SelectionDAGBuilder.cpp revision 1c239200e41a816dcd15f1c9a1ed911cb399bb2e
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameLowering.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getTargetConstant(1, TLI.getPointerTy()));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209}
210
211/// getCopyFromParts - Create a value that contains the specified legal parts
212/// combined into the value they represent.  If the parts combine to a type
213/// larger then ValueVT then AssertOp can be used to specify whether the extra
214/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
215/// (ISD::AssertSext).
216static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
217                                      const SDValue *Parts, unsigned NumParts,
218                                      EVT PartVT, EVT ValueVT) {
219  assert(ValueVT.isVector() && "Not a vector value");
220  assert(NumParts > 0 && "No parts to assemble!");
221  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
222  SDValue Val = Parts[0];
223
224  // Handle a multi-element vector.
225  if (NumParts > 1) {
226    EVT IntermediateVT, RegisterVT;
227    unsigned NumIntermediates;
228    unsigned NumRegs =
229    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
230                               NumIntermediates, RegisterVT);
231    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
232    NumParts = NumRegs; // Silence a compiler warning.
233    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
234    assert(RegisterVT == Parts[0].getValueType() &&
235           "Part type doesn't match part!");
236
237    // Assemble the parts into intermediate operands.
238    SmallVector<SDValue, 8> Ops(NumIntermediates);
239    if (NumIntermediates == NumParts) {
240      // If the register was not expanded, truncate or copy the value,
241      // as appropriate.
242      for (unsigned i = 0; i != NumParts; ++i)
243        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
244                                  PartVT, IntermediateVT);
245    } else if (NumParts > 0) {
246      // If the intermediate type was expanded, build the intermediate
247      // operands from the parts.
248      assert(NumParts % NumIntermediates == 0 &&
249             "Must expand into a divisible number of parts!");
250      unsigned Factor = NumParts / NumIntermediates;
251      for (unsigned i = 0; i != NumIntermediates; ++i)
252        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
253                                  PartVT, IntermediateVT);
254    }
255
256    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
257    // intermediate operands.
258    Val = DAG.getNode(IntermediateVT.isVector() ?
259                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
260                      ValueVT, &Ops[0], NumIntermediates);
261  }
262
263  // There is now one part, held in Val.  Correct it to match ValueVT.
264  PartVT = Val.getValueType();
265
266  if (PartVT == ValueVT)
267    return Val;
268
269  if (PartVT.isVector()) {
270    // If the element type of the source/dest vectors are the same, but the
271    // parts vector has more elements than the value vector, then we have a
272    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
273    // elements we want.
274    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
275      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
276             "Cannot narrow, it would be a lossy transformation");
277      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
278                         DAG.getIntPtrConstant(0));
279    }
280
281    // Vector/Vector bitcast.
282    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
283      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
284
285    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
286      "Cannot handle this kind of promotion");
287    // Promoted vector extract
288    bool Smaller = ValueVT.bitsLE(PartVT);
289    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
290                       DL, ValueVT, Val);
291
292  }
293
294  // Trivial bitcast if the types are the same size and the destination
295  // vector type is legal.
296  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
297      TLI.isTypeLegal(ValueVT))
298    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
299
300  // Handle cases such as i8 -> <1 x i1>
301  assert(ValueVT.getVectorNumElements() == 1 &&
302         "Only trivial scalar-to-vector conversions should get here!");
303
304  if (ValueVT.getVectorNumElements() == 1 &&
305      ValueVT.getVectorElementType() != PartVT) {
306    bool Smaller = ValueVT.bitsLE(PartVT);
307    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
308                       DL, ValueVT.getScalarType(), Val);
309  }
310
311  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
312}
313
314
315
316
317static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
318                                 SDValue Val, SDValue *Parts, unsigned NumParts,
319                                 EVT PartVT);
320
321/// getCopyToParts - Create a series of nodes that contain the specified value
322/// split into legal parts.  If the parts contain more bits than Val, then, for
323/// integers, ExtendKind can be used to specify how to generate the extra bits.
324static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
325                           SDValue Val, SDValue *Parts, unsigned NumParts,
326                           EVT PartVT,
327                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
328  EVT ValueVT = Val.getValueType();
329
330  // Handle the vector case separately.
331  if (ValueVT.isVector())
332    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
333
334  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335  unsigned PartBits = PartVT.getSizeInBits();
336  unsigned OrigNumParts = NumParts;
337  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
338
339  if (NumParts == 0)
340    return;
341
342  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
343  if (PartVT == ValueVT) {
344    assert(NumParts == 1 && "No-op copy with multiple parts!");
345    Parts[0] = Val;
346    return;
347  }
348
349  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
350    // If the parts cover more bits than the value has, promote the value.
351    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
352      assert(NumParts == 1 && "Do not know what to promote to!");
353      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
354    } else {
355      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
356             ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360      if (PartVT == MVT::x86mmx)
361        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
362    }
363  } else if (PartBits == ValueVT.getSizeInBits()) {
364    // Different types of the same size.
365    assert(NumParts == 1 && PartVT != ValueVT);
366    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
367  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
368    // If the parts cover less bits than value has, truncate the value.
369    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
370           ValueVT.isInteger() &&
371           "Unknown mismatch!");
372    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
373    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
374    if (PartVT == MVT::x86mmx)
375      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
376  }
377
378  // The value may have changed - recompute ValueVT.
379  ValueVT = Val.getValueType();
380  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
381         "Failed to tile the value with PartVT!");
382
383  if (NumParts == 1) {
384    assert(PartVT == ValueVT && "Type conversion failed!");
385    Parts[0] = Val;
386    return;
387  }
388
389  // Expand the value into multiple parts.
390  if (NumParts & (NumParts - 1)) {
391    // The number of parts is not a power of 2.  Split off and copy the tail.
392    assert(PartVT.isInteger() && ValueVT.isInteger() &&
393           "Do not know what to expand to!");
394    unsigned RoundParts = 1 << Log2_32(NumParts);
395    unsigned RoundBits = RoundParts * PartBits;
396    unsigned OddParts = NumParts - RoundParts;
397    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
398                                 DAG.getIntPtrConstant(RoundBits));
399    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
400
401    if (TLI.isBigEndian())
402      // The odd parts were reversed by getCopyToParts - unreverse them.
403      std::reverse(Parts + RoundParts, Parts + NumParts);
404
405    NumParts = RoundParts;
406    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
407    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
408  }
409
410  // The number of parts is a power of 2.  Repeatedly bisect the value using
411  // EXTRACT_ELEMENT.
412  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
413                         EVT::getIntegerVT(*DAG.getContext(),
414                                           ValueVT.getSizeInBits()),
415                         Val);
416
417  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
418    for (unsigned i = 0; i < NumParts; i += StepSize) {
419      unsigned ThisBits = StepSize * PartBits / 2;
420      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
421      SDValue &Part0 = Parts[i];
422      SDValue &Part1 = Parts[i+StepSize/2];
423
424      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
425                          ThisVT, Part0, DAG.getIntPtrConstant(1));
426      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
427                          ThisVT, Part0, DAG.getIntPtrConstant(0));
428
429      if (ThisBits == PartBits && ThisVT != PartVT) {
430        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
431        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
432      }
433    }
434  }
435
436  if (TLI.isBigEndian())
437    std::reverse(Parts, Parts + OrigNumParts);
438}
439
440
441/// getCopyToPartsVector - Create a series of nodes that contain the specified
442/// value split into legal parts.
443static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
444                                 SDValue Val, SDValue *Parts, unsigned NumParts,
445                                 EVT PartVT) {
446  EVT ValueVT = Val.getValueType();
447  assert(ValueVT.isVector() && "Not a vector");
448  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
449
450  if (NumParts == 1) {
451    if (PartVT == ValueVT) {
452      // Nothing to do.
453    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
454      // Bitconvert vector->vector case.
455      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
456    } else if (PartVT.isVector() &&
457               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
458               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
459      EVT ElementVT = PartVT.getVectorElementType();
460      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
461      // undef elements.
462      SmallVector<SDValue, 16> Ops;
463      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
465                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
466
467      for (unsigned i = ValueVT.getVectorNumElements(),
468           e = PartVT.getVectorNumElements(); i != e; ++i)
469        Ops.push_back(DAG.getUNDEF(ElementVT));
470
471      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
472
473      // FIXME: Use CONCAT for 2x -> 4x.
474
475      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
476      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
477    } else if (PartVT.isVector() &&
478               PartVT.getVectorElementType().bitsGE(
479                 ValueVT.getVectorElementType()) &&
480               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
481
482      // Promoted vector extract
483      bool Smaller = PartVT.bitsLE(ValueVT);
484      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
485                        DL, PartVT, Val);
486    } else{
487      // Vector -> scalar conversion.
488      assert(ValueVT.getVectorNumElements() == 1 &&
489             "Only trivial vector-to-scalar conversions should get here!");
490      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
491                        PartVT, Val, DAG.getIntPtrConstant(0));
492
493      bool Smaller = ValueVT.bitsLE(PartVT);
494      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
495                         DL, PartVT, Val);
496    }
497
498    Parts[0] = Val;
499    return;
500  }
501
502  // Handle a multi-element vector.
503  EVT IntermediateVT, RegisterVT;
504  unsigned NumIntermediates;
505  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
506                                                IntermediateVT,
507                                                NumIntermediates, RegisterVT);
508  unsigned NumElements = ValueVT.getVectorNumElements();
509
510  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
511  NumParts = NumRegs; // Silence a compiler warning.
512  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
513
514  // Split the vector into intermediate operands.
515  SmallVector<SDValue, 8> Ops(NumIntermediates);
516  for (unsigned i = 0; i != NumIntermediates; ++i) {
517    if (IntermediateVT.isVector())
518      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
519                           IntermediateVT, Val,
520                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
521    else
522      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
523                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
524  }
525
526  // Split the intermediate operands into legal parts.
527  if (NumParts == NumIntermediates) {
528    // If the register was not expanded, promote or copy the value,
529    // as appropriate.
530    for (unsigned i = 0; i != NumParts; ++i)
531      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
532  } else if (NumParts > 0) {
533    // If the intermediate type was expanded, split each the value into
534    // legal parts.
535    assert(NumParts % NumIntermediates == 0 &&
536           "Must expand into a divisible number of parts!");
537    unsigned Factor = NumParts / NumIntermediates;
538    for (unsigned i = 0; i != NumIntermediates; ++i)
539      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
540  }
541}
542
543
544
545
546namespace {
547  /// RegsForValue - This struct represents the registers (physical or virtual)
548  /// that a particular set of values is assigned, and the type information
549  /// about the value. The most common situation is to represent one value at a
550  /// time, but struct or array values are handled element-wise as multiple
551  /// values.  The splitting of aggregates is performed recursively, so that we
552  /// never have aggregate-typed registers. The values at this point do not
553  /// necessarily have legal types, so each value may require one or more
554  /// registers of some legal type.
555  ///
556  struct RegsForValue {
557    /// ValueVTs - The value types of the values, which may not be legal, and
558    /// may need be promoted or synthesized from one or more registers.
559    ///
560    SmallVector<EVT, 4> ValueVTs;
561
562    /// RegVTs - The value types of the registers. This is the same size as
563    /// ValueVTs and it records, for each value, what the type of the assigned
564    /// register or registers are. (Individual values are never synthesized
565    /// from more than one type of register.)
566    ///
567    /// With virtual registers, the contents of RegVTs is redundant with TLI's
568    /// getRegisterType member function, however when with physical registers
569    /// it is necessary to have a separate record of the types.
570    ///
571    SmallVector<EVT, 4> RegVTs;
572
573    /// Regs - This list holds the registers assigned to the values.
574    /// Each legal or promoted value requires one register, and each
575    /// expanded value requires multiple registers.
576    ///
577    SmallVector<unsigned, 4> Regs;
578
579    RegsForValue() {}
580
581    RegsForValue(const SmallVector<unsigned, 4> &regs,
582                 EVT regvt, EVT valuevt)
583      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
584
585    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
586                 unsigned Reg, Type *Ty) {
587      ComputeValueVTs(tli, Ty, ValueVTs);
588
589      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
590        EVT ValueVT = ValueVTs[Value];
591        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
592        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
593        for (unsigned i = 0; i != NumRegs; ++i)
594          Regs.push_back(Reg + i);
595        RegVTs.push_back(RegisterVT);
596        Reg += NumRegs;
597      }
598    }
599
600    /// areValueTypesLegal - Return true if types of all the values are legal.
601    bool areValueTypesLegal(const TargetLowering &TLI) {
602      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
603        EVT RegisterVT = RegVTs[Value];
604        if (!TLI.isTypeLegal(RegisterVT))
605          return false;
606      }
607      return true;
608    }
609
610    /// append - Add the specified values to this one.
611    void append(const RegsForValue &RHS) {
612      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
613      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
614      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
615    }
616
617    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
618    /// this value and returns the result as a ValueVTs value.  This uses
619    /// Chain/Flag as the input and updates them for the output Chain/Flag.
620    /// If the Flag pointer is NULL, no flag is used.
621    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
622                            DebugLoc dl,
623                            SDValue &Chain, SDValue *Flag) const;
624
625    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
626    /// specified value into the registers specified by this object.  This uses
627    /// Chain/Flag as the input and updates them for the output Chain/Flag.
628    /// If the Flag pointer is NULL, no flag is used.
629    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
630                       SDValue &Chain, SDValue *Flag) const;
631
632    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
633    /// operand list.  This adds the code marker, matching input operand index
634    /// (if applicable), and includes the number of values added into it.
635    void AddInlineAsmOperands(unsigned Kind,
636                              bool HasMatching, unsigned MatchingIdx,
637                              SelectionDAG &DAG,
638                              std::vector<SDValue> &Ops) const;
639  };
640}
641
642/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
643/// this value and returns the result as a ValueVT value.  This uses
644/// Chain/Flag as the input and updates them for the output Chain/Flag.
645/// If the Flag pointer is NULL, no flag is used.
646SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
647                                      FunctionLoweringInfo &FuncInfo,
648                                      DebugLoc dl,
649                                      SDValue &Chain, SDValue *Flag) const {
650  // A Value with type {} or [0 x %t] needs no registers.
651  if (ValueVTs.empty())
652    return SDValue();
653
654  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
655
656  // Assemble the legal parts into the final values.
657  SmallVector<SDValue, 4> Values(ValueVTs.size());
658  SmallVector<SDValue, 8> Parts;
659  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
660    // Copy the legal parts from the registers.
661    EVT ValueVT = ValueVTs[Value];
662    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
663    EVT RegisterVT = RegVTs[Value];
664
665    Parts.resize(NumRegs);
666    for (unsigned i = 0; i != NumRegs; ++i) {
667      SDValue P;
668      if (Flag == 0) {
669        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
670      } else {
671        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
672        *Flag = P.getValue(2);
673      }
674
675      Chain = P.getValue(1);
676      Parts[i] = P;
677
678      // If the source register was virtual and if we know something about it,
679      // add an assert node.
680      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
681          !RegisterVT.isInteger() || RegisterVT.isVector())
682        continue;
683
684      const FunctionLoweringInfo::LiveOutInfo *LOI =
685        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
686      if (!LOI)
687        continue;
688
689      unsigned RegSize = RegisterVT.getSizeInBits();
690      unsigned NumSignBits = LOI->NumSignBits;
691      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
692
693      // FIXME: We capture more information than the dag can represent.  For
694      // now, just use the tightest assertzext/assertsext possible.
695      bool isSExt = true;
696      EVT FromVT(MVT::Other);
697      if (NumSignBits == RegSize)
698        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
699      else if (NumZeroBits >= RegSize-1)
700        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
701      else if (NumSignBits > RegSize-8)
702        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
703      else if (NumZeroBits >= RegSize-8)
704        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
705      else if (NumSignBits > RegSize-16)
706        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
707      else if (NumZeroBits >= RegSize-16)
708        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
709      else if (NumSignBits > RegSize-32)
710        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
711      else if (NumZeroBits >= RegSize-32)
712        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
713      else
714        continue;
715
716      // Add an assertion node.
717      assert(FromVT != MVT::Other);
718      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
719                             RegisterVT, P, DAG.getValueType(FromVT));
720    }
721
722    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
723                                     NumRegs, RegisterVT, ValueVT);
724    Part += NumRegs;
725    Parts.clear();
726  }
727
728  return DAG.getNode(ISD::MERGE_VALUES, dl,
729                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
730                     &Values[0], ValueVTs.size());
731}
732
733/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
734/// specified value into the registers specified by this object.  This uses
735/// Chain/Flag as the input and updates them for the output Chain/Flag.
736/// If the Flag pointer is NULL, no flag is used.
737void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
738                                 SDValue &Chain, SDValue *Flag) const {
739  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
740
741  // Get the list of the values's legal parts.
742  unsigned NumRegs = Regs.size();
743  SmallVector<SDValue, 8> Parts(NumRegs);
744  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
745    EVT ValueVT = ValueVTs[Value];
746    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
747    EVT RegisterVT = RegVTs[Value];
748
749    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
750                   &Parts[Part], NumParts, RegisterVT);
751    Part += NumParts;
752  }
753
754  // Copy the parts into the registers.
755  SmallVector<SDValue, 8> Chains(NumRegs);
756  for (unsigned i = 0; i != NumRegs; ++i) {
757    SDValue Part;
758    if (Flag == 0) {
759      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
760    } else {
761      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
762      *Flag = Part.getValue(1);
763    }
764
765    Chains[i] = Part.getValue(0);
766  }
767
768  if (NumRegs == 1 || Flag)
769    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
770    // flagged to it. That is the CopyToReg nodes and the user are considered
771    // a single scheduling unit. If we create a TokenFactor and return it as
772    // chain, then the TokenFactor is both a predecessor (operand) of the
773    // user as well as a successor (the TF operands are flagged to the user).
774    // c1, f1 = CopyToReg
775    // c2, f2 = CopyToReg
776    // c3     = TokenFactor c1, c2
777    // ...
778    //        = op c3, ..., f2
779    Chain = Chains[NumRegs-1];
780  else
781    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
782}
783
784/// AddInlineAsmOperands - Add this value to the specified inlineasm node
785/// operand list.  This adds the code marker and includes the number of
786/// values added into it.
787void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
788                                        unsigned MatchingIdx,
789                                        SelectionDAG &DAG,
790                                        std::vector<SDValue> &Ops) const {
791  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
792
793  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
794  if (HasMatching)
795    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
796  else if (!Regs.empty() &&
797           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
798    // Put the register class of the virtual registers in the flag word.  That
799    // way, later passes can recompute register class constraints for inline
800    // assembly as well as normal instructions.
801    // Don't do this for tied operands that can use the regclass information
802    // from the def.
803    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
804    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
805    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
806  }
807
808  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
809  Ops.push_back(Res);
810
811  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
812    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
813    EVT RegisterVT = RegVTs[Value];
814    for (unsigned i = 0; i != NumRegs; ++i) {
815      assert(Reg < Regs.size() && "Mismatch in # registers expected");
816      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
817    }
818  }
819}
820
821void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
822                               const TargetLibraryInfo *li) {
823  AA = &aa;
824  GFI = gfi;
825  LibInfo = li;
826  TD = DAG.getTarget().getTargetData();
827  LPadToCallSiteMap.clear();
828}
829
830/// clear - Clear out the current SelectionDAG and the associated
831/// state and prepare this SelectionDAGBuilder object to be used
832/// for a new block. This doesn't clear out information about
833/// additional blocks that are needed to complete switch lowering
834/// or PHI node updating; that information is cleared out as it is
835/// consumed.
836void SelectionDAGBuilder::clear() {
837  NodeMap.clear();
838  UnusedArgNodeMap.clear();
839  PendingLoads.clear();
840  PendingExports.clear();
841  CurDebugLoc = DebugLoc();
842  HasTailCall = false;
843}
844
845/// clearDanglingDebugInfo - Clear the dangling debug information
846/// map. This function is seperated from the clear so that debug
847/// information that is dangling in a basic block can be properly
848/// resolved in a different basic block. This allows the
849/// SelectionDAG to resolve dangling debug information attached
850/// to PHI nodes.
851void SelectionDAGBuilder::clearDanglingDebugInfo() {
852  DanglingDebugInfoMap.clear();
853}
854
855/// getRoot - Return the current virtual root of the Selection DAG,
856/// flushing any PendingLoad items. This must be done before emitting
857/// a store or any other node that may need to be ordered after any
858/// prior load instructions.
859///
860SDValue SelectionDAGBuilder::getRoot() {
861  if (PendingLoads.empty())
862    return DAG.getRoot();
863
864  if (PendingLoads.size() == 1) {
865    SDValue Root = PendingLoads[0];
866    DAG.setRoot(Root);
867    PendingLoads.clear();
868    return Root;
869  }
870
871  // Otherwise, we have to make a token factor node.
872  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
873                               &PendingLoads[0], PendingLoads.size());
874  PendingLoads.clear();
875  DAG.setRoot(Root);
876  return Root;
877}
878
879/// getControlRoot - Similar to getRoot, but instead of flushing all the
880/// PendingLoad items, flush all the PendingExports items. It is necessary
881/// to do this before emitting a terminator instruction.
882///
883SDValue SelectionDAGBuilder::getControlRoot() {
884  SDValue Root = DAG.getRoot();
885
886  if (PendingExports.empty())
887    return Root;
888
889  // Turn all of the CopyToReg chains into one factored node.
890  if (Root.getOpcode() != ISD::EntryToken) {
891    unsigned i = 0, e = PendingExports.size();
892    for (; i != e; ++i) {
893      assert(PendingExports[i].getNode()->getNumOperands() > 1);
894      if (PendingExports[i].getNode()->getOperand(0) == Root)
895        break;  // Don't add the root if we already indirectly depend on it.
896    }
897
898    if (i == e)
899      PendingExports.push_back(Root);
900  }
901
902  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
903                     &PendingExports[0],
904                     PendingExports.size());
905  PendingExports.clear();
906  DAG.setRoot(Root);
907  return Root;
908}
909
910void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
911  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
912  DAG.AssignOrdering(Node, SDNodeOrder);
913
914  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
915    AssignOrderingToNode(Node->getOperand(I).getNode());
916}
917
918void SelectionDAGBuilder::visit(const Instruction &I) {
919  // Set up outgoing PHI node register values before emitting the terminator.
920  if (isa<TerminatorInst>(&I))
921    HandlePHINodesInSuccessorBlocks(I.getParent());
922
923  CurDebugLoc = I.getDebugLoc();
924
925  visit(I.getOpcode(), I);
926
927  if (!isa<TerminatorInst>(&I) && !HasTailCall)
928    CopyToExportRegsIfNeeded(&I);
929
930  CurDebugLoc = DebugLoc();
931}
932
933void SelectionDAGBuilder::visitPHI(const PHINode &) {
934  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
935}
936
937void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
938  // Note: this doesn't use InstVisitor, because it has to work with
939  // ConstantExpr's in addition to instructions.
940  switch (Opcode) {
941  default: llvm_unreachable("Unknown instruction type encountered!");
942    // Build the switch statement using the Instruction.def file.
943#define HANDLE_INST(NUM, OPCODE, CLASS) \
944    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
945#include "llvm/Instruction.def"
946  }
947
948  // Assign the ordering to the freshly created DAG nodes.
949  if (NodeMap.count(&I)) {
950    ++SDNodeOrder;
951    AssignOrderingToNode(getValue(&I).getNode());
952  }
953}
954
955// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
956// generate the debug data structures now that we've seen its definition.
957void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
958                                                   SDValue Val) {
959  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
960  if (DDI.getDI()) {
961    const DbgValueInst *DI = DDI.getDI();
962    DebugLoc dl = DDI.getdl();
963    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
964    MDNode *Variable = DI->getVariable();
965    uint64_t Offset = DI->getOffset();
966    SDDbgValue *SDV;
967    if (Val.getNode()) {
968      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
969        SDV = DAG.getDbgValue(Variable, Val.getNode(),
970                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
971        DAG.AddDbgValue(SDV, Val.getNode(), false);
972      }
973    } else
974      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
975    DanglingDebugInfoMap[V] = DanglingDebugInfo();
976  }
977}
978
979/// getValue - Return an SDValue for the given Value.
980SDValue SelectionDAGBuilder::getValue(const Value *V) {
981  // If we already have an SDValue for this value, use it. It's important
982  // to do this first, so that we don't create a CopyFromReg if we already
983  // have a regular SDValue.
984  SDValue &N = NodeMap[V];
985  if (N.getNode()) return N;
986
987  // If there's a virtual register allocated and initialized for this
988  // value, use it.
989  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
990  if (It != FuncInfo.ValueMap.end()) {
991    unsigned InReg = It->second;
992    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
993    SDValue Chain = DAG.getEntryNode();
994    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
995    resolveDanglingDebugInfo(V, N);
996    return N;
997  }
998
999  // Otherwise create a new SDValue and remember it.
1000  SDValue Val = getValueImpl(V);
1001  NodeMap[V] = Val;
1002  resolveDanglingDebugInfo(V, Val);
1003  return Val;
1004}
1005
1006/// getNonRegisterValue - Return an SDValue for the given Value, but
1007/// don't look in FuncInfo.ValueMap for a virtual register.
1008SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1009  // If we already have an SDValue for this value, use it.
1010  SDValue &N = NodeMap[V];
1011  if (N.getNode()) return N;
1012
1013  // Otherwise create a new SDValue and remember it.
1014  SDValue Val = getValueImpl(V);
1015  NodeMap[V] = Val;
1016  resolveDanglingDebugInfo(V, Val);
1017  return Val;
1018}
1019
1020/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1021/// Create an SDValue for the given value.
1022SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1023  if (const Constant *C = dyn_cast<Constant>(V)) {
1024    EVT VT = TLI.getValueType(V->getType(), true);
1025
1026    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1027      return DAG.getConstant(*CI, VT);
1028
1029    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1030      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1031
1032    if (isa<ConstantPointerNull>(C))
1033      return DAG.getConstant(0, TLI.getPointerTy());
1034
1035    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1036      return DAG.getConstantFP(*CFP, VT);
1037
1038    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1039      return DAG.getUNDEF(VT);
1040
1041    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1042      visit(CE->getOpcode(), *CE);
1043      SDValue N1 = NodeMap[V];
1044      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1045      return N1;
1046    }
1047
1048    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1049      SmallVector<SDValue, 4> Constants;
1050      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1051           OI != OE; ++OI) {
1052        SDNode *Val = getValue(*OI).getNode();
1053        // If the operand is an empty aggregate, there are no values.
