SelectionDAGBuilder.cpp revision 24473120a253a05f3601cd3373403b47e6d03d41
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameLowering.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getTargetConstant(1, TLI.getPointerTy()));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209}
210
211/// getCopyFromParts - Create a value that contains the specified legal parts
212/// combined into the value they represent.  If the parts combine to a type
213/// larger then ValueVT then AssertOp can be used to specify whether the extra
214/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
215/// (ISD::AssertSext).
216static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
217                                      const SDValue *Parts, unsigned NumParts,
218                                      EVT PartVT, EVT ValueVT) {
219  assert(ValueVT.isVector() && "Not a vector value");
220  assert(NumParts > 0 && "No parts to assemble!");
221  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
222  SDValue Val = Parts[0];
223
224  // Handle a multi-element vector.
225  if (NumParts > 1) {
226    EVT IntermediateVT, RegisterVT;
227    unsigned NumIntermediates;
228    unsigned NumRegs =
229    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
230                               NumIntermediates, RegisterVT);
231    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
232    NumParts = NumRegs; // Silence a compiler warning.
233    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
234    assert(RegisterVT == Parts[0].getValueType() &&
235           "Part type doesn't match part!");
236
237    // Assemble the parts into intermediate operands.
238    SmallVector<SDValue, 8> Ops(NumIntermediates);
239    if (NumIntermediates == NumParts) {
240      // If the register was not expanded, truncate or copy the value,
241      // as appropriate.
242      for (unsigned i = 0; i != NumParts; ++i)
243        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
244                                  PartVT, IntermediateVT);
245    } else if (NumParts > 0) {
246      // If the intermediate type was expanded, build the intermediate
247      // operands from the parts.
248      assert(NumParts % NumIntermediates == 0 &&
249             "Must expand into a divisible number of parts!");
250      unsigned Factor = NumParts / NumIntermediates;
251      for (unsigned i = 0; i != NumIntermediates; ++i)
252        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
253                                  PartVT, IntermediateVT);
254    }
255
256    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
257    // intermediate operands.
258    Val = DAG.getNode(IntermediateVT.isVector() ?
259                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
260                      ValueVT, &Ops[0], NumIntermediates);
261  }
262
263  // There is now one part, held in Val.  Correct it to match ValueVT.
264  PartVT = Val.getValueType();
265
266  if (PartVT == ValueVT)
267    return Val;
268
269  if (PartVT.isVector()) {
270    // If the element type of the source/dest vectors are the same, but the
271    // parts vector has more elements than the value vector, then we have a
272    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
273    // elements we want.
274    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
275      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
276             "Cannot narrow, it would be a lossy transformation");
277      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
278                         DAG.getIntPtrConstant(0));
279    }
280
281    // Vector/Vector bitcast.
282    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
283      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
284
285    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
286      "Cannot handle this kind of promotion");
287    // Promoted vector extract
288    bool Smaller = ValueVT.bitsLE(PartVT);
289    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
290                       DL, ValueVT, Val);
291
292  }
293
294  // Trivial bitcast if the types are the same size and the destination
295  // vector type is legal.
296  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
297      TLI.isTypeLegal(ValueVT))
298    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
299
300  // Handle cases such as i8 -> <1 x i1>
301  assert(ValueVT.getVectorNumElements() == 1 &&
302         "Only trivial scalar-to-vector conversions should get here!");
303
304  if (ValueVT.getVectorNumElements() == 1 &&
305      ValueVT.getVectorElementType() != PartVT) {
306    bool Smaller = ValueVT.bitsLE(PartVT);
307    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
308                       DL, ValueVT.getScalarType(), Val);
309  }
310
311  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
312}
313
314
315
316
317static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
318                                 SDValue Val, SDValue *Parts, unsigned NumParts,
319                                 EVT PartVT);
320
321/// getCopyToParts - Create a series of nodes that contain the specified value
322/// split into legal parts.  If the parts contain more bits than Val, then, for
323/// integers, ExtendKind can be used to specify how to generate the extra bits.
324static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
325                           SDValue Val, SDValue *Parts, unsigned NumParts,
326                           EVT PartVT,
327                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
328  EVT ValueVT = Val.getValueType();
329
330  // Handle the vector case separately.
331  if (ValueVT.isVector())
332    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
333
334  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335  unsigned PartBits = PartVT.getSizeInBits();
336  unsigned OrigNumParts = NumParts;
337  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
338
339  if (NumParts == 0)
340    return;
341
342  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
343  if (PartVT == ValueVT) {
344    assert(NumParts == 1 && "No-op copy with multiple parts!");
345    Parts[0] = Val;
346    return;
347  }
348
349  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
350    // If the parts cover more bits than the value has, promote the value.
351    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
352      assert(NumParts == 1 && "Do not know what to promote to!");
353      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
354    } else {
355      assert(PartVT.isInteger() && ValueVT.isInteger() &&
356             "Unknown mismatch!");
357      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
358      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
359    }
360  } else if (PartBits == ValueVT.getSizeInBits()) {
361    // Different types of the same size.
362    assert(NumParts == 1 && PartVT != ValueVT);
363    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
364  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
365    // If the parts cover less bits than value has, truncate the value.
366    assert(PartVT.isInteger() && ValueVT.isInteger() &&
367           "Unknown mismatch!");
368    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
369    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
370  }
371
372  // The value may have changed - recompute ValueVT.
373  ValueVT = Val.getValueType();
374  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
375         "Failed to tile the value with PartVT!");
376
377  if (NumParts == 1) {
378    assert(PartVT == ValueVT && "Type conversion failed!");
379    Parts[0] = Val;
380    return;
381  }
382
383  // Expand the value into multiple parts.
384  if (NumParts & (NumParts - 1)) {
385    // The number of parts is not a power of 2.  Split off and copy the tail.
