachineFunction().getFunction()->getCallingConv();
1278  Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
1279                                              Outs, OutVals, getCurSDLoc(),
1280                                              DAG);
1281
1282  // Verify that the target's LowerReturn behaved as expected.
1283  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1284         "LowerReturn didn't return a valid chain!");
1285
1286  // Update the DAG with the new chain value resulting from return lowering.
1287  DAG.setRoot(Chain);
1288}
1289
1290/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1291/// created for it, emit nodes to copy the value into the virtual
1292/// registers.
1293void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1294  // Skip empty types
1295  if (V->getType()->isEmptyTy())
1296    return;
1297
1298  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1299  if (VMI != FuncInfo.ValueMap.end()) {
1300    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1301    CopyValueToVirtualRegister(V, VMI->second);
1302  }
1303}
1304
1305/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1306/// the current basic block, add it to ValueMap now so that we'll get a
1307/// CopyTo/FromReg.
1308void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1309  // No need to export constants.
1310  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1311
1312  // Already exported?
1313  if (FuncInfo.isExportedInst(V)) return;
1314
1315  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1316  CopyValueToVirtualRegister(V, Reg);
1317}
1318
1319bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1320                                                     const BasicBlock *FromBB) {
1321  // The operands of the setcc have to be in this block.  We don't know
1322  // how to export them from some other block.
1323  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1324    // Can export from current BB.
1325    if (VI->getParent() == FromBB)
1326      return true;
1327
1328    // Is already exported, noop.
1329    return FuncInfo.isExportedInst(V);
1330  }
1331
1332  // If this is an argument, we can export it if the BB is the entry block or
1333  // if it is already exported.
1334  if (isa<Argument>(V)) {
1335    if (FromBB == &FromBB->getParent()->getEntryBlock())
1336      return true;
1337
1338    // Otherwise, can only export this if it is already exported.
1339    return FuncInfo.isExportedInst(V);
1340  }
1341
1342  // Otherwise, constants can always be exported.
1343  return true;
1344}
1345
1346/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1347uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1348                                            const MachineBasicBlock *Dst) const {
1349  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1350  if (!BPI)
1351    return 0;
1352  const BasicBlock *SrcBB = Src->getBasicBlock();
1353  const BasicBlock *DstBB = Dst->getBasicBlock();
1354  return BPI->getEdgeWeight(SrcBB, DstBB);
1355}
1356
1357void SelectionDAGBuilder::
1358addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1359                       uint32_t Weight /* = 0 */) {
1360  if (!Weight)
1361    Weight = getEdgeWeight(Src, Dst);
1362  Src->addSuccessor(Dst, Weight);
1363}
1364
1365
1366static bool InBlock(const Value *V, const BasicBlock *BB) {
1367  if (const Instruction *I = dyn_cast<Instruction>(V))
1368    return I->getParent() == BB;
1369  return true;
1370}
1371
1372/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1373/// This function emits a branch and is used at the leaves of an OR or an
1374/// AND operator tree.
1375///
1376void
1377SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1378                                                  MachineBasicBlock *TBB,
1379                                                  MachineBasicBlock *FBB,
1380                                                  MachineBasicBlock *CurBB,
1381                                                  MachineBasicBlock *SwitchBB) {
1382  const BasicBlock *BB = CurBB->getBasicBlock();
1383
1384  // If the leaf of the tree is a comparison, merge the condition into
1385  // the caseblock.
1386  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1387    // The operands of the cmp have to be in this block.  We don't know
1388    // how to export them from some other block.  If this is the first block
1389    // of the sequence, no exporting is needed.
1390    if (CurBB == SwitchBB ||
1391        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1392         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1393      ISD::CondCode Condition;
1394      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1395        Condition = getICmpCondCode(IC->getPredicate());
1396      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1397        Condition = getFCmpCondCode(FC->getPredicate());
1398        if (TM.Options.NoNaNsFPMath)
1399          Condition = getFCmpCodeWithoutNaN(Condition);
1400      } else {
1401        Condition = ISD::SETEQ; // silence warning.
1402        llvm_unreachable("Unknown compare instruction");
1403      }
1404
1405      CaseBlock CB(Condition, BOp->getOperand(0),
1406                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1407      SwitchCases.push_back(CB);
1408      return;
1409    }
1410  }
1411
1412  // Create a CaseBlock record representing this branch.
1413  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1414               NULL, TBB, FBB, CurBB);
1415  SwitchCases.push_back(CB);
1416}
1417
1418/// FindMergedConditions - If Cond is an expression like
1419void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1420                                               MachineBasicBlock *TBB,
1421                                               MachineBasicBlock *FBB,
1422                                               MachineBasicBlock *CurBB,
1423                                               MachineBasicBlock *SwitchBB,
1424                                               unsigned Opc) {
1425  // If this node is not part of the or/and tree, emit it as a branch.
1426  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1427  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1428      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1429      BOp->getParent() != CurBB->getBasicBlock() ||
1430      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1431      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1432    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1433    return;
1434  }
1435
1436  //  Create TmpBB after CurBB.
1437  MachineFunction::iterator BBI = CurBB;
1438  MachineFunction &MF = DAG.getMachineFunction();
1439  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1440  CurBB->getParent()->insert(++BBI, TmpBB);
1441
1442  if (Opc == Instruction::Or) {
1443    // Codegen X | Y as:
1444    //   jmp_if_X TBB
1445    //   jmp TmpBB
1446    // TmpBB:
1447    //   jmp_if_Y TBB
1448    //   jmp FBB
1449    //
1450
1451    // Emit the LHS condition.
1452    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1453
1454    // Emit the RHS condition into TmpBB.
1455    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1456  } else {
1457    assert(Opc == Instruction::And && "Unknown merge op!");
1458    // Codegen X & Y as:
1459    //   jmp_if_X TmpBB
1460    //   jmp FBB
1461    // TmpBB:
1462    //   jmp_if_Y TBB
1463    //   jmp FBB
1464    //
1465    //  This requires creation of TmpBB after CurBB.
1466
1467    // Emit the LHS condition.
1468    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1469
1470    // Emit the RHS condition into TmpBB.
1471    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1472  }
1473}
1474
1475/// If the set of cases should be emitted as a series of branches, return true.
1476/// If we should emit this as a bunch of and/or'd together conditions, return
1477/// false.
1478bool
1479SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1480  if (Cases.size() != 2) return true;
1481
1482  // If this is two comparisons of the same values or'd or and'd together, they
1483  // will get folded into a single comparison, so don't emit two blocks.
1484  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1485       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1486      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1487       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1488    return false;
1489  }
1490
1491  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1492  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1493  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1494      Cases[0].CC == Cases[1].CC &&
1495      isa<Constant>(Cases[0].CmpRHS) &&
1496      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1497    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1498      return false;
1499    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1500      return false;
1501  }
1502
1503  return true;
1504}
1505
1506void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1507  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1508
1509  // Update machine-CFG edges.
1510  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1511
1512  // Figure out which block is immediately after the current one.
1513  MachineBasicBlock *NextBlock = 0;
1514  MachineFunction::iterator BBI = BrMBB;
1515  if (++BBI != FuncInfo.MF->end())
1516    NextBlock = BBI;
1517
1518  if (I.isUnconditional()) {
1519    // Update machine-CFG edges.
1520    BrMBB->addSuccessor(Succ0MBB);
1521
1522    // If this is not a fall-through branch, emit the branch.
1523    if (Succ0MBB != NextBlock)
1524      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1525                              MVT::Other, getControlRoot(),
1526                              DAG.getBasicBlock(Succ0MBB)));
1527
1528    return;
1529  }
1530
1531  // If this condition is one of the special cases we handle, do special stuff
1532  // now.
1533  const Value *CondVal = I.getCondition();
1534  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1535
1536  // If this is a series of conditions that are or'd or and'd together, emit
1537  // this as a sequence of branches instead of setcc's with and/or operations.
1538  // As long as jumps are not expensive, this should improve performance.
1539  // For example, instead of something like:
1540  //     cmp A, B
1541  //     C = seteq
1542  //     cmp D, E
1543  //     F = setle
1544  //     or C, F
1545  //     jnz foo
1546  // Emit:
1547  //     cmp A, B
1548  //     je foo
1549  //     cmp D, E
1550  //     jle foo
1551  //
1552  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1553    if (!TM.getTargetLowering()->isJumpExpensive() &&
1554        BOp->hasOneUse() &&
1555        (BOp->getOpcode() == Instruction::And ||
1556         BOp->getOpcode() == Instruction::Or)) {
1557      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1558                           BOp->getOpcode());
1559      // If the compares in later blocks need to use values not currently
1560      // exported from this block, export them now.  This block should always
1561      // be the first entry.
1562      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1563
1564      // Allow some cases to be rejected.
1565      if (ShouldEmitAsBranches(SwitchCases)) {
1566        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1567          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1568          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1569        }
1570
1571        // Emit the branch for this block.
1572        visitSwitchCase(SwitchCases[0], BrMBB);
1573        SwitchCases.erase(SwitchCases.begin());
1574        return;
1575      }
1576
1577      // Okay, we decided not to do this, remove any inserted MBB's and clear
1578      // SwitchCases.
1579      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1580        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1581
1582      SwitchCases.clear();
1583    }
1584  }
1585
1586  // Create a CaseBlock record representing this branch.
1587  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1588               NULL, Succ0MBB, Succ1MBB, BrMBB);
1589
1590  // Use visitSwitchCase to actually insert the fast branch sequence for this
1591  // cond branch.
1592  visitSwitchCase(CB, BrMBB);
1593}
1594
1595/// visitSwitchCase - Emits the necessary code to represent a single node in
1596/// the binary search tree resulting from lowering a switch instruction.
1597void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1598                                          MachineBasicBlock *SwitchBB) {
1599  SDValue Cond;
1600  SDValue CondLHS = getValue(CB.CmpLHS);
1601  SDLoc dl = getCurSDLoc();
1602
1603  // Build the setcc now.
1604  if (CB.CmpMHS == NULL) {
1605    // Fold "(X == true)" to X and "(X == false)" to !X to
1606    // handle common cases produced by branch lowering.
1607    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1608        CB.CC == ISD::SETEQ)
1609      Cond = CondLHS;
1610    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1611             CB.CC == ISD::SETEQ) {
1612      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1613      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1614    } else
1615      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1616  } else {
1617    assert(CB.CC == ISD::SETCC_INVALID &&
1618           "Condition is undefined for to-the-range belonging check.");
1619
1620    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1621    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1622
1623    SDValue CmpOp = getValue(CB.CmpMHS);
1624    EVT VT = CmpOp.getValueType();
1625
1626    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1627      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1628                          ISD::SETULE);
1629    } else {
1630      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1631                                VT, CmpOp, DAG.getConstant(Low, VT));
1632      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1633                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1634    }
1635  }
1636
1637  // Update successor info
1638  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1639  // TrueBB and FalseBB are always different unless the incoming IR is
1640  // degenerate. This only happens when running llc on weird IR.
1641  if (CB.TrueBB != CB.FalseBB)
1642    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1643
1644  // Set NextBlock to be the MBB immediately after the current one, if any.
1645  // This is used to avoid emitting unnecessary branches to the next block.
1646  MachineBasicBlock *NextBlock = 0;
1647  MachineFunction::iterator BBI = SwitchBB;
1648  if (++BBI != FuncInfo.MF->end())
1649    NextBlock = BBI;
1650
1651  // If the lhs block is the next block, invert the condition so that we can
1652  // fall through to the lhs instead of the rhs block.
1653  if (CB.TrueBB == NextBlock) {
1654    std::swap(CB.TrueBB, CB.FalseBB);
1655    SDValue True = DAG.getConstant(1, Cond.getValueType());
1656    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1657  }
1658
1659  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1660                               MVT::Other, getControlRoot(), Cond,
1661                               DAG.getBasicBlock(CB.TrueBB));
1662
1663  // Insert the false branch. Do this even if it's a fall through branch,
1664  // this makes it easier to do DAG optimizations which require inverting
1665  // the branch condition.
1666  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1667                       DAG.getBasicBlock(CB.FalseBB));
1668
1669  DAG.setRoot(BrCond);
1670}
1671
1672/// visitJumpTable - Emit JumpTable node in the current MBB
1673void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1674  // Emit the code for the jump table
1675  assert(JT.Reg != -1U && "Should lower JT Header first!");
1676  EVT PTy = TM.getTargetLowering()->getPointerTy();
1677  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1678                                     JT.Reg, PTy);
1679  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1680  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1681                                    MVT::Other, Index.getValue(1),
1682                                    Table, Index);
1683  DAG.setRoot(BrJumpTable);
1684}
1685
1686/// visitJumpTableHeader - This function emits necessary code to produce index
1687/// in the JumpTable from switch case.
1688void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1689                                               JumpTableHeader &JTH,
1690                                               MachineBasicBlock *SwitchBB) {
1691  // Subtract the lowest switch case value from the value being switched on and
1692  // conditional branch to default mbb if the result is greater than the
1693  // difference between smallest and largest cases.
1694  SDValue SwitchOp = getValue(JTH.SValue);
1695  EVT VT = SwitchOp.getValueType();
1696  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1697                            DAG.getConstant(JTH.First, VT));
1698
1699  // The SDNode we just created, which holds the value being switched on minus
1700  // the smallest case value, needs to be copied to a virtual register so it
1701  // can be used as an index into the jump table in a subsequent basic block.
1702  // This value may be smaller or larger than the target's pointer type, and
1703  // therefore require extension or truncating.
1704  const TargetLowering *TLI = TM.getTargetLowering();
1705  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
1706
1707  unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
1708  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1709                                    JumpTableReg, SwitchOp);
1710  JT.Reg = JumpTableReg;
1711
1712  // Emit the range check for the jump table, and branch to the default block
1713  // for the switch statement if the value being switched on exceeds the largest
1714  // case in the switch.
1715  SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1716                             TLI->getSetCCResultType(*DAG.getContext(),
1717                                                     Sub.getValueType()),
1718                             Sub,
1719                             DAG.getConstant(JTH.Last - JTH.First,VT),
1720                             ISD::SETUGT);
1721
1722  // Set NextBlock to be the MBB immediately after the current one, if any.
1723  // This is used to avoid emitting unnecessary branches to the next block.
1724  MachineBasicBlock *NextBlock = 0;
1725  MachineFunction::iterator BBI = SwitchBB;
1726
1727  if (++BBI != FuncInfo.MF->end())
1728    NextBlock = BBI;
1729
1730  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1731                               MVT::Other, CopyTo, CMP,
1732                               DAG.getBasicBlock(JT.Default));
1733
1734  if (JT.MBB != NextBlock)
1735    BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1736                         DAG.getBasicBlock(JT.MBB));
1737
1738  DAG.setRoot(BrCond);
1739}
1740
1741/// visitBitTestHeader - This function emits necessary code to produce value
1742/// suitable for "bit tests"
1743void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1744                                             MachineBasicBlock *SwitchBB) {
1745  // Subtract the minimum value
1746  SDValue SwitchOp = getValue(B.SValue);
1747  EVT VT = SwitchOp.getValueType();
1748  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1749                            DAG.getConstant(B.First, VT));
1750
1751  // Check range
1752  const TargetLowering *TLI = TM.getTargetLowering();
1753  SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1754                                  TLI->getSetCCResultType(*DAG.getContext(),
1755                                                         Sub.getValueType()),
1756                                  Sub, DAG.getConstant(B.Range, VT),
1757                                  ISD::SETUGT);
1758
1759  // Determine the type of the test operands.
1760  bool UsePtrType = false;
1761  if (!TLI->isTypeLegal(VT))
1762    UsePtrType = true;
1763  else {
1764    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1765      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1766        // Switch table case range are encoded into series of masks.
1767        // Just use pointer type, it's guaranteed to fit.
1768        UsePtrType = true;
1769        break;
1770      }
1771  }
1772  if (UsePtrType) {
1773    VT = TLI->getPointerTy();
1774    Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1775  }
1776
1777  B.RegVT = VT.getSimpleVT();
1778  B.Reg = FuncInfo.CreateReg(B.RegVT);
1779  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1780                                    B.Reg, Sub);
1781
1782  // Set NextBlock to be the MBB immediately after the current one, if any.
1783  // This is used to avoid emitting unnecessary branches to the next block.
1784  MachineBasicBlock *NextBlock = 0;
1785  MachineFunction::iterator BBI = SwitchBB;
1786  if (++BBI != FuncInfo.MF->end())
1787    NextBlock = BBI;
1788
1789  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1790
1791  addSuccessorWithWeight(SwitchBB, B.Default);
1792  addSuccessorWithWeight(SwitchBB, MBB);
1793
1794  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1795                                MVT::Other, CopyTo, RangeCmp,
1796                                DAG.getBasicBlock(B.Default));
1797
1798  if (MBB != NextBlock)
1799    BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1800                          DAG.getBasicBlock(MBB));
1801
1802  DAG.setRoot(BrRange);
1803}
1804
1805/// visitBitTestCase - this function produces one "bit test"
1806void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1807                                           MachineBasicBlock* NextMBB,
1808                                           uint32_t BranchWeightToNext,
1809                                           unsigned Reg,
1810                                           BitTestCase &B,
1811                                           MachineBasicBlock *SwitchBB) {
1812  MVT VT = BB.RegVT;
1813  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1814                                       Reg, VT);
1815  SDValue Cmp;
1816  unsigned PopCount = CountPopulation_64(B.Mask);
1817  const TargetLowering *TLI = TM.getTargetLowering();
1818  if (PopCount == 1) {
1819    // Testing for a single bit; just compare the shift count with what it
1820    // would need to be to shift a 1 bit in that position.
1821    Cmp = DAG.getSetCC(getCurSDLoc(),
1822                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1823                       ShiftOp,
1824                       DAG.getConstant(countTrailingZeros(B.Mask), VT),
1825                       ISD::SETEQ);
1826  } else if (PopCount == BB.Range) {
1827    // There is only one zero bit in the range, test for it directly.
1828    Cmp = DAG.getSetCC(getCurSDLoc(),
1829                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1830                       ShiftOp,
1831                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1832                       ISD::SETNE);
1833  } else {
1834    // Make desired shift
1835    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1836                                    DAG.getConstant(1, VT), ShiftOp);
1837
1838    // Emit bit tests and jumps
1839    SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1840                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1841    Cmp = DAG.getSetCC(getCurSDLoc(),
1842                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1843                       AndOp, DAG.getConstant(0, VT),
1844                       ISD::SETNE);
1845  }
1846
1847  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1848  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1849  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1850  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1851
1852  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1853                              MVT::Other, getControlRoot(),
1854                              Cmp, DAG.getBasicBlock(B.TargetBB));
1855
1856  // Set NextBlock to be the MBB immediately after the current one, if any.
1857  // This is used to avoid emitting unnecessary branches to the next block.
1858  MachineBasicBlock *NextBlock = 0;
1859  MachineFunction::iterator BBI = SwitchBB;
1860  if (++BBI != FuncInfo.MF->end())
1861    NextBlock = BBI;
1862
1863  if (NextMBB != NextBlock)
1864    BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1865                        DAG.getBasicBlock(NextMBB));
1866
1867  DAG.setRoot(BrAnd);
1868}
1869
1870void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1871  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1872
1873  // Retrieve successors.
1874  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1875  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1876
1877  const Value *Callee(I.getCalledValue());
1878  const Function *Fn = dyn_cast<Function>(Callee);
1879  if (isa<InlineAsm>(Callee))
1880    visitInlineAsm(&I);
1881  else if (Fn && Fn->isIntrinsic()) {
1882    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1883    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1884  } else
1885    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1886
1887  // If the value of the invoke is used outside of its defining block, make it
1888  // available as a virtual register.
1889  CopyToExportRegsIfNeeded(&I);
1890
1891  // Update successor info
1892  addSuccessorWithWeight(InvokeMBB, Return);
1893  addSuccessorWithWeight(InvokeMBB, LandingPad);
1894
1895  // Drop into normal successor.
1896  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1897                          MVT::Other, getControlRoot(),
1898                          DAG.getBasicBlock(Return)));
1899}
1900
1901void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1902  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1903}
1904
1905void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1906  assert(FuncInfo.MBB->isLandingPad() &&
1907         "Call to landingpad not in landing pad!");
1908
1909  MachineBasicBlock *MBB = FuncInfo.MBB;
1910  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1911  AddLandingPadInfo(LP, MMI, MBB);
1912
1913  // If there aren't registers to copy the values into (e.g., during SjLj
1914  // exceptions), then don't bother to create these DAG nodes.
1915  const TargetLowering *TLI = TM.getTargetLowering();
1916  if (TLI->getExceptionPointerRegister() == 0 &&
1917      TLI->getExceptionSelectorRegister() == 0)
1918    return;
1919
1920  SmallVector<EVT, 2> ValueVTs;
1921  ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
1922  assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
1923
1924  // Get the two live-in registers as SDValues. The physregs have already been
1925  // copied into virtual registers.
1926  SDValue Ops[2];
1927  Ops[0] = DAG.getZExtOrTrunc(
1928    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1929                       FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
1930    getCurSDLoc(), ValueVTs[0]);
1931  Ops[1] = DAG.getZExtOrTrunc(
1932    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1933                       FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
1934    getCurSDLoc(), ValueVTs[1]);
1935
1936  // Merge into one.
1937  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
1938                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1939                            &Ops[0], 2);
1940  setValue(&LP, Res);
1941}
1942
1943/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1944/// small case ranges).
1945bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1946                                                 CaseRecVector& WorkList,
1947                                                 const Value* SV,
1948                                                 MachineBasicBlock *Default,
1949                                                 MachineBasicBlock *SwitchBB) {
1950  // Size is the number of Cases represented by this range.
1951  size_t Size = CR.Range.second - CR.Range.first;
1952  if (Size > 3)
1953    return false;
1954
1955  // Get the MachineFunction which holds the current MBB.  This is used when
1956  // inserting any additional MBBs necessary to represent the switch.
1957  MachineFunction *CurMF = FuncInfo.MF;
1958
1959  // Figure out which block is immediately after the current one.
1960  MachineBasicBlock *NextBlock = 0;
1961  MachineFunction::iterator BBI = CR.CaseBB;
1962
1963  if (++BBI != FuncInfo.MF->end())
1964    NextBlock = BBI;
1965
1966  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1967  // If any two of the cases has the same destination, and if one value
1968  // is the same as the other, but has one bit unset that the other has set,
1969  // use bit manipulation to do two compares at once.  For example:
1970  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1971  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1972  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1973  if (Size == 2 && CR.CaseBB == SwitchBB) {
1974    Case &Small = *CR.Range.first;
1975    Case &Big = *(CR.Range.second-1);
1976
1977    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1978      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1979      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1980
1981      // Check that there is only one bit different.
