SelectionDAGBuilder.cpp revision 233857537f61a8f4ab93624986676c25b2271bc7
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
284  }
285
286  assert(ValueVT.getVectorElementType() == PartVT &&
287         ValueVT.getVectorNumElements() == 1 &&
288         "Only trivial scalar-to-vector conversions should get here!");
289  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
290}
291
292
293
294
295static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
296                                 SDValue Val, SDValue *Parts, unsigned NumParts,
297                                 EVT PartVT);
298
299/// getCopyToParts - Create a series of nodes that contain the specified value
300/// split into legal parts.  If the parts contain more bits than Val, then, for
301/// integers, ExtendKind can be used to specify how to generate the extra bits.
302static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
303                           SDValue Val, SDValue *Parts, unsigned NumParts,
304                           EVT PartVT,
305                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
306  EVT ValueVT = Val.getValueType();
307
308  // Handle the vector case separately.
309  if (ValueVT.isVector())
310    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
311
312  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
313  unsigned PartBits = PartVT.getSizeInBits();
314  unsigned OrigNumParts = NumParts;
315  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
316
317  if (NumParts == 0)
318    return;
319
320  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
321  if (PartVT == ValueVT) {
322    assert(NumParts == 1 && "No-op copy with multiple parts!");
323    Parts[0] = Val;
324    return;
325  }
326
327  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
328    // If the parts cover more bits than the value has, promote the value.
329    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
330      assert(NumParts == 1 && "Do not know what to promote to!");
331      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
332    } else {
333      assert(PartVT.isInteger() && ValueVT.isInteger() &&
334             "Unknown mismatch!");
335      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
336      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
337    }
338  } else if (PartBits == ValueVT.getSizeInBits()) {
339    // Different types of the same size.
340    assert(NumParts == 1 && PartVT != ValueVT);
341    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
342  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
343    // If the parts cover less bits than value has, truncate the value.
344    assert(PartVT.isInteger() && ValueVT.isInteger() &&
345           "Unknown mismatch!");
346    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
347    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
348  }
349
350  // The value may have changed - recompute ValueVT.
351  ValueVT = Val.getValueType();
352  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
353         "Failed to tile the value with PartVT!");
354
355  if (NumParts == 1) {
356    assert(PartVT == ValueVT && "Type conversion failed!");
357    Parts[0] = Val;
358    return;
359  }
360
361  // Expand the value into multiple parts.
362  if (NumParts & (NumParts - 1)) {
363    // The number of parts is not a power of 2.  Split off and copy the tail.
364    assert(PartVT.isInteger() && ValueVT.isInteger() &&
365           "Do not know what to expand to!");
366    unsigned RoundParts = 1 << Log2_32(NumParts);
367    unsigned RoundBits = RoundParts * PartBits;
368    unsigned OddParts = NumParts - RoundParts;
369    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
370                                 DAG.getIntPtrConstant(RoundBits));
371    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
372
373    if (TLI.isBigEndian())
374      // The odd parts were reversed by getCopyToParts - unreverse them.
375      std::reverse(Parts + RoundParts, Parts + NumParts);
376
377    NumParts = RoundParts;
378    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
379    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
380  }
381
382  // The number of parts is a power of 2.  Repeatedly bisect the value using
383  // EXTRACT_ELEMENT.
384  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
385                         EVT::getIntegerVT(*DAG.getContext(),
386                                           ValueVT.getSizeInBits()),
387                         Val);
388
389  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
390    for (unsigned i = 0; i < NumParts; i += StepSize) {
391      unsigned ThisBits = StepSize * PartBits / 2;
392      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
393      SDValue &Part0 = Parts[i];
394      SDValue &Part1 = Parts[i+StepSize/2];
395
396      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
397                          ThisVT, Part0, DAG.getIntPtrConstant(1));
398      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
399                          ThisVT, Part0, DAG.getIntPtrConstant(0));
400
401      if (ThisBits == PartBits && ThisVT != PartVT) {
402        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
403        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
404      }
405    }
406  }
407
408  if (TLI.isBigEndian())
409    std::reverse(Parts, Parts + OrigNumParts);
410}
411
412
413/// getCopyToPartsVector - Create a series of nodes that contain the specified
414/// value split into legal parts.
415static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
416                                 SDValue Val, SDValue *Parts, unsigned NumParts,
417                                 EVT PartVT) {
418  EVT ValueVT = Val.getValueType();
419  assert(ValueVT.isVector() && "Not a vector");
420  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
421
422  if (NumParts == 1) {
423    if (PartVT == ValueVT) {
424      // Nothing to do.
425    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
426      // Bitconvert vector->vector case.
427      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
428    } else if (PartVT.isVector() &&
429               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
430               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
431      EVT ElementVT = PartVT.getVectorElementType();
432      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
433      // undef elements.
434      SmallVector<SDValue, 16> Ops;
435      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
436        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
437                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
438
439      for (unsigned i = ValueVT.getVectorNumElements(),
440           e = PartVT.getVectorNumElements(); i != e; ++i)
441        Ops.push_back(DAG.getUNDEF(ElementVT));
442
443      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
444
445      // FIXME: Use CONCAT for 2x -> 4x.
446
447      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
448      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
449    } else {
450      // Vector -> scalar conversion.
451      assert(ValueVT.getVectorElementType() == PartVT &&
452             ValueVT.getVectorNumElements() == 1 &&
453             "Only trivial vector-to-scalar conversions should get here!");
454      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
455                        PartVT, Val, DAG.getIntPtrConstant(0));
456    }
457
458    Parts[0] = Val;
459    return;
460  }
461
462  // Handle a multi-element vector.
463  EVT IntermediateVT, RegisterVT;
464  unsigned NumIntermediates;
465  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
466                                                IntermediateVT,
467                                                NumIntermediates, RegisterVT);
468  unsigned NumElements = ValueVT.getVectorNumElements();
469
470  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
471  NumParts = NumRegs; // Silence a compiler warning.
472  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
473
474  // Split the vector into intermediate operands.
475  SmallVector<SDValue, 8> Ops(NumIntermediates);
476  for (unsigned i = 0; i != NumIntermediates; ++i) {
477    if (IntermediateVT.isVector())
478      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
479                           IntermediateVT, Val,
480                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
481    else
482      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
483                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
484  }
485
486  // Split the intermediate operands into legal parts.
487  if (NumParts == NumIntermediates) {
488    // If the register was not expanded, promote or copy the value,
489    // as appropriate.
490    for (unsigned i = 0; i != NumParts; ++i)
491      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
492  } else if (NumParts > 0) {
493    // If the intermediate type was expanded, split each the value into
494    // legal parts.
495    assert(NumParts % NumIntermediates == 0 &&
496           "Must expand into a divisible number of parts!");
497    unsigned Factor = NumParts / NumIntermediates;
498    for (unsigned i = 0; i != NumIntermediates; ++i)
499      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
500  }
501}
502
503
504
505
506namespace {
507  /// RegsForValue - This struct represents the registers (physical or virtual)
508  /// that a particular set of values is assigned, and the type information
509  /// about the value. The most common situation is to represent one value at a
510  /// time, but struct or array values are handled element-wise as multiple
511  /// values.  The splitting of aggregates is performed recursively, so that we
512  /// never have aggregate-typed registers. The values at this point do not
513  /// necessarily have legal types, so each value may require one or more
514  /// registers of some legal type.
515  ///
516  struct RegsForValue {
517    /// ValueVTs - The value types of the values, which may not be legal, and
518    /// may need be promoted or synthesized from one or more registers.
519    ///
520    SmallVector<EVT, 4> ValueVTs;
521
522    /// RegVTs - The value types of the registers. This is the same size as
523    /// ValueVTs and it records, for each value, what the type of the assigned
524    /// register or registers are. (Individual values are never synthesized
525    /// from more than one type of register.)
526    ///
527    /// With virtual registers, the contents of RegVTs is redundant with TLI's
528    /// getRegisterType member function, however when with physical registers
529    /// it is necessary to have a separate record of the types.
530    ///
531    SmallVector<EVT, 4> RegVTs;
532
533    /// Regs - This list holds the registers assigned to the values.
534    /// Each legal or promoted value requires one register, and each
535    /// expanded value requires multiple registers.
536    ///
537    SmallVector<unsigned, 4> Regs;
538
539    RegsForValue() {}
540
541    RegsForValue(const SmallVector<unsigned, 4> &regs,
542                 EVT regvt, EVT valuevt)
543      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
544
545    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
546                 unsigned Reg, const Type *Ty) {
547      ComputeValueVTs(tli, Ty, ValueVTs);
548
549      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
550        EVT ValueVT = ValueVTs[Value];
551        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
552        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
553        for (unsigned i = 0; i != NumRegs; ++i)
554          Regs.push_back(Reg + i);
555        RegVTs.push_back(RegisterVT);
556        Reg += NumRegs;
557      }
558    }
559
560    /// areValueTypesLegal - Return true if types of all the values are legal.
561    bool areValueTypesLegal(const TargetLowering &TLI) {
562      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
563        EVT RegisterVT = RegVTs[Value];
564        if (!TLI.isTypeLegal(RegisterVT))
565          return false;
566      }
567      return true;
568    }
569
570    /// append - Add the specified values to this one.
571    void append(const RegsForValue &RHS) {
572      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
573      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
574      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
575    }
576
577    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
578    /// this value and returns the result as a ValueVTs value.  This uses
579    /// Chain/Flag as the input and updates them for the output Chain/Flag.
580    /// If the Flag pointer is NULL, no flag is used.
581    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
582                            DebugLoc dl,
583                            SDValue &Chain, SDValue *Flag) const;
584
585    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
586    /// specified value into the registers specified by this object.  This uses
587    /// Chain/Flag as the input and updates them for the output Chain/Flag.
588    /// If the Flag pointer is NULL, no flag is used.
589    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
590                       SDValue &Chain, SDValue *Flag) const;
591
592    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
593    /// operand list.  This adds the code marker, matching input operand index
594    /// (if applicable), and includes the number of values added into it.
595    void AddInlineAsmOperands(unsigned Kind,
596                              bool HasMatching, unsigned MatchingIdx,
597                              SelectionDAG &DAG,
598                              std::vector<SDValue> &Ops) const;
599  };
600}
601
602/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
603/// this value and returns the result as a ValueVT value.  This uses
604/// Chain/Flag as the input and updates them for the output Chain/Flag.
605/// If the Flag pointer is NULL, no flag is used.
606SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
607                                      FunctionLoweringInfo &FuncInfo,
608                                      DebugLoc dl,
609                                      SDValue &Chain, SDValue *Flag) const {
610  // A Value with type {} or [0 x %t] needs no registers.
611  if (ValueVTs.empty())
612    return SDValue();
613
614  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
615
616  // Assemble the legal parts into the final values.
617  SmallVector<SDValue, 4> Values(ValueVTs.size());
618  SmallVector<SDValue, 8> Parts;
619  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
620    // Copy the legal parts from the registers.
621    EVT ValueVT = ValueVTs[Value];
622    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
623    EVT RegisterVT = RegVTs[Value];
624
625    Parts.resize(NumRegs);
626    for (unsigned i = 0; i != NumRegs; ++i) {
627      SDValue P;
628      if (Flag == 0) {
629        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
630      } else {
631        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
632        *Flag = P.getValue(2);
633      }
634
635      Chain = P.getValue(1);
636      Parts[i] = P;
637
638      // If the source register was virtual and if we know something about it,
639      // add an assert node.
640      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
641          !RegisterVT.isInteger() || RegisterVT.isVector())
642        continue;
643
644      const FunctionLoweringInfo::LiveOutInfo *LOI =
645        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
646      if (!LOI)
647        continue;
648
649      unsigned RegSize = RegisterVT.getSizeInBits();
650      unsigned NumSignBits = LOI->NumSignBits;
651      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
652
653      // FIXME: We capture more information than the dag can represent.  For
654      // now, just use the tightest assertzext/assertsext possible.
655      bool isSExt = true;
656      EVT FromVT(MVT::Other);
657      if (NumSignBits == RegSize)
658        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
659      else if (NumZeroBits >= RegSize-1)
660        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
661      else if (NumSignBits > RegSize-8)
662        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
663      else if (NumZeroBits >= RegSize-8)
664        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
665      else if (NumSignBits > RegSize-16)
666        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
667      else if (NumZeroBits >= RegSize-16)
668        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
669      else if (NumSignBits > RegSize-32)
670        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
671      else if (NumZeroBits >= RegSize-32)
672        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
673      else
674        continue;
675
676      // Add an assertion node.
677      assert(FromVT != MVT::Other);
678      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
679                             RegisterVT, P, DAG.getValueType(FromVT));
680    }
681
682    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
683                                     NumRegs, RegisterVT, ValueVT);
684    Part += NumRegs;
685    Parts.clear();
686  }
687
688  return DAG.getNode(ISD::MERGE_VALUES, dl,
689                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
690                     &Values[0], ValueVTs.size());
691}
692
693/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
694/// specified value into the registers specified by this object.  This uses
695/// Chain/Flag as the input and updates them for the output Chain/Flag.
696/// If the Flag pointer is NULL, no flag is used.
697void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
698                                 SDValue &Chain, SDValue *Flag) const {
699  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
700
701  // Get the list of the values's legal parts.
702  unsigned NumRegs = Regs.size();
703  SmallVector<SDValue, 8> Parts(NumRegs);
704  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
705    EVT ValueVT = ValueVTs[Value];
706    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
707    EVT RegisterVT = RegVTs[Value];
708
709    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
710                   &Parts[Part], NumParts, RegisterVT);
711    Part += NumParts;
712  }
713
714  // Copy the parts into the registers.
715  SmallVector<SDValue, 8> Chains(NumRegs);
716  for (unsigned i = 0; i != NumRegs; ++i) {
717    SDValue Part;
718    if (Flag == 0) {
719      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
720    } else {
721      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
722      *Flag = Part.getValue(1);
723    }
724
725    Chains[i] = Part.getValue(0);
726  }
727
728  if (NumRegs == 1 || Flag)
729    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
730    // flagged to it. That is the CopyToReg nodes and the user are considered
731    // a single scheduling unit. If we create a TokenFactor and return it as
732    // chain, then the TokenFactor is both a predecessor (operand) of the
733    // user as well as a successor (the TF operands are flagged to the user).
734    // c1, f1 = CopyToReg
735    // c2, f2 = CopyToReg
736    // c3     = TokenFactor c1, c2
737    // ...
738    //        = op c3, ..., f2
739    Chain = Chains[NumRegs-1];
740  else
741    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
742}
743
744/// AddInlineAsmOperands - Add this value to the specified inlineasm node
745/// operand list.  This adds the code marker and includes the number of
746/// values added into it.
747void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
748                                        unsigned MatchingIdx,
749                                        SelectionDAG &DAG,
750                                        std::vector<SDValue> &Ops) const {
751  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
752
753  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
754  if (HasMatching)
755    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
756  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
757  Ops.push_back(Res);
758
759  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
760    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
761    EVT RegisterVT = RegVTs[Value];
762    for (unsigned i = 0; i != NumRegs; ++i) {
763      assert(Reg < Regs.size() && "Mismatch in # registers expected");
764      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
765    }
766  }
767}
768
769void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
770  AA = &aa;
771  GFI = gfi;
772  TD = DAG.getTarget().getTargetData();
773}
774
775/// clear - Clear out the current SelectionDAG and the associated
776/// state and prepare this SelectionDAGBuilder object to be used
777/// for a new block. This doesn't clear out information about
778/// additional blocks that are needed to complete switch lowering
779/// or PHI node updating; that information is cleared out as it is
780/// consumed.
781void SelectionDAGBuilder::clear() {
782  NodeMap.clear();
783  UnusedArgNodeMap.clear();
784  PendingLoads.clear();
785  PendingExports.clear();
786  CurDebugLoc = DebugLoc();
787  HasTailCall = false;
788}
789
790/// clearDanglingDebugInfo - Clear the dangling debug information
791/// map. This function is seperated from the clear so that debug
792/// information that is dangling in a basic block can be properly
793/// resolved in a different basic block. This allows the
794/// SelectionDAG to resolve dangling debug information attached
795/// to PHI nodes.
796void SelectionDAGBuilder::clearDanglingDebugInfo() {
797  DanglingDebugInfoMap.clear();
798}
799
800/// getRoot - Return the current virtual root of the Selection DAG,
801/// flushing any PendingLoad items. This must be done before emitting
802/// a store or any other node that may need to be ordered after any
803/// prior load instructions.
804///
805SDValue SelectionDAGBuilder::getRoot() {
806  if (PendingLoads.empty())
807    return DAG.getRoot();
808
809  if (PendingLoads.size() == 1) {
810    SDValue Root = PendingLoads[0];
811    DAG.setRoot(Root);
812    PendingLoads.clear();
813    return Root;
814  }
815
816  // Otherwise, we have to make a token factor node.
817  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
818                               &PendingLoads[0], PendingLoads.size());
819  PendingLoads.clear();
820  DAG.setRoot(Root);
821  return Root;
822}
823
824/// getControlRoot - Similar to getRoot, but instead of flushing all the
825/// PendingLoad items, flush all the PendingExports items. It is necessary
826/// to do this before emitting a terminator instruction.
827///
828SDValue SelectionDAGBuilder::getControlRoot() {
829  SDValue Root = DAG.getRoot();
830
831  if (PendingExports.empty())
832    return Root;
833
834  // Turn all of the CopyToReg chains into one factored node.
835  if (Root.getOpcode() != ISD::EntryToken) {
836    unsigned i = 0, e = PendingExports.size();
837    for (; i != e; ++i) {
838      assert(PendingExports[i].getNode()->getNumOperands() > 1);
839      if (PendingExports[i].getNode()->getOperand(0) == Root)
840        break;  // Don't add the root if we already indirectly depend on it.
841    }
842
843    if (i == e)
844      PendingExports.push_back(Root);
845  }
846
847  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
848                     &PendingExports[0],
849                     PendingExports.size());
850  PendingExports.clear();
851  DAG.setRoot(Root);
852  return Root;
853}
854
855void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
856  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
857  DAG.AssignOrdering(Node, SDNodeOrder);
858
859  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
860    AssignOrderingToNode(Node->getOperand(I).getNode());
861}
862
863void SelectionDAGBuilder::visit(const Instruction &I) {
864  // Set up outgoing PHI node register values before emitting the terminator.
865  if (isa<TerminatorInst>(&I))
866    HandlePHINodesInSuccessorBlocks(I.getParent());
867
868  CurDebugLoc = I.getDebugLoc();
869
870  visit(I.getOpcode(), I);
871
872  if (!isa<TerminatorInst>(&I) && !HasTailCall)
873    CopyToExportRegsIfNeeded(&I);
874
875  CurDebugLoc = DebugLoc();
876}
877
878void SelectionDAGBuilder::visitPHI(const PHINode &) {
879  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
880}
881
882void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
883  // Note: this doesn't use InstVisitor, because it has to work with
884  // ConstantExpr's in addition to instructions.
885  switch (Opcode) {
886  default: llvm_unreachable("Unknown instruction type encountered!");
887    // Build the switch statement using the Instruction.def file.
888#define HANDLE_INST(NUM, OPCODE, CLASS) \
889    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
890#include "llvm/Instruction.def"
891  }
892
893  // Assign the ordering to the freshly created DAG nodes.
894  if (NodeMap.count(&I)) {
895    ++SDNodeOrder;
896    AssignOrderingToNode(getValue(&I).getNode());
897  }
898}
899
900// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
901// generate the debug data structures now that we've seen its definition.
902void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
903                                                   SDValue Val) {
904  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
905  if (DDI.getDI()) {
906    const DbgValueInst *DI = DDI.getDI();
907    DebugLoc dl = DDI.getdl();
908    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
909    MDNode *Variable = DI->getVariable();
910    uint64_t Offset = DI->getOffset();
911    SDDbgValue *SDV;
912    if (Val.getNode()) {
913      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
914        SDV = DAG.getDbgValue(Variable, Val.getNode(),
915                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
916        DAG.AddDbgValue(SDV, Val.getNode(), false);
917      }
918    } else
919      DEBUG(dbgs() << "Dropping debug info for " << DI);
920    DanglingDebugInfoMap[V] = DanglingDebugInfo();
921  }
922}
923
924// getValue - Return an SDValue for the given Value.
925SDValue SelectionDAGBuilder::getValue(const Value *V) {
926  // If we already have an SDValue for this value, use it. It's important
927  // to do this first, so that we don't create a CopyFromReg if we already
928  // have a regular SDValue.
929  SDValue &N = NodeMap[V];
930  if (N.getNode()) return N;
931
932  // If there's a virtual register allocated and initialized for this
933  // value, use it.
934  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
935  if (It != FuncInfo.ValueMap.end()) {
936    unsigned InReg = It->second;
937    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
938    SDValue Chain = DAG.getEntryNode();
939    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
940    resolveDanglingDebugInfo(V, N);
941    return N;
942  }
943
944  // Otherwise create a new SDValue and remember it.
945  SDValue Val = getValueImpl(V);
946  NodeMap[V] = Val;
947  resolveDanglingDebugInfo(V, Val);
948  return Val;
949}
950
951/// getNonRegisterValue - Return an SDValue for the given Value, but
952/// don't look in FuncInfo.ValueMap for a virtual register.
953SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
954  // If we already have an SDValue for this value, use it.
955  SDValue &N = NodeMap[V];
956  if (N.getNode()) return N;
957
958  // Otherwise create a new SDValue and remember it.
959  SDValue Val = getValueImpl(V);
960  NodeMap[V] = Val;
961  resolveDanglingDebugInfo(V, Val);
962  return Val;
963}
964
965/// getValueImpl - Helper function for getValue and getNonRegisterValue.
966/// Create an SDValue for the given value.
967SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
968  if (const Constant *C = dyn_cast<Constant>(V)) {
969    EVT VT = TLI.getValueType(V->getType(), true);
970
971    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
972      return DAG.getConstant(*CI, VT);
973
974    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
975      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
976
977    if (isa<ConstantPointerNull>(C))
978      return DAG.getConstant(0, TLI.getPointerTy());
979
980    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
981      return DAG.getConstantFP(*CFP, VT);
982
983    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
984      return DAG.getUNDEF(VT);
985
986    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
987      visit(CE->getOpcode(), *CE);
988      SDValue N1 = NodeMap[V];
989      assert(N1.getNode() && "visit didn't populate the NodeMap!");
990      return N1;
991    }
992
993    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
994      SmallVector<SDValue, 4> Constants;
995      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
996           OI != OE; ++OI) {
997        SDNode *Val = getValue(*OI).getNode();
998        // If the operand is an empty aggregate, there are no values.
999        if (!Val) continue;
1000        // Add each leaf value from the operand to the Constants list
1001        // to form a flattened list of all the values.
1002        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1003          Constants.push_back(SDValue(Val, i));
1004      }
1005
1006      return DAG.getMergeValues(&Constants[0], Constants.size(),
1007                                getCurDebugLoc());
1008    }
1009
1010    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1011      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1012             "Unknown struct or array constant!");
1013
1014      SmallVector<EVT, 4> ValueVTs;
1015      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1016      unsigned NumElts = ValueVTs.size();
1017      if (NumElts == 0)
1018        return SDValue(); // empty struct
1019      SmallVector<SDValue, 4> Constants(NumElts);
1020      for (unsigned i = 0; i != NumElts; ++i) {
1021        EVT EltVT = ValueVTs[i];
1022        if (isa<UndefValue>(C))
1023          Constants[i] = DAG.getUNDEF(EltVT);
1024        else if (EltVT.isFloatingPoint())
1025          Constants[i] = DAG.getConstantFP(0, EltVT);
1026        else
1027          Constants[i] = DAG.getConstant(0, EltVT);
1028      }
1029
1030      return DAG.getMergeValues(&Constants[0], NumElts,
1031                                getCurDebugLoc());
1032    }
1033
1034    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1035      return DAG.getBlockAddress(BA, VT);
1036
1037    const VectorType *VecTy = cast<VectorType>(V->getType());
1038    unsigned NumElements = VecTy->getNumElements();
1039
1040    // Now that we know the number and type of the elements, get that number of
1041    // elements into the Ops array based on what kind of constant it is.
1042    SmallVector<SDValue, 16> Ops;
1043    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1044      for (unsigned i = 0; i != NumElements; ++i)
1045        Ops.push_back(getValue(CP->getOperand(i)));
1046    } else {
1047      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1048      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1049
1050      SDValue Op;
1051      if (EltVT.isFloatingPoint())
1052        Op = DAG.getConstantFP(0, EltVT);
1053      else
1054        Op = DAG.getConstant(0, EltVT);
1055      Ops.assign(NumElements, Op);
1056    }
1057
1058    // Create a BUILD_VECTOR node.
1059    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1060                                    VT, &Ops[0], Ops.size());
1061  }
1062
1063  // If this is a static alloca, generate it as the frameindex instead of
1064  // computation.
1065  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1066    DenseMap<const AllocaInst*, int>::iterator SI =
1067      FuncInfo.StaticAllocaMap.find(AI);
1068    if (SI != FuncInfo.StaticAllocaMap.end())
1069      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1070  }
1071
1072  // If this is an instruction which fast-isel has deferred, select it now.