386    assert(PartVT.isInteger() && ValueVT.isInteger() &&
387           "Do not know what to expand to!");
388    unsigned RoundParts = 1 << Log2_32(NumParts);
389    unsigned RoundBits = RoundParts * PartBits;
390    unsigned OddParts = NumParts - RoundParts;
391    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
392                                 DAG.getIntPtrConstant(RoundBits));
393    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
394
395    if (TLI.isBigEndian())
396      // The odd parts were reversed by getCopyToParts - unreverse them.
397      std::reverse(Parts + RoundParts, Parts + NumParts);
398
399    NumParts = RoundParts;
400    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
401    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
402  }
403
404  // The number of parts is a power of 2.  Repeatedly bisect the value using
405  // EXTRACT_ELEMENT.
406  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
407                         EVT::getIntegerVT(*DAG.getContext(),
408                                           ValueVT.getSizeInBits()),
409                         Val);
410
411  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
412    for (unsigned i = 0; i < NumParts; i += StepSize) {
413      unsigned ThisBits = StepSize * PartBits / 2;
414      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
415      SDValue &Part0 = Parts[i];
416      SDValue &Part1 = Parts[i+StepSize/2];
417
418      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
419                          ThisVT, Part0, DAG.getIntPtrConstant(1));
420      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
421                          ThisVT, Part0, DAG.getIntPtrConstant(0));
422
423      if (ThisBits == PartBits && ThisVT != PartVT) {
424        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
425        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
426      }
427    }
428  }
429
430  if (TLI.isBigEndian())
431    std::reverse(Parts, Parts + OrigNumParts);
432}
433
434
435/// getCopyToPartsVector - Create a series of nodes that contain the specified
436/// value split into legal parts.
437static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
438                                 SDValue Val, SDValue *Parts, unsigned NumParts,
439                                 EVT PartVT) {
440  EVT ValueVT = Val.getValueType();
441  assert(ValueVT.isVector() && "Not a vector");
442  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
443
444  if (NumParts == 1) {
445    if (PartVT == ValueVT) {
446      // Nothing to do.
447    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
448      // Bitconvert vector->vector case.
449      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
450    } else if (PartVT.isVector() &&
451               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
452               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
453      EVT ElementVT = PartVT.getVectorElementType();
454      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
455      // undef elements.
456      SmallVector<SDValue, 16> Ops;
457      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
458        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
459                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
460
461      for (unsigned i = ValueVT.getVectorNumElements(),
462           e = PartVT.getVectorNumElements(); i != e; ++i)
463        Ops.push_back(DAG.getUNDEF(ElementVT));
464
465      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
466
467      // FIXME: Use CONCAT for 2x -> 4x.
468
469      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
470      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
471    } else if (PartVT.isVector() &&
472               PartVT.getVectorElementType().bitsGE(
473                 ValueVT.getVectorElementType()) &&
474               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
475
476      // Promoted vector extract
477      bool Smaller = PartVT.bitsLE(ValueVT);
478      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
479                        DL, PartVT, Val);
480    } else{
481      // Vector -> scalar conversion.
482      assert(ValueVT.getVectorNumElements() == 1 &&
483             "Only trivial vector-to-scalar conversions should get here!");
484      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
485                        PartVT, Val, DAG.getIntPtrConstant(0));
486
487      bool Smaller = ValueVT.bitsLE(PartVT);
488      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
489                         DL, PartVT, Val);
490    }
491
492    Parts[0] = Val;
493    return;
494  }
495
496  // Handle a multi-element vector.
497  EVT IntermediateVT, RegisterVT;
498  unsigned NumIntermediates;
499  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
500                                                IntermediateVT,
501                                                NumIntermediates, RegisterVT);
502  unsigned NumElements = ValueVT.getVectorNumElements();
503
504  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
505  NumParts = NumRegs; // Silence a compiler warning.
506  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
507
508  // Split the vector into intermediate operands.
509  SmallVector<SDValue, 8> Ops(NumIntermediates);
510  for (unsigned i = 0; i != NumIntermediates; ++i) {
511    if (IntermediateVT.isVector())
512      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
513                           IntermediateVT, Val,
514                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
515    else
516      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
517                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
518  }
519
520  // Split the intermediate operands into legal parts.
521  if (NumParts == NumIntermediates) {
522    // If the register was not expanded, promote or copy the value,
523    // as appropriate.
524    for (unsigned i = 0; i != NumParts; ++i)
525      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
526  } else if (NumParts > 0) {
527    // If the intermediate type was expanded, split each the value into
528    // legal parts.
529    assert(NumParts % NumIntermediates == 0 &&
530           "Must expand into a divisible number of parts!");
531    unsigned Factor = NumParts / NumIntermediates;
532    for (unsigned i = 0; i != NumIntermediates; ++i)
533      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
534  }
535}
536
537
538
539
540namespace {
541  /// RegsForValue - This struct represents the registers (physical or virtual)
542  /// that a particular set of values is assigned, and the type information
543  /// about the value. The most common situation is to represent one value at a
544  /// time, but struct or array values are handled element-wise as multiple
545  /// values.  The splitting of aggregates is performed recursively, so that we
546  /// never have aggregate-typed registers. The values at this point do not
547  /// necessarily have legal types, so each value may require one or more
548  /// registers of some legal type.
549  ///
550  struct RegsForValue {
551    /// ValueVTs - The value types of the values, which may not be legal, and
552    /// may need be promoted or synthesized from one or more registers.
553    ///
554    SmallVector<EVT, 4> ValueVTs;
555
556    /// RegVTs - The value types of the registers. This is the same size as
557    /// ValueVTs and it records, for each value, what the type of the assigned
558    /// register or registers are. (Individual values are never synthesized
559    /// from more than one type of register.)
560    ///
561    /// With virtual registers, the contents of RegVTs is redundant with TLI's
562    /// getRegisterType member function, however when with physical registers
563    /// it is necessary to have a separate record of the types.