1054        if (!Val) continue;
1055        // Add each leaf value from the operand to the Constants list
1056        // to form a flattened list of all the values.
1057        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1058          Constants.push_back(SDValue(Val, i));
1059      }
1060
1061      return DAG.getMergeValues(&Constants[0], Constants.size(),
1062                                getCurDebugLoc());
1063    }
1064
1065    if (const ConstantDataSequential *CDS =
1066          dyn_cast<ConstantDataSequential>(C)) {
1067      SmallVector<SDValue, 4> Ops;
1068      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1069        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1070        // Add each leaf value from the operand to the Constants list
1071        // to form a flattened list of all the values.
1072        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1073          Ops.push_back(SDValue(Val, i));
1074      }
1075
1076      if (isa<ArrayType>(CDS->getType()))
1077        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1078      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1079                                      VT, &Ops[0], Ops.size());
1080    }
1081
1082    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1083      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1084             "Unknown struct or array constant!");
1085
1086      SmallVector<EVT, 4> ValueVTs;
1087      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1088      unsigned NumElts = ValueVTs.size();
1089      if (NumElts == 0)
1090        return SDValue(); // empty struct
1091      SmallVector<SDValue, 4> Constants(NumElts);
1092      for (unsigned i = 0; i != NumElts; ++i) {
1093        EVT EltVT = ValueVTs[i];
1094        if (isa<UndefValue>(C))
1095          Constants[i] = DAG.getUNDEF(EltVT);
1096        else if (EltVT.isFloatingPoint())
1097          Constants[i] = DAG.getConstantFP(0, EltVT);
1098        else
1099          Constants[i] = DAG.getConstant(0, EltVT);
1100      }
1101
1102      return DAG.getMergeValues(&Constants[0], NumElts,
1103                                getCurDebugLoc());
1104    }
1105
1106    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1107      return DAG.getBlockAddress(BA, VT);
1108
1109    VectorType *VecTy = cast<VectorType>(V->getType());
1110    unsigned NumElements = VecTy->getNumElements();
1111
1112    // Now that we know the number and type of the elements, get that number of
1113    // elements into the Ops array based on what kind of constant it is.
1114    SmallVector<SDValue, 16> Ops;
1115    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1116      for (unsigned i = 0; i != NumElements; ++i)
1117        Ops.push_back(getValue(CV->getOperand(i)));
1118    } else {
1119      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1120      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1121
1122      SDValue Op;
1123      if (EltVT.isFloatingPoint())
1124        Op = DAG.getConstantFP(0, EltVT);
1125      else
1126        Op = DAG.getConstant(0, EltVT);
1127      Ops.assign(NumElements, Op);
1128    }
1129
1130    // Create a BUILD_VECTOR node.
1131    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1132                                    VT, &Ops[0], Ops.size());
1133  }
1134
1135  // If this is a static alloca, generate it as the frameindex instead of
1136  // computation.
1137  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1138    DenseMap<const AllocaInst*, int>::iterator SI =
1139      FuncInfo.StaticAllocaMap.find(AI);
1140    if (SI != FuncInfo.StaticAllocaMap.end())
1141      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1142  }
1143
1144  // If this is an instruction which fast-isel has deferred, select it now.
1145  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1146    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1147    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1148    SDValue Chain = DAG.getEntryNode();
1149    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1150  }
1151
1152  llvm_unreachable("Can't get register for value!");
1153}
1154
1155void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1156  SDValue Chain = getControlRoot();
1157  SmallVector<ISD::OutputArg, 8> Outs;
1158  SmallVector<SDValue, 8> OutVals;
1159
1160  if (!FuncInfo.CanLowerReturn) {
1161    unsigned DemoteReg = FuncInfo.DemoteRegister;
1162    const Function *F = I.getParent()->getParent();
1163
1164    // Emit a store of the return value through the virtual register.
1165    // Leave Outs empty so that LowerReturn won't try to load return
1166    // registers the usual way.
1167    SmallVector<EVT, 1> PtrValueVTs;
1168    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1169                    PtrValueVTs);
1170
1171    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1172    SDValue RetOp = getValue(I.getOperand(0));
1173
1174    SmallVector<EVT, 4> ValueVTs;
1175    SmallVector<uint64_t, 4> Offsets;
1176    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1177    unsigned NumValues = ValueVTs.size();
1178
1179    SmallVector<SDValue, 4> Chains(NumValues);
1180    for (unsigned i = 0; i != NumValues; ++i) {
1181      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1182                                RetPtr.getValueType(), RetPtr,
1183                                DAG.getIntPtrConstant(Offsets[i]));
1184      Chains[i] =
1185        DAG.getStore(Chain, getCurDebugLoc(),
1186                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1187                     // FIXME: better loc info would be nice.
1188                     Add, MachinePointerInfo(), false, false, 0);
1189    }
1190
1191    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1192                        MVT::Other, &Chains[0], NumValues);
1193  } else if (I.getNumOperands() != 0) {
1194    SmallVector<EVT, 4> ValueVTs;
1195    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1196    unsigned NumValues = ValueVTs.size();
1197    if (NumValues) {
1198      SDValue RetOp = getValue(I.getOperand(0));
1199      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1200        EVT VT = ValueVTs[j];
1201
1202        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1203
1204        const Function *F = I.getParent()->getParent();
1205        if (F->paramHasAttr(0, Attribute::SExt))
1206          ExtendKind = ISD::SIGN_EXTEND;
1207        else if (F->paramHasAttr(0, Attribute::ZExt))
1208          ExtendKind = ISD::ZERO_EXTEND;
1209
1210        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1211          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1212
1213        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1214        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1215        SmallVector<SDValue, 4> Parts(NumParts);
1216        getCopyToParts(DAG, getCurDebugLoc(),
1217                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1218                       &Parts[0], NumParts, PartVT, ExtendKind);
1219
1220        // 'inreg' on function refers to return value
1221        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1222        if (F->paramHasAttr(0, Attribute::InReg))
1223          Flags.setInReg();
1224
1225        // Propagate extension type if any
1226        if (ExtendKind == ISD::SIGN_EXTEND)
1227          Flags.setSExt();
1228        else if (ExtendKind == ISD::ZERO_EXTEND)
1229          Flags.setZExt();
1230
1231        for (unsigned i = 0; i < NumParts; ++i) {
1232          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1233                                        /*isfixed=*/true));
1234          OutVals.push_back(Parts[i]);
1235        }
1236      }
1237    }
1238  }
1239
1240  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1241  CallingConv::ID CallConv =
1242    DAG.getMachineFunction().getFunction()->getCallingConv();
1243  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1244                          Outs, OutVals, getCurDebugLoc(), DAG);
1245
1246  // Verify that the target's LowerReturn behaved as expected.
1247  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1248         "LowerReturn didn't return a valid chain!");
1249
1250  // Update the DAG with the new chain value resulting from return lowering.
1251  DAG.setRoot(Chain);
1252}
1253
1254/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1255/// created for it, emit nodes to copy the value into the virtual
1256/// registers.
1257void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1258  // Skip empty types
1259  if (V->getType()->isEmptyTy())
1260    return;
1261
1262  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1263  if (VMI != FuncInfo.ValueMap.end()) {
1264    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1265    CopyValueToVirtualRegister(V, VMI->second);
1266  }
1267}
1268
1269/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1270/// the current basic block, add it to ValueMap now so that we'll get a
1271/// CopyTo/FromReg.
1272void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1273  // No need to export constants.
1274  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1275
1276  // Already exported?
1277  if (FuncInfo.isExportedInst(V)) return;
1278
1279  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1280  CopyValueToVirtualRegister(V, Reg);
1281}
1282
1283bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1284                                                     const BasicBlock *FromBB) {
1285  // The operands of the setcc have to be in this block.  We don't know
1286  // how to export them from some other block.
1287  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1288    // Can export from current BB.
1289    if (VI->getParent() == FromBB)
1290      return true;
1291
1292    // Is already exported, noop.
1293    return FuncInfo.isExportedInst(V);
1294  }
1295
1296  // If this is an argument, we can export it if the BB is the entry block or
1297  // if it is already exported.
1298  if (isa<Argument>(V)) {
1299    if (FromBB == &FromBB->getParent()->getEntryBlock())
1300      return true;
1301
1302    // Otherwise, can only export this if it is already exported.
1303    return FuncInfo.isExportedInst(V);
1304  }
1305
1306  // Otherwise, constants can always be exported.
1307  return true;
1308}
1309
1310/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1311uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1312                                            const MachineBasicBlock *Dst) const {
1313  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1314  if (!BPI)
1315    return 0;
1316  const BasicBlock *SrcBB = Src->getBasicBlock();
1317  const BasicBlock *DstBB = Dst->getBasicBlock();
1318  return BPI->getEdgeWeight(SrcBB, DstBB);
1319}
1320
1321void SelectionDAGBuilder::
1322addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1323                       uint32_t Weight /* = 0 */) {
1324  if (!Weight)
1325    Weight = getEdgeWeight(Src, Dst);
1326  Src->addSuccessor(Dst, Weight);
1327}
1328
1329
1330static bool InBlock(const Value *V, const BasicBlock *BB) {
1331  if (const Instruction *I = dyn_cast<Instruction>(V))
1332    return I->getParent() == BB;
1333  return true;
1334}
1335
1336/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1337/// This function emits a branch and is used at the leaves of an OR or an
1338/// AND operator tree.
1339///
1340void
1341SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1342                                                  MachineBasicBlock *TBB,
1343                                                  MachineBasicBlock *FBB,
1344                                                  MachineBasicBlock *CurBB,
1345                                                  MachineBasicBlock *SwitchBB) {
1346  const BasicBlock *BB = CurBB->getBasicBlock();
1347
1348  // If the leaf of the tree is a comparison, merge the condition into
1349  // the caseblock.
1350  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1351    // The operands of the cmp have to be in this block.  We don't know
1352    // how to export them from some other block.  If this is the first block
1353    // of the sequence, no exporting is needed.
1354    if (CurBB == SwitchBB ||
1355        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1356         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1357      ISD::CondCode Condition;
1358      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1359        Condition = getICmpCondCode(IC->getPredicate());
1360      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1361        Condition = getFCmpCondCode(FC->getPredicate());
1362        if (TM.Options.NoNaNsFPMath)
1363          Condition = getFCmpCodeWithoutNaN(Condition);
1364      } else {
1365        Condition = ISD::SETEQ; // silence warning.
1366        llvm_unreachable("Unknown compare instruction");
1367      }
1368
1369      CaseBlock CB(Condition, BOp->getOperand(0),
1370                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1371      SwitchCases.push_back(CB);
1372      return;
1373    }
1374  }
1375
1376  // Create a CaseBlock record representing this branch.
1377  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1378               NULL, TBB, FBB, CurBB);
1379  SwitchCases.push_back(CB);
1380}
1381
1382/// FindMergedConditions - If Cond is an expression like
1383void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1384                                               MachineBasicBlock *TBB,
1385                                               MachineBasicBlock *FBB,
1386                                               MachineBasicBlock *CurBB,
1387                                               MachineBasicBlock *SwitchBB,
1388                                               unsigned Opc) {
1389  // If this node is not part of the or/and tree, emit it as a branch.
1390  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1391  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1392      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1393      BOp->getParent() != CurBB->getBasicBlock() ||
1394      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1395      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1396    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1397    return;
1398  }
1399
1400  //  Create TmpBB after CurBB.
1401  MachineFunction::iterator BBI = CurBB;
1402  MachineFunction &MF = DAG.getMachineFunction();
1403  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1404  CurBB->getParent()->insert(++BBI, TmpBB);
1405
1406  if (Opc == Instruction::Or) {
1407    // Codegen X | Y as:
1408    //   jmp_if_X TBB
1409    //   jmp TmpBB
1410    // TmpBB:
1411    //   jmp_if_Y TBB
1412    //   jmp FBB
1413    //
1414
1415    // Emit the LHS condition.
1416    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1417
1418    // Emit the RHS condition into TmpBB.
1419    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1420  } else {
1421    assert(Opc == Instruction::And && "Unknown merge op!");
1422    // Codegen X & Y as:
1423    //   jmp_if_X TmpBB
1424    //   jmp FBB
1425    // TmpBB:
1426    //   jmp_if_Y TBB
1427    //   jmp FBB
1428    //
1429    //  This requires creation of TmpBB after CurBB.
1430
1431    // Emit the LHS condition.
1432    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1433
1434    // Emit the RHS condition into TmpBB.
1435    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1436  }
1437}
1438
1439/// If the set of cases should be emitted as a series of branches, return true.
1440/// If we should emit this as a bunch of and/or'd together conditions, return
1441/// false.
1442bool
1443SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1444  if (Cases.size() != 2) return true;
1445
1446  // If this is two comparisons of the same values or'd or and'd together, they
1447  // will get folded into a single comparison, so don't emit two blocks.
1448  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1449       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1450      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1451       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1452    return false;
1453  }
1454
1455  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1456  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1457  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1458      Cases[0].CC == Cases[1].CC &&
1459      isa<Constant>(Cases[0].CmpRHS) &&
1460      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1461    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1462      return false;
1463    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1464      return false;
1465  }
1466
1467  return true;
1468}
1469
1470void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1471  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1472
1473  // Update machine-CFG edges.
1474  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1475
1476  // Figure out which block is immediately after the current one.
1477  MachineBasicBlock *NextBlock = 0;
1478  MachineFunction::iterator BBI = BrMBB;
1479  if (++BBI != FuncInfo.MF->end())
1480    NextBlock = BBI;
1481
1482  if (I.isUnconditional()) {
1483    // Update machine-CFG edges.
1484    BrMBB->addSuccessor(Succ0MBB);
1485
1486    // If this is not a fall-through branch, emit the branch.
1487    if (Succ0MBB != NextBlock)
1488      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1489                              MVT::Other, getControlRoot(),
1490                              DAG.getBasicBlock(Succ0MBB)));
1491
1492    return;
1493  }
1494
1495  // If this condition is one of the special cases we handle, do special stuff
1496  // now.
1497  const Value *CondVal = I.getCondition();
1498  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1499
1500  // If this is a series of conditions that are or'd or and'd together, emit
1501  // this as a sequence of branches instead of setcc's with and/or operations.
1502  // As long as jumps are not expensive, this should improve performance.
1503  // For example, instead of something like:
1504  //     cmp A, B
1505  //     C = seteq
1506  //     cmp D, E
1507  //     F = setle
1508  //     or C, F
1509  //     jnz foo
1510  // Emit:
1511  //     cmp A, B
1512  //     je foo
1513  //     cmp D, E
1514  //     jle foo
1515  //
1516  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1517    if (!TLI.isJumpExpensive() &&
1518        BOp->hasOneUse() &&
1519        (BOp->getOpcode() == Instruction::And ||
1520         BOp->getOpcode() == Instruction::Or)) {
1521      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1522                           BOp->getOpcode());
1523      // If the compares in later blocks need to use values not currently
1524      // exported from this block, export them now.  This block should always
1525      // be the first entry.
1526      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1527
1528      // Allow some cases to be rejected.
1529      if (ShouldEmitAsBranches(SwitchCases)) {
1530        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1531          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1532          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1533        }
1534
1535        // Emit the branch for this block.
1536        visitSwitchCase(SwitchCases[0], BrMBB);
1537        SwitchCases.erase(SwitchCases.begin());
1538        return;
1539      }
1540
1541      // Okay, we decided not to do this, remove any inserted MBB's and clear
1542      // SwitchCases.
1543      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1544        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1545
1546      SwitchCases.clear();
1547    }
1548  }
1549
1550  // Create a CaseBlock record representing this branch.
1551  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1552               NULL, Succ0MBB, Succ1MBB, BrMBB);
1553
1554  // Use visitSwitchCase to actually insert the fast branch sequence for this
1555  // cond branch.
1556  visitSwitchCase(CB, BrMBB);
1557}
1558
1559/// visitSwitchCase - Emits the necessary code to represent a single node in
1560/// the binary search tree resulting from lowering a switch instruction.
1561void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1562                                          MachineBasicBlock *SwitchBB) {
1563  SDValue Cond;
1564  SDValue CondLHS = getValue(CB.CmpLHS);
1565  DebugLoc dl = getCurDebugLoc();
1566
1567  // Build the setcc now.
1568  if (CB.CmpMHS == NULL) {
1569    // Fold "(X == true)" to X and "(X == false)" to !X to
1570    // handle common cases produced by branch lowering.
1571    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1572        CB.CC == ISD::SETEQ)
1573      Cond = CondLHS;
1574    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1575             CB.CC == ISD::SETEQ) {
1576      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1577      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1578    } else
1579      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1580  } else {
1581    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1582
1583    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1584    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1585
1586    SDValue CmpOp = getValue(CB.CmpMHS);
1587    EVT VT = CmpOp.getValueType();
1588
1589    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1590      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1591                          ISD::SETLE);
1592    } else {
1593      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1594                                VT, CmpOp, DAG.getConstant(Low, VT));
1595      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1596                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1597    }
1598  }
1599
1600  // Update successor info
1601  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1602  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1603
1604  // Set NextBlock to be the MBB immediately after the current one, if any.
1605  // This is used to avoid emitting unnecessary branches to the next block.
1606  MachineBasicBlock *NextBlock = 0;
1607  MachineFunction::iterator BBI = SwitchBB;
1608  if (++BBI != FuncInfo.MF->end())
1609    NextBlock = BBI;
1610
1611  // If the lhs block is the next block, invert the condition so that we can
1612  // fall through to the lhs instead of the rhs block.
1613  if (CB.TrueBB == NextBlock) {
1614    std::swap(CB.TrueBB, CB.FalseBB);
1615    SDValue True = DAG.getConstant(1, Cond.getValueType());
1616    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1617  }
1618
1619  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1620                               MVT::Other, getControlRoot(), Cond,
1621                               DAG.getBasicBlock(CB.TrueBB));
1622
1623  // Insert the false branch. Do this even if it's a fall through branch,
1624  // this makes it easier to do DAG optimizations which require inverting
1625  // the branch condition.
1626  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1627                       DAG.getBasicBlock(CB.FalseBB));
1628
1629  DAG.setRoot(BrCond);
1630}
1631
1632/// visitJumpTable - Emit JumpTable node in the current MBB
1633void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1634  // Emit the code for the jump table
1635  assert(JT.Reg != -1U && "Should lower JT Header first!");
1636  EVT PTy = TLI.getPointerTy();
1637  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1638                                     JT.Reg, PTy);
1639  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1640  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1641                                    MVT::Other, Index.getValue(1),
1642                                    Table, Index);
1643  DAG.setRoot(BrJumpTable);
1644}
1645
1646/// visitJumpTableHeader - This function emits necessary code to produce index
1647/// in the JumpTable from switch case.
1648void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1649                                               JumpTableHeader &JTH,
1650                                               MachineBasicBlock *SwitchBB) {
1651  // Subtract the lowest switch case value from the value being switched on and
1652  // conditional branch to default mbb if the result is greater than the
1653  // difference between smallest and largest cases.
1654  SDValue SwitchOp = getValue(JTH.SValue);
1655  EVT VT = SwitchOp.getValueType();
1656  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1657                            DAG.getConstant(JTH.First, VT));
1658
1659  // The SDNode we just created, which holds the value being switched on minus
1660  // the smallest case value, needs to be copied to a virtual register so it
1661  // can be used as an index into the jump table in a subsequent basic block.
1662  // This value may be smaller or larger than the target's pointer type, and
1663  // therefore require extension or truncating.
1664  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1665
1666  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1667  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1668                                    JumpTableReg, SwitchOp);
1669  JT.Reg = JumpTableReg;
1670
1671  // Emit the range check for the jump table, and branch to the default block
1672  // for the switch statement if the value being switched on exceeds the largest
1673  // case in the switch.
1674  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1675                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1676                             DAG.getConstant(JTH.Last-JTH.First,VT),
1677                             ISD::SETUGT);
1678
1679  // Set NextBlock to be the MBB immediately after the current one, if any.
1680  // This is used to avoid emitting unnecessary branches to the next block.
1681  MachineBasicBlock *NextBlock = 0;
1682  MachineFunction::iterator BBI = SwitchBB;
1683
1684  if (++BBI != FuncInfo.MF->end())
1685    NextBlock = BBI;
1686
1687  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1688                               MVT::Other, CopyTo, CMP,
1689                               DAG.getBasicBlock(JT.Default));
1690
1691  if (JT.MBB != NextBlock)
1692    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1693                         DAG.getBasicBlock(JT.MBB));
1694
1695  DAG.setRoot(BrCond);
1696}
1697
1698/// visitBitTestHeader - This function emits necessary code to produce value
1699/// suitable for "bit tests"
1700void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1701                                             MachineBasicBlock *SwitchBB) {
1702  // Subtract the minimum value
1703  SDValue SwitchOp = getValue(B.SValue);
1704  EVT VT = SwitchOp.getValueType();
1705  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1706                            DAG.getConstant(B.First, VT));
1707
1708  // Check range
1709  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1710                                  TLI.getSetCCResultType(Sub.getValueType()),
1711                                  Sub, DAG.getConstant(B.Range, VT),
1712                                  ISD::SETUGT);
1713
1714  // Determine the type of the test operands.
1715  bool UsePtrType = false;
1716  if (!TLI.isTypeLegal(VT))
1717    UsePtrType = true;
1718  else {
1719    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1720      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1721        // Switch table case range are encoded into series of masks.
1722        // Just use pointer type, it's guaranteed to fit.
1723        UsePtrType = true;
1724        break;
1725      }
1726  }
1727  if (UsePtrType) {
1728    VT = TLI.getPointerTy();
1729    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1730  }
1731
1732  B.RegVT = VT;
1733  B.Reg = FuncInfo.CreateReg(VT);
1734  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1735                                    B.Reg, Sub);
1736
1737  // Set NextBlock to be the MBB immediately after the current one, if any.
1738  // This is used to avoid emitting unnecessary branches to the next block.
1739  MachineBasicBlock *NextBlock = 0;
1740  MachineFunction::iterator BBI = SwitchBB;
1741  if (++BBI != FuncInfo.MF->end())
1742    NextBlock = BBI;
1743
1744  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1745
1746  addSuccessorWithWeight(SwitchBB, B.Default);
1747  addSuccessorWithWeight(SwitchBB, MBB);
1748
1749  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1750                                MVT::Other, CopyTo, RangeCmp,
1751                                DAG.getBasicBlock(B.Default));
1752
1753  if (MBB != NextBlock)
1754    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1755                          DAG.getBasicBlock(MBB));
1756
1757  DAG.setRoot(BrRange);
1758}
1759
1760/// visitBitTestCase - this function produces one "bit test"
1761void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1762                                           MachineBasicBlock* NextMBB,
1763                                           unsigned Reg,
1764                                           BitTestCase &B,
1765                                           MachineBasicBlock *SwitchBB) {
1766  EVT VT = BB.RegVT;
1767  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1768                                       Reg, VT);
1769  SDValue Cmp;
1770  unsigned PopCount = CountPopulation_64(B.Mask);
1771  if (PopCount == 1) {
1772    // Testing for a single bit; just compare the shift count with what it
1773    // would need to be to shift a 1 bit in that position.
1774    Cmp = DAG.getSetCC(getCurDebugLoc(),
1775                       TLI.getSetCCResultType(VT),
1776                       ShiftOp,
1777                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1778                       ISD::SETEQ);
1779  } else if (PopCount == BB.Range) {
1780    // There is only one zero bit in the range, test for it directly.
1781    Cmp = DAG.getSetCC(getCurDebugLoc(),
1782                       TLI.getSetCCResultType(VT),
1783                       ShiftOp,
1784                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1785                       ISD::SETNE);
1786  } else {
1787    // Make desired shift
1788    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1789                                    DAG.getConstant(1, VT), ShiftOp);
1790
1791    // Emit bit tests and jumps
1792    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1793                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1794    Cmp = DAG.getSetCC(getCurDebugLoc(),
1795                       TLI.getSetCCResultType(VT),
1796                       AndOp, DAG.getConstant(0, VT),
1797                       ISD::SETNE);
1798  }
1799
1800  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1801  addSuccessorWithWeight(SwitchBB, NextMBB);
1802
1803  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1804                              MVT::Other, getControlRoot(),
1805                              Cmp, DAG.getBasicBlock(B.TargetBB));
1806
1807  // Set NextBlock to be the MBB immediately after the current one, if any.
1808  // This is used to avoid emitting unnecessary branches to the next block.
1809  MachineBasicBlock *NextBlock = 0;
1810  MachineFunction::iterator BBI = SwitchBB;
1811  if (++BBI != FuncInfo.MF->end())
1812    NextBlock = BBI;
1813
1814  if (NextMBB != NextBlock)
1815    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1816                        DAG.getBasicBlock(NextMBB));
1817
1818  DAG.setRoot(BrAnd);
1819}
1820
1821void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1822  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1823
1824  // Retrieve successors.
1825  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1826  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1827
1828  const Value *Callee(I.getCalledValue());
1829  if (isa<InlineAsm>(Callee))
1830    visitInlineAsm(&I);
1831  else
1832    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1833
1834  // If the value of the invoke is used outside of its defining block, make it
1835  // available as a virtual register.
1836  CopyToExportRegsIfNeeded(&I);
1837
1838  // Update successor info
1839  addSuccessorWithWeight(InvokeMBB, Return);
1840  addSuccessorWithWeight(InvokeMBB, LandingPad);
1841
1842  // Drop into normal successor.
1843  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1844                          MVT::Other, getControlRoot(),
1845                          DAG.getBasicBlock(Return)));
1846}
1847
1848void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1849  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1850}
1851
1852void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1853  assert(FuncInfo.MBB->isLandingPad() &&
1854         "Call to landingpad not in landing pad!");
1855
1856  MachineBasicBlock *MBB = FuncInfo.MBB;
1857  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1858  AddLandingPadInfo(LP, MMI, MBB);
1859
1860  // If there aren't registers to copy the values into (e.g., during SjLj
1861  // exceptions), then don't bother to create these DAG nodes.