1073  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1074    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1075    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1076    SDValue Chain = DAG.getEntryNode();
1077    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1078  }
1079
1080  llvm_unreachable("Can't get register for value!");
1081  return SDValue();
1082}
1083
1084void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1085  SDValue Chain = getControlRoot();
1086  SmallVector<ISD::OutputArg, 8> Outs;
1087  SmallVector<SDValue, 8> OutVals;
1088
1089  if (!FuncInfo.CanLowerReturn) {
1090    unsigned DemoteReg = FuncInfo.DemoteRegister;
1091    const Function *F = I.getParent()->getParent();
1092
1093    // Emit a store of the return value through the virtual register.
1094    // Leave Outs empty so that LowerReturn won't try to load return
1095    // registers the usual way.
1096    SmallVector<EVT, 1> PtrValueVTs;
1097    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1098                    PtrValueVTs);
1099
1100    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1101    SDValue RetOp = getValue(I.getOperand(0));
1102
1103    SmallVector<EVT, 4> ValueVTs;
1104    SmallVector<uint64_t, 4> Offsets;
1105    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1106    unsigned NumValues = ValueVTs.size();
1107
1108    SmallVector<SDValue, 4> Chains(NumValues);
1109    for (unsigned i = 0; i != NumValues; ++i) {
1110      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1111                                RetPtr.getValueType(), RetPtr,
1112                                DAG.getIntPtrConstant(Offsets[i]));
1113      Chains[i] =
1114        DAG.getStore(Chain, getCurDebugLoc(),
1115                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1116                     // FIXME: better loc info would be nice.
1117                     Add, MachinePointerInfo(), false, false, 0);
1118    }
1119
1120    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1121                        MVT::Other, &Chains[0], NumValues);
1122  } else if (I.getNumOperands() != 0) {
1123    SmallVector<EVT, 4> ValueVTs;
1124    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1125    unsigned NumValues = ValueVTs.size();
1126    if (NumValues) {
1127      SDValue RetOp = getValue(I.getOperand(0));
1128      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1129        EVT VT = ValueVTs[j];
1130
1131        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1132
1133        const Function *F = I.getParent()->getParent();
1134        if (F->paramHasAttr(0, Attribute::SExt))
1135          ExtendKind = ISD::SIGN_EXTEND;
1136        else if (F->paramHasAttr(0, Attribute::ZExt))
1137          ExtendKind = ISD::ZERO_EXTEND;
1138
1139        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1140          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1141
1142        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1143        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1144        SmallVector<SDValue, 4> Parts(NumParts);
1145        getCopyToParts(DAG, getCurDebugLoc(),
1146                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1147                       &Parts[0], NumParts, PartVT, ExtendKind);
1148
1149        // 'inreg' on function refers to return value
1150        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1151        if (F->paramHasAttr(0, Attribute::InReg))
1152          Flags.setInReg();
1153
1154        // Propagate extension type if any
1155        if (ExtendKind == ISD::SIGN_EXTEND)
1156          Flags.setSExt();
1157        else if (ExtendKind == ISD::ZERO_EXTEND)
1158          Flags.setZExt();
1159
1160        for (unsigned i = 0; i < NumParts; ++i) {
1161          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1162                                        /*isfixed=*/true));
1163          OutVals.push_back(Parts[i]);
1164        }
1165      }
1166    }
1167  }
1168
1169  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1170  CallingConv::ID CallConv =
1171    DAG.getMachineFunction().getFunction()->getCallingConv();
1172  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1173                          Outs, OutVals, getCurDebugLoc(), DAG);
1174
1175  // Verify that the target's LowerReturn behaved as expected.
1176  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1177         "LowerReturn didn't return a valid chain!");
1178
1179  // Update the DAG with the new chain value resulting from return lowering.
1180  DAG.setRoot(Chain);
1181}
1182
1183/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1184/// created for it, emit nodes to copy the value into the virtual
1185/// registers.
1186void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1187  // Skip empty types
1188  if (V->getType()->isEmptyTy())
1189    return;
1190
1191  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1192  if (VMI != FuncInfo.ValueMap.end()) {
1193    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1194    CopyValueToVirtualRegister(V, VMI->second);
1195  }
1196}
1197
1198/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1199/// the current basic block, add it to ValueMap now so that we'll get a
1200/// CopyTo/FromReg.
1201void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1202  // No need to export constants.
1203  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1204
1205  // Already exported?
1206  if (FuncInfo.isExportedInst(V)) return;
1207
1208  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1209  CopyValueToVirtualRegister(V, Reg);
1210}
1211
1212bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1213                                                     const BasicBlock *FromBB) {
1214  // The operands of the setcc have to be in this block.  We don't know
1215  // how to export them from some other block.
1216  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1217    // Can export from current BB.
1218    if (VI->getParent() == FromBB)
1219      return true;
1220
1221    // Is already exported, noop.
1222    return FuncInfo.isExportedInst(V);
1223  }
1224
1225  // If this is an argument, we can export it if the BB is the entry block or
1226  // if it is already exported.
1227  if (isa<Argument>(V)) {
1228    if (FromBB == &FromBB->getParent()->getEntryBlock())
1229      return true;
1230
1231    // Otherwise, can only export this if it is already exported.
1232    return FuncInfo.isExportedInst(V);
1233  }
1234
1235  // Otherwise, constants can always be exported.
1236  return true;
1237}
1238
1239static bool InBlock(const Value *V, const BasicBlock *BB) {
1240  if (const Instruction *I = dyn_cast<Instruction>(V))
1241    return I->getParent() == BB;
1242  return true;
1243}
1244
1245/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1246/// This function emits a branch and is used at the leaves of an OR or an
1247/// AND operator tree.
1248///
1249void
1250SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1251                                                  MachineBasicBlock *TBB,
1252                                                  MachineBasicBlock *FBB,
1253                                                  MachineBasicBlock *CurBB,
1254                                                  MachineBasicBlock *SwitchBB) {
1255  const BasicBlock *BB = CurBB->getBasicBlock();
1256
1257  // If the leaf of the tree is a comparison, merge the condition into
1258  // the caseblock.
1259  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1260    // The operands of the cmp have to be in this block.  We don't know
1261    // how to export them from some other block.  If this is the first block
1262    // of the sequence, no exporting is needed.
1263    if (CurBB == SwitchBB ||
1264        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1265         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1266      ISD::CondCode Condition;
1267      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1268        Condition = getICmpCondCode(IC->getPredicate());
1269      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1270        Condition = getFCmpCondCode(FC->getPredicate());
1271      } else {
1272        Condition = ISD::SETEQ; // silence warning.
1273        llvm_unreachable("Unknown compare instruction");
1274      }
1275
1276      CaseBlock CB(Condition, BOp->getOperand(0),
1277                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1278      SwitchCases.push_back(CB);
1279      return;
1280    }
1281  }
1282
1283  // Create a CaseBlock record representing this branch.
1284  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1285               NULL, TBB, FBB, CurBB);
1286  SwitchCases.push_back(CB);
1287}
1288
1289/// FindMergedConditions - If Cond is an expression like
1290void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1291                                               MachineBasicBlock *TBB,
1292                                               MachineBasicBlock *FBB,
1293                                               MachineBasicBlock *CurBB,
1294                                               MachineBasicBlock *SwitchBB,
1295                                               unsigned Opc) {
1296  // If this node is not part of the or/and tree, emit it as a branch.
1297  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1298  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1299      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1300      BOp->getParent() != CurBB->getBasicBlock() ||
1301      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1302      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1303    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1304    return;
1305  }
1306
1307  //  Create TmpBB after CurBB.
1308  MachineFunction::iterator BBI = CurBB;
1309  MachineFunction &MF = DAG.getMachineFunction();
1310  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1311  CurBB->getParent()->insert(++BBI, TmpBB);
1312
1313  if (Opc == Instruction::Or) {
1314    // Codegen X | Y as:
1315    //   jmp_if_X TBB
1316    //   jmp TmpBB
1317    // TmpBB:
1318    //   jmp_if_Y TBB
1319    //   jmp FBB
1320    //
1321
1322    // Emit the LHS condition.
1323    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1324
1325    // Emit the RHS condition into TmpBB.
1326    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1327  } else {
1328    assert(Opc == Instruction::And && "Unknown merge op!");
1329    // Codegen X & Y as:
1330    //   jmp_if_X TmpBB
1331    //   jmp FBB
1332    // TmpBB:
1333    //   jmp_if_Y TBB
1334    //   jmp FBB
1335    //
1336    //  This requires creation of TmpBB after CurBB.
1337
1338    // Emit the LHS condition.
1339    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1340
1341    // Emit the RHS condition into TmpBB.
1342    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1343  }
1344}
1345
1346/// If the set of cases should be emitted as a series of branches, return true.
1347/// If we should emit this as a bunch of and/or'd together conditions, return
1348/// false.
1349bool
1350SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1351  if (Cases.size() != 2) return true;
1352
1353  // If this is two comparisons of the same values or'd or and'd together, they
1354  // will get folded into a single comparison, so don't emit two blocks.
1355  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1356       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1357      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1358       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1359    return false;
1360  }
1361
1362  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1363  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1364  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1365      Cases[0].CC == Cases[1].CC &&
1366      isa<Constant>(Cases[0].CmpRHS) &&
1367      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1368    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1369      return false;
1370    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1371      return false;
1372  }
1373
1374  return true;
1375}
1376
1377void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1378  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1379
1380  // Update machine-CFG edges.
1381  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1382
1383  // Figure out which block is immediately after the current one.
1384  MachineBasicBlock *NextBlock = 0;
1385  MachineFunction::iterator BBI = BrMBB;
1386  if (++BBI != FuncInfo.MF->end())
1387    NextBlock = BBI;
1388
1389  if (I.isUnconditional()) {
1390    // Update machine-CFG edges.
1391    BrMBB->addSuccessor(Succ0MBB);
1392
1393    // If this is not a fall-through branch, emit the branch.
1394    if (Succ0MBB != NextBlock)
1395      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1396                              MVT::Other, getControlRoot(),
1397                              DAG.getBasicBlock(Succ0MBB)));
1398
1399    return;
1400  }
1401
1402  // If this condition is one of the special cases we handle, do special stuff
1403  // now.
1404  const Value *CondVal = I.getCondition();
1405  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1406
1407  // If this is a series of conditions that are or'd or and'd together, emit
1408  // this as a sequence of branches instead of setcc's with and/or operations.
1409  // As long as jumps are not expensive, this should improve performance.
1410  // For example, instead of something like:
1411  //     cmp A, B
1412  //     C = seteq
1413  //     cmp D, E
1414  //     F = setle
1415  //     or C, F
1416  //     jnz foo
1417  // Emit:
1418  //     cmp A, B
1419  //     je foo
1420  //     cmp D, E
1421  //     jle foo
1422  //
1423  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1424    if (!TLI.isJumpExpensive() &&
1425        BOp->hasOneUse() &&
1426        (BOp->getOpcode() == Instruction::And ||
1427         BOp->getOpcode() == Instruction::Or)) {
1428      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1429                           BOp->getOpcode());
1430      // If the compares in later blocks need to use values not currently
1431      // exported from this block, export them now.  This block should always
1432      // be the first entry.
1433      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1434
1435      // Allow some cases to be rejected.
1436      if (ShouldEmitAsBranches(SwitchCases)) {
1437        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1438          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1439          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1440        }
1441
1442        // Emit the branch for this block.
1443        visitSwitchCase(SwitchCases[0], BrMBB);
1444        SwitchCases.erase(SwitchCases.begin());
1445        return;
1446      }
1447
1448      // Okay, we decided not to do this, remove any inserted MBB's and clear
1449      // SwitchCases.
1450      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1451        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1452
1453      SwitchCases.clear();
1454    }
1455  }
1456
1457  // Create a CaseBlock record representing this branch.
1458  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1459               NULL, Succ0MBB, Succ1MBB, BrMBB);
1460
1461  // Use visitSwitchCase to actually insert the fast branch sequence for this
1462  // cond branch.
1463  visitSwitchCase(CB, BrMBB);
1464}
1465
1466/// visitSwitchCase - Emits the necessary code to represent a single node in
1467/// the binary search tree resulting from lowering a switch instruction.
1468void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1469                                          MachineBasicBlock *SwitchBB) {
1470  SDValue Cond;
1471  SDValue CondLHS = getValue(CB.CmpLHS);
1472  DebugLoc dl = getCurDebugLoc();
1473
1474  // Build the setcc now.
1475  if (CB.CmpMHS == NULL) {
1476    // Fold "(X == true)" to X and "(X == false)" to !X to
1477    // handle common cases produced by branch lowering.
1478    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1479        CB.CC == ISD::SETEQ)
1480      Cond = CondLHS;
1481    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1482             CB.CC == ISD::SETEQ) {
1483      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1484      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1485    } else
1486      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1487  } else {
1488    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1489
1490    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1491    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1492
1493    SDValue CmpOp = getValue(CB.CmpMHS);
1494    EVT VT = CmpOp.getValueType();
1495
1496    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1497      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1498                          ISD::SETLE);
1499    } else {
1500      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1501                                VT, CmpOp, DAG.getConstant(Low, VT));
1502      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1503                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1504    }
1505  }
1506
1507  // Update successor info
1508  SwitchBB->addSuccessor(CB.TrueBB);
1509  SwitchBB->addSuccessor(CB.FalseBB);
1510
1511  // Set NextBlock to be the MBB immediately after the current one, if any.
1512  // This is used to avoid emitting unnecessary branches to the next block.
1513  MachineBasicBlock *NextBlock = 0;
1514  MachineFunction::iterator BBI = SwitchBB;
1515  if (++BBI != FuncInfo.MF->end())
1516    NextBlock = BBI;
1517
1518  // If the lhs block is the next block, invert the condition so that we can
1519  // fall through to the lhs instead of the rhs block.
1520  if (CB.TrueBB == NextBlock) {
1521    std::swap(CB.TrueBB, CB.FalseBB);
1522    SDValue True = DAG.getConstant(1, Cond.getValueType());
1523    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1524  }
1525
1526  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1527                               MVT::Other, getControlRoot(), Cond,
1528                               DAG.getBasicBlock(CB.TrueBB));
1529
1530  // Insert the false branch. Do this even if it's a fall through branch,
1531  // this makes it easier to do DAG optimizations which require inverting
1532  // the branch condition.
1533  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1534                       DAG.getBasicBlock(CB.FalseBB));
1535
1536  DAG.setRoot(BrCond);
1537}
1538
1539/// visitJumpTable - Emit JumpTable node in the current MBB
1540void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1541  // Emit the code for the jump table
1542  assert(JT.Reg != -1U && "Should lower JT Header first!");
1543  EVT PTy = TLI.getPointerTy();
1544  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1545                                     JT.Reg, PTy);
1546  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1547  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1548                                    MVT::Other, Index.getValue(1),
1549                                    Table, Index);
1550  DAG.setRoot(BrJumpTable);
1551}
1552
1553/// visitJumpTableHeader - This function emits necessary code to produce index
1554/// in the JumpTable from switch case.
1555void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1556                                               JumpTableHeader &JTH,
1557                                               MachineBasicBlock *SwitchBB) {
1558  // Subtract the lowest switch case value from the value being switched on and
1559  // conditional branch to default mbb if the result is greater than the
1560  // difference between smallest and largest cases.
1561  SDValue SwitchOp = getValue(JTH.SValue);
1562  EVT VT = SwitchOp.getValueType();
1563  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1564                            DAG.getConstant(JTH.First, VT));
1565
1566  // The SDNode we just created, which holds the value being switched on minus
1567  // the smallest case value, needs to be copied to a virtual register so it
1568  // can be used as an index into the jump table in a subsequent basic block.
1569  // This value may be smaller or larger than the target's pointer type, and
1570  // therefore require extension or truncating.
1571  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1572
1573  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1574  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1575                                    JumpTableReg, SwitchOp);
1576  JT.Reg = JumpTableReg;
1577
1578  // Emit the range check for the jump table, and branch to the default block
1579  // for the switch statement if the value being switched on exceeds the largest
1580  // case in the switch.
1581  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1582                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1583                             DAG.getConstant(JTH.Last-JTH.First,VT),
1584                             ISD::SETUGT);
1585
1586  // Set NextBlock to be the MBB immediately after the current one, if any.
1587  // This is used to avoid emitting unnecessary branches to the next block.
1588  MachineBasicBlock *NextBlock = 0;
1589  MachineFunction::iterator BBI = SwitchBB;
1590
1591  if (++BBI != FuncInfo.MF->end())
1592    NextBlock = BBI;
1593
1594  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1595                               MVT::Other, CopyTo, CMP,
1596                               DAG.getBasicBlock(JT.Default));
1597
1598  if (JT.MBB != NextBlock)
1599    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1600                         DAG.getBasicBlock(JT.MBB));
1601
1602  DAG.setRoot(BrCond);
1603}
1604
1605/// visitBitTestHeader - This function emits necessary code to produce value
1606/// suitable for "bit tests"
1607void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1608                                             MachineBasicBlock *SwitchBB) {
1609  // Subtract the minimum value
1610  SDValue SwitchOp = getValue(B.SValue);
1611  EVT VT = SwitchOp.getValueType();
1612  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1613                            DAG.getConstant(B.First, VT));
1614
1615  // Check range
1616  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1617                                  TLI.getSetCCResultType(Sub.getValueType()),
1618                                  Sub, DAG.getConstant(B.Range, VT),
1619                                  ISD::SETUGT);
1620
1621  // Determine the type of the test operands.
1622  bool UsePtrType = false;
1623  if (!TLI.isTypeLegal(VT))
1624    UsePtrType = true;
1625  else {
1626    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1627      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1628        // Switch table case range are encoded into series of masks.
1629        // Just use pointer type, it's guaranteed to fit.
1630        UsePtrType = true;
1631        break;
1632      }
1633  }
1634  if (UsePtrType) {
1635    VT = TLI.getPointerTy();
1636    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1637  }
1638
1639  B.RegVT = VT;
1640  B.Reg = FuncInfo.CreateReg(VT);
1641  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1642                                    B.Reg, Sub);
1643
1644  // Set NextBlock to be the MBB immediately after the current one, if any.
1645  // This is used to avoid emitting unnecessary branches to the next block.
1646  MachineBasicBlock *NextBlock = 0;
1647  MachineFunction::iterator BBI = SwitchBB;
1648  if (++BBI != FuncInfo.MF->end())
1649    NextBlock = BBI;
1650
1651  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1652
1653  SwitchBB->addSuccessor(B.Default);
1654  SwitchBB->addSuccessor(MBB);
1655
1656  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1657                                MVT::Other, CopyTo, RangeCmp,
1658                                DAG.getBasicBlock(B.Default));
1659
1660  if (MBB != NextBlock)
1661    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1662                          DAG.getBasicBlock(MBB));
1663
1664  DAG.setRoot(BrRange);
1665}
1666
1667/// visitBitTestCase - this function produces one "bit test"
1668void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1669                                           MachineBasicBlock* NextMBB,
1670                                           unsigned Reg,
1671                                           BitTestCase &B,
1672                                           MachineBasicBlock *SwitchBB) {
1673  EVT VT = BB.RegVT;
1674  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1675                                       Reg, VT);
1676  SDValue Cmp;
1677  if (CountPopulation_64(B.Mask) == 1) {
1678    // Testing for a single bit; just compare the shift count with what it
1679    // would need to be to shift a 1 bit in that position.
1680    Cmp = DAG.getSetCC(getCurDebugLoc(),
1681                       TLI.getSetCCResultType(VT),
1682                       ShiftOp,
1683                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1684                       ISD::SETEQ);
1685  } else {
1686    // Make desired shift
1687    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1688                                    DAG.getConstant(1, VT), ShiftOp);
1689
1690    // Emit bit tests and jumps
1691    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1692                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1693    Cmp = DAG.getSetCC(getCurDebugLoc(),
1694                       TLI.getSetCCResultType(VT),
1695                       AndOp, DAG.getConstant(0, VT),
1696                       ISD::SETNE);
1697  }
1698
1699  SwitchBB->addSuccessor(B.TargetBB);
1700  SwitchBB->addSuccessor(NextMBB);
1701
1702  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1703                              MVT::Other, getControlRoot(),
1704                              Cmp, DAG.getBasicBlock(B.TargetBB));
1705
1706  // Set NextBlock to be the MBB immediately after the current one, if any.
1707  // This is used to avoid emitting unnecessary branches to the next block.
1708  MachineBasicBlock *NextBlock = 0;
1709  MachineFunction::iterator BBI = SwitchBB;
1710  if (++BBI != FuncInfo.MF->end())
1711    NextBlock = BBI;
1712
1713  if (NextMBB != NextBlock)
1714    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1715                        DAG.getBasicBlock(NextMBB));
1716
1717  DAG.setRoot(BrAnd);
1718}
1719
1720void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1721  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1722
1723  // Retrieve successors.
1724  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1725  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1726
1727  const Value *Callee(I.getCalledValue());
1728  if (isa<InlineAsm>(Callee))
1729    visitInlineAsm(&I);
1730  else
1731    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1732
1733  // If the value of the invoke is used outside of its defining block, make it
1734  // available as a virtual register.
1735  CopyToExportRegsIfNeeded(&I);
1736
1737  // Update successor info
1738  InvokeMBB->addSuccessor(Return);
1739  InvokeMBB->addSuccessor(LandingPad);
1740
1741  // Drop into normal successor.
1742  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1743                          MVT::Other, getControlRoot(),
1744                          DAG.getBasicBlock(Return)));
1745}
1746
1747void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1748}
1749
1750/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1751/// small case ranges).
1752bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1753                                                 CaseRecVector& WorkList,
1754                                                 const Value* SV,
1755                                                 MachineBasicBlock *Default,
1756                                                 MachineBasicBlock *SwitchBB) {
1757  Case& BackCase  = *(CR.Range.second-1);
1758
1759  // Size is the number of Cases represented by this range.
1760  size_t Size = CR.Range.second - CR.Range.first;
1761  if (Size > 3)
1762    return false;
1763
1764  // Get the MachineFunction which holds the current MBB.  This is used when
1765  // inserting any additional MBBs necessary to represent the switch.
1766  MachineFunction *CurMF = FuncInfo.MF;
1767
1768  // Figure out which block is immediately after the current one.
1769  MachineBasicBlock *NextBlock = 0;
1770  MachineFunction::iterator BBI = CR.CaseBB;
1771
1772  if (++BBI != FuncInfo.MF->end())
1773    NextBlock = BBI;
1774
1775  // If any two of the cases has the same destination, and if one value
1776  // is the same as the other, but has one bit unset that the other has set,
1777  // use bit manipulation to do two compares at once.  For example:
1778  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1779  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1780  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1781  if (Size == 2 && CR.CaseBB == SwitchBB) {
1782    Case &Small = *CR.Range.first;
1783    Case &Big = *(CR.Range.second-1);
1784
1785    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1786      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1787      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1788
1789      // Check that there is only one bit different.
1790      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1791          (SmallValue | BigValue) == BigValue) {
1792        // Isolate the common bit.
1793        APInt CommonBit = BigValue & ~SmallValue;
1794        assert((SmallValue | CommonBit) == BigValue &&
1795               CommonBit.countPopulation() == 1 && "Not a common bit?");
1796
1797        SDValue CondLHS = getValue(SV);
1798        EVT VT = CondLHS.getValueType();
1799        DebugLoc DL = getCurDebugLoc();
1800
1801        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1802                                 DAG.getConstant(CommonBit, VT));
1803        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1804                                    Or, DAG.getConstant(BigValue, VT),
1805                                    ISD::SETEQ);
1806
1807        // Update successor info.
1808        SwitchBB->addSuccessor(Small.BB);
1809        SwitchBB->addSuccessor(Default);
1810
1811        // Insert the true branch.
1812        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1813                                     getControlRoot(), Cond,
1814                                     DAG.getBasicBlock(Small.BB));
1815
1816        // Insert the false branch.
1817        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1818                             DAG.getBasicBlock(Default));
1819
1820        DAG.setRoot(BrCond);
1821        return true;
1822      }
1823    }
1824  }
1825
1826  // Rearrange the case blocks so that the last one falls through if possible.
1827  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1828    // The last case block won't fall through into 'NextBlock' if we emit the
1829    // branches in this order.  See if rearranging a case value would help.
1830    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1831      if (I->BB == NextBlock) {
1832        std::swap(*I, BackCase);
1833        break;
1834      }
1835    }
1836  }
1837
1838  // Create a CaseBlock record representing a conditional branch to
1839  // the Case's target mbb if the value being switched on SV is equal
1840  // to C.
1841  MachineBasicBlock *CurBlock = CR.CaseBB;
1842  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1843    MachineBasicBlock *FallThrough;
1844    if (I != E-1) {
1845      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1846      CurMF->insert(BBI, FallThrough);
1847
1848      // Put SV in a virtual register to make it available from the new blocks.
1849      ExportFromCurrentBlock(SV);
1850    } else {
1851      // If the last case doesn't match, go to the default block.