1982      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1983          (SmallValue | BigValue) == BigValue) {
1984        // Isolate the common bit.
1985        APInt CommonBit = BigValue & ~SmallValue;
1986        assert((SmallValue | CommonBit) == BigValue &&
1987               CommonBit.countPopulation() == 1 && "Not a common bit?");
1988
1989        SDValue CondLHS = getValue(SV);
1990        EVT VT = CondLHS.getValueType();
1991        SDLoc DL = getCurSDLoc();
1992
1993        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1994                                 DAG.getConstant(CommonBit, VT));
1995        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1996                                    Or, DAG.getConstant(BigValue, VT),
1997                                    ISD::SETEQ);
1998
1999        // Update successor info.
2000        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2001        addSuccessorWithWeight(SwitchBB, Small.BB,
2002                               Small.ExtraWeight + Big.ExtraWeight);
2003        addSuccessorWithWeight(SwitchBB, Default,
2004          // The default destination is the first successor in IR.
2005          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2006
2007        // Insert the true branch.
2008        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2009                                     getControlRoot(), Cond,
2010                                     DAG.getBasicBlock(Small.BB));
2011
2012        // Insert the false branch.
2013        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2014                             DAG.getBasicBlock(Default));
2015
2016        DAG.setRoot(BrCond);
2017        return true;
2018      }
2019    }
2020  }
2021
2022  // Order cases by weight so the most likely case will be checked first.
2023  uint32_t UnhandledWeights = 0;
2024  if (BPI) {
2025    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2026      uint32_t IWeight = I->ExtraWeight;
2027      UnhandledWeights += IWeight;
2028      for (CaseItr J = CR.Range.first; J < I; ++J) {
2029        uint32_t JWeight = J->ExtraWeight;
2030        if (IWeight > JWeight)
2031          std::swap(*I, *J);
2032      }
2033    }
2034  }
2035  // Rearrange the case blocks so that the last one falls through if possible.
2036  Case &BackCase = *(CR.Range.second-1);
2037  if (Size > 1 &&
2038      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2039    // The last case block won't fall through into 'NextBlock' if we emit the
2040    // branches in this order.  See if rearranging a case value would help.
2041    // We start at the bottom as it's the case with the least weight.
2042    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2043      if (I->BB == NextBlock) {
2044        std::swap(*I, BackCase);
2045        break;
2046      }
2047  }
2048
2049  // Create a CaseBlock record representing a conditional branch to
2050  // the Case's target mbb if the value being switched on SV is equal
2051  // to C.
2052  MachineBasicBlock *CurBlock = CR.CaseBB;
2053  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2054    MachineBasicBlock *FallThrough;
2055    if (I != E-1) {
2056      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2057      CurMF->insert(BBI, FallThrough);
2058
2059      // Put SV in a virtual register to make it available from the new blocks.
2060      ExportFromCurrentBlock(SV);
2061    } else {
2062      // If the last case doesn't match, go to the default block.
2063      FallThrough = Default;
2064    }
2065
2066    const Value *RHS, *LHS, *MHS;
2067    ISD::CondCode CC;
2068    if (I->High == I->Low) {
2069      // This is just small small case range :) containing exactly 1 case
2070      CC = ISD::SETEQ;
2071      LHS = SV; RHS = I->High; MHS = NULL;
2072    } else {
2073      CC = ISD::SETCC_INVALID;
2074      LHS = I->Low; MHS = SV; RHS = I->High;
2075    }
2076
2077    // The false weight should be sum of all un-handled cases.
2078    UnhandledWeights -= I->ExtraWeight;
2079    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2080                 /* me */ CurBlock,
2081                 /* trueweight */ I->ExtraWeight,
2082                 /* falseweight */ UnhandledWeights);
2083
2084    // If emitting the first comparison, just call visitSwitchCase to emit the
2085    // code into the current block.  Otherwise, push the CaseBlock onto the
2086    // vector to be later processed by SDISel, and insert the node's MBB
2087    // before the next MBB.
2088    if (CurBlock == SwitchBB)
2089      visitSwitchCase(CB, SwitchBB);
2090    else
2091      SwitchCases.push_back(CB);
2092
2093    CurBlock = FallThrough;
2094  }
2095
2096  return true;
2097}
2098
2099static inline bool areJTsAllowed(const TargetLowering &TLI) {
2100  return TLI.supportJumpTables() &&
2101          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2102           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2103}
2104
2105static APInt ComputeRange(const APInt &First, const APInt &Last) {
2106  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2107  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2108  return (LastExt - FirstExt + 1ULL);
2109}
2110
2111/// handleJTSwitchCase - Emit jumptable for current switch case range
2112bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2113                                             CaseRecVector &WorkList,
2114                                             const Value *SV,
2115                                             MachineBasicBlock *Default,
2116                                             MachineBasicBlock *SwitchBB) {
2117  Case& FrontCase = *CR.Range.first;
2118  Case& BackCase  = *(CR.Range.second-1);
2119
2120  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2121  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2122
2123  APInt TSize(First.getBitWidth(), 0);
2124  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2125    TSize += I->size();
2126
2127  const TargetLowering *TLI = TM.getTargetLowering();
2128  if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
2129    return false;
2130
2131  APInt Range = ComputeRange(First, Last);
2132  // The density is TSize / Range. Require at least 40%.
2133  // It should not be possible for IntTSize to saturate for sane code, but make
2134  // sure we handle Range saturation correctly.
2135  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2136  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2137  if (IntTSize * 10 < IntRange * 4)
2138    return false;
2139
2140  DEBUG(dbgs() << "Lowering jump table\n"
2141               << "First entry: " << First << ". Last entry: " << Last << '\n'
2142               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2143
2144  // Get the MachineFunction which holds the current MBB.  This is used when
2145  // inserting any additional MBBs necessary to represent the switch.
2146  MachineFunction *CurMF = FuncInfo.MF;
2147
2148  // Figure out which block is immediately after the current one.
2149  MachineFunction::iterator BBI = CR.CaseBB;
2150  ++BBI;
2151
2152  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2153
2154  // Create a new basic block to hold the code for loading the address
2155  // of the jump table, and jumping to it.  Update successor information;
2156  // we will either branch to the default case for the switch, or the jump
2157  // table.
2158  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2159  CurMF->insert(BBI, JumpTableBB);
2160
2161  addSuccessorWithWeight(CR.CaseBB, Default);
2162  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2163
2164  // Build a vector of destination BBs, corresponding to each target
2165  // of the jump table. If the value of the jump table slot corresponds to
2166  // a case statement, push the case's BB onto the vector, otherwise, push
2167  // the default BB.
2168  std::vector<MachineBasicBlock*> DestBBs;
2169  APInt TEI = First;
2170  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2171    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2172    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2173
2174    if (Low.ule(TEI) && TEI.ule(High)) {
2175      DestBBs.push_back(I->BB);
2176      if (TEI==High)
2177        ++I;
2178    } else {
2179      DestBBs.push_back(Default);
2180    }
2181  }
2182
2183  // Calculate weight for each unique destination in CR.
2184  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2185  if (FuncInfo.BPI)
2186    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2187      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2188          DestWeights.find(I->BB);
2189      if (Itr != DestWeights.end())
2190        Itr->second += I->ExtraWeight;
2191      else
2192        DestWeights[I->BB] = I->ExtraWeight;
2193    }
2194
2195  // Update successor info. Add one edge to each unique successor.
2196  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2197  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2198         E = DestBBs.end(); I != E; ++I) {
2199    if (!SuccsHandled[(*I)->getNumber()]) {
2200      SuccsHandled[(*I)->getNumber()] = true;
2201      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2202          DestWeights.find(*I);
2203      addSuccessorWithWeight(JumpTableBB, *I,
2204                             Itr != DestWeights.end() ? Itr->second : 0);
2205    }
2206  }
2207
2208  // Create a jump table index for this jump table.
2209  unsigned JTEncoding = TLI->getJumpTableEncoding();
2210  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2211                       ->createJumpTableIndex(DestBBs);
2212
2213  // Set the jump table information so that we can codegen it as a second
2214  // MachineBasicBlock
2215  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2216  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2217  if (CR.CaseBB == SwitchBB)
2218    visitJumpTableHeader(JT, JTH, SwitchBB);
2219
2220  JTCases.push_back(JumpTableBlock(JTH, JT));
2221  return true;
2222}
2223
2224/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2225/// 2 subtrees.
2226bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2227                                                  CaseRecVector& WorkList,
2228                                                  const Value* SV,
2229                                                  MachineBasicBlock* Default,
2230                                                  MachineBasicBlock* SwitchBB) {
2231  // Get the MachineFunction which holds the current MBB.  This is used when
2232  // inserting any additional MBBs necessary to represent the switch.
2233  MachineFunction *CurMF = FuncInfo.MF;
2234
2235  // Figure out which block is immediately after the current one.
2236  MachineFunction::iterator BBI = CR.CaseBB;
2237  ++BBI;
2238
2239  Case& FrontCase = *CR.Range.first;
2240  Case& BackCase  = *(CR.Range.second-1);
2241  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2242
2243  // Size is the number of Cases represented by this range.
2244  unsigned Size = CR.Range.second - CR.Range.first;
2245
2246  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2247  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2248  double FMetric = 0;
2249  CaseItr Pivot = CR.Range.first + Size/2;
2250
2251  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2252  // (heuristically) allow us to emit JumpTable's later.
2253  APInt TSize(First.getBitWidth(), 0);
2254  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2255       I!=E; ++I)
2256    TSize += I->size();
2257
2258  APInt LSize = FrontCase.size();
2259  APInt RSize = TSize-LSize;
2260  DEBUG(dbgs() << "Selecting best pivot: \n"
2261               << "First: " << First << ", Last: " << Last <<'\n'
2262               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2263  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2264       J!=E; ++I, ++J) {
2265    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2266    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2267    APInt Range = ComputeRange(LEnd, RBegin);
2268    assert((Range - 2ULL).isNonNegative() &&
2269           "Invalid case distance");
2270    // Use volatile double here to avoid excess precision issues on some hosts,
2271    // e.g. that use 80-bit X87 registers.
2272    volatile double LDensity =
2273       (double)LSize.roundToDouble() /
2274                           (LEnd - First + 1ULL).roundToDouble();
2275    volatile double RDensity =
2276      (double)RSize.roundToDouble() /
2277                           (Last - RBegin + 1ULL).roundToDouble();
2278    double Metric = Range.logBase2()*(LDensity+RDensity);
2279    // Should always split in some non-trivial place
2280    DEBUG(dbgs() <<"=>Step\n"
2281                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2282                 << "LDensity: " << LDensity
2283                 << ", RDensity: " << RDensity << '\n'
2284                 << "Metric: " << Metric << '\n');
2285    if (FMetric < Metric) {
2286      Pivot = J;
2287      FMetric = Metric;
2288      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2289    }
2290
2291    LSize += J->size();
2292    RSize -= J->size();
2293  }
2294
2295  const TargetLowering *TLI = TM.getTargetLowering();
2296  if (areJTsAllowed(*TLI)) {
2297    // If our case is dense we *really* should handle it earlier!
2298    assert((FMetric > 0) && "Should handle dense range earlier!");
2299  } else {
2300    Pivot = CR.Range.first + Size/2;
2301  }
2302
2303  CaseRange LHSR(CR.Range.first, Pivot);
2304  CaseRange RHSR(Pivot, CR.Range.second);
2305  const Constant *C = Pivot->Low;
2306  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2307
2308  // We know that we branch to the LHS if the Value being switched on is
2309  // less than the Pivot value, C.  We use this to optimize our binary
2310  // tree a bit, by recognizing that if SV is greater than or equal to the
2311  // LHS's Case Value, and that Case Value is exactly one less than the
2312  // Pivot's Value, then we can branch directly to the LHS's Target,
2313  // rather than creating a leaf node for it.
2314  if ((LHSR.second - LHSR.first) == 1 &&
2315      LHSR.first->High == CR.GE &&
2316      cast<ConstantInt>(C)->getValue() ==
2317      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2318    TrueBB = LHSR.first->BB;
2319  } else {
2320    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2321    CurMF->insert(BBI, TrueBB);
2322    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2323
2324    // Put SV in a virtual register to make it available from the new blocks.
2325    ExportFromCurrentBlock(SV);
2326  }
2327
2328  // Similar to the optimization above, if the Value being switched on is
2329  // known to be less than the Constant CR.LT, and the current Case Value
2330  // is CR.LT - 1, then we can branch directly to the target block for
2331  // the current Case Value, rather than emitting a RHS leaf node for it.
2332  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2333      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2334      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2335    FalseBB = RHSR.first->BB;
2336  } else {
2337    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2338    CurMF->insert(BBI, FalseBB);
2339    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2340
2341    // Put SV in a virtual register to make it available from the new blocks.
2342    ExportFromCurrentBlock(SV);
2343  }
2344
2345  // Create a CaseBlock record representing a conditional branch to
2346  // the LHS node if the value being switched on SV is less than C.
2347  // Otherwise, branch to LHS.
2348  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2349
2350  if (CR.CaseBB == SwitchBB)
2351    visitSwitchCase(CB, SwitchBB);
2352  else
2353    SwitchCases.push_back(CB);
2354
2355  return true;
2356}
2357
2358/// handleBitTestsSwitchCase - if current case range has few destination and
2359/// range span less, than machine word bitwidth, encode case range into series
2360/// of masks and emit bit tests with these masks.
2361bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2362                                                   CaseRecVector& WorkList,
2363                                                   const Value* SV,
2364                                                   MachineBasicBlock* Default,
2365                                                   MachineBasicBlock* SwitchBB) {
2366  const TargetLowering *TLI = TM.getTargetLowering();
2367  EVT PTy = TLI->getPointerTy();
2368  unsigned IntPtrBits = PTy.getSizeInBits();
2369
2370  Case& FrontCase = *CR.Range.first;
2371  Case& BackCase  = *(CR.Range.second-1);
2372
2373  // Get the MachineFunction which holds the current MBB.  This is used when
2374  // inserting any additional MBBs necessary to represent the switch.
2375  MachineFunction *CurMF = FuncInfo.MF;
2376
2377  // If target does not have legal shift left, do not emit bit tests at all.
2378  if (!TLI->isOperationLegal(ISD::SHL, TLI->getPointerTy()))
2379    return false;
2380
2381  size_t numCmps = 0;
2382  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2383       I!=E; ++I) {
2384    // Single case counts one, case range - two.
2385    numCmps += (I->Low == I->High ? 1 : 2);
2386  }
2387
2388  // Count unique destinations
2389  SmallSet<MachineBasicBlock*, 4> Dests;
2390  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2391    Dests.insert(I->BB);
2392    if (Dests.size() > 3)
2393      // Don't bother the code below, if there are too much unique destinations
2394      return false;
2395  }
2396  DEBUG(dbgs() << "Total number of unique destinations: "
2397        << Dests.size() << '\n'
2398        << "Total number of comparisons: " << numCmps << '\n');
2399
2400  // Compute span of values.
2401  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2402  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2403  APInt cmpRange = maxValue - minValue;
2404
2405  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2406               << "Low bound: " << minValue << '\n'
2407               << "High bound: " << maxValue << '\n');
2408
2409  if (cmpRange.uge(IntPtrBits) ||
2410      (!(Dests.size() == 1 && numCmps >= 3) &&
2411       !(Dests.size() == 2 && numCmps >= 5) &&
2412       !(Dests.size() >= 3 && numCmps >= 6)))
2413    return false;
2414
2415  DEBUG(dbgs() << "Emitting bit tests\n");
2416  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2417
2418  // Optimize the case where all the case values fit in a
2419  // word without having to subtract minValue. In this case,
2420  // we can optimize away the subtraction.
2421  if (maxValue.ult(IntPtrBits)) {
2422    cmpRange = maxValue;
2423  } else {
2424    lowBound = minValue;
2425  }
2426
2427  CaseBitsVector CasesBits;
2428  unsigned i, count = 0;
2429
2430  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2431    MachineBasicBlock* Dest = I->BB;
2432    for (i = 0; i < count; ++i)
2433      if (Dest == CasesBits[i].BB)
2434        break;
2435
2436    if (i == count) {
2437      assert((count < 3) && "Too much destinations to test!");
2438      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2439      count++;
2440    }
2441
2442    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2443    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2444
2445    uint64_t lo = (lowValue - lowBound).getZExtValue();
2446    uint64_t hi = (highValue - lowBound).getZExtValue();
2447    CasesBits[i].ExtraWeight += I->ExtraWeight;
2448
2449    for (uint64_t j = lo; j <= hi; j++) {
2450      CasesBits[i].Mask |=  1ULL << j;
2451      CasesBits[i].Bits++;
2452    }
2453
2454  }
2455  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2456
2457  BitTestInfo BTC;
2458
2459  // Figure out which block is immediately after the current one.
2460  MachineFunction::iterator BBI = CR.CaseBB;
2461  ++BBI;
2462
2463  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2464
2465  DEBUG(dbgs() << "Cases:\n");
2466  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2467    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2468                 << ", Bits: " << CasesBits[i].Bits
2469                 << ", BB: " << CasesBits[i].BB << '\n');
2470
2471    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2472    CurMF->insert(BBI, CaseBB);
2473    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2474                              CaseBB,
2475                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2476
2477    // Put SV in a virtual register to make it available from the new blocks.
2478    ExportFromCurrentBlock(SV);
2479  }
2480
2481  BitTestBlock BTB(lowBound, cmpRange, SV,
2482                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2483                   CR.CaseBB, Default, BTC);
2484
2485  if (CR.CaseBB == SwitchBB)
2486    visitBitTestHeader(BTB, SwitchBB);
2487
2488  BitTestCases.push_back(BTB);
2489
2490  return true;
2491}
2492
2493/// Clusterify - Transform simple list of Cases into list of CaseRange's
2494size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2495                                       const SwitchInst& SI) {
2496
2497  /// Use a shorter form of declaration, and also
2498  /// show the we want to use CRSBuilder as Clusterifier.
2499  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2500
2501  Clusterifier TheClusterifier;
2502
2503  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2504  // Start with "simple" cases
2505  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2506       i != e; ++i) {
2507    const BasicBlock *SuccBB = i.getCaseSuccessor();
2508    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2509
2510    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2511        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2512  }
2513
2514  TheClusterifier.optimize();
2515
2516  size_t numCmps = 0;
2517  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2518       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2519    Clusterifier::Cluster &C = *i;
2520    // Update edge weight for the cluster.
2521    unsigned W = C.first.Weight;
2522
2523    // FIXME: Currently work with ConstantInt based numbers.
2524    // Changing it to APInt based is a pretty heavy for this commit.
2525    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2526                         C.first.getHigh().toConstantInt(), C.second, W));
2527
2528    if (C.first.getLow() != C.first.getHigh())
2529    // A range counts double, since it requires two compares.
2530    ++numCmps;
2531  }
2532
2533  return numCmps;
2534}
2535
2536void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2537                                           MachineBasicBlock *Last) {
2538  // Update JTCases.
2539  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2540    if (JTCases[i].first.HeaderBB == First)
2541      JTCases[i].first.HeaderBB = Last;
2542
2543  // Update BitTestCases.
2544  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2545    if (BitTestCases[i].Parent == First)
2546      BitTestCases[i].Parent = Last;
2547}
2548
2549void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2550  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2551
2552  // Figure out which block is immediately after the current one.
2553  MachineBasicBlock *NextBlock = 0;
2554  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2555
2556  // If there is only the default destination, branch to it if it is not the
2557  // next basic block.  Otherwise, just fall through.
2558  if (!SI.getNumCases()) {
2559    // Update machine-CFG edges.
2560
2561    // If this is not a fall-through branch, emit the branch.
2562    SwitchMBB->addSuccessor(Default);
2563    if (Default != NextBlock)
2564      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2565                              MVT::Other, getControlRoot(),
2566                              DAG.getBasicBlock(Default)));
2567
2568    return;
2569  }
2570
2571  // If there are any non-default case statements, create a vector of Cases
2572  // representing each one, and sort the vector so that we can efficiently
2573  // create a binary search tree from them.
2574  CaseVector Cases;
2575  size_t numCmps = Clusterify(Cases, SI);
2576  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2577               << ". Total compares: " << numCmps << '\n');
2578  (void)numCmps;
2579
2580  // Get the Value to be switched on and default basic blocks, which will be
2581  // inserted into CaseBlock records, representing basic blocks in the binary
2582  // search tree.
2583  const Value *SV = SI.getCondition();
2584
2585  // Push the initial CaseRec onto the worklist
2586  CaseRecVector WorkList;
2587  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2588                             CaseRange(Cases.begin(),Cases.end())));
2589
2590  while (!WorkList.empty()) {
2591    // Grab a record representing a case range to process off the worklist
2592    CaseRec CR = WorkList.back();
2593    WorkList.pop_back();
2594
2595    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2596      continue;
2597
2598    // If the range has few cases (two or less) emit a series of specific
2599    // tests.
2600    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2601      continue;
2602
2603    // If the switch has more than N blocks, and is at least 40% dense, and the
2604    // target supports indirect branches, then emit a jump table rather than
2605    // lowering the switch to a binary tree of conditional branches.
2606    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2607    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2608      continue;
2609
2610    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2611    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2612    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2613  }
2614}
2615
2616void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2617  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2618
2619  // Update machine-CFG edges with unique successors.
2620  SmallSet<BasicBlock*, 32> Done;
2621  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2622    BasicBlock *BB = I.getSuccessor(i);
2623    bool Inserted = Done.insert(BB);
2624    if (!Inserted)
2625        continue;
2626
2627    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2628    addSuccessorWithWeight(IndirectBrMBB, Succ);
2629  }
2630
2631  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2632                          MVT::Other, getControlRoot(),
2633                          getValue(I.getAddress())));
2634}
2635
2636void SelectionDAGBuilder::visitFSub(const User &I) {
2637  // -0.0 - X --> fneg
2638  Type *Ty = I.getType();
2639  if (isa<Constant>(I.getOperand(0)) &&
2640      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2641    SDValue Op2 = getValue(I.getOperand(1));
2642    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2643                             Op2.getValueType(), Op2));
2644    return;
2645  }
2646
2647  visitBinary(I, ISD::FSUB);
2648}
2649
2650void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2651  SDValue Op1 = getValue(I.getOperand(0));
2652  SDValue Op2 = getValue(I.getOperand(1));
2653  setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2654                           Op1.getValueType(), Op1, Op2));
2655}
2656
2657void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2658  SDValue Op1 = getValue(I.getOperand(0));
2659  SDValue Op2 = getValue(I.getOperand(1));
2660
2661  EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
2662
2663  // Coerce the shift amount to the right type if we can.