564    ///
565    SmallVector<EVT, 4> RegVTs;
566
567    /// Regs - This list holds the registers assigned to the values.
568    /// Each legal or promoted value requires one register, and each
569    /// expanded value requires multiple registers.
570    ///
571    SmallVector<unsigned, 4> Regs;
572
573    RegsForValue() {}
574
575    RegsForValue(const SmallVector<unsigned, 4> &regs,
576                 EVT regvt, EVT valuevt)
577      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
578
579    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
580                 unsigned Reg, Type *Ty) {
581      ComputeValueVTs(tli, Ty, ValueVTs);
582
583      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
584        EVT ValueVT = ValueVTs[Value];
585        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
586        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
587        for (unsigned i = 0; i != NumRegs; ++i)
588          Regs.push_back(Reg + i);
589        RegVTs.push_back(RegisterVT);
590        Reg += NumRegs;
591      }
592    }
593
594    /// areValueTypesLegal - Return true if types of all the values are legal.
595    bool areValueTypesLegal(const TargetLowering &TLI) {
596      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
597        EVT RegisterVT = RegVTs[Value];
598        if (!TLI.isTypeLegal(RegisterVT))
599          return false;
600      }
601      return true;
602    }
603
604    /// append - Add the specified values to this one.
605    void append(const RegsForValue &RHS) {
606      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
607      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
608      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
609    }
610
611    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
612    /// this value and returns the result as a ValueVTs value.  This uses
613    /// Chain/Flag as the input and updates them for the output Chain/Flag.
614    /// If the Flag pointer is NULL, no flag is used.
615    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
616                            DebugLoc dl,
617                            SDValue &Chain, SDValue *Flag) const;
618
619    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
620    /// specified value into the registers specified by this object.  This uses
621    /// Chain/Flag as the input and updates them for the output Chain/Flag.
622    /// If the Flag pointer is NULL, no flag is used.
623    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
624                       SDValue &Chain, SDValue *Flag) const;
625
626    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
627    /// operand list.  This adds the code marker, matching input operand index
628    /// (if applicable), and includes the number of values added into it.
629    void AddInlineAsmOperands(unsigned Kind,
630                              bool HasMatching, unsigned MatchingIdx,
631                              SelectionDAG &DAG,
632                              std::vector<SDValue> &Ops) const;
633  };
634}
635
636/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
637/// this value and returns the result as a ValueVT value.  This uses
638/// Chain/Flag as the input and updates them for the output Chain/Flag.
639/// If the Flag pointer is NULL, no flag is used.
640SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
641                                      FunctionLoweringInfo &FuncInfo,
642                                      DebugLoc dl,
643                                      SDValue &Chain, SDValue *Flag) const {
644  // A Value with type {} or [0 x %t] needs no registers.
645  if (ValueVTs.empty())
646    return SDValue();
647
648  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649
650  // Assemble the legal parts into the final values.
651  SmallVector<SDValue, 4> Values(ValueVTs.size());
652  SmallVector<SDValue, 8> Parts;
653  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
654    // Copy the legal parts from the registers.
655    EVT ValueVT = ValueVTs[Value];
656    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
657    EVT RegisterVT = RegVTs[Value];
658
659    Parts.resize(NumRegs);
660    for (unsigned i = 0; i != NumRegs; ++i) {
661      SDValue P;
662      if (Flag == 0) {
663        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
664      } else {
665        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
666        *Flag = P.getValue(2);
667      }
668
669      Chain = P.getValue(1);
670      Parts[i] = P;
671
672      // If the source register was virtual and if we know something about it,
673      // add an assert node.
674      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
675          !RegisterVT.isInteger() || RegisterVT.isVector())
676        continue;
677
678      const FunctionLoweringInfo::LiveOutInfo *LOI =
679        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
680      if (!LOI)
681        continue;
682
683      unsigned RegSize = RegisterVT.getSizeInBits();
684      unsigned NumSignBits = LOI->NumSignBits;
685      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
686
687      // FIXME: We capture more information than the dag can represent.  For
688      // now, just use the tightest assertzext/assertsext possible.
689      bool isSExt = true;
690      EVT FromVT(MVT::Other);
691      if (NumSignBits == RegSize)
692        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
693      else if (NumZeroBits >= RegSize-1)
694        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
695      else if (NumSignBits > RegSize-8)
696        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
697      else if (NumZeroBits >= RegSize-8)
698        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
699      else if (NumSignBits > RegSize-16)
700        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
701      else if (NumZeroBits >= RegSize-16)
702        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
703      else if (NumSignBits > RegSize-32)
704        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
705      else if (NumZeroBits >= RegSize-32)
706        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
707      else
708        continue;
709
710      // Add an assertion node.
711      assert(FromVT != MVT::Other);
712      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
713                             RegisterVT, P, DAG.getValueType(FromVT));
714    }
715
716    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
717                                     NumRegs, RegisterVT, ValueVT);
718    Part += NumRegs;
719    Parts.clear();
720  }
721
722  return DAG.getNode(ISD::MERGE_VALUES, dl,
723                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
724                     &Values[0], ValueVTs.size());
725}
726
727/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
728/// specified value into the registers specified by this object.  This uses
729/// Chain/Flag as the input and updates them for the output Chain/Flag.
730/// If the Flag pointer is NULL, no flag is used.
731void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
732                                 SDValue &Chain, SDValue *Flag) const {
733  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
734
735  // Get the list of the values's legal parts.
736  unsigned NumRegs = Regs.size();
737  SmallVector<SDValue, 8> Parts(NumRegs);
738  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
739    EVT ValueVT = ValueVTs[Value];
740    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
741    EVT RegisterVT = RegVTs[Value];
742
743    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
744                   &Parts[Part], NumParts, RegisterVT);
745    Part += NumParts;
746  }
747
748  // Copy the parts into the registers.