1852      FallThrough = Default;
1853    }
1854
1855    const Value *RHS, *LHS, *MHS;
1856    ISD::CondCode CC;
1857    if (I->High == I->Low) {
1858      // This is just small small case range :) containing exactly 1 case
1859      CC = ISD::SETEQ;
1860      LHS = SV; RHS = I->High; MHS = NULL;
1861    } else {
1862      CC = ISD::SETLE;
1863      LHS = I->Low; MHS = SV; RHS = I->High;
1864    }
1865    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1866
1867    // If emitting the first comparison, just call visitSwitchCase to emit the
1868    // code into the current block.  Otherwise, push the CaseBlock onto the
1869    // vector to be later processed by SDISel, and insert the node's MBB
1870    // before the next MBB.
1871    if (CurBlock == SwitchBB)
1872      visitSwitchCase(CB, SwitchBB);
1873    else
1874      SwitchCases.push_back(CB);
1875
1876    CurBlock = FallThrough;
1877  }
1878
1879  return true;
1880}
1881
1882static inline bool areJTsAllowed(const TargetLowering &TLI) {
1883  return !DisableJumpTables &&
1884          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1885           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1886}
1887
1888static APInt ComputeRange(const APInt &First, const APInt &Last) {
1889  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1890  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1891  return (LastExt - FirstExt + 1ULL);
1892}
1893
1894/// handleJTSwitchCase - Emit jumptable for current switch case range
1895bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1896                                             CaseRecVector& WorkList,
1897                                             const Value* SV,
1898                                             MachineBasicBlock* Default,
1899                                             MachineBasicBlock *SwitchBB) {
1900  Case& FrontCase = *CR.Range.first;
1901  Case& BackCase  = *(CR.Range.second-1);
1902
1903  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1904  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1905
1906  APInt TSize(First.getBitWidth(), 0);
1907  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1908       I!=E; ++I)
1909    TSize += I->size();
1910
1911  if (!areJTsAllowed(TLI) || TSize.ult(4))
1912    return false;
1913
1914  APInt Range = ComputeRange(First, Last);
1915  double Density = TSize.roundToDouble() / Range.roundToDouble();
1916  if (Density < 0.4)
1917    return false;
1918
1919  DEBUG(dbgs() << "Lowering jump table\n"
1920               << "First entry: " << First << ". Last entry: " << Last << '\n'
1921               << "Range: " << Range
1922               << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1923
1924  // Get the MachineFunction which holds the current MBB.  This is used when
1925  // inserting any additional MBBs necessary to represent the switch.
1926  MachineFunction *CurMF = FuncInfo.MF;
1927
1928  // Figure out which block is immediately after the current one.
1929  MachineFunction::iterator BBI = CR.CaseBB;
1930  ++BBI;
1931
1932  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1933
1934  // Create a new basic block to hold the code for loading the address
1935  // of the jump table, and jumping to it.  Update successor information;
1936  // we will either branch to the default case for the switch, or the jump
1937  // table.
1938  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1939  CurMF->insert(BBI, JumpTableBB);
1940  CR.CaseBB->addSuccessor(Default);
1941  CR.CaseBB->addSuccessor(JumpTableBB);
1942
1943  // Build a vector of destination BBs, corresponding to each target
1944  // of the jump table. If the value of the jump table slot corresponds to
1945  // a case statement, push the case's BB onto the vector, otherwise, push
1946  // the default BB.
1947  std::vector<MachineBasicBlock*> DestBBs;
1948  APInt TEI = First;
1949  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1950    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1951    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1952
1953    if (Low.sle(TEI) && TEI.sle(High)) {
1954      DestBBs.push_back(I->BB);
1955      if (TEI==High)
1956        ++I;
1957    } else {
1958      DestBBs.push_back(Default);
1959    }
1960  }
1961
1962  // Update successor info. Add one edge to each unique successor.
1963  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1964  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1965         E = DestBBs.end(); I != E; ++I) {
1966    if (!SuccsHandled[(*I)->getNumber()]) {
1967      SuccsHandled[(*I)->getNumber()] = true;
1968      JumpTableBB->addSuccessor(*I);
1969    }
1970  }
1971
1972  // Create a jump table index for this jump table.
1973  unsigned JTEncoding = TLI.getJumpTableEncoding();
1974  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1975                       ->createJumpTableIndex(DestBBs);
1976
1977  // Set the jump table information so that we can codegen it as a second
1978  // MachineBasicBlock
1979  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1980  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1981  if (CR.CaseBB == SwitchBB)
1982    visitJumpTableHeader(JT, JTH, SwitchBB);
1983
1984  JTCases.push_back(JumpTableBlock(JTH, JT));
1985
1986  return true;
1987}
1988
1989/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1990/// 2 subtrees.
1991bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1992                                                  CaseRecVector& WorkList,
1993                                                  const Value* SV,
1994                                                  MachineBasicBlock *Default,
1995                                                  MachineBasicBlock *SwitchBB) {
1996  // Get the MachineFunction which holds the current MBB.  This is used when
1997  // inserting any additional MBBs necessary to represent the switch.
1998  MachineFunction *CurMF = FuncInfo.MF;
1999
2000  // Figure out which block is immediately after the current one.
2001  MachineFunction::iterator BBI = CR.CaseBB;
2002  ++BBI;
2003
2004  Case& FrontCase = *CR.Range.first;
2005  Case& BackCase  = *(CR.Range.second-1);
2006  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2007
2008  // Size is the number of Cases represented by this range.
2009  unsigned Size = CR.Range.second - CR.Range.first;
2010
2011  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2012  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2013  double FMetric = 0;
2014  CaseItr Pivot = CR.Range.first + Size/2;
2015
2016  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2017  // (heuristically) allow us to emit JumpTable's later.
2018  APInt TSize(First.getBitWidth(), 0);
2019  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2020       I!=E; ++I)
2021    TSize += I->size();
2022
2023  APInt LSize = FrontCase.size();
2024  APInt RSize = TSize-LSize;
2025  DEBUG(dbgs() << "Selecting best pivot: \n"
2026               << "First: " << First << ", Last: " << Last <<'\n'
2027               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2028  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2029       J!=E; ++I, ++J) {
2030    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2031    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2032    APInt Range = ComputeRange(LEnd, RBegin);
2033    assert((Range - 2ULL).isNonNegative() &&
2034           "Invalid case distance");
2035    // Use volatile double here to avoid excess precision issues on some hosts,
2036    // e.g. that use 80-bit X87 registers.
2037    volatile double LDensity =
2038       (double)LSize.roundToDouble() /
2039                           (LEnd - First + 1ULL).roundToDouble();
2040    volatile double RDensity =
2041      (double)RSize.roundToDouble() /
2042                           (Last - RBegin + 1ULL).roundToDouble();
2043    double Metric = Range.logBase2()*(LDensity+RDensity);
2044    // Should always split in some non-trivial place
2045    DEBUG(dbgs() <<"=>Step\n"
2046                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2047                 << "LDensity: " << LDensity
2048                 << ", RDensity: " << RDensity << '\n'
2049                 << "Metric: " << Metric << '\n');
2050    if (FMetric < Metric) {
2051      Pivot = J;
2052      FMetric = Metric;
2053      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2054    }
2055
2056    LSize += J->size();
2057    RSize -= J->size();
2058  }
2059  if (areJTsAllowed(TLI)) {
2060    // If our case is dense we *really* should handle it earlier!
2061    assert((FMetric > 0) && "Should handle dense range earlier!");
2062  } else {
2063    Pivot = CR.Range.first + Size/2;
2064  }
2065
2066  CaseRange LHSR(CR.Range.first, Pivot);
2067  CaseRange RHSR(Pivot, CR.Range.second);
2068  Constant *C = Pivot->Low;
2069  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2070
2071  // We know that we branch to the LHS if the Value being switched on is
2072  // less than the Pivot value, C.  We use this to optimize our binary
2073  // tree a bit, by recognizing that if SV is greater than or equal to the
2074  // LHS's Case Value, and that Case Value is exactly one less than the
2075  // Pivot's Value, then we can branch directly to the LHS's Target,
2076  // rather than creating a leaf node for it.
2077  if ((LHSR.second - LHSR.first) == 1 &&
2078      LHSR.first->High == CR.GE &&
2079      cast<ConstantInt>(C)->getValue() ==
2080      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2081    TrueBB = LHSR.first->BB;
2082  } else {
2083    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2084    CurMF->insert(BBI, TrueBB);
2085    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2086
2087    // Put SV in a virtual register to make it available from the new blocks.
2088    ExportFromCurrentBlock(SV);
2089  }
2090
2091  // Similar to the optimization above, if the Value being switched on is
2092  // known to be less than the Constant CR.LT, and the current Case Value
2093  // is CR.LT - 1, then we can branch directly to the target block for
2094  // the current Case Value, rather than emitting a RHS leaf node for it.
2095  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2096      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2097      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2098    FalseBB = RHSR.first->BB;
2099  } else {
2100    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2101    CurMF->insert(BBI, FalseBB);
2102    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2103
2104    // Put SV in a virtual register to make it available from the new blocks.
2105    ExportFromCurrentBlock(SV);
2106  }
2107
2108  // Create a CaseBlock record representing a conditional branch to
2109  // the LHS node if the value being switched on SV is less than C.
2110  // Otherwise, branch to LHS.
2111  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2112
2113  if (CR.CaseBB == SwitchBB)
2114    visitSwitchCase(CB, SwitchBB);
2115  else
2116    SwitchCases.push_back(CB);
2117
2118  return true;
2119}
2120
2121/// handleBitTestsSwitchCase - if current case range has few destination and
2122/// range span less, than machine word bitwidth, encode case range into series
2123/// of masks and emit bit tests with these masks.
2124bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2125                                                   CaseRecVector& WorkList,
2126                                                   const Value* SV,
2127                                                   MachineBasicBlock* Default,
2128                                                   MachineBasicBlock *SwitchBB){
2129  EVT PTy = TLI.getPointerTy();
2130  unsigned IntPtrBits = PTy.getSizeInBits();
2131
2132  Case& FrontCase = *CR.Range.first;
2133  Case& BackCase  = *(CR.Range.second-1);
2134
2135  // Get the MachineFunction which holds the current MBB.  This is used when
2136  // inserting any additional MBBs necessary to represent the switch.
2137  MachineFunction *CurMF = FuncInfo.MF;
2138
2139  // If target does not have legal shift left, do not emit bit tests at all.
2140  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2141    return false;
2142
2143  size_t numCmps = 0;
2144  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2145       I!=E; ++I) {
2146    // Single case counts one, case range - two.
2147    numCmps += (I->Low == I->High ? 1 : 2);
2148  }
2149
2150  // Count unique destinations
2151  SmallSet<MachineBasicBlock*, 4> Dests;
2152  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2153    Dests.insert(I->BB);
2154    if (Dests.size() > 3)
2155      // Don't bother the code below, if there are too much unique destinations
2156      return false;
2157  }
2158  DEBUG(dbgs() << "Total number of unique destinations: "
2159        << Dests.size() << '\n'
2160        << "Total number of comparisons: " << numCmps << '\n');
2161
2162  // Compute span of values.
2163  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2164  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2165  APInt cmpRange = maxValue - minValue;
2166
2167  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2168               << "Low bound: " << minValue << '\n'
2169               << "High bound: " << maxValue << '\n');
2170
2171  if (cmpRange.uge(IntPtrBits) ||
2172      (!(Dests.size() == 1 && numCmps >= 3) &&
2173       !(Dests.size() == 2 && numCmps >= 5) &&
2174       !(Dests.size() >= 3 && numCmps >= 6)))
2175    return false;
2176
2177  DEBUG(dbgs() << "Emitting bit tests\n");
2178  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2179
2180  // Optimize the case where all the case values fit in a
2181  // word without having to subtract minValue. In this case,
2182  // we can optimize away the subtraction.
2183  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2184    cmpRange = maxValue;
2185  } else {
2186    lowBound = minValue;
2187  }
2188
2189  CaseBitsVector CasesBits;
2190  unsigned i, count = 0;
2191
2192  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2193    MachineBasicBlock* Dest = I->BB;
2194    for (i = 0; i < count; ++i)
2195      if (Dest == CasesBits[i].BB)
2196        break;
2197
2198    if (i == count) {
2199      assert((count < 3) && "Too much destinations to test!");
2200      CasesBits.push_back(CaseBits(0, Dest, 0));
2201      count++;
2202    }
2203
2204    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2205    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2206
2207    uint64_t lo = (lowValue - lowBound).getZExtValue();
2208    uint64_t hi = (highValue - lowBound).getZExtValue();
2209
2210    for (uint64_t j = lo; j <= hi; j++) {
2211      CasesBits[i].Mask |=  1ULL << j;
2212      CasesBits[i].Bits++;
2213    }
2214
2215  }
2216  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2217
2218  BitTestInfo BTC;
2219
2220  // Figure out which block is immediately after the current one.
2221  MachineFunction::iterator BBI = CR.CaseBB;
2222  ++BBI;
2223
2224  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2225
2226  DEBUG(dbgs() << "Cases:\n");
2227  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2228    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2229                 << ", Bits: " << CasesBits[i].Bits
2230                 << ", BB: " << CasesBits[i].BB << '\n');
2231
2232    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2233    CurMF->insert(BBI, CaseBB);
2234    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2235                              CaseBB,
2236                              CasesBits[i].BB));
2237
2238    // Put SV in a virtual register to make it available from the new blocks.
2239    ExportFromCurrentBlock(SV);
2240  }
2241
2242  BitTestBlock BTB(lowBound, cmpRange, SV,
2243                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2244                   CR.CaseBB, Default, BTC);
2245
2246  if (CR.CaseBB == SwitchBB)
2247    visitBitTestHeader(BTB, SwitchBB);
2248
2249  BitTestCases.push_back(BTB);
2250
2251  return true;
2252}
2253
2254/// Clusterify - Transform simple list of Cases into list of CaseRange's
2255size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2256                                       const SwitchInst& SI) {
2257  size_t numCmps = 0;
2258
2259  // Start with "simple" cases
2260  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2261    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2262    Cases.push_back(Case(SI.getSuccessorValue(i),
2263                         SI.getSuccessorValue(i),
2264                         SMBB));
2265  }
2266  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2267
2268  // Merge case into clusters
2269  if (Cases.size() >= 2)
2270    // Must recompute end() each iteration because it may be
2271    // invalidated by erase if we hold on to it
2272    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2273         J != Cases.end(); ) {
2274      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2275      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2276      MachineBasicBlock* nextBB = J->BB;
2277      MachineBasicBlock* currentBB = I->BB;
2278
2279      // If the two neighboring cases go to the same destination, merge them
2280      // into a single case.
2281      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2282        I->High = J->High;
2283        J = Cases.erase(J);
2284      } else {
2285        I = J++;
2286      }
2287    }
2288
2289  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2290    if (I->Low != I->High)
2291      // A range counts double, since it requires two compares.
2292      ++numCmps;
2293  }
2294
2295  return numCmps;
2296}
2297
2298void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2299                                           MachineBasicBlock *Last) {
2300  // Update JTCases.
2301  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2302    if (JTCases[i].first.HeaderBB == First)
2303      JTCases[i].first.HeaderBB = Last;
2304
2305  // Update BitTestCases.
2306  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2307    if (BitTestCases[i].Parent == First)
2308      BitTestCases[i].Parent = Last;
2309}
2310
2311void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2312  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2313
2314  // Figure out which block is immediately after the current one.
2315  MachineBasicBlock *NextBlock = 0;
2316  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2317
2318  // If there is only the default destination, branch to it if it is not the
2319  // next basic block.  Otherwise, just fall through.
2320  if (SI.getNumOperands() == 2) {
2321    // Update machine-CFG edges.
2322
2323    // If this is not a fall-through branch, emit the branch.
2324    SwitchMBB->addSuccessor(Default);
2325    if (Default != NextBlock)
2326      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2327                              MVT::Other, getControlRoot(),
2328                              DAG.getBasicBlock(Default)));
2329
2330    return;
2331  }
2332
2333  // If there are any non-default case statements, create a vector of Cases
2334  // representing each one, and sort the vector so that we can efficiently
2335  // create a binary search tree from them.
2336  CaseVector Cases;
2337  size_t numCmps = Clusterify(Cases, SI);
2338  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2339               << ". Total compares: " << numCmps << '\n');
2340  numCmps = 0;
2341
2342  // Get the Value to be switched on and default basic blocks, which will be
2343  // inserted into CaseBlock records, representing basic blocks in the binary
2344  // search tree.
2345  const Value *SV = SI.getOperand(0);
2346
2347  // Push the initial CaseRec onto the worklist
2348  CaseRecVector WorkList;
2349  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2350                             CaseRange(Cases.begin(),Cases.end())));
2351
2352  while (!WorkList.empty()) {
2353    // Grab a record representing a case range to process off the worklist
2354    CaseRec CR = WorkList.back();
2355    WorkList.pop_back();
2356
2357    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2358      continue;
2359
2360    // If the range has few cases (two or less) emit a series of specific
2361    // tests.
2362    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2363      continue;
2364
2365    // If the switch has more than 5 blocks, and at least 40% dense, and the
2366    // target supports indirect branches, then emit a jump table rather than
2367    // lowering the switch to a binary tree of conditional branches.
2368    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2369      continue;
2370
2371    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2372    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2373    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2374  }
2375}
2376
2377void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2378  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2379
2380  // Update machine-CFG edges with unique successors.
2381  SmallVector<BasicBlock*, 32> succs;
2382  succs.reserve(I.getNumSuccessors());
2383  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2384    succs.push_back(I.getSuccessor(i));
2385  array_pod_sort(succs.begin(), succs.end());
2386  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2387  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2388    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2389
2390  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2391                          MVT::Other, getControlRoot(),
2392                          getValue(I.getAddress())));
2393}
2394
2395void SelectionDAGBuilder::visitFSub(const User &I) {
2396  // -0.0 - X --> fneg
2397  const Type *Ty = I.getType();
2398  if (isa<Constant>(I.getOperand(0)) &&
2399      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2400    SDValue Op2 = getValue(I.getOperand(1));
2401    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2402                             Op2.getValueType(), Op2));
2403    return;
2404  }
2405
2406  visitBinary(I, ISD::FSUB);
2407}
2408
2409void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2410  SDValue Op1 = getValue(I.getOperand(0));
2411  SDValue Op2 = getValue(I.getOperand(1));
2412  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2413                           Op1.getValueType(), Op1, Op2));
2414}
2415
2416void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2417  SDValue Op1 = getValue(I.getOperand(0));
2418  SDValue Op2 = getValue(I.getOperand(1));
2419
2420  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2421
2422  // Coerce the shift amount to the right type if we can.
2423  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2424    unsigned ShiftSize = ShiftTy.getSizeInBits();
2425    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2426    DebugLoc DL = getCurDebugLoc();
2427
2428    // If the operand is smaller than the shift count type, promote it.
2429    if (ShiftSize > Op2Size)
2430      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2431
2432    // If the operand is larger than the shift count type but the shift
2433    // count type has enough bits to represent any shift value, truncate
2434    // it now. This is a common case and it exposes the truncate to
2435    // optimization early.
2436    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2437      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2438    // Otherwise we'll need to temporarily settle for some other convenient
2439    // type.  Type legalization will make adjustments once the shiftee is split.
2440    else
2441      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2442  }
2443
2444  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2445                           Op1.getValueType(), Op1, Op2));
2446}
2447
2448void SelectionDAGBuilder::visitICmp(const User &I) {
2449  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2450  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2451    predicate = IC->getPredicate();
2452  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2453    predicate = ICmpInst::Predicate(IC->getPredicate());
2454  SDValue Op1 = getValue(I.getOperand(0));
2455  SDValue Op2 = getValue(I.getOperand(1));
2456  ISD::CondCode Opcode = getICmpCondCode(predicate);
2457
2458  EVT DestVT = TLI.getValueType(I.getType());
2459  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2460}
2461
2462void SelectionDAGBuilder::visitFCmp(const User &I) {
2463  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2464  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2465    predicate = FC->getPredicate();
2466  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2467    predicate = FCmpInst::Predicate(FC->getPredicate());
2468  SDValue Op1 = getValue(I.getOperand(0));
2469  SDValue Op2 = getValue(I.getOperand(1));
2470  ISD::CondCode Condition = getFCmpCondCode(predicate);
2471  EVT DestVT = TLI.getValueType(I.getType());
2472  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2473}
2474
2475void SelectionDAGBuilder::visitSelect(const User &I) {
2476  SmallVector<EVT, 4> ValueVTs;
2477  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2478  unsigned NumValues = ValueVTs.size();
2479  if (NumValues == 0) return;
2480
2481  SmallVector<SDValue, 4> Values(NumValues);
2482  SDValue Cond     = getValue(I.getOperand(0));
2483  SDValue TrueVal  = getValue(I.getOperand(1));
2484  SDValue FalseVal = getValue(I.getOperand(2));
2485
2486  for (unsigned i = 0; i != NumValues; ++i)
2487    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2488                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2489                            Cond,
2490                            SDValue(TrueVal.getNode(),
2491                                    TrueVal.getResNo() + i),
2492                            SDValue(FalseVal.getNode(),
2493                                    FalseVal.getResNo() + i));
2494
2495  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2496                           DAG.getVTList(&ValueVTs[0], NumValues),
2497                           &Values[0], NumValues));
2498}
2499
2500void SelectionDAGBuilder::visitTrunc(const User &I) {
2501  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2502  SDValue N = getValue(I.getOperand(0));
2503  EVT DestVT = TLI.getValueType(I.getType());
2504  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2505}
2506
2507void SelectionDAGBuilder::visitZExt(const User &I) {
2508  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2509  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2510  SDValue N = getValue(I.getOperand(0));
2511  EVT DestVT = TLI.getValueType(I.getType());
2512  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2513}
2514
2515void SelectionDAGBuilder::visitSExt(const User &I) {
2516  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2517  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2518  SDValue N = getValue(I.getOperand(0));
2519  EVT DestVT = TLI.getValueType(I.getType());
2520  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2521}
2522
2523void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2524  // FPTrunc is never a no-op cast, no need to check
2525  SDValue N = getValue(I.getOperand(0));
2526  EVT DestVT = TLI.getValueType(I.getType());
2527  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2528                           DestVT, N, DAG.getIntPtrConstant(0)));
2529}
2530
2531void SelectionDAGBuilder::visitFPExt(const User &I){
2532  // FPTrunc is never a no-op cast, no need to check
2533  SDValue N = getValue(I.getOperand(0));
2534  EVT DestVT = TLI.getValueType(I.getType());
2535  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2536}
2537
2538void SelectionDAGBuilder::visitFPToUI(const User &I) {
2539  // FPToUI is never a no-op cast, no need to check
2540  SDValue N = getValue(I.getOperand(0));
2541  EVT DestVT = TLI.getValueType(I.getType());
2542  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2543}
2544
2545void SelectionDAGBuilder::visitFPToSI(const User &I) {
2546  // FPToSI is never a no-op cast, no need to check
2547  SDValue N = getValue(I.getOperand(0));
2548  EVT DestVT = TLI.getValueType(I.getType());
2549  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2550}
2551
2552void SelectionDAGBuilder::visitUIToFP(const User &I) {
2553  // UIToFP is never a no-op cast, no need to check
2554  SDValue N = getValue(I.getOperand(0));
2555  EVT DestVT = TLI.getValueType(I.getType());
2556  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2557}
2558
2559void SelectionDAGBuilder::visitSIToFP(const User &I){
2560  // SIToFP is never a no-op cast, no need to check
2561  SDValue N = getValue(I.getOperand(0));
2562  EVT DestVT = TLI.getValueType(I.getType());
2563  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2564}
2565
2566void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2567  // What to do depends on the size of the integer and the size of the pointer.
2568  // We can either truncate, zero extend, or no-op, accordingly.
2569  SDValue N = getValue(I.getOperand(0));
2570  EVT DestVT = TLI.getValueType(I.getType());
2571  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2572}
2573
2574void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2575  // What to do depends on the size of the integer and the size of the pointer.
2576  // We can either truncate, zero extend, or no-op, accordingly.
2577  SDValue N = getValue(I.getOperand(0));
2578  EVT DestVT = TLI.getValueType(I.getType());
2579  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2580}
2581
2582void SelectionDAGBuilder::visitBitCast(const User &I) {
2583  SDValue N = getValue(I.getOperand(0));
2584  EVT DestVT = TLI.getValueType(I.getType());
2585
2586  // BitCast assures us that source and destination are the same size so this is
2587  // either a BITCAST or a no-op.
2588  if (DestVT != N.getValueType())
2589    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2590                             DestVT, N)); // convert types.
2591  else
2592    setValue(&I, N);            // noop cast.
2593}
2594
2595void SelectionDAGBuilder::visitInsertElement(const User &I) {
2596  SDValue InVec = getValue(I.getOperand(0));
2597  SDValue InVal = getValue(I.getOperand(1));
2598  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2599                              TLI.getPointerTy(),
2600                              getValue(I.getOperand(2)));
2601  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2602                           TLI.getValueType(I.getType()),
2603                           InVec, InVal, InIdx));
2604}
2605
2606void SelectionDAGBuilder::visitExtractElement(const User &I) {
2607  SDValue InVec = getValue(I.getOperand(0));
2608  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2609                              TLI.getPointerTy(),
2610                              getValue(I.getOperand(1)));
2611  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2612                           TLI.getValueType(I.getType()), InVec, InIdx));
2613}
2614
2615// Utility for visitShuffleVector - Returns true if the mask is mask starting
2616// from SIndx and increasing to the element length (undefs are allowed).