1862  if (TLI.getExceptionPointerRegister() == 0 &&
1863      TLI.getExceptionSelectorRegister() == 0)
1864    return;
1865
1866  SmallVector<EVT, 2> ValueVTs;
1867  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1868
1869  // Insert the EXCEPTIONADDR instruction.
1870  assert(FuncInfo.MBB->isLandingPad() &&
1871         "Call to eh.exception not in landing pad!");
1872  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1873  SDValue Ops[2];
1874  Ops[0] = DAG.getRoot();
1875  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1876  SDValue Chain = Op1.getValue(1);
1877
1878  // Insert the EHSELECTION instruction.
1879  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1880  Ops[0] = Op1;
1881  Ops[1] = Chain;
1882  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1883  Chain = Op2.getValue(1);
1884  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1885
1886  Ops[0] = Op1;
1887  Ops[1] = Op2;
1888  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1889                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1890                            &Ops[0], 2);
1891
1892  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1893  setValue(&LP, RetPair.first);
1894  DAG.setRoot(RetPair.second);
1895}
1896
1897/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1898/// small case ranges).
1899bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1900                                                 CaseRecVector& WorkList,
1901                                                 const Value* SV,
1902                                                 MachineBasicBlock *Default,
1903                                                 MachineBasicBlock *SwitchBB) {
1904  Case& BackCase  = *(CR.Range.second-1);
1905
1906  // Size is the number of Cases represented by this range.
1907  size_t Size = CR.Range.second - CR.Range.first;
1908  if (Size > 3)
1909    return false;
1910
1911  // Get the MachineFunction which holds the current MBB.  This is used when
1912  // inserting any additional MBBs necessary to represent the switch.
1913  MachineFunction *CurMF = FuncInfo.MF;
1914
1915  // Figure out which block is immediately after the current one.
1916  MachineBasicBlock *NextBlock = 0;
1917  MachineFunction::iterator BBI = CR.CaseBB;
1918
1919  if (++BBI != FuncInfo.MF->end())
1920    NextBlock = BBI;
1921
1922  // If any two of the cases has the same destination, and if one value
1923  // is the same as the other, but has one bit unset that the other has set,
1924  // use bit manipulation to do two compares at once.  For example:
1925  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1926  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1927  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1928  if (Size == 2 && CR.CaseBB == SwitchBB) {
1929    Case &Small = *CR.Range.first;
1930    Case &Big = *(CR.Range.second-1);
1931
1932    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1933      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1934      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1935
1936      // Check that there is only one bit different.
1937      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1938          (SmallValue | BigValue) == BigValue) {
1939        // Isolate the common bit.
1940        APInt CommonBit = BigValue & ~SmallValue;
1941        assert((SmallValue | CommonBit) == BigValue &&
1942               CommonBit.countPopulation() == 1 && "Not a common bit?");
1943
1944        SDValue CondLHS = getValue(SV);
1945        EVT VT = CondLHS.getValueType();
1946        DebugLoc DL = getCurDebugLoc();
1947
1948        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1949                                 DAG.getConstant(CommonBit, VT));
1950        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1951                                    Or, DAG.getConstant(BigValue, VT),
1952                                    ISD::SETEQ);
1953
1954        // Update successor info.
1955        addSuccessorWithWeight(SwitchBB, Small.BB);
1956        addSuccessorWithWeight(SwitchBB, Default);
1957
1958        // Insert the true branch.
1959        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1960                                     getControlRoot(), Cond,
1961                                     DAG.getBasicBlock(Small.BB));
1962
1963        // Insert the false branch.
1964        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1965                             DAG.getBasicBlock(Default));
1966
1967        DAG.setRoot(BrCond);
1968        return true;
1969      }
1970    }
1971  }
1972
1973  // Rearrange the case blocks so that the last one falls through if possible.
1974  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1975    // The last case block won't fall through into 'NextBlock' if we emit the
1976    // branches in this order.  See if rearranging a case value would help.
1977    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1978      if (I->BB == NextBlock) {
1979        std::swap(*I, BackCase);
1980        break;
1981      }
1982    }
1983  }
1984
1985  // Create a CaseBlock record representing a conditional branch to
1986  // the Case's target mbb if the value being switched on SV is equal
1987  // to C.
1988  MachineBasicBlock *CurBlock = CR.CaseBB;
1989  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1990    MachineBasicBlock *FallThrough;
1991    if (I != E-1) {
1992      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1993      CurMF->insert(BBI, FallThrough);
1994
1995      // Put SV in a virtual register to make it available from the new blocks.
1996      ExportFromCurrentBlock(SV);
1997    } else {
1998      // If the last case doesn't match, go to the default block.
1999      FallThrough = Default;
2000    }
2001
2002    const Value *RHS, *LHS, *MHS;
2003    ISD::CondCode CC;
2004    if (I->High == I->Low) {
2005      // This is just small small case range :) containing exactly 1 case
2006      CC = ISD::SETEQ;
2007      LHS = SV; RHS = I->High; MHS = NULL;
2008    } else {
2009      CC = ISD::SETLE;
2010      LHS = I->Low; MHS = SV; RHS = I->High;
2011    }
2012
2013    uint32_t ExtraWeight = I->ExtraWeight;
2014    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2015                 /* me */ CurBlock,
2016                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
2017
2018    // If emitting the first comparison, just call visitSwitchCase to emit the
2019    // code into the current block.  Otherwise, push the CaseBlock onto the
2020    // vector to be later processed by SDISel, and insert the node's MBB
2021    // before the next MBB.
2022    if (CurBlock == SwitchBB)
2023      visitSwitchCase(CB, SwitchBB);
2024    else
2025      SwitchCases.push_back(CB);
2026
2027    CurBlock = FallThrough;
2028  }
2029
2030  return true;
2031}
2032
2033static inline bool areJTsAllowed(const TargetLowering &TLI) {
2034  return !TLI.getTargetMachine().Options.DisableJumpTables &&
2035          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2036           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2037}
2038
2039static APInt ComputeRange(const APInt &First, const APInt &Last) {
2040  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2041  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2042  return (LastExt - FirstExt + 1ULL);
2043}
2044
2045/// handleJTSwitchCase - Emit jumptable for current switch case range
2046bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2047                                             CaseRecVector &WorkList,
2048                                             const Value *SV,
2049                                             MachineBasicBlock *Default,
2050                                             MachineBasicBlock *SwitchBB) {
2051  Case& FrontCase = *CR.Range.first;
2052  Case& BackCase  = *(CR.Range.second-1);
2053
2054  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2055  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2056
2057  APInt TSize(First.getBitWidth(), 0);
2058  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2059    TSize += I->size();
2060
2061  if (!areJTsAllowed(TLI) || TSize.ult(4))
2062    return false;
2063
2064  APInt Range = ComputeRange(First, Last);
2065  // The density is TSize / Range. Require at least 40%.
2066  // It should not be possible for IntTSize to saturate for sane code, but make
2067  // sure we handle Range saturation correctly.
2068  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2069  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2070  if (IntTSize * 10 < IntRange * 4)
2071    return false;
2072
2073  DEBUG(dbgs() << "Lowering jump table\n"
2074               << "First entry: " << First << ". Last entry: " << Last << '\n'
2075               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2076
2077  // Get the MachineFunction which holds the current MBB.  This is used when
2078  // inserting any additional MBBs necessary to represent the switch.
2079  MachineFunction *CurMF = FuncInfo.MF;
2080
2081  // Figure out which block is immediately after the current one.
2082  MachineFunction::iterator BBI = CR.CaseBB;
2083  ++BBI;
2084
2085  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2086
2087  // Create a new basic block to hold the code for loading the address
2088  // of the jump table, and jumping to it.  Update successor information;
2089  // we will either branch to the default case for the switch, or the jump
2090  // table.
2091  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2092  CurMF->insert(BBI, JumpTableBB);
2093
2094  addSuccessorWithWeight(CR.CaseBB, Default);
2095  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2096
2097  // Build a vector of destination BBs, corresponding to each target
2098  // of the jump table. If the value of the jump table slot corresponds to
2099  // a case statement, push the case's BB onto the vector, otherwise, push
2100  // the default BB.
2101  std::vector<MachineBasicBlock*> DestBBs;
2102  APInt TEI = First;
2103  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2104    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2105    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2106
2107    if (Low.sle(TEI) && TEI.sle(High)) {
2108      DestBBs.push_back(I->BB);
2109      if (TEI==High)
2110        ++I;
2111    } else {
2112      DestBBs.push_back(Default);
2113    }
2114  }
2115
2116  // Update successor info. Add one edge to each unique successor.
2117  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2118  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2119         E = DestBBs.end(); I != E; ++I) {
2120    if (!SuccsHandled[(*I)->getNumber()]) {
2121      SuccsHandled[(*I)->getNumber()] = true;
2122      addSuccessorWithWeight(JumpTableBB, *I);
2123    }
2124  }
2125
2126  // Create a jump table index for this jump table.
2127  unsigned JTEncoding = TLI.getJumpTableEncoding();
2128  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2129                       ->createJumpTableIndex(DestBBs);
2130
2131  // Set the jump table information so that we can codegen it as a second
2132  // MachineBasicBlock
2133  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2134  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2135  if (CR.CaseBB == SwitchBB)
2136    visitJumpTableHeader(JT, JTH, SwitchBB);
2137
2138  JTCases.push_back(JumpTableBlock(JTH, JT));
2139  return true;
2140}
2141
2142/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2143/// 2 subtrees.
2144bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2145                                                  CaseRecVector& WorkList,
2146                                                  const Value* SV,
2147                                                  MachineBasicBlock *Default,
2148                                                  MachineBasicBlock *SwitchBB) {
2149  // Get the MachineFunction which holds the current MBB.  This is used when
2150  // inserting any additional MBBs necessary to represent the switch.
2151  MachineFunction *CurMF = FuncInfo.MF;
2152
2153  // Figure out which block is immediately after the current one.
2154  MachineFunction::iterator BBI = CR.CaseBB;
2155  ++BBI;
2156
2157  Case& FrontCase = *CR.Range.first;
2158  Case& BackCase  = *(CR.Range.second-1);
2159  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2160
2161  // Size is the number of Cases represented by this range.
2162  unsigned Size = CR.Range.second - CR.Range.first;
2163
2164  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2165  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2166  double FMetric = 0;
2167  CaseItr Pivot = CR.Range.first + Size/2;
2168
2169  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2170  // (heuristically) allow us to emit JumpTable's later.
2171  APInt TSize(First.getBitWidth(), 0);
2172  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2173       I!=E; ++I)
2174    TSize += I->size();
2175
2176  APInt LSize = FrontCase.size();
2177  APInt RSize = TSize-LSize;
2178  DEBUG(dbgs() << "Selecting best pivot: \n"
2179               << "First: " << First << ", Last: " << Last <<'\n'
2180               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2181  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2182       J!=E; ++I, ++J) {
2183    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2184    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2185    APInt Range = ComputeRange(LEnd, RBegin);
2186    assert((Range - 2ULL).isNonNegative() &&
2187           "Invalid case distance");
2188    // Use volatile double here to avoid excess precision issues on some hosts,
2189    // e.g. that use 80-bit X87 registers.
2190    volatile double LDensity =
2191       (double)LSize.roundToDouble() /
2192                           (LEnd - First + 1ULL).roundToDouble();
2193    volatile double RDensity =
2194      (double)RSize.roundToDouble() /
2195                           (Last - RBegin + 1ULL).roundToDouble();
2196    double Metric = Range.logBase2()*(LDensity+RDensity);
2197    // Should always split in some non-trivial place
2198    DEBUG(dbgs() <<"=>Step\n"
2199                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2200                 << "LDensity: " << LDensity
2201                 << ", RDensity: " << RDensity << '\n'
2202                 << "Metric: " << Metric << '\n');
2203    if (FMetric < Metric) {
2204      Pivot = J;
2205      FMetric = Metric;
2206      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2207    }
2208
2209    LSize += J->size();
2210    RSize -= J->size();
2211  }
2212  if (areJTsAllowed(TLI)) {
2213    // If our case is dense we *really* should handle it earlier!
2214    assert((FMetric > 0) && "Should handle dense range earlier!");
2215  } else {
2216    Pivot = CR.Range.first + Size/2;
2217  }
2218
2219  CaseRange LHSR(CR.Range.first, Pivot);
2220  CaseRange RHSR(Pivot, CR.Range.second);
2221  const Constant *C = Pivot->Low;
2222  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2223
2224  // We know that we branch to the LHS if the Value being switched on is
2225  // less than the Pivot value, C.  We use this to optimize our binary
2226  // tree a bit, by recognizing that if SV is greater than or equal to the
2227  // LHS's Case Value, and that Case Value is exactly one less than the
2228  // Pivot's Value, then we can branch directly to the LHS's Target,
2229  // rather than creating a leaf node for it.
2230  if ((LHSR.second - LHSR.first) == 1 &&
2231      LHSR.first->High == CR.GE &&
2232      cast<ConstantInt>(C)->getValue() ==
2233      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2234    TrueBB = LHSR.first->BB;
2235  } else {
2236    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2237    CurMF->insert(BBI, TrueBB);
2238    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2239
2240    // Put SV in a virtual register to make it available from the new blocks.
2241    ExportFromCurrentBlock(SV);
2242  }
2243
2244  // Similar to the optimization above, if the Value being switched on is
2245  // known to be less than the Constant CR.LT, and the current Case Value
2246  // is CR.LT - 1, then we can branch directly to the target block for
2247  // the current Case Value, rather than emitting a RHS leaf node for it.
2248  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2249      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2250      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2251    FalseBB = RHSR.first->BB;
2252  } else {
2253    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2254    CurMF->insert(BBI, FalseBB);
2255    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2256
2257    // Put SV in a virtual register to make it available from the new blocks.
2258    ExportFromCurrentBlock(SV);
2259  }
2260
2261  // Create a CaseBlock record representing a conditional branch to
2262  // the LHS node if the value being switched on SV is less than C.
2263  // Otherwise, branch to LHS.
2264  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2265
2266  if (CR.CaseBB == SwitchBB)
2267    visitSwitchCase(CB, SwitchBB);
2268  else
2269    SwitchCases.push_back(CB);
2270
2271  return true;
2272}
2273
2274/// handleBitTestsSwitchCase - if current case range has few destination and
2275/// range span less, than machine word bitwidth, encode case range into series
2276/// of masks and emit bit tests with these masks.
2277bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2278                                                   CaseRecVector& WorkList,
2279                                                   const Value* SV,
2280                                                   MachineBasicBlock* Default,
2281                                                   MachineBasicBlock *SwitchBB){
2282  EVT PTy = TLI.getPointerTy();
2283  unsigned IntPtrBits = PTy.getSizeInBits();
2284
2285  Case& FrontCase = *CR.Range.first;
2286  Case& BackCase  = *(CR.Range.second-1);
2287
2288  // Get the MachineFunction which holds the current MBB.  This is used when
2289  // inserting any additional MBBs necessary to represent the switch.
2290  MachineFunction *CurMF = FuncInfo.MF;
2291
2292  // If target does not have legal shift left, do not emit bit tests at all.
2293  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2294    return false;
2295
2296  size_t numCmps = 0;
2297  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2298       I!=E; ++I) {
2299    // Single case counts one, case range - two.
2300    numCmps += (I->Low == I->High ? 1 : 2);
2301  }
2302
2303  // Count unique destinations
2304  SmallSet<MachineBasicBlock*, 4> Dests;
2305  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2306    Dests.insert(I->BB);
2307    if (Dests.size() > 3)
2308      // Don't bother the code below, if there are too much unique destinations
2309      return false;
2310  }
2311  DEBUG(dbgs() << "Total number of unique destinations: "
2312        << Dests.size() << '\n'
2313        << "Total number of comparisons: " << numCmps << '\n');
2314
2315  // Compute span of values.
2316  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2317  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2318  APInt cmpRange = maxValue - minValue;
2319
2320  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2321               << "Low bound: " << minValue << '\n'
2322               << "High bound: " << maxValue << '\n');
2323
2324  if (cmpRange.uge(IntPtrBits) ||
2325      (!(Dests.size() == 1 && numCmps >= 3) &&
2326       !(Dests.size() == 2 && numCmps >= 5) &&
2327       !(Dests.size() >= 3 && numCmps >= 6)))
2328    return false;
2329
2330  DEBUG(dbgs() << "Emitting bit tests\n");
2331  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2332
2333  // Optimize the case where all the case values fit in a
2334  // word without having to subtract minValue. In this case,
2335  // we can optimize away the subtraction.
2336  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2337    cmpRange = maxValue;
2338  } else {
2339    lowBound = minValue;
2340  }
2341
2342  CaseBitsVector CasesBits;
2343  unsigned i, count = 0;
2344
2345  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2346    MachineBasicBlock* Dest = I->BB;
2347    for (i = 0; i < count; ++i)
2348      if (Dest == CasesBits[i].BB)
2349        break;
2350
2351    if (i == count) {
2352      assert((count < 3) && "Too much destinations to test!");
2353      CasesBits.push_back(CaseBits(0, Dest, 0));
2354      count++;
2355    }
2356
2357    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2358    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2359
2360    uint64_t lo = (lowValue - lowBound).getZExtValue();
2361    uint64_t hi = (highValue - lowBound).getZExtValue();
2362
2363    for (uint64_t j = lo; j <= hi; j++) {
2364      CasesBits[i].Mask |=  1ULL << j;
2365      CasesBits[i].Bits++;
2366    }
2367
2368  }
2369  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2370
2371  BitTestInfo BTC;
2372
2373  // Figure out which block is immediately after the current one.
2374  MachineFunction::iterator BBI = CR.CaseBB;
2375  ++BBI;
2376
2377  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2378
2379  DEBUG(dbgs() << "Cases:\n");
2380  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2381    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2382                 << ", Bits: " << CasesBits[i].Bits
2383                 << ", BB: " << CasesBits[i].BB << '\n');
2384
2385    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2386    CurMF->insert(BBI, CaseBB);
2387    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2388                              CaseBB,
2389                              CasesBits[i].BB));
2390
2391    // Put SV in a virtual register to make it available from the new blocks.
2392    ExportFromCurrentBlock(SV);
2393  }
2394
2395  BitTestBlock BTB(lowBound, cmpRange, SV,
2396                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2397                   CR.CaseBB, Default, BTC);
2398
2399  if (CR.CaseBB == SwitchBB)
2400    visitBitTestHeader(BTB, SwitchBB);
2401
2402  BitTestCases.push_back(BTB);
2403
2404  return true;
2405}
2406
2407/// Clusterify - Transform simple list of Cases into list of CaseRange's
2408size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2409                                       const SwitchInst& SI) {
2410  size_t numCmps = 0;
2411
2412  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2413  // Start with "simple" cases
2414  for (size_t i = 0; i < SI.getNumCases(); ++i) {
2415    BasicBlock *SuccBB = SI.getCaseSuccessor(i);
2416    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2417
2418    uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2419
2420    Cases.push_back(Case(SI.getCaseValue(i),
2421                         SI.getCaseValue(i),
2422                         SMBB, ExtraWeight));
2423  }
2424  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2425
2426  // Merge case into clusters
2427  if (Cases.size() >= 2)
2428    // Must recompute end() each iteration because it may be
2429    // invalidated by erase if we hold on to it
2430    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2431         J != Cases.end(); ) {
2432      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2433      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2434      MachineBasicBlock* nextBB = J->BB;
2435      MachineBasicBlock* currentBB = I->BB;
2436
2437      // If the two neighboring cases go to the same destination, merge them
2438      // into a single case.
2439      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2440        I->High = J->High;
2441        J = Cases.erase(J);
2442
2443        if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2444          uint32_t CurWeight = currentBB->getBasicBlock() ?
2445            BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2446          uint32_t NextWeight = nextBB->getBasicBlock() ?
2447            BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2448
2449          BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2450                             CurWeight + NextWeight);
2451        }
2452      } else {
2453        I = J++;
2454      }
2455    }
2456
2457  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2458    if (I->Low != I->High)
2459      // A range counts double, since it requires two compares.
2460      ++numCmps;
2461  }
2462
2463  return numCmps;
2464}
2465
2466void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2467                                           MachineBasicBlock *Last) {
2468  // Update JTCases.
2469  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2470    if (JTCases[i].first.HeaderBB == First)
2471      JTCases[i].first.HeaderBB = Last;
2472
2473  // Update BitTestCases.
2474  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2475    if (BitTestCases[i].Parent == First)
2476      BitTestCases[i].Parent = Last;
2477}
2478
2479void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2480  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2481
2482  // Figure out which block is immediately after the current one.
2483  MachineBasicBlock *NextBlock = 0;
2484  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2485
2486  // If there is only the default destination, branch to it if it is not the
2487  // next basic block.  Otherwise, just fall through.
2488  if (!SI.getNumCases()) {
2489    // Update machine-CFG edges.
2490
2491    // If this is not a fall-through branch, emit the branch.
2492    SwitchMBB->addSuccessor(Default);
2493    if (Default != NextBlock)
2494      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2495                              MVT::Other, getControlRoot(),
2496                              DAG.getBasicBlock(Default)));
2497
2498    return;
2499  }
2500
2501  // If there are any non-default case statements, create a vector of Cases
2502  // representing each one, and sort the vector so that we can efficiently
2503  // create a binary search tree from them.
2504  CaseVector Cases;
2505  size_t numCmps = Clusterify(Cases, SI);
2506  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2507               << ". Total compares: " << numCmps << '\n');
2508  (void)numCmps;
2509
2510  // Get the Value to be switched on and default basic blocks, which will be
2511  // inserted into CaseBlock records, representing basic blocks in the binary
2512  // search tree.
2513  const Value *SV = SI.getCondition();
2514
2515  // Push the initial CaseRec onto the worklist
2516  CaseRecVector WorkList;
2517  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2518                             CaseRange(Cases.begin(),Cases.end())));
2519
2520  while (!WorkList.empty()) {
2521    // Grab a record representing a case range to process off the worklist
2522    CaseRec CR = WorkList.back();
2523    WorkList.pop_back();
2524
2525    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2526      continue;
2527
2528    // If the range has few cases (two or less) emit a series of specific
2529    // tests.
2530    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2531      continue;
2532
2533    // If the switch has more than 5 blocks, and at least 40% dense, and the
2534    // target supports indirect branches, then emit a jump table rather than
2535    // lowering the switch to a binary tree of conditional branches.
2536    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2537      continue;
2538
2539    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2540    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2541    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2542  }
2543}
2544
2545void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2546  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2547
2548  // Update machine-CFG edges with unique successors.
2549  SmallVector<BasicBlock*, 32> succs;
2550  succs.reserve(I.getNumSuccessors());
2551  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2552    succs.push_back(I.getSuccessor(i));
2553  array_pod_sort(succs.begin(), succs.end());
2554  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2555  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2556    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2557    addSuccessorWithWeight(IndirectBrMBB, Succ);
2558  }
2559
2560  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2561                          MVT::Other, getControlRoot(),
2562                          getValue(I.getAddress())));
2563}
2564
2565void SelectionDAGBuilder::visitFSub(const User &I) {
2566  // -0.0 - X --> fneg
2567  Type *Ty = I.getType();
2568  if (isa<Constant>(I.getOperand(0)) &&
2569      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2570    SDValue Op2 = getValue(I.getOperand(1));
2571    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2572                             Op2.getValueType(), Op2));
2573    return;
2574  }
2575
2576  visitBinary(I, ISD::FSUB);
2577}
2578
2579void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2580  SDValue Op1 = getValue(I.getOperand(0));
2581  SDValue Op2 = getValue(I.getOperand(1));
2582  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2583                           Op1.getValueType(), Op1, Op2));
2584}
2585
2586void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2587  SDValue Op1 = getValue(I.getOperand(0));
2588  SDValue Op2 = getValue(I.getOperand(1));
2589
2590  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2591
2592  // Coerce the shift amount to the right type if we can.
2593  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2594    unsigned ShiftSize = ShiftTy.getSizeInBits();
2595    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2596    DebugLoc DL = getCurDebugLoc();
2597
2598    // If the operand is smaller than the shift count type, promote it.
2599    if (ShiftSize > Op2Size)
2600      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2601
2602    // If the operand is larger than the shift count type but the shift
2603    // count type has enough bits to represent any shift value, truncate
2604    // it now. This is a common case and it exposes the truncate to
2605    // optimization early.
2606    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2607      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2608    // Otherwise we'll need to temporarily settle for some other convenient
2609    // type.  Type legalization will make adjustments once the shiftee is split.
2610    else
2611      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2612  }
2613
2614  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2615                           Op1.getValueType(), Op1, Op2));
2616}
2617
2618void SelectionDAGBuilder::visitSDiv(const User &I) {
2619  SDValue Op1 = getValue(I.getOperand(0));
2620  SDValue Op2 = getValue(I.getOperand(1));
2621
2622  // Turn exact SDivs into multiplications.
2623  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2624  // exact bit.