749  SmallVector<SDValue, 8> Chains(NumRegs);
750  for (unsigned i = 0; i != NumRegs; ++i) {
751    SDValue Part;
752    if (Flag == 0) {
753      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
754    } else {
755      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
756      *Flag = Part.getValue(1);
757    }
758
759    Chains[i] = Part.getValue(0);
760  }
761
762  if (NumRegs == 1 || Flag)
763    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
764    // flagged to it. That is the CopyToReg nodes and the user are considered
765    // a single scheduling unit. If we create a TokenFactor and return it as
766    // chain, then the TokenFactor is both a predecessor (operand) of the
767    // user as well as a successor (the TF operands are flagged to the user).
768    // c1, f1 = CopyToReg
769    // c2, f2 = CopyToReg
770    // c3     = TokenFactor c1, c2
771    // ...
772    //        = op c3, ..., f2
773    Chain = Chains[NumRegs-1];
774  else
775    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
776}
777
778/// AddInlineAsmOperands - Add this value to the specified inlineasm node
779/// operand list.  This adds the code marker and includes the number of
780/// values added into it.
781void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
782                                        unsigned MatchingIdx,
783                                        SelectionDAG &DAG,
784                                        std::vector<SDValue> &Ops) const {
785  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
786
787  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
788  if (HasMatching)
789    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
790  else if (!Regs.empty() &&
791           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
792    // Put the register class of the virtual registers in the flag word.  That
793    // way, later passes can recompute register class constraints for inline
794    // assembly as well as normal instructions.
795    // Don't do this for tied operands that can use the regclass information
796    // from the def.
797    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
798    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
799    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
800  }
801
802  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
803  Ops.push_back(Res);
804
805  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
806    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
807    EVT RegisterVT = RegVTs[Value];
808    for (unsigned i = 0; i != NumRegs; ++i) {
809      assert(Reg < Regs.size() && "Mismatch in # registers expected");
810      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
811    }
812  }
813}
814
815void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
816                               const TargetLibraryInfo *li) {
817  AA = &aa;
818  GFI = gfi;
819  LibInfo = li;
820  TD = DAG.getTarget().getTargetData();
821  LPadToCallSiteMap.clear();
822}
823
824/// clear - Clear out the current SelectionDAG and the associated
825/// state and prepare this SelectionDAGBuilder object to be used
826/// for a new block. This doesn't clear out information about
827/// additional blocks that are needed to complete switch lowering
828/// or PHI node updating; that information is cleared out as it is
829/// consumed.
830void SelectionDAGBuilder::clear() {
831  NodeMap.clear();
832  UnusedArgNodeMap.clear();
833  PendingLoads.clear();
834  PendingExports.clear();
835  CurDebugLoc = DebugLoc();
836  HasTailCall = false;
837}
838
839/// clearDanglingDebugInfo - Clear the dangling debug information
840/// map. This function is seperated from the clear so that debug
841/// information that is dangling in a basic block can be properly
842/// resolved in a different basic block. This allows the
843/// SelectionDAG to resolve dangling debug information attached
844/// to PHI nodes.
845void SelectionDAGBuilder::clearDanglingDebugInfo() {
846  DanglingDebugInfoMap.clear();
847}
848
849/// getRoot - Return the current virtual root of the Selection DAG,
850/// flushing any PendingLoad items. This must be done before emitting
851/// a store or any other node that may need to be ordered after any
852/// prior load instructions.
853///
854SDValue SelectionDAGBuilder::getRoot() {
855  if (PendingLoads.empty())
856    return DAG.getRoot();
857
858  if (PendingLoads.size() == 1) {
859    SDValue Root = PendingLoads[0];
860    DAG.setRoot(Root);
861    PendingLoads.clear();
862    return Root;
863  }
864
865  // Otherwise, we have to make a token factor node.
866  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
867                               &PendingLoads[0], PendingLoads.size());
868  PendingLoads.clear();
869  DAG.setRoot(Root);
870  return Root;
871}
872
873/// getControlRoot - Similar to getRoot, but instead of flushing all the
874/// PendingLoad items, flush all the PendingExports items. It is necessary
875/// to do this before emitting a terminator instruction.
876///
877SDValue SelectionDAGBuilder::getControlRoot() {
878  SDValue Root = DAG.getRoot();
879
880  if (PendingExports.empty())
881    return Root;
882
883  // Turn all of the CopyToReg chains into one factored node.
884  if (Root.getOpcode() != ISD::EntryToken) {
885    unsigned i = 0, e = PendingExports.size();
886    for (; i != e; ++i) {
887      assert(PendingExports[i].getNode()->getNumOperands() > 1);
888      if (PendingExports[i].getNode()->getOperand(0) == Root)
889        break;  // Don't add the root if we already indirectly depend on it.
890    }
891
892    if (i == e)
893      PendingExports.push_back(Root);
894  }
895
896  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
897                     &PendingExports[0],
898                     PendingExports.size());
899  PendingExports.clear();
900  DAG.setRoot(Root);
901  return Root;
902}
903
904void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
905  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
906  DAG.AssignOrdering(Node, SDNodeOrder);
907
908  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
909    AssignOrderingToNode(Node->getOperand(I).getNode());
910}
911
912void SelectionDAGBuilder::visit(const Instruction &I) {
913  // Set up outgoing PHI node register values before emitting the terminator.
914  if (isa<TerminatorInst>(&I))
915    HandlePHINodesInSuccessorBlocks(I.getParent());
916
917  CurDebugLoc = I.getDebugLoc();
918
919  visit(I.getOpcode(), I);
920
921  if (!isa<TerminatorInst>(&I) && !HasTailCall)
922    CopyToExportRegsIfNeeded(&I);
923
924  CurDebugLoc = DebugLoc();
925}
926
927void SelectionDAGBuilder::visitPHI(const PHINode &) {
928  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
929}
930
931void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
932  // Note: this doesn't use InstVisitor, because it has to work with
933  // ConstantExpr's in addition to instructions.