2617static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2618  unsigned MaskNumElts = Mask.size();
2619  for (unsigned i = 0; i != MaskNumElts; ++i)
2620    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2621      return false;
2622  return true;
2623}
2624
2625void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2626  SmallVector<int, 8> Mask;
2627  SDValue Src1 = getValue(I.getOperand(0));
2628  SDValue Src2 = getValue(I.getOperand(1));
2629
2630  // Convert the ConstantVector mask operand into an array of ints, with -1
2631  // representing undef values.
2632  SmallVector<Constant*, 8> MaskElts;
2633  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2634  unsigned MaskNumElts = MaskElts.size();
2635  for (unsigned i = 0; i != MaskNumElts; ++i) {
2636    if (isa<UndefValue>(MaskElts[i]))
2637      Mask.push_back(-1);
2638    else
2639      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2640  }
2641
2642  EVT VT = TLI.getValueType(I.getType());
2643  EVT SrcVT = Src1.getValueType();
2644  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2645
2646  if (SrcNumElts == MaskNumElts) {
2647    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2648                                      &Mask[0]));
2649    return;
2650  }
2651
2652  // Normalize the shuffle vector since mask and vector length don't match.
2653  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2654    // Mask is longer than the source vectors and is a multiple of the source
2655    // vectors.  We can use concatenate vector to make the mask and vectors
2656    // lengths match.
2657    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2658      // The shuffle is concatenating two vectors together.
2659      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2660                               VT, Src1, Src2));
2661      return;
2662    }
2663
2664    // Pad both vectors with undefs to make them the same length as the mask.
2665    unsigned NumConcat = MaskNumElts / SrcNumElts;
2666    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2667    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2668    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2669
2670    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2671    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2672    MOps1[0] = Src1;
2673    MOps2[0] = Src2;
2674
2675    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2676                                                  getCurDebugLoc(), VT,
2677                                                  &MOps1[0], NumConcat);
2678    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2679                                                  getCurDebugLoc(), VT,
2680                                                  &MOps2[0], NumConcat);
2681
2682    // Readjust mask for new input vector length.
2683    SmallVector<int, 8> MappedOps;
2684    for (unsigned i = 0; i != MaskNumElts; ++i) {
2685      int Idx = Mask[i];
2686      if (Idx < (int)SrcNumElts)
2687        MappedOps.push_back(Idx);
2688      else
2689        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2690    }
2691
2692    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2693                                      &MappedOps[0]));
2694    return;
2695  }
2696
2697  if (SrcNumElts > MaskNumElts) {
2698    // Analyze the access pattern of the vector to see if we can extract
2699    // two subvectors and do the shuffle. The analysis is done by calculating
2700    // the range of elements the mask access on both vectors.
2701    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2702    int MaxRange[2] = {-1, -1};
2703
2704    for (unsigned i = 0; i != MaskNumElts; ++i) {
2705      int Idx = Mask[i];
2706      int Input = 0;
2707      if (Idx < 0)
2708        continue;
2709
2710      if (Idx >= (int)SrcNumElts) {
2711        Input = 1;
2712        Idx -= SrcNumElts;
2713      }
2714      if (Idx > MaxRange[Input])
2715        MaxRange[Input] = Idx;
2716      if (Idx < MinRange[Input])
2717        MinRange[Input] = Idx;
2718    }
2719
2720    // Check if the access is smaller than the vector size and can we find
2721    // a reasonable extract index.
2722    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2723                                 // Extract.
2724    int StartIdx[2];  // StartIdx to extract from
2725    for (int Input=0; Input < 2; ++Input) {
2726      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2727        RangeUse[Input] = 0; // Unused
2728        StartIdx[Input] = 0;
2729      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2730        // Fits within range but we should see if we can find a good
2731        // start index that is a multiple of the mask length.
2732        if (MaxRange[Input] < (int)MaskNumElts) {
2733          RangeUse[Input] = 1; // Extract from beginning of the vector
2734          StartIdx[Input] = 0;
2735        } else {
2736          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2737          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2738              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2739            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2740        }
2741      }
2742    }
2743
2744    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2745      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2746      return;
2747    }
2748    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2749      // Extract appropriate subvector and generate a vector shuffle
2750      for (int Input=0; Input < 2; ++Input) {
2751        SDValue &Src = Input == 0 ? Src1 : Src2;
2752        if (RangeUse[Input] == 0)
2753          Src = DAG.getUNDEF(VT);
2754        else
2755          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2756                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2757      }
2758
2759      // Calculate new mask.
2760      SmallVector<int, 8> MappedOps;
2761      for (unsigned i = 0; i != MaskNumElts; ++i) {
2762        int Idx = Mask[i];
2763        if (Idx < 0)
2764          MappedOps.push_back(Idx);
2765        else if (Idx < (int)SrcNumElts)
2766          MappedOps.push_back(Idx - StartIdx[0]);
2767        else
2768          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2769      }
2770
2771      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2772                                        &MappedOps[0]));
2773      return;
2774    }
2775  }
2776
2777  // We can't use either concat vectors or extract subvectors so fall back to
2778  // replacing the shuffle with extract and build vector.
2779  // to insert and build vector.
2780  EVT EltVT = VT.getVectorElementType();
2781  EVT PtrVT = TLI.getPointerTy();
2782  SmallVector<SDValue,8> Ops;
2783  for (unsigned i = 0; i != MaskNumElts; ++i) {
2784    if (Mask[i] < 0) {
2785      Ops.push_back(DAG.getUNDEF(EltVT));
2786    } else {
2787      int Idx = Mask[i];
2788      SDValue Res;
2789
2790      if (Idx < (int)SrcNumElts)
2791        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2792                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2793      else
2794        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2795                          EltVT, Src2,
2796                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2797
2798      Ops.push_back(Res);
2799    }
2800  }
2801
2802  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2803                           VT, &Ops[0], Ops.size()));
2804}
2805
2806void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2807  const Value *Op0 = I.getOperand(0);
2808  const Value *Op1 = I.getOperand(1);
2809  const Type *AggTy = I.getType();
2810  const Type *ValTy = Op1->getType();
2811  bool IntoUndef = isa<UndefValue>(Op0);
2812  bool FromUndef = isa<UndefValue>(Op1);
2813
2814  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2815
2816  SmallVector<EVT, 4> AggValueVTs;
2817  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2818  SmallVector<EVT, 4> ValValueVTs;
2819  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2820
2821  unsigned NumAggValues = AggValueVTs.size();
2822  unsigned NumValValues = ValValueVTs.size();
2823  SmallVector<SDValue, 4> Values(NumAggValues);
2824
2825  SDValue Agg = getValue(Op0);
2826  unsigned i = 0;
2827  // Copy the beginning value(s) from the original aggregate.
2828  for (; i != LinearIndex; ++i)
2829    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2830                SDValue(Agg.getNode(), Agg.getResNo() + i);
2831  // Copy values from the inserted value(s).
2832  if (NumValValues) {
2833    SDValue Val = getValue(Op1);
2834    for (; i != LinearIndex + NumValValues; ++i)
2835      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2836                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2837  }
2838  // Copy remaining value(s) from the original aggregate.
2839  for (; i != NumAggValues; ++i)
2840    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2841                SDValue(Agg.getNode(), Agg.getResNo() + i);
2842
2843  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2844                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2845                           &Values[0], NumAggValues));
2846}
2847
2848void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2849  const Value *Op0 = I.getOperand(0);
2850  const Type *AggTy = Op0->getType();
2851  const Type *ValTy = I.getType();
2852  bool OutOfUndef = isa<UndefValue>(Op0);
2853
2854  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2855
2856  SmallVector<EVT, 4> ValValueVTs;
2857  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2858
2859  unsigned NumValValues = ValValueVTs.size();
2860
2861  // Ignore a extractvalue that produces an empty object
2862  if (!NumValValues) {
2863    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2864    return;
2865  }
2866
2867  SmallVector<SDValue, 4> Values(NumValValues);
2868
2869  SDValue Agg = getValue(Op0);
2870  // Copy out the selected value(s).
2871  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2872    Values[i - LinearIndex] =
2873      OutOfUndef ?
2874        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2875        SDValue(Agg.getNode(), Agg.getResNo() + i);
2876
2877  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2878                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2879                           &Values[0], NumValValues));
2880}
2881
2882void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2883  SDValue N = getValue(I.getOperand(0));
2884  const Type *Ty = I.getOperand(0)->getType();
2885
2886  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2887       OI != E; ++OI) {
2888    const Value *Idx = *OI;
2889    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2890      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2891      if (Field) {
2892        // N = N + Offset
2893        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2894        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2895                        DAG.getIntPtrConstant(Offset));
2896      }
2897
2898      Ty = StTy->getElementType(Field);
2899    } else {
2900      Ty = cast<SequentialType>(Ty)->getElementType();
2901
2902      // If this is a constant subscript, handle it quickly.
2903      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2904        if (CI->isZero()) continue;
2905        uint64_t Offs =
2906            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2907        SDValue OffsVal;
2908        EVT PTy = TLI.getPointerTy();
2909        unsigned PtrBits = PTy.getSizeInBits();
2910        if (PtrBits < 64)
2911          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2912                                TLI.getPointerTy(),
2913                                DAG.getConstant(Offs, MVT::i64));
2914        else
2915          OffsVal = DAG.getIntPtrConstant(Offs);
2916
2917        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2918                        OffsVal);
2919        continue;
2920      }
2921
2922      // N = N + Idx * ElementSize;
2923      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2924                                TD->getTypeAllocSize(Ty));
2925      SDValue IdxN = getValue(Idx);
2926
2927      // If the index is smaller or larger than intptr_t, truncate or extend
2928      // it.
2929      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2930
2931      // If this is a multiply by a power of two, turn it into a shl
2932      // immediately.  This is a very common case.
2933      if (ElementSize != 1) {
2934        if (ElementSize.isPowerOf2()) {
2935          unsigned Amt = ElementSize.logBase2();
2936          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2937                             N.getValueType(), IdxN,
2938                             DAG.getConstant(Amt, TLI.getPointerTy()));
2939        } else {
2940          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2941          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2942                             N.getValueType(), IdxN, Scale);
2943        }
2944      }
2945
2946      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2947                      N.getValueType(), N, IdxN);
2948    }
2949  }
2950
2951  setValue(&I, N);
2952}
2953
2954void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2955  // If this is a fixed sized alloca in the entry block of the function,
2956  // allocate it statically on the stack.
2957  if (FuncInfo.StaticAllocaMap.count(&I))
2958    return;   // getValue will auto-populate this.
2959
2960  const Type *Ty = I.getAllocatedType();
2961  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2962  unsigned Align =
2963    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2964             I.getAlignment());
2965
2966  SDValue AllocSize = getValue(I.getArraySize());
2967
2968  EVT IntPtr = TLI.getPointerTy();
2969  if (AllocSize.getValueType() != IntPtr)
2970    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2971
2972  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2973                          AllocSize,
2974                          DAG.getConstant(TySize, IntPtr));
2975
2976  // Handle alignment.  If the requested alignment is less than or equal to
2977  // the stack alignment, ignore it.  If the size is greater than or equal to
2978  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2979  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
2980  if (Align <= StackAlign)
2981    Align = 0;
2982
2983  // Round the size of the allocation up to the stack alignment size
2984  // by add SA-1 to the size.
2985  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2986                          AllocSize.getValueType(), AllocSize,
2987                          DAG.getIntPtrConstant(StackAlign-1));
2988
2989  // Mask out the low bits for alignment purposes.
2990  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2991                          AllocSize.getValueType(), AllocSize,
2992                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2993
2994  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2995  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2996  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2997                            VTs, Ops, 3);
2998  setValue(&I, DSA);
2999  DAG.setRoot(DSA.getValue(1));
3000
3001  // Inform the Frame Information that we have just allocated a variable-sized
3002  // object.
3003  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3004}
3005
3006void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3007  const Value *SV = I.getOperand(0);
3008  SDValue Ptr = getValue(SV);
3009
3010  const Type *Ty = I.getType();
3011
3012  bool isVolatile = I.isVolatile();
3013  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3014  unsigned Alignment = I.getAlignment();
3015  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3016
3017  SmallVector<EVT, 4> ValueVTs;
3018  SmallVector<uint64_t, 4> Offsets;
3019  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3020  unsigned NumValues = ValueVTs.size();
3021  if (NumValues == 0)
3022    return;
3023
3024  SDValue Root;
3025  bool ConstantMemory = false;
3026  if (I.isVolatile() || NumValues > MaxParallelChains)
3027    // Serialize volatile loads with other side effects.
3028    Root = getRoot();
3029  else if (AA->pointsToConstantMemory(
3030             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3031    // Do not serialize (non-volatile) loads of constant memory with anything.
3032    Root = DAG.getEntryNode();
3033    ConstantMemory = true;
3034  } else {
3035    // Do not serialize non-volatile loads against each other.
3036    Root = DAG.getRoot();
3037  }
3038
3039  SmallVector<SDValue, 4> Values(NumValues);
3040  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3041                                          NumValues));
3042  EVT PtrVT = Ptr.getValueType();
3043  unsigned ChainI = 0;
3044  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3045    // Serializing loads here may result in excessive register pressure, and
3046    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3047    // could recover a bit by hoisting nodes upward in the chain by recognizing
3048    // they are side-effect free or do not alias. The optimizer should really
3049    // avoid this case by converting large object/array copies to llvm.memcpy
3050    // (MaxParallelChains should always remain as failsafe).
3051    if (ChainI == MaxParallelChains) {
3052      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3053      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3054                                  MVT::Other, &Chains[0], ChainI);
3055      Root = Chain;
3056      ChainI = 0;
3057    }
3058    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3059                            PtrVT, Ptr,
3060                            DAG.getConstant(Offsets[i], PtrVT));
3061    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3062                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3063                            isNonTemporal, Alignment, TBAAInfo);
3064
3065    Values[i] = L;
3066    Chains[ChainI] = L.getValue(1);
3067  }
3068
3069  if (!ConstantMemory) {
3070    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3071                                MVT::Other, &Chains[0], ChainI);
3072    if (isVolatile)
3073      DAG.setRoot(Chain);
3074    else
3075      PendingLoads.push_back(Chain);
3076  }
3077
3078  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3079                           DAG.getVTList(&ValueVTs[0], NumValues),
3080                           &Values[0], NumValues));
3081}
3082
3083void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3084  const Value *SrcV = I.getOperand(0);
3085  const Value *PtrV = I.getOperand(1);
3086
3087  SmallVector<EVT, 4> ValueVTs;
3088  SmallVector<uint64_t, 4> Offsets;
3089  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3090  unsigned NumValues = ValueVTs.size();
3091  if (NumValues == 0)
3092    return;
3093
3094  // Get the lowered operands. Note that we do this after
3095  // checking if NumResults is zero, because with zero results
3096  // the operands won't have values in the map.
3097  SDValue Src = getValue(SrcV);
3098  SDValue Ptr = getValue(PtrV);
3099
3100  SDValue Root = getRoot();
3101  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3102                                          NumValues));
3103  EVT PtrVT = Ptr.getValueType();
3104  bool isVolatile = I.isVolatile();
3105  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3106  unsigned Alignment = I.getAlignment();
3107  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3108
3109  unsigned ChainI = 0;
3110  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3111    // See visitLoad comments.
3112    if (ChainI == MaxParallelChains) {
3113      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3114                                  MVT::Other, &Chains[0], ChainI);
3115      Root = Chain;
3116      ChainI = 0;
3117    }
3118    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3119                              DAG.getConstant(Offsets[i], PtrVT));
3120    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3121                              SDValue(Src.getNode(), Src.getResNo() + i),
3122                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3123                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3124    Chains[ChainI] = St;
3125  }
3126
3127  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3128                                  MVT::Other, &Chains[0], ChainI);
3129  ++SDNodeOrder;
3130  AssignOrderingToNode(StoreNode.getNode());
3131  DAG.setRoot(StoreNode);
3132}
3133
3134/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3135/// node.
3136void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3137                                               unsigned Intrinsic) {
3138  bool HasChain = !I.doesNotAccessMemory();
3139  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3140
3141  // Build the operand list.
3142  SmallVector<SDValue, 8> Ops;
3143  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3144    if (OnlyLoad) {
3145      // We don't need to serialize loads against other loads.
3146      Ops.push_back(DAG.getRoot());
3147    } else {
3148      Ops.push_back(getRoot());
3149    }
3150  }
3151
3152  // Info is set by getTgtMemInstrinsic
3153  TargetLowering::IntrinsicInfo Info;
3154  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3155
3156  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3157  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3158      Info.opc == ISD::INTRINSIC_W_CHAIN)
3159    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3160
3161  // Add all operands of the call to the operand list.
3162  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3163    SDValue Op = getValue(I.getArgOperand(i));
3164    assert(TLI.isTypeLegal(Op.getValueType()) &&
3165           "Intrinsic uses a non-legal type?");
3166    Ops.push_back(Op);
3167  }
3168
3169  SmallVector<EVT, 4> ValueVTs;
3170  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3171#ifndef NDEBUG
3172  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3173    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3174           "Intrinsic uses a non-legal type?");
3175  }
3176#endif // NDEBUG
3177
3178  if (HasChain)
3179    ValueVTs.push_back(MVT::Other);
3180
3181  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3182
3183  // Create the node.
3184  SDValue Result;
3185  if (IsTgtIntrinsic) {
3186    // This is target intrinsic that touches memory
3187    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3188                                     VTs, &Ops[0], Ops.size(),
3189                                     Info.memVT,
3190                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3191                                     Info.align, Info.vol,
3192                                     Info.readMem, Info.writeMem);
3193  } else if (!HasChain) {
3194    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3195                         VTs, &Ops[0], Ops.size());
3196  } else if (!I.getType()->isVoidTy()) {
3197    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3198                         VTs, &Ops[0], Ops.size());
3199  } else {
3200    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3201                         VTs, &Ops[0], Ops.size());
3202  }
3203
3204  if (HasChain) {
3205    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3206    if (OnlyLoad)
3207      PendingLoads.push_back(Chain);
3208    else
3209      DAG.setRoot(Chain);
3210  }
3211
3212  if (!I.getType()->isVoidTy()) {
3213    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3214      EVT VT = TLI.getValueType(PTy);
3215      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3216    }
3217
3218    setValue(&I, Result);
3219  }
3220}
3221
3222/// GetSignificand - Get the significand and build it into a floating-point
3223/// number with exponent of 1:
3224///
3225///   Op = (Op & 0x007fffff) | 0x3f800000;
3226///
3227/// where Op is the hexidecimal representation of floating point value.
3228static SDValue
3229GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3230  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3231                           DAG.getConstant(0x007fffff, MVT::i32));
3232  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3233                           DAG.getConstant(0x3f800000, MVT::i32));
3234  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3235}
3236
3237/// GetExponent - Get the exponent:
3238///
3239///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3240///
3241/// where Op is the hexidecimal representation of floating point value.
3242static SDValue
3243GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3244            DebugLoc dl) {
3245  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3246                           DAG.getConstant(0x7f800000, MVT::i32));
3247  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3248                           DAG.getConstant(23, TLI.getPointerTy()));
3249  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3250                           DAG.getConstant(127, MVT::i32));
3251  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3252}
3253
3254/// getF32Constant - Get 32-bit floating point constant.
3255static SDValue
3256getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3257  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3258}
3259
3260/// Inlined utility function to implement binary input atomic intrinsics for
3261/// visitIntrinsicCall: I is a call instruction
3262///                     Op is the associated NodeType for I
3263const char *
3264SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3265                                           ISD::NodeType Op) {
3266  SDValue Root = getRoot();
3267  SDValue L =
3268    DAG.getAtomic(Op, getCurDebugLoc(),
3269                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3270                  Root,
3271                  getValue(I.getArgOperand(0)),
3272                  getValue(I.getArgOperand(1)),
3273                  I.getArgOperand(0));
3274  setValue(&I, L);
3275  DAG.setRoot(L.getValue(1));
3276  return 0;
3277}
3278
3279// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3280const char *
3281SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3282  SDValue Op1 = getValue(I.getArgOperand(0));
3283  SDValue Op2 = getValue(I.getArgOperand(1));
3284
3285  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3286  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3287  return 0;
3288}
3289
3290/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3291/// limited-precision mode.
3292void
3293SelectionDAGBuilder::visitExp(const CallInst &I) {
3294  SDValue result;
3295  DebugLoc dl = getCurDebugLoc();
3296
3297  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3298      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3299    SDValue Op = getValue(I.getArgOperand(0));
3300
3301    // Put the exponent in the right bit position for later addition to the
3302    // final result:
3303    //
3304    //   #define LOG2OFe 1.4426950f
3305    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3306    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3307                             getF32Constant(DAG, 0x3fb8aa3b));
3308    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3309
3310    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3311    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3312    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3313
3314    //   IntegerPartOfX <<= 23;
3315    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3316                                 DAG.getConstant(23, TLI.getPointerTy()));
3317
3318    if (LimitFloatPrecision <= 6) {
3319      // For floating-point precision of 6:
3320      //
3321      //   TwoToFractionalPartOfX =
3322      //     0.997535578f +
3323      //       (0.735607626f + 0.252464424f * x) * x;
3324      //
3325      // error 0.0144103317, which is 6 bits
3326      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3327                               getF32Constant(DAG, 0x3e814304));
3328      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3329                               getF32Constant(DAG, 0x3f3c50c8));
3330      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3331      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3332                               getF32Constant(DAG, 0x3f7f5e7e));
3333      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3334
3335      // Add the exponent into the result in integer domain.
3336      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3337                               TwoToFracPartOfX, IntegerPartOfX);
3338
3339      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3340    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3341      // For floating-point precision of 12:
3342      //
3343      //   TwoToFractionalPartOfX =
3344      //     0.999892986f +
3345      //       (0.696457318f +
3346      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3347      //
3348      // 0.000107046256 error, which is 13 to 14 bits
3349      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3350                               getF32Constant(DAG, 0x3da235e3));
3351      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3352                               getF32Constant(DAG, 0x3e65b8f3));
3353      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3354      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3355                               getF32Constant(DAG, 0x3f324b07));
3356      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3357      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3358                               getF32Constant(DAG, 0x3f7ff8fd));
3359      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3360
3361      // Add the exponent into the result in integer domain.
3362      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3363                               TwoToFracPartOfX, IntegerPartOfX);
3364
3365      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3366    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3367      // For floating-point precision of 18:
3368      //
3369      //   TwoToFractionalPartOfX =
3370      //     0.999999982f +
3371      //       (0.693148872f +
3372      //         (0.240227044f +
3373      //           (0.554906021e-1f +
3374      //             (0.961591928e-2f +
3375      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3376      //
3377      // error 2.47208000*10^(-7), which is better than 18 bits
3378      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3379                               getF32Constant(DAG, 0x3924b03e));
3380      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3381                               getF32Constant(DAG, 0x3ab24b87));
3382      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3383      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3384                               getF32Constant(DAG, 0x3c1d8c17));
3385      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3386      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3387                               getF32Constant(DAG, 0x3d634a1d));
3388      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3389      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3390                               getF32Constant(DAG, 0x3e75fe14));
3391      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3392      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3393                                getF32Constant(DAG, 0x3f317234));
3394      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3395      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3396                                getF32Constant(DAG, 0x3f800000));
3397      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3398                                             MVT::i32, t13);
3399
3400      // Add the exponent into the result in integer domain.
3401      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3402                                TwoToFracPartOfX, IntegerPartOfX);
3403
3404      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3405    }
3406  } else {
3407    // No special expansion.
3408    result = DAG.getNode(ISD::FEXP, dl,
3409                         getValue(I.getArgOperand(0)).getValueType(),
3410                         getValue(I.getArgOperand(0)));
3411  }
3412
3413  setValue(&I, result);
3414}
3415
3416/// visitLog - Lower a log intrinsic. Handles the special sequences for
3417/// limited-precision mode.
3418void
3419SelectionDAGBuilder::visitLog(const CallInst &I) {
3420  SDValue result;
3421  DebugLoc dl = getCurDebugLoc();
3422
3423  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3424      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3425    SDValue Op = getValue(I.getArgOperand(0));
3426    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3427
3428    // Scale the exponent by log(2) [0.69314718f].
3429    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3430    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3431                                        getF32Constant(DAG, 0x3f317218));
3432
3433    // Get the significand and build it into a floating-point number with
3434    // exponent of 1.