2625  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2626      !isa<ConstantSDNode>(Op1) &&
2627      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2628    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2629  else
2630    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2631                             Op1, Op2));
2632}
2633
2634void SelectionDAGBuilder::visitICmp(const User &I) {
2635  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2636  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2637    predicate = IC->getPredicate();
2638  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2639    predicate = ICmpInst::Predicate(IC->getPredicate());
2640  SDValue Op1 = getValue(I.getOperand(0));
2641  SDValue Op2 = getValue(I.getOperand(1));
2642  ISD::CondCode Opcode = getICmpCondCode(predicate);
2643
2644  EVT DestVT = TLI.getValueType(I.getType());
2645  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2646}
2647
2648void SelectionDAGBuilder::visitFCmp(const User &I) {
2649  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2650  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2651    predicate = FC->getPredicate();
2652  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2653    predicate = FCmpInst::Predicate(FC->getPredicate());
2654  SDValue Op1 = getValue(I.getOperand(0));
2655  SDValue Op2 = getValue(I.getOperand(1));
2656  ISD::CondCode Condition = getFCmpCondCode(predicate);
2657  if (TM.Options.NoNaNsFPMath)
2658    Condition = getFCmpCodeWithoutNaN(Condition);
2659  EVT DestVT = TLI.getValueType(I.getType());
2660  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2661}
2662
2663void SelectionDAGBuilder::visitSelect(const User &I) {
2664  SmallVector<EVT, 4> ValueVTs;
2665  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2666  unsigned NumValues = ValueVTs.size();
2667  if (NumValues == 0) return;
2668
2669  SmallVector<SDValue, 4> Values(NumValues);
2670  SDValue Cond     = getValue(I.getOperand(0));
2671  SDValue TrueVal  = getValue(I.getOperand(1));
2672  SDValue FalseVal = getValue(I.getOperand(2));
2673  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2674    ISD::VSELECT : ISD::SELECT;
2675
2676  for (unsigned i = 0; i != NumValues; ++i)
2677    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2678                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2679                            Cond,
2680                            SDValue(TrueVal.getNode(),
2681                                    TrueVal.getResNo() + i),
2682                            SDValue(FalseVal.getNode(),
2683                                    FalseVal.getResNo() + i));
2684
2685  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2686                           DAG.getVTList(&ValueVTs[0], NumValues),
2687                           &Values[0], NumValues));
2688}
2689
2690void SelectionDAGBuilder::visitTrunc(const User &I) {
2691  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2692  SDValue N = getValue(I.getOperand(0));
2693  EVT DestVT = TLI.getValueType(I.getType());
2694  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2695}
2696
2697void SelectionDAGBuilder::visitZExt(const User &I) {
2698  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2699  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2700  SDValue N = getValue(I.getOperand(0));
2701  EVT DestVT = TLI.getValueType(I.getType());
2702  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2703}
2704
2705void SelectionDAGBuilder::visitSExt(const User &I) {
2706  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2707  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2708  SDValue N = getValue(I.getOperand(0));
2709  EVT DestVT = TLI.getValueType(I.getType());
2710  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2711}
2712
2713void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2714  // FPTrunc is never a no-op cast, no need to check
2715  SDValue N = getValue(I.getOperand(0));
2716  EVT DestVT = TLI.getValueType(I.getType());
2717  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2718                           DestVT, N,
2719                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2720}
2721
2722void SelectionDAGBuilder::visitFPExt(const User &I){
2723  // FPExt is never a no-op cast, no need to check
2724  SDValue N = getValue(I.getOperand(0));
2725  EVT DestVT = TLI.getValueType(I.getType());
2726  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2727}
2728
2729void SelectionDAGBuilder::visitFPToUI(const User &I) {
2730  // FPToUI is never a no-op cast, no need to check
2731  SDValue N = getValue(I.getOperand(0));
2732  EVT DestVT = TLI.getValueType(I.getType());
2733  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2734}
2735
2736void SelectionDAGBuilder::visitFPToSI(const User &I) {
2737  // FPToSI is never a no-op cast, no need to check
2738  SDValue N = getValue(I.getOperand(0));
2739  EVT DestVT = TLI.getValueType(I.getType());
2740  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2741}
2742
2743void SelectionDAGBuilder::visitUIToFP(const User &I) {
2744  // UIToFP is never a no-op cast, no need to check
2745  SDValue N = getValue(I.getOperand(0));
2746  EVT DestVT = TLI.getValueType(I.getType());
2747  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2748}
2749
2750void SelectionDAGBuilder::visitSIToFP(const User &I){
2751  // SIToFP is never a no-op cast, no need to check
2752  SDValue N = getValue(I.getOperand(0));
2753  EVT DestVT = TLI.getValueType(I.getType());
2754  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2755}
2756
2757void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2758  // What to do depends on the size of the integer and the size of the pointer.
2759  // We can either truncate, zero extend, or no-op, accordingly.
2760  SDValue N = getValue(I.getOperand(0));
2761  EVT DestVT = TLI.getValueType(I.getType());
2762  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2763}
2764
2765void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2766  // What to do depends on the size of the integer and the size of the pointer.
2767  // We can either truncate, zero extend, or no-op, accordingly.
2768  SDValue N = getValue(I.getOperand(0));
2769  EVT DestVT = TLI.getValueType(I.getType());
2770  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2771}
2772
2773void SelectionDAGBuilder::visitBitCast(const User &I) {
2774  SDValue N = getValue(I.getOperand(0));
2775  EVT DestVT = TLI.getValueType(I.getType());
2776
2777  // BitCast assures us that source and destination are the same size so this is
2778  // either a BITCAST or a no-op.
2779  if (DestVT != N.getValueType())
2780    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2781                             DestVT, N)); // convert types.
2782  else
2783    setValue(&I, N);            // noop cast.
2784}
2785
2786void SelectionDAGBuilder::visitInsertElement(const User &I) {
2787  SDValue InVec = getValue(I.getOperand(0));
2788  SDValue InVal = getValue(I.getOperand(1));
2789  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2790                              TLI.getPointerTy(),
2791                              getValue(I.getOperand(2)));
2792  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2793                           TLI.getValueType(I.getType()),
2794                           InVec, InVal, InIdx));
2795}
2796
2797void SelectionDAGBuilder::visitExtractElement(const User &I) {
2798  SDValue InVec = getValue(I.getOperand(0));
2799  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2800                              TLI.getPointerTy(),
2801                              getValue(I.getOperand(1)));
2802  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2803                           TLI.getValueType(I.getType()), InVec, InIdx));
2804}
2805
2806// Utility for visitShuffleVector - Return true if every element in Mask,
2807// begining // from position Pos and ending in Pos+Size, falls within the
2808// specified sequential range [L, L+Pos). or is undef.
2809static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2810                                int Pos, int Size, int Low) {
2811  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2812    if (Mask[i] >= 0 && Mask[i] != Low)
2813      return false;
2814  return true;
2815}
2816
2817void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2818  SDValue Src1 = getValue(I.getOperand(0));
2819  SDValue Src2 = getValue(I.getOperand(1));
2820
2821  SmallVector<int, 8> Mask;
2822  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2823  unsigned MaskNumElts = Mask.size();
2824
2825  EVT VT = TLI.getValueType(I.getType());
2826  EVT SrcVT = Src1.getValueType();
2827  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2828
2829  if (SrcNumElts == MaskNumElts) {
2830    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2831                                      &Mask[0]));
2832    return;
2833  }
2834
2835  // Normalize the shuffle vector since mask and vector length don't match.
2836  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2837    // Mask is longer than the source vectors and is a multiple of the source
2838    // vectors.  We can use concatenate vector to make the mask and vectors
2839    // lengths match.
2840    if (SrcNumElts*2 == MaskNumElts) {
2841      // First check for Src1 in low and Src2 in high
2842      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2843          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2844        // The shuffle is concatenating two vectors together.
2845        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2846                                 VT, Src1, Src2));
2847        return;
2848      }
2849      // Then check for Src2 in low and Src1 in high
2850      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2851          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2852        // The shuffle is concatenating two vectors together.
2853        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2854                                 VT, Src2, Src1));
2855        return;
2856      }
2857    }
2858
2859    // Pad both vectors with undefs to make them the same length as the mask.
2860    unsigned NumConcat = MaskNumElts / SrcNumElts;
2861    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2862    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2863    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2864
2865    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2866    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2867    MOps1[0] = Src1;
2868    MOps2[0] = Src2;
2869
2870    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2871                                                  getCurDebugLoc(), VT,
2872                                                  &MOps1[0], NumConcat);
2873    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2874                                                  getCurDebugLoc(), VT,
2875                                                  &MOps2[0], NumConcat);
2876
2877    // Readjust mask for new input vector length.
2878    SmallVector<int, 8> MappedOps;
2879    for (unsigned i = 0; i != MaskNumElts; ++i) {
2880      int Idx = Mask[i];
2881      if (Idx < (int)SrcNumElts)
2882        MappedOps.push_back(Idx);
2883      else
2884        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2885    }
2886
2887    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2888                                      &MappedOps[0]));
2889    return;
2890  }
2891
2892  if (SrcNumElts > MaskNumElts) {
2893    // Analyze the access pattern of the vector to see if we can extract
2894    // two subvectors and do the shuffle. The analysis is done by calculating
2895    // the range of elements the mask access on both vectors.
2896    int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2897                        static_cast<int>(SrcNumElts+1)};
2898    int MaxRange[2] = {-1, -1};
2899
2900    for (unsigned i = 0; i != MaskNumElts; ++i) {
2901      int Idx = Mask[i];
2902      int Input = 0;
2903      if (Idx < 0)
2904        continue;
2905
2906      if (Idx >= (int)SrcNumElts) {
2907        Input = 1;
2908        Idx -= SrcNumElts;
2909      }
2910      if (Idx > MaxRange[Input])
2911        MaxRange[Input] = Idx;
2912      if (Idx < MinRange[Input])
2913        MinRange[Input] = Idx;
2914    }
2915
2916    // Check if the access is smaller than the vector size and can we find
2917    // a reasonable extract index.
2918    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2919                                 // Extract.
2920    int StartIdx[2];  // StartIdx to extract from
2921    for (int Input=0; Input < 2; ++Input) {
2922      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2923        RangeUse[Input] = 0; // Unused
2924        StartIdx[Input] = 0;
2925      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2926        // Fits within range but we should see if we can find a good
2927        // start index that is a multiple of the mask length.
2928        if (MaxRange[Input] < (int)MaskNumElts) {
2929          RangeUse[Input] = 1; // Extract from beginning of the vector
2930          StartIdx[Input] = 0;
2931        } else {
2932          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2933          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2934              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2935            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2936        }
2937      }
2938    }
2939
2940    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2941      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2942      return;
2943    }
2944    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2945      // Extract appropriate subvector and generate a vector shuffle
2946      for (int Input=0; Input < 2; ++Input) {
2947        SDValue &Src = Input == 0 ? Src1 : Src2;
2948        if (RangeUse[Input] == 0)
2949          Src = DAG.getUNDEF(VT);
2950        else
2951          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2952                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2953      }
2954
2955      // Calculate new mask.
2956      SmallVector<int, 8> MappedOps;
2957      for (unsigned i = 0; i != MaskNumElts; ++i) {
2958        int Idx = Mask[i];
2959        if (Idx < 0)
2960          MappedOps.push_back(Idx);
2961        else if (Idx < (int)SrcNumElts)
2962          MappedOps.push_back(Idx - StartIdx[0]);
2963        else
2964          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2965      }
2966
2967      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2968                                        &MappedOps[0]));
2969      return;
2970    }
2971  }
2972
2973  // We can't use either concat vectors or extract subvectors so fall back to
2974  // replacing the shuffle with extract and build vector.
2975  // to insert and build vector.
2976  EVT EltVT = VT.getVectorElementType();
2977  EVT PtrVT = TLI.getPointerTy();
2978  SmallVector<SDValue,8> Ops;
2979  for (unsigned i = 0; i != MaskNumElts; ++i) {
2980    if (Mask[i] < 0) {
2981      Ops.push_back(DAG.getUNDEF(EltVT));
2982    } else {
2983      int Idx = Mask[i];
2984      SDValue Res;
2985
2986      if (Idx < (int)SrcNumElts)
2987        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2988                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2989      else
2990        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2991                          EltVT, Src2,
2992                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2993
2994      Ops.push_back(Res);
2995    }
2996  }
2997
2998  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2999                           VT, &Ops[0], Ops.size()));
3000}
3001
3002void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3003  const Value *Op0 = I.getOperand(0);
3004  const Value *Op1 = I.getOperand(1);
3005  Type *AggTy = I.getType();
3006  Type *ValTy = Op1->getType();
3007  bool IntoUndef = isa<UndefValue>(Op0);
3008  bool FromUndef = isa<UndefValue>(Op1);
3009
3010  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3011
3012  SmallVector<EVT, 4> AggValueVTs;
3013  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3014  SmallVector<EVT, 4> ValValueVTs;
3015  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3016
3017  unsigned NumAggValues = AggValueVTs.size();
3018  unsigned NumValValues = ValValueVTs.size();
3019  SmallVector<SDValue, 4> Values(NumAggValues);
3020
3021  SDValue Agg = getValue(Op0);
3022  unsigned i = 0;
3023  // Copy the beginning value(s) from the original aggregate.
3024  for (; i != LinearIndex; ++i)
3025    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3026                SDValue(Agg.getNode(), Agg.getResNo() + i);
3027  // Copy values from the inserted value(s).
3028  if (NumValValues) {
3029    SDValue Val = getValue(Op1);
3030    for (; i != LinearIndex + NumValValues; ++i)
3031      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3032                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3033  }
3034  // Copy remaining value(s) from the original aggregate.
3035  for (; i != NumAggValues; ++i)
3036    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3037                SDValue(Agg.getNode(), Agg.getResNo() + i);
3038
3039  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3040                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3041                           &Values[0], NumAggValues));
3042}
3043
3044void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3045  const Value *Op0 = I.getOperand(0);
3046  Type *AggTy = Op0->getType();
3047  Type *ValTy = I.getType();
3048  bool OutOfUndef = isa<UndefValue>(Op0);
3049
3050  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3051
3052  SmallVector<EVT, 4> ValValueVTs;
3053  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3054
3055  unsigned NumValValues = ValValueVTs.size();
3056
3057  // Ignore a extractvalue that produces an empty object
3058  if (!NumValValues) {
3059    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3060    return;
3061  }
3062
3063  SmallVector<SDValue, 4> Values(NumValValues);
3064
3065  SDValue Agg = getValue(Op0);
3066  // Copy out the selected value(s).
3067  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3068    Values[i - LinearIndex] =
3069      OutOfUndef ?
3070        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3071        SDValue(Agg.getNode(), Agg.getResNo() + i);
3072
3073  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3074                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3075                           &Values[0], NumValValues));
3076}
3077
3078void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3079  SDValue N = getValue(I.getOperand(0));
3080  // Note that the pointer operand may be a vector of pointers. Take the scalar
3081  // element which holds a pointer.
3082  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3083
3084  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3085       OI != E; ++OI) {
3086    const Value *Idx = *OI;
3087    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3088      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3089      if (Field) {
3090        // N = N + Offset
3091        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3092        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3093                        DAG.getIntPtrConstant(Offset));
3094      }
3095
3096      Ty = StTy->getElementType(Field);
3097    } else {
3098      Ty = cast<SequentialType>(Ty)->getElementType();
3099
3100      // If this is a constant subscript, handle it quickly.
3101      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3102        if (CI->isZero()) continue;
3103        uint64_t Offs =
3104            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3105        SDValue OffsVal;
3106        EVT PTy = TLI.getPointerTy();
3107        unsigned PtrBits = PTy.getSizeInBits();
3108        if (PtrBits < 64)
3109          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3110                                TLI.getPointerTy(),
3111                                DAG.getConstant(Offs, MVT::i64));
3112        else
3113          OffsVal = DAG.getIntPtrConstant(Offs);
3114
3115        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3116                        OffsVal);
3117        continue;
3118      }
3119
3120      // N = N + Idx * ElementSize;
3121      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3122                                TD->getTypeAllocSize(Ty));
3123      SDValue IdxN = getValue(Idx);
3124
3125      // If the index is smaller or larger than intptr_t, truncate or extend
3126      // it.
3127      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3128
3129      // If this is a multiply by a power of two, turn it into a shl
3130      // immediately.  This is a very common case.
3131      if (ElementSize != 1) {
3132        if (ElementSize.isPowerOf2()) {
3133          unsigned Amt = ElementSize.logBase2();
3134          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3135                             N.getValueType(), IdxN,
3136                             DAG.getConstant(Amt, IdxN.getValueType()));
3137        } else {
3138          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3139          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3140                             N.getValueType(), IdxN, Scale);
3141        }
3142      }
3143
3144      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3145                      N.getValueType(), N, IdxN);
3146    }
3147  }
3148
3149  setValue(&I, N);
3150}
3151
3152void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3153  // If this is a fixed sized alloca in the entry block of the function,
3154  // allocate it statically on the stack.
3155  if (FuncInfo.StaticAllocaMap.count(&I))
3156    return;   // getValue will auto-populate this.
3157
3158  Type *Ty = I.getAllocatedType();
3159  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3160  unsigned Align =
3161    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3162             I.getAlignment());
3163
3164  SDValue AllocSize = getValue(I.getArraySize());
3165
3166  EVT IntPtr = TLI.getPointerTy();
3167  if (AllocSize.getValueType() != IntPtr)
3168    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3169
3170  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3171                          AllocSize,
3172                          DAG.getConstant(TySize, IntPtr));
3173
3174  // Handle alignment.  If the requested alignment is less than or equal to
3175  // the stack alignment, ignore it.  If the size is greater than or equal to
3176  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3177  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3178  if (Align <= StackAlign)
3179    Align = 0;
3180
3181  // Round the size of the allocation up to the stack alignment size
3182  // by add SA-1 to the size.
3183  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3184                          AllocSize.getValueType(), AllocSize,
3185                          DAG.getIntPtrConstant(StackAlign-1));
3186
3187  // Mask out the low bits for alignment purposes.
3188  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3189                          AllocSize.getValueType(), AllocSize,
3190                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3191
3192  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3193  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3194  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3195                            VTs, Ops, 3);
3196  setValue(&I, DSA);
3197  DAG.setRoot(DSA.getValue(1));
3198
3199  // Inform the Frame Information that we have just allocated a variable-sized
3200  // object.
3201  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3202}
3203
3204void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3205  if (I.isAtomic())
3206    return visitAtomicLoad(I);
3207
3208  const Value *SV = I.getOperand(0);
3209  SDValue Ptr = getValue(SV);
3210
3211  Type *Ty = I.getType();
3212
3213  bool isVolatile = I.isVolatile();
3214  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3215  bool isInvariant = I.getMetadata("invariant.load") != 0;
3216  unsigned Alignment = I.getAlignment();
3217  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3218
3219  SmallVector<EVT, 4> ValueVTs;
3220  SmallVector<uint64_t, 4> Offsets;
3221  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3222  unsigned NumValues = ValueVTs.size();
3223  if (NumValues == 0)
3224    return;
3225
3226  SDValue Root;
3227  bool ConstantMemory = false;
3228  if (I.isVolatile() || NumValues > MaxParallelChains)
3229    // Serialize volatile loads with other side effects.
3230    Root = getRoot();
3231  else if (AA->pointsToConstantMemory(
3232             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3233    // Do not serialize (non-volatile) loads of constant memory with anything.
3234    Root = DAG.getEntryNode();
3235    ConstantMemory = true;
3236  } else {
3237    // Do not serialize non-volatile loads against each other.
3238    Root = DAG.getRoot();
3239  }
3240
3241  SmallVector<SDValue, 4> Values(NumValues);
3242  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3243                                          NumValues));
3244  EVT PtrVT = Ptr.getValueType();
3245  unsigned ChainI = 0;
3246  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3247    // Serializing loads here may result in excessive register pressure, and
3248    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3249    // could recover a bit by hoisting nodes upward in the chain by recognizing
3250    // they are side-effect free or do not alias. The optimizer should really
3251    // avoid this case by converting large object/array copies to llvm.memcpy
3252    // (MaxParallelChains should always remain as failsafe).
3253    if (ChainI == MaxParallelChains) {
3254      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3255      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3256                                  MVT::Other, &Chains[0], ChainI);
3257      Root = Chain;
3258      ChainI = 0;
3259    }
3260    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3261                            PtrVT, Ptr,
3262                            DAG.getConstant(Offsets[i], PtrVT));
3263    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3264                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3265                            isNonTemporal, isInvariant, Alignment, TBAAInfo);
3266
3267    Values[i] = L;
3268    Chains[ChainI] = L.getValue(1);
3269  }
3270
3271  if (!ConstantMemory) {
3272    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3273                                MVT::Other, &Chains[0], ChainI);
3274    if (isVolatile)
3275      DAG.setRoot(Chain);
3276    else
3277      PendingLoads.push_back(Chain);
3278  }
3279
3280  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3281                           DAG.getVTList(&ValueVTs[0], NumValues),
3282                           &Values[0], NumValues));
3283}
3284
3285void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3286  if (I.isAtomic())
3287    return visitAtomicStore(I);
3288
3289  const Value *SrcV = I.getOperand(0);
3290  const Value *PtrV = I.getOperand(1);
3291
3292  SmallVector<EVT, 4> ValueVTs;
3293  SmallVector<uint64_t, 4> Offsets;
3294  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3295  unsigned NumValues = ValueVTs.size();
3296  if (NumValues == 0)
3297    return;
3298
3299  // Get the lowered operands. Note that we do this after
3300  // checking if NumResults is zero, because with zero results
3301  // the operands won't have values in the map.
3302  SDValue Src = getValue(SrcV);
3303  SDValue Ptr = getValue(PtrV);
3304
3305  SDValue Root = getRoot();
3306  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3307                                          NumValues));
3308  EVT PtrVT = Ptr.getValueType();
3309  bool isVolatile = I.isVolatile();
3310  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3311  unsigned Alignment = I.getAlignment();
3312  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3313
3314  unsigned ChainI = 0;
3315  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3316    // See visitLoad comments.
3317    if (ChainI == MaxParallelChains) {
3318      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3319                                  MVT::Other, &Chains[0], ChainI);
3320      Root = Chain;
3321      ChainI = 0;
3322    }
3323    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3324                              DAG.getConstant(Offsets[i], PtrVT));
3325    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3326                              SDValue(Src.getNode(), Src.getResNo() + i),
3327                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3328                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3329    Chains[ChainI] = St;
3330  }
3331
3332  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3333                                  MVT::Other, &Chains[0], ChainI);
3334  ++SDNodeOrder;
3335  AssignOrderingToNode(StoreNode.getNode());
3336  DAG.setRoot(StoreNode);
3337}
3338
3339static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3340                                    SynchronizationScope Scope,
3341                                    bool Before, DebugLoc dl,
3342                                    SelectionDAG &DAG,
3343                                    const TargetLowering &TLI) {
3344  // Fence, if necessary
3345  if (Before) {
3346    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3347      Order = Release;
3348    else if (Order == Acquire || Order == Monotonic)
3349      return Chain;
3350  } else {
3351    if (Order == AcquireRelease)
3352      Order = Acquire;
3353    else if (Order == Release || Order == Monotonic)
3354      return Chain;
3355  }
3356  SDValue Ops[3];
3357  Ops[0] = Chain;
3358  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3359  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3360  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3361}
3362
3363void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3364  DebugLoc dl = getCurDebugLoc();
3365  AtomicOrdering Order = I.getOrdering();
3366  SynchronizationScope Scope = I.getSynchScope();
3367
3368  SDValue InChain = getRoot();
3369
3370  if (TLI.getInsertFencesForAtomic())
3371    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3372                                   DAG, TLI);
3373
3374  SDValue L =
3375    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3376                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3377                  InChain,
3378                  getValue(I.getPointerOperand()),
3379                  getValue(I.getCompareOperand()),
3380                  getValue(I.getNewValOperand()),
3381                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3382                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3383                  Scope);
3384
3385  SDValue OutChain = L.getValue(1);
3386
3387  if (TLI.getInsertFencesForAtomic())
3388    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3389                                    DAG, TLI);
3390
3391  setValue(&I, L);
3392  DAG.setRoot(OutChain);
3393}
3394
3395void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3396  DebugLoc dl = getCurDebugLoc();
3397  ISD::NodeType NT;
3398  switch (I.getOperation()) {
3399  default: llvm_unreachable("Unknown atomicrmw operation");
3400  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3401  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3402  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3403  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3404  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3405  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3406  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3407  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3408  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3409  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3410  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3411  }
3412  AtomicOrdering Order = I.getOrdering();
3413  SynchronizationScope Scope = I.getSynchScope();
3414
3415  SDValue InChain = getRoot();
3416
3417  if (TLI.getInsertFencesForAtomic())
3418    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3419                                   DAG, TLI);
3420
3421  SDValue L =
3422    DAG.getAtomic(NT, dl,
3423                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3424                  InChain,
3425                  getValue(I.getPointerOperand()),
3426                  getValue(I.getValOperand()),
3427                  I.getPointerOperand(), 0 /* Alignment */,
3428                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3429                  Scope);
3430
3431  SDValue OutChain = L.getValue(1);
3432
3433  if (TLI.getInsertFencesForAtomic())
3434    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3435                                    DAG, TLI);
3436
3437  setValue(&I, L);
3438  DAG.setRoot(OutChain);
3439}
3440
3441void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3442  DebugLoc dl = getCurDebugLoc();
3443  SDValue Ops[3];
3444  Ops[0] = getRoot();
3445  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3446  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3447  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3448}
3449
3450void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3451  DebugLoc dl = getCurDebugLoc();
3452  AtomicOrdering Order = I.getOrdering();
3453  SynchronizationScope Scope = I.getSynchScope();
3454
3455  SDValue InChain = getRoot();
3456
3457  EVT VT = EVT::getEVT(I.getType());
3458
3459  if (I.getAlignment() * 8 < VT.getSizeInBits())
3460    report_fatal_error("Cannot generate unaligned atomic load");
3461
3462  SDValue L =
3463    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3464                  getValue(I.getPointerOperand()),
3465                  I.getPointerOperand(), I.getAlignment(),
3466                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3467                  Scope);
3468
3469  SDValue OutChain = L.getValue(1);
3470
3471  if (TLI.getInsertFencesForAtomic())
3472    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3473                                    DAG, TLI);
3474
3475  setValue(&I, L);
3476  DAG.setRoot(OutChain);
3477}
3478
3479void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3480  DebugLoc dl = getCurDebugLoc();
3481
3482  AtomicOrdering Order = I.getOrdering();
3483  SynchronizationScope Scope = I.getSynchScope();
3484
3485  SDValue InChain = getRoot();
3486
3487  EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3488
3489  if (I.getAlignment() * 8 < VT.getSizeInBits())
3490    report_fatal_error("Cannot generate unaligned atomic store");
3491
3492  if (TLI.getInsertFencesForAtomic())
3493    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3494                                   DAG, TLI);
3495
3496  SDValue OutChain =
3497    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3498                  InChain,
3499                  getValue(I.getPointerOperand()),
3500                  getValue(I.getValueOperand()),
3501                  I.getPointerOperand(), I.getAlignment(),
3502                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3503                  Scope);
3504
3505  if (TLI.getInsertFencesForAtomic())
3506    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3507                                    DAG, TLI);
3508
3509  DAG.setRoot(OutChain);
3510}
3511
3512/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3513/// node.
3514void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3515                                               unsigned Intrinsic) {
3516  bool HasChain = !I.doesNotAccessMemory();
3517  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3518
3519  // Build the operand list.
3520  SmallVector<SDValue, 8> Ops;
3521  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3522    if (OnlyLoad) {
3523      // We don't need to serialize loads against other loads.