2664  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2665    unsigned ShiftSize = ShiftTy.getSizeInBits();
2666    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2667    SDLoc DL = getCurSDLoc();
2668
2669    // If the operand is smaller than the shift count type, promote it.
2670    if (ShiftSize > Op2Size)
2671      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2672
2673    // If the operand is larger than the shift count type but the shift
2674    // count type has enough bits to represent any shift value, truncate
2675    // it now. This is a common case and it exposes the truncate to
2676    // optimization early.
2677    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2678      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2679    // Otherwise we'll need to temporarily settle for some other convenient
2680    // type.  Type legalization will make adjustments once the shiftee is split.
2681    else
2682      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2683  }
2684
2685  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2686                           Op1.getValueType(), Op1, Op2));
2687}
2688
2689void SelectionDAGBuilder::visitSDiv(const User &I) {
2690  SDValue Op1 = getValue(I.getOperand(0));
2691  SDValue Op2 = getValue(I.getOperand(1));
2692
2693  // Turn exact SDivs into multiplications.
2694  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2695  // exact bit.
2696  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2697      !isa<ConstantSDNode>(Op1) &&
2698      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2699    setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
2700                                                        getCurSDLoc(), DAG));
2701  else
2702    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2703                             Op1, Op2));
2704}
2705
2706void SelectionDAGBuilder::visitICmp(const User &I) {
2707  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2708  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2709    predicate = IC->getPredicate();
2710  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2711    predicate = ICmpInst::Predicate(IC->getPredicate());
2712  SDValue Op1 = getValue(I.getOperand(0));
2713  SDValue Op2 = getValue(I.getOperand(1));
2714  ISD::CondCode Opcode = getICmpCondCode(predicate);
2715
2716  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2717  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2718}
2719
2720void SelectionDAGBuilder::visitFCmp(const User &I) {
2721  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2722  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2723    predicate = FC->getPredicate();
2724  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2725    predicate = FCmpInst::Predicate(FC->getPredicate());
2726  SDValue Op1 = getValue(I.getOperand(0));
2727  SDValue Op2 = getValue(I.getOperand(1));
2728  ISD::CondCode Condition = getFCmpCondCode(predicate);
2729  if (TM.Options.NoNaNsFPMath)
2730    Condition = getFCmpCodeWithoutNaN(Condition);
2731  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2732  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2733}
2734
2735void SelectionDAGBuilder::visitSelect(const User &I) {
2736  SmallVector<EVT, 4> ValueVTs;
2737  ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
2738  unsigned NumValues = ValueVTs.size();
2739  if (NumValues == 0) return;
2740
2741  SmallVector<SDValue, 4> Values(NumValues);
2742  SDValue Cond     = getValue(I.getOperand(0));
2743  SDValue TrueVal  = getValue(I.getOperand(1));
2744  SDValue FalseVal = getValue(I.getOperand(2));
2745  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2746    ISD::VSELECT : ISD::SELECT;
2747
2748  for (unsigned i = 0; i != NumValues; ++i)
2749    Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2750                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2751                            Cond,
2752                            SDValue(TrueVal.getNode(),
2753                                    TrueVal.getResNo() + i),
2754                            SDValue(FalseVal.getNode(),
2755                                    FalseVal.getResNo() + i));
2756
2757  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2758                           DAG.getVTList(&ValueVTs[0], NumValues),
2759                           &Values[0], NumValues));
2760}
2761
2762void SelectionDAGBuilder::visitTrunc(const User &I) {
2763  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2764  SDValue N = getValue(I.getOperand(0));
2765  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2766  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2767}
2768
2769void SelectionDAGBuilder::visitZExt(const User &I) {
2770  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2771  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2772  SDValue N = getValue(I.getOperand(0));
2773  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2774  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2775}
2776
2777void SelectionDAGBuilder::visitSExt(const User &I) {
2778  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2779  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2780  SDValue N = getValue(I.getOperand(0));
2781  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2782  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2783}
2784
2785void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2786  // FPTrunc is never a no-op cast, no need to check
2787  SDValue N = getValue(I.getOperand(0));
2788  const TargetLowering *TLI = TM.getTargetLowering();
2789  EVT DestVT = TLI->getValueType(I.getType());
2790  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2791                           DestVT, N,
2792                           DAG.getTargetConstant(0, TLI->getPointerTy())));
2793}
2794
2795void SelectionDAGBuilder::visitFPExt(const User &I) {
2796  // FPExt is never a no-op cast, no need to check
2797  SDValue N = getValue(I.getOperand(0));
2798  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2799  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2800}
2801
2802void SelectionDAGBuilder::visitFPToUI(const User &I) {
2803  // FPToUI is never a no-op cast, no need to check
2804  SDValue N = getValue(I.getOperand(0));
2805  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2806  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2807}
2808
2809void SelectionDAGBuilder::visitFPToSI(const User &I) {
2810  // FPToSI is never a no-op cast, no need to check
2811  SDValue N = getValue(I.getOperand(0));
2812  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2813  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2814}
2815
2816void SelectionDAGBuilder::visitUIToFP(const User &I) {
2817  // UIToFP is never a no-op cast, no need to check
2818  SDValue N = getValue(I.getOperand(0));
2819  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2820  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2821}
2822
2823void SelectionDAGBuilder::visitSIToFP(const User &I) {
2824  // SIToFP is never a no-op cast, no need to check
2825  SDValue N = getValue(I.getOperand(0));
2826  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2827  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2828}
2829
2830void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2831  // What to do depends on the size of the integer and the size of the pointer.
2832  // We can either truncate, zero extend, or no-op, accordingly.
2833  SDValue N = getValue(I.getOperand(0));
2834  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2835  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2836}
2837
2838void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2839  // What to do depends on the size of the integer and the size of the pointer.
2840  // We can either truncate, zero extend, or no-op, accordingly.
2841  SDValue N = getValue(I.getOperand(0));
2842  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2843  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2844}
2845
2846void SelectionDAGBuilder::visitBitCast(const User &I) {
2847  SDValue N = getValue(I.getOperand(0));
2848  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2849
2850  // BitCast assures us that source and destination are the same size so this is
2851  // either a BITCAST or a no-op.
2852  if (DestVT != N.getValueType())
2853    setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2854                             DestVT, N)); // convert types.
2855  else
2856    setValue(&I, N);            // noop cast.
2857}
2858
2859void SelectionDAGBuilder::visitInsertElement(const User &I) {
2860  SDValue InVec = getValue(I.getOperand(0));
2861  SDValue InVal = getValue(I.getOperand(1));
2862  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(),
2863                              TM.getTargetLowering()->getPointerTy(),
2864                              getValue(I.getOperand(2)));
2865  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2866                           TM.getTargetLowering()->getValueType(I.getType()),
2867                           InVec, InVal, InIdx));
2868}
2869
2870void SelectionDAGBuilder::visitExtractElement(const User &I) {
2871  SDValue InVec = getValue(I.getOperand(0));
2872  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(),
2873                              TM.getTargetLowering()->getPointerTy(),
2874                              getValue(I.getOperand(1)));
2875  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2876                           TM.getTargetLowering()->getValueType(I.getType()),
2877                           InVec, InIdx));
2878}
2879
2880// Utility for visitShuffleVector - Return true if every element in Mask,
2881// beginning from position Pos and ending in Pos+Size, falls within the
2882// specified sequential range [L, L+Pos). or is undef.
2883static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2884                                unsigned Pos, unsigned Size, int Low) {
2885  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2886    if (Mask[i] >= 0 && Mask[i] != Low)
2887      return false;
2888  return true;
2889}
2890
2891void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2892  SDValue Src1 = getValue(I.getOperand(0));
2893  SDValue Src2 = getValue(I.getOperand(1));
2894
2895  SmallVector<int, 8> Mask;
2896  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2897  unsigned MaskNumElts = Mask.size();
2898
2899  const TargetLowering *TLI = TM.getTargetLowering();
2900  EVT VT = TLI->getValueType(I.getType());
2901  EVT SrcVT = Src1.getValueType();
2902  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2903
2904  if (SrcNumElts == MaskNumElts) {
2905    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2906                                      &Mask[0]));
2907    return;
2908  }
2909
2910  // Normalize the shuffle vector since mask and vector length don't match.
2911  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2912    // Mask is longer than the source vectors and is a multiple of the source
2913    // vectors.  We can use concatenate vector to make the mask and vectors
2914    // lengths match.
2915    if (SrcNumElts*2 == MaskNumElts) {
2916      // First check for Src1 in low and Src2 in high
2917      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2918          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2919        // The shuffle is concatenating two vectors together.
2920        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2921                                 VT, Src1, Src2));
2922        return;
2923      }
2924      // Then check for Src2 in low and Src1 in high
2925      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2926          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2927        // The shuffle is concatenating two vectors together.
2928        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2929                                 VT, Src2, Src1));
2930        return;
2931      }
2932    }
2933
2934    // Pad both vectors with undefs to make them the same length as the mask.
2935    unsigned NumConcat = MaskNumElts / SrcNumElts;
2936    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2937    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2938    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2939
2940    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2941    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2942    MOps1[0] = Src1;
2943    MOps2[0] = Src2;
2944
2945    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2946                                                  getCurSDLoc(), VT,
2947                                                  &MOps1[0], NumConcat);
2948    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2949                                                  getCurSDLoc(), VT,
2950                                                  &MOps2[0], NumConcat);
2951
2952    // Readjust mask for new input vector length.
2953    SmallVector<int, 8> MappedOps;
2954    for (unsigned i = 0; i != MaskNumElts; ++i) {
2955      int Idx = Mask[i];
2956      if (Idx >= (int)SrcNumElts)
2957        Idx -= SrcNumElts - MaskNumElts;
2958      MappedOps.push_back(Idx);
2959    }
2960
2961    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2962                                      &MappedOps[0]));
2963    return;
2964  }
2965
2966  if (SrcNumElts > MaskNumElts) {
2967    // Analyze the access pattern of the vector to see if we can extract
2968    // two subvectors and do the shuffle. The analysis is done by calculating
2969    // the range of elements the mask access on both vectors.
2970    int MinRange[2] = { static_cast<int>(SrcNumElts),
2971                        static_cast<int>(SrcNumElts)};
2972    int MaxRange[2] = {-1, -1};
2973
2974    for (unsigned i = 0; i != MaskNumElts; ++i) {
2975      int Idx = Mask[i];
2976      unsigned Input = 0;
2977      if (Idx < 0)
2978        continue;
2979
2980      if (Idx >= (int)SrcNumElts) {
2981        Input = 1;
2982        Idx -= SrcNumElts;
2983      }
2984      if (Idx > MaxRange[Input])
2985        MaxRange[Input] = Idx;
2986      if (Idx < MinRange[Input])
2987        MinRange[Input] = Idx;
2988    }
2989
2990    // Check if the access is smaller than the vector size and can we find
2991    // a reasonable extract index.
2992    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2993                                   // Extract.
2994    int StartIdx[2];  // StartIdx to extract from
2995    for (unsigned Input = 0; Input < 2; ++Input) {
2996      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2997        RangeUse[Input] = 0; // Unused
2998        StartIdx[Input] = 0;
2999        continue;
3000      }
3001
3002      // Find a good start index that is a multiple of the mask length. Then
3003      // see if the rest of the elements are in range.
3004      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3005      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3006          StartIdx[Input] + MaskNumElts <= SrcNumElts)
3007        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3008    }
3009
3010    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3011      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3012      return;
3013    }
3014    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3015      // Extract appropriate subvector and generate a vector shuffle
3016      for (unsigned Input = 0; Input < 2; ++Input) {
3017        SDValue &Src = Input == 0 ? Src1 : Src2;
3018        if (RangeUse[Input] == 0)
3019          Src = DAG.getUNDEF(VT);
3020        else
3021          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3022                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
3023      }
3024
3025      // Calculate new mask.
3026      SmallVector<int, 8> MappedOps;
3027      for (unsigned i = 0; i != MaskNumElts; ++i) {
3028        int Idx = Mask[i];
3029        if (Idx >= 0) {
3030          if (Idx < (int)SrcNumElts)
3031            Idx -= StartIdx[0];
3032          else
3033            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3034        }
3035        MappedOps.push_back(Idx);
3036      }
3037
3038      setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3039                                        &MappedOps[0]));
3040      return;
3041    }
3042  }
3043
3044  // We can't use either concat vectors or extract subvectors so fall back to
3045  // replacing the shuffle with extract and build vector.
3046  // to insert and build vector.
3047  EVT EltVT = VT.getVectorElementType();
3048  EVT PtrVT = TLI->getPointerTy();
3049  SmallVector<SDValue,8> Ops;
3050  for (unsigned i = 0; i != MaskNumElts; ++i) {
3051    int Idx = Mask[i];
3052    SDValue Res;
3053
3054    if (Idx < 0) {
3055      Res = DAG.getUNDEF(EltVT);
3056    } else {
3057      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3058      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3059
3060      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3061                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3062    }
3063
3064    Ops.push_back(Res);
3065  }
3066
3067  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
3068                           VT, &Ops[0], Ops.size()));
3069}
3070
3071void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3072  const Value *Op0 = I.getOperand(0);
3073  const Value *Op1 = I.getOperand(1);
3074  Type *AggTy = I.getType();
3075  Type *ValTy = Op1->getType();
3076  bool IntoUndef = isa<UndefValue>(Op0);
3077  bool FromUndef = isa<UndefValue>(Op1);
3078
3079  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3080
3081  const TargetLowering *TLI = TM.getTargetLowering();
3082  SmallVector<EVT, 4> AggValueVTs;
3083  ComputeValueVTs(*TLI, AggTy, AggValueVTs);
3084  SmallVector<EVT, 4> ValValueVTs;
3085  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3086
3087  unsigned NumAggValues = AggValueVTs.size();
3088  unsigned NumValValues = ValValueVTs.size();
3089  SmallVector<SDValue, 4> Values(NumAggValues);
3090
3091  SDValue Agg = getValue(Op0);
3092  unsigned i = 0;
3093  // Copy the beginning value(s) from the original aggregate.
3094  for (; i != LinearIndex; ++i)
3095    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3096                SDValue(Agg.getNode(), Agg.getResNo() + i);
3097  // Copy values from the inserted value(s).
3098  if (NumValValues) {
3099    SDValue Val = getValue(Op1);
3100    for (; i != LinearIndex + NumValValues; ++i)
3101      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3102                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3103  }
3104  // Copy remaining value(s) from the original aggregate.
3105  for (; i != NumAggValues; ++i)
3106    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3107                SDValue(Agg.getNode(), Agg.getResNo() + i);
3108
3109  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3110                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3111                           &Values[0], NumAggValues));
3112}
3113
3114void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3115  const Value *Op0 = I.getOperand(0);
3116  Type *AggTy = Op0->getType();
3117  Type *ValTy = I.getType();
3118  bool OutOfUndef = isa<UndefValue>(Op0);
3119
3120  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3121
3122  const TargetLowering *TLI = TM.getTargetLowering();
3123  SmallVector<EVT, 4> ValValueVTs;
3124  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3125
3126  unsigned NumValValues = ValValueVTs.size();
3127
3128  // Ignore a extractvalue that produces an empty object
3129  if (!NumValValues) {
3130    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3131    return;
3132  }
3133
3134  SmallVector<SDValue, 4> Values(NumValValues);
3135
3136  SDValue Agg = getValue(Op0);
3137  // Copy out the selected value(s).
3138  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3139    Values[i - LinearIndex] =
3140      OutOfUndef ?
3141        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3142        SDValue(Agg.getNode(), Agg.getResNo() + i);
3143
3144  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3145                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3146                           &Values[0], NumValValues));
3147}
3148
3149void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3150  SDValue N = getValue(I.getOperand(0));
3151  // Note that the pointer operand may be a vector of pointers. Take the scalar
3152  // element which holds a pointer.
3153  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3154
3155  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3156       OI != E; ++OI) {
3157    const Value *Idx = *OI;
3158    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3159      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3160      if (Field) {
3161        // N = N + Offset
3162        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3163        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3164                        DAG.getConstant(Offset, N.getValueType()));
3165      }
3166
3167      Ty = StTy->getElementType(Field);
3168    } else {
3169      Ty = cast<SequentialType>(Ty)->getElementType();
3170
3171      // If this is a constant subscript, handle it quickly.
3172      const TargetLowering *TLI = TM.getTargetLowering();
3173      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3174        if (CI->isZero()) continue;
3175        uint64_t Offs =
3176            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3177        SDValue OffsVal;
3178        EVT PTy = TLI->getPointerTy();
3179        unsigned PtrBits = PTy.getSizeInBits();
3180        if (PtrBits < 64)
3181          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(),
3182                                TLI->getPointerTy(),
3183                                DAG.getConstant(Offs, MVT::i64));
3184        else
3185          OffsVal = DAG.getIntPtrConstant(Offs);
3186
3187        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3188                        OffsVal);
3189        continue;
3190      }
3191
3192      // N = N + Idx * ElementSize;
3193      APInt ElementSize = APInt(TLI->getPointerTy().getSizeInBits(),
3194                                TD->getTypeAllocSize(Ty));
3195      SDValue IdxN = getValue(Idx);
3196
3197      // If the index is smaller or larger than intptr_t, truncate or extend
3198      // it.
3199      IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3200
3201      // If this is a multiply by a power of two, turn it into a shl
3202      // immediately.  This is a very common case.
3203      if (ElementSize != 1) {
3204        if (ElementSize.isPowerOf2()) {
3205          unsigned Amt = ElementSize.logBase2();
3206          IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3207                             N.getValueType(), IdxN,
3208                             DAG.getConstant(Amt, IdxN.getValueType()));
3209        } else {
3210          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3211          IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3212                             N.getValueType(), IdxN, Scale);
3213        }
3214      }
3215
3216      N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3217                      N.getValueType(), N, IdxN);
3218    }
3219  }
3220
3221  setValue(&I, N);
3222}
3223
3224void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3225  // If this is a fixed sized alloca in the entry block of the function,
3226  // allocate it statically on the stack.
3227  if (FuncInfo.StaticAllocaMap.count(&I))
3228    return;   // getValue will auto-populate this.
3229
3230  Type *Ty = I.getAllocatedType();
3231  const TargetLowering *TLI = TM.getTargetLowering();
3232  uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
3233  unsigned Align =
3234    std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
3235             I.getAlignment());
3236
3237  SDValue AllocSize = getValue(I.getArraySize());
3238
3239  EVT IntPtr = TLI->getPointerTy();
3240  if (AllocSize.getValueType() != IntPtr)
3241    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3242
3243  AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3244                          AllocSize,
3245                          DAG.getConstant(TySize, IntPtr));
3246
3247  // Handle alignment.  If the requested alignment is less than or equal to
3248  // the stack alignment, ignore it.  If the size is greater than or equal to
3249  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3250  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3251  if (Align <= StackAlign)
3252    Align = 0;
3253
3254  // Round the size of the allocation up to the stack alignment size
3255  // by add SA-1 to the size.
3256  AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3257                          AllocSize.getValueType(), AllocSize,
3258                          DAG.getIntPtrConstant(StackAlign-1));
3259
3260  // Mask out the low bits for alignment purposes.
3261  AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3262                          AllocSize.getValueType(), AllocSize,
3263                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3264
3265  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3266  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3267  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
3268                            VTs, Ops, 3);
3269  setValue(&I, DSA);
3270  DAG.setRoot(DSA.getValue(1));
3271
3272  // Inform the Frame Information that we have just allocated a variable-sized
3273  // object.
3274  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3275}
3276
3277void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3278  if (I.isAtomic())
3279    return visitAtomicLoad(I);
3280
3281  const Value *SV = I.getOperand(0);
3282  SDValue Ptr = getValue(SV);
3283
3284  Type *Ty = I.getType();
3285
3286  bool isVolatile = I.isVolatile();
3287  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3288  bool isInvariant = I.getMetadata("invariant.load") != 0;
3289  unsigned Alignment = I.getAlignment();
3290  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3291  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3292
3293  SmallVector<EVT, 4> ValueVTs;
3294  SmallVector<uint64_t, 4> Offsets;
3295  ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
3296  unsigned NumValues = ValueVTs.size();
3297  if (NumValues == 0)
3298    return;
3299
3300  SDValue Root;
3301  bool ConstantMemory = false;
3302  if (I.isVolatile() || NumValues > MaxParallelChains)
3303    // Serialize volatile loads with other side effects.
3304    Root = getRoot();
3305  else if (AA->pointsToConstantMemory(
3306             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3307    // Do not serialize (non-volatile) loads of constant memory with anything.
3308    Root = DAG.getEntryNode();
3309    ConstantMemory = true;
3310  } else {
3311    // Do not serialize non-volatile loads against each other.
3312    Root = DAG.getRoot();
3313  }
3314
3315  SmallVector<SDValue, 4> Values(NumValues);
3316  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3317                                          NumValues));
3318  EVT PtrVT = Ptr.getValueType();
3319  unsigned ChainI = 0;
3320  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3321    // Serializing loads here may result in excessive register pressure, and
3322    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3323    // could recover a bit by hoisting nodes upward in the chain by recognizing
3324    // they are side-effect free or do not alias. The optimizer should really
3325    // avoid this case by converting large object/array copies to llvm.memcpy
3326    // (MaxParallelChains should always remain as failsafe).
3327    if (ChainI == MaxParallelChains) {
3328      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3329      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3330                                  MVT::Other, &Chains[0], ChainI);
3331      Root = Chain;
3332      ChainI = 0;
3333    }
3334    SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3335                            PtrVT, Ptr,
3336                            DAG.getConstant(Offsets[i], PtrVT));
3337    SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3338                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3339                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3340                            Ranges);
3341
3342    Values[i] = L;
3343    Chains[ChainI] = L.getValue(1);
3344  }
3345
3346  if (!ConstantMemory) {
3347    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3348                                MVT::Other, &Chains[0], ChainI);
3349    if (isVolatile)
3350      DAG.setRoot(Chain);
3351    else
3352      PendingLoads.push_back(Chain);
3353  }
3354
3355  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3356                           DAG.getVTList(&ValueVTs[0], NumValues),
3357                           &Values[0], NumValues));
3358}
3359
3360void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3361  if (I.isAtomic())
3362    return visitAtomicStore(I);
3363
3364  const Value *SrcV = I.getOperand(0);
3365  const Value *PtrV = I.getOperand(1);
3366
3367  SmallVector<EVT, 4> ValueVTs;
3368  SmallVector<uint64_t, 4> Offsets;
3369  ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
3370  unsigned NumValues = ValueVTs.size();
3371  if (NumValues == 0)
3372    return;
3373
3374  // Get the lowered operands. Note that we do this after
3375  // checking if NumResults is zero, because with zero results
3376  // the operands won't have values in the map.