3435    SDValue X = GetSignificand(DAG, Op1, dl);
3436
3437    if (LimitFloatPrecision <= 6) {
3438      // For floating-point precision of 6:
3439      //
3440      //   LogofMantissa =
3441      //     -1.1609546f +
3442      //       (1.4034025f - 0.23903021f * x) * x;
3443      //
3444      // error 0.0034276066, which is better than 8 bits
3445      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3446                               getF32Constant(DAG, 0xbe74c456));
3447      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3448                               getF32Constant(DAG, 0x3fb3a2b1));
3449      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3450      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3451                                          getF32Constant(DAG, 0x3f949a29));
3452
3453      result = DAG.getNode(ISD::FADD, dl,
3454                           MVT::f32, LogOfExponent, LogOfMantissa);
3455    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3456      // For floating-point precision of 12:
3457      //
3458      //   LogOfMantissa =
3459      //     -1.7417939f +
3460      //       (2.8212026f +
3461      //         (-1.4699568f +
3462      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3463      //
3464      // error 0.000061011436, which is 14 bits
3465      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3466                               getF32Constant(DAG, 0xbd67b6d6));
3467      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3468                               getF32Constant(DAG, 0x3ee4f4b8));
3469      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3470      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3471                               getF32Constant(DAG, 0x3fbc278b));
3472      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3473      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3474                               getF32Constant(DAG, 0x40348e95));
3475      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3476      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3477                                          getF32Constant(DAG, 0x3fdef31a));
3478
3479      result = DAG.getNode(ISD::FADD, dl,
3480                           MVT::f32, LogOfExponent, LogOfMantissa);
3481    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3482      // For floating-point precision of 18:
3483      //
3484      //   LogOfMantissa =
3485      //     -2.1072184f +
3486      //       (4.2372794f +
3487      //         (-3.7029485f +
3488      //           (2.2781945f +
3489      //             (-0.87823314f +
3490      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3491      //
3492      // error 0.0000023660568, which is better than 18 bits
3493      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3494                               getF32Constant(DAG, 0xbc91e5ac));
3495      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3496                               getF32Constant(DAG, 0x3e4350aa));
3497      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3498      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3499                               getF32Constant(DAG, 0x3f60d3e3));
3500      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3501      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3502                               getF32Constant(DAG, 0x4011cdf0));
3503      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3504      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3505                               getF32Constant(DAG, 0x406cfd1c));
3506      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3507      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3508                               getF32Constant(DAG, 0x408797cb));
3509      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3510      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3511                                          getF32Constant(DAG, 0x4006dcab));
3512
3513      result = DAG.getNode(ISD::FADD, dl,
3514                           MVT::f32, LogOfExponent, LogOfMantissa);
3515    }
3516  } else {
3517    // No special expansion.
3518    result = DAG.getNode(ISD::FLOG, dl,
3519                         getValue(I.getArgOperand(0)).getValueType(),
3520                         getValue(I.getArgOperand(0)));
3521  }
3522
3523  setValue(&I, result);
3524}
3525
3526/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3527/// limited-precision mode.
3528void
3529SelectionDAGBuilder::visitLog2(const CallInst &I) {
3530  SDValue result;
3531  DebugLoc dl = getCurDebugLoc();
3532
3533  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3534      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3535    SDValue Op = getValue(I.getArgOperand(0));
3536    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3537
3538    // Get the exponent.
3539    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3540
3541    // Get the significand and build it into a floating-point number with
3542    // exponent of 1.
3543    SDValue X = GetSignificand(DAG, Op1, dl);
3544
3545    // Different possible minimax approximations of significand in
3546    // floating-point for various degrees of accuracy over [1,2].
3547    if (LimitFloatPrecision <= 6) {
3548      // For floating-point precision of 6:
3549      //
3550      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3551      //
3552      // error 0.0049451742, which is more than 7 bits
3553      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3554                               getF32Constant(DAG, 0xbeb08fe0));
3555      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3556                               getF32Constant(DAG, 0x40019463));
3557      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3558      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3559                                           getF32Constant(DAG, 0x3fd6633d));
3560
3561      result = DAG.getNode(ISD::FADD, dl,
3562                           MVT::f32, LogOfExponent, Log2ofMantissa);
3563    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3564      // For floating-point precision of 12:
3565      //
3566      //   Log2ofMantissa =
3567      //     -2.51285454f +
3568      //       (4.07009056f +
3569      //         (-2.12067489f +
3570      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3571      //
3572      // error 0.0000876136000, which is better than 13 bits
3573      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3574                               getF32Constant(DAG, 0xbda7262e));
3575      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3576                               getF32Constant(DAG, 0x3f25280b));
3577      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3578      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3579                               getF32Constant(DAG, 0x4007b923));
3580      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3581      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3582                               getF32Constant(DAG, 0x40823e2f));
3583      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3584      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3585                                           getF32Constant(DAG, 0x4020d29c));
3586
3587      result = DAG.getNode(ISD::FADD, dl,
3588                           MVT::f32, LogOfExponent, Log2ofMantissa);
3589    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3590      // For floating-point precision of 18:
3591      //
3592      //   Log2ofMantissa =
3593      //     -3.0400495f +
3594      //       (6.1129976f +
3595      //         (-5.3420409f +
3596      //           (3.2865683f +
3597      //             (-1.2669343f +
3598      //               (0.27515199f -
3599      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3600      //
3601      // error 0.0000018516, which is better than 18 bits
3602      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3603                               getF32Constant(DAG, 0xbcd2769e));
3604      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3605                               getF32Constant(DAG, 0x3e8ce0b9));
3606      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3607      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3608                               getF32Constant(DAG, 0x3fa22ae7));
3609      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3610      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3611                               getF32Constant(DAG, 0x40525723));
3612      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3613      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3614                               getF32Constant(DAG, 0x40aaf200));
3615      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3616      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3617                               getF32Constant(DAG, 0x40c39dad));
3618      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3619      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3620                                           getF32Constant(DAG, 0x4042902c));
3621
3622      result = DAG.getNode(ISD::FADD, dl,
3623                           MVT::f32, LogOfExponent, Log2ofMantissa);
3624    }
3625  } else {
3626    // No special expansion.
3627    result = DAG.getNode(ISD::FLOG2, dl,
3628                         getValue(I.getArgOperand(0)).getValueType(),
3629                         getValue(I.getArgOperand(0)));
3630  }
3631
3632  setValue(&I, result);
3633}
3634
3635/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3636/// limited-precision mode.
3637void
3638SelectionDAGBuilder::visitLog10(const CallInst &I) {
3639  SDValue result;
3640  DebugLoc dl = getCurDebugLoc();
3641
3642  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3643      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3644    SDValue Op = getValue(I.getArgOperand(0));
3645    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3646
3647    // Scale the exponent by log10(2) [0.30102999f].
3648    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3649    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3650                                        getF32Constant(DAG, 0x3e9a209a));
3651
3652    // Get the significand and build it into a floating-point number with
3653    // exponent of 1.
3654    SDValue X = GetSignificand(DAG, Op1, dl);
3655
3656    if (LimitFloatPrecision <= 6) {
3657      // For floating-point precision of 6:
3658      //
3659      //   Log10ofMantissa =
3660      //     -0.50419619f +
3661      //       (0.60948995f - 0.10380950f * x) * x;
3662      //
3663      // error 0.0014886165, which is 6 bits
3664      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3665                               getF32Constant(DAG, 0xbdd49a13));
3666      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3667                               getF32Constant(DAG, 0x3f1c0789));
3668      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3669      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3670                                            getF32Constant(DAG, 0x3f011300));
3671
3672      result = DAG.getNode(ISD::FADD, dl,
3673                           MVT::f32, LogOfExponent, Log10ofMantissa);
3674    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3675      // For floating-point precision of 12:
3676      //
3677      //   Log10ofMantissa =
3678      //     -0.64831180f +
3679      //       (0.91751397f +
3680      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3681      //
3682      // error 0.00019228036, which is better than 12 bits
3683      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3684                               getF32Constant(DAG, 0x3d431f31));
3685      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3686                               getF32Constant(DAG, 0x3ea21fb2));
3687      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3688      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3689                               getF32Constant(DAG, 0x3f6ae232));
3690      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3691      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3692                                            getF32Constant(DAG, 0x3f25f7c3));
3693
3694      result = DAG.getNode(ISD::FADD, dl,
3695                           MVT::f32, LogOfExponent, Log10ofMantissa);
3696    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3697      // For floating-point precision of 18:
3698      //
3699      //   Log10ofMantissa =
3700      //     -0.84299375f +
3701      //       (1.5327582f +
3702      //         (-1.0688956f +
3703      //           (0.49102474f +
3704      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3705      //
3706      // error 0.0000037995730, which is better than 18 bits
3707      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3708                               getF32Constant(DAG, 0x3c5d51ce));
3709      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3710                               getF32Constant(DAG, 0x3e00685a));
3711      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3712      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3713                               getF32Constant(DAG, 0x3efb6798));
3714      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3715      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3716                               getF32Constant(DAG, 0x3f88d192));
3717      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3718      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3719                               getF32Constant(DAG, 0x3fc4316c));
3720      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3721      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3722                                            getF32Constant(DAG, 0x3f57ce70));
3723
3724      result = DAG.getNode(ISD::FADD, dl,
3725                           MVT::f32, LogOfExponent, Log10ofMantissa);
3726    }
3727  } else {
3728    // No special expansion.
3729    result = DAG.getNode(ISD::FLOG10, dl,
3730                         getValue(I.getArgOperand(0)).getValueType(),
3731                         getValue(I.getArgOperand(0)));
3732  }
3733
3734  setValue(&I, result);
3735}
3736
3737/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3738/// limited-precision mode.
3739void
3740SelectionDAGBuilder::visitExp2(const CallInst &I) {
3741  SDValue result;
3742  DebugLoc dl = getCurDebugLoc();
3743
3744  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3745      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3746    SDValue Op = getValue(I.getArgOperand(0));
3747
3748    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3749
3750    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3751    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3752    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3753
3754    //   IntegerPartOfX <<= 23;
3755    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3756                                 DAG.getConstant(23, TLI.getPointerTy()));
3757
3758    if (LimitFloatPrecision <= 6) {
3759      // For floating-point precision of 6:
3760      //
3761      //   TwoToFractionalPartOfX =
3762      //     0.997535578f +
3763      //       (0.735607626f + 0.252464424f * x) * x;
3764      //
3765      // error 0.0144103317, which is 6 bits
3766      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3767                               getF32Constant(DAG, 0x3e814304));
3768      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3769                               getF32Constant(DAG, 0x3f3c50c8));
3770      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3771      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3772                               getF32Constant(DAG, 0x3f7f5e7e));
3773      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3774      SDValue TwoToFractionalPartOfX =
3775        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3776
3777      result = DAG.getNode(ISD::BITCAST, dl,
3778                           MVT::f32, TwoToFractionalPartOfX);
3779    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3780      // For floating-point precision of 12:
3781      //
3782      //   TwoToFractionalPartOfX =
3783      //     0.999892986f +
3784      //       (0.696457318f +
3785      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3786      //
3787      // error 0.000107046256, which is 13 to 14 bits
3788      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3789                               getF32Constant(DAG, 0x3da235e3));
3790      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3791                               getF32Constant(DAG, 0x3e65b8f3));
3792      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3793      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3794                               getF32Constant(DAG, 0x3f324b07));
3795      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3796      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3797                               getF32Constant(DAG, 0x3f7ff8fd));
3798      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3799      SDValue TwoToFractionalPartOfX =
3800        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3801
3802      result = DAG.getNode(ISD::BITCAST, dl,
3803                           MVT::f32, TwoToFractionalPartOfX);
3804    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3805      // For floating-point precision of 18:
3806      //
3807      //   TwoToFractionalPartOfX =
3808      //     0.999999982f +
3809      //       (0.693148872f +
3810      //         (0.240227044f +
3811      //           (0.554906021e-1f +
3812      //             (0.961591928e-2f +
3813      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3814      // error 2.47208000*10^(-7), which is better than 18 bits
3815      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3816                               getF32Constant(DAG, 0x3924b03e));
3817      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3818                               getF32Constant(DAG, 0x3ab24b87));
3819      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3820      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3821                               getF32Constant(DAG, 0x3c1d8c17));
3822      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3823      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3824                               getF32Constant(DAG, 0x3d634a1d));
3825      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3826      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3827                               getF32Constant(DAG, 0x3e75fe14));
3828      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3829      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3830                                getF32Constant(DAG, 0x3f317234));
3831      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3832      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3833                                getF32Constant(DAG, 0x3f800000));
3834      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3835      SDValue TwoToFractionalPartOfX =
3836        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3837
3838      result = DAG.getNode(ISD::BITCAST, dl,
3839                           MVT::f32, TwoToFractionalPartOfX);
3840    }
3841  } else {
3842    // No special expansion.
3843    result = DAG.getNode(ISD::FEXP2, dl,
3844                         getValue(I.getArgOperand(0)).getValueType(),
3845                         getValue(I.getArgOperand(0)));
3846  }
3847
3848  setValue(&I, result);
3849}
3850
3851/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3852/// limited-precision mode with x == 10.0f.
3853void
3854SelectionDAGBuilder::visitPow(const CallInst &I) {
3855  SDValue result;
3856  const Value *Val = I.getArgOperand(0);
3857  DebugLoc dl = getCurDebugLoc();
3858  bool IsExp10 = false;
3859
3860  if (getValue(Val).getValueType() == MVT::f32 &&
3861      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3862      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3863    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3864      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3865        APFloat Ten(10.0f);
3866        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3867      }
3868    }
3869  }
3870
3871  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3872    SDValue Op = getValue(I.getArgOperand(1));
3873
3874    // Put the exponent in the right bit position for later addition to the
3875    // final result:
3876    //
3877    //   #define LOG2OF10 3.3219281f
3878    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3879    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3880                             getF32Constant(DAG, 0x40549a78));
3881    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3882
3883    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3884    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3885    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3886
3887    //   IntegerPartOfX <<= 23;
3888    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3889                                 DAG.getConstant(23, TLI.getPointerTy()));
3890
3891    if (LimitFloatPrecision <= 6) {
3892      // For floating-point precision of 6:
3893      //
3894      //   twoToFractionalPartOfX =
3895      //     0.997535578f +
3896      //       (0.735607626f + 0.252464424f * x) * x;
3897      //
3898      // error 0.0144103317, which is 6 bits
3899      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3900                               getF32Constant(DAG, 0x3e814304));
3901      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3902                               getF32Constant(DAG, 0x3f3c50c8));
3903      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3904      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3905                               getF32Constant(DAG, 0x3f7f5e7e));
3906      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3907      SDValue TwoToFractionalPartOfX =
3908        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3909
3910      result = DAG.getNode(ISD::BITCAST, dl,
3911                           MVT::f32, TwoToFractionalPartOfX);
3912    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3913      // For floating-point precision of 12:
3914      //
3915      //   TwoToFractionalPartOfX =
3916      //     0.999892986f +
3917      //       (0.696457318f +
3918      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3919      //
3920      // error 0.000107046256, which is 13 to 14 bits
3921      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3922                               getF32Constant(DAG, 0x3da235e3));
3923      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3924                               getF32Constant(DAG, 0x3e65b8f3));
3925      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3926      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3927                               getF32Constant(DAG, 0x3f324b07));
3928      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3929      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3930                               getF32Constant(DAG, 0x3f7ff8fd));
3931      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3932      SDValue TwoToFractionalPartOfX =
3933        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3934
3935      result = DAG.getNode(ISD::BITCAST, dl,
3936                           MVT::f32, TwoToFractionalPartOfX);
3937    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3938      // For floating-point precision of 18:
3939      //
3940      //   TwoToFractionalPartOfX =
3941      //     0.999999982f +
3942      //       (0.693148872f +
3943      //         (0.240227044f +
3944      //           (0.554906021e-1f +
3945      //             (0.961591928e-2f +
3946      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3947      // error 2.47208000*10^(-7), which is better than 18 bits
3948      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3949                               getF32Constant(DAG, 0x3924b03e));
3950      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3951                               getF32Constant(DAG, 0x3ab24b87));
3952      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3953      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3954                               getF32Constant(DAG, 0x3c1d8c17));
3955      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3956      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3957                               getF32Constant(DAG, 0x3d634a1d));
3958      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3959      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3960                               getF32Constant(DAG, 0x3e75fe14));
3961      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3962      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3963                                getF32Constant(DAG, 0x3f317234));
3964      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3965      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3966                                getF32Constant(DAG, 0x3f800000));
3967      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3968      SDValue TwoToFractionalPartOfX =
3969        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3970
3971      result = DAG.getNode(ISD::BITCAST, dl,
3972                           MVT::f32, TwoToFractionalPartOfX);
3973    }
3974  } else {
3975    // No special expansion.
3976    result = DAG.getNode(ISD::FPOW, dl,
3977                         getValue(I.getArgOperand(0)).getValueType(),
3978                         getValue(I.getArgOperand(0)),
3979                         getValue(I.getArgOperand(1)));
3980  }
3981
3982  setValue(&I, result);
3983}
3984
3985
3986/// ExpandPowI - Expand a llvm.powi intrinsic.
3987static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3988                          SelectionDAG &DAG) {
3989  // If RHS is a constant, we can expand this out to a multiplication tree,
3990  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3991  // optimizing for size, we only want to do this if the expansion would produce
3992  // a small number of multiplies, otherwise we do the full expansion.
3993  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3994    // Get the exponent as a positive value.
3995    unsigned Val = RHSC->getSExtValue();
3996    if ((int)Val < 0) Val = -Val;
3997
3998    // powi(x, 0) -> 1.0
3999    if (Val == 0)
4000      return DAG.getConstantFP(1.0, LHS.getValueType());
4001
4002    const Function *F = DAG.getMachineFunction().getFunction();
4003    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4004        // If optimizing for size, don't insert too many multiplies.  This
4005        // inserts up to 5 multiplies.
4006        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4007      // We use the simple binary decomposition method to generate the multiply
4008      // sequence.  There are more optimal ways to do this (for example,
4009      // powi(x,15) generates one more multiply than it should), but this has
4010      // the benefit of being both really simple and much better than a libcall.
4011      SDValue Res;  // Logically starts equal to 1.0
4012      SDValue CurSquare = LHS;
4013      while (Val) {
4014        if (Val & 1) {
4015          if (Res.getNode())
4016            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4017          else
4018            Res = CurSquare;  // 1.0*CurSquare.
4019        }
4020
4021        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4022                                CurSquare, CurSquare);
4023        Val >>= 1;
4024      }
4025
4026      // If the original was negative, invert the result, producing 1/(x*x*x).
4027      if (RHSC->getSExtValue() < 0)
4028        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4029                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4030      return Res;
4031    }
4032  }
4033
4034  // Otherwise, expand to a libcall.
4035  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4036}
4037
4038// getTruncatedArgReg - Find underlying register used for an truncated
4039// argument.
4040static unsigned getTruncatedArgReg(const SDValue &N) {
4041  if (N.getOpcode() != ISD::TRUNCATE)
4042    return 0;
4043
4044  const SDValue &Ext = N.getOperand(0);
4045  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4046    const SDValue &CFR = Ext.getOperand(0);
4047    if (CFR.getOpcode() == ISD::CopyFromReg)
4048      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4049    else
4050      if (CFR.getOpcode() == ISD::TRUNCATE)
4051        return getTruncatedArgReg(CFR);
4052  }
4053  return 0;
4054}
4055
4056/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4057/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4058/// At the end of instruction selection, they will be inserted to the entry BB.
4059bool
4060SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4061                                              int64_t Offset,
4062                                              const SDValue &N) {
4063  const Argument *Arg = dyn_cast<Argument>(V);
4064  if (!Arg)
4065    return false;
4066
4067  MachineFunction &MF = DAG.getMachineFunction();
4068  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4069  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4070
4071  // Ignore inlined function arguments here.
4072  DIVariable DV(Variable);
4073  if (DV.isInlinedFnArgument(MF.getFunction()))
4074    return false;
4075
4076  unsigned Reg = 0;
4077  if (Arg->hasByValAttr()) {
4078    // Byval arguments' frame index is recorded during argument lowering.
4079    // Use this info directly.
4080    Reg = TRI->getFrameRegister(MF);
4081    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4082    // If byval argument ofset is not recorded then ignore this.
4083    if (!Offset)
4084      Reg = 0;
4085  }
4086
4087  if (N.getNode()) {
4088    if (N.getOpcode() == ISD::CopyFromReg)
4089      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4090    else
4091      Reg = getTruncatedArgReg(N);
4092    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4093      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4094      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4095      if (PR)
4096        Reg = PR;
4097    }
4098  }
4099
4100  if (!Reg) {
4101    // Check if ValueMap has reg number.
4102    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4103    if (VMI != FuncInfo.ValueMap.end())
4104      Reg = VMI->second;
4105  }
4106
4107  if (!Reg && N.getNode()) {
4108    // Check if frame index is available.
4109    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4110      if (FrameIndexSDNode *FINode =
4111          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4112        Reg = TRI->getFrameRegister(MF);
4113        Offset = FINode->getIndex();
4114      }
4115  }
4116
4117  if (!Reg)
4118    return false;
4119
4120  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4121                                    TII->get(TargetOpcode::DBG_VALUE))
4122    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4123  FuncInfo.ArgDbgValues.push_back(&*MIB);
4124  return true;
4125}
4126
4127// VisualStudio defines setjmp as _setjmp
4128#if defined(_MSC_VER) && defined(setjmp) && \
4129                         !defined(setjmp_undefined_for_msvc)
4130#  pragma push_macro("setjmp")
4131#  undef setjmp
4132#  define setjmp_undefined_for_msvc
4133#endif
4134
4135/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4136/// we want to emit this as a call to a named external function, return the name
4137/// otherwise lower it and return null.
4138const char *
4139SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4140  DebugLoc dl = getCurDebugLoc();
4141  SDValue Res;
4142
4143  switch (Intrinsic) {
4144  default:
4145    // By default, turn this into a target intrinsic node.
4146    visitTargetIntrinsic(I, Intrinsic);
4147    return 0;
4148  case Intrinsic::vastart:  visitVAStart(I); return 0;
4149  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4150  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4151  case Intrinsic::returnaddress:
4152    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4153                             getValue(I.getArgOperand(0))));
4154    return 0;
4155  case Intrinsic::frameaddress:
4156    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4157                             getValue(I.getArgOperand(0))));
4158    return 0;
4159  case Intrinsic::setjmp:
4160    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4161  case Intrinsic::longjmp:
4162    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4163  case Intrinsic::memcpy: {
4164    // Assert for address < 256 since we support only user defined address
4165    // spaces.
4166    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4167           < 256 &&
4168           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4169           < 256 &&
4170           "Unknown address space");
4171    SDValue Op1 = getValue(I.getArgOperand(0));
4172    SDValue Op2 = getValue(I.getArgOperand(1));
4173    SDValue Op3 = getValue(I.getArgOperand(2));
4174    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4175    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4176    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4177                              MachinePointerInfo(I.getArgOperand(0)),
4178                              MachinePointerInfo(I.getArgOperand(1))));
4179    return 0;
4180  }
4181  case Intrinsic::memset: {
4182    // Assert for address < 256 since we support only user defined address
4183    // spaces.
4184    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4185           < 256 &&
4186           "Unknown address space");
4187    SDValue Op1 = getValue(I.getArgOperand(0));
4188    SDValue Op2 = getValue(I.getArgOperand(1));
4189    SDValue Op3 = getValue(I.getArgOperand(2));
4190    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4191    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4192    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4193                              MachinePointerInfo(I.getArgOperand(0))));
4194    return 0;
4195  }
4196  case Intrinsic::memmove: {
4197    // Assert for address < 256 since we support only user defined address
4198    // spaces.
4199    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4200           < 256 &&
4201           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4202           < 256 &&
4203           "Unknown address space");
4204    SDValue Op1 = getValue(I.getArgOperand(0));
4205    SDValue Op2 = getValue(I.getArgOperand(1));
4206    SDValue Op3 = getValue(I.getArgOperand(2));
4207    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4208    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4209    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4210                               MachinePointerInfo(I.getArgOperand(0)),
4211                               MachinePointerInfo(I.getArgOperand(1))));
4212    return 0;
4213  }
4214  case Intrinsic::dbg_declare: {
4215    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4216    MDNode *Variable = DI.getVariable();
4217    const Value *Address = DI.getAddress();
4218    if (!Address || !DIVariable(DI.getVariable()).Verify())
4219      return 0;
4220
4221    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4222    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4223    // absolute, but not relative, values are different depending on whether
4224    // debug info exists.
4225    ++SDNodeOrder;
4226
4227    // Check if address has undef value.
4228    if (isa<UndefValue>(Address) ||
4229        (Address->use_empty() && !isa<Argument>(Address))) {
4230      DEBUG(dbgs() << "Dropping debug info for " << DI);
4231      return 0;
4232    }
4233
4234    SDValue &N = NodeMap[Address];
4235    if (!N.getNode() && isa<Argument>(Address))
4236      // Check unused arguments map.
4237      N = UnusedArgNodeMap[Address];
4238    SDDbgValue *SDV;
4239    if (N.getNode()) {
4240      // Parameters are handled specially.
4241      bool isParameter =
4242        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4243      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4244        Address = BCI->getOperand(0);
4245      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4246
4247      if (isParameter && !AI) {
4248        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4249        if (FINode)
4250          // Byval parameter.  We have a frame index at this point.
4251          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4252                                0, dl, SDNodeOrder);
4253        else {
4254          // Address is an argument, so try to emit its dbg value using
4255          // virtual register info from the FuncInfo.ValueMap.