3524      Ops.push_back(DAG.getRoot());
3525    } else {
3526      Ops.push_back(getRoot());
3527    }
3528  }
3529
3530  // Info is set by getTgtMemInstrinsic
3531  TargetLowering::IntrinsicInfo Info;
3532  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3533
3534  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3535  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3536      Info.opc == ISD::INTRINSIC_W_CHAIN)
3537    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3538
3539  // Add all operands of the call to the operand list.
3540  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3541    SDValue Op = getValue(I.getArgOperand(i));
3542    Ops.push_back(Op);
3543  }
3544
3545  SmallVector<EVT, 4> ValueVTs;
3546  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3547
3548  if (HasChain)
3549    ValueVTs.push_back(MVT::Other);
3550
3551  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3552
3553  // Create the node.
3554  SDValue Result;
3555  if (IsTgtIntrinsic) {
3556    // This is target intrinsic that touches memory
3557    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3558                                     VTs, &Ops[0], Ops.size(),
3559                                     Info.memVT,
3560                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3561                                     Info.align, Info.vol,
3562                                     Info.readMem, Info.writeMem);
3563  } else if (!HasChain) {
3564    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3565                         VTs, &Ops[0], Ops.size());
3566  } else if (!I.getType()->isVoidTy()) {
3567    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3568                         VTs, &Ops[0], Ops.size());
3569  } else {
3570    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3571                         VTs, &Ops[0], Ops.size());
3572  }
3573
3574  if (HasChain) {
3575    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3576    if (OnlyLoad)
3577      PendingLoads.push_back(Chain);
3578    else
3579      DAG.setRoot(Chain);
3580  }
3581
3582  if (!I.getType()->isVoidTy()) {
3583    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3584      EVT VT = TLI.getValueType(PTy);
3585      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3586    }
3587
3588    setValue(&I, Result);
3589  }
3590}
3591
3592/// GetSignificand - Get the significand and build it into a floating-point
3593/// number with exponent of 1:
3594///
3595///   Op = (Op & 0x007fffff) | 0x3f800000;
3596///
3597/// where Op is the hexidecimal representation of floating point value.
3598static SDValue
3599GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3600  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3601                           DAG.getConstant(0x007fffff, MVT::i32));
3602  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3603                           DAG.getConstant(0x3f800000, MVT::i32));
3604  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3605}
3606
3607/// GetExponent - Get the exponent:
3608///
3609///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3610///
3611/// where Op is the hexidecimal representation of floating point value.
3612static SDValue
3613GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3614            DebugLoc dl) {
3615  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3616                           DAG.getConstant(0x7f800000, MVT::i32));
3617  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3618                           DAG.getConstant(23, TLI.getPointerTy()));
3619  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3620                           DAG.getConstant(127, MVT::i32));
3621  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3622}
3623
3624/// getF32Constant - Get 32-bit floating point constant.
3625static SDValue
3626getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3627  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3628}
3629
3630// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3631const char *
3632SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3633  SDValue Op1 = getValue(I.getArgOperand(0));
3634  SDValue Op2 = getValue(I.getArgOperand(1));
3635
3636  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3637  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3638  return 0;
3639}
3640
3641/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3642/// limited-precision mode.
3643void
3644SelectionDAGBuilder::visitExp(const CallInst &I) {
3645  SDValue result;
3646  DebugLoc dl = getCurDebugLoc();
3647
3648  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3649      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3650    SDValue Op = getValue(I.getArgOperand(0));
3651
3652    // Put the exponent in the right bit position for later addition to the
3653    // final result:
3654    //
3655    //   #define LOG2OFe 1.4426950f
3656    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3657    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3658                             getF32Constant(DAG, 0x3fb8aa3b));
3659    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3660
3661    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3662    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3663    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3664
3665    //   IntegerPartOfX <<= 23;
3666    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3667                                 DAG.getConstant(23, TLI.getPointerTy()));
3668
3669    if (LimitFloatPrecision <= 6) {
3670      // For floating-point precision of 6:
3671      //
3672      //   TwoToFractionalPartOfX =
3673      //     0.997535578f +
3674      //       (0.735607626f + 0.252464424f * x) * x;
3675      //
3676      // error 0.0144103317, which is 6 bits
3677      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3678                               getF32Constant(DAG, 0x3e814304));
3679      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3680                               getF32Constant(DAG, 0x3f3c50c8));
3681      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3682      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3683                               getF32Constant(DAG, 0x3f7f5e7e));
3684      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3685
3686      // Add the exponent into the result in integer domain.
3687      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3688                               TwoToFracPartOfX, IntegerPartOfX);
3689
3690      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3691    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3692      // For floating-point precision of 12:
3693      //
3694      //   TwoToFractionalPartOfX =
3695      //     0.999892986f +
3696      //       (0.696457318f +
3697      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3698      //
3699      // 0.000107046256 error, which is 13 to 14 bits
3700      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3701                               getF32Constant(DAG, 0x3da235e3));
3702      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3703                               getF32Constant(DAG, 0x3e65b8f3));
3704      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3705      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3706                               getF32Constant(DAG, 0x3f324b07));
3707      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3708      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3709                               getF32Constant(DAG, 0x3f7ff8fd));
3710      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3711
3712      // Add the exponent into the result in integer domain.
3713      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3714                               TwoToFracPartOfX, IntegerPartOfX);
3715
3716      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3717    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3718      // For floating-point precision of 18:
3719      //
3720      //   TwoToFractionalPartOfX =
3721      //     0.999999982f +
3722      //       (0.693148872f +
3723      //         (0.240227044f +
3724      //           (0.554906021e-1f +
3725      //             (0.961591928e-2f +
3726      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3727      //
3728      // error 2.47208000*10^(-7), which is better than 18 bits
3729      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3730                               getF32Constant(DAG, 0x3924b03e));
3731      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3732                               getF32Constant(DAG, 0x3ab24b87));
3733      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3734      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3735                               getF32Constant(DAG, 0x3c1d8c17));
3736      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3737      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3738                               getF32Constant(DAG, 0x3d634a1d));
3739      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3740      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3741                               getF32Constant(DAG, 0x3e75fe14));
3742      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3743      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3744                                getF32Constant(DAG, 0x3f317234));
3745      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3746      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3747                                getF32Constant(DAG, 0x3f800000));
3748      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3749                                             MVT::i32, t13);
3750
3751      // Add the exponent into the result in integer domain.
3752      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3753                                TwoToFracPartOfX, IntegerPartOfX);
3754
3755      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3756    }
3757  } else {
3758    // No special expansion.
3759    result = DAG.getNode(ISD::FEXP, dl,
3760                         getValue(I.getArgOperand(0)).getValueType(),
3761                         getValue(I.getArgOperand(0)));
3762  }
3763
3764  setValue(&I, result);
3765}
3766
3767/// visitLog - Lower a log intrinsic. Handles the special sequences for
3768/// limited-precision mode.
3769void
3770SelectionDAGBuilder::visitLog(const CallInst &I) {
3771  SDValue result;
3772  DebugLoc dl = getCurDebugLoc();
3773
3774  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3775      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3776    SDValue Op = getValue(I.getArgOperand(0));
3777    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3778
3779    // Scale the exponent by log(2) [0.69314718f].
3780    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3781    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3782                                        getF32Constant(DAG, 0x3f317218));
3783
3784    // Get the significand and build it into a floating-point number with
3785    // exponent of 1.
3786    SDValue X = GetSignificand(DAG, Op1, dl);
3787
3788    if (LimitFloatPrecision <= 6) {
3789      // For floating-point precision of 6:
3790      //
3791      //   LogofMantissa =
3792      //     -1.1609546f +
3793      //       (1.4034025f - 0.23903021f * x) * x;
3794      //
3795      // error 0.0034276066, which is better than 8 bits
3796      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3797                               getF32Constant(DAG, 0xbe74c456));
3798      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3799                               getF32Constant(DAG, 0x3fb3a2b1));
3800      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3801      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3802                                          getF32Constant(DAG, 0x3f949a29));
3803
3804      result = DAG.getNode(ISD::FADD, dl,
3805                           MVT::f32, LogOfExponent, LogOfMantissa);
3806    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3807      // For floating-point precision of 12:
3808      //
3809      //   LogOfMantissa =
3810      //     -1.7417939f +
3811      //       (2.8212026f +
3812      //         (-1.4699568f +
3813      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3814      //
3815      // error 0.000061011436, which is 14 bits
3816      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3817                               getF32Constant(DAG, 0xbd67b6d6));
3818      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3819                               getF32Constant(DAG, 0x3ee4f4b8));
3820      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3821      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3822                               getF32Constant(DAG, 0x3fbc278b));
3823      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3824      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3825                               getF32Constant(DAG, 0x40348e95));
3826      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3827      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3828                                          getF32Constant(DAG, 0x3fdef31a));
3829
3830      result = DAG.getNode(ISD::FADD, dl,
3831                           MVT::f32, LogOfExponent, LogOfMantissa);
3832    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3833      // For floating-point precision of 18:
3834      //
3835      //   LogOfMantissa =
3836      //     -2.1072184f +
3837      //       (4.2372794f +
3838      //         (-3.7029485f +
3839      //           (2.2781945f +
3840      //             (-0.87823314f +
3841      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3842      //
3843      // error 0.0000023660568, which is better than 18 bits
3844      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3845                               getF32Constant(DAG, 0xbc91e5ac));
3846      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3847                               getF32Constant(DAG, 0x3e4350aa));
3848      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3849      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3850                               getF32Constant(DAG, 0x3f60d3e3));
3851      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3852      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3853                               getF32Constant(DAG, 0x4011cdf0));
3854      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3855      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3856                               getF32Constant(DAG, 0x406cfd1c));
3857      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3858      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3859                               getF32Constant(DAG, 0x408797cb));
3860      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3861      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3862                                          getF32Constant(DAG, 0x4006dcab));
3863
3864      result = DAG.getNode(ISD::FADD, dl,
3865                           MVT::f32, LogOfExponent, LogOfMantissa);
3866    }
3867  } else {
3868    // No special expansion.
3869    result = DAG.getNode(ISD::FLOG, dl,
3870                         getValue(I.getArgOperand(0)).getValueType(),
3871                         getValue(I.getArgOperand(0)));
3872  }
3873
3874  setValue(&I, result);
3875}
3876
3877/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3878/// limited-precision mode.
3879void
3880SelectionDAGBuilder::visitLog2(const CallInst &I) {
3881  SDValue result;
3882  DebugLoc dl = getCurDebugLoc();
3883
3884  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3885      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3886    SDValue Op = getValue(I.getArgOperand(0));
3887    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3888
3889    // Get the exponent.
3890    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3891
3892    // Get the significand and build it into a floating-point number with
3893    // exponent of 1.
3894    SDValue X = GetSignificand(DAG, Op1, dl);
3895
3896    // Different possible minimax approximations of significand in
3897    // floating-point for various degrees of accuracy over [1,2].
3898    if (LimitFloatPrecision <= 6) {
3899      // For floating-point precision of 6:
3900      //
3901      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3902      //
3903      // error 0.0049451742, which is more than 7 bits
3904      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3905                               getF32Constant(DAG, 0xbeb08fe0));
3906      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3907                               getF32Constant(DAG, 0x40019463));
3908      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3909      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3910                                           getF32Constant(DAG, 0x3fd6633d));
3911
3912      result = DAG.getNode(ISD::FADD, dl,
3913                           MVT::f32, LogOfExponent, Log2ofMantissa);
3914    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3915      // For floating-point precision of 12:
3916      //
3917      //   Log2ofMantissa =
3918      //     -2.51285454f +
3919      //       (4.07009056f +
3920      //         (-2.12067489f +
3921      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3922      //
3923      // error 0.0000876136000, which is better than 13 bits
3924      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3925                               getF32Constant(DAG, 0xbda7262e));
3926      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3927                               getF32Constant(DAG, 0x3f25280b));
3928      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3929      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3930                               getF32Constant(DAG, 0x4007b923));
3931      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3932      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3933                               getF32Constant(DAG, 0x40823e2f));
3934      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3935      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3936                                           getF32Constant(DAG, 0x4020d29c));
3937
3938      result = DAG.getNode(ISD::FADD, dl,
3939                           MVT::f32, LogOfExponent, Log2ofMantissa);
3940    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3941      // For floating-point precision of 18:
3942      //
3943      //   Log2ofMantissa =
3944      //     -3.0400495f +
3945      //       (6.1129976f +
3946      //         (-5.3420409f +
3947      //           (3.2865683f +
3948      //             (-1.2669343f +
3949      //               (0.27515199f -
3950      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3951      //
3952      // error 0.0000018516, which is better than 18 bits
3953      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3954                               getF32Constant(DAG, 0xbcd2769e));
3955      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3956                               getF32Constant(DAG, 0x3e8ce0b9));
3957      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3958      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3959                               getF32Constant(DAG, 0x3fa22ae7));
3960      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3961      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3962                               getF32Constant(DAG, 0x40525723));
3963      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3964      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3965                               getF32Constant(DAG, 0x40aaf200));
3966      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3967      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3968                               getF32Constant(DAG, 0x40c39dad));
3969      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3970      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3971                                           getF32Constant(DAG, 0x4042902c));
3972
3973      result = DAG.getNode(ISD::FADD, dl,
3974                           MVT::f32, LogOfExponent, Log2ofMantissa);
3975    }
3976  } else {
3977    // No special expansion.
3978    result = DAG.getNode(ISD::FLOG2, dl,
3979                         getValue(I.getArgOperand(0)).getValueType(),
3980                         getValue(I.getArgOperand(0)));
3981  }
3982
3983  setValue(&I, result);
3984}
3985
3986/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3987/// limited-precision mode.
3988void
3989SelectionDAGBuilder::visitLog10(const CallInst &I) {
3990  SDValue result;
3991  DebugLoc dl = getCurDebugLoc();
3992
3993  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3994      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3995    SDValue Op = getValue(I.getArgOperand(0));
3996    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3997
3998    // Scale the exponent by log10(2) [0.30102999f].
3999    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4000    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4001                                        getF32Constant(DAG, 0x3e9a209a));
4002
4003    // Get the significand and build it into a floating-point number with
4004    // exponent of 1.
4005    SDValue X = GetSignificand(DAG, Op1, dl);
4006
4007    if (LimitFloatPrecision <= 6) {
4008      // For floating-point precision of 6:
4009      //
4010      //   Log10ofMantissa =
4011      //     -0.50419619f +
4012      //       (0.60948995f - 0.10380950f * x) * x;
4013      //
4014      // error 0.0014886165, which is 6 bits
4015      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4016                               getF32Constant(DAG, 0xbdd49a13));
4017      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4018                               getF32Constant(DAG, 0x3f1c0789));
4019      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4020      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4021                                            getF32Constant(DAG, 0x3f011300));
4022
4023      result = DAG.getNode(ISD::FADD, dl,
4024                           MVT::f32, LogOfExponent, Log10ofMantissa);
4025    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4026      // For floating-point precision of 12:
4027      //
4028      //   Log10ofMantissa =
4029      //     -0.64831180f +
4030      //       (0.91751397f +
4031      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4032      //
4033      // error 0.00019228036, which is better than 12 bits
4034      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4035                               getF32Constant(DAG, 0x3d431f31));
4036      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4037                               getF32Constant(DAG, 0x3ea21fb2));
4038      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4039      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4040                               getF32Constant(DAG, 0x3f6ae232));
4041      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4042      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4043                                            getF32Constant(DAG, 0x3f25f7c3));
4044
4045      result = DAG.getNode(ISD::FADD, dl,
4046                           MVT::f32, LogOfExponent, Log10ofMantissa);
4047    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4048      // For floating-point precision of 18:
4049      //
4050      //   Log10ofMantissa =
4051      //     -0.84299375f +
4052      //       (1.5327582f +
4053      //         (-1.0688956f +
4054      //           (0.49102474f +
4055      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4056      //
4057      // error 0.0000037995730, which is better than 18 bits
4058      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4059                               getF32Constant(DAG, 0x3c5d51ce));
4060      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4061                               getF32Constant(DAG, 0x3e00685a));
4062      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4063      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4064                               getF32Constant(DAG, 0x3efb6798));
4065      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4066      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4067                               getF32Constant(DAG, 0x3f88d192));
4068      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4069      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4070                               getF32Constant(DAG, 0x3fc4316c));
4071      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4072      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4073                                            getF32Constant(DAG, 0x3f57ce70));
4074
4075      result = DAG.getNode(ISD::FADD, dl,
4076                           MVT::f32, LogOfExponent, Log10ofMantissa);
4077    }
4078  } else {
4079    // No special expansion.
4080    result = DAG.getNode(ISD::FLOG10, dl,
4081                         getValue(I.getArgOperand(0)).getValueType(),
4082                         getValue(I.getArgOperand(0)));
4083  }
4084
4085  setValue(&I, result);
4086}
4087
4088/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4089/// limited-precision mode.
4090void
4091SelectionDAGBuilder::visitExp2(const CallInst &I) {
4092  SDValue result;
4093  DebugLoc dl = getCurDebugLoc();
4094
4095  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4096      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4097    SDValue Op = getValue(I.getArgOperand(0));
4098
4099    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4100
4101    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4102    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4103    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4104
4105    //   IntegerPartOfX <<= 23;
4106    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4107                                 DAG.getConstant(23, TLI.getPointerTy()));
4108
4109    if (LimitFloatPrecision <= 6) {
4110      // For floating-point precision of 6:
4111      //
4112      //   TwoToFractionalPartOfX =
4113      //     0.997535578f +
4114      //       (0.735607626f + 0.252464424f * x) * x;
4115      //
4116      // error 0.0144103317, which is 6 bits
4117      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4118                               getF32Constant(DAG, 0x3e814304));
4119      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4120                               getF32Constant(DAG, 0x3f3c50c8));
4121      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4122      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4123                               getF32Constant(DAG, 0x3f7f5e7e));
4124      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4125      SDValue TwoToFractionalPartOfX =
4126        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4127
4128      result = DAG.getNode(ISD::BITCAST, dl,
4129                           MVT::f32, TwoToFractionalPartOfX);
4130    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4131      // For floating-point precision of 12:
4132      //
4133      //   TwoToFractionalPartOfX =
4134      //     0.999892986f +
4135      //       (0.696457318f +
4136      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4137      //
4138      // error 0.000107046256, which is 13 to 14 bits
4139      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4140                               getF32Constant(DAG, 0x3da235e3));
4141      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4142                               getF32Constant(DAG, 0x3e65b8f3));
4143      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4144      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4145                               getF32Constant(DAG, 0x3f324b07));
4146      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4147      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4148                               getF32Constant(DAG, 0x3f7ff8fd));
4149      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4150      SDValue TwoToFractionalPartOfX =
4151        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4152
4153      result = DAG.getNode(ISD::BITCAST, dl,
4154                           MVT::f32, TwoToFractionalPartOfX);
4155    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4156      // For floating-point precision of 18:
4157      //
4158      //   TwoToFractionalPartOfX =
4159      //     0.999999982f +
4160      //       (0.693148872f +
4161      //         (0.240227044f +
4162      //           (0.554906021e-1f +
4163      //             (0.961591928e-2f +
4164      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4165      // error 2.47208000*10^(-7), which is better than 18 bits
4166      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4167                               getF32Constant(DAG, 0x3924b03e));
4168      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4169                               getF32Constant(DAG, 0x3ab24b87));
4170      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4171      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4172                               getF32Constant(DAG, 0x3c1d8c17));
4173      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4174      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4175                               getF32Constant(DAG, 0x3d634a1d));
4176      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4177      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4178                               getF32Constant(DAG, 0x3e75fe14));
4179      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4180      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4181                                getF32Constant(DAG, 0x3f317234));
4182      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4183      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4184                                getF32Constant(DAG, 0x3f800000));
4185      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4186      SDValue TwoToFractionalPartOfX =
4187        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4188
4189      result = DAG.getNode(ISD::BITCAST, dl,
4190                           MVT::f32, TwoToFractionalPartOfX);
4191    }
4192  } else {
4193    // No special expansion.
4194    result = DAG.getNode(ISD::FEXP2, dl,
4195                         getValue(I.getArgOperand(0)).getValueType(),
4196                         getValue(I.getArgOperand(0)));
4197  }
4198
4199  setValue(&I, result);
4200}
4201
4202/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4203/// limited-precision mode with x == 10.0f.
4204void
4205SelectionDAGBuilder::visitPow(const CallInst &I) {
4206  SDValue result;
4207  const Value *Val = I.getArgOperand(0);
4208  DebugLoc dl = getCurDebugLoc();
4209  bool IsExp10 = false;
4210
4211  if (getValue(Val).getValueType() == MVT::f32 &&
4212      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4213      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4214    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4215      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4216        APFloat Ten(10.0f);
4217        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4218      }
4219    }
4220  }
4221
4222  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4223    SDValue Op = getValue(I.getArgOperand(1));
4224
4225    // Put the exponent in the right bit position for later addition to the
4226    // final result:
4227    //
4228    //   #define LOG2OF10 3.3219281f
4229    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4230    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4231                             getF32Constant(DAG, 0x40549a78));
4232    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4233
4234    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4235    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4236    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4237
4238    //   IntegerPartOfX <<= 23;
4239    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4240                                 DAG.getConstant(23, TLI.getPointerTy()));
4241
4242    if (LimitFloatPrecision <= 6) {
4243      // For floating-point precision of 6:
4244      //
4245      //   twoToFractionalPartOfX =
4246      //     0.997535578f +
4247      //       (0.735607626f + 0.252464424f * x) * x;
4248      //
4249      // error 0.0144103317, which is 6 bits
4250      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4251                               getF32Constant(DAG, 0x3e814304));
4252      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4253                               getF32Constant(DAG, 0x3f3c50c8));
4254      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4255      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4256                               getF32Constant(DAG, 0x3f7f5e7e));
4257      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4258      SDValue TwoToFractionalPartOfX =
4259        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4260
4261      result = DAG.getNode(ISD::BITCAST, dl,
4262                           MVT::f32, TwoToFractionalPartOfX);
4263    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4264      // For floating-point precision of 12:
4265      //
4266      //   TwoToFractionalPartOfX =
4267      //     0.999892986f +
4268      //       (0.696457318f +
4269      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4270      //
4271      // error 0.000107046256, which is 13 to 14 bits
4272      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4273                               getF32Constant(DAG, 0x3da235e3));
4274      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4275                               getF32Constant(DAG, 0x3e65b8f3));
4276      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4277      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4278                               getF32Constant(DAG, 0x3f324b07));
4279      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4280      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4281                               getF32Constant(DAG, 0x3f7ff8fd));
4282      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4283      SDValue TwoToFractionalPartOfX =
4284        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4285
4286      result = DAG.getNode(ISD::BITCAST, dl,
4287                           MVT::f32, TwoToFractionalPartOfX);
4288    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4289      // For floating-point precision of 18:
4290      //
4291      //   TwoToFractionalPartOfX =
4292      //     0.999999982f +
4293      //       (0.693148872f +
4294      //         (0.240227044f +
4295      //           (0.554906021e-1f +
4296      //             (0.961591928e-2f +
4297      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4298      // error 2.47208000*10^(-7), which is better than 18 bits
4299      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4300                               getF32Constant(DAG, 0x3924b03e));
4301      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4302                               getF32Constant(DAG, 0x3ab24b87));
4303      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4304      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4305                               getF32Constant(DAG, 0x3c1d8c17));
4306      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4307      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4308                               getF32Constant(DAG, 0x3d634a1d));
4309      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4310      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4311                               getF32Constant(DAG, 0x3e75fe14));
4312      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4313      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4314                                getF32Constant(DAG, 0x3f317234));
4315      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4316      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4317                                getF32Constant(DAG, 0x3f800000));
4318      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4319      SDValue TwoToFractionalPartOfX =
4320        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4321
4322      result = DAG.getNode(ISD::BITCAST, dl,
4323                           MVT::f32, TwoToFractionalPartOfX);
4324    }
4325  } else {
4326    // No special expansion.
4327    result = DAG.getNode(ISD::FPOW, dl,
4328                         getValue(I.getArgOperand(0)).getValueType(),
4329                         getValue(I.getArgOperand(0)),
4330                         getValue(I.getArgOperand(1)));
4331  }
4332
4333  setValue(&I, result);
4334}
4335
4336
4337/// ExpandPowI - Expand a llvm.powi intrinsic.
4338static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4339                          SelectionDAG &DAG) {
4340  // If RHS is a constant, we can expand this out to a multiplication tree,
4341  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4342  // optimizing for size, we only want to do this if the expansion would produce
4343  // a small number of multiplies, otherwise we do the full expansion.
4344  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4345    // Get the exponent as a positive value.
4346    unsigned Val = RHSC->getSExtValue();
4347    if ((int)Val < 0) Val = -Val;
4348
4349    // powi(x, 0) -> 1.0
4350    if (Val == 0)
4351      return DAG.getConstantFP(1.0, LHS.getValueType());
4352
4353    const Function *F = DAG.getMachineFunction().getFunction();
4354    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4355        // If optimizing for size, don't insert too many multiplies.  This
4356        // inserts up to 5 multiplies.
4357        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4358      // We use the simple binary decomposition method to generate the multiply
4359      // sequence.  There are more optimal ways to do this (for example,
4360      // powi(x,15) generates one more multiply than it should), but this has
4361      // the benefit of being both really simple and much better than a libcall.
4362      SDValue Res;  // Logically starts equal to 1.0
4363      SDValue CurSquare = LHS;
4364      while (Val) {
4365        if (Val & 1) {
4366          if (Res.getNode())
4367            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4368          else
4369            Res = CurSquare;  // 1.0*CurSquare.
4370        }
4371
4372        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4373                                CurSquare, CurSquare);
4374        Val >>= 1;
4375      }
4376
4377      // If the original was negative, invert the result, producing 1/(x*x*x).
4378      if (RHSC->getSExtValue() < 0)
4379        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4380                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4381      return Res;
4382    }
4383  }
4384
4385  // Otherwise, expand to a libcall.
4386  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4387}
4388
4389// getTruncatedArgReg - Find underlying register used for an truncated
4390// argument.