3377  SDValue Src = getValue(SrcV);
3378  SDValue Ptr = getValue(PtrV);
3379
3380  SDValue Root = getRoot();
3381  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3382                                          NumValues));
3383  EVT PtrVT = Ptr.getValueType();
3384  bool isVolatile = I.isVolatile();
3385  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3386  unsigned Alignment = I.getAlignment();
3387  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3388
3389  unsigned ChainI = 0;
3390  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3391    // See visitLoad comments.
3392    if (ChainI == MaxParallelChains) {
3393      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3394                                  MVT::Other, &Chains[0], ChainI);
3395      Root = Chain;
3396      ChainI = 0;
3397    }
3398    SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3399                              DAG.getConstant(Offsets[i], PtrVT));
3400    SDValue St = DAG.getStore(Root, getCurSDLoc(),
3401                              SDValue(Src.getNode(), Src.getResNo() + i),
3402                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3403                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3404    Chains[ChainI] = St;
3405  }
3406
3407  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3408                                  MVT::Other, &Chains[0], ChainI);
3409  DAG.setRoot(StoreNode);
3410}
3411
3412static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3413                                    SynchronizationScope Scope,
3414                                    bool Before, SDLoc dl,
3415                                    SelectionDAG &DAG,
3416                                    const TargetLowering &TLI) {
3417  // Fence, if necessary
3418  if (Before) {
3419    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3420      Order = Release;
3421    else if (Order == Acquire || Order == Monotonic)
3422      return Chain;
3423  } else {
3424    if (Order == AcquireRelease)
3425      Order = Acquire;
3426    else if (Order == Release || Order == Monotonic)
3427      return Chain;
3428  }
3429  SDValue Ops[3];
3430  Ops[0] = Chain;
3431  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3432  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3433  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3434}
3435
3436void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3437  SDLoc dl = getCurSDLoc();
3438  AtomicOrdering Order = I.getOrdering();
3439  SynchronizationScope Scope = I.getSynchScope();
3440
3441  SDValue InChain = getRoot();
3442
3443  const TargetLowering *TLI = TM.getTargetLowering();
3444  if (TLI->getInsertFencesForAtomic())
3445    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3446                                   DAG, *TLI);
3447
3448  SDValue L =
3449    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3450                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3451                  InChain,
3452                  getValue(I.getPointerOperand()),
3453                  getValue(I.getCompareOperand()),
3454                  getValue(I.getNewValOperand()),
3455                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3456                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3457                  Scope);
3458
3459  SDValue OutChain = L.getValue(1);
3460
3461  if (TLI->getInsertFencesForAtomic())
3462    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3463                                    DAG, *TLI);
3464
3465  setValue(&I, L);
3466  DAG.setRoot(OutChain);
3467}
3468
3469void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3470  SDLoc dl = getCurSDLoc();
3471  ISD::NodeType NT;
3472  switch (I.getOperation()) {
3473  default: llvm_unreachable("Unknown atomicrmw operation");
3474  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3475  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3476  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3477  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3478  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3479  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3480  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3481  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3482  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3483  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3484  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3485  }
3486  AtomicOrdering Order = I.getOrdering();
3487  SynchronizationScope Scope = I.getSynchScope();
3488
3489  SDValue InChain = getRoot();
3490
3491  const TargetLowering *TLI = TM.getTargetLowering();
3492  if (TLI->getInsertFencesForAtomic())
3493    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3494                                   DAG, *TLI);
3495
3496  SDValue L =
3497    DAG.getAtomic(NT, dl,
3498                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3499                  InChain,
3500                  getValue(I.getPointerOperand()),
3501                  getValue(I.getValOperand()),
3502                  I.getPointerOperand(), 0 /* Alignment */,
3503                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3504                  Scope);
3505
3506  SDValue OutChain = L.getValue(1);
3507
3508  if (TLI->getInsertFencesForAtomic())
3509    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3510                                    DAG, *TLI);
3511
3512  setValue(&I, L);
3513  DAG.setRoot(OutChain);
3514}
3515
3516void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3517  SDLoc dl = getCurSDLoc();
3518  const TargetLowering *TLI = TM.getTargetLowering();
3519  SDValue Ops[3];
3520  Ops[0] = getRoot();
3521  Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
3522  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
3523  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3524}
3525
3526void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3527  SDLoc dl = getCurSDLoc();
3528  AtomicOrdering Order = I.getOrdering();
3529  SynchronizationScope Scope = I.getSynchScope();
3530
3531  SDValue InChain = getRoot();
3532
3533  const TargetLowering *TLI = TM.getTargetLowering();
3534  EVT VT = TLI->getValueType(I.getType());
3535
3536  if (I.getAlignment() < VT.getSizeInBits() / 8)
3537    report_fatal_error("Cannot generate unaligned atomic load");
3538
3539  SDValue L =
3540    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3541                  getValue(I.getPointerOperand()),
3542                  I.getPointerOperand(), I.getAlignment(),
3543                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3544                  Scope);
3545
3546  SDValue OutChain = L.getValue(1);
3547
3548  if (TLI->getInsertFencesForAtomic())
3549    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3550                                    DAG, *TLI);
3551
3552  setValue(&I, L);
3553  DAG.setRoot(OutChain);
3554}
3555
3556void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3557  SDLoc dl = getCurSDLoc();
3558
3559  AtomicOrdering Order = I.getOrdering();
3560  SynchronizationScope Scope = I.getSynchScope();
3561
3562  SDValue InChain = getRoot();
3563
3564  const TargetLowering *TLI = TM.getTargetLowering();
3565  EVT VT = TLI->getValueType(I.getValueOperand()->getType());
3566
3567  if (I.getAlignment() < VT.getSizeInBits() / 8)
3568    report_fatal_error("Cannot generate unaligned atomic store");
3569
3570  if (TLI->getInsertFencesForAtomic())
3571    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3572                                   DAG, *TLI);
3573
3574  SDValue OutChain =
3575    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3576                  InChain,
3577                  getValue(I.getPointerOperand()),
3578                  getValue(I.getValueOperand()),
3579                  I.getPointerOperand(), I.getAlignment(),
3580                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3581                  Scope);
3582
3583  if (TLI->getInsertFencesForAtomic())
3584    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3585                                    DAG, *TLI);
3586
3587  DAG.setRoot(OutChain);
3588}
3589
3590/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3591/// node.
3592void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3593                                               unsigned Intrinsic) {
3594  bool HasChain = !I.doesNotAccessMemory();
3595  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3596
3597  // Build the operand list.
3598  SmallVector<SDValue, 8> Ops;
3599  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3600    if (OnlyLoad) {
3601      // We don't need to serialize loads against other loads.
3602      Ops.push_back(DAG.getRoot());
3603    } else {
3604      Ops.push_back(getRoot());
3605    }
3606  }
3607
3608  // Info is set by getTgtMemInstrinsic
3609  TargetLowering::IntrinsicInfo Info;
3610  const TargetLowering *TLI = TM.getTargetLowering();
3611  bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
3612
3613  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3614  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3615      Info.opc == ISD::INTRINSIC_W_CHAIN)
3616    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
3617
3618  // Add all operands of the call to the operand list.
3619  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3620    SDValue Op = getValue(I.getArgOperand(i));
3621    Ops.push_back(Op);
3622  }
3623
3624  SmallVector<EVT, 4> ValueVTs;
3625  ComputeValueVTs(*TLI, I.getType(), ValueVTs);
3626
3627  if (HasChain)
3628    ValueVTs.push_back(MVT::Other);
3629
3630  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3631
3632  // Create the node.
3633  SDValue Result;
3634  if (IsTgtIntrinsic) {
3635    // This is target intrinsic that touches memory
3636    Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3637                                     VTs, &Ops[0], Ops.size(),
3638                                     Info.memVT,
3639                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3640                                     Info.align, Info.vol,
3641                                     Info.readMem, Info.writeMem);
3642  } else if (!HasChain) {
3643    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
3644                         VTs, &Ops[0], Ops.size());
3645  } else if (!I.getType()->isVoidTy()) {
3646    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
3647                         VTs, &Ops[0], Ops.size());
3648  } else {
3649    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
3650                         VTs, &Ops[0], Ops.size());
3651  }
3652
3653  if (HasChain) {
3654    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3655    if (OnlyLoad)
3656      PendingLoads.push_back(Chain);
3657    else
3658      DAG.setRoot(Chain);
3659  }
3660
3661  if (!I.getType()->isVoidTy()) {
3662    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3663      EVT VT = TLI->getValueType(PTy);
3664      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3665    }
3666
3667    setValue(&I, Result);
3668  }
3669}
3670
3671/// GetSignificand - Get the significand and build it into a floating-point
3672/// number with exponent of 1:
3673///
3674///   Op = (Op & 0x007fffff) | 0x3f800000;
3675///
3676/// where Op is the hexadecimal representation of floating point value.
3677static SDValue
3678GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3679  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3680                           DAG.getConstant(0x007fffff, MVT::i32));
3681  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3682                           DAG.getConstant(0x3f800000, MVT::i32));
3683  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3684}
3685
3686/// GetExponent - Get the exponent:
3687///
3688///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3689///
3690/// where Op is the hexadecimal representation of floating point value.
3691static SDValue
3692GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3693            SDLoc dl) {
3694  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3695                           DAG.getConstant(0x7f800000, MVT::i32));
3696  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3697                           DAG.getConstant(23, TLI.getPointerTy()));
3698  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3699                           DAG.getConstant(127, MVT::i32));
3700  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3701}
3702
3703/// getF32Constant - Get 32-bit floating point constant.
3704static SDValue
3705getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3706  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3707                           MVT::f32);
3708}
3709
3710/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3711/// limited-precision mode.
3712static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3713                         const TargetLowering &TLI) {
3714  if (Op.getValueType() == MVT::f32 &&
3715      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3716
3717    // Put the exponent in the right bit position for later addition to the
3718    // final result:
3719    //
3720    //   #define LOG2OFe 1.4426950f
3721    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3722    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3723                             getF32Constant(DAG, 0x3fb8aa3b));
3724    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3725
3726    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3727    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3728    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3729
3730    //   IntegerPartOfX <<= 23;
3731    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3732                                 DAG.getConstant(23, TLI.getPointerTy()));
3733
3734    SDValue TwoToFracPartOfX;
3735    if (LimitFloatPrecision <= 6) {
3736      // For floating-point precision of 6:
3737      //
3738      //   TwoToFractionalPartOfX =
3739      //     0.997535578f +
3740      //       (0.735607626f + 0.252464424f * x) * x;
3741      //
3742      // error 0.0144103317, which is 6 bits
3743      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3744                               getF32Constant(DAG, 0x3e814304));
3745      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3746                               getF32Constant(DAG, 0x3f3c50c8));
3747      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3748      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3749                                     getF32Constant(DAG, 0x3f7f5e7e));
3750    } else if (LimitFloatPrecision <= 12) {
3751      // For floating-point precision of 12:
3752      //
3753      //   TwoToFractionalPartOfX =
3754      //     0.999892986f +
3755      //       (0.696457318f +
3756      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3757      //
3758      // 0.000107046256 error, which is 13 to 14 bits
3759      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3760                               getF32Constant(DAG, 0x3da235e3));
3761      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3762                               getF32Constant(DAG, 0x3e65b8f3));
3763      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3764      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3765                               getF32Constant(DAG, 0x3f324b07));
3766      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3767      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3768                                     getF32Constant(DAG, 0x3f7ff8fd));
3769    } else { // LimitFloatPrecision <= 18
3770      // For floating-point precision of 18:
3771      //
3772      //   TwoToFractionalPartOfX =
3773      //     0.999999982f +
3774      //       (0.693148872f +
3775      //         (0.240227044f +
3776      //           (0.554906021e-1f +
3777      //             (0.961591928e-2f +
3778      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3779      //
3780      // error 2.47208000*10^(-7), which is better than 18 bits
3781      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3782                               getF32Constant(DAG, 0x3924b03e));
3783      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3784                               getF32Constant(DAG, 0x3ab24b87));
3785      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3786      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3787                               getF32Constant(DAG, 0x3c1d8c17));
3788      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3789      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3790                               getF32Constant(DAG, 0x3d634a1d));
3791      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3792      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3793                               getF32Constant(DAG, 0x3e75fe14));
3794      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3795      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3796                                getF32Constant(DAG, 0x3f317234));
3797      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3798      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3799                                     getF32Constant(DAG, 0x3f800000));
3800    }
3801
3802    // Add the exponent into the result in integer domain.
3803    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3804    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3805                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3806                                   t13, IntegerPartOfX));
3807  }
3808
3809  // No special expansion.
3810  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3811}
3812
3813/// expandLog - Lower a log intrinsic. Handles the special sequences for
3814/// limited-precision mode.
3815static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3816                         const TargetLowering &TLI) {
3817  if (Op.getValueType() == MVT::f32 &&
3818      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3819    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3820
3821    // Scale the exponent by log(2) [0.69314718f].
3822    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3823    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3824                                        getF32Constant(DAG, 0x3f317218));
3825
3826    // Get the significand and build it into a floating-point number with
3827    // exponent of 1.
3828    SDValue X = GetSignificand(DAG, Op1, dl);
3829
3830    SDValue LogOfMantissa;
3831    if (LimitFloatPrecision <= 6) {
3832      // For floating-point precision of 6:
3833      //
3834      //   LogofMantissa =
3835      //     -1.1609546f +
3836      //       (1.4034025f - 0.23903021f * x) * x;
3837      //
3838      // error 0.0034276066, which is better than 8 bits
3839      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3840                               getF32Constant(DAG, 0xbe74c456));
3841      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3842                               getF32Constant(DAG, 0x3fb3a2b1));
3843      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3844      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3845                                  getF32Constant(DAG, 0x3f949a29));
3846    } else if (LimitFloatPrecision <= 12) {
3847      // For floating-point precision of 12:
3848      //
3849      //   LogOfMantissa =
3850      //     -1.7417939f +
3851      //       (2.8212026f +
3852      //         (-1.4699568f +
3853      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3854      //
3855      // error 0.000061011436, which is 14 bits
3856      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3857                               getF32Constant(DAG, 0xbd67b6d6));
3858      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3859                               getF32Constant(DAG, 0x3ee4f4b8));
3860      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3861      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3862                               getF32Constant(DAG, 0x3fbc278b));
3863      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3864      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3865                               getF32Constant(DAG, 0x40348e95));
3866      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3867      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3868                                  getF32Constant(DAG, 0x3fdef31a));
3869    } else { // LimitFloatPrecision <= 18
3870      // For floating-point precision of 18:
3871      //
3872      //   LogOfMantissa =
3873      //     -2.1072184f +
3874      //       (4.2372794f +
3875      //         (-3.7029485f +
3876      //           (2.2781945f +
3877      //             (-0.87823314f +
3878      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3879      //
3880      // error 0.0000023660568, which is better than 18 bits
3881      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3882                               getF32Constant(DAG, 0xbc91e5ac));
3883      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3884                               getF32Constant(DAG, 0x3e4350aa));
3885      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3886      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3887                               getF32Constant(DAG, 0x3f60d3e3));
3888      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3889      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3890                               getF32Constant(DAG, 0x4011cdf0));
3891      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3892      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3893                               getF32Constant(DAG, 0x406cfd1c));
3894      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3895      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3896                               getF32Constant(DAG, 0x408797cb));
3897      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3898      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3899                                  getF32Constant(DAG, 0x4006dcab));
3900    }
3901
3902    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3903  }
3904
3905  // No special expansion.
3906  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3907}
3908
3909/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3910/// limited-precision mode.
3911static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3912                          const TargetLowering &TLI) {
3913  if (Op.getValueType() == MVT::f32 &&
3914      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3915    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3916
3917    // Get the exponent.
3918    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3919
3920    // Get the significand and build it into a floating-point number with
3921    // exponent of 1.
3922    SDValue X = GetSignificand(DAG, Op1, dl);
3923
3924    // Different possible minimax approximations of significand in
3925    // floating-point for various degrees of accuracy over [1,2].
3926    SDValue Log2ofMantissa;
3927    if (LimitFloatPrecision <= 6) {
3928      // For floating-point precision of 6:
3929      //
3930      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3931      //
3932      // error 0.0049451742, which is more than 7 bits
3933      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3934                               getF32Constant(DAG, 0xbeb08fe0));
3935      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3936                               getF32Constant(DAG, 0x40019463));
3937      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3938      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3939                                   getF32Constant(DAG, 0x3fd6633d));
3940    } else if (LimitFloatPrecision <= 12) {
3941      // For floating-point precision of 12:
3942      //
3943      //   Log2ofMantissa =
3944      //     -2.51285454f +
3945      //       (4.07009056f +
3946      //         (-2.12067489f +
3947      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3948      //
3949      // error 0.0000876136000, which is better than 13 bits
3950      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3951                               getF32Constant(DAG, 0xbda7262e));
3952      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3953                               getF32Constant(DAG, 0x3f25280b));
3954      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3955      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3956                               getF32Constant(DAG, 0x4007b923));
3957      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3958      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3959                               getF32Constant(DAG, 0x40823e2f));
3960      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3961      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3962                                   getF32Constant(DAG, 0x4020d29c));
3963    } else { // LimitFloatPrecision <= 18
3964      // For floating-point precision of 18:
3965      //
3966      //   Log2ofMantissa =
3967      //     -3.0400495f +
3968      //       (6.1129976f +
3969      //         (-5.3420409f +
3970      //           (3.2865683f +
3971      //             (-1.2669343f +
3972      //               (0.27515199f -
3973      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3974      //
3975      // error 0.0000018516, which is better than 18 bits
3976      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3977                               getF32Constant(DAG, 0xbcd2769e));
3978      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3979                               getF32Constant(DAG, 0x3e8ce0b9));
3980      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3981      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3982                               getF32Constant(DAG, 0x3fa22ae7));
3983      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3984      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3985                               getF32Constant(DAG, 0x40525723));
3986      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3987      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3988                               getF32Constant(DAG, 0x40aaf200));
3989      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3990      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3991                               getF32Constant(DAG, 0x40c39dad));
3992      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3993      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3994                                   getF32Constant(DAG, 0x4042902c));
3995    }
3996
3997    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3998  }
3999
4000  // No special expansion.
4001  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4002}
4003
4004/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4005/// limited-precision mode.
4006static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4007                           const TargetLowering &TLI) {
4008  if (Op.getValueType() == MVT::f32 &&
4009      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4010    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4011
4012    // Scale the exponent by log10(2) [0.30102999f].
4013    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4014    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4015                                        getF32Constant(DAG, 0x3e9a209a));
4016
4017    // Get the significand and build it into a floating-point number with
4018    // exponent of 1.
4019    SDValue X = GetSignificand(DAG, Op1, dl);
4020
4021    SDValue Log10ofMantissa;
4022    if (LimitFloatPrecision <= 6) {
4023      // For floating-point precision of 6:
4024      //
4025      //   Log10ofMantissa =
4026      //     -0.50419619f +
4027      //       (0.60948995f - 0.10380950f * x) * x;
4028      //
4029      // error 0.0014886165, which is 6 bits
4030      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4031                               getF32Constant(DAG, 0xbdd49a13));
4032      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4033                               getF32Constant(DAG, 0x3f1c0789));
4034      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4035      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4036                                    getF32Constant(DAG, 0x3f011300));
4037    } else if (LimitFloatPrecision <= 12) {
4038      // For floating-point precision of 12:
4039      //
4040      //   Log10ofMantissa =
4041      //     -0.64831180f +
4042      //       (0.91751397f +
4043      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4044      //
4045      // error 0.00019228036, which is better than 12 bits
4046      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4047                               getF32Constant(DAG, 0x3d431f31));
4048      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4049                               getF32Constant(DAG, 0x3ea21fb2));
4050      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4051      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4052                               getF32Constant(DAG, 0x3f6ae232));
4053      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4054      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4055                                    getF32Constant(DAG, 0x3f25f7c3));
4056    } else { // LimitFloatPrecision <= 18
4057      // For floating-point precision of 18:
4058      //
4059      //   Log10ofMantissa =
4060      //     -0.84299375f +
4061      //       (1.5327582f +
4062      //         (-1.0688956f +
4063      //           (0.49102474f +
4064      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4065      //
4066      // error 0.0000037995730, which is better than 18 bits
4067      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4068                               getF32Constant(DAG, 0x3c5d51ce));
4069      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4070                               getF32Constant(DAG, 0x3e00685a));
4071      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4072      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4073                               getF32Constant(DAG, 0x3efb6798));
4074      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4075      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4076                               getF32Constant(DAG, 0x3f88d192));
4077      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4078      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4079                               getF32Constant(DAG, 0x3fc4316c));
4080      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4081      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4082                                    getF32Constant(DAG, 0x3f57ce70));
4083    }
4084
4085    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4086  }
4087
4088  // No special expansion.
4089  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4090}
4091
4092/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4093/// limited-precision mode.
4094static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4095                          const TargetLowering &TLI) {
4096  if (Op.getValueType() == MVT::f32 &&
4097      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4098    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4099
4100    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4101    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4102    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4103
4104    //   IntegerPartOfX <<= 23;
4105    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4106                                 DAG.getConstant(23, TLI.getPointerTy()));
4107
4108    SDValue TwoToFractionalPartOfX;
4109    if (LimitFloatPrecision <= 6) {
4110      // For floating-point precision of 6:
4111      //
4112      //   TwoToFractionalPartOfX =
4113      //     0.997535578f +
4114      //       (0.735607626f + 0.252464424f * x) * x;
4115      //
4116      // error 0.0144103317, which is 6 bits
4117      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4118                               getF32Constant(DAG, 0x3e814304));
4119      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4120                               getF32Constant(DAG, 0x3f3c50c8));
4121      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4122      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4123                                           getF32Constant(DAG, 0x3f7f5e7e));
4124    } else if (LimitFloatPrecision <= 12) {
4125      // For floating-point precision of 12:
4126      //
4127      //   TwoToFractionalPartOfX =
4128      //     0.999892986f +
4129      //       (0.696457318f +
4130      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4131      //
4132      // error 0.000107046256, which is 13 to 14 bits
4133      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4134                               getF32Constant(DAG, 0x3da235e3));
4135      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4136                               getF32Constant(DAG, 0x3e65b8f3));
4137      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4138      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4139                               getF32Constant(DAG, 0x3f324b07));
4140      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4141      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4142                                           getF32Constant(DAG, 0x3f7ff8fd));
4143    } else { // LimitFloatPrecision <= 18
4144      // For floating-point precision of 18:
4145      //
4146      //   TwoToFractionalPartOfX =
4147      //     0.999999982f +
4148      //       (0.693148872f +
4149      //         (0.240227044f +
4150      //           (0.554906021e-1f +
4151      //             (0.961591928e-2f +
4152      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4153      // error 2.47208000*10^(-7), which is better than 18 bits
4154      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4155                               getF32Constant(DAG, 0x3924b03e));
4156      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4157                               getF32Constant(DAG, 0x3ab24b87));
4158      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4159      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4160                               getF32Constant(DAG, 0x3c1d8c17));
4161      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4162      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4163                               getF32Constant(DAG, 0x3d634a1d));
4164      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4165      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4166                               getF32Constant(DAG, 0x3e75fe14));
4167      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4168      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4169                                getF32Constant(DAG, 0x3f317234));
4170      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4171      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4172                                           getF32Constant(DAG, 0x3f800000));
4173    }
4174
4175    // Add the exponent into the result in integer domain.