4256          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4257          return 0;
4258        }
4259      } else if (AI)
4260        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4261                              0, dl, SDNodeOrder);
4262      else {
4263        // Can't do anything with other non-AI cases yet.
4264        DEBUG(dbgs() << "Dropping debug info for " << DI);
4265        return 0;
4266      }
4267      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4268    } else {
4269      // If Address is an argument then try to emit its dbg value using
4270      // virtual register info from the FuncInfo.ValueMap.
4271      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4272        // If variable is pinned by a alloca in dominating bb then
4273        // use StaticAllocaMap.
4274        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4275          if (AI->getParent() != DI.getParent()) {
4276            DenseMap<const AllocaInst*, int>::iterator SI =
4277              FuncInfo.StaticAllocaMap.find(AI);
4278            if (SI != FuncInfo.StaticAllocaMap.end()) {
4279              SDV = DAG.getDbgValue(Variable, SI->second,
4280                                    0, dl, SDNodeOrder);
4281              DAG.AddDbgValue(SDV, 0, false);
4282              return 0;
4283            }
4284          }
4285        }
4286        DEBUG(dbgs() << "Dropping debug info for " << DI);
4287      }
4288    }
4289    return 0;
4290  }
4291  case Intrinsic::dbg_value: {
4292    const DbgValueInst &DI = cast<DbgValueInst>(I);
4293    if (!DIVariable(DI.getVariable()).Verify())
4294      return 0;
4295
4296    MDNode *Variable = DI.getVariable();
4297    uint64_t Offset = DI.getOffset();
4298    const Value *V = DI.getValue();
4299    if (!V)
4300      return 0;
4301
4302    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4303    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4304    // absolute, but not relative, values are different depending on whether
4305    // debug info exists.
4306    ++SDNodeOrder;
4307    SDDbgValue *SDV;
4308    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4309      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4310      DAG.AddDbgValue(SDV, 0, false);
4311    } else {
4312      // Do not use getValue() in here; we don't want to generate code at
4313      // this point if it hasn't been done yet.
4314      SDValue N = NodeMap[V];
4315      if (!N.getNode() && isa<Argument>(V))
4316        // Check unused arguments map.
4317        N = UnusedArgNodeMap[V];
4318      if (N.getNode()) {
4319        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4320          SDV = DAG.getDbgValue(Variable, N.getNode(),
4321                                N.getResNo(), Offset, dl, SDNodeOrder);
4322          DAG.AddDbgValue(SDV, N.getNode(), false);
4323        }
4324      } else if (!V->use_empty() ) {
4325        // Do not call getValue(V) yet, as we don't want to generate code.
4326        // Remember it for later.
4327        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4328        DanglingDebugInfoMap[V] = DDI;
4329      } else {
4330        // We may expand this to cover more cases.  One case where we have no
4331        // data available is an unreferenced parameter.
4332        DEBUG(dbgs() << "Dropping debug info for " << DI);
4333      }
4334    }
4335
4336    // Build a debug info table entry.
4337    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4338      V = BCI->getOperand(0);
4339    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4340    // Don't handle byval struct arguments or VLAs, for example.
4341    if (!AI)
4342      return 0;
4343    DenseMap<const AllocaInst*, int>::iterator SI =
4344      FuncInfo.StaticAllocaMap.find(AI);
4345    if (SI == FuncInfo.StaticAllocaMap.end())
4346      return 0; // VLAs.
4347    int FI = SI->second;
4348
4349    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4350    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4351      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4352    return 0;
4353  }
4354  case Intrinsic::eh_exception: {
4355    // Insert the EXCEPTIONADDR instruction.
4356    assert(FuncInfo.MBB->isLandingPad() &&
4357           "Call to eh.exception not in landing pad!");
4358    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4359    SDValue Ops[1];
4360    Ops[0] = DAG.getRoot();
4361    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4362    setValue(&I, Op);
4363    DAG.setRoot(Op.getValue(1));
4364    return 0;
4365  }
4366
4367  case Intrinsic::eh_selector: {
4368    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4369    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4370    if (CallMBB->isLandingPad())
4371      AddCatchInfo(I, &MMI, CallMBB);
4372    else {
4373#ifndef NDEBUG
4374      FuncInfo.CatchInfoLost.insert(&I);
4375#endif
4376      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4377      unsigned Reg = TLI.getExceptionSelectorRegister();
4378      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4379    }
4380
4381    // Insert the EHSELECTION instruction.
4382    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4383    SDValue Ops[2];
4384    Ops[0] = getValue(I.getArgOperand(0));
4385    Ops[1] = getRoot();
4386    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4387    DAG.setRoot(Op.getValue(1));
4388    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4389    return 0;
4390  }
4391
4392  case Intrinsic::eh_typeid_for: {
4393    // Find the type id for the given typeinfo.
4394    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4395    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4396    Res = DAG.getConstant(TypeID, MVT::i32);
4397    setValue(&I, Res);
4398    return 0;
4399  }
4400
4401  case Intrinsic::eh_return_i32:
4402  case Intrinsic::eh_return_i64:
4403    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4404    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4405                            MVT::Other,
4406                            getControlRoot(),
4407                            getValue(I.getArgOperand(0)),
4408                            getValue(I.getArgOperand(1))));
4409    return 0;
4410  case Intrinsic::eh_unwind_init:
4411    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4412    return 0;
4413  case Intrinsic::eh_dwarf_cfa: {
4414    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4415                                        TLI.getPointerTy());
4416    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4417                                 TLI.getPointerTy(),
4418                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4419                                             TLI.getPointerTy()),
4420                                 CfaArg);
4421    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4422                             TLI.getPointerTy(),
4423                             DAG.getConstant(0, TLI.getPointerTy()));
4424    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4425                             FA, Offset));
4426    return 0;
4427  }
4428  case Intrinsic::eh_sjlj_callsite: {
4429    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4430    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4431    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4432    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4433
4434    MMI.setCurrentCallSite(CI->getZExtValue());
4435    return 0;
4436  }
4437  case Intrinsic::eh_sjlj_setjmp: {
4438    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4439                             getValue(I.getArgOperand(0))));
4440    return 0;
4441  }
4442  case Intrinsic::eh_sjlj_longjmp: {
4443    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4444                            getRoot(), getValue(I.getArgOperand(0))));
4445    return 0;
4446  }
4447  case Intrinsic::eh_sjlj_dispatch_setup: {
4448    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4449                            getRoot(), getValue(I.getArgOperand(0))));
4450    return 0;
4451  }
4452
4453  case Intrinsic::x86_mmx_pslli_w:
4454  case Intrinsic::x86_mmx_pslli_d:
4455  case Intrinsic::x86_mmx_pslli_q:
4456  case Intrinsic::x86_mmx_psrli_w:
4457  case Intrinsic::x86_mmx_psrli_d:
4458  case Intrinsic::x86_mmx_psrli_q:
4459  case Intrinsic::x86_mmx_psrai_w:
4460  case Intrinsic::x86_mmx_psrai_d: {
4461    SDValue ShAmt = getValue(I.getArgOperand(1));
4462    if (isa<ConstantSDNode>(ShAmt)) {
4463      visitTargetIntrinsic(I, Intrinsic);
4464      return 0;
4465    }
4466    unsigned NewIntrinsic = 0;
4467    EVT ShAmtVT = MVT::v2i32;
4468    switch (Intrinsic) {
4469    case Intrinsic::x86_mmx_pslli_w:
4470      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4471      break;
4472    case Intrinsic::x86_mmx_pslli_d:
4473      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4474      break;
4475    case Intrinsic::x86_mmx_pslli_q:
4476      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4477      break;
4478    case Intrinsic::x86_mmx_psrli_w:
4479      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4480      break;
4481    case Intrinsic::x86_mmx_psrli_d:
4482      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4483      break;
4484    case Intrinsic::x86_mmx_psrli_q:
4485      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4486      break;
4487    case Intrinsic::x86_mmx_psrai_w:
4488      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4489      break;
4490    case Intrinsic::x86_mmx_psrai_d:
4491      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4492      break;
4493    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4494    }
4495
4496    // The vector shift intrinsics with scalars uses 32b shift amounts but
4497    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4498    // to be zero.
4499    // We must do this early because v2i32 is not a legal type.
4500    DebugLoc dl = getCurDebugLoc();
4501    SDValue ShOps[2];
4502    ShOps[0] = ShAmt;
4503    ShOps[1] = DAG.getConstant(0, MVT::i32);
4504    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4505    EVT DestVT = TLI.getValueType(I.getType());
4506    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4507    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4508                       DAG.getConstant(NewIntrinsic, MVT::i32),
4509                       getValue(I.getArgOperand(0)), ShAmt);
4510    setValue(&I, Res);
4511    return 0;
4512  }
4513  case Intrinsic::convertff:
4514  case Intrinsic::convertfsi:
4515  case Intrinsic::convertfui:
4516  case Intrinsic::convertsif:
4517  case Intrinsic::convertuif:
4518  case Intrinsic::convertss:
4519  case Intrinsic::convertsu:
4520  case Intrinsic::convertus:
4521  case Intrinsic::convertuu: {
4522    ISD::CvtCode Code = ISD::CVT_INVALID;
4523    switch (Intrinsic) {
4524    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4525    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4526    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4527    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4528    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4529    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4530    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4531    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4532    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4533    }
4534    EVT DestVT = TLI.getValueType(I.getType());
4535    const Value *Op1 = I.getArgOperand(0);
4536    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4537                               DAG.getValueType(DestVT),
4538                               DAG.getValueType(getValue(Op1).getValueType()),
4539                               getValue(I.getArgOperand(1)),
4540                               getValue(I.getArgOperand(2)),
4541                               Code);
4542    setValue(&I, Res);
4543    return 0;
4544  }
4545  case Intrinsic::sqrt:
4546    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4547                             getValue(I.getArgOperand(0)).getValueType(),
4548                             getValue(I.getArgOperand(0))));
4549    return 0;
4550  case Intrinsic::powi:
4551    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4552                            getValue(I.getArgOperand(1)), DAG));
4553    return 0;
4554  case Intrinsic::sin:
4555    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4556                             getValue(I.getArgOperand(0)).getValueType(),
4557                             getValue(I.getArgOperand(0))));
4558    return 0;
4559  case Intrinsic::cos:
4560    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4561                             getValue(I.getArgOperand(0)).getValueType(),
4562                             getValue(I.getArgOperand(0))));
4563    return 0;
4564  case Intrinsic::log:
4565    visitLog(I);
4566    return 0;
4567  case Intrinsic::log2:
4568    visitLog2(I);
4569    return 0;
4570  case Intrinsic::log10:
4571    visitLog10(I);
4572    return 0;
4573  case Intrinsic::exp:
4574    visitExp(I);
4575    return 0;
4576  case Intrinsic::exp2:
4577    visitExp2(I);
4578    return 0;
4579  case Intrinsic::pow:
4580    visitPow(I);
4581    return 0;
4582  case Intrinsic::convert_to_fp16:
4583    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4584                             MVT::i16, getValue(I.getArgOperand(0))));
4585    return 0;
4586  case Intrinsic::convert_from_fp16:
4587    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4588                             MVT::f32, getValue(I.getArgOperand(0))));
4589    return 0;
4590  case Intrinsic::pcmarker: {
4591    SDValue Tmp = getValue(I.getArgOperand(0));
4592    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4593    return 0;
4594  }
4595  case Intrinsic::readcyclecounter: {
4596    SDValue Op = getRoot();
4597    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4598                      DAG.getVTList(MVT::i64, MVT::Other),
4599                      &Op, 1);
4600    setValue(&I, Res);
4601    DAG.setRoot(Res.getValue(1));
4602    return 0;
4603  }
4604  case Intrinsic::bswap:
4605    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4606                             getValue(I.getArgOperand(0)).getValueType(),
4607                             getValue(I.getArgOperand(0))));
4608    return 0;
4609  case Intrinsic::cttz: {
4610    SDValue Arg = getValue(I.getArgOperand(0));
4611    EVT Ty = Arg.getValueType();
4612    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4613    return 0;
4614  }
4615  case Intrinsic::ctlz: {
4616    SDValue Arg = getValue(I.getArgOperand(0));
4617    EVT Ty = Arg.getValueType();
4618    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4619    return 0;
4620  }
4621  case Intrinsic::ctpop: {
4622    SDValue Arg = getValue(I.getArgOperand(0));
4623    EVT Ty = Arg.getValueType();
4624    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4625    return 0;
4626  }
4627  case Intrinsic::stacksave: {
4628    SDValue Op = getRoot();
4629    Res = DAG.getNode(ISD::STACKSAVE, dl,
4630                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4631    setValue(&I, Res);
4632    DAG.setRoot(Res.getValue(1));
4633    return 0;
4634  }
4635  case Intrinsic::stackrestore: {
4636    Res = getValue(I.getArgOperand(0));
4637    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4638    return 0;
4639  }
4640  case Intrinsic::stackprotector: {
4641    // Emit code into the DAG to store the stack guard onto the stack.
4642    MachineFunction &MF = DAG.getMachineFunction();
4643    MachineFrameInfo *MFI = MF.getFrameInfo();
4644    EVT PtrTy = TLI.getPointerTy();
4645
4646    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4647    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4648
4649    int FI = FuncInfo.StaticAllocaMap[Slot];
4650    MFI->setStackProtectorIndex(FI);
4651
4652    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4653
4654    // Store the stack protector onto the stack.
4655    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4656                       MachinePointerInfo::getFixedStack(FI),
4657                       true, false, 0);
4658    setValue(&I, Res);
4659    DAG.setRoot(Res);
4660    return 0;
4661  }
4662  case Intrinsic::objectsize: {
4663    // If we don't know by now, we're never going to know.
4664    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4665
4666    assert(CI && "Non-constant type in __builtin_object_size?");
4667
4668    SDValue Arg = getValue(I.getCalledValue());
4669    EVT Ty = Arg.getValueType();
4670
4671    if (CI->isZero())
4672      Res = DAG.getConstant(-1ULL, Ty);
4673    else
4674      Res = DAG.getConstant(0, Ty);
4675
4676    setValue(&I, Res);
4677    return 0;
4678  }
4679  case Intrinsic::var_annotation:
4680    // Discard annotate attributes
4681    return 0;
4682
4683  case Intrinsic::init_trampoline: {
4684    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4685
4686    SDValue Ops[6];
4687    Ops[0] = getRoot();
4688    Ops[1] = getValue(I.getArgOperand(0));
4689    Ops[2] = getValue(I.getArgOperand(1));
4690    Ops[3] = getValue(I.getArgOperand(2));
4691    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4692    Ops[5] = DAG.getSrcValue(F);
4693
4694    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4695                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4696                      Ops, 6);
4697
4698    setValue(&I, Res);
4699    DAG.setRoot(Res.getValue(1));
4700    return 0;
4701  }
4702  case Intrinsic::gcroot:
4703    if (GFI) {
4704      const Value *Alloca = I.getArgOperand(0);
4705      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4706
4707      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4708      GFI->addStackRoot(FI->getIndex(), TypeMap);
4709    }
4710    return 0;
4711  case Intrinsic::gcread:
4712  case Intrinsic::gcwrite:
4713    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4714    return 0;
4715  case Intrinsic::flt_rounds:
4716    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4717    return 0;
4718  case Intrinsic::trap: {
4719    StringRef TrapFuncName = getTrapFunctionName();
4720    if (TrapFuncName.empty()) {
4721      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4722      return 0;
4723    }
4724    TargetLowering::ArgListTy Args;
4725    std::pair<SDValue, SDValue> Result =
4726      TLI.LowerCallTo(getRoot(), I.getType(),
4727                 false, false, false, false, 0, CallingConv::C,
4728                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4729                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4730                 Args, DAG, getCurDebugLoc());
4731    DAG.setRoot(Result.second);
4732    return 0;
4733  }
4734  case Intrinsic::uadd_with_overflow:
4735    return implVisitAluOverflow(I, ISD::UADDO);
4736  case Intrinsic::sadd_with_overflow:
4737    return implVisitAluOverflow(I, ISD::SADDO);
4738  case Intrinsic::usub_with_overflow:
4739    return implVisitAluOverflow(I, ISD::USUBO);
4740  case Intrinsic::ssub_with_overflow:
4741    return implVisitAluOverflow(I, ISD::SSUBO);
4742  case Intrinsic::umul_with_overflow:
4743    return implVisitAluOverflow(I, ISD::UMULO);
4744  case Intrinsic::smul_with_overflow:
4745    return implVisitAluOverflow(I, ISD::SMULO);
4746
4747  case Intrinsic::prefetch: {
4748    SDValue Ops[4];
4749    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4750    Ops[0] = getRoot();
4751    Ops[1] = getValue(I.getArgOperand(0));
4752    Ops[2] = getValue(I.getArgOperand(1));
4753    Ops[3] = getValue(I.getArgOperand(2));
4754    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4755                                        DAG.getVTList(MVT::Other),
4756                                        &Ops[0], 4,
4757                                        EVT::getIntegerVT(*Context, 8),
4758                                        MachinePointerInfo(I.getArgOperand(0)),
4759                                        0, /* align */
4760                                        false, /* volatile */
4761                                        rw==0, /* read */
4762                                        rw==1)); /* write */
4763    return 0;
4764  }
4765  case Intrinsic::memory_barrier: {
4766    SDValue Ops[6];
4767    Ops[0] = getRoot();
4768    for (int x = 1; x < 6; ++x)
4769      Ops[x] = getValue(I.getArgOperand(x - 1));
4770
4771    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4772    return 0;
4773  }
4774  case Intrinsic::atomic_cmp_swap: {
4775    SDValue Root = getRoot();
4776    SDValue L =
4777      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4778                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4779                    Root,
4780                    getValue(I.getArgOperand(0)),
4781                    getValue(I.getArgOperand(1)),
4782                    getValue(I.getArgOperand(2)),
4783                    MachinePointerInfo(I.getArgOperand(0)));
4784    setValue(&I, L);
4785    DAG.setRoot(L.getValue(1));
4786    return 0;
4787  }
4788  case Intrinsic::atomic_load_add:
4789    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4790  case Intrinsic::atomic_load_sub:
4791    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4792  case Intrinsic::atomic_load_or:
4793    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4794  case Intrinsic::atomic_load_xor:
4795    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4796  case Intrinsic::atomic_load_and:
4797    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4798  case Intrinsic::atomic_load_nand:
4799    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4800  case Intrinsic::atomic_load_max:
4801    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4802  case Intrinsic::atomic_load_min:
4803    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4804  case Intrinsic::atomic_load_umin:
4805    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4806  case Intrinsic::atomic_load_umax:
4807    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4808  case Intrinsic::atomic_swap:
4809    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4810
4811  case Intrinsic::invariant_start:
4812  case Intrinsic::lifetime_start:
4813    // Discard region information.
4814    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4815    return 0;
4816  case Intrinsic::invariant_end:
4817  case Intrinsic::lifetime_end:
4818    // Discard region information.
4819    return 0;
4820  }
4821}
4822
4823void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4824                                      bool isTailCall,
4825                                      MachineBasicBlock *LandingPad) {
4826  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4827  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4828  const Type *RetTy = FTy->getReturnType();
4829  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4830  MCSymbol *BeginLabel = 0;
4831
4832  TargetLowering::ArgListTy Args;
4833  TargetLowering::ArgListEntry Entry;
4834  Args.reserve(CS.arg_size());
4835
4836  // Check whether the function can return without sret-demotion.
4837  SmallVector<ISD::OutputArg, 4> Outs;
4838  SmallVector<uint64_t, 4> Offsets;
4839  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4840                Outs, TLI, &Offsets);
4841
4842  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4843                        FTy->isVarArg(), Outs, FTy->getContext());
4844
4845  SDValue DemoteStackSlot;
4846  int DemoteStackIdx = -100;
4847
4848  if (!CanLowerReturn) {
4849    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4850                      FTy->getReturnType());
4851    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4852                      FTy->getReturnType());
4853    MachineFunction &MF = DAG.getMachineFunction();
4854    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4855    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4856
4857    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4858    Entry.Node = DemoteStackSlot;
4859    Entry.Ty = StackSlotPtrType;
4860    Entry.isSExt = false;
4861    Entry.isZExt = false;
4862    Entry.isInReg = false;
4863    Entry.isSRet = true;
4864    Entry.isNest = false;
4865    Entry.isByVal = false;
4866    Entry.Alignment = Align;
4867    Args.push_back(Entry);
4868    RetTy = Type::getVoidTy(FTy->getContext());
4869  }
4870
4871  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4872       i != e; ++i) {
4873    const Value *V = *i;
4874
4875    // Skip empty types
4876    if (V->getType()->isEmptyTy())
4877      continue;
4878
4879    SDValue ArgNode = getValue(V);
4880    Entry.Node = ArgNode; Entry.Ty = V->getType();
4881
4882    unsigned attrInd = i - CS.arg_begin() + 1;
4883    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4884    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4885    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4886    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4887    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4888    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4889    Entry.Alignment = CS.getParamAlignment(attrInd);
4890    Args.push_back(Entry);
4891  }
4892
4893  if (LandingPad) {
4894    // Insert a label before the invoke call to mark the try range.  This can be
4895    // used to detect deletion of the invoke via the MachineModuleInfo.
4896    BeginLabel = MMI.getContext().CreateTempSymbol();
4897
4898    // For SjLj, keep track of which landing pads go with which invokes
4899    // so as to maintain the ordering of pads in the LSDA.
4900    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4901    if (CallSiteIndex) {
4902      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4903      // Now that the call site is handled, stop tracking it.
4904      MMI.setCurrentCallSite(0);
4905    }
4906
4907    // Both PendingLoads and PendingExports must be flushed here;
4908    // this call might not return.
4909    (void)getRoot();
4910    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4911  }
4912
4913  // Check if target-independent constraints permit a tail call here.
4914  // Target-dependent constraints are checked within TLI.LowerCallTo.
4915  if (isTailCall &&
4916      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4917    isTailCall = false;
4918
4919  // If there's a possibility that fast-isel has already selected some amount
4920  // of the current basic block, don't emit a tail call.
4921  if (isTailCall && EnableFastISel)
4922    isTailCall = false;
4923
4924  std::pair<SDValue,SDValue> Result =
4925    TLI.LowerCallTo(getRoot(), RetTy,
4926                    CS.paramHasAttr(0, Attribute::SExt),
4927                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4928                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4929                    CS.getCallingConv(),
4930                    isTailCall,
4931                    !CS.getInstruction()->use_empty(),
4932                    Callee, Args, DAG, getCurDebugLoc());
4933  assert((isTailCall || Result.second.getNode()) &&
4934         "Non-null chain expected with non-tail call!");
4935  assert((Result.second.getNode() || !Result.first.getNode()) &&
4936         "Null value expected with tail call!");
4937  if (Result.first.getNode()) {
4938    setValue(CS.getInstruction(), Result.first);
4939  } else if (!CanLowerReturn && Result.second.getNode()) {
4940    // The instruction result is the result of loading from the
4941    // hidden sret parameter.
4942    SmallVector<EVT, 1> PVTs;
4943    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4944
4945    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4946    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4947    EVT PtrVT = PVTs[0];
4948    unsigned NumValues = Outs.size();
4949    SmallVector<SDValue, 4> Values(NumValues);
4950    SmallVector<SDValue, 4> Chains(NumValues);
4951
4952    for (unsigned i = 0; i < NumValues; ++i) {
4953      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4954                                DemoteStackSlot,
4955                                DAG.getConstant(Offsets[i], PtrVT));
4956      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4957                              Add,
4958                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4959                              false, false, 1);
4960      Values[i] = L;
4961      Chains[i] = L.getValue(1);
4962    }
4963
4964    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4965                                MVT::Other, &Chains[0], NumValues);
4966    PendingLoads.push_back(Chain);
4967
4968    // Collect the legal value parts into potentially illegal values
4969    // that correspond to the original function's return values.
4970    SmallVector<EVT, 4> RetTys;
4971    RetTy = FTy->getReturnType();
4972    ComputeValueVTs(TLI, RetTy, RetTys);
4973    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4974    SmallVector<SDValue, 4> ReturnValues;
4975    unsigned CurReg = 0;
4976    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4977      EVT VT = RetTys[I];
4978      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4979      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4980
4981      SDValue ReturnValue =
4982        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4983                         RegisterVT, VT, AssertOp);
4984      ReturnValues.push_back(ReturnValue);
4985      CurReg += NumRegs;
4986    }
4987
4988    setValue(CS.getInstruction(),
4989             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4990                         DAG.getVTList(&RetTys[0], RetTys.size()),
4991                         &ReturnValues[0], ReturnValues.size()));
4992  }
4993
4994  // Assign order to nodes here. If the call does not produce a result, it won't
4995  // be mapped to a SDNode and visit() will not assign it an order number.
4996  if (!Result.second.getNode()) {
4997    // As a special case, a null chain means that a tail call has been emitted and
4998    // the DAG root is already updated.