934  switch (Opcode) {
935  default: llvm_unreachable("Unknown instruction type encountered!");
936    // Build the switch statement using the Instruction.def file.
937#define HANDLE_INST(NUM, OPCODE, CLASS) \
938    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
939#include "llvm/Instruction.def"
940  }
941
942  // Assign the ordering to the freshly created DAG nodes.
943  if (NodeMap.count(&I)) {
944    ++SDNodeOrder;
945    AssignOrderingToNode(getValue(&I).getNode());
946  }
947}
948
949// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
950// generate the debug data structures now that we've seen its definition.
951void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
952                                                   SDValue Val) {
953  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
954  if (DDI.getDI()) {
955    const DbgValueInst *DI = DDI.getDI();
956    DebugLoc dl = DDI.getdl();
957    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
958    MDNode *Variable = DI->getVariable();
959    uint64_t Offset = DI->getOffset();
960    SDDbgValue *SDV;
961    if (Val.getNode()) {
962      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
963        SDV = DAG.getDbgValue(Variable, Val.getNode(),
964                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
965        DAG.AddDbgValue(SDV, Val.getNode(), false);
966      }
967    } else
968      DEBUG(dbgs() << "Dropping debug info for " << DI);
969    DanglingDebugInfoMap[V] = DanglingDebugInfo();
970  }
971}
972
973/// getValue - Return an SDValue for the given Value.
974SDValue SelectionDAGBuilder::getValue(const Value *V) {
975  // If we already have an SDValue for this value, use it. It's important
976  // to do this first, so that we don't create a CopyFromReg if we already
977  // have a regular SDValue.
978  SDValue &N = NodeMap[V];
979  if (N.getNode()) return N;
980
981  // If there's a virtual register allocated and initialized for this
982  // value, use it.
983  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
984  if (It != FuncInfo.ValueMap.end()) {
985    unsigned InReg = It->second;
986    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
987    SDValue Chain = DAG.getEntryNode();
988    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
989    resolveDanglingDebugInfo(V, N);
990    return N;
991  }
992
993  // Otherwise create a new SDValue and remember it.
994  SDValue Val = getValueImpl(V);
995  NodeMap[V] = Val;
996  resolveDanglingDebugInfo(V, Val);
997  return Val;
998}
999
1000/// getNonRegisterValue - Return an SDValue for the given Value, but
1001/// don't look in FuncInfo.ValueMap for a virtual register.
1002SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1003  // If we already have an SDValue for this value, use it.
1004  SDValue &N = NodeMap[V];
1005  if (N.getNode()) return N;
1006
1007  // Otherwise create a new SDValue and remember it.
1008  SDValue Val = getValueImpl(V);
1009  NodeMap[V] = Val;
1010  resolveDanglingDebugInfo(V, Val);
1011  return Val;
1012}
1013
1014/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1015/// Create an SDValue for the given value.
1016SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1017  if (const Constant *C = dyn_cast<Constant>(V)) {
1018    EVT VT = TLI.getValueType(V->getType(), true);
1019
1020    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1021      return DAG.getConstant(*CI, VT);
1022
1023    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1024      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1025
1026    if (isa<ConstantPointerNull>(C))
1027      return DAG.getConstant(0, TLI.getPointerTy());
1028
1029    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1030      return DAG.getConstantFP(*CFP, VT);
1031
1032    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1033      return DAG.getUNDEF(VT);
1034
1035    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1036      visit(CE->getOpcode(), *CE);
1037      SDValue N1 = NodeMap[V];
1038      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1039      return N1;
1040    }
1041
1042    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1043      SmallVector<SDValue, 4> Constants;
1044      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1045           OI != OE; ++OI) {
1046        SDNode *Val = getValue(*OI).getNode();
1047        // If the operand is an empty aggregate, there are no values.
1048        if (!Val) continue;
1049        // Add each leaf value from the operand to the Constants list
1050        // to form a flattened list of all the values.
1051        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1052          Constants.push_back(SDValue(Val, i));
1053      }
1054
1055      return DAG.getMergeValues(&Constants[0], Constants.size(),
1056                                getCurDebugLoc());
1057    }
1058
1059    if (const ConstantDataSequential *CDS =
1060          dyn_cast<ConstantDataSequential>(C)) {
1061      SmallVector<SDValue, 4> Ops;
1062      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1063        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1064        // Add each leaf value from the operand to the Constants list
1065        // to form a flattened list of all the values.
1066        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1067          Ops.push_back(SDValue(Val, i));
1068      }
1069
1070      if (isa<ArrayType>(CDS->getType()))
1071        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1072      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1073                                      VT, &Ops[0], Ops.size());
1074    }
1075
1076    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1077      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1078             "Unknown struct or array constant!");
1079
1080      SmallVector<EVT, 4> ValueVTs;
1081      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1082      unsigned NumElts = ValueVTs.size();
1083      if (NumElts == 0)
1084        return SDValue(); // empty struct
1085      SmallVector<SDValue, 4> Constants(NumElts);
1086      for (unsigned i = 0; i != NumElts; ++i) {
1087        EVT EltVT = ValueVTs[i];
1088        if (isa<UndefValue>(C))
1089          Constants[i] = DAG.getUNDEF(EltVT);
1090        else if (EltVT.isFloatingPoint())
1091          Constants[i] = DAG.getConstantFP(0, EltVT);
1092        else
1093          Constants[i] = DAG.getConstant(0, EltVT);
1094      }
1095
1096      return DAG.getMergeValues(&Constants[0], NumElts,
1097                                getCurDebugLoc());
1098    }
1099
1100    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1101      return DAG.getBlockAddress(BA, VT);
1102
1103    VectorType *VecTy = cast<VectorType>(V->getType());
1104    unsigned NumElements = VecTy->getNumElements();
1105
1106    // Now that we know the number and type of the elements, get that number of
1107    // elements into the Ops array based on what kind of constant it is.