4391static unsigned getTruncatedArgReg(const SDValue &N) {
4392  if (N.getOpcode() != ISD::TRUNCATE)
4393    return 0;
4394
4395  const SDValue &Ext = N.getOperand(0);
4396  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4397    const SDValue &CFR = Ext.getOperand(0);
4398    if (CFR.getOpcode() == ISD::CopyFromReg)
4399      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4400    else
4401      if (CFR.getOpcode() == ISD::TRUNCATE)
4402        return getTruncatedArgReg(CFR);
4403  }
4404  return 0;
4405}
4406
4407/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4408/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4409/// At the end of instruction selection, they will be inserted to the entry BB.
4410bool
4411SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4412                                              int64_t Offset,
4413                                              const SDValue &N) {
4414  const Argument *Arg = dyn_cast<Argument>(V);
4415  if (!Arg)
4416    return false;
4417
4418  MachineFunction &MF = DAG.getMachineFunction();
4419  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4420  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4421
4422  // Ignore inlined function arguments here.
4423  DIVariable DV(Variable);
4424  if (DV.isInlinedFnArgument(MF.getFunction()))
4425    return false;
4426
4427  unsigned Reg = 0;
4428  // Some arguments' frame index is recorded during argument lowering.
4429  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4430  if (Offset)
4431      Reg = TRI->getFrameRegister(MF);
4432
4433  if (!Reg && N.getNode()) {
4434    if (N.getOpcode() == ISD::CopyFromReg)
4435      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4436    else
4437      Reg = getTruncatedArgReg(N);
4438    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4439      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4440      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4441      if (PR)
4442        Reg = PR;
4443    }
4444  }
4445
4446  if (!Reg) {
4447    // Check if ValueMap has reg number.
4448    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4449    if (VMI != FuncInfo.ValueMap.end())
4450      Reg = VMI->second;
4451  }
4452
4453  if (!Reg && N.getNode()) {
4454    // Check if frame index is available.
4455    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4456      if (FrameIndexSDNode *FINode =
4457          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4458        Reg = TRI->getFrameRegister(MF);
4459        Offset = FINode->getIndex();
4460      }
4461  }
4462
4463  if (!Reg)
4464    return false;
4465
4466  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4467                                    TII->get(TargetOpcode::DBG_VALUE))
4468    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4469  FuncInfo.ArgDbgValues.push_back(&*MIB);
4470  return true;
4471}
4472
4473// VisualStudio defines setjmp as _setjmp
4474#if defined(_MSC_VER) && defined(setjmp) && \
4475                         !defined(setjmp_undefined_for_msvc)
4476#  pragma push_macro("setjmp")
4477#  undef setjmp
4478#  define setjmp_undefined_for_msvc
4479#endif
4480
4481/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4482/// we want to emit this as a call to a named external function, return the name
4483/// otherwise lower it and return null.
4484const char *
4485SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4486  DebugLoc dl = getCurDebugLoc();
4487  SDValue Res;
4488
4489  switch (Intrinsic) {
4490  default:
4491    // By default, turn this into a target intrinsic node.
4492    visitTargetIntrinsic(I, Intrinsic);
4493    return 0;
4494  case Intrinsic::vastart:  visitVAStart(I); return 0;
4495  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4496  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4497  case Intrinsic::returnaddress:
4498    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4499                             getValue(I.getArgOperand(0))));
4500    return 0;
4501  case Intrinsic::frameaddress:
4502    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4503                             getValue(I.getArgOperand(0))));
4504    return 0;
4505  case Intrinsic::setjmp:
4506    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4507  case Intrinsic::longjmp:
4508    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4509  case Intrinsic::memcpy: {
4510    // Assert for address < 256 since we support only user defined address
4511    // spaces.
4512    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4513           < 256 &&
4514           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4515           < 256 &&
4516           "Unknown address space");
4517    SDValue Op1 = getValue(I.getArgOperand(0));
4518    SDValue Op2 = getValue(I.getArgOperand(1));
4519    SDValue Op3 = getValue(I.getArgOperand(2));
4520    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4521    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4522    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4523                              MachinePointerInfo(I.getArgOperand(0)),
4524                              MachinePointerInfo(I.getArgOperand(1))));
4525    return 0;
4526  }
4527  case Intrinsic::memset: {
4528    // Assert for address < 256 since we support only user defined address
4529    // spaces.
4530    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4531           < 256 &&
4532           "Unknown address space");
4533    SDValue Op1 = getValue(I.getArgOperand(0));
4534    SDValue Op2 = getValue(I.getArgOperand(1));
4535    SDValue Op3 = getValue(I.getArgOperand(2));
4536    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4537    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4538    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4539                              MachinePointerInfo(I.getArgOperand(0))));
4540    return 0;
4541  }
4542  case Intrinsic::memmove: {
4543    // Assert for address < 256 since we support only user defined address
4544    // spaces.
4545    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4546           < 256 &&
4547           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4548           < 256 &&
4549           "Unknown address space");
4550    SDValue Op1 = getValue(I.getArgOperand(0));
4551    SDValue Op2 = getValue(I.getArgOperand(1));
4552    SDValue Op3 = getValue(I.getArgOperand(2));
4553    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4554    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4555    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4556                               MachinePointerInfo(I.getArgOperand(0)),
4557                               MachinePointerInfo(I.getArgOperand(1))));
4558    return 0;
4559  }
4560  case Intrinsic::dbg_declare: {
4561    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4562    MDNode *Variable = DI.getVariable();
4563    const Value *Address = DI.getAddress();
4564    if (!Address || !DIVariable(Variable).Verify())
4565      return 0;
4566
4567    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4568    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4569    // absolute, but not relative, values are different depending on whether
4570    // debug info exists.
4571    ++SDNodeOrder;
4572
4573    // Check if address has undef value.
4574    if (isa<UndefValue>(Address) ||
4575        (Address->use_empty() && !isa<Argument>(Address))) {
4576      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4577      return 0;
4578    }
4579
4580    SDValue &N = NodeMap[Address];
4581    if (!N.getNode() && isa<Argument>(Address))
4582      // Check unused arguments map.
4583      N = UnusedArgNodeMap[Address];
4584    SDDbgValue *SDV;
4585    if (N.getNode()) {
4586      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4587        Address = BCI->getOperand(0);
4588      // Parameters are handled specially.
4589      bool isParameter =
4590        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4591         isa<Argument>(Address));
4592
4593      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4594
4595      if (isParameter && !AI) {
4596        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4597        if (FINode)
4598          // Byval parameter.  We have a frame index at this point.
4599          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4600                                0, dl, SDNodeOrder);
4601        else {
4602          // Address is an argument, so try to emit its dbg value using
4603          // virtual register info from the FuncInfo.ValueMap.
4604          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4605          return 0;
4606        }
4607      } else if (AI)
4608        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4609                              0, dl, SDNodeOrder);
4610      else {
4611        // Can't do anything with other non-AI cases yet.
4612        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4613        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4614        DEBUG(Address->dump());
4615        return 0;
4616      }
4617      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4618    } else {
4619      // If Address is an argument then try to emit its dbg value using
4620      // virtual register info from the FuncInfo.ValueMap.
4621      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4622        // If variable is pinned by a alloca in dominating bb then
4623        // use StaticAllocaMap.
4624        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4625          if (AI->getParent() != DI.getParent()) {
4626            DenseMap<const AllocaInst*, int>::iterator SI =
4627              FuncInfo.StaticAllocaMap.find(AI);
4628            if (SI != FuncInfo.StaticAllocaMap.end()) {
4629              SDV = DAG.getDbgValue(Variable, SI->second,
4630                                    0, dl, SDNodeOrder);
4631              DAG.AddDbgValue(SDV, 0, false);
4632              return 0;
4633            }
4634          }
4635        }
4636        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4637      }
4638    }
4639    return 0;
4640  }
4641  case Intrinsic::dbg_value: {
4642    const DbgValueInst &DI = cast<DbgValueInst>(I);
4643    if (!DIVariable(DI.getVariable()).Verify())
4644      return 0;
4645
4646    MDNode *Variable = DI.getVariable();
4647    uint64_t Offset = DI.getOffset();
4648    const Value *V = DI.getValue();
4649    if (!V)
4650      return 0;
4651
4652    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4653    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4654    // absolute, but not relative, values are different depending on whether
4655    // debug info exists.
4656    ++SDNodeOrder;
4657    SDDbgValue *SDV;
4658    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4659      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4660      DAG.AddDbgValue(SDV, 0, false);
4661    } else {
4662      // Do not use getValue() in here; we don't want to generate code at
4663      // this point if it hasn't been done yet.
4664      SDValue N = NodeMap[V];
4665      if (!N.getNode() && isa<Argument>(V))
4666        // Check unused arguments map.
4667        N = UnusedArgNodeMap[V];
4668      if (N.getNode()) {
4669        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4670          SDV = DAG.getDbgValue(Variable, N.getNode(),
4671                                N.getResNo(), Offset, dl, SDNodeOrder);
4672          DAG.AddDbgValue(SDV, N.getNode(), false);
4673        }
4674      } else if (!V->use_empty() ) {
4675        // Do not call getValue(V) yet, as we don't want to generate code.
4676        // Remember it for later.
4677        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4678        DanglingDebugInfoMap[V] = DDI;
4679      } else {
4680        // We may expand this to cover more cases.  One case where we have no
4681        // data available is an unreferenced parameter.
4682        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4683      }
4684    }
4685
4686    // Build a debug info table entry.
4687    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4688      V = BCI->getOperand(0);
4689    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4690    // Don't handle byval struct arguments or VLAs, for example.
4691    if (!AI)
4692      return 0;
4693    DenseMap<const AllocaInst*, int>::iterator SI =
4694      FuncInfo.StaticAllocaMap.find(AI);
4695    if (SI == FuncInfo.StaticAllocaMap.end())
4696      return 0; // VLAs.
4697    int FI = SI->second;
4698
4699    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4700    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4701      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4702    return 0;
4703  }
4704
4705  case Intrinsic::eh_typeid_for: {
4706    // Find the type id for the given typeinfo.
4707    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4708    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4709    Res = DAG.getConstant(TypeID, MVT::i32);
4710    setValue(&I, Res);
4711    return 0;
4712  }
4713
4714  case Intrinsic::eh_return_i32:
4715  case Intrinsic::eh_return_i64:
4716    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4717    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4718                            MVT::Other,
4719                            getControlRoot(),
4720                            getValue(I.getArgOperand(0)),
4721                            getValue(I.getArgOperand(1))));
4722    return 0;
4723  case Intrinsic::eh_unwind_init:
4724    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4725    return 0;
4726  case Intrinsic::eh_dwarf_cfa: {
4727    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4728                                        TLI.getPointerTy());
4729    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4730                                 TLI.getPointerTy(),
4731                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4732                                             TLI.getPointerTy()),
4733                                 CfaArg);
4734    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4735                             TLI.getPointerTy(),
4736                             DAG.getConstant(0, TLI.getPointerTy()));
4737    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4738                             FA, Offset));
4739    return 0;
4740  }
4741  case Intrinsic::eh_sjlj_callsite: {
4742    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4743    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4744    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4745    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4746
4747    MMI.setCurrentCallSite(CI->getZExtValue());
4748    return 0;
4749  }
4750  case Intrinsic::eh_sjlj_functioncontext: {
4751    // Get and store the index of the function context.
4752    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4753    AllocaInst *FnCtx =
4754      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4755    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4756    MFI->setFunctionContextIndex(FI);
4757    return 0;
4758  }
4759  case Intrinsic::eh_sjlj_setjmp: {
4760    SDValue Ops[2];
4761    Ops[0] = getRoot();
4762    Ops[1] = getValue(I.getArgOperand(0));
4763    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4764                             DAG.getVTList(MVT::i32, MVT::Other),
4765                             Ops, 2);
4766    setValue(&I, Op.getValue(0));
4767    DAG.setRoot(Op.getValue(1));
4768    return 0;
4769  }
4770  case Intrinsic::eh_sjlj_longjmp: {
4771    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4772                            getRoot(), getValue(I.getArgOperand(0))));
4773    return 0;
4774  }
4775
4776  case Intrinsic::x86_mmx_pslli_w:
4777  case Intrinsic::x86_mmx_pslli_d:
4778  case Intrinsic::x86_mmx_pslli_q:
4779  case Intrinsic::x86_mmx_psrli_w:
4780  case Intrinsic::x86_mmx_psrli_d:
4781  case Intrinsic::x86_mmx_psrli_q:
4782  case Intrinsic::x86_mmx_psrai_w:
4783  case Intrinsic::x86_mmx_psrai_d: {
4784    SDValue ShAmt = getValue(I.getArgOperand(1));
4785    if (isa<ConstantSDNode>(ShAmt)) {
4786      visitTargetIntrinsic(I, Intrinsic);
4787      return 0;
4788    }
4789    unsigned NewIntrinsic = 0;
4790    EVT ShAmtVT = MVT::v2i32;
4791    switch (Intrinsic) {
4792    case Intrinsic::x86_mmx_pslli_w:
4793      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4794      break;
4795    case Intrinsic::x86_mmx_pslli_d:
4796      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4797      break;
4798    case Intrinsic::x86_mmx_pslli_q:
4799      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4800      break;
4801    case Intrinsic::x86_mmx_psrli_w:
4802      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4803      break;
4804    case Intrinsic::x86_mmx_psrli_d:
4805      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4806      break;
4807    case Intrinsic::x86_mmx_psrli_q:
4808      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4809      break;
4810    case Intrinsic::x86_mmx_psrai_w:
4811      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4812      break;
4813    case Intrinsic::x86_mmx_psrai_d:
4814      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4815      break;
4816    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4817    }
4818
4819    // The vector shift intrinsics with scalars uses 32b shift amounts but
4820    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4821    // to be zero.
4822    // We must do this early because v2i32 is not a legal type.
4823    DebugLoc dl = getCurDebugLoc();
4824    SDValue ShOps[2];
4825    ShOps[0] = ShAmt;
4826    ShOps[1] = DAG.getConstant(0, MVT::i32);
4827    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4828    EVT DestVT = TLI.getValueType(I.getType());
4829    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4830    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4831                       DAG.getConstant(NewIntrinsic, MVT::i32),
4832                       getValue(I.getArgOperand(0)), ShAmt);
4833    setValue(&I, Res);
4834    return 0;
4835  }
4836  case Intrinsic::x86_avx_vinsertf128_pd_256:
4837  case Intrinsic::x86_avx_vinsertf128_ps_256:
4838  case Intrinsic::x86_avx_vinsertf128_si_256: {
4839    DebugLoc dl = getCurDebugLoc();
4840    EVT DestVT = TLI.getValueType(I.getType());
4841    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4842    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4843                   ElVT.getVectorNumElements();
4844    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4845                      getValue(I.getArgOperand(0)),
4846                      getValue(I.getArgOperand(1)),
4847                      DAG.getConstant(Idx, MVT::i32));
4848    setValue(&I, Res);
4849    return 0;
4850  }
4851  case Intrinsic::convertff:
4852  case Intrinsic::convertfsi:
4853  case Intrinsic::convertfui:
4854  case Intrinsic::convertsif:
4855  case Intrinsic::convertuif:
4856  case Intrinsic::convertss:
4857  case Intrinsic::convertsu:
4858  case Intrinsic::convertus:
4859  case Intrinsic::convertuu: {
4860    ISD::CvtCode Code = ISD::CVT_INVALID;
4861    switch (Intrinsic) {
4862    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4863    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4864    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4865    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4866    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4867    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4868    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4869    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4870    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4871    }
4872    EVT DestVT = TLI.getValueType(I.getType());
4873    const Value *Op1 = I.getArgOperand(0);
4874    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4875                               DAG.getValueType(DestVT),
4876                               DAG.getValueType(getValue(Op1).getValueType()),
4877                               getValue(I.getArgOperand(1)),
4878                               getValue(I.getArgOperand(2)),
4879                               Code);
4880    setValue(&I, Res);
4881    return 0;
4882  }
4883  case Intrinsic::sqrt:
4884    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4885                             getValue(I.getArgOperand(0)).getValueType(),
4886                             getValue(I.getArgOperand(0))));
4887    return 0;
4888  case Intrinsic::powi:
4889    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4890                            getValue(I.getArgOperand(1)), DAG));
4891    return 0;
4892  case Intrinsic::sin:
4893    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4894                             getValue(I.getArgOperand(0)).getValueType(),
4895                             getValue(I.getArgOperand(0))));
4896    return 0;
4897  case Intrinsic::cos:
4898    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4899                             getValue(I.getArgOperand(0)).getValueType(),
4900                             getValue(I.getArgOperand(0))));
4901    return 0;
4902  case Intrinsic::log:
4903    visitLog(I);
4904    return 0;
4905  case Intrinsic::log2:
4906    visitLog2(I);
4907    return 0;
4908  case Intrinsic::log10:
4909    visitLog10(I);
4910    return 0;
4911  case Intrinsic::exp:
4912    visitExp(I);
4913    return 0;
4914  case Intrinsic::exp2:
4915    visitExp2(I);
4916    return 0;
4917  case Intrinsic::pow:
4918    visitPow(I);
4919    return 0;
4920  case Intrinsic::fma:
4921    setValue(&I, DAG.getNode(ISD::FMA, dl,
4922                             getValue(I.getArgOperand(0)).getValueType(),
4923                             getValue(I.getArgOperand(0)),
4924                             getValue(I.getArgOperand(1)),
4925                             getValue(I.getArgOperand(2))));
4926    return 0;
4927  case Intrinsic::convert_to_fp16:
4928    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4929                             MVT::i16, getValue(I.getArgOperand(0))));
4930    return 0;
4931  case Intrinsic::convert_from_fp16:
4932    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4933                             MVT::f32, getValue(I.getArgOperand(0))));
4934    return 0;
4935  case Intrinsic::pcmarker: {
4936    SDValue Tmp = getValue(I.getArgOperand(0));
4937    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4938    return 0;
4939  }
4940  case Intrinsic::readcyclecounter: {
4941    SDValue Op = getRoot();
4942    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4943                      DAG.getVTList(MVT::i64, MVT::Other),
4944                      &Op, 1);
4945    setValue(&I, Res);
4946    DAG.setRoot(Res.getValue(1));
4947    return 0;
4948  }
4949  case Intrinsic::bswap:
4950    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4951                             getValue(I.getArgOperand(0)).getValueType(),
4952                             getValue(I.getArgOperand(0))));
4953    return 0;
4954  case Intrinsic::cttz: {
4955    SDValue Arg = getValue(I.getArgOperand(0));
4956    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4957    EVT Ty = Arg.getValueType();
4958    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4959                             dl, Ty, Arg));
4960    return 0;
4961  }
4962  case Intrinsic::ctlz: {
4963    SDValue Arg = getValue(I.getArgOperand(0));
4964    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4965    EVT Ty = Arg.getValueType();
4966    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4967                             dl, Ty, Arg));
4968    return 0;
4969  }
4970  case Intrinsic::ctpop: {
4971    SDValue Arg = getValue(I.getArgOperand(0));
4972    EVT Ty = Arg.getValueType();
4973    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4974    return 0;
4975  }
4976  case Intrinsic::stacksave: {
4977    SDValue Op = getRoot();
4978    Res = DAG.getNode(ISD::STACKSAVE, dl,
4979                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4980    setValue(&I, Res);
4981    DAG.setRoot(Res.getValue(1));
4982    return 0;
4983  }
4984  case Intrinsic::stackrestore: {
4985    Res = getValue(I.getArgOperand(0));
4986    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4987    return 0;
4988  }
4989  case Intrinsic::stackprotector: {
4990    // Emit code into the DAG to store the stack guard onto the stack.
4991    MachineFunction &MF = DAG.getMachineFunction();
4992    MachineFrameInfo *MFI = MF.getFrameInfo();
4993    EVT PtrTy = TLI.getPointerTy();
4994
4995    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4996    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4997
4998    int FI = FuncInfo.StaticAllocaMap[Slot];
4999    MFI->setStackProtectorIndex(FI);
5000
5001    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5002
5003    // Store the stack protector onto the stack.
5004    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
5005                       MachinePointerInfo::getFixedStack(FI),
5006                       true, false, 0);
5007    setValue(&I, Res);
5008    DAG.setRoot(Res);
5009    return 0;
5010  }
5011  case Intrinsic::objectsize: {
5012    // If we don't know by now, we're never going to know.
5013    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5014
5015    assert(CI && "Non-constant type in __builtin_object_size?");
5016
5017    SDValue Arg = getValue(I.getCalledValue());
5018    EVT Ty = Arg.getValueType();
5019
5020    if (CI->isZero())
5021      Res = DAG.getConstant(-1ULL, Ty);
5022    else
5023      Res = DAG.getConstant(0, Ty);
5024
5025    setValue(&I, Res);
5026    return 0;
5027  }
5028  case Intrinsic::var_annotation:
5029    // Discard annotate attributes
5030    return 0;
5031
5032  case Intrinsic::init_trampoline: {
5033    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5034
5035    SDValue Ops[6];
5036    Ops[0] = getRoot();
5037    Ops[1] = getValue(I.getArgOperand(0));
5038    Ops[2] = getValue(I.getArgOperand(1));
5039    Ops[3] = getValue(I.getArgOperand(2));
5040    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5041    Ops[5] = DAG.getSrcValue(F);
5042
5043    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5044
5045    DAG.setRoot(Res);
5046    return 0;
5047  }
5048  case Intrinsic::adjust_trampoline: {
5049    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5050                             TLI.getPointerTy(),
5051                             getValue(I.getArgOperand(0))));
5052    return 0;
5053  }
5054  case Intrinsic::gcroot:
5055    if (GFI) {
5056      const Value *Alloca = I.getArgOperand(0);
5057      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5058
5059      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5060      GFI->addStackRoot(FI->getIndex(), TypeMap);
5061    }
5062    return 0;
5063  case Intrinsic::gcread:
5064  case Intrinsic::gcwrite:
5065    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5066  case Intrinsic::flt_rounds:
5067    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5068    return 0;
5069
5070  case Intrinsic::expect: {
5071    // Just replace __builtin_expect(exp, c) with EXP.
5072    setValue(&I, getValue(I.getArgOperand(0)));
5073    return 0;
5074  }
5075
5076  case Intrinsic::trap: {
5077    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5078    if (TrapFuncName.empty()) {
5079      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5080      return 0;
5081    }
5082    TargetLowering::ArgListTy Args;
5083    std::pair<SDValue, SDValue> Result =
5084      TLI.LowerCallTo(getRoot(), I.getType(),
5085                 false, false, false, false, 0, CallingConv::C,
5086                 /*isTailCall=*/false,
5087                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5088                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5089                 Args, DAG, getCurDebugLoc());
5090    DAG.setRoot(Result.second);
5091    return 0;
5092  }
5093  case Intrinsic::uadd_with_overflow:
5094    return implVisitAluOverflow(I, ISD::UADDO);
5095  case Intrinsic::sadd_with_overflow:
5096    return implVisitAluOverflow(I, ISD::SADDO);
5097  case Intrinsic::usub_with_overflow:
5098    return implVisitAluOverflow(I, ISD::USUBO);
5099  case Intrinsic::ssub_with_overflow:
5100    return implVisitAluOverflow(I, ISD::SSUBO);
5101  case Intrinsic::umul_with_overflow:
5102    return implVisitAluOverflow(I, ISD::UMULO);
5103  case Intrinsic::smul_with_overflow:
5104    return implVisitAluOverflow(I, ISD::SMULO);
5105
5106  case Intrinsic::prefetch: {
5107    SDValue Ops[5];
5108    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5109    Ops[0] = getRoot();
5110    Ops[1] = getValue(I.getArgOperand(0));
5111    Ops[2] = getValue(I.getArgOperand(1));
5112    Ops[3] = getValue(I.getArgOperand(2));
5113    Ops[4] = getValue(I.getArgOperand(3));
5114    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5115                                        DAG.getVTList(MVT::Other),
5116                                        &Ops[0], 5,
5117                                        EVT::getIntegerVT(*Context, 8),
5118                                        MachinePointerInfo(I.getArgOperand(0)),
5119                                        0, /* align */
5120                                        false, /* volatile */
5121                                        rw==0, /* read */
5122                                        rw==1)); /* write */
5123    return 0;
5124  }
5125
5126  case Intrinsic::invariant_start:
5127  case Intrinsic::lifetime_start:
5128    // Discard region information.
5129    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5130    return 0;
5131  case Intrinsic::invariant_end:
5132  case Intrinsic::lifetime_end:
5133    // Discard region information.
5134    return 0;
5135  }
5136}
5137
5138void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5139                                      bool isTailCall,
5140                                      MachineBasicBlock *LandingPad) {
5141  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5142  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5143  Type *RetTy = FTy->getReturnType();
5144  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5145  MCSymbol *BeginLabel = 0;
5146
5147  TargetLowering::ArgListTy Args;
5148  TargetLowering::ArgListEntry Entry;
5149  Args.reserve(CS.arg_size());
5150
5151  // Check whether the function can return without sret-demotion.
5152  SmallVector<ISD::OutputArg, 4> Outs;
5153  SmallVector<uint64_t, 4> Offsets;
5154  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5155                Outs, TLI, &Offsets);
5156
5157  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5158					   DAG.getMachineFunction(),
5159					   FTy->isVarArg(), Outs,
5160					   FTy->getContext());
5161
5162  SDValue DemoteStackSlot;
5163  int DemoteStackIdx = -100;
5164
5165  if (!CanLowerReturn) {
5166    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5167                      FTy->getReturnType());
5168    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5169                      FTy->getReturnType());
5170    MachineFunction &MF = DAG.getMachineFunction();
5171    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5172    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5173
5174    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5175    Entry.Node = DemoteStackSlot;
5176    Entry.Ty = StackSlotPtrType;
5177    Entry.isSExt = false;
5178    Entry.isZExt = false;
5179    Entry.isInReg = false;
5180    Entry.isSRet = true;
5181    Entry.isNest = false;
5182    Entry.isByVal = false;
5183    Entry.Alignment = Align;
5184    Args.push_back(Entry);
5185    RetTy = Type::getVoidTy(FTy->getContext());
5186  }
5187
5188  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5189       i != e; ++i) {
5190    const Value *V = *i;
5191
5192    // Skip empty types
5193    if (V->getType()->isEmptyTy())
5194      continue;
5195
5196    SDValue ArgNode = getValue(V);
5197    Entry.Node = ArgNode; Entry.Ty = V->getType();
5198
5199    unsigned attrInd = i - CS.arg_begin() + 1;
5200    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5201    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5202    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5203    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5204    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5205    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5206    Entry.Alignment = CS.getParamAlignment(attrInd);
5207    Args.push_back(Entry);
5208  }
5209
5210  if (LandingPad) {
5211    // Insert a label before the invoke call to mark the try range.  This can be
5212    // used to detect deletion of the invoke via the MachineModuleInfo.