4999    HasTailCall = true;
5000    ++SDNodeOrder;
5001    AssignOrderingToNode(DAG.getRoot().getNode());
5002  } else {
5003    DAG.setRoot(Result.second);
5004    ++SDNodeOrder;
5005    AssignOrderingToNode(Result.second.getNode());
5006  }
5007
5008  if (LandingPad) {
5009    // Insert a label at the end of the invoke call to mark the try range.  This
5010    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5011    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5012    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5013
5014    // Inform MachineModuleInfo of range.
5015    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5016  }
5017}
5018
5019/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5020/// value is equal or not-equal to zero.
5021static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5022  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5023       UI != E; ++UI) {
5024    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5025      if (IC->isEquality())
5026        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5027          if (C->isNullValue())
5028            continue;
5029    // Unknown instruction.
5030    return false;
5031  }
5032  return true;
5033}
5034
5035static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5036                             const Type *LoadTy,
5037                             SelectionDAGBuilder &Builder) {
5038
5039  // Check to see if this load can be trivially constant folded, e.g. if the
5040  // input is from a string literal.
5041  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5042    // Cast pointer to the type we really want to load.
5043    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5044                                         PointerType::getUnqual(LoadTy));
5045
5046    if (const Constant *LoadCst =
5047          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5048                                       Builder.TD))
5049      return Builder.getValue(LoadCst);
5050  }
5051
5052  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5053  // still constant memory, the input chain can be the entry node.
5054  SDValue Root;
5055  bool ConstantMemory = false;
5056
5057  // Do not serialize (non-volatile) loads of constant memory with anything.
5058  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5059    Root = Builder.DAG.getEntryNode();
5060    ConstantMemory = true;
5061  } else {
5062    // Do not serialize non-volatile loads against each other.
5063    Root = Builder.DAG.getRoot();
5064  }
5065
5066  SDValue Ptr = Builder.getValue(PtrVal);
5067  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5068                                        Ptr, MachinePointerInfo(PtrVal),
5069                                        false /*volatile*/,
5070                                        false /*nontemporal*/, 1 /* align=1 */);
5071
5072  if (!ConstantMemory)
5073    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5074  return LoadVal;
5075}
5076
5077
5078/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5079/// If so, return true and lower it, otherwise return false and it will be
5080/// lowered like a normal call.
5081bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5082  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5083  if (I.getNumArgOperands() != 3)
5084    return false;
5085
5086  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5087  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5088      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5089      !I.getType()->isIntegerTy())
5090    return false;
5091
5092  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5093
5094  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5095  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5096  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5097    bool ActuallyDoIt = true;
5098    MVT LoadVT;
5099    const Type *LoadTy;
5100    switch (Size->getZExtValue()) {
5101    default:
5102      LoadVT = MVT::Other;
5103      LoadTy = 0;
5104      ActuallyDoIt = false;
5105      break;
5106    case 2:
5107      LoadVT = MVT::i16;
5108      LoadTy = Type::getInt16Ty(Size->getContext());
5109      break;
5110    case 4:
5111      LoadVT = MVT::i32;
5112      LoadTy = Type::getInt32Ty(Size->getContext());
5113      break;
5114    case 8:
5115      LoadVT = MVT::i64;
5116      LoadTy = Type::getInt64Ty(Size->getContext());
5117      break;
5118        /*
5119    case 16:
5120      LoadVT = MVT::v4i32;
5121      LoadTy = Type::getInt32Ty(Size->getContext());
5122      LoadTy = VectorType::get(LoadTy, 4);
5123      break;
5124         */
5125    }
5126
5127    // This turns into unaligned loads.  We only do this if the target natively
5128    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5129    // we'll only produce a small number of byte loads.
5130
5131    // Require that we can find a legal MVT, and only do this if the target
5132    // supports unaligned loads of that type.  Expanding into byte loads would
5133    // bloat the code.
5134    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5135      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5136      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5137      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5138        ActuallyDoIt = false;
5139    }
5140
5141    if (ActuallyDoIt) {
5142      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5143      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5144
5145      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5146                                 ISD::SETNE);
5147      EVT CallVT = TLI.getValueType(I.getType(), true);
5148      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5149      return true;
5150    }
5151  }
5152
5153
5154  return false;
5155}
5156
5157
5158void SelectionDAGBuilder::visitCall(const CallInst &I) {
5159  // Handle inline assembly differently.
5160  if (isa<InlineAsm>(I.getCalledValue())) {
5161    visitInlineAsm(&I);
5162    return;
5163  }
5164
5165  // See if any floating point values are being passed to this function. This is
5166  // used to emit an undefined reference to fltused on Windows.
5167  const FunctionType *FT =
5168    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5169  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5170  if (FT->isVarArg() &&
5171      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5172    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5173      const Type* T = I.getArgOperand(i)->getType();
5174      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5175           i != e; ++i) {
5176        if (!i->isFloatingPointTy()) continue;
5177        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5178        break;
5179      }
5180    }
5181  }
5182
5183  const char *RenameFn = 0;
5184  if (Function *F = I.getCalledFunction()) {
5185    if (F->isDeclaration()) {
5186      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5187        if (unsigned IID = II->getIntrinsicID(F)) {
5188          RenameFn = visitIntrinsicCall(I, IID);
5189          if (!RenameFn)
5190            return;
5191        }
5192      }
5193      if (unsigned IID = F->getIntrinsicID()) {
5194        RenameFn = visitIntrinsicCall(I, IID);
5195        if (!RenameFn)
5196          return;
5197      }
5198    }
5199
5200    // Check for well-known libc/libm calls.  If the function is internal, it
5201    // can't be a library call.
5202    if (!F->hasLocalLinkage() && F->hasName()) {
5203      StringRef Name = F->getName();
5204      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5205        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5206            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5207            I.getType() == I.getArgOperand(0)->getType() &&
5208            I.getType() == I.getArgOperand(1)->getType()) {
5209          SDValue LHS = getValue(I.getArgOperand(0));
5210          SDValue RHS = getValue(I.getArgOperand(1));
5211          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5212                                   LHS.getValueType(), LHS, RHS));
5213          return;
5214        }
5215      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5216        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5217            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5218            I.getType() == I.getArgOperand(0)->getType()) {
5219          SDValue Tmp = getValue(I.getArgOperand(0));
5220          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5221                                   Tmp.getValueType(), Tmp));
5222          return;
5223        }
5224      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5225        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5226            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5227            I.getType() == I.getArgOperand(0)->getType() &&
5228            I.onlyReadsMemory()) {
5229          SDValue Tmp = getValue(I.getArgOperand(0));
5230          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5231                                   Tmp.getValueType(), Tmp));
5232          return;
5233        }
5234      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5235        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5236            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5237            I.getType() == I.getArgOperand(0)->getType() &&
5238            I.onlyReadsMemory()) {
5239          SDValue Tmp = getValue(I.getArgOperand(0));
5240          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5241                                   Tmp.getValueType(), Tmp));
5242          return;
5243        }
5244      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5245        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5246            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5247            I.getType() == I.getArgOperand(0)->getType() &&
5248            I.onlyReadsMemory()) {
5249          SDValue Tmp = getValue(I.getArgOperand(0));
5250          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5251                                   Tmp.getValueType(), Tmp));
5252          return;
5253        }
5254      } else if (Name == "memcmp") {
5255        if (visitMemCmpCall(I))
5256          return;
5257      }
5258    }
5259  }
5260
5261  SDValue Callee;
5262  if (!RenameFn)
5263    Callee = getValue(I.getCalledValue());
5264  else
5265    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5266
5267  // Check if we can potentially perform a tail call. More detailed checking is
5268  // be done within LowerCallTo, after more information about the call is known.
5269  LowerCallTo(&I, Callee, I.isTailCall());
5270}
5271
5272namespace {
5273
5274/// AsmOperandInfo - This contains information for each constraint that we are
5275/// lowering.
5276class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5277public:
5278  /// CallOperand - If this is the result output operand or a clobber
5279  /// this is null, otherwise it is the incoming operand to the CallInst.
5280  /// This gets modified as the asm is processed.
5281  SDValue CallOperand;
5282
5283  /// AssignedRegs - If this is a register or register class operand, this
5284  /// contains the set of register corresponding to the operand.
5285  RegsForValue AssignedRegs;
5286
5287  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5288    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5289  }
5290
5291  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5292  /// busy in OutputRegs/InputRegs.
5293  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5294                         std::set<unsigned> &OutputRegs,
5295                         std::set<unsigned> &InputRegs,
5296                         const TargetRegisterInfo &TRI) const {
5297    if (isOutReg) {
5298      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5299        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5300    }
5301    if (isInReg) {
5302      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5303        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5304    }
5305  }
5306
5307  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5308  /// corresponds to.  If there is no Value* for this operand, it returns
5309  /// MVT::Other.
5310  EVT getCallOperandValEVT(LLVMContext &Context,
5311                           const TargetLowering &TLI,
5312                           const TargetData *TD) const {
5313    if (CallOperandVal == 0) return MVT::Other;
5314
5315    if (isa<BasicBlock>(CallOperandVal))
5316      return TLI.getPointerTy();
5317
5318    const llvm::Type *OpTy = CallOperandVal->getType();
5319
5320    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5321    // If this is an indirect operand, the operand is a pointer to the
5322    // accessed type.
5323    if (isIndirect) {
5324      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5325      if (!PtrTy)
5326        report_fatal_error("Indirect operand for inline asm not a pointer!");
5327      OpTy = PtrTy->getElementType();
5328    }
5329
5330    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5331    if (const StructType *STy = dyn_cast<StructType>(OpTy))
5332      if (STy->getNumElements() == 1)
5333        OpTy = STy->getElementType(0);
5334
5335    // If OpTy is not a single value, it may be a struct/union that we
5336    // can tile with integers.
5337    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5338      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5339      switch (BitSize) {
5340      default: break;
5341      case 1:
5342      case 8:
5343      case 16:
5344      case 32:
5345      case 64:
5346      case 128:
5347        OpTy = IntegerType::get(Context, BitSize);
5348        break;
5349      }
5350    }
5351
5352    return TLI.getValueType(OpTy, true);
5353  }
5354
5355private:
5356  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5357  /// specified set.
5358  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5359                                const TargetRegisterInfo &TRI) {
5360    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5361    Regs.insert(Reg);
5362    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5363      for (; *Aliases; ++Aliases)
5364        Regs.insert(*Aliases);
5365  }
5366};
5367
5368typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5369
5370} // end anonymous namespace
5371
5372/// isAllocatableRegister - If the specified register is safe to allocate,
5373/// i.e. it isn't a stack pointer or some other special register, return the
5374/// register class for the register.  Otherwise, return null.
5375static const TargetRegisterClass *
5376isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5377                      const TargetLowering &TLI,
5378                      const TargetRegisterInfo *TRI) {
5379  EVT FoundVT = MVT::Other;
5380  const TargetRegisterClass *FoundRC = 0;
5381  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5382       E = TRI->regclass_end(); RCI != E; ++RCI) {
5383    EVT ThisVT = MVT::Other;
5384
5385    const TargetRegisterClass *RC = *RCI;
5386    // If none of the value types for this register class are valid, we
5387    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5388    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5389         I != E; ++I) {
5390      if (TLI.isTypeLegal(*I)) {
5391        // If we have already found this register in a different register class,
5392        // choose the one with the largest VT specified.  For example, on
5393        // PowerPC, we favor f64 register classes over f32.
5394        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5395          ThisVT = *I;
5396          break;
5397        }
5398      }
5399    }
5400
5401    if (ThisVT == MVT::Other) continue;
5402
5403    // NOTE: This isn't ideal.  In particular, this might allocate the
5404    // frame pointer in functions that need it (due to them not being taken
5405    // out of allocation, because a variable sized allocation hasn't been seen
5406    // yet).  This is a slight code pessimization, but should still work.
5407    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5408         E = RC->allocation_order_end(MF); I != E; ++I)
5409      if (*I == Reg) {
5410        // We found a matching register class.  Keep looking at others in case
5411        // we find one with larger registers that this physreg is also in.
5412        FoundRC = RC;
5413        FoundVT = ThisVT;
5414        break;
5415      }
5416  }
5417  return FoundRC;
5418}
5419
5420/// GetRegistersForValue - Assign registers (virtual or physical) for the
5421/// specified operand.  We prefer to assign virtual registers, to allow the
5422/// register allocator to handle the assignment process.  However, if the asm
5423/// uses features that we can't model on machineinstrs, we have SDISel do the
5424/// allocation.  This produces generally horrible, but correct, code.
5425///
5426///   OpInfo describes the operand.
5427///   Input and OutputRegs are the set of already allocated physical registers.
5428///
5429static void GetRegistersForValue(SelectionDAG &DAG,
5430                                 const TargetLowering &TLI,
5431                                 DebugLoc DL,
5432                                 SDISelAsmOperandInfo &OpInfo,
5433                                 std::set<unsigned> &OutputRegs,
5434                                 std::set<unsigned> &InputRegs) {
5435  LLVMContext &Context = *DAG.getContext();
5436
5437  // Compute whether this value requires an input register, an output register,
5438  // or both.
5439  bool isOutReg = false;
5440  bool isInReg = false;
5441  switch (OpInfo.Type) {
5442  case InlineAsm::isOutput:
5443    isOutReg = true;
5444
5445    // If there is an input constraint that matches this, we need to reserve
5446    // the input register so no other inputs allocate to it.
5447    isInReg = OpInfo.hasMatchingInput();
5448    break;
5449  case InlineAsm::isInput:
5450    isInReg = true;
5451    isOutReg = false;
5452    break;
5453  case InlineAsm::isClobber:
5454    isOutReg = true;
5455    isInReg = true;
5456    break;
5457  }
5458
5459
5460  MachineFunction &MF = DAG.getMachineFunction();
5461  SmallVector<unsigned, 4> Regs;
5462
5463  // If this is a constraint for a single physreg, or a constraint for a
5464  // register class, find it.
5465  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5466    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5467                                     OpInfo.ConstraintVT);
5468
5469  unsigned NumRegs = 1;
5470  if (OpInfo.ConstraintVT != MVT::Other) {
5471    // If this is a FP input in an integer register (or visa versa) insert a bit
5472    // cast of the input value.  More generally, handle any case where the input
5473    // value disagrees with the register class we plan to stick this in.
5474    if (OpInfo.Type == InlineAsm::isInput &&
5475        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5476      // Try to convert to the first EVT that the reg class contains.  If the
5477      // types are identical size, use a bitcast to convert (e.g. two differing
5478      // vector types).
5479      EVT RegVT = *PhysReg.second->vt_begin();
5480      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5481        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5482                                         RegVT, OpInfo.CallOperand);
5483        OpInfo.ConstraintVT = RegVT;
5484      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5485        // If the input is a FP value and we want it in FP registers, do a
5486        // bitcast to the corresponding integer type.  This turns an f64 value
5487        // into i64, which can be passed with two i32 values on a 32-bit
5488        // machine.
5489        RegVT = EVT::getIntegerVT(Context,
5490                                  OpInfo.ConstraintVT.getSizeInBits());
5491        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5492                                         RegVT, OpInfo.CallOperand);
5493        OpInfo.ConstraintVT = RegVT;
5494      }
5495    }
5496
5497    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5498  }
5499
5500  EVT RegVT;
5501  EVT ValueVT = OpInfo.ConstraintVT;
5502
5503  // If this is a constraint for a specific physical register, like {r17},
5504  // assign it now.
5505  if (unsigned AssignedReg = PhysReg.first) {
5506    const TargetRegisterClass *RC = PhysReg.second;
5507    if (OpInfo.ConstraintVT == MVT::Other)
5508      ValueVT = *RC->vt_begin();
5509
5510    // Get the actual register value type.  This is important, because the user
5511    // may have asked for (e.g.) the AX register in i32 type.  We need to
5512    // remember that AX is actually i16 to get the right extension.
5513    RegVT = *RC->vt_begin();
5514
5515    // This is a explicit reference to a physical register.
5516    Regs.push_back(AssignedReg);
5517
5518    // If this is an expanded reference, add the rest of the regs to Regs.
5519    if (NumRegs != 1) {
5520      TargetRegisterClass::iterator I = RC->begin();
5521      for (; *I != AssignedReg; ++I)
5522        assert(I != RC->end() && "Didn't find reg!");
5523
5524      // Already added the first reg.
5525      --NumRegs; ++I;
5526      for (; NumRegs; --NumRegs, ++I) {
5527        assert(I != RC->end() && "Ran out of registers to allocate!");
5528        Regs.push_back(*I);
5529      }
5530    }
5531
5532    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5533    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5534    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5535    return;
5536  }
5537
5538  // Otherwise, if this was a reference to an LLVM register class, create vregs
5539  // for this reference.
5540  if (const TargetRegisterClass *RC = PhysReg.second) {
5541    RegVT = *RC->vt_begin();
5542    if (OpInfo.ConstraintVT == MVT::Other)
5543      ValueVT = RegVT;
5544
5545    // Create the appropriate number of virtual registers.
5546    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5547    for (; NumRegs; --NumRegs)
5548      Regs.push_back(RegInfo.createVirtualRegister(RC));
5549
5550    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5551    return;
5552  }
5553
5554  // This is a reference to a register class that doesn't directly correspond
5555  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5556  // registers from the class.
5557  std::vector<unsigned> RegClassRegs
5558    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5559                                            OpInfo.ConstraintVT);
5560
5561  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5562  unsigned NumAllocated = 0;
5563  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5564    unsigned Reg = RegClassRegs[i];
5565    // See if this register is available.
5566    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5567        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5568      // Make sure we find consecutive registers.
5569      NumAllocated = 0;
5570      continue;
5571    }
5572
5573    // Check to see if this register is allocatable (i.e. don't give out the
5574    // stack pointer).
5575    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5576    if (!RC) {        // Couldn't allocate this register.
5577      // Reset NumAllocated to make sure we return consecutive registers.
5578      NumAllocated = 0;
5579      continue;
5580    }
5581
5582    // Okay, this register is good, we can use it.
5583    ++NumAllocated;
5584
5585    // If we allocated enough consecutive registers, succeed.
5586    if (NumAllocated == NumRegs) {
5587      unsigned RegStart = (i-NumAllocated)+1;
5588      unsigned RegEnd   = i+1;
5589      // Mark all of the allocated registers used.
5590      for (unsigned i = RegStart; i != RegEnd; ++i)
5591        Regs.push_back(RegClassRegs[i]);
5592
5593      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5594                                         OpInfo.ConstraintVT);
5595      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5596      return;
5597    }
5598  }
5599
5600  // Otherwise, we couldn't allocate enough registers for this.
5601}
5602
5603/// visitInlineAsm - Handle a call to an InlineAsm object.
5604///
5605void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5606  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5607
5608  /// ConstraintOperands - Information about all of the constraints.
5609  SDISelAsmOperandInfoVector ConstraintOperands;
5610
5611  std::set<unsigned> OutputRegs, InputRegs;
5612
5613  TargetLowering::AsmOperandInfoVector
5614    TargetConstraints = TLI.ParseConstraints(CS);
5615
5616  bool hasMemory = false;
5617
5618  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5619  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5620  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5621    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5622    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5623
5624    EVT OpVT = MVT::Other;
5625
5626    // Compute the value type for each operand.
5627    switch (OpInfo.Type) {
5628    case InlineAsm::isOutput:
5629      // Indirect outputs just consume an argument.
5630      if (OpInfo.isIndirect) {
5631        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5632        break;
5633      }
5634
5635      // The return value of the call is this value.  As such, there is no
5636      // corresponding argument.
5637      assert(!CS.getType()->isVoidTy() &&
5638             "Bad inline asm!");
5639      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5640        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5641      } else {
5642        assert(ResNo == 0 && "Asm only has one result!");
5643        OpVT = TLI.getValueType(CS.getType());
5644      }
5645      ++ResNo;
5646      break;
5647    case InlineAsm::isInput:
5648      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5649      break;
5650    case InlineAsm::isClobber:
5651      // Nothing to do.
5652      break;
5653    }
5654
5655    // If this is an input or an indirect output, process the call argument.
5656    // BasicBlocks are labels, currently appearing only in asm's.
5657    if (OpInfo.CallOperandVal) {
5658      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5659        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5660      } else {
5661        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5662      }
5663
5664      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5665    }
5666
5667    OpInfo.ConstraintVT = OpVT;
5668
5669    // Indirect operand accesses access memory.
5670    if (OpInfo.isIndirect)
5671      hasMemory = true;
5672    else {
5673      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5674        TargetLowering::ConstraintType
5675          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5676        if (CType == TargetLowering::C_Memory) {
5677          hasMemory = true;
5678          break;
5679        }
5680      }
5681    }
5682  }
5683
5684  SDValue Chain, Flag;
5685
5686  // We won't need to flush pending loads if this asm doesn't touch
5687  // memory and is nonvolatile.
5688  if (hasMemory || IA->hasSideEffects())
5689    Chain = getRoot();
5690  else
5691    Chain = DAG.getRoot();
5692
5693  // Second pass over the constraints: compute which constraint option to use
5694  // and assign registers to constraints that want a specific physreg.
5695  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5696    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5697
5698    // If this is an output operand with a matching input operand, look up the
5699    // matching input. If their types mismatch, e.g. one is an integer, the
5700    // other is floating point, or their sizes are different, flag it as an
5701    // error.
5702    if (OpInfo.hasMatchingInput()) {
5703      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5704
5705      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5706        if ((OpInfo.ConstraintVT.isInteger() !=
5707             Input.ConstraintVT.isInteger()) ||
5708            (OpInfo.ConstraintVT.getSizeInBits() !=
5709             Input.ConstraintVT.getSizeInBits())) {
5710          report_fatal_error("Unsupported asm: input constraint"
5711                             " with a matching output constraint of"
5712                             " incompatible type!");
5713        }
5714        Input.ConstraintVT = OpInfo.ConstraintVT;
5715      }
5716    }
5717
5718    // Compute the constraint code and ConstraintType to use.
5719    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5720
5721    // If this is a memory input, and if the operand is not indirect, do what we
5722    // need to to provide an address for the memory input.
5723    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5724        !OpInfo.isIndirect) {
5725      assert((OpInfo.isMultipleAlternative ||
5726              (OpInfo.Type == InlineAsm::isInput)) &&
5727             "Can only indirectify direct input operands!");
5728
5729      // Memory operands really want the address of the value.  If we don't have
5730      // an indirect input, put it in the constpool if we can, otherwise spill
5731      // it to a stack slot.
5732
5733      // If the operand is a float, integer, or vector constant, spill to a
5734      // constant pool entry to get its address.
5735      const Value *OpVal = OpInfo.CallOperandVal;
5736      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5737          isa<ConstantVector>(OpVal)) {
5738        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5739                                                 TLI.getPointerTy());
5740      } else {
5741        // Otherwise, create a stack slot and emit a store to it before the
5742        // asm.
5743        const Type *Ty = OpVal->getType();
5744        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5745        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5746        MachineFunction &MF = DAG.getMachineFunction();
5747        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5748        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5749        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5750                             OpInfo.CallOperand, StackSlot,
5751                             MachinePointerInfo::getFixedStack(SSFI),
5752                             false, false, 0);
5753        OpInfo.CallOperand = StackSlot;
5754      }
5755
5756      // There is no longer a Value* corresponding to this operand.
5757      OpInfo.CallOperandVal = 0;
5758
5759      // It is now an indirect operand.
5760      OpInfo.isIndirect = true;
5761    }
5762
5763    // If this constraint is for a specific register, allocate it before
5764    // anything else.
5765    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5766      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5767                           InputRegs);
5768  }
5769
5770  // Second pass - Loop over all of the operands, assigning virtual or physregs
5771  // to register class operands.
5772  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5773    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5774
5775    // C_Register operands have already been allocated, Other/Memory don't need
5776    // to be.
5777    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5778      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5779                           InputRegs);
5780  }
5781
5782  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5783  std::vector<SDValue> AsmNodeOperands;
5784  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5785  AsmNodeOperands.push_back(
5786          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5787                                      TLI.getPointerTy()));
5788
5789  // If we have a !srcloc metadata node associated with it, we want to attach
5790  // this to the ultimately generated inline asm machineinstr.  To do this, we
5791  // pass in the third operand as this (potentially null) inline asm MDNode.
5792  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5793  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5794
5795  // Remember the HasSideEffect and AlignStack bits as operand 3.
5796  unsigned ExtraInfo = 0;
5797  if (IA->hasSideEffects())
5798    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5799  if (IA->isAlignStack())
5800    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5801  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5802                                                  TLI.getPointerTy()));
5803
5804  // Loop over all of the inputs, copying the operand values into the
5805  // appropriate registers and processing the output regs.
5806  RegsForValue RetValRegs;
5807
5808  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5809  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5810
5811  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5812    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5813
5814    switch (OpInfo.Type) {
5815    case InlineAsm::isOutput: {
5816      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5817          OpInfo.ConstraintType != TargetLowering::C_Register) {
5818        // Memory output, or 'other' output (e.g. 'X' constraint).
5819        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5820
5821        // Add information to the INLINEASM node to know about this output.
5822        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5823        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5824                                                        TLI.getPointerTy()));
5825        AsmNodeOperands.push_back(OpInfo.CallOperand);
5826        break;
5827      }
5828
5829      // Otherwise, this is a register or register class output.