1108    SmallVector<SDValue, 16> Ops;
1109    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1110      for (unsigned i = 0; i != NumElements; ++i)
1111        Ops.push_back(getValue(CV->getOperand(i)));
1112    } else {
1113      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1114      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1115
1116      SDValue Op;
1117      if (EltVT.isFloatingPoint())
1118        Op = DAG.getConstantFP(0, EltVT);
1119      else
1120        Op = DAG.getConstant(0, EltVT);
1121      Ops.assign(NumElements, Op);
1122    }
1123
1124    // Create a BUILD_VECTOR node.
1125    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1126                                    VT, &Ops[0], Ops.size());
1127  }
1128
1129  // If this is a static alloca, generate it as the frameindex instead of
1130  // computation.
1131  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1132    DenseMap<const AllocaInst*, int>::iterator SI =
1133      FuncInfo.StaticAllocaMap.find(AI);
1134    if (SI != FuncInfo.StaticAllocaMap.end())
1135      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1136  }
1137
1138  // If this is an instruction which fast-isel has deferred, select it now.
1139  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1140    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1141    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1142    SDValue Chain = DAG.getEntryNode();
1143    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1144  }
1145
1146  llvm_unreachable("Can't get register for value!");
1147}
1148
1149void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1150  SDValue Chain = getControlRoot();
1151  SmallVector<ISD::OutputArg, 8> Outs;
1152  SmallVector<SDValue, 8> OutVals;
1153
1154  if (!FuncInfo.CanLowerReturn) {
1155    unsigned DemoteReg = FuncInfo.DemoteRegister;
1156    const Function *F = I.getParent()->getParent();
1157
1158    // Emit a store of the return value through the virtual register.
1159    // Leave Outs empty so that LowerReturn won't try to load return
1160    // registers the usual way.
1161    SmallVector<EVT, 1> PtrValueVTs;
1162    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1163                    PtrValueVTs);
1164
1165    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1166    SDValue RetOp = getValue(I.getOperand(0));
1167
1168    SmallVector<EVT, 4> ValueVTs;
1169    SmallVector<uint64_t, 4> Offsets;
1170    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1171    unsigned NumValues = ValueVTs.size();
1172
1173    SmallVector<SDValue, 4> Chains(NumValues);
1174    for (unsigned i = 0; i != NumValues; ++i) {
1175      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1176                                RetPtr.getValueType(), RetPtr,
1177                                DAG.getIntPtrConstant(Offsets[i]));
1178      Chains[i] =
1179        DAG.getStore(Chain, getCurDebugLoc(),
1180                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1181                     // FIXME: better loc info would be nice.
1182                     Add, MachinePointerInfo(), false, false, 0);
1183    }
1184
1185    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1186                        MVT::Other, &Chains[0], NumValues);
1187  } else if (I.getNumOperands() != 0) {
1188    SmallVector<EVT, 4> ValueVTs;
1189    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1190    unsigned NumValues = ValueVTs.size();
1191    if (NumValues) {
1192      SDValue RetOp = getValue(I.getOperand(0));
1193      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1194        EVT VT = ValueVTs[j];
1195
1196        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1197
1198        const Function *F = I.getParent()->getParent();
1199        if (F->paramHasAttr(0, Attribute::SExt))
1200          ExtendKind = ISD::SIGN_EXTEND;
1201        else if (F->paramHasAttr(0, Attribute::ZExt))
1202          ExtendKind = ISD::ZERO_EXTEND;
1203
1204        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1205          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1206
1207        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1208        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1209        SmallVector<SDValue, 4> Parts(NumParts);
1210        getCopyToParts(DAG, getCurDebugLoc(),
1211                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1212                       &Parts[0], NumParts, PartVT, ExtendKind);
1213
1214        // 'inreg' on function refers to return value
1215        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1216        if (F->paramHasAttr(0, Attribute::InReg))
1217          Flags.setInReg();
1218
1219        // Propagate extension type if any
1220        if (ExtendKind == ISD::SIGN_EXTEND)
1221          Flags.setSExt();
1222        else if (ExtendKind == ISD::ZERO_EXTEND)
1223          Flags.setZExt();
1224
1225        for (unsigned i = 0; i < NumParts; ++i) {
1226          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1227                                        /*isfixed=*/true));
1228          OutVals.push_back(Parts[i]);
1229        }
1230      }
1231    }
1232  }
1233
1234  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1235  CallingConv::ID CallConv =
1236    DAG.getMachineFunction().getFunction()->getCallingConv();
1237  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1238                          Outs, OutVals, getCurDebugLoc(), DAG);
1239
1240  // Verify that the target's LowerReturn behaved as expected.
1241  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1242         "LowerReturn didn't return a valid chain!");
1243
1244  // Update the DAG with the new chain value resulting from return lowering.
1245  DAG.setRoot(Chain);
1246}
1247
1248/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1249/// created for it, emit nodes to copy the value into the virtual
1250/// registers.
1251void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1252  // Skip empty types
1253  if (V->getType()->isEmptyTy())
1254    return;
1255
1256  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1257  if (VMI != FuncInfo.ValueMap.end()) {
1258    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1259    CopyValueToVirtualRegister(V, VMI->second);
1260  }
1261}
1262
1263/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1264/// the current basic block, add it to ValueMap now so that we'll get a
1265/// CopyTo/FromReg.
1266void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1267  // No need to export constants.
1268  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1269
1270  // Already exported?
1271  if (FuncInfo.isExportedInst(V)) return;
1272
1273  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1274  CopyValueToVirtualRegister(V, Reg);
1275}
1276
1277bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1278                                                     const BasicBlock *FromBB) {
1279  // The operands of the setcc have to be in this block.  We don't know
1280  // how to export them from some other block.
1281  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1282    // Can export from current BB.