4176    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4177                              TwoToFractionalPartOfX);
4178    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4179                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4180                                   t13, IntegerPartOfX));
4181  }
4182
4183  // No special expansion.
4184  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4185}
4186
4187/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4188/// limited-precision mode with x == 10.0f.
4189static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4190                         SelectionDAG &DAG, const TargetLowering &TLI) {
4191  bool IsExp10 = false;
4192  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4193      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4194    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4195      APFloat Ten(10.0f);
4196      IsExp10 = LHSC->isExactlyValue(Ten);
4197    }
4198  }
4199
4200  if (IsExp10) {
4201    // Put the exponent in the right bit position for later addition to the
4202    // final result:
4203    //
4204    //   #define LOG2OF10 3.3219281f
4205    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4206    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4207                             getF32Constant(DAG, 0x40549a78));
4208    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4209
4210    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4211    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4212    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4213
4214    //   IntegerPartOfX <<= 23;
4215    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4216                                 DAG.getConstant(23, TLI.getPointerTy()));
4217
4218    SDValue TwoToFractionalPartOfX;
4219    if (LimitFloatPrecision <= 6) {
4220      // For floating-point precision of 6:
4221      //
4222      //   twoToFractionalPartOfX =
4223      //     0.997535578f +
4224      //       (0.735607626f + 0.252464424f * x) * x;
4225      //
4226      // error 0.0144103317, which is 6 bits
4227      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4228                               getF32Constant(DAG, 0x3e814304));
4229      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4230                               getF32Constant(DAG, 0x3f3c50c8));
4231      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4232      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4233                                           getF32Constant(DAG, 0x3f7f5e7e));
4234    } else if (LimitFloatPrecision <= 12) {
4235      // For floating-point precision of 12:
4236      //
4237      //   TwoToFractionalPartOfX =
4238      //     0.999892986f +
4239      //       (0.696457318f +
4240      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4241      //
4242      // error 0.000107046256, which is 13 to 14 bits
4243      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4244                               getF32Constant(DAG, 0x3da235e3));
4245      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4246                               getF32Constant(DAG, 0x3e65b8f3));
4247      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4248      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4249                               getF32Constant(DAG, 0x3f324b07));
4250      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4251      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4252                                           getF32Constant(DAG, 0x3f7ff8fd));
4253    } else { // LimitFloatPrecision <= 18
4254      // For floating-point precision of 18:
4255      //
4256      //   TwoToFractionalPartOfX =
4257      //     0.999999982f +
4258      //       (0.693148872f +
4259      //         (0.240227044f +
4260      //           (0.554906021e-1f +
4261      //             (0.961591928e-2f +
4262      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4263      // error 2.47208000*10^(-7), which is better than 18 bits
4264      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4265                               getF32Constant(DAG, 0x3924b03e));
4266      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4267                               getF32Constant(DAG, 0x3ab24b87));
4268      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4269      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4270                               getF32Constant(DAG, 0x3c1d8c17));
4271      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4272      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4273                               getF32Constant(DAG, 0x3d634a1d));
4274      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4275      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4276                               getF32Constant(DAG, 0x3e75fe14));
4277      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4278      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4279                                getF32Constant(DAG, 0x3f317234));
4280      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4281      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4282                                           getF32Constant(DAG, 0x3f800000));
4283    }
4284
4285    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4286    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4287                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4288                                   t13, IntegerPartOfX));
4289  }
4290
4291  // No special expansion.
4292  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4293}
4294
4295
4296/// ExpandPowI - Expand a llvm.powi intrinsic.
4297static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4298                          SelectionDAG &DAG) {
4299  // If RHS is a constant, we can expand this out to a multiplication tree,
4300  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4301  // optimizing for size, we only want to do this if the expansion would produce
4302  // a small number of multiplies, otherwise we do the full expansion.
4303  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4304    // Get the exponent as a positive value.
4305    unsigned Val = RHSC->getSExtValue();
4306    if ((int)Val < 0) Val = -Val;
4307
4308    // powi(x, 0) -> 1.0
4309    if (Val == 0)
4310      return DAG.getConstantFP(1.0, LHS.getValueType());
4311
4312    const Function *F = DAG.getMachineFunction().getFunction();
4313    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4314                                         Attribute::OptimizeForSize) ||
4315        // If optimizing for size, don't insert too many multiplies.  This
4316        // inserts up to 5 multiplies.
4317        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4318      // We use the simple binary decomposition method to generate the multiply
4319      // sequence.  There are more optimal ways to do this (for example,
4320      // powi(x,15) generates one more multiply than it should), but this has
4321      // the benefit of being both really simple and much better than a libcall.
4322      SDValue Res;  // Logically starts equal to 1.0
4323      SDValue CurSquare = LHS;
4324      while (Val) {
4325        if (Val & 1) {
4326          if (Res.getNode())
4327            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4328          else
4329            Res = CurSquare;  // 1.0*CurSquare.
4330        }
4331
4332        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4333                                CurSquare, CurSquare);
4334        Val >>= 1;
4335      }
4336
4337      // If the original was negative, invert the result, producing 1/(x*x*x).
4338      if (RHSC->getSExtValue() < 0)
4339        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4340                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4341      return Res;
4342    }
4343  }
4344
4345  // Otherwise, expand to a libcall.
4346  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4347}
4348
4349// getTruncatedArgReg - Find underlying register used for an truncated
4350// argument.
4351static unsigned getTruncatedArgReg(const SDValue &N) {
4352  if (N.getOpcode() != ISD::TRUNCATE)
4353    return 0;
4354
4355  const SDValue &Ext = N.getOperand(0);
4356  if (Ext.getOpcode() == ISD::AssertZext ||
4357      Ext.getOpcode() == ISD::AssertSext) {
4358    const SDValue &CFR = Ext.getOperand(0);
4359    if (CFR.getOpcode() == ISD::CopyFromReg)
4360      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4361    if (CFR.getOpcode() == ISD::TRUNCATE)
4362      return getTruncatedArgReg(CFR);
4363  }
4364  return 0;
4365}
4366
4367/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4368/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4369/// At the end of instruction selection, they will be inserted to the entry BB.
4370bool
4371SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4372                                              int64_t Offset,
4373                                              const SDValue &N) {
4374  const Argument *Arg = dyn_cast<Argument>(V);
4375  if (!Arg)
4376    return false;
4377
4378  MachineFunction &MF = DAG.getMachineFunction();
4379  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4380
4381  // Ignore inlined function arguments here.
4382  DIVariable DV(Variable);
4383  if (DV.isInlinedFnArgument(MF.getFunction()))
4384    return false;
4385
4386  Optional<MachineOperand> Op;
4387  // Some arguments' frame index is recorded during argument lowering.
4388  if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4389    Op = MachineOperand::CreateFI(FI);
4390
4391  if (!Op && N.getNode()) {
4392    unsigned Reg;
4393    if (N.getOpcode() == ISD::CopyFromReg)
4394      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4395    else
4396      Reg = getTruncatedArgReg(N);
4397    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4398      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4399      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4400      if (PR)
4401        Reg = PR;
4402    }
4403    if (Reg)
4404      Op = MachineOperand::CreateReg(Reg, false);
4405  }
4406
4407  if (!Op) {
4408    // Check if ValueMap has reg number.
4409    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4410    if (VMI != FuncInfo.ValueMap.end())
4411      Op = MachineOperand::CreateReg(VMI->second, false);
4412  }
4413
4414  if (!Op && N.getNode())
4415    // Check if frame index is available.
4416    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4417      if (FrameIndexSDNode *FINode =
4418          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4419        Op = MachineOperand::CreateFI(FINode->getIndex());
4420
4421  if (!Op)
4422    return false;
4423
4424  // FIXME: This does not handle register-indirect values at offset 0.
4425  bool IsIndirect = Offset != 0;
4426  if (Op->isReg())
4427    FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
4428                                            TII->get(TargetOpcode::DBG_VALUE),
4429                                            IsIndirect,
4430                                            Op->getReg(), Offset, Variable));
4431  else
4432    FuncInfo.ArgDbgValues.push_back(
4433      BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4434          .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4435
4436  return true;
4437}
4438
4439// VisualStudio defines setjmp as _setjmp
4440#if defined(_MSC_VER) && defined(setjmp) && \
4441                         !defined(setjmp_undefined_for_msvc)
4442#  pragma push_macro("setjmp")
4443#  undef setjmp
4444#  define setjmp_undefined_for_msvc
4445#endif
4446
4447/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4448/// we want to emit this as a call to a named external function, return the name
4449/// otherwise lower it and return null.
4450const char *
4451SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4452  const TargetLowering *TLI = TM.getTargetLowering();
4453  SDLoc sdl = getCurSDLoc();
4454  DebugLoc dl = getCurDebugLoc();
4455  SDValue Res;
4456
4457  switch (Intrinsic) {
4458  default:
4459    // By default, turn this into a target intrinsic node.
4460    visitTargetIntrinsic(I, Intrinsic);
4461    return 0;
4462  case Intrinsic::vastart:  visitVAStart(I); return 0;
4463  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4464  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4465  case Intrinsic::returnaddress:
4466    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
4467                             getValue(I.getArgOperand(0))));
4468    return 0;
4469  case Intrinsic::frameaddress:
4470    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
4471                             getValue(I.getArgOperand(0))));
4472    return 0;
4473  case Intrinsic::setjmp:
4474    return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
4475  case Intrinsic::longjmp:
4476    return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
4477  case Intrinsic::memcpy: {
4478    // Assert for address < 256 since we support only user defined address
4479    // spaces.
4480    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4481           < 256 &&
4482           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4483           < 256 &&
4484           "Unknown address space");
4485    SDValue Op1 = getValue(I.getArgOperand(0));
4486    SDValue Op2 = getValue(I.getArgOperand(1));
4487    SDValue Op3 = getValue(I.getArgOperand(2));
4488    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4489    if (!Align)
4490      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4491    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4492    DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4493                              MachinePointerInfo(I.getArgOperand(0)),
4494                              MachinePointerInfo(I.getArgOperand(1))));
4495    return 0;
4496  }
4497  case Intrinsic::memset: {
4498    // Assert for address < 256 since we support only user defined address
4499    // spaces.
4500    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4501           < 256 &&
4502           "Unknown address space");
4503    SDValue Op1 = getValue(I.getArgOperand(0));
4504    SDValue Op2 = getValue(I.getArgOperand(1));
4505    SDValue Op3 = getValue(I.getArgOperand(2));
4506    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4507    if (!Align)
4508      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4509    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4510    DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4511                              MachinePointerInfo(I.getArgOperand(0))));
4512    return 0;
4513  }
4514  case Intrinsic::memmove: {
4515    // Assert for address < 256 since we support only user defined address
4516    // spaces.
4517    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4518           < 256 &&
4519           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4520           < 256 &&
4521           "Unknown address space");
4522    SDValue Op1 = getValue(I.getArgOperand(0));
4523    SDValue Op2 = getValue(I.getArgOperand(1));
4524    SDValue Op3 = getValue(I.getArgOperand(2));
4525    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4526    if (!Align)
4527      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4528    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4529    DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4530                               MachinePointerInfo(I.getArgOperand(0)),
4531                               MachinePointerInfo(I.getArgOperand(1))));
4532    return 0;
4533  }
4534  case Intrinsic::dbg_declare: {
4535    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4536    MDNode *Variable = DI.getVariable();
4537    const Value *Address = DI.getAddress();
4538    DIVariable DIVar(Variable);
4539    assert((!DIVar || DIVar.isVariable()) &&
4540      "Variable in DbgDeclareInst should be either null or a DIVariable.");
4541    if (!Address || !DIVar) {
4542      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4543      return 0;
4544    }
4545
4546    // Check if address has undef value.
4547    if (isa<UndefValue>(Address) ||
4548        (Address->use_empty() && !isa<Argument>(Address))) {
4549      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4550      return 0;
4551    }
4552
4553    SDValue &N = NodeMap[Address];
4554    if (!N.getNode() && isa<Argument>(Address))
4555      // Check unused arguments map.
4556      N = UnusedArgNodeMap[Address];
4557    SDDbgValue *SDV;
4558    if (N.getNode()) {
4559      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4560        Address = BCI->getOperand(0);
4561      // Parameters are handled specially.
4562      bool isParameter =
4563        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4564         isa<Argument>(Address));
4565
4566      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4567
4568      if (isParameter && !AI) {
4569        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4570        if (FINode)
4571          // Byval parameter.  We have a frame index at this point.
4572          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4573                                0, dl, SDNodeOrder);
4574        else {
4575          // Address is an argument, so try to emit its dbg value using
4576          // virtual register info from the FuncInfo.ValueMap.
4577          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4578          return 0;
4579        }
4580      } else if (AI)
4581        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4582                              0, dl, SDNodeOrder);
4583      else {
4584        // Can't do anything with other non-AI cases yet.
4585        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4586        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4587        DEBUG(Address->dump());
4588        return 0;
4589      }
4590      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4591    } else {
4592      // If Address is an argument then try to emit its dbg value using
4593      // virtual register info from the FuncInfo.ValueMap.
4594      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4595        // If variable is pinned by a alloca in dominating bb then
4596        // use StaticAllocaMap.
4597        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4598          if (AI->getParent() != DI.getParent()) {
4599            DenseMap<const AllocaInst*, int>::iterator SI =
4600              FuncInfo.StaticAllocaMap.find(AI);
4601            if (SI != FuncInfo.StaticAllocaMap.end()) {
4602              SDV = DAG.getDbgValue(Variable, SI->second,
4603                                    0, dl, SDNodeOrder);
4604              DAG.AddDbgValue(SDV, 0, false);
4605              return 0;
4606            }
4607          }
4608        }
4609        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4610      }
4611    }
4612    return 0;
4613  }
4614  case Intrinsic::dbg_value: {
4615    const DbgValueInst &DI = cast<DbgValueInst>(I);
4616    DIVariable DIVar(DI.getVariable());
4617    assert((!DIVar || DIVar.isVariable()) &&
4618      "Variable in DbgValueInst should be either null or a DIVariable.");
4619    if (!DIVar)
4620      return 0;
4621
4622    MDNode *Variable = DI.getVariable();
4623    uint64_t Offset = DI.getOffset();
4624    const Value *V = DI.getValue();
4625    if (!V)
4626      return 0;
4627
4628    SDDbgValue *SDV;
4629    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4630      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4631      DAG.AddDbgValue(SDV, 0, false);
4632    } else {
4633      // Do not use getValue() in here; we don't want to generate code at
4634      // this point if it hasn't been done yet.
4635      SDValue N = NodeMap[V];
4636      if (!N.getNode() && isa<Argument>(V))
4637        // Check unused arguments map.
4638        N = UnusedArgNodeMap[V];
4639      if (N.getNode()) {
4640        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4641          SDV = DAG.getDbgValue(Variable, N.getNode(),
4642                                N.getResNo(), Offset, dl, SDNodeOrder);
4643          DAG.AddDbgValue(SDV, N.getNode(), false);
4644        }
4645      } else if (!V->use_empty() ) {
4646        // Do not call getValue(V) yet, as we don't want to generate code.
4647        // Remember it for later.
4648        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4649        DanglingDebugInfoMap[V] = DDI;
4650      } else {
4651        // We may expand this to cover more cases.  One case where we have no
4652        // data available is an unreferenced parameter.
4653        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4654      }
4655    }
4656
4657    // Build a debug info table entry.
4658    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4659      V = BCI->getOperand(0);
4660    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4661    // Don't handle byval struct arguments or VLAs, for example.
4662    if (!AI) {
4663      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4664      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4665      return 0;
4666    }
4667    DenseMap<const AllocaInst*, int>::iterator SI =
4668      FuncInfo.StaticAllocaMap.find(AI);
4669    if (SI == FuncInfo.StaticAllocaMap.end())
4670      return 0; // VLAs.
4671    int FI = SI->second;
4672
4673    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4674    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4675      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4676    return 0;
4677  }
4678
4679  case Intrinsic::eh_typeid_for: {
4680    // Find the type id for the given typeinfo.
4681    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4682    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4683    Res = DAG.getConstant(TypeID, MVT::i32);
4684    setValue(&I, Res);
4685    return 0;
4686  }
4687
4688  case Intrinsic::eh_return_i32:
4689  case Intrinsic::eh_return_i64:
4690    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4691    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4692                            MVT::Other,
4693                            getControlRoot(),
4694                            getValue(I.getArgOperand(0)),
4695                            getValue(I.getArgOperand(1))));
4696    return 0;
4697  case Intrinsic::eh_unwind_init:
4698    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4699    return 0;
4700  case Intrinsic::eh_dwarf_cfa: {
4701    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4702                                        TLI->getPointerTy());
4703    SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4704                                 TLI->getPointerTy(),
4705                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4706                                             TLI->getPointerTy()),
4707                                 CfaArg);
4708    SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4709                             TLI->getPointerTy(),
4710                             DAG.getConstant(0, TLI->getPointerTy()));
4711    setValue(&I, DAG.getNode(ISD::ADD, sdl, TLI->getPointerTy(),
4712                             FA, Offset));
4713    return 0;
4714  }
4715  case Intrinsic::eh_sjlj_callsite: {
4716    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4717    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4718    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4719    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4720
4721    MMI.setCurrentCallSite(CI->getZExtValue());
4722    return 0;
4723  }
4724  case Intrinsic::eh_sjlj_functioncontext: {
4725    // Get and store the index of the function context.
4726    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4727    AllocaInst *FnCtx =
4728      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4729    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4730    MFI->setFunctionContextIndex(FI);
4731    return 0;
4732  }
4733  case Intrinsic::eh_sjlj_setjmp: {
4734    SDValue Ops[2];
4735    Ops[0] = getRoot();
4736    Ops[1] = getValue(I.getArgOperand(0));
4737    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4738                             DAG.getVTList(MVT::i32, MVT::Other),
4739                             Ops, 2);
4740    setValue(&I, Op.getValue(0));
4741    DAG.setRoot(Op.getValue(1));
4742    return 0;
4743  }
4744  case Intrinsic::eh_sjlj_longjmp: {
4745    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4746                            getRoot(), getValue(I.getArgOperand(0))));
4747    return 0;
4748  }
4749
4750  case Intrinsic::x86_mmx_pslli_w:
4751  case Intrinsic::x86_mmx_pslli_d:
4752  case Intrinsic::x86_mmx_pslli_q:
4753  case Intrinsic::x86_mmx_psrli_w:
4754  case Intrinsic::x86_mmx_psrli_d:
4755  case Intrinsic::x86_mmx_psrli_q:
4756  case Intrinsic::x86_mmx_psrai_w:
4757  case Intrinsic::x86_mmx_psrai_d: {
4758    SDValue ShAmt = getValue(I.getArgOperand(1));
4759    if (isa<ConstantSDNode>(ShAmt)) {
4760      visitTargetIntrinsic(I, Intrinsic);
4761      return 0;
4762    }
4763    unsigned NewIntrinsic = 0;
4764    EVT ShAmtVT = MVT::v2i32;
4765    switch (Intrinsic) {
4766    case Intrinsic::x86_mmx_pslli_w:
4767      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4768      break;
4769    case Intrinsic::x86_mmx_pslli_d:
4770      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4771      break;
4772    case Intrinsic::x86_mmx_pslli_q:
4773      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4774      break;
4775    case Intrinsic::x86_mmx_psrli_w:
4776      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4777      break;
4778    case Intrinsic::x86_mmx_psrli_d:
4779      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4780      break;
4781    case Intrinsic::x86_mmx_psrli_q:
4782      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4783      break;
4784    case Intrinsic::x86_mmx_psrai_w:
4785      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4786      break;
4787    case Intrinsic::x86_mmx_psrai_d:
4788      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4789      break;
4790    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4791    }
4792
4793    // The vector shift intrinsics with scalars uses 32b shift amounts but
4794    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4795    // to be zero.
4796    // We must do this early because v2i32 is not a legal type.