5213    BeginLabel = MMI.getContext().CreateTempSymbol();
5214
5215    // For SjLj, keep track of which landing pads go with which invokes
5216    // so as to maintain the ordering of pads in the LSDA.
5217    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5218    if (CallSiteIndex) {
5219      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5220      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5221
5222      // Now that the call site is handled, stop tracking it.
5223      MMI.setCurrentCallSite(0);
5224    }
5225
5226    // Both PendingLoads and PendingExports must be flushed here;
5227    // this call might not return.
5228    (void)getRoot();
5229    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5230  }
5231
5232  // Check if target-independent constraints permit a tail call here.
5233  // Target-dependent constraints are checked within TLI.LowerCallTo.
5234  if (isTailCall &&
5235      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5236    isTailCall = false;
5237
5238  // If there's a possibility that fast-isel has already selected some amount
5239  // of the current basic block, don't emit a tail call.
5240  if (isTailCall && TM.Options.EnableFastISel)
5241    isTailCall = false;
5242
5243  std::pair<SDValue,SDValue> Result =
5244    TLI.LowerCallTo(getRoot(), RetTy,
5245                    CS.paramHasAttr(0, Attribute::SExt),
5246                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5247                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5248                    CS.getCallingConv(),
5249                    isTailCall,
5250                    CS.doesNotReturn(),
5251                    !CS.getInstruction()->use_empty(),
5252                    Callee, Args, DAG, getCurDebugLoc());
5253  assert((isTailCall || Result.second.getNode()) &&
5254         "Non-null chain expected with non-tail call!");
5255  assert((Result.second.getNode() || !Result.first.getNode()) &&
5256         "Null value expected with tail call!");
5257  if (Result.first.getNode()) {
5258    setValue(CS.getInstruction(), Result.first);
5259  } else if (!CanLowerReturn && Result.second.getNode()) {
5260    // The instruction result is the result of loading from the
5261    // hidden sret parameter.
5262    SmallVector<EVT, 1> PVTs;
5263    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5264
5265    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5266    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5267    EVT PtrVT = PVTs[0];
5268    unsigned NumValues = Outs.size();
5269    SmallVector<SDValue, 4> Values(NumValues);
5270    SmallVector<SDValue, 4> Chains(NumValues);
5271
5272    for (unsigned i = 0; i < NumValues; ++i) {
5273      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5274                                DemoteStackSlot,
5275                                DAG.getConstant(Offsets[i], PtrVT));
5276      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5277                              Add,
5278                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5279                              false, false, false, 1);
5280      Values[i] = L;
5281      Chains[i] = L.getValue(1);
5282    }
5283
5284    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5285                                MVT::Other, &Chains[0], NumValues);
5286    PendingLoads.push_back(Chain);
5287
5288    // Collect the legal value parts into potentially illegal values
5289    // that correspond to the original function's return values.
5290    SmallVector<EVT, 4> RetTys;
5291    RetTy = FTy->getReturnType();
5292    ComputeValueVTs(TLI, RetTy, RetTys);
5293    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5294    SmallVector<SDValue, 4> ReturnValues;
5295    unsigned CurReg = 0;
5296    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5297      EVT VT = RetTys[I];
5298      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5299      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5300
5301      SDValue ReturnValue =
5302        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5303                         RegisterVT, VT, AssertOp);
5304      ReturnValues.push_back(ReturnValue);
5305      CurReg += NumRegs;
5306    }
5307
5308    setValue(CS.getInstruction(),
5309             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5310                         DAG.getVTList(&RetTys[0], RetTys.size()),
5311                         &ReturnValues[0], ReturnValues.size()));
5312  }
5313
5314  // Assign order to nodes here. If the call does not produce a result, it won't
5315  // be mapped to a SDNode and visit() will not assign it an order number.
5316  if (!Result.second.getNode()) {
5317    // As a special case, a null chain means that a tail call has been emitted and
5318    // the DAG root is already updated.
5319    HasTailCall = true;
5320    ++SDNodeOrder;
5321    AssignOrderingToNode(DAG.getRoot().getNode());
5322  } else {
5323    DAG.setRoot(Result.second);
5324    ++SDNodeOrder;
5325    AssignOrderingToNode(Result.second.getNode());
5326  }
5327
5328  if (LandingPad) {
5329    // Insert a label at the end of the invoke call to mark the try range.  This
5330    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5331    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5332    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5333
5334    // Inform MachineModuleInfo of range.
5335    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5336  }
5337}
5338
5339/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5340/// value is equal or not-equal to zero.
5341static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5342  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5343       UI != E; ++UI) {
5344    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5345      if (IC->isEquality())
5346        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5347          if (C->isNullValue())
5348            continue;
5349    // Unknown instruction.
5350    return false;
5351  }
5352  return true;
5353}
5354
5355static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5356                             Type *LoadTy,
5357                             SelectionDAGBuilder &Builder) {
5358
5359  // Check to see if this load can be trivially constant folded, e.g. if the
5360  // input is from a string literal.
5361  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5362    // Cast pointer to the type we really want to load.
5363    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5364                                         PointerType::getUnqual(LoadTy));
5365
5366    if (const Constant *LoadCst =
5367          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5368                                       Builder.TD))
5369      return Builder.getValue(LoadCst);
5370  }
5371
5372  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5373  // still constant memory, the input chain can be the entry node.
5374  SDValue Root;
5375  bool ConstantMemory = false;
5376
5377  // Do not serialize (non-volatile) loads of constant memory with anything.
5378  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5379    Root = Builder.DAG.getEntryNode();
5380    ConstantMemory = true;
5381  } else {
5382    // Do not serialize non-volatile loads against each other.
5383    Root = Builder.DAG.getRoot();
5384  }
5385
5386  SDValue Ptr = Builder.getValue(PtrVal);
5387  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5388                                        Ptr, MachinePointerInfo(PtrVal),
5389                                        false /*volatile*/,
5390                                        false /*nontemporal*/,
5391                                        false /*isinvariant*/, 1 /* align=1 */);
5392
5393  if (!ConstantMemory)
5394    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5395  return LoadVal;
5396}
5397
5398
5399/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5400/// If so, return true and lower it, otherwise return false and it will be
5401/// lowered like a normal call.
5402bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5403  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5404  if (I.getNumArgOperands() != 3)
5405    return false;
5406
5407  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5408  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5409      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5410      !I.getType()->isIntegerTy())
5411    return false;
5412
5413  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5414
5415  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5416  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5417  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5418    bool ActuallyDoIt = true;
5419    MVT LoadVT;
5420    Type *LoadTy;
5421    switch (Size->getZExtValue()) {
5422    default:
5423      LoadVT = MVT::Other;
5424      LoadTy = 0;
5425      ActuallyDoIt = false;
5426      break;
5427    case 2:
5428      LoadVT = MVT::i16;
5429      LoadTy = Type::getInt16Ty(Size->getContext());
5430      break;
5431    case 4:
5432      LoadVT = MVT::i32;
5433      LoadTy = Type::getInt32Ty(Size->getContext());
5434      break;
5435    case 8:
5436      LoadVT = MVT::i64;
5437      LoadTy = Type::getInt64Ty(Size->getContext());
5438      break;
5439        /*
5440    case 16:
5441      LoadVT = MVT::v4i32;
5442      LoadTy = Type::getInt32Ty(Size->getContext());
5443      LoadTy = VectorType::get(LoadTy, 4);
5444      break;
5445         */
5446    }
5447
5448    // This turns into unaligned loads.  We only do this if the target natively
5449    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5450    // we'll only produce a small number of byte loads.
5451
5452    // Require that we can find a legal MVT, and only do this if the target
5453    // supports unaligned loads of that type.  Expanding into byte loads would
5454    // bloat the code.
5455    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5456      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5457      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5458      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5459        ActuallyDoIt = false;
5460    }
5461
5462    if (ActuallyDoIt) {
5463      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5464      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5465
5466      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5467                                 ISD::SETNE);
5468      EVT CallVT = TLI.getValueType(I.getType(), true);
5469      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5470      return true;
5471    }
5472  }
5473
5474
5475  return false;
5476}
5477
5478
5479void SelectionDAGBuilder::visitCall(const CallInst &I) {
5480  // Handle inline assembly differently.
5481  if (isa<InlineAsm>(I.getCalledValue())) {
5482    visitInlineAsm(&I);
5483    return;
5484  }
5485
5486  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5487  ComputeUsesVAFloatArgument(I, &MMI);
5488
5489  const char *RenameFn = 0;
5490  if (Function *F = I.getCalledFunction()) {
5491    if (F->isDeclaration()) {
5492      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5493        if (unsigned IID = II->getIntrinsicID(F)) {
5494          RenameFn = visitIntrinsicCall(I, IID);
5495          if (!RenameFn)
5496            return;
5497        }
5498      }
5499      if (unsigned IID = F->getIntrinsicID()) {
5500        RenameFn = visitIntrinsicCall(I, IID);
5501        if (!RenameFn)
5502          return;
5503      }
5504    }
5505
5506    // Check for well-known libc/libm calls.  If the function is internal, it
5507    // can't be a library call.
5508    if (!F->hasLocalLinkage() && F->hasName()) {
5509      StringRef Name = F->getName();
5510      if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") ||
5511          (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") ||
5512          (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) {
5513        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5514            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5515            I.getType() == I.getArgOperand(0)->getType() &&
5516            I.getType() == I.getArgOperand(1)->getType()) {
5517          SDValue LHS = getValue(I.getArgOperand(0));
5518          SDValue RHS = getValue(I.getArgOperand(1));
5519          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5520                                   LHS.getValueType(), LHS, RHS));
5521          return;
5522        }
5523      } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") ||
5524                 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") ||
5525                 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) {
5526        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5527            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5528            I.getType() == I.getArgOperand(0)->getType()) {
5529          SDValue Tmp = getValue(I.getArgOperand(0));
5530          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5531                                   Tmp.getValueType(), Tmp));
5532          return;
5533        }
5534      } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") ||
5535                 (LibInfo->has(LibFunc::sinf) && Name == "sinf") ||
5536                 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) {
5537        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5538            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5539            I.getType() == I.getArgOperand(0)->getType() &&
5540            I.onlyReadsMemory()) {
5541          SDValue Tmp = getValue(I.getArgOperand(0));
5542          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5543                                   Tmp.getValueType(), Tmp));
5544          return;
5545        }
5546      } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") ||
5547                 (LibInfo->has(LibFunc::cosf) && Name == "cosf") ||
5548                 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) {
5549        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5550            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5551            I.getType() == I.getArgOperand(0)->getType() &&
5552            I.onlyReadsMemory()) {
5553          SDValue Tmp = getValue(I.getArgOperand(0));
5554          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5555                                   Tmp.getValueType(), Tmp));
5556          return;
5557        }
5558      } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") ||
5559                 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") ||
5560                 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) {
5561        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5562            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5563            I.getType() == I.getArgOperand(0)->getType() &&
5564            I.onlyReadsMemory()) {
5565          SDValue Tmp = getValue(I.getArgOperand(0));
5566          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5567                                   Tmp.getValueType(), Tmp));
5568          return;
5569        }
5570      } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") ||
5571                 (LibInfo->has(LibFunc::floorf) && Name == "floorf") ||
5572                 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) {
5573        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5574            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5575            I.getType() == I.getArgOperand(0)->getType()) {
5576          SDValue Tmp = getValue(I.getArgOperand(0));
5577          setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(),
5578                                   Tmp.getValueType(), Tmp));
5579          return;
5580        }
5581      } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") ||
5582                 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") ||
5583                 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) {
5584        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5585            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5586            I.getType() == I.getArgOperand(0)->getType()) {
5587          SDValue Tmp = getValue(I.getArgOperand(0));
5588          setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(),
5589                                   Tmp.getValueType(), Tmp));
5590          return;
5591        }
5592      } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") ||
5593                 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") ||
5594                 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) {
5595        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5596            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5597            I.getType() == I.getArgOperand(0)->getType()) {
5598          SDValue Tmp = getValue(I.getArgOperand(0));
5599          setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(),
5600                                   Tmp.getValueType(), Tmp));
5601          return;
5602        }
5603      } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") ||
5604                 (LibInfo->has(LibFunc::rintf) && Name == "rintf") ||
5605                 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) {
5606        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5607            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5608            I.getType() == I.getArgOperand(0)->getType()) {
5609          SDValue Tmp = getValue(I.getArgOperand(0));
5610          setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(),
5611                                   Tmp.getValueType(), Tmp));
5612          return;
5613        }
5614      } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") ||
5615                 (LibInfo->has(LibFunc::truncf) && Name == "truncf") ||
5616                 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) {
5617        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5618            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5619            I.getType() == I.getArgOperand(0)->getType()) {
5620          SDValue Tmp = getValue(I.getArgOperand(0));
5621          setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(),
5622                                   Tmp.getValueType(), Tmp));
5623          return;
5624        }
5625      } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") ||
5626                 (LibInfo->has(LibFunc::log2f) && Name == "log2f") ||
5627                 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) {
5628        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5629            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5630            I.getType() == I.getArgOperand(0)->getType()) {
5631          SDValue Tmp = getValue(I.getArgOperand(0));
5632          setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(),
5633                                   Tmp.getValueType(), Tmp));
5634          return;
5635        }
5636      } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") ||
5637                 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") ||
5638                 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) {
5639        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5640            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5641            I.getType() == I.getArgOperand(0)->getType()) {
5642          SDValue Tmp = getValue(I.getArgOperand(0));
5643          setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(),
5644                                   Tmp.getValueType(), Tmp));
5645          return;
5646        }
5647      } else if (Name == "memcmp") {
5648        if (visitMemCmpCall(I))
5649          return;
5650      }
5651    }
5652  }
5653
5654  SDValue Callee;
5655  if (!RenameFn)
5656    Callee = getValue(I.getCalledValue());
5657  else
5658    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5659
5660  // Check if we can potentially perform a tail call. More detailed checking is
5661  // be done within LowerCallTo, after more information about the call is known.
5662  LowerCallTo(&I, Callee, I.isTailCall());
5663}
5664
5665namespace {
5666
5667/// AsmOperandInfo - This contains information for each constraint that we are
5668/// lowering.
5669class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5670public:
5671  /// CallOperand - If this is the result output operand or a clobber
5672  /// this is null, otherwise it is the incoming operand to the CallInst.
5673  /// This gets modified as the asm is processed.
5674  SDValue CallOperand;
5675
5676  /// AssignedRegs - If this is a register or register class operand, this
5677  /// contains the set of register corresponding to the operand.
5678  RegsForValue AssignedRegs;
5679
5680  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5681    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5682  }
5683
5684  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5685  /// corresponds to.  If there is no Value* for this operand, it returns
5686  /// MVT::Other.
5687  EVT getCallOperandValEVT(LLVMContext &Context,
5688                           const TargetLowering &TLI,
5689                           const TargetData *TD) const {
5690    if (CallOperandVal == 0) return MVT::Other;
5691
5692    if (isa<BasicBlock>(CallOperandVal))
5693      return TLI.getPointerTy();
5694
5695    llvm::Type *OpTy = CallOperandVal->getType();
5696
5697    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5698    // If this is an indirect operand, the operand is a pointer to the
5699    // accessed type.
5700    if (isIndirect) {
5701      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5702      if (!PtrTy)
5703        report_fatal_error("Indirect operand for inline asm not a pointer!");
5704      OpTy = PtrTy->getElementType();
5705    }
5706
5707    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5708    if (StructType *STy = dyn_cast<StructType>(OpTy))
5709      if (STy->getNumElements() == 1)
5710        OpTy = STy->getElementType(0);
5711
5712    // If OpTy is not a single value, it may be a struct/union that we
5713    // can tile with integers.
5714    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5715      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5716      switch (BitSize) {
5717      default: break;
5718      case 1:
5719      case 8:
5720      case 16:
5721      case 32:
5722      case 64:
5723      case 128:
5724        OpTy = IntegerType::get(Context, BitSize);
5725        break;
5726      }
5727    }
5728
5729    return TLI.getValueType(OpTy, true);
5730  }
5731};
5732
5733typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5734
5735} // end anonymous namespace
5736
5737/// GetRegistersForValue - Assign registers (virtual or physical) for the
5738/// specified operand.  We prefer to assign virtual registers, to allow the
5739/// register allocator to handle the assignment process.  However, if the asm
5740/// uses features that we can't model on machineinstrs, we have SDISel do the
5741/// allocation.  This produces generally horrible, but correct, code.
5742///
5743///   OpInfo describes the operand.
5744///
5745static void GetRegistersForValue(SelectionDAG &DAG,
5746                                 const TargetLowering &TLI,
5747                                 DebugLoc DL,
5748                                 SDISelAsmOperandInfo &OpInfo) {
5749  LLVMContext &Context = *DAG.getContext();
5750
5751  MachineFunction &MF = DAG.getMachineFunction();
5752  SmallVector<unsigned, 4> Regs;
5753
5754  // If this is a constraint for a single physreg, or a constraint for a
5755  // register class, find it.
5756  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5757    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5758                                     OpInfo.ConstraintVT);
5759
5760  unsigned NumRegs = 1;
5761  if (OpInfo.ConstraintVT != MVT::Other) {
5762    // If this is a FP input in an integer register (or visa versa) insert a bit
5763    // cast of the input value.  More generally, handle any case where the input
5764    // value disagrees with the register class we plan to stick this in.
5765    if (OpInfo.Type == InlineAsm::isInput &&
5766        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5767      // Try to convert to the first EVT that the reg class contains.  If the
5768      // types are identical size, use a bitcast to convert (e.g. two differing
5769      // vector types).
5770      EVT RegVT = *PhysReg.second->vt_begin();
5771      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5772        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5773                                         RegVT, OpInfo.CallOperand);
5774        OpInfo.ConstraintVT = RegVT;
5775      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5776        // If the input is a FP value and we want it in FP registers, do a
5777        // bitcast to the corresponding integer type.  This turns an f64 value
5778        // into i64, which can be passed with two i32 values on a 32-bit
5779        // machine.
5780        RegVT = EVT::getIntegerVT(Context,
5781                                  OpInfo.ConstraintVT.getSizeInBits());
5782        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5783                                         RegVT, OpInfo.CallOperand);
5784        OpInfo.ConstraintVT = RegVT;
5785      }
5786    }
5787
5788    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5789  }
5790
5791  EVT RegVT;
5792  EVT ValueVT = OpInfo.ConstraintVT;
5793
5794  // If this is a constraint for a specific physical register, like {r17},
5795  // assign it now.
5796  if (unsigned AssignedReg = PhysReg.first) {
5797    const TargetRegisterClass *RC = PhysReg.second;
5798    if (OpInfo.ConstraintVT == MVT::Other)
5799      ValueVT = *RC->vt_begin();
5800
5801    // Get the actual register value type.  This is important, because the user
5802    // may have asked for (e.g.) the AX register in i32 type.  We need to
5803    // remember that AX is actually i16 to get the right extension.
5804    RegVT = *RC->vt_begin();
5805
5806    // This is a explicit reference to a physical register.
5807    Regs.push_back(AssignedReg);
5808
5809    // If this is an expanded reference, add the rest of the regs to Regs.
5810    if (NumRegs != 1) {
5811      TargetRegisterClass::iterator I = RC->begin();
5812      for (; *I != AssignedReg; ++I)
5813        assert(I != RC->end() && "Didn't find reg!");
5814
5815      // Already added the first reg.
5816      --NumRegs; ++I;
5817      for (; NumRegs; --NumRegs, ++I) {
5818        assert(I != RC->end() && "Ran out of registers to allocate!");
5819        Regs.push_back(*I);
5820      }
5821    }
5822
5823    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5824    return;
5825  }
5826
5827  // Otherwise, if this was a reference to an LLVM register class, create vregs
5828  // for this reference.
5829  if (const TargetRegisterClass *RC = PhysReg.second) {
5830    RegVT = *RC->vt_begin();
5831    if (OpInfo.ConstraintVT == MVT::Other)
5832      ValueVT = RegVT;
5833
5834    // Create the appropriate number of virtual registers.
5835    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5836    for (; NumRegs; --NumRegs)
5837      Regs.push_back(RegInfo.createVirtualRegister(RC));
5838
5839    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5840    return;
5841  }
5842
5843  // Otherwise, we couldn't allocate enough registers for this.
5844}
5845
5846/// visitInlineAsm - Handle a call to an InlineAsm object.
5847///
5848void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5849  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5850
5851  /// ConstraintOperands - Information about all of the constraints.
5852  SDISelAsmOperandInfoVector ConstraintOperands;
5853
5854  TargetLowering::AsmOperandInfoVector
5855    TargetConstraints = TLI.ParseConstraints(CS);
5856
5857  bool hasMemory = false;
5858
5859  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5860  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5861  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5862    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5863    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5864
5865    EVT OpVT = MVT::Other;
5866
5867    // Compute the value type for each operand.
5868    switch (OpInfo.Type) {
5869    case InlineAsm::isOutput:
5870      // Indirect outputs just consume an argument.
5871      if (OpInfo.isIndirect) {
5872        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5873        break;
5874      }
5875
5876      // The return value of the call is this value.  As such, there is no
5877      // corresponding argument.
5878      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5879      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5880        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5881      } else {
5882        assert(ResNo == 0 && "Asm only has one result!");
5883        OpVT = TLI.getValueType(CS.getType());
5884      }
5885      ++ResNo;
5886      break;
5887    case InlineAsm::isInput:
5888      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5889      break;
5890    case InlineAsm::isClobber:
5891      // Nothing to do.
5892      break;
5893    }
5894
5895    // If this is an input or an indirect output, process the call argument.
5896    // BasicBlocks are labels, currently appearing only in asm's.
5897    if (OpInfo.CallOperandVal) {
5898      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5899        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5900      } else {
5901        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5902      }
5903
5904      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5905    }
5906
5907    OpInfo.ConstraintVT = OpVT;
5908
5909    // Indirect operand accesses access memory.
5910    if (OpInfo.isIndirect)
5911      hasMemory = true;
5912    else {
5913      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5914        TargetLowering::ConstraintType
5915          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5916        if (CType == TargetLowering::C_Memory) {
5917          hasMemory = true;
5918          break;
5919        }
5920      }
5921    }
5922  }
5923
5924  SDValue Chain, Flag;
5925
5926  // We won't need to flush pending loads if this asm doesn't touch
5927  // memory and is nonvolatile.
5928  if (hasMemory || IA->hasSideEffects())
5929    Chain = getRoot();
5930  else
5931    Chain = DAG.getRoot();
5932
5933  // Second pass over the constraints: compute which constraint option to use
5934  // and assign registers to constraints that want a specific physreg.
5935  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5936    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5937
5938    // If this is an output operand with a matching input operand, look up the
5939    // matching input. If their types mismatch, e.g. one is an integer, the
5940    // other is floating point, or their sizes are different, flag it as an
5941    // error.
5942    if (OpInfo.hasMatchingInput()) {
5943      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5944
5945      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5946	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5947	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5948                                           OpInfo.ConstraintVT);
5949	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5950	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5951                                           Input.ConstraintVT);
5952        if ((OpInfo.ConstraintVT.isInteger() !=
5953             Input.ConstraintVT.isInteger()) ||
5954            (MatchRC.second != InputRC.second)) {
5955          report_fatal_error("Unsupported asm: input constraint"
5956                             " with a matching output constraint of"
5957                             " incompatible type!");
5958        }
5959        Input.ConstraintVT = OpInfo.ConstraintVT;
5960      }
5961    }
5962
5963    // Compute the constraint code and ConstraintType to use.
5964    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5965
5966    // If this is a memory input, and if the operand is not indirect, do what we
5967    // need to to provide an address for the memory input.
5968    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5969        !OpInfo.isIndirect) {
5970      assert((OpInfo.isMultipleAlternative ||
5971              (OpInfo.Type == InlineAsm::isInput)) &&
5972             "Can only indirectify direct input operands!");
5973
5974      // Memory operands really want the address of the value.  If we don't have
5975      // an indirect input, put it in the constpool if we can, otherwise spill
5976      // it to a stack slot.
5977      // TODO: This isn't quite right. We need to handle these according to
5978      // the addressing mode that the constraint wants. Also, this may take
5979      // an additional register for the computation and we don't want that
5980      // either.
5981
5982      // If the operand is a float, integer, or vector constant, spill to a
5983      // constant pool entry to get its address.
5984      const Value *OpVal = OpInfo.CallOperandVal;
5985      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5986          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5987        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5988                                                 TLI.getPointerTy());
5989      } else {
5990        // Otherwise, create a stack slot and emit a store to it before the
5991        // asm.
5992        Type *Ty = OpVal->getType();
5993        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5994        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5995        MachineFunction &MF = DAG.getMachineFunction();
5996        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5997        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5998        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5999                             OpInfo.CallOperand, StackSlot,
6000                             MachinePointerInfo::getFixedStack(SSFI),
6001                             false, false, 0);
6002        OpInfo.CallOperand = StackSlot;
6003      }
6004
6005      // There is no longer a Value* corresponding to this operand.
6006      OpInfo.CallOperandVal = 0;
6007
6008      // It is now an indirect operand.
6009      OpInfo.isIndirect = true;
6010    }
6011
6012    // If this constraint is for a specific register, allocate it before
6013    // anything else.
6014    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6015      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6016  }
6017
6018  // Second pass - Loop over all of the operands, assigning virtual or physregs
6019  // to register class operands.
6020  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6021    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6022
6023    // C_Register operands have already been allocated, Other/Memory don't need
6024    // to be.
6025    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6026      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6027  }
6028
6029  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6030  std::vector<SDValue> AsmNodeOperands;
6031  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6032  AsmNodeOperands.push_back(
6033          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6034                                      TLI.getPointerTy()));
6035
6036  // If we have a !srcloc metadata node associated with it, we want to attach
6037  // this to the ultimately generated inline asm machineinstr.  To do this, we
6038  // pass in the third operand as this (potentially null) inline asm MDNode.
6039  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6040  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6041
6042  // Remember the HasSideEffect and AlignStack bits as operand 3.