1283    if (VI->getParent() == FromBB)
1284      return true;
1285
1286    // Is already exported, noop.
1287    return FuncInfo.isExportedInst(V);
1288  }
1289
1290  // If this is an argument, we can export it if the BB is the entry block or
1291  // if it is already exported.
1292  if (isa<Argument>(V)) {
1293    if (FromBB == &FromBB->getParent()->getEntryBlock())
1294      return true;
1295
1296    // Otherwise, can only export this if it is already exported.
1297    return FuncInfo.isExportedInst(V);
1298  }
1299
1300  // Otherwise, constants can always be exported.
1301  return true;
1302}
1303
1304/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1305uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1306                                            const MachineBasicBlock *Dst) const {
1307  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1308  if (!BPI)
1309    return 0;
1310  const BasicBlock *SrcBB = Src->getBasicBlock();
1311  const BasicBlock *DstBB = Dst->getBasicBlock();
1312  return BPI->getEdgeWeight(SrcBB, DstBB);
1313}
1314
1315void SelectionDAGBuilder::
1316addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1317                       uint32_t Weight /* = 0 */) {
1318  if (!Weight)
1319    Weight = getEdgeWeight(Src, Dst);
1320  Src->addSuccessor(Dst, Weight);
1321}
1322
1323
1324static bool InBlock(const Value *V, const BasicBlock *BB) {
1325  if (const Instruction *I = dyn_cast<Instruction>(V))
1326    return I->getParent() == BB;
1327  return true;
1328}
1329
1330/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1331/// This function emits a branch and is used at the leaves of an OR or an
1332/// AND operator tree.
1333///
1334void
1335SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1336                                                  MachineBasicBlock *TBB,
1337                                                  MachineBasicBlock *FBB,
1338                                                  MachineBasicBlock *CurBB,
1339                                                  MachineBasicBlock *SwitchBB) {
1340  const BasicBlock *BB = CurBB->getBasicBlock();
1341
1342  // If the leaf of the tree is a comparison, merge the condition into
1343  // the caseblock.
1344  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1345    // The operands of the cmp have to be in this block.  We don't know
1346    // how to export them from some other block.  If this is the first block
1347    // of the sequence, no exporting is needed.
1348    if (CurBB == SwitchBB ||
1349        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1350         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1351      ISD::CondCode Condition;
1352      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1353        Condition = getICmpCondCode(IC->getPredicate());
1354      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1355        Condition = getFCmpCondCode(FC->getPredicate());
1356        if (TM.Options.NoNaNsFPMath)
1357          Condition = getFCmpCodeWithoutNaN(Condition);
1358      } else {
1359        Condition = ISD::SETEQ; // silence warning.
1360        llvm_unreachable("Unknown compare instruction");
1361      }
1362
1363      CaseBlock CB(Condition, BOp->getOperand(0),
1364                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1365      SwitchCases.push_back(CB);
1366      return;
1367    }
1368  }
1369
1370  // Create a CaseBlock record representing this branch.
1371  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1372               NULL, TBB, FBB, CurBB);
1373  SwitchCases.push_back(CB);
1374}
1375
1376/// FindMergedConditions - If Cond is an expression like
1377void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1378                                               MachineBasicBlock *TBB,
1379                                               MachineBasicBlock *FBB,
1380                                               MachineBasicBlock *CurBB,
1381                                               MachineBasicBlock *SwitchBB,
1382                                               unsigned Opc) {
1383  // If this node is not part of the or/and tree, emit it as a branch.
1384  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1385  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1386      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1387      BOp->getParent() != CurBB->getBasicBlock() ||
1388      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1389      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1390    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1391    return;
1392  }
1393
1394  //  Create TmpBB after CurBB.
1395  MachineFunction::iterator BBI = CurBB;
1396  MachineFunction &MF = DAG.getMachineFunction();
1397  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1398  CurBB->getParent()->insert(++BBI, TmpBB);
1399
1400  if (Opc == Instruction::Or) {
1401    // Codegen X | Y as:
1402    //   jmp_if_X TBB
1403    //   jmp TmpBB
1404    // TmpBB:
1405    //   jmp_if_Y TBB
1406    //   jmp FBB
1407    //
1408
1409    // Emit the LHS condition.
1410    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1411
1412    // Emit the RHS condition into TmpBB.
1413    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1414  } else {
1415    assert(Opc == Instruction::And && "Unknown merge op!");
1416    // Codegen X & Y as:
1417    //   jmp_if_X TmpBB
1418    //   jmp FBB
1419    // TmpBB:
1420    //   jmp_if_Y TBB
1421    //   jmp FBB
1422    //
1423    //  This requires creation of TmpBB after CurBB.
1424
1425    // Emit the LHS condition.
1426    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1427
1428    // Emit the RHS condition into TmpBB.
1429    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1430  }
1431}
1432
1433/// If the set of cases should be emitted as a series of branches, return true.
1434/// If we should emit this as a bunch of and/or'd together conditions, return
1435/// false.
1436bool
1437SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1438  if (Cases.size() != 2) return true;
1439
1440  // If this is two comparisons of the same values or'd or and'd together, they
1441  // will get folded into a single comparison, so don't emit two blocks.
1442  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1443       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1444      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1445       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1446    return false;
1447  }
1448
1449  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1450  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1451  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1452      Cases[0].CC == Cases[1].CC &&
1453      isa<Constant>(Cases[0].CmpRHS) &&
1454      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1455    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1456      return false;
1457    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1458      return false;
1459  }
1460
1461  return true;
1462}
1463
1464void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1465  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1466
1467  // Update machine-CFG edges.
1468  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1469
1470  // Figure out which block is immediately after the current one.
1471  MachineBasicBlock *NextBlock = 0;
1472  MachineFunction::iterator BBI = BrMBB;
1473  if (++BBI != FuncInfo.MF->end())
1474    NextBlock = BBI;
1475
1476  if (I.isUnconditional()) {
1477    // Update machine-CFG edges.