4797    SDValue ShOps[2];
4798    ShOps[0] = ShAmt;
4799    ShOps[1] = DAG.getConstant(0, MVT::i32);
4800    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
4801    EVT DestVT = TLI->getValueType(I.getType());
4802    ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4803    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4804                       DAG.getConstant(NewIntrinsic, MVT::i32),
4805                       getValue(I.getArgOperand(0)), ShAmt);
4806    setValue(&I, Res);
4807    return 0;
4808  }
4809  case Intrinsic::x86_avx_vinsertf128_pd_256:
4810  case Intrinsic::x86_avx_vinsertf128_ps_256:
4811  case Intrinsic::x86_avx_vinsertf128_si_256:
4812  case Intrinsic::x86_avx2_vinserti128: {
4813    EVT DestVT = TLI->getValueType(I.getType());
4814    EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
4815    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4816                   ElVT.getVectorNumElements();
4817    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4818                      getValue(I.getArgOperand(0)),
4819                      getValue(I.getArgOperand(1)),
4820                      DAG.getIntPtrConstant(Idx));
4821    setValue(&I, Res);
4822    return 0;
4823  }
4824  case Intrinsic::x86_avx_vextractf128_pd_256:
4825  case Intrinsic::x86_avx_vextractf128_ps_256:
4826  case Intrinsic::x86_avx_vextractf128_si_256:
4827  case Intrinsic::x86_avx2_vextracti128: {
4828    EVT DestVT = TLI->getValueType(I.getType());
4829    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4830                   DestVT.getVectorNumElements();
4831    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
4832                      getValue(I.getArgOperand(0)),
4833                      DAG.getIntPtrConstant(Idx));
4834    setValue(&I, Res);
4835    return 0;
4836  }
4837  case Intrinsic::convertff:
4838  case Intrinsic::convertfsi:
4839  case Intrinsic::convertfui:
4840  case Intrinsic::convertsif:
4841  case Intrinsic::convertuif:
4842  case Intrinsic::convertss:
4843  case Intrinsic::convertsu:
4844  case Intrinsic::convertus:
4845  case Intrinsic::convertuu: {
4846    ISD::CvtCode Code = ISD::CVT_INVALID;
4847    switch (Intrinsic) {
4848    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4849    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4850    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4851    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4852    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4853    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4854    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4855    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4856    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4857    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4858    }
4859    EVT DestVT = TLI->getValueType(I.getType());
4860    const Value *Op1 = I.getArgOperand(0);
4861    Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4862                               DAG.getValueType(DestVT),
4863                               DAG.getValueType(getValue(Op1).getValueType()),
4864                               getValue(I.getArgOperand(1)),
4865                               getValue(I.getArgOperand(2)),
4866                               Code);
4867    setValue(&I, Res);
4868    return 0;
4869  }
4870  case Intrinsic::powi:
4871    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4872                            getValue(I.getArgOperand(1)), DAG));
4873    return 0;
4874  case Intrinsic::log:
4875    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4876    return 0;
4877  case Intrinsic::log2:
4878    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4879    return 0;
4880  case Intrinsic::log10:
4881    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4882    return 0;
4883  case Intrinsic::exp:
4884    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4885    return 0;
4886  case Intrinsic::exp2:
4887    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4888    return 0;
4889  case Intrinsic::pow:
4890    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4891                           getValue(I.getArgOperand(1)), DAG, *TLI));
4892    return 0;
4893  case Intrinsic::sqrt:
4894  case Intrinsic::fabs:
4895  case Intrinsic::sin:
4896  case Intrinsic::cos:
4897  case Intrinsic::floor:
4898  case Intrinsic::ceil:
4899  case Intrinsic::trunc:
4900  case Intrinsic::rint:
4901  case Intrinsic::nearbyint: {
4902    unsigned Opcode;
4903    switch (Intrinsic) {
4904    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4905    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4906    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4907    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4908    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4909    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4910    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4911    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4912    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4913    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4914    }
4915
4916    setValue(&I, DAG.getNode(Opcode, sdl,
4917                             getValue(I.getArgOperand(0)).getValueType(),
4918                             getValue(I.getArgOperand(0))));
4919    return 0;
4920  }
4921  case Intrinsic::fma:
4922    setValue(&I, DAG.getNode(ISD::FMA, sdl,
4923                             getValue(I.getArgOperand(0)).getValueType(),
4924                             getValue(I.getArgOperand(0)),
4925                             getValue(I.getArgOperand(1)),
4926                             getValue(I.getArgOperand(2))));
4927    return 0;
4928  case Intrinsic::fmuladd: {
4929    EVT VT = TLI->getValueType(I.getType());
4930    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4931        TLI->isFMAFasterThanFMulAndFAdd(VT)) {
4932      setValue(&I, DAG.getNode(ISD::FMA, sdl,
4933                               getValue(I.getArgOperand(0)).getValueType(),
4934                               getValue(I.getArgOperand(0)),
4935                               getValue(I.getArgOperand(1)),
4936                               getValue(I.getArgOperand(2))));
4937    } else {
4938      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4939                                getValue(I.getArgOperand(0)).getValueType(),
4940                                getValue(I.getArgOperand(0)),
4941                                getValue(I.getArgOperand(1)));
4942      SDValue Add = DAG.getNode(ISD::FADD, sdl,
4943                                getValue(I.getArgOperand(0)).getValueType(),
4944                                Mul,
4945                                getValue(I.getArgOperand(2)));
4946      setValue(&I, Add);
4947    }
4948    return 0;
4949  }
4950  case Intrinsic::convert_to_fp16:
4951    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
4952                             MVT::i16, getValue(I.getArgOperand(0))));
4953    return 0;
4954  case Intrinsic::convert_from_fp16:
4955    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
4956                             MVT::f32, getValue(I.getArgOperand(0))));
4957    return 0;
4958  case Intrinsic::pcmarker: {
4959    SDValue Tmp = getValue(I.getArgOperand(0));
4960    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4961    return 0;
4962  }
4963  case Intrinsic::readcyclecounter: {
4964    SDValue Op = getRoot();
4965    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4966                      DAG.getVTList(MVT::i64, MVT::Other),
4967                      &Op, 1);
4968    setValue(&I, Res);
4969    DAG.setRoot(Res.getValue(1));
4970    return 0;
4971  }
4972  case Intrinsic::bswap:
4973    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4974                             getValue(I.getArgOperand(0)).getValueType(),
4975                             getValue(I.getArgOperand(0))));
4976    return 0;
4977  case Intrinsic::cttz: {
4978    SDValue Arg = getValue(I.getArgOperand(0));
4979    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4980    EVT Ty = Arg.getValueType();
4981    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4982                             sdl, Ty, Arg));
4983    return 0;
4984  }
4985  case Intrinsic::ctlz: {
4986    SDValue Arg = getValue(I.getArgOperand(0));
4987    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4988    EVT Ty = Arg.getValueType();
4989    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4990                             sdl, Ty, Arg));
4991    return 0;
4992  }
4993  case Intrinsic::ctpop: {
4994    SDValue Arg = getValue(I.getArgOperand(0));
4995    EVT Ty = Arg.getValueType();
4996    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4997    return 0;
4998  }
4999  case Intrinsic::stacksave: {
5000    SDValue Op = getRoot();
5001    Res = DAG.getNode(ISD::STACKSAVE, sdl,
5002                      DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1);
5003    setValue(&I, Res);
5004    DAG.setRoot(Res.getValue(1));
5005    return 0;
5006  }
5007  case Intrinsic::stackrestore: {
5008    Res = getValue(I.getArgOperand(0));
5009    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5010    return 0;
5011  }
5012  case Intrinsic::stackprotector: {
5013    // Emit code into the DAG to store the stack guard onto the stack.
5014    MachineFunction &MF = DAG.getMachineFunction();
5015    MachineFrameInfo *MFI = MF.getFrameInfo();
5016    EVT PtrTy = TLI->getPointerTy();
5017
5018    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5019    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5020
5021    int FI = FuncInfo.StaticAllocaMap[Slot];
5022    MFI->setStackProtectorIndex(FI);
5023
5024    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5025
5026    // Store the stack protector onto the stack.
5027    Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5028                       MachinePointerInfo::getFixedStack(FI),
5029                       true, false, 0);
5030    setValue(&I, Res);
5031    DAG.setRoot(Res);
5032    return 0;
5033  }
5034  case Intrinsic::objectsize: {
5035    // If we don't know by now, we're never going to know.
5036    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5037
5038    assert(CI && "Non-constant type in __builtin_object_size?");
5039
5040    SDValue Arg = getValue(I.getCalledValue());
5041    EVT Ty = Arg.getValueType();
5042
5043    if (CI->isZero())
5044      Res = DAG.getConstant(-1ULL, Ty);
5045    else
5046      Res = DAG.getConstant(0, Ty);
5047
5048    setValue(&I, Res);
5049    return 0;
5050  }
5051  case Intrinsic::annotation:
5052  case Intrinsic::ptr_annotation:
5053    // Drop the intrinsic, but forward the value
5054    setValue(&I, getValue(I.getOperand(0)));
5055    return 0;
5056  case Intrinsic::var_annotation:
5057    // Discard annotate attributes
5058    return 0;
5059
5060  case Intrinsic::init_trampoline: {
5061    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5062
5063    SDValue Ops[6];
5064    Ops[0] = getRoot();
5065    Ops[1] = getValue(I.getArgOperand(0));
5066    Ops[2] = getValue(I.getArgOperand(1));
5067    Ops[3] = getValue(I.getArgOperand(2));
5068    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5069    Ops[5] = DAG.getSrcValue(F);
5070
5071    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
5072
5073    DAG.setRoot(Res);
5074    return 0;
5075  }
5076  case Intrinsic::adjust_trampoline: {
5077    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5078                             TLI->getPointerTy(),
5079                             getValue(I.getArgOperand(0))));
5080    return 0;
5081  }
5082  case Intrinsic::gcroot:
5083    if (GFI) {
5084      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5085      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5086
5087      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5088      GFI->addStackRoot(FI->getIndex(), TypeMap);
5089    }
5090    return 0;
5091  case Intrinsic::gcread:
5092  case Intrinsic::gcwrite:
5093    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5094  case Intrinsic::flt_rounds:
5095    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5096    return 0;
5097
5098  case Intrinsic::expect: {
5099    // Just replace __builtin_expect(exp, c) with EXP.
5100    setValue(&I, getValue(I.getArgOperand(0)));
5101    return 0;
5102  }
5103
5104  case Intrinsic::debugtrap:
5105  case Intrinsic::trap: {
5106    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5107    if (TrapFuncName.empty()) {
5108      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5109        ISD::TRAP : ISD::DEBUGTRAP;
5110      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5111      return 0;
5112    }
5113    TargetLowering::ArgListTy Args;
5114    TargetLowering::
5115    CallLoweringInfo CLI(getRoot(), I.getType(),
5116                 false, false, false, false, 0, CallingConv::C,
5117                 /*isTailCall=*/false,
5118                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5119                 DAG.getExternalSymbol(TrapFuncName.data(),
5120                                       TLI->getPointerTy()),
5121                 Args, DAG, sdl);
5122    std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5123    DAG.setRoot(Result.second);
5124    return 0;
5125  }
5126
5127  case Intrinsic::uadd_with_overflow:
5128  case Intrinsic::sadd_with_overflow:
5129  case Intrinsic::usub_with_overflow:
5130  case Intrinsic::ssub_with_overflow:
5131  case Intrinsic::umul_with_overflow:
5132  case Intrinsic::smul_with_overflow: {
5133    ISD::NodeType Op;
5134    switch (Intrinsic) {
5135    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5136    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5137    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5138    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5139    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5140    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5141    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5142    }
5143    SDValue Op1 = getValue(I.getArgOperand(0));
5144    SDValue Op2 = getValue(I.getArgOperand(1));
5145
5146    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5147    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5148    return 0;
5149  }
5150  case Intrinsic::prefetch: {
5151    SDValue Ops[5];
5152    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5153    Ops[0] = getRoot();
5154    Ops[1] = getValue(I.getArgOperand(0));
5155    Ops[2] = getValue(I.getArgOperand(1));
5156    Ops[3] = getValue(I.getArgOperand(2));
5157    Ops[4] = getValue(I.getArgOperand(3));
5158    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5159                                        DAG.getVTList(MVT::Other),
5160                                        &Ops[0], 5,
5161                                        EVT::getIntegerVT(*Context, 8),
5162                                        MachinePointerInfo(I.getArgOperand(0)),
5163                                        0, /* align */
5164                                        false, /* volatile */
5165                                        rw==0, /* read */
5166                                        rw==1)); /* write */
5167    return 0;
5168  }
5169  case Intrinsic::lifetime_start:
5170  case Intrinsic::lifetime_end: {
5171    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5172    // Stack coloring is not enabled in O0, discard region information.
5173    if (TM.getOptLevel() == CodeGenOpt::None)
5174      return 0;
5175
5176    SmallVector<Value *, 4> Allocas;
5177    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5178
5179    for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5180           E = Allocas.end(); Object != E; ++Object) {
5181      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5182
5183      // Could not find an Alloca.
5184      if (!LifetimeObject)
5185        continue;
5186
5187      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5188
5189      SDValue Ops[2];
5190      Ops[0] = getRoot();
5191      Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
5192      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5193
5194      Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
5195      DAG.setRoot(Res);
5196    }
5197    return 0;
5198  }
5199  case Intrinsic::invariant_start:
5200    // Discard region information.
5201    setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
5202    return 0;
5203  case Intrinsic::invariant_end:
5204    // Discard region information.
5205    return 0;
5206  case Intrinsic::donothing:
5207    // ignore
5208    return 0;
5209  }
5210}
5211
5212void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5213                                      bool isTailCall,
5214                                      MachineBasicBlock *LandingPad) {
5215  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5216  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5217  Type *RetTy = FTy->getReturnType();
5218  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5219  MCSymbol *BeginLabel = 0;
5220
5221  TargetLowering::ArgListTy Args;
5222  TargetLowering::ArgListEntry Entry;
5223  Args.reserve(CS.arg_size());
5224
5225  // Check whether the function can return without sret-demotion.
5226  SmallVector<ISD::OutputArg, 4> Outs;
5227  const TargetLowering *TLI = TM.getTargetLowering();
5228  GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI);
5229
5230  bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(),
5231                                            DAG.getMachineFunction(),
5232                                            FTy->isVarArg(), Outs,
5233                                            FTy->getContext());
5234
5235  SDValue DemoteStackSlot;
5236  int DemoteStackIdx = -100;
5237
5238  if (!CanLowerReturn) {
5239    uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(
5240                      FTy->getReturnType());
5241    unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(
5242                      FTy->getReturnType());
5243    MachineFunction &MF = DAG.getMachineFunction();
5244    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5245    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5246
5247    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy());
5248    Entry.Node = DemoteStackSlot;
5249    Entry.Ty = StackSlotPtrType;
5250    Entry.isSExt = false;
5251    Entry.isZExt = false;
5252    Entry.isInReg = false;
5253    Entry.isSRet = true;
5254    Entry.isNest = false;
5255    Entry.isByVal = false;
5256    Entry.isReturned = false;
5257    Entry.Alignment = Align;
5258    Args.push_back(Entry);
5259    RetTy = Type::getVoidTy(FTy->getContext());
5260  }
5261
5262  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5263       i != e; ++i) {
5264    const Value *V = *i;
5265
5266    // Skip empty types
5267    if (V->getType()->isEmptyTy())
5268      continue;
5269
5270    SDValue ArgNode = getValue(V);
5271    Entry.Node = ArgNode; Entry.Ty = V->getType();
5272
5273    unsigned attrInd = i - CS.arg_begin() + 1;
5274    Entry.isSExt     = CS.paramHasAttr(attrInd, Attribute::SExt);
5275    Entry.isZExt     = CS.paramHasAttr(attrInd, Attribute::ZExt);
5276    Entry.isInReg    = CS.paramHasAttr(attrInd, Attribute::InReg);
5277    Entry.isSRet     = CS.paramHasAttr(attrInd, Attribute::StructRet);
5278    Entry.isNest     = CS.paramHasAttr(attrInd, Attribute::Nest);
5279    Entry.isByVal    = CS.paramHasAttr(attrInd, Attribute::ByVal);
5280    Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned);
5281    Entry.Alignment  = CS.getParamAlignment(attrInd);
5282    Args.push_back(Entry);
5283  }
5284
5285  if (LandingPad) {
5286    // Insert a label before the invoke call to mark the try range.  This can be
5287    // used to detect deletion of the invoke via the MachineModuleInfo.
5288    BeginLabel = MMI.getContext().CreateTempSymbol();
5289
5290    // For SjLj, keep track of which landing pads go with which invokes
5291    // so as to maintain the ordering of pads in the LSDA.
5292    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5293    if (CallSiteIndex) {
5294      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5295      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5296
5297      // Now that the call site is handled, stop tracking it.
5298      MMI.setCurrentCallSite(0);
5299    }
5300
5301    // Both PendingLoads and PendingExports must be flushed here;
5302    // this call might not return.
5303    (void)getRoot();
5304    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5305  }
5306
5307  // Check if target-independent constraints permit a tail call here.
5308  // Target-dependent constraints are checked within TLI->LowerCallTo.
5309  if (isTailCall && !isInTailCallPosition(CS, *TLI))
5310    isTailCall = false;
5311
5312  TargetLowering::
5313  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5314                       getCurSDLoc(), CS);
5315  std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
5316  assert((isTailCall || Result.second.getNode()) &&
5317         "Non-null chain expected with non-tail call!");
5318  assert((Result.second.getNode() || !Result.first.getNode()) &&
5319         "Null value expected with tail call!");
5320  if (Result.first.getNode()) {
5321    setValue(CS.getInstruction(), Result.first);
5322  } else if (!CanLowerReturn && Result.second.getNode()) {
5323    // The instruction result is the result of loading from the
5324    // hidden sret parameter.
5325    SmallVector<EVT, 1> PVTs;
5326    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5327
5328    ComputeValueVTs(*TLI, PtrRetTy, PVTs);
5329    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5330    EVT PtrVT = PVTs[0];
5331
5332    SmallVector<EVT, 4> RetTys;
5333    SmallVector<uint64_t, 4> Offsets;
5334    RetTy = FTy->getReturnType();
5335    ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets);
5336
5337    unsigned NumValues = RetTys.size();
5338    SmallVector<SDValue, 4> Values(NumValues);
5339    SmallVector<SDValue, 4> Chains(NumValues);
5340
5341    for (unsigned i = 0; i < NumValues; ++i) {
5342      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5343                                DemoteStackSlot,
5344                                DAG.getConstant(Offsets[i], PtrVT));
5345      SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5346                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5347                              false, false, false, 1);
5348      Values[i] = L;
5349      Chains[i] = L.getValue(1);
5350    }
5351
5352    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5353                                MVT::Other, &Chains[0], NumValues);
5354    PendingLoads.push_back(Chain);
5355
5356    setValue(CS.getInstruction(),
5357             DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5358                         DAG.getVTList(&RetTys[0], RetTys.size()),
5359                         &Values[0], Values.size()));
5360  }
5361
5362  if (!Result.second.getNode()) {
5363    // As a special case, a null chain means that a tail call has been emitted and
5364    // the DAG root is already updated.
5365    HasTailCall = true;
5366
5367    // Since there's no actual continuation from this block, nothing can be
5368    // relying on us setting vregs for them.
5369    PendingExports.clear();
5370  } else {
5371    DAG.setRoot(Result.second);
5372  }
5373
5374  if (LandingPad) {
5375    // Insert a label at the end of the invoke call to mark the try range.  This
5376    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5377    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5378    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5379
5380    // Inform MachineModuleInfo of range.
5381    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5382  }
5383}
5384
5385/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5386/// value is equal or not-equal to zero.
5387static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5388  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5389       UI != E; ++UI) {
5390    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5391      if (IC->isEquality())
5392        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5393          if (C->isNullValue())
5394            continue;
5395    // Unknown instruction.
5396    return false;
5397  }
5398  return true;
5399}
5400
5401static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5402                             Type *LoadTy,
5403                             SelectionDAGBuilder &Builder) {
5404
5405  // Check to see if this load can be trivially constant folded, e.g. if the
5406  // input is from a string literal.
5407  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5408    // Cast pointer to the type we really want to load.
5409    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5410                                         PointerType::getUnqual(LoadTy));
5411
5412    if (const Constant *LoadCst =
5413          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5414                                       Builder.TD))
5415      return Builder.getValue(LoadCst);
5416  }
5417
5418  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5419  // still constant memory, the input chain can be the entry node.
5420  SDValue Root;
5421  bool ConstantMemory = false;
5422
5423  // Do not serialize (non-volatile) loads of constant memory with anything.
5424  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5425    Root = Builder.DAG.getEntryNode();
5426    ConstantMemory = true;
5427  } else {
5428    // Do not serialize non-volatile loads against each other.
5429    Root = Builder.DAG.getRoot();
5430  }
5431
5432  SDValue Ptr = Builder.getValue(PtrVal);
5433  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5434                                        Ptr, MachinePointerInfo(PtrVal),
5435                                        false /*volatile*/,
5436                                        false /*nontemporal*/,
5437                                        false /*isinvariant*/, 1 /* align=1 */);
5438
5439  if (!ConstantMemory)
5440    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5441  return LoadVal;
5442}
5443
5444
5445/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5446/// If so, return true and lower it, otherwise return false and it will be
5447/// lowered like a normal call.
5448bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5449  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5450  if (I.getNumArgOperands() != 3)
5451    return false;
5452
5453  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5454  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5455      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5456      !I.getType()->isIntegerTy())
5457    return false;
5458
5459  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5460
5461  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5462  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5463  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5464    bool ActuallyDoIt = true;
5465    MVT LoadVT;
5466    Type *LoadTy;
5467    switch (Size->getZExtValue()) {
5468    default:
5469      LoadVT = MVT::Other;
5470      LoadTy = 0;
5471      ActuallyDoIt = false;
5472      break;
5473    case 2:
5474      LoadVT = MVT::i16;
5475      LoadTy = Type::getInt16Ty(Size->getContext());
5476      break;
5477    case 4:
5478      LoadVT = MVT::i32;
5479      LoadTy = Type::getInt32Ty(Size->getContext());
5480      break;
5481    case 8:
5482      LoadVT = MVT::i64;
5483      LoadTy = Type::getInt64Ty(Size->getContext());
5484      break;
5485        /*
5486    case 16:
5487      LoadVT = MVT::v4i32;
5488      LoadTy = Type::getInt32Ty(Size->getContext());
5489      LoadTy = VectorType::get(LoadTy, 4);
5490      break;
5491         */
5492    }
5493
5494    // This turns into unaligned loads.  We only do this if the target natively
5495    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5496    // we'll only produce a small number of byte loads.
5497
5498    // Require that we can find a legal MVT, and only do this if the target
5499    // supports unaligned loads of that type.  Expanding into byte loads would
5500    // bloat the code.
5501    const TargetLowering *TLI = TM.getTargetLowering();
5502    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5503      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5504      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5505      if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT))
5506        ActuallyDoIt = false;
5507    }
5508
5509    if (ActuallyDoIt) {
5510      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5511      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5512
5513      SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5514                                 ISD::SETNE);
5515      EVT CallVT = TLI->getValueType(I.getType(), true);
5516      setValue(&I, DAG.getZExtOrTrunc(Res, getCurSDLoc(), CallVT));
5517      return true;
5518    }
5519  }
5520
5521
5522  return false;
5523}
5524
5525/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5526/// operation (as expected), translate it to an SDNode with the specified opcode
5527/// and return true.
5528bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5529                                              unsigned Opcode) {
5530  // Sanity check that it really is a unary floating-point call.
5531  if (I.getNumArgOperands() != 1 ||
5532      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5533      I.getType() != I.getArgOperand(0)->getType() ||
5534      !I.onlyReadsMemory())
5535    return false;
5536
5537  SDValue Tmp = getValue(I.getArgOperand(0));
5538  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5539  return true;
5540}
5541
5542void SelectionDAGBuilder::visitCall(const CallInst &I) {
5543  // Handle inline assembly differently.