6043  unsigned ExtraInfo = 0;
6044  if (IA->hasSideEffects())
6045    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6046  if (IA->isAlignStack())
6047    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6048  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6049                                                  TLI.getPointerTy()));
6050
6051  // Loop over all of the inputs, copying the operand values into the
6052  // appropriate registers and processing the output regs.
6053  RegsForValue RetValRegs;
6054
6055  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6056  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6057
6058  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6059    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6060
6061    switch (OpInfo.Type) {
6062    case InlineAsm::isOutput: {
6063      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6064          OpInfo.ConstraintType != TargetLowering::C_Register) {
6065        // Memory output, or 'other' output (e.g. 'X' constraint).
6066        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6067
6068        // Add information to the INLINEASM node to know about this output.
6069        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6070        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6071                                                        TLI.getPointerTy()));
6072        AsmNodeOperands.push_back(OpInfo.CallOperand);
6073        break;
6074      }
6075
6076      // Otherwise, this is a register or register class output.
6077
6078      // Copy the output from the appropriate register.  Find a register that
6079      // we can use.
6080      if (OpInfo.AssignedRegs.Regs.empty()) {
6081        LLVMContext &Ctx = *DAG.getContext();
6082        Ctx.emitError(CS.getInstruction(),
6083                      "couldn't allocate output register for constraint '" +
6084                           Twine(OpInfo.ConstraintCode) + "'");
6085        break;
6086      }
6087
6088      // If this is an indirect operand, store through the pointer after the
6089      // asm.
6090      if (OpInfo.isIndirect) {
6091        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6092                                                      OpInfo.CallOperandVal));
6093      } else {
6094        // This is the result value of the call.
6095        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6096        // Concatenate this output onto the outputs list.
6097        RetValRegs.append(OpInfo.AssignedRegs);
6098      }
6099
6100      // Add information to the INLINEASM node to know that this register is
6101      // set.
6102      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6103                                           InlineAsm::Kind_RegDefEarlyClobber :
6104                                               InlineAsm::Kind_RegDef,
6105                                               false,
6106                                               0,
6107                                               DAG,
6108                                               AsmNodeOperands);
6109      break;
6110    }
6111    case InlineAsm::isInput: {
6112      SDValue InOperandVal = OpInfo.CallOperand;
6113
6114      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6115        // If this is required to match an output register we have already set,
6116        // just use its register.
6117        unsigned OperandNo = OpInfo.getMatchedOperand();
6118
6119        // Scan until we find the definition we already emitted of this operand.
6120        // When we find it, create a RegsForValue operand.
6121        unsigned CurOp = InlineAsm::Op_FirstOperand;
6122        for (; OperandNo; --OperandNo) {
6123          // Advance to the next operand.
6124          unsigned OpFlag =
6125            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6126          assert((InlineAsm::isRegDefKind(OpFlag) ||
6127                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6128                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6129          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6130        }
6131
6132        unsigned OpFlag =
6133          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6134        if (InlineAsm::isRegDefKind(OpFlag) ||
6135            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6136          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6137          if (OpInfo.isIndirect) {
6138            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6139            LLVMContext &Ctx = *DAG.getContext();
6140            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6141                          " don't know how to handle tied "
6142                          "indirect register inputs");
6143          }
6144
6145          RegsForValue MatchedRegs;
6146          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6147          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6148          MatchedRegs.RegVTs.push_back(RegVT);
6149          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6150          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6151               i != e; ++i)
6152            MatchedRegs.Regs.push_back
6153              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6154
6155          // Use the produced MatchedRegs object to
6156          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6157                                    Chain, &Flag);
6158          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6159                                           true, OpInfo.getMatchedOperand(),
6160                                           DAG, AsmNodeOperands);
6161          break;
6162        }
6163
6164        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6165        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6166               "Unexpected number of operands");
6167        // Add information to the INLINEASM node to know about this input.
6168        // See InlineAsm.h isUseOperandTiedToDef.
6169        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6170                                                    OpInfo.getMatchedOperand());
6171        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6172                                                        TLI.getPointerTy()));
6173        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6174        break;
6175      }
6176
6177      // Treat indirect 'X' constraint as memory.
6178      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6179          OpInfo.isIndirect)
6180        OpInfo.ConstraintType = TargetLowering::C_Memory;
6181
6182      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6183        std::vector<SDValue> Ops;
6184        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6185                                         Ops, DAG);
6186        if (Ops.empty()) {
6187          LLVMContext &Ctx = *DAG.getContext();
6188          Ctx.emitError(CS.getInstruction(),
6189                        "invalid operand for inline asm constraint '" +
6190                        Twine(OpInfo.ConstraintCode) + "'");
6191          break;
6192        }
6193
6194        // Add information to the INLINEASM node to know about this input.
6195        unsigned ResOpType =
6196          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6197        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6198                                                        TLI.getPointerTy()));
6199        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6200        break;
6201      }
6202
6203      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6204        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6205        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6206               "Memory operands expect pointer values");
6207
6208        // Add information to the INLINEASM node to know about this input.
6209        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6210        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6211                                                        TLI.getPointerTy()));
6212        AsmNodeOperands.push_back(InOperandVal);
6213        break;
6214      }
6215
6216      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6217              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6218             "Unknown constraint type!");
6219      assert(!OpInfo.isIndirect &&
6220             "Don't know how to handle indirect register inputs yet!");
6221
6222      // Copy the input into the appropriate registers.
6223      if (OpInfo.AssignedRegs.Regs.empty()) {
6224        LLVMContext &Ctx = *DAG.getContext();
6225        Ctx.emitError(CS.getInstruction(),
6226                      "couldn't allocate input reg for constraint '" +
6227                           Twine(OpInfo.ConstraintCode) + "'");
6228        break;
6229      }
6230
6231      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6232                                        Chain, &Flag);
6233
6234      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6235                                               DAG, AsmNodeOperands);
6236      break;
6237    }
6238    case InlineAsm::isClobber: {
6239      // Add the clobbered value to the operand list, so that the register
6240      // allocator is aware that the physreg got clobbered.
6241      if (!OpInfo.AssignedRegs.Regs.empty())
6242        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6243                                                 false, 0, DAG,
6244                                                 AsmNodeOperands);
6245      break;
6246    }
6247    }
6248  }
6249
6250  // Finish up input operands.  Set the input chain and add the flag last.
6251  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6252  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6253
6254  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6255                      DAG.getVTList(MVT::Other, MVT::Glue),
6256                      &AsmNodeOperands[0], AsmNodeOperands.size());
6257  Flag = Chain.getValue(1);
6258
6259  // If this asm returns a register value, copy the result from that register
6260  // and set it as the value of the call.
6261  if (!RetValRegs.Regs.empty()) {
6262    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6263                                             Chain, &Flag);
6264
6265    // FIXME: Why don't we do this for inline asms with MRVs?
6266    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6267      EVT ResultType = TLI.getValueType(CS.getType());
6268
6269      // If any of the results of the inline asm is a vector, it may have the
6270      // wrong width/num elts.  This can happen for register classes that can
6271      // contain multiple different value types.  The preg or vreg allocated may
6272      // not have the same VT as was expected.  Convert it to the right type
6273      // with bit_convert.
6274      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6275        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6276                          ResultType, Val);
6277
6278      } else if (ResultType != Val.getValueType() &&
6279                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6280        // If a result value was tied to an input value, the computed result may
6281        // have a wider width than the expected result.  Extract the relevant
6282        // portion.
6283        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6284      }
6285
6286      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6287    }
6288
6289    setValue(CS.getInstruction(), Val);
6290    // Don't need to use this as a chain in this case.
6291    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6292      return;
6293  }
6294
6295  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6296
6297  // Process indirect outputs, first output all of the flagged copies out of
6298  // physregs.
6299  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6300    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6301    const Value *Ptr = IndirectStoresToEmit[i].second;
6302    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6303                                             Chain, &Flag);
6304    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6305  }
6306
6307  // Emit the non-flagged stores from the physregs.
6308  SmallVector<SDValue, 8> OutChains;
6309  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6310    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6311                               StoresToEmit[i].first,
6312                               getValue(StoresToEmit[i].second),
6313                               MachinePointerInfo(StoresToEmit[i].second),
6314                               false, false, 0);
6315    OutChains.push_back(Val);
6316  }
6317
6318  if (!OutChains.empty())
6319    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6320                        &OutChains[0], OutChains.size());
6321
6322  DAG.setRoot(Chain);
6323}
6324
6325void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6326  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6327                          MVT::Other, getRoot(),
6328                          getValue(I.getArgOperand(0)),
6329                          DAG.getSrcValue(I.getArgOperand(0))));
6330}
6331
6332void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6333  const TargetData &TD = *TLI.getTargetData();
6334  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6335                           getRoot(), getValue(I.getOperand(0)),
6336                           DAG.getSrcValue(I.getOperand(0)),
6337                           TD.getABITypeAlignment(I.getType()));
6338  setValue(&I, V);
6339  DAG.setRoot(V.getValue(1));
6340}
6341
6342void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6343  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6344                          MVT::Other, getRoot(),
6345                          getValue(I.getArgOperand(0)),
6346                          DAG.getSrcValue(I.getArgOperand(0))));
6347}
6348
6349void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6350  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6351                          MVT::Other, getRoot(),
6352                          getValue(I.getArgOperand(0)),
6353                          getValue(I.getArgOperand(1)),
6354                          DAG.getSrcValue(I.getArgOperand(0)),
6355                          DAG.getSrcValue(I.getArgOperand(1))));
6356}
6357
6358/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6359/// implementation, which just calls LowerCall.
6360/// FIXME: When all targets are
6361/// migrated to using LowerCall, this hook should be integrated into SDISel.
6362std::pair<SDValue, SDValue>
6363TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6364                            bool RetSExt, bool RetZExt, bool isVarArg,
6365                            bool isInreg, unsigned NumFixedArgs,
6366                            CallingConv::ID CallConv, bool isTailCall,
6367                            bool doesNotRet, bool isReturnValueUsed,
6368                            SDValue Callee,
6369                            ArgListTy &Args, SelectionDAG &DAG,
6370                            DebugLoc dl) const {
6371  // Handle all of the outgoing arguments.
6372  SmallVector<ISD::OutputArg, 32> Outs;
6373  SmallVector<SDValue, 32> OutVals;
6374  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6375    SmallVector<EVT, 4> ValueVTs;
6376    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6377    for (unsigned Value = 0, NumValues = ValueVTs.size();
6378         Value != NumValues; ++Value) {
6379      EVT VT = ValueVTs[Value];
6380      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6381      SDValue Op = SDValue(Args[i].Node.getNode(),
6382                           Args[i].Node.getResNo() + Value);
6383      ISD::ArgFlagsTy Flags;
6384      unsigned OriginalAlignment =
6385        getTargetData()->getABITypeAlignment(ArgTy);
6386
6387      if (Args[i].isZExt)
6388        Flags.setZExt();
6389      if (Args[i].isSExt)
6390        Flags.setSExt();
6391      if (Args[i].isInReg)
6392        Flags.setInReg();
6393      if (Args[i].isSRet)
6394        Flags.setSRet();
6395      if (Args[i].isByVal) {
6396        Flags.setByVal();
6397        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6398        Type *ElementTy = Ty->getElementType();
6399        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6400        // For ByVal, alignment should come from FE.  BE will guess if this
6401        // info is not there but there are cases it cannot get right.
6402        unsigned FrameAlign;
6403        if (Args[i].Alignment)
6404          FrameAlign = Args[i].Alignment;
6405        else
6406          FrameAlign = getByValTypeAlignment(ElementTy);
6407        Flags.setByValAlign(FrameAlign);
6408      }
6409      if (Args[i].isNest)
6410        Flags.setNest();
6411      Flags.setOrigAlign(OriginalAlignment);
6412
6413      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6414      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6415      SmallVector<SDValue, 4> Parts(NumParts);
6416      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6417
6418      if (Args[i].isSExt)
6419        ExtendKind = ISD::SIGN_EXTEND;
6420      else if (Args[i].isZExt)
6421        ExtendKind = ISD::ZERO_EXTEND;
6422
6423      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6424                     PartVT, ExtendKind);
6425
6426      for (unsigned j = 0; j != NumParts; ++j) {
6427        // if it isn't first piece, alignment must be 1
6428        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6429                               i < NumFixedArgs);
6430        if (NumParts > 1 && j == 0)
6431          MyFlags.Flags.setSplit();
6432        else if (j != 0)
6433          MyFlags.Flags.setOrigAlign(1);
6434
6435        Outs.push_back(MyFlags);
6436        OutVals.push_back(Parts[j]);
6437      }
6438    }
6439  }
6440
6441  // Handle the incoming return values from the call.
6442  SmallVector<ISD::InputArg, 32> Ins;
6443  SmallVector<EVT, 4> RetTys;
6444  ComputeValueVTs(*this, RetTy, RetTys);
6445  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6446    EVT VT = RetTys[I];
6447    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6448    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6449    for (unsigned i = 0; i != NumRegs; ++i) {
6450      ISD::InputArg MyFlags;
6451      MyFlags.VT = RegisterVT.getSimpleVT();
6452      MyFlags.Used = isReturnValueUsed;
6453      if (RetSExt)
6454        MyFlags.Flags.setSExt();
6455      if (RetZExt)
6456        MyFlags.Flags.setZExt();
6457      if (isInreg)
6458        MyFlags.Flags.setInReg();
6459      Ins.push_back(MyFlags);
6460    }
6461  }
6462
6463  SmallVector<SDValue, 4> InVals;
6464  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, doesNotRet, isTailCall,
6465                    Outs, OutVals, Ins, dl, DAG, InVals);
6466
6467  // Verify that the target's LowerCall behaved as expected.
6468  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6469         "LowerCall didn't return a valid chain!");
6470  assert((!isTailCall || InVals.empty()) &&
6471         "LowerCall emitted a return value for a tail call!");
6472  assert((isTailCall || InVals.size() == Ins.size()) &&
6473         "LowerCall didn't emit the correct number of values!");
6474
6475  // For a tail call, the return value is merely live-out and there aren't
6476  // any nodes in the DAG representing it. Return a special value to
6477  // indicate that a tail call has been emitted and no more Instructions
6478  // should be processed in the current block.
6479  if (isTailCall) {
6480    DAG.setRoot(Chain);
6481    return std::make_pair(SDValue(), SDValue());
6482  }
6483
6484  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6485          assert(InVals[i].getNode() &&
6486                 "LowerCall emitted a null value!");
6487          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6488                 "LowerCall emitted a value with the wrong type!");
6489        });
6490
6491  // Collect the legal value parts into potentially illegal values
6492  // that correspond to the original function's return values.
6493  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6494  if (RetSExt)
6495    AssertOp = ISD::AssertSext;
6496  else if (RetZExt)
6497    AssertOp = ISD::AssertZext;
6498  SmallVector<SDValue, 4> ReturnValues;
6499  unsigned CurReg = 0;
6500  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6501    EVT VT = RetTys[I];
6502    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6503    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6504
6505    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6506                                            NumRegs, RegisterVT, VT,
6507                                            AssertOp));
6508    CurReg += NumRegs;
6509  }
6510
6511  // For a function returning void, there is no return value. We can't create
6512  // such a node, so we just return a null return value in that case. In
6513  // that case, nothing will actually look at the value.
6514  if (ReturnValues.empty())
6515    return std::make_pair(SDValue(), Chain);
6516
6517  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6518                            DAG.getVTList(&RetTys[0], RetTys.size()),
6519                            &ReturnValues[0], ReturnValues.size());
6520  return std::make_pair(Res, Chain);
6521}
6522
6523void TargetLowering::LowerOperationWrapper(SDNode *N,
6524                                           SmallVectorImpl<SDValue> &Results,
6525                                           SelectionDAG &DAG) const {
6526  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6527  if (Res.getNode())
6528    Results.push_back(Res);
6529}
6530
6531SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6532  llvm_unreachable("LowerOperation not implemented for this target!");
6533}
6534
6535void
6536SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6537  SDValue Op = getNonRegisterValue(V);
6538  assert((Op.getOpcode() != ISD::CopyFromReg ||
6539          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6540         "Copy from a reg to the same reg!");
6541  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6542
6543  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6544  SDValue Chain = DAG.getEntryNode();
6545  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6546  PendingExports.push_back(Chain);
6547}
6548
6549#include "llvm/CodeGen/SelectionDAGISel.h"
6550
6551/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6552/// entry block, return true.  This includes arguments used by switches, since
6553/// the switch may expand into multiple basic blocks.
6554static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6555  // With FastISel active, we may be splitting blocks, so force creation
6556  // of virtual registers for all non-dead arguments.
6557  if (FastISel)
6558    return A->use_empty();
6559
6560  const BasicBlock *Entry = A->getParent()->begin();
6561  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6562       UI != E; ++UI) {
6563    const User *U = *UI;
6564    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6565      return false;  // Use not in entry block.
6566  }
6567  return true;
6568}
6569
6570void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6571  // If this is the entry block, emit arguments.
6572  const Function &F = *LLVMBB->getParent();
6573  SelectionDAG &DAG = SDB->DAG;
6574  DebugLoc dl = SDB->getCurDebugLoc();
6575  const TargetData *TD = TLI.getTargetData();
6576  SmallVector<ISD::InputArg, 16> Ins;
6577
6578  // Check whether the function can return without sret-demotion.
6579  SmallVector<ISD::OutputArg, 4> Outs;
6580  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6581                Outs, TLI);
6582
6583  if (!FuncInfo->CanLowerReturn) {
6584    // Put in an sret pointer parameter before all the other parameters.
6585    SmallVector<EVT, 1> ValueVTs;
6586    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6587
6588    // NOTE: Assuming that a pointer will never break down to more than one VT
6589    // or one register.
6590    ISD::ArgFlagsTy Flags;
6591    Flags.setSRet();
6592    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6593    ISD::InputArg RetArg(Flags, RegisterVT, true);
6594    Ins.push_back(RetArg);
6595  }
6596
6597  // Set up the incoming argument description vector.
6598  unsigned Idx = 1;
6599  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6600       I != E; ++I, ++Idx) {
6601    SmallVector<EVT, 4> ValueVTs;
6602    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6603    bool isArgValueUsed = !I->use_empty();
6604    for (unsigned Value = 0, NumValues = ValueVTs.size();
6605         Value != NumValues; ++Value) {
6606      EVT VT = ValueVTs[Value];
6607      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6608      ISD::ArgFlagsTy Flags;
6609      unsigned OriginalAlignment =
6610        TD->getABITypeAlignment(ArgTy);
6611
6612      if (F.paramHasAttr(Idx, Attribute::ZExt))
6613        Flags.setZExt();
6614      if (F.paramHasAttr(Idx, Attribute::SExt))
6615        Flags.setSExt();
6616      if (F.paramHasAttr(Idx, Attribute::InReg))
6617        Flags.setInReg();
6618      if (F.paramHasAttr(Idx, Attribute::StructRet))
6619        Flags.setSRet();
6620      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6621        Flags.setByVal();
6622        PointerType *Ty = cast<PointerType>(I->getType());
6623        Type *ElementTy = Ty->getElementType();
6624        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6625        // For ByVal, alignment should be passed from FE.  BE will guess if
6626        // this info is not there but there are cases it cannot get right.
6627        unsigned FrameAlign;
6628        if (F.getParamAlignment(Idx))
6629          FrameAlign = F.getParamAlignment(Idx);
6630        else
6631          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6632        Flags.setByValAlign(FrameAlign);
6633      }
6634      if (F.paramHasAttr(Idx, Attribute::Nest))
6635        Flags.setNest();
6636      Flags.setOrigAlign(OriginalAlignment);
6637
6638      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6639      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6640      for (unsigned i = 0; i != NumRegs; ++i) {
6641        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6642        if (NumRegs > 1 && i == 0)
6643          MyFlags.Flags.setSplit();
6644        // if it isn't first piece, alignment must be 1
6645        else if (i > 0)
6646          MyFlags.Flags.setOrigAlign(1);
6647        Ins.push_back(MyFlags);
6648      }
6649    }
6650  }
6651
6652  // Call the target to set up the argument values.
6653  SmallVector<SDValue, 8> InVals;
6654  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6655                                             F.isVarArg(), Ins,
6656                                             dl, DAG, InVals);
6657
6658  // Verify that the target's LowerFormalArguments behaved as expected.
6659  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6660         "LowerFormalArguments didn't return a valid chain!");
6661  assert(InVals.size() == Ins.size() &&
6662         "LowerFormalArguments didn't emit the correct number of values!");
6663  DEBUG({
6664      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6665        assert(InVals[i].getNode() &&
6666               "LowerFormalArguments emitted a null value!");
6667        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6668               "LowerFormalArguments emitted a value with the wrong type!");
6669      }
6670    });
6671
6672  // Update the DAG with the new chain value resulting from argument lowering.
6673  DAG.setRoot(NewRoot);
6674
6675  // Set up the argument values.
6676  unsigned i = 0;
6677  Idx = 1;
6678  if (!FuncInfo->CanLowerReturn) {
6679    // Create a virtual register for the sret pointer, and put in a copy
6680    // from the sret argument into it.
6681    SmallVector<EVT, 1> ValueVTs;
6682    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6683    EVT VT = ValueVTs[0];
6684    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6685    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6686    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6687                                        RegVT, VT, AssertOp);
6688
6689    MachineFunction& MF = SDB->DAG.getMachineFunction();
6690    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6691    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6692    FuncInfo->DemoteRegister = SRetReg;
6693    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6694                                    SRetReg, ArgValue);
6695    DAG.setRoot(NewRoot);
6696
6697    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6698    // Idx indexes LLVM arguments.  Don't touch it.
6699    ++i;
6700  }
6701
6702  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6703      ++I, ++Idx) {
6704    SmallVector<SDValue, 4> ArgValues;
6705    SmallVector<EVT, 4> ValueVTs;
6706    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6707    unsigned NumValues = ValueVTs.size();
6708
6709    // If this argument is unused then remember its value. It is used to generate
6710    // debugging information.
6711    if (I->use_empty() && NumValues)
6712      SDB->setUnusedArgValue(I, InVals[i]);
6713
6714    for (unsigned Val = 0; Val != NumValues; ++Val) {
6715      EVT VT = ValueVTs[Val];
6716      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6717      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6718
6719      if (!I->use_empty()) {
6720        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6721        if (F.paramHasAttr(Idx, Attribute::SExt))
6722          AssertOp = ISD::AssertSext;
6723        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6724          AssertOp = ISD::AssertZext;
6725
6726        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6727                                             NumParts, PartVT, VT,
6728                                             AssertOp));
6729      }
6730
6731      i += NumParts;
6732    }
6733
6734    // We don't need to do anything else for unused arguments.
6735    if (ArgValues.empty())
6736      continue;
6737
6738    // Note down frame index.
6739    if (FrameIndexSDNode *FI =
6740	dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6741      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6742
6743    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6744                                     SDB->getCurDebugLoc());
6745
6746    SDB->setValue(I, Res);
6747    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6748      if (LoadSDNode *LNode =
6749          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6750        if (FrameIndexSDNode *FI =
6751            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6752        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6753    }
6754
6755    // If this argument is live outside of the entry block, insert a copy from
6756    // wherever we got it to the vreg that other BB's will reference it as.
6757    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6758      // If we can, though, try to skip creating an unnecessary vreg.
6759      // FIXME: This isn't very clean... it would be nice to make this more
6760      // general.  It's also subtly incompatible with the hacks FastISel
6761      // uses with vregs.
6762      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6763      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6764        FuncInfo->ValueMap[I] = Reg;
6765        continue;
6766      }
6767    }
6768    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6769      FuncInfo->InitializeRegForValue(I);
6770      SDB->CopyToExportRegsIfNeeded(I);
6771    }
6772  }
6773
6774  assert(i == InVals.size() && "Argument register count mismatch!");
6775
6776  // Finally, if the target has anything special to do, allow it to do so.
6777  // FIXME: this should insert code into the DAG!
6778  EmitFunctionEntryCode();
6779}
6780
6781/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6782/// ensure constants are generated when needed.  Remember the virtual registers
6783/// that need to be added to the Machine PHI nodes as input.  We cannot just
6784/// directly add them, because expansion might result in multiple MBB's for one
6785/// BB.  As such, the start of the BB might correspond to a different MBB than
6786/// the end.
6787///
6788void
6789SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6790  const TerminatorInst *TI = LLVMBB->getTerminator();
6791
6792  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6793
6794  // Check successor nodes' PHI nodes that expect a constant to be available
6795  // from this block.
6796  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6797    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6798    if (!isa<PHINode>(SuccBB->begin())) continue;
6799    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6800
6801    // If this terminator has multiple identical successors (common for
6802    // switches), only handle each succ once.
6803    if (!SuccsHandled.insert(SuccMBB)) continue;
6804
6805    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6806
6807    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6808    // nodes and Machine PHI nodes, but the incoming operands have not been
6809    // emitted yet.
6810    for (BasicBlock::const_iterator I = SuccBB->begin();
6811         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6812      // Ignore dead phi's.
6813      if (PN->use_empty()) continue;
6814
6815      // Skip empty types
6816      if (PN->getType()->isEmptyTy())
6817        continue;
6818
6819      unsigned Reg;
6820      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6821
6822      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6823        unsigned &RegOut = ConstantsOut[C];
6824        if (RegOut == 0) {
6825          RegOut = FuncInfo.CreateRegs(C->getType());
6826          CopyValueToVirtualRegister(C, RegOut);
6827        }
6828        Reg = RegOut;
6829      } else {
6830        DenseMap<const Value *, unsigned>::iterator I =
6831          FuncInfo.ValueMap.find(PHIOp);
6832        if (I != FuncInfo.ValueMap.end())
6833          Reg = I->second;
6834        else {
6835          assert(isa<AllocaInst>(PHIOp) &&
6836                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6837                 "Didn't codegen value into a register!??");
6838          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6839          CopyValueToVirtualRegister(PHIOp, Reg);
6840        }
6841      }
6842
6843      // Remember that this register needs to added to the machine PHI node as
6844      // the input for this MBB.
6845      SmallVector<EVT, 4> ValueVTs;
6846      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6847      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6848        EVT VT = ValueVTs[vti];
6849        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6850        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6851          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6852        Reg += NumRegisters;
6853      }
6854    }
6855  }
6856  ConstantsOut.clear();
6857}
6858