5830
5831      // Copy the output from the appropriate register.  Find a register that
5832      // we can use.
5833      if (OpInfo.AssignedRegs.Regs.empty())
5834        report_fatal_error("Couldn't allocate output reg for constraint '" +
5835                           Twine(OpInfo.ConstraintCode) + "'!");
5836
5837      // If this is an indirect operand, store through the pointer after the
5838      // asm.
5839      if (OpInfo.isIndirect) {
5840        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5841                                                      OpInfo.CallOperandVal));
5842      } else {
5843        // This is the result value of the call.
5844        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5845        // Concatenate this output onto the outputs list.
5846        RetValRegs.append(OpInfo.AssignedRegs);
5847      }
5848
5849      // Add information to the INLINEASM node to know that this register is
5850      // set.
5851      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5852                                           InlineAsm::Kind_RegDefEarlyClobber :
5853                                               InlineAsm::Kind_RegDef,
5854                                               false,
5855                                               0,
5856                                               DAG,
5857                                               AsmNodeOperands);
5858      break;
5859    }
5860    case InlineAsm::isInput: {
5861      SDValue InOperandVal = OpInfo.CallOperand;
5862
5863      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5864        // If this is required to match an output register we have already set,
5865        // just use its register.
5866        unsigned OperandNo = OpInfo.getMatchedOperand();
5867
5868        // Scan until we find the definition we already emitted of this operand.
5869        // When we find it, create a RegsForValue operand.
5870        unsigned CurOp = InlineAsm::Op_FirstOperand;
5871        for (; OperandNo; --OperandNo) {
5872          // Advance to the next operand.
5873          unsigned OpFlag =
5874            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5875          assert((InlineAsm::isRegDefKind(OpFlag) ||
5876                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5877                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5878          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5879        }
5880
5881        unsigned OpFlag =
5882          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5883        if (InlineAsm::isRegDefKind(OpFlag) ||
5884            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5885          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5886          if (OpInfo.isIndirect) {
5887            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5888            LLVMContext &Ctx = *DAG.getContext();
5889            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5890                          " don't know how to handle tied "
5891                          "indirect register inputs");
5892          }
5893
5894          RegsForValue MatchedRegs;
5895          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5896          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5897          MatchedRegs.RegVTs.push_back(RegVT);
5898          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5899          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5900               i != e; ++i)
5901            MatchedRegs.Regs.push_back
5902              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5903
5904          // Use the produced MatchedRegs object to
5905          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5906                                    Chain, &Flag);
5907          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5908                                           true, OpInfo.getMatchedOperand(),
5909                                           DAG, AsmNodeOperands);
5910          break;
5911        }
5912
5913        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5914        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5915               "Unexpected number of operands");
5916        // Add information to the INLINEASM node to know about this input.
5917        // See InlineAsm.h isUseOperandTiedToDef.
5918        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5919                                                    OpInfo.getMatchedOperand());
5920        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5921                                                        TLI.getPointerTy()));
5922        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5923        break;
5924      }
5925
5926      // Treat indirect 'X' constraint as memory.
5927      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5928          OpInfo.isIndirect)
5929        OpInfo.ConstraintType = TargetLowering::C_Memory;
5930
5931      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5932        std::vector<SDValue> Ops;
5933        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5934                                         Ops, DAG);
5935        if (Ops.empty())
5936          report_fatal_error("Invalid operand for inline asm constraint '" +
5937                             Twine(OpInfo.ConstraintCode) + "'!");
5938
5939        // Add information to the INLINEASM node to know about this input.
5940        unsigned ResOpType =
5941          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5942        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5943                                                        TLI.getPointerTy()));
5944        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5945        break;
5946      }
5947
5948      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5949        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5950        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5951               "Memory operands expect pointer values");
5952
5953        // Add information to the INLINEASM node to know about this input.
5954        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5955        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5956                                                        TLI.getPointerTy()));
5957        AsmNodeOperands.push_back(InOperandVal);
5958        break;
5959      }
5960
5961      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5962              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5963             "Unknown constraint type!");
5964      assert(!OpInfo.isIndirect &&
5965             "Don't know how to handle indirect register inputs yet!");
5966
5967      // Copy the input into the appropriate registers.
5968      if (OpInfo.AssignedRegs.Regs.empty() ||
5969          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5970        report_fatal_error("Couldn't allocate input reg for constraint '" +
5971                           Twine(OpInfo.ConstraintCode) + "'!");
5972
5973      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5974                                        Chain, &Flag);
5975
5976      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5977                                               DAG, AsmNodeOperands);
5978      break;
5979    }
5980    case InlineAsm::isClobber: {
5981      // Add the clobbered value to the operand list, so that the register
5982      // allocator is aware that the physreg got clobbered.
5983      if (!OpInfo.AssignedRegs.Regs.empty())
5984        OpInfo.AssignedRegs.AddInlineAsmOperands(
5985                                            InlineAsm::Kind_RegDefEarlyClobber,
5986                                                 false, 0, DAG,
5987                                                 AsmNodeOperands);
5988      break;
5989    }
5990    }
5991  }
5992
5993  // Finish up input operands.  Set the input chain and add the flag last.
5994  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5995  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5996
5997  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5998                      DAG.getVTList(MVT::Other, MVT::Glue),
5999                      &AsmNodeOperands[0], AsmNodeOperands.size());
6000  Flag = Chain.getValue(1);
6001
6002  // If this asm returns a register value, copy the result from that register
6003  // and set it as the value of the call.
6004  if (!RetValRegs.Regs.empty()) {
6005    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6006                                             Chain, &Flag);
6007
6008    // FIXME: Why don't we do this for inline asms with MRVs?
6009    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6010      EVT ResultType = TLI.getValueType(CS.getType());
6011
6012      // If any of the results of the inline asm is a vector, it may have the
6013      // wrong width/num elts.  This can happen for register classes that can
6014      // contain multiple different value types.  The preg or vreg allocated may
6015      // not have the same VT as was expected.  Convert it to the right type
6016      // with bit_convert.
6017      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6018        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6019                          ResultType, Val);
6020
6021      } else if (ResultType != Val.getValueType() &&
6022                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6023        // If a result value was tied to an input value, the computed result may
6024        // have a wider width than the expected result.  Extract the relevant
6025        // portion.
6026        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6027      }
6028
6029      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6030    }
6031
6032    setValue(CS.getInstruction(), Val);
6033    // Don't need to use this as a chain in this case.
6034    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6035      return;
6036  }
6037
6038  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6039
6040  // Process indirect outputs, first output all of the flagged copies out of
6041  // physregs.
6042  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6043    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6044    const Value *Ptr = IndirectStoresToEmit[i].second;
6045    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6046                                             Chain, &Flag);
6047    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6048  }
6049
6050  // Emit the non-flagged stores from the physregs.
6051  SmallVector<SDValue, 8> OutChains;
6052  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6053    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6054                               StoresToEmit[i].first,
6055                               getValue(StoresToEmit[i].second),
6056                               MachinePointerInfo(StoresToEmit[i].second),
6057                               false, false, 0);
6058    OutChains.push_back(Val);
6059  }
6060
6061  if (!OutChains.empty())
6062    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6063                        &OutChains[0], OutChains.size());
6064
6065  DAG.setRoot(Chain);
6066}
6067
6068void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6069  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6070                          MVT::Other, getRoot(),
6071                          getValue(I.getArgOperand(0)),
6072                          DAG.getSrcValue(I.getArgOperand(0))));
6073}
6074
6075void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6076  const TargetData &TD = *TLI.getTargetData();
6077  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6078                           getRoot(), getValue(I.getOperand(0)),
6079                           DAG.getSrcValue(I.getOperand(0)),
6080                           TD.getABITypeAlignment(I.getType()));
6081  setValue(&I, V);
6082  DAG.setRoot(V.getValue(1));
6083}
6084
6085void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6086  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6087                          MVT::Other, getRoot(),
6088                          getValue(I.getArgOperand(0)),
6089                          DAG.getSrcValue(I.getArgOperand(0))));
6090}
6091
6092void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6093  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6094                          MVT::Other, getRoot(),
6095                          getValue(I.getArgOperand(0)),
6096                          getValue(I.getArgOperand(1)),
6097                          DAG.getSrcValue(I.getArgOperand(0)),
6098                          DAG.getSrcValue(I.getArgOperand(1))));
6099}
6100
6101/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6102/// implementation, which just calls LowerCall.
6103/// FIXME: When all targets are
6104/// migrated to using LowerCall, this hook should be integrated into SDISel.
6105std::pair<SDValue, SDValue>
6106TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6107                            bool RetSExt, bool RetZExt, bool isVarArg,
6108                            bool isInreg, unsigned NumFixedArgs,
6109                            CallingConv::ID CallConv, bool isTailCall,
6110                            bool isReturnValueUsed,
6111                            SDValue Callee,
6112                            ArgListTy &Args, SelectionDAG &DAG,
6113                            DebugLoc dl) const {
6114  // Handle all of the outgoing arguments.
6115  SmallVector<ISD::OutputArg, 32> Outs;
6116  SmallVector<SDValue, 32> OutVals;
6117  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6118    SmallVector<EVT, 4> ValueVTs;
6119    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6120    for (unsigned Value = 0, NumValues = ValueVTs.size();
6121         Value != NumValues; ++Value) {
6122      EVT VT = ValueVTs[Value];
6123      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6124      SDValue Op = SDValue(Args[i].Node.getNode(),
6125                           Args[i].Node.getResNo() + Value);
6126      ISD::ArgFlagsTy Flags;
6127      unsigned OriginalAlignment =
6128        getTargetData()->getABITypeAlignment(ArgTy);
6129
6130      if (Args[i].isZExt)
6131        Flags.setZExt();
6132      if (Args[i].isSExt)
6133        Flags.setSExt();
6134      if (Args[i].isInReg)
6135        Flags.setInReg();
6136      if (Args[i].isSRet)
6137        Flags.setSRet();
6138      if (Args[i].isByVal) {
6139        Flags.setByVal();
6140        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6141        const Type *ElementTy = Ty->getElementType();
6142        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6143        // For ByVal, alignment should come from FE.  BE will guess if this
6144        // info is not there but there are cases it cannot get right.
6145        unsigned FrameAlign;
6146        if (Args[i].Alignment)
6147          FrameAlign = Args[i].Alignment;
6148        else
6149          FrameAlign = getByValTypeAlignment(ElementTy);
6150        Flags.setByValAlign(FrameAlign);
6151      }
6152      if (Args[i].isNest)
6153        Flags.setNest();
6154      Flags.setOrigAlign(OriginalAlignment);
6155
6156      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6157      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6158      SmallVector<SDValue, 4> Parts(NumParts);
6159      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6160
6161      if (Args[i].isSExt)
6162        ExtendKind = ISD::SIGN_EXTEND;
6163      else if (Args[i].isZExt)
6164        ExtendKind = ISD::ZERO_EXTEND;
6165
6166      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6167                     PartVT, ExtendKind);
6168
6169      for (unsigned j = 0; j != NumParts; ++j) {
6170        // if it isn't first piece, alignment must be 1
6171        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6172                               i < NumFixedArgs);
6173        if (NumParts > 1 && j == 0)
6174          MyFlags.Flags.setSplit();
6175        else if (j != 0)
6176          MyFlags.Flags.setOrigAlign(1);
6177
6178        Outs.push_back(MyFlags);
6179        OutVals.push_back(Parts[j]);
6180      }
6181    }
6182  }
6183
6184  // Handle the incoming return values from the call.
6185  SmallVector<ISD::InputArg, 32> Ins;
6186  SmallVector<EVT, 4> RetTys;
6187  ComputeValueVTs(*this, RetTy, RetTys);
6188  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6189    EVT VT = RetTys[I];
6190    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6191    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6192    for (unsigned i = 0; i != NumRegs; ++i) {
6193      ISD::InputArg MyFlags;
6194      MyFlags.VT = RegisterVT.getSimpleVT();
6195      MyFlags.Used = isReturnValueUsed;
6196      if (RetSExt)
6197        MyFlags.Flags.setSExt();
6198      if (RetZExt)
6199        MyFlags.Flags.setZExt();
6200      if (isInreg)
6201        MyFlags.Flags.setInReg();
6202      Ins.push_back(MyFlags);
6203    }
6204  }
6205
6206  SmallVector<SDValue, 4> InVals;
6207  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6208                    Outs, OutVals, Ins, dl, DAG, InVals);
6209
6210  // Verify that the target's LowerCall behaved as expected.
6211  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6212         "LowerCall didn't return a valid chain!");
6213  assert((!isTailCall || InVals.empty()) &&
6214         "LowerCall emitted a return value for a tail call!");
6215  assert((isTailCall || InVals.size() == Ins.size()) &&
6216         "LowerCall didn't emit the correct number of values!");
6217
6218  // For a tail call, the return value is merely live-out and there aren't
6219  // any nodes in the DAG representing it. Return a special value to
6220  // indicate that a tail call has been emitted and no more Instructions
6221  // should be processed in the current block.
6222  if (isTailCall) {
6223    DAG.setRoot(Chain);
6224    return std::make_pair(SDValue(), SDValue());
6225  }
6226
6227  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6228          assert(InVals[i].getNode() &&
6229                 "LowerCall emitted a null value!");
6230          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6231                 "LowerCall emitted a value with the wrong type!");
6232        });
6233
6234  // Collect the legal value parts into potentially illegal values
6235  // that correspond to the original function's return values.
6236  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6237  if (RetSExt)
6238    AssertOp = ISD::AssertSext;
6239  else if (RetZExt)
6240    AssertOp = ISD::AssertZext;
6241  SmallVector<SDValue, 4> ReturnValues;
6242  unsigned CurReg = 0;
6243  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6244    EVT VT = RetTys[I];
6245    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6246    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6247
6248    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6249                                            NumRegs, RegisterVT, VT,
6250                                            AssertOp));
6251    CurReg += NumRegs;
6252  }
6253
6254  // For a function returning void, there is no return value. We can't create
6255  // such a node, so we just return a null return value in that case. In
6256  // that case, nothing will actually look at the value.
6257  if (ReturnValues.empty())
6258    return std::make_pair(SDValue(), Chain);
6259
6260  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6261                            DAG.getVTList(&RetTys[0], RetTys.size()),
6262                            &ReturnValues[0], ReturnValues.size());
6263  return std::make_pair(Res, Chain);
6264}
6265
6266void TargetLowering::LowerOperationWrapper(SDNode *N,
6267                                           SmallVectorImpl<SDValue> &Results,
6268                                           SelectionDAG &DAG) const {
6269  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6270  if (Res.getNode())
6271    Results.push_back(Res);
6272}
6273
6274SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6275  llvm_unreachable("LowerOperation not implemented for this target!");
6276  return SDValue();
6277}
6278
6279void
6280SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6281  SDValue Op = getNonRegisterValue(V);
6282  assert((Op.getOpcode() != ISD::CopyFromReg ||
6283          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6284         "Copy from a reg to the same reg!");
6285  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6286
6287  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6288  SDValue Chain = DAG.getEntryNode();
6289  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6290  PendingExports.push_back(Chain);
6291}
6292
6293#include "llvm/CodeGen/SelectionDAGISel.h"
6294
6295/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6296/// entry block, return true.  This includes arguments used by switches, since
6297/// the switch may expand into multiple basic blocks.
6298static bool isOnlyUsedInEntryBlock(const Argument *A) {
6299  // With FastISel active, we may be splitting blocks, so force creation
6300  // of virtual registers for all non-dead arguments.
6301  if (EnableFastISel)
6302    return A->use_empty();
6303
6304  const BasicBlock *Entry = A->getParent()->begin();
6305  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6306       UI != E; ++UI) {
6307    const User *U = *UI;
6308    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6309      return false;  // Use not in entry block.
6310  }
6311  return true;
6312}
6313
6314void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6315  // If this is the entry block, emit arguments.
6316  const Function &F = *LLVMBB->getParent();
6317  SelectionDAG &DAG = SDB->DAG;
6318  DebugLoc dl = SDB->getCurDebugLoc();
6319  const TargetData *TD = TLI.getTargetData();
6320  SmallVector<ISD::InputArg, 16> Ins;
6321
6322  // Check whether the function can return without sret-demotion.
6323  SmallVector<ISD::OutputArg, 4> Outs;
6324  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6325                Outs, TLI);
6326
6327  if (!FuncInfo->CanLowerReturn) {
6328    // Put in an sret pointer parameter before all the other parameters.
6329    SmallVector<EVT, 1> ValueVTs;
6330    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6331
6332    // NOTE: Assuming that a pointer will never break down to more than one VT
6333    // or one register.
6334    ISD::ArgFlagsTy Flags;
6335    Flags.setSRet();
6336    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6337    ISD::InputArg RetArg(Flags, RegisterVT, true);
6338    Ins.push_back(RetArg);
6339  }
6340
6341  // Set up the incoming argument description vector.
6342  unsigned Idx = 1;
6343  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6344       I != E; ++I, ++Idx) {
6345    SmallVector<EVT, 4> ValueVTs;
6346    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6347    bool isArgValueUsed = !I->use_empty();
6348    for (unsigned Value = 0, NumValues = ValueVTs.size();
6349         Value != NumValues; ++Value) {
6350      EVT VT = ValueVTs[Value];
6351      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6352      ISD::ArgFlagsTy Flags;
6353      unsigned OriginalAlignment =
6354        TD->getABITypeAlignment(ArgTy);
6355
6356      if (F.paramHasAttr(Idx, Attribute::ZExt))
6357        Flags.setZExt();
6358      if (F.paramHasAttr(Idx, Attribute::SExt))
6359        Flags.setSExt();
6360      if (F.paramHasAttr(Idx, Attribute::InReg))
6361        Flags.setInReg();
6362      if (F.paramHasAttr(Idx, Attribute::StructRet))
6363        Flags.setSRet();
6364      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6365        Flags.setByVal();
6366        const PointerType *Ty = cast<PointerType>(I->getType());
6367        const Type *ElementTy = Ty->getElementType();
6368        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6369        // For ByVal, alignment should be passed from FE.  BE will guess if
6370        // this info is not there but there are cases it cannot get right.
6371        unsigned FrameAlign;
6372        if (F.getParamAlignment(Idx))
6373          FrameAlign = F.getParamAlignment(Idx);
6374        else
6375          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6376        Flags.setByValAlign(FrameAlign);
6377      }
6378      if (F.paramHasAttr(Idx, Attribute::Nest))
6379        Flags.setNest();
6380      Flags.setOrigAlign(OriginalAlignment);
6381
6382      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6383      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6384      for (unsigned i = 0; i != NumRegs; ++i) {
6385        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6386        if (NumRegs > 1 && i == 0)
6387          MyFlags.Flags.setSplit();
6388        // if it isn't first piece, alignment must be 1
6389        else if (i > 0)
6390          MyFlags.Flags.setOrigAlign(1);
6391        Ins.push_back(MyFlags);
6392      }
6393    }
6394  }
6395
6396  // Call the target to set up the argument values.
6397  SmallVector<SDValue, 8> InVals;
6398  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6399                                             F.isVarArg(), Ins,
6400                                             dl, DAG, InVals);
6401
6402  // Verify that the target's LowerFormalArguments behaved as expected.
6403  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6404         "LowerFormalArguments didn't return a valid chain!");
6405  assert(InVals.size() == Ins.size() &&
6406         "LowerFormalArguments didn't emit the correct number of values!");
6407  DEBUG({
6408      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6409        assert(InVals[i].getNode() &&
6410               "LowerFormalArguments emitted a null value!");
6411        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6412               "LowerFormalArguments emitted a value with the wrong type!");
6413      }
6414    });
6415
6416  // Update the DAG with the new chain value resulting from argument lowering.
6417  DAG.setRoot(NewRoot);
6418
6419  // Set up the argument values.
6420  unsigned i = 0;
6421  Idx = 1;
6422  if (!FuncInfo->CanLowerReturn) {
6423    // Create a virtual register for the sret pointer, and put in a copy
6424    // from the sret argument into it.
6425    SmallVector<EVT, 1> ValueVTs;
6426    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6427    EVT VT = ValueVTs[0];
6428    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6429    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6430    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6431                                        RegVT, VT, AssertOp);
6432
6433    MachineFunction& MF = SDB->DAG.getMachineFunction();
6434    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6435    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6436    FuncInfo->DemoteRegister = SRetReg;
6437    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6438                                    SRetReg, ArgValue);
6439    DAG.setRoot(NewRoot);
6440
6441    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6442    // Idx indexes LLVM arguments.  Don't touch it.
6443    ++i;
6444  }
6445
6446  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6447      ++I, ++Idx) {
6448    SmallVector<SDValue, 4> ArgValues;
6449    SmallVector<EVT, 4> ValueVTs;
6450    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6451    unsigned NumValues = ValueVTs.size();
6452
6453    // If this argument is unused then remember its value. It is used to generate
6454    // debugging information.
6455    if (I->use_empty() && NumValues)
6456      SDB->setUnusedArgValue(I, InVals[i]);
6457
6458    for (unsigned Val = 0; Val != NumValues; ++Val) {
6459      EVT VT = ValueVTs[Val];
6460      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6461      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6462
6463      if (!I->use_empty()) {
6464        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6465        if (F.paramHasAttr(Idx, Attribute::SExt))
6466          AssertOp = ISD::AssertSext;
6467        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6468          AssertOp = ISD::AssertZext;
6469
6470        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6471                                             NumParts, PartVT, VT,
6472                                             AssertOp));
6473      }
6474
6475      i += NumParts;
6476    }
6477
6478    // We don't need to do anything else for unused arguments.
6479    if (ArgValues.empty())
6480      continue;
6481
6482    // Note down frame index for byval arguments.
6483    if (I->hasByValAttr())
6484      if (FrameIndexSDNode *FI =
6485          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6486        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6487
6488    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6489                                     SDB->getCurDebugLoc());
6490    SDB->setValue(I, Res);
6491
6492    // If this argument is live outside of the entry block, insert a copy from
6493    // wherever we got it to the vreg that other BB's will reference it as.
6494    if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6495      // If we can, though, try to skip creating an unnecessary vreg.
6496      // FIXME: This isn't very clean... it would be nice to make this more
6497      // general.  It's also subtly incompatible with the hacks FastISel
6498      // uses with vregs.
6499      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6500      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6501        FuncInfo->ValueMap[I] = Reg;
6502        continue;
6503      }
6504    }
6505    if (!isOnlyUsedInEntryBlock(I)) {
6506      FuncInfo->InitializeRegForValue(I);
6507      SDB->CopyToExportRegsIfNeeded(I);
6508    }
6509  }
6510
6511  assert(i == InVals.size() && "Argument register count mismatch!");
6512
6513  // Finally, if the target has anything special to do, allow it to do so.
6514  // FIXME: this should insert code into the DAG!
6515  EmitFunctionEntryCode();
6516}
6517
6518/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6519/// ensure constants are generated when needed.  Remember the virtual registers
6520/// that need to be added to the Machine PHI nodes as input.  We cannot just
6521/// directly add them, because expansion might result in multiple MBB's for one
6522/// BB.  As such, the start of the BB might correspond to a different MBB than
6523/// the end.
6524///
6525void
6526SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6527  const TerminatorInst *TI = LLVMBB->getTerminator();
6528
6529  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6530
6531  // Check successor nodes' PHI nodes that expect a constant to be available
6532  // from this block.
6533  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6534    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6535    if (!isa<PHINode>(SuccBB->begin())) continue;
6536    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6537
6538    // If this terminator has multiple identical successors (common for
6539    // switches), only handle each succ once.
6540    if (!SuccsHandled.insert(SuccMBB)) continue;
6541
6542    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6543
6544    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6545    // nodes and Machine PHI nodes, but the incoming operands have not been
6546    // emitted yet.
6547    for (BasicBlock::const_iterator I = SuccBB->begin();
6548         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6549      // Ignore dead phi's.
6550      if (PN->use_empty()) continue;
6551
6552      // Skip empty types
6553      if (PN->getType()->isEmptyTy())
6554        continue;
6555
6556      unsigned Reg;
6557      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6558
6559      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6560        unsigned &RegOut = ConstantsOut[C];
6561        if (RegOut == 0) {
6562          RegOut = FuncInfo.CreateRegs(C->getType());
6563          CopyValueToVirtualRegister(C, RegOut);
6564        }
6565        Reg = RegOut;
6566      } else {
6567        DenseMap<const Value *, unsigned>::iterator I =
6568          FuncInfo.ValueMap.find(PHIOp);
6569        if (I != FuncInfo.ValueMap.end())
6570          Reg = I->second;
6571        else {
6572          assert(isa<AllocaInst>(PHIOp) &&
6573                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6574                 "Didn't codegen value into a register!??");
6575          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6576          CopyValueToVirtualRegister(PHIOp, Reg);
6577        }
6578      }
6579
6580      // Remember that this register needs to added to the machine PHI node as
6581      // the input for this MBB.
6582      SmallVector<EVT, 4> ValueVTs;
6583      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6584      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6585        EVT VT = ValueVTs[vti];
6586        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6587        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6588          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6589        Reg += NumRegisters;
6590      }
6591    }
6592  }
6593  ConstantsOut.clear();
6594}
6595