5544  if (isa<InlineAsm>(I.getCalledValue())) {
5545    visitInlineAsm(&I);
5546    return;
5547  }
5548
5549  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5550  ComputeUsesVAFloatArgument(I, &MMI);
5551
5552  const char *RenameFn = 0;
5553  if (Function *F = I.getCalledFunction()) {
5554    if (F->isDeclaration()) {
5555      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5556        if (unsigned IID = II->getIntrinsicID(F)) {
5557          RenameFn = visitIntrinsicCall(I, IID);
5558          if (!RenameFn)
5559            return;
5560        }
5561      }
5562      if (unsigned IID = F->getIntrinsicID()) {
5563        RenameFn = visitIntrinsicCall(I, IID);
5564        if (!RenameFn)
5565          return;
5566      }
5567    }
5568
5569    // Check for well-known libc/libm calls.  If the function is internal, it
5570    // can't be a library call.
5571    LibFunc::Func Func;
5572    if (!F->hasLocalLinkage() && F->hasName() &&
5573        LibInfo->getLibFunc(F->getName(), Func) &&
5574        LibInfo->hasOptimizedCodeGen(Func)) {
5575      switch (Func) {
5576      default: break;
5577      case LibFunc::copysign:
5578      case LibFunc::copysignf:
5579      case LibFunc::copysignl:
5580        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5581            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5582            I.getType() == I.getArgOperand(0)->getType() &&
5583            I.getType() == I.getArgOperand(1)->getType() &&
5584            I.onlyReadsMemory()) {
5585          SDValue LHS = getValue(I.getArgOperand(0));
5586          SDValue RHS = getValue(I.getArgOperand(1));
5587          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5588                                   LHS.getValueType(), LHS, RHS));
5589          return;
5590        }
5591        break;
5592      case LibFunc::fabs:
5593      case LibFunc::fabsf:
5594      case LibFunc::fabsl:
5595        if (visitUnaryFloatCall(I, ISD::FABS))
5596          return;
5597        break;
5598      case LibFunc::sin:
5599      case LibFunc::sinf:
5600      case LibFunc::sinl:
5601        if (visitUnaryFloatCall(I, ISD::FSIN))
5602          return;
5603        break;
5604      case LibFunc::cos:
5605      case LibFunc::cosf:
5606      case LibFunc::cosl:
5607        if (visitUnaryFloatCall(I, ISD::FCOS))
5608          return;
5609        break;
5610      case LibFunc::sqrt:
5611      case LibFunc::sqrtf:
5612      case LibFunc::sqrtl:
5613      case LibFunc::sqrt_finite:
5614      case LibFunc::sqrtf_finite:
5615      case LibFunc::sqrtl_finite:
5616        if (visitUnaryFloatCall(I, ISD::FSQRT))
5617          return;
5618        break;
5619      case LibFunc::floor:
5620      case LibFunc::floorf:
5621      case LibFunc::floorl:
5622        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5623          return;
5624        break;
5625      case LibFunc::nearbyint:
5626      case LibFunc::nearbyintf:
5627      case LibFunc::nearbyintl:
5628        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5629          return;
5630        break;
5631      case LibFunc::ceil:
5632      case LibFunc::ceilf:
5633      case LibFunc::ceill:
5634        if (visitUnaryFloatCall(I, ISD::FCEIL))
5635          return;
5636        break;
5637      case LibFunc::rint:
5638      case LibFunc::rintf:
5639      case LibFunc::rintl:
5640        if (visitUnaryFloatCall(I, ISD::FRINT))
5641          return;
5642        break;
5643      case LibFunc::trunc:
5644      case LibFunc::truncf:
5645      case LibFunc::truncl:
5646        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5647          return;
5648        break;
5649      case LibFunc::log2:
5650      case LibFunc::log2f:
5651      case LibFunc::log2l:
5652        if (visitUnaryFloatCall(I, ISD::FLOG2))
5653          return;
5654        break;
5655      case LibFunc::exp2:
5656      case LibFunc::exp2f:
5657      case LibFunc::exp2l:
5658        if (visitUnaryFloatCall(I, ISD::FEXP2))
5659          return;
5660        break;
5661      case LibFunc::memcmp:
5662        if (visitMemCmpCall(I))
5663          return;
5664        break;
5665      }
5666    }
5667  }
5668
5669  SDValue Callee;
5670  if (!RenameFn)
5671    Callee = getValue(I.getCalledValue());
5672  else
5673    Callee = DAG.getExternalSymbol(RenameFn,
5674                                   TM.getTargetLowering()->getPointerTy());
5675
5676  // Check if we can potentially perform a tail call. More detailed checking is
5677  // be done within LowerCallTo, after more information about the call is known.
5678  LowerCallTo(&I, Callee, I.isTailCall());
5679}
5680
5681namespace {
5682
5683/// AsmOperandInfo - This contains information for each constraint that we are
5684/// lowering.
5685class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5686public:
5687  /// CallOperand - If this is the result output operand or a clobber
5688  /// this is null, otherwise it is the incoming operand to the CallInst.
5689  /// This gets modified as the asm is processed.
5690  SDValue CallOperand;
5691
5692  /// AssignedRegs - If this is a register or register class operand, this
5693  /// contains the set of register corresponding to the operand.
5694  RegsForValue AssignedRegs;
5695
5696  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5697    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5698  }
5699
5700  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5701  /// corresponds to.  If there is no Value* for this operand, it returns
5702  /// MVT::Other.
5703  EVT getCallOperandValEVT(LLVMContext &Context,
5704                           const TargetLowering &TLI,
5705                           const DataLayout *TD) const {
5706    if (CallOperandVal == 0) return MVT::Other;
5707
5708    if (isa<BasicBlock>(CallOperandVal))
5709      return TLI.getPointerTy();
5710
5711    llvm::Type *OpTy = CallOperandVal->getType();
5712
5713    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5714    // If this is an indirect operand, the operand is a pointer to the
5715    // accessed type.
5716    if (isIndirect) {
5717      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5718      if (!PtrTy)
5719        report_fatal_error("Indirect operand for inline asm not a pointer!");
5720      OpTy = PtrTy->getElementType();
5721    }
5722
5723    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5724    if (StructType *STy = dyn_cast<StructType>(OpTy))
5725      if (STy->getNumElements() == 1)
5726        OpTy = STy->getElementType(0);
5727
5728    // If OpTy is not a single value, it may be a struct/union that we
5729    // can tile with integers.
5730    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5731      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5732      switch (BitSize) {
5733      default: break;
5734      case 1:
5735      case 8:
5736      case 16:
5737      case 32:
5738      case 64:
5739      case 128:
5740        OpTy = IntegerType::get(Context, BitSize);
5741        break;
5742      }
5743    }
5744
5745    return TLI.getValueType(OpTy, true);
5746  }
5747};
5748
5749typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5750
5751} // end anonymous namespace
5752
5753/// GetRegistersForValue - Assign registers (virtual or physical) for the
5754/// specified operand.  We prefer to assign virtual registers, to allow the
5755/// register allocator to handle the assignment process.  However, if the asm
5756/// uses features that we can't model on machineinstrs, we have SDISel do the
5757/// allocation.  This produces generally horrible, but correct, code.
5758///
5759///   OpInfo describes the operand.
5760///
5761static void GetRegistersForValue(SelectionDAG &DAG,
5762                                 const TargetLowering &TLI,
5763                                 SDLoc DL,
5764                                 SDISelAsmOperandInfo &OpInfo) {
5765  LLVMContext &Context = *DAG.getContext();
5766
5767  MachineFunction &MF = DAG.getMachineFunction();
5768  SmallVector<unsigned, 4> Regs;
5769
5770  // If this is a constraint for a single physreg, or a constraint for a
5771  // register class, find it.
5772  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5773    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5774                                     OpInfo.ConstraintVT);
5775
5776  unsigned NumRegs = 1;
5777  if (OpInfo.ConstraintVT != MVT::Other) {
5778    // If this is a FP input in an integer register (or visa versa) insert a bit
5779    // cast of the input value.  More generally, handle any case where the input
5780    // value disagrees with the register class we plan to stick this in.
5781    if (OpInfo.Type == InlineAsm::isInput &&
5782        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5783      // Try to convert to the first EVT that the reg class contains.  If the
5784      // types are identical size, use a bitcast to convert (e.g. two differing
5785      // vector types).
5786      MVT RegVT = *PhysReg.second->vt_begin();
5787      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5788        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5789                                         RegVT, OpInfo.CallOperand);
5790        OpInfo.ConstraintVT = RegVT;
5791      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5792        // If the input is a FP value and we want it in FP registers, do a
5793        // bitcast to the corresponding integer type.  This turns an f64 value
5794        // into i64, which can be passed with two i32 values on a 32-bit
5795        // machine.
5796        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5797        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5798                                         RegVT, OpInfo.CallOperand);
5799        OpInfo.ConstraintVT = RegVT;
5800      }
5801    }
5802
5803    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5804  }
5805
5806  MVT RegVT;
5807  EVT ValueVT = OpInfo.ConstraintVT;
5808
5809  // If this is a constraint for a specific physical register, like {r17},
5810  // assign it now.
5811  if (unsigned AssignedReg = PhysReg.first) {
5812    const TargetRegisterClass *RC = PhysReg.second;
5813    if (OpInfo.ConstraintVT == MVT::Other)
5814      ValueVT = *RC->vt_begin();
5815
5816    // Get the actual register value type.  This is important, because the user
5817    // may have asked for (e.g.) the AX register in i32 type.  We need to
5818    // remember that AX is actually i16 to get the right extension.
5819    RegVT = *RC->vt_begin();
5820
5821    // This is a explicit reference to a physical register.
5822    Regs.push_back(AssignedReg);
5823
5824    // If this is an expanded reference, add the rest of the regs to Regs.
5825    if (NumRegs != 1) {
5826      TargetRegisterClass::iterator I = RC->begin();
5827      for (; *I != AssignedReg; ++I)
5828        assert(I != RC->end() && "Didn't find reg!");
5829
5830      // Already added the first reg.
5831      --NumRegs; ++I;
5832      for (; NumRegs; --NumRegs, ++I) {
5833        assert(I != RC->end() && "Ran out of registers to allocate!");
5834        Regs.push_back(*I);
5835      }
5836    }
5837
5838    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5839    return;
5840  }
5841
5842  // Otherwise, if this was a reference to an LLVM register class, create vregs
5843  // for this reference.
5844  if (const TargetRegisterClass *RC = PhysReg.second) {
5845    RegVT = *RC->vt_begin();
5846    if (OpInfo.ConstraintVT == MVT::Other)
5847      ValueVT = RegVT;
5848
5849    // Create the appropriate number of virtual registers.
5850    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5851    for (; NumRegs; --NumRegs)
5852      Regs.push_back(RegInfo.createVirtualRegister(RC));
5853
5854    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5855    return;
5856  }
5857
5858  // Otherwise, we couldn't allocate enough registers for this.
5859}
5860
5861/// visitInlineAsm - Handle a call to an InlineAsm object.
5862///
5863void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5864  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5865
5866  /// ConstraintOperands - Information about all of the constraints.
5867  SDISelAsmOperandInfoVector ConstraintOperands;
5868
5869  const TargetLowering *TLI = TM.getTargetLowering();
5870  TargetLowering::AsmOperandInfoVector
5871    TargetConstraints = TLI->ParseConstraints(CS);
5872
5873  bool hasMemory = false;
5874
5875  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5876  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5877  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5878    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5879    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5880
5881    MVT OpVT = MVT::Other;
5882
5883    // Compute the value type for each operand.
5884    switch (OpInfo.Type) {
5885    case InlineAsm::isOutput:
5886      // Indirect outputs just consume an argument.
5887      if (OpInfo.isIndirect) {
5888        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5889        break;
5890      }
5891
5892      // The return value of the call is this value.  As such, there is no
5893      // corresponding argument.
5894      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5895      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5896        OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
5897      } else {
5898        assert(ResNo == 0 && "Asm only has one result!");
5899        OpVT = TLI->getSimpleValueType(CS.getType());
5900      }
5901      ++ResNo;
5902      break;
5903    case InlineAsm::isInput:
5904      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5905      break;
5906    case InlineAsm::isClobber:
5907      // Nothing to do.
5908      break;
5909    }
5910
5911    // If this is an input or an indirect output, process the call argument.
5912    // BasicBlocks are labels, currently appearing only in asm's.
5913    if (OpInfo.CallOperandVal) {
5914      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5915        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5916      } else {
5917        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5918      }
5919
5920      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD).
5921        getSimpleVT();
5922    }
5923
5924    OpInfo.ConstraintVT = OpVT;
5925
5926    // Indirect operand accesses access memory.
5927    if (OpInfo.isIndirect)
5928      hasMemory = true;
5929    else {
5930      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5931        TargetLowering::ConstraintType
5932          CType = TLI->getConstraintType(OpInfo.Codes[j]);
5933        if (CType == TargetLowering::C_Memory) {
5934          hasMemory = true;
5935          break;
5936        }
5937      }
5938    }
5939  }
5940
5941  SDValue Chain, Flag;
5942
5943  // We won't need to flush pending loads if this asm doesn't touch
5944  // memory and is nonvolatile.
5945  if (hasMemory || IA->hasSideEffects())
5946    Chain = getRoot();
5947  else
5948    Chain = DAG.getRoot();
5949
5950  // Second pass over the constraints: compute which constraint option to use
5951  // and assign registers to constraints that want a specific physreg.
5952  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5953    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5954
5955    // If this is an output operand with a matching input operand, look up the
5956    // matching input. If their types mismatch, e.g. one is an integer, the
5957    // other is floating point, or their sizes are different, flag it as an
5958    // error.
5959    if (OpInfo.hasMatchingInput()) {
5960      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5961
5962      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5963        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5964          TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5965                                            OpInfo.ConstraintVT);
5966        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5967          TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
5968                                            Input.ConstraintVT);
5969        if ((OpInfo.ConstraintVT.isInteger() !=
5970             Input.ConstraintVT.isInteger()) ||
5971            (MatchRC.second != InputRC.second)) {
5972          report_fatal_error("Unsupported asm: input constraint"
5973                             " with a matching output constraint of"
5974                             " incompatible type!");
5975        }
5976        Input.ConstraintVT = OpInfo.ConstraintVT;
5977      }
5978    }
5979
5980    // Compute the constraint code and ConstraintType to use.
5981    TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5982
5983    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5984        OpInfo.Type == InlineAsm::isClobber)
5985      continue;
5986
5987    // If this is a memory input, and if the operand is not indirect, do what we
5988    // need to to provide an address for the memory input.
5989    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5990        !OpInfo.isIndirect) {
5991      assert((OpInfo.isMultipleAlternative ||
5992              (OpInfo.Type == InlineAsm::isInput)) &&
5993             "Can only indirectify direct input operands!");
5994
5995      // Memory operands really want the address of the value.  If we don't have
5996      // an indirect input, put it in the constpool if we can, otherwise spill
5997      // it to a stack slot.
5998      // TODO: This isn't quite right. We need to handle these according to
5999      // the addressing mode that the constraint wants. Also, this may take
6000      // an additional register for the computation and we don't want that
6001      // either.
6002
6003      // If the operand is a float, integer, or vector constant, spill to a
6004      // constant pool entry to get its address.
6005      const Value *OpVal = OpInfo.CallOperandVal;
6006      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6007          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6008        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6009                                                 TLI->getPointerTy());
6010      } else {
6011        // Otherwise, create a stack slot and emit a store to it before the
6012        // asm.
6013        Type *Ty = OpVal->getType();
6014        uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
6015        unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
6016        MachineFunction &MF = DAG.getMachineFunction();
6017        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6018        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
6019        Chain = DAG.getStore(Chain, getCurSDLoc(),
6020                             OpInfo.CallOperand, StackSlot,
6021                             MachinePointerInfo::getFixedStack(SSFI),
6022                             false, false, 0);
6023        OpInfo.CallOperand = StackSlot;
6024      }
6025
6026      // There is no longer a Value* corresponding to this operand.
6027      OpInfo.CallOperandVal = 0;
6028
6029      // It is now an indirect operand.
6030      OpInfo.isIndirect = true;
6031    }
6032
6033    // If this constraint is for a specific register, allocate it before
6034    // anything else.
6035    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6036      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6037  }
6038
6039  // Second pass - Loop over all of the operands, assigning virtual or physregs
6040  // to register class operands.
6041  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6042    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6043
6044    // C_Register operands have already been allocated, Other/Memory don't need
6045    // to be.
6046    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6047      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6048  }
6049
6050  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6051  std::vector<SDValue> AsmNodeOperands;
6052  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6053  AsmNodeOperands.push_back(
6054          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6055                                      TLI->getPointerTy()));
6056
6057  // If we have a !srcloc metadata node associated with it, we want to attach
6058  // this to the ultimately generated inline asm machineinstr.  To do this, we
6059  // pass in the third operand as this (potentially null) inline asm MDNode.
6060  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6061  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6062
6063  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6064  // bits as operand 3.
6065  unsigned ExtraInfo = 0;
6066  if (IA->hasSideEffects())
6067    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6068  if (IA->isAlignStack())
6069    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6070  // Set the asm dialect.
6071  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6072
6073  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6074  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6075    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6076
6077    // Compute the constraint code and ConstraintType to use.
6078    TLI->ComputeConstraintToUse(OpInfo, SDValue());
6079
6080    // Ideally, we would only check against memory constraints.  However, the
6081    // meaning of an other constraint can be target-specific and we can't easily
6082    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6083    // for other constriants as well.
6084    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6085        OpInfo.ConstraintType == TargetLowering::C_Other) {
6086      if (OpInfo.Type == InlineAsm::isInput)
6087        ExtraInfo |= InlineAsm::Extra_MayLoad;
6088      else if (OpInfo.Type == InlineAsm::isOutput)
6089        ExtraInfo |= InlineAsm::Extra_MayStore;
6090      else if (OpInfo.Type == InlineAsm::isClobber)
6091        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6092    }
6093  }
6094
6095  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6096                                                  TLI->getPointerTy()));
6097
6098  // Loop over all of the inputs, copying the operand values into the
6099  // appropriate registers and processing the output regs.
6100  RegsForValue RetValRegs;
6101
6102  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6103  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6104
6105  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6106    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6107
6108    switch (OpInfo.Type) {
6109    case InlineAsm::isOutput: {
6110      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6111          OpInfo.ConstraintType != TargetLowering::C_Register) {
6112        // Memory output, or 'other' output (e.g. 'X' constraint).
6113        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6114
6115        // Add information to the INLINEASM node to know about this output.
6116        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6117        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6118                                                        TLI->getPointerTy()));
6119        AsmNodeOperands.push_back(OpInfo.CallOperand);
6120        break;
6121      }
6122
6123      // Otherwise, this is a register or register class output.
6124
6125      // Copy the output from the appropriate register.  Find a register that
6126      // we can use.
6127      if (OpInfo.AssignedRegs.Regs.empty()) {
6128        LLVMContext &Ctx = *DAG.getContext();
6129        Ctx.emitError(CS.getInstruction(),
6130                      "couldn't allocate output register for constraint '" +
6131                          Twine(OpInfo.ConstraintCode) + "'");
6132        return;
6133      }
6134
6135      // If this is an indirect operand, store through the pointer after the
6136      // asm.
6137      if (OpInfo.isIndirect) {
6138        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6139                                                      OpInfo.CallOperandVal));
6140      } else {
6141        // This is the result value of the call.
6142        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6143        // Concatenate this output onto the outputs list.
6144        RetValRegs.append(OpInfo.AssignedRegs);
6145      }
6146
6147      // Add information to the INLINEASM node to know that this register is
6148      // set.
6149      OpInfo.AssignedRegs
6150          .AddInlineAsmOperands(OpInfo.isEarlyClobber
6151                                    ? InlineAsm::Kind_RegDefEarlyClobber
6152                                    : InlineAsm::Kind_RegDef,
6153                                false, 0, DAG, AsmNodeOperands);
6154      break;
6155    }
6156    case InlineAsm::isInput: {
6157      SDValue InOperandVal = OpInfo.CallOperand;
6158
6159      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6160        // If this is required to match an output register we have already set,
6161        // just use its register.
6162        unsigned OperandNo = OpInfo.getMatchedOperand();
6163
6164        // Scan until we find the definition we already emitted of this operand.
6165        // When we find it, create a RegsForValue operand.
6166        unsigned CurOp = InlineAsm::Op_FirstOperand;
6167        for (; OperandNo; --OperandNo) {
6168          // Advance to the next operand.
6169          unsigned OpFlag =
6170            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6171          assert((InlineAsm::isRegDefKind(OpFlag) ||
6172                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6173                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6174          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6175        }
6176
6177        unsigned OpFlag =
6178          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6179        if (InlineAsm::isRegDefKind(OpFlag) ||
6180            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6181          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6182          if (OpInfo.isIndirect) {
6183            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6184            LLVMContext &Ctx = *DAG.getContext();
6185            Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6186                                               " don't know how to handle tied "
6187                                               "indirect register inputs");
6188            return;
6189          }
6190
6191          RegsForValue MatchedRegs;
6192          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6193          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6194          MatchedRegs.RegVTs.push_back(RegVT);
6195          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6196          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6197               i != e; ++i) {
6198            if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
6199              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6200            else {
6201              LLVMContext &Ctx = *DAG.getContext();
6202              Ctx.emitError(CS.getInstruction(),
6203                            "inline asm error: This value"
6204                            " type register class is not natively supported!");
6205              return;
6206            }
6207          }
6208          // Use the produced MatchedRegs object to
6209          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6210                                    Chain, &Flag, CS.getInstruction());
6211          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6212                                           true, OpInfo.getMatchedOperand(),
6213                                           DAG, AsmNodeOperands);
6214          break;
6215        }
6216
6217        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6218        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6219               "Unexpected number of operands");
6220        // Add information to the INLINEASM node to know about this input.
6221        // See InlineAsm.h isUseOperandTiedToDef.
6222        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6223                                                    OpInfo.getMatchedOperand());
6224        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6225                                                        TLI->getPointerTy()));
6226        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6227        break;
6228      }
6229
6230      // Treat indirect 'X' constraint as memory.
6231      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6232          OpInfo.isIndirect)
6233        OpInfo.ConstraintType = TargetLowering::C_Memory;
6234
6235      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6236        std::vector<SDValue> Ops;
6237        TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6238                                          Ops, DAG);
6239        if (Ops.empty()) {
6240          LLVMContext &Ctx = *DAG.getContext();
6241          Ctx.emitError(CS.getInstruction(),
6242                        "invalid operand for inline asm constraint '" +
6243                            Twine(OpInfo.ConstraintCode) + "'");
6244          return;
6245        }
6246
6247        // Add information to the INLINEASM node to know about this input.
6248        unsigned ResOpType =
6249          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6250        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6251                                                        TLI->getPointerTy()));
6252        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6253        break;
6254      }
6255
6256      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6257        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6258        assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
6259               "Memory operands expect pointer values");
6260
6261        // Add information to the INLINEASM node to know about this input.
6262        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6263        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6264                                                        TLI->getPointerTy()));
6265        AsmNodeOperands.push_back(InOperandVal);
6266        break;
6267      }
6268
6269      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6270              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6271             "Unknown constraint type!");
6272
6273      // TODO: Support this.
6274      if (OpInfo.isIndirect) {
6275        LLVMContext &Ctx = *DAG.getContext();
6276        Ctx.emitError(CS.getInstruction(),
6277                      "Don't know how to handle indirect register inputs yet "
6278                      "for constraint '" +
6279                          Twine(OpInfo.ConstraintCode) + "'");
6280        return;
6281      }
6282
6283      // Copy the input into the appropriate registers.
6284      if (OpInfo.AssignedRegs.Regs.empty()) {
6285        LLVMContext &Ctx = *DAG.getContext();
6286        Ctx.emitError(CS.getInstruction(),
6287                      "couldn't allocate input reg for constraint '" +
6288                          Twine(OpInfo.ConstraintCode) + "'");
6289        return;
6290      }
6291
6292      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6293                                        Chain, &Flag, CS.getInstruction());
6294
6295      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6296                                               DAG, AsmNodeOperands);
6297      break;
6298    }
6299    case InlineAsm::isClobber: {
6300      // Add the clobbered value to the operand list, so that the register
6301      // allocator is aware that the physreg got clobbered.
6302      if (!OpInfo.AssignedRegs.Regs.empty())
6303        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6304                                                 false, 0, DAG,
6305                                                 AsmNodeOperands);
6306      break;
6307    }
6308    }
6309  }
6310
6311  // Finish up input operands.  Set the input chain and add the flag last.
6312  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6313  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6314
6315  Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6316                      DAG.getVTList(MVT::Other, MVT::Glue),
6317                      &AsmNodeOperands[0], AsmNodeOperands.size());
6318  Flag = Chain.getValue(1);
6319
6320  // If this asm returns a register value, copy the result from that register
6321  // and set it as the value of the call.
6322  if (!RetValRegs.Regs.empty()) {
6323    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6324                                             Chain, &Flag, CS.getInstruction());
6325
6326    // FIXME: Why don't we do this for inline asms with MRVs?
6327    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6328      EVT ResultType = TLI->getValueType(CS.getType());
6329
6330      // If any of the results of the inline asm is a vector, it may have the
6331      // wrong width/num elts.  This can happen for register classes that can
6332      // contain multiple different value types.  The preg or vreg allocated may
6333      // not have the same VT as was expected.  Convert it to the right type
6334      // with bit_convert.
6335      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6336        Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6337                          ResultType, Val);
6338
6339      } else if (ResultType != Val.getValueType() &&
6340                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6341        // If a result value was tied to an input value, the computed result may
6342        // have a wider width than the expected result.  Extract the relevant
6343        // portion.
6344        Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6345      }
6346
6347      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6348    }
6349
6350    setValue(CS.getInstruction(), Val);
6351    // Don't need to use this as a chain in this case.
6352    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6353      return;
6354  }
6355
6356  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6357
6358  // Process indirect outputs, first output all of the flagged copies out of
6359  // physregs.
6360  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6361    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6362    const Value *Ptr = IndirectStoresToEmit[i].second;
6363    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6364                                             Chain, &Flag, IA);
6365    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6366  }
6367
6368  // Emit the non-flagged stores from the physregs.
6369  SmallVector<SDValue, 8> OutChains;
6370  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6371    SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6372                               StoresToEmit[i].first,
6373                               getValue(StoresToEmit[i].second),
6374                               MachinePointerInfo(StoresToEmit[i].second),
6375                               false, false, 0);
6376    OutChains.push_back(Val);
6377  }
6378
6379  if (!OutChains.empty())
6380    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
6381                        &OutChains[0], OutChains.size());
6382
6383  DAG.setRoot(Chain);
6384}
6385
6386void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6387  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6388                          MVT::Other, getRoot(),
6389                          getValue(I.getArgOperand(0)),
6390                          DAG.getSrcValue(I.getArgOperand(0))));
6391}
6392
6393void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6394  const TargetLowering *TLI = TM.getTargetLowering();
6395  const DataLayout &TD = *TLI->getDataLayout();
6396  SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
6397                           getRoot(), getValue(I.getOperand(0)),
6398                           DAG.getSrcValue(I.getOperand(0)),
6399                           TD.getABITypeAlignment(I.getType()));
6400  setValue(&I, V);
6401  DAG.setRoot(V.getValue(1));
6402}
6403
6404void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6405  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6406                          MVT::Other, getRoot(),
6407                          getValue(I.getArgOperand(0)),
6408                          DAG.getSrcValue(I.getArgOperand(0))));
6409}
6410
6411void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6412  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6413                          MVT::Other, getRoot(),
6414                          getValue(I.getArgOperand(0)),
6415                          getValue(I.getArgOperand(1)),
6416                          DAG.getSrcValue(I.getArgOperand(0)),
6417                          DAG.getSrcValue(I.getArgOperand(1))));
6418}
6419
6420/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6421/// implementation, which just calls LowerCall.
6422/// FIXME: When all targets are
6423/// migrated to using LowerCall, this hook should be integrated into SDISel.
6424std::pair<SDValue, SDValue>
6425TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6426  // Handle the incoming return values from the call.
6427  CLI.Ins.clear();
6428  SmallVector<EVT, 4> RetTys;
6429  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6430  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6431    EVT VT = RetTys[I];
6432    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6433    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6434    for (unsigned i = 0; i != NumRegs; ++i) {
6435      ISD::InputArg MyFlags;
6436      MyFlags.VT = RegisterVT;
6437      MyFlags.Used = CLI.IsReturnValueUsed;
6438      if (CLI.RetSExt)
6439        MyFlags.Flags.setSExt();
6440      if (CLI.RetZExt)
6441        MyFlags.Flags.setZExt();
6442      if (CLI.IsInReg)
6443        MyFlags.Flags.setInReg();
6444      CLI.Ins.push_back(MyFlags);
6445    }
6446  }
6447
6448  // Handle all of the outgoing arguments.
6449  CLI.Outs.clear();
6450  CLI.OutVals.clear();
6451  ArgListTy &Args = CLI.Args;
6452  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6453    SmallVector<EVT, 4> ValueVTs;
6454    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6455    for (unsigned Value = 0, NumValues = ValueVTs.size();
6456         Value != NumValues; ++Value) {
6457      EVT VT = ValueVTs[Value];
6458      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6459      SDValue Op = SDValue(Args[i].Node.getNode(),
6460                           Args[i].Node.getResNo() + Value);
6461      ISD::ArgFlagsTy Flags;
6462      unsigned OriginalAlignment =
6463        getDataLayout()->getABITypeAlignment(ArgTy);
6464
6465      if (Args[i].isZExt)
6466        Flags.setZExt();
6467      if (Args[i].isSExt)
6468        Flags.setSExt();
6469      if (Args[i].isInReg)
6470        Flags.setInReg();
6471      if (Args[i].isSRet)
6472        Flags.setSRet();
6473      if (Args[i].isByVal) {
6474        Flags.setByVal();
6475        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6476        Type *ElementTy = Ty->getElementType();
6477        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6478        // For ByVal, alignment should come from FE.  BE will guess if this
6479        // info is not there but there are cases it cannot get right.
6480        unsigned FrameAlign;
6481        if (Args[i].Alignment)
6482          FrameAlign = Args[i].Alignment;
6483        else
6484          FrameAlign = getByValTypeAlignment(ElementTy);
6485        Flags.setByValAlign(FrameAlign);
6486      }
6487      if (Args[i].isNest)
6488        Flags.setNest();
6489      Flags.setOrigAlign(OriginalAlignment);
6490
6491      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6492      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6493      SmallVector<SDValue, 4> Parts(NumParts);
6494      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6495
6496      if (Args[i].isSExt)
6497        ExtendKind = ISD::SIGN_EXTEND;
6498      else if (Args[i].isZExt)
6499        ExtendKind = ISD::ZERO_EXTEND;
6500
6501      // Conservatively only handle 'returned' on non-vectors for now
6502      if (Args[i].isReturned && !Op.getValueType().isVector()) {
6503        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
6504               "unexpected use of 'returned'");
6505        // Before passing 'returned' to the target lowering code, ensure that
6506        // either the register MVT and the actual EVT are the same size or that
6507        // the return value and argument are extended in the same way; in these
6508        // cases it's safe to pass the argument register value unchanged as the
6509        // return register value (although it's at the target's option whether
6510        // to do so)
6511        // TODO: allow code generation to take advantage of partially preserved
6512        // registers rather than clobbering the entire register when the
6513        // parameter extension method is not compatible with the return
6514        // extension method
6515        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
6516            (ExtendKind != ISD::ANY_EXTEND &&
6517             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
6518        Flags.setReturned();
6519      }
6520
6521      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6522                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6523
6524      for (unsigned j = 0; j != NumParts; ++j) {
6525        // if it isn't first piece, alignment must be 1
6526        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6527                               i < CLI.NumFixedArgs,
6528                               i, j*Parts[j].getValueType().getStoreSize());
6529        if (NumParts > 1 && j == 0)
6530          MyFlags.Flags.setSplit();
6531        else if (j != 0)
6532          MyFlags.Flags.setOrigAlign(1);
6533
6534        CLI.Outs.push_back(MyFlags);
6535        CLI.OutVals.push_back(Parts[j]);
6536      }
6537    }
6538  }
6539
6540  SmallVector<SDValue, 4> InVals;
6541  CLI.Chain = LowerCall(CLI, InVals);
6542
6543  // Verify that the target's LowerCall behaved as expected.
6544  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6545         "LowerCall didn't return a valid chain!");
6546  assert((!CLI.IsTailCall || InVals.empty()) &&
6547         "LowerCall emitted a return value for a tail call!");
6548  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6549         "LowerCall didn't emit the correct number of values!");
6550
6551  // For a tail call, the return value is merely live-out and there aren't
6552  // any nodes in the DAG representing it. Return a special value to
6553  // indicate that a tail call has been emitted and no more Instructions
6554  // should be processed in the current block.
6555  if (CLI.IsTailCall) {
6556    CLI.DAG.setRoot(CLI.Chain);
6557    return std::make_pair(SDValue(), SDValue());
6558  }
6559
6560  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6561          assert(InVals[i].getNode() &&
6562                 "LowerCall emitted a null value!");
6563          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6564                 "LowerCall emitted a value with the wrong type!");
6565        });
6566
6567  // Collect the legal value parts into potentially illegal values
6568  // that correspond to the original function's return values.
6569  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6570  if (CLI.RetSExt)
6571    AssertOp = ISD::AssertSext;
6572  else if (CLI.RetZExt)
6573    AssertOp = ISD::AssertZext;
6574  SmallVector<SDValue, 4> ReturnValues;
6575  unsigned CurReg = 0;
6576  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6577    EVT VT = RetTys[I];
6578    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6579    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6580
6581    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6582                                            NumRegs, RegisterVT, VT, NULL,
6583                                            AssertOp));
6584    CurReg += NumRegs;
6585  }
6586
6587  // For a function returning void, there is no return value. We can't create
6588  // such a node, so we just return a null return value in that case. In
6589  // that case, nothing will actually look at the value.
6590  if (ReturnValues.empty())
6591    return std::make_pair(SDValue(), CLI.Chain);
6592
6593  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6594                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6595                            &ReturnValues[0], ReturnValues.size());
6596  return std::make_pair(Res, CLI.Chain);
6597}
6598
6599void TargetLowering::LowerOperationWrapper(SDNode *N,
6600                                           SmallVectorImpl<SDValue> &Results,
6601                                           SelectionDAG &DAG) const {
6602  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6603  if (Res.getNode())
6604    Results.push_back(Res);
6605}
6606
6607SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6608  llvm_unreachable("LowerOperation not implemented for this target!");
6609}
6610
6611void
6612SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6613  SDValue Op = getNonRegisterValue(V);
6614  assert((Op.getOpcode() != ISD::CopyFromReg ||
6615          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6616         "Copy from a reg to the same reg!");
6617  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6618
6619  const TargetLowering *TLI = TM.getTargetLowering();
6620  RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
6621  SDValue Chain = DAG.getEntryNode();
6622  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
6623  PendingExports.push_back(Chain);
6624}
6625
6626#include "llvm/CodeGen/SelectionDAGISel.h"
6627
6628/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6629/// entry block, return true.  This includes arguments used by switches, since
6630/// the switch may expand into multiple basic blocks.
6631static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6632  // With FastISel active, we may be splitting blocks, so force creation
6633  // of virtual registers for all non-dead arguments.
6634  if (FastISel)
6635    return A->use_empty();
6636
6637  const BasicBlock *Entry = A->getParent()->begin();
6638  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6639       UI != E; ++UI) {
6640    const User *U = *UI;
6641    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6642      return false;  // Use not in entry block.
6643  }
6644  return true;
6645}
6646
6647void SelectionDAGISel::LowerArguments(const Function &F) {
6648  SelectionDAG &DAG = SDB->DAG;
6649  SDLoc dl = SDB->getCurSDLoc();
6650  const TargetLowering *TLI = getTargetLowering();
6651  const DataLayout *TD = TLI->getDataLayout();
6652  SmallVector<ISD::InputArg, 16> Ins;
6653
6654  if (!FuncInfo->CanLowerReturn) {
6655    // Put in an sret pointer parameter before all the other parameters.
6656    SmallVector<EVT, 1> ValueVTs;
6657    ComputeValueVTs(*getTargetLowering(),
6658                    PointerType::getUnqual(F.getReturnType()), ValueVTs);
6659
6660    // NOTE: Assuming that a pointer will never break down to more than one VT
6661    // or one register.
6662    ISD::ArgFlagsTy Flags;
6663    Flags.setSRet();
6664    MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
6665    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6666    Ins.push_back(RetArg);
6667  }
6668
6669  // Set up the incoming argument description vector.
6670  unsigned Idx = 1;
6671  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6672       I != E; ++I, ++Idx) {
6673    SmallVector<EVT, 4> ValueVTs;
6674    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
6675    bool isArgValueUsed = !I->use_empty();
6676    for (unsigned Value = 0, NumValues = ValueVTs.size();
6677         Value != NumValues; ++Value) {
6678      EVT VT = ValueVTs[Value];
6679      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6680      ISD::ArgFlagsTy Flags;
6681      unsigned OriginalAlignment =
6682        TD->getABITypeAlignment(ArgTy);
6683
6684      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6685        Flags.setZExt();
6686      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6687        Flags.setSExt();
6688      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
6689        Flags.setInReg();
6690      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
6691        Flags.setSRet();
6692      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
6693        Flags.setByVal();
6694        PointerType *Ty = cast<PointerType>(I->getType());
6695        Type *ElementTy = Ty->getElementType();
6696        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6697        // For ByVal, alignment should be passed from FE.  BE will guess if
6698        // this info is not there but there are cases it cannot get right.
6699        unsigned FrameAlign;
6700        if (F.getParamAlignment(Idx))
6701          FrameAlign = F.getParamAlignment(Idx);
6702        else
6703          FrameAlign = TLI->getByValTypeAlignment(ElementTy);
6704        Flags.setByValAlign(FrameAlign);
6705      }
6706      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
6707        Flags.setNest();
6708      Flags.setOrigAlign(OriginalAlignment);
6709
6710      MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6711      unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
6712      for (unsigned i = 0; i != NumRegs; ++i) {
6713        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6714                              Idx-1, i*RegisterVT.getStoreSize());
6715        if (NumRegs > 1 && i == 0)
6716          MyFlags.Flags.setSplit();
6717        // if it isn't first piece, alignment must be 1
6718        else if (i > 0)
6719          MyFlags.Flags.setOrigAlign(1);
6720        Ins.push_back(MyFlags);
6721      }
6722    }
6723  }
6724
6725  // Call the target to set up the argument values.
6726  SmallVector<SDValue, 8> InVals;
6727  SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6728                                              F.isVarArg(), Ins,
6729                                              dl, DAG, InVals);
6730
6731  // Verify that the target's LowerFormalArguments behaved as expected.
6732  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6733         "LowerFormalArguments didn't return a valid chain!");
6734  assert(InVals.size() == Ins.size() &&
6735         "LowerFormalArguments didn't emit the correct number of values!");
6736  DEBUG({
6737      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6738        assert(InVals[i].getNode() &&
6739               "LowerFormalArguments emitted a null value!");
6740        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6741               "LowerFormalArguments emitted a value with the wrong type!");
6742      }
6743    });
6744
6745  // Update the DAG with the new chain value resulting from argument lowering.
6746  DAG.setRoot(NewRoot);
6747
6748  // Set up the argument values.
6749  unsigned i = 0;
6750  Idx = 1;
6751  if (!FuncInfo->CanLowerReturn) {
6752    // Create a virtual register for the sret pointer, and put in a copy
6753    // from the sret argument into it.
6754    SmallVector<EVT, 1> ValueVTs;
6755    ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6756    MVT VT = ValueVTs[0].getSimpleVT();
6757    MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6758    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6759    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6760                                        RegVT, VT, NULL, AssertOp);
6761
6762    MachineFunction& MF = SDB->DAG.getMachineFunction();
6763    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6764    unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
6765    FuncInfo->DemoteRegister = SRetReg;
6766    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
6767                                    SRetReg, ArgValue);
6768    DAG.setRoot(NewRoot);
6769
6770    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6771    // Idx indexes LLVM arguments.  Don't touch it.
6772    ++i;
6773  }
6774
6775  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6776      ++I, ++Idx) {
6777    SmallVector<SDValue, 4> ArgValues;
6778    SmallVector<EVT, 4> ValueVTs;
6779    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
6780    unsigned NumValues = ValueVTs.size();
6781
6782    // If this argument is unused then remember its value. It is used to generate
6783    // debugging information.
6784    if (I->use_empty() && NumValues) {
6785      SDB->setUnusedArgValue(I, InVals[i]);
6786
6787      // Also remember any frame index for use in FastISel.
6788      if (FrameIndexSDNode *FI =
6789          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
6790        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6791    }
6792
6793    for (unsigned Val = 0; Val != NumValues; ++Val) {
6794      EVT VT = ValueVTs[Val];
6795      MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6796      unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
6797
6798      if (!I->use_empty()) {
6799        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6800        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6801          AssertOp = ISD::AssertSext;
6802        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6803          AssertOp = ISD::AssertZext;
6804
6805        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6806                                             NumParts, PartVT, VT,
6807                                             NULL, AssertOp));
6808      }
6809
6810      i += NumParts;
6811    }
6812
6813    // We don't need to do anything else for unused arguments.
6814    if (ArgValues.empty())
6815      continue;
6816
6817    // Note down frame index.
6818    if (FrameIndexSDNode *FI =
6819        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6820      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6821
6822    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6823                                     SDB->getCurSDLoc());
6824
6825    SDB->setValue(I, Res);
6826    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6827      if (LoadSDNode *LNode =
6828          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6829        if (FrameIndexSDNode *FI =
6830            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6831        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6832    }
6833
6834    // If this argument is live outside of the entry block, insert a copy from
6835    // wherever we got it to the vreg that other BB's will reference it as.
6836    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6837      // If we can, though, try to skip creating an unnecessary vreg.
6838      // FIXME: This isn't very clean... it would be nice to make this more
6839      // general.  It's also subtly incompatible with the hacks FastISel
6840      // uses with vregs.
6841      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6842      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6843        FuncInfo->ValueMap[I] = Reg;
6844        continue;
6845      }
6846    }
6847    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6848      FuncInfo->InitializeRegForValue(I);
6849      SDB->CopyToExportRegsIfNeeded(I);
6850    }
6851  }
6852
6853  assert(i == InVals.size() && "Argument register count mismatch!");
6854
6855  // Finally, if the target has anything special to do, allow it to do so.
6856  // FIXME: this should insert code into the DAG!
6857  EmitFunctionEntryCode();
6858}
6859
6860/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6861/// ensure constants are generated when needed.  Remember the virtual registers
6862/// that need to be added to the Machine PHI nodes as input.  We cannot just
6863/// directly add them, because expansion might result in multiple MBB's for one
6864/// BB.  As such, the start of the BB might correspond to a different MBB than
6865/// the end.
6866///
6867void
6868SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6869  const TerminatorInst *TI = LLVMBB->getTerminator();
6870
6871  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6872
6873  // Check successor nodes' PHI nodes that expect a constant to be available
6874  // from this block.
6875  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6876    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6877    if (!isa<PHINode>(SuccBB->begin())) continue;
6878    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6879
6880    // If this terminator has multiple identical successors (common for
6881    // switches), only handle each succ once.
6882    if (!SuccsHandled.insert(SuccMBB)) continue;
6883
6884    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6885
6886    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6887    // nodes and Machine PHI nodes, but the incoming operands have not been
6888    // emitted yet.
6889    for (BasicBlock::const_iterator I = SuccBB->begin();
6890         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6891      // Ignore dead phi's.
6892      if (PN->use_empty()) continue;
6893
6894      // Skip empty types
6895      if (PN->getType()->isEmptyTy())
6896        continue;
6897
6898      unsigned Reg;
6899      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6900
6901      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6902        unsigned &RegOut = ConstantsOut[C];
6903        if (RegOut == 0) {
6904          RegOut = FuncInfo.CreateRegs(C->getType());
6905          CopyValueToVirtualRegister(C, RegOut);
6906        }
6907        Reg = RegOut;
6908      } else {
6909        DenseMap<const Value *, unsigned>::iterator I =
6910          FuncInfo.ValueMap.find(PHIOp);
6911        if (I != FuncInfo.ValueMap.end())
6912          Reg = I->second;
6913        else {
6914          assert(isa<AllocaInst>(PHIOp) &&
6915                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6916                 "Didn't codegen value into a register!??");
6917          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6918          CopyValueToVirtualRegister(PHIOp, Reg);
6919        }
6920      }
6921
6922      // Remember that this register needs to added to the machine PHI node as
6923      // the input for this MBB.
6924      SmallVector<EVT, 4> ValueVTs;
6925      const TargetLowering *TLI = TM.getTargetLowering();
6926      ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
6927      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6928        EVT VT = ValueVTs[vti];
6929        unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
6930        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6931          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6932        Reg += NumRegisters;
6933      }
6934    }
6935  }
6936
6937  ConstantsOut.clear();
6938}
6939