1478    BrMBB->addSuccessor(Succ0MBB);
1479
1480    // If this is not a fall-through branch, emit the branch.
1481    if (Succ0MBB != NextBlock)
1482      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1483                              MVT::Other, getControlRoot(),
1484                              DAG.getBasicBlock(Succ0MBB)));
1485
1486    return;
1487  }
1488
1489  // If this condition is one of the special cases we handle, do special stuff
1490  // now.
1491  const Value *CondVal = I.getCondition();
1492  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1493
1494  // If this is a series of conditions that are or'd or and'd together, emit
1495  // this as a sequence of branches instead of setcc's with and/or operations.
1496  // As long as jumps are not expensive, this should improve performance.
1497  // For example, instead of something like:
1498  //     cmp A, B
1499  //     C = seteq
1500  //     cmp D, E
1501  //     F = setle
1502  //     or C, F
1503  //     jnz foo
1504  // Emit:
1505  //     cmp A, B
1506  //     je foo
1507  //     cmp D, E
1508  //     jle foo
1509  //
1510  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1511    if (!TLI.isJumpExpensive() &&
1512        BOp->hasOneUse() &&
1513        (BOp->getOpcode() == Instruction::And ||
1514         BOp->getOpcode() == Instruction::Or)) {
1515      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1516                           BOp->getOpcode());
1517      // If the compares in later blocks need to use values not currently
1518      // exported from this block, export them now.  This block should always
1519      // be the first entry.
1520      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1521
1522      // Allow some cases to be rejected.
1523      if (ShouldEmitAsBranches(SwitchCases)) {
1524        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1525          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1526          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1527        }
1528
1529        // Emit the branch for this block.
1530        visitSwitchCase(SwitchCases[0], BrMBB);
1531        SwitchCases.erase(SwitchCases.begin());
1532        return;
1533      }
1534
1535      // Okay, we decided not to do this, remove any inserted MBB's and clear
1536      // SwitchCases.
1537      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1538        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1539
1540      SwitchCases.clear();
1541    }
1542  }
1543
1544  // Create a CaseBlock record representing this branch.
1545  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1546               NULL, Succ0MBB, Succ1MBB, BrMBB);
1547
1548  // Use visitSwitchCase to actually insert the fast branch sequence for this
1549  // cond branch.
1550  visitSwitchCase(CB, BrMBB);
1551}
1552
1553/// visitSwitchCase - Emits the necessary code to represent a single node in
1554/// the binary search tree resulting from lowering a switch instruction.
1555void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1556                                          MachineBasicBlock *SwitchBB) {
1557  SDValue Cond;
1558  SDValue CondLHS = getValue(CB.CmpLHS);
1559  DebugLoc dl = getCurDebugLoc();
1560
1561  // Build the setcc now.
1562  if (CB.CmpMHS == NULL) {
1563    // Fold "(X == true)" to X and "(X == false)" to !X to
1564    // handle common cases produced by branch lowering.
1565    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1566        CB.CC == ISD::SETEQ)
1567      Cond = CondLHS;
1568    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1569             CB.CC == ISD::SETEQ) {
1570      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1571      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1572    } else
1573      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1574  } else {
1575    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1576
1577    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1578    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1579
1580    SDValue CmpOp = getValue(CB.CmpMHS);
1581    EVT VT = CmpOp.getValueType();
1582
1583    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1584      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1585                          ISD::SETLE);
1586    } else {
1587      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1588                                VT, CmpOp, DAG.getConstant(Low, VT));
1589      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1590                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1591    }
1592  }
1593
1594  // Update successor info
1595  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1596  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1597
1598  // Set NextBlock to be the MBB immediately after the current one, if any.
1599  // This is used to avoid emitting unnecessary branches to the next block.
1600  MachineBasicBlock *NextBlock = 0;
1601  MachineFunction::iterator BBI = SwitchBB;
1602  if (++BBI != FuncInfo.MF->end())
1603    NextBlock = BBI;
1604
1605  // If the lhs block is the next block, invert the condition so that we can
1606  // fall through to the lhs instead of the rhs block.
1607  if (CB.TrueBB == NextBlock) {
1608    std::swap(CB.TrueBB, CB.FalseBB);
1609    SDValue True = DAG.getConstant(1, Cond.getValueType());
1610    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1611  }
1612
1613  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1614                               MVT::Other, getControlRoot(), Cond,
1615                               DAG.getBasicBlock(CB.TrueBB));
1616
1617  // Insert the false branch. Do this even if it's a fall through branch,
1618  // this makes it easier to do DAG optimizations which require inverting
1619  // the branch condition.
1620  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1621                       DAG.getBasicBlock(CB.FalseBB));
1622
1623  DAG.setRoot(BrCond);
1624}
1625
1626/// visitJumpTable - Emit JumpTable node in the current MBB
1627void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1628  // Emit the code for the jump table
1629  assert(JT.Reg != -1U && "Should lower JT Header first!");
1630  EVT PTy = TLI.getPointerTy();
1631  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1632                                     JT.Reg, PTy);
1633  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1634  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1635                                    MVT::Other, Index.getValue(1),
1636                                    Table, Index);
1637  DAG.setRoot(BrJumpTable);
1638}
1639
1640/// visitJumpTableHeader - This function emits necessary code to produce index
1641/// in the JumpTable from switch case.
1642void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1643                                               JumpTableHeader &JTH,
1644                                               MachineBasicBlock *SwitchBB) {
1645  // Subtract the lowest switch case value from the value being switched on and
1646  // conditional branch to default mbb if the result is greater than the
1647  // difference between smallest and largest cases.
1648  SDValue SwitchOp = getValue(JTH.SValue);
1649  EVT VT = SwitchOp.getValueType();
1650  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1651                            DAG.getConstant(JTH.First, VT));
1652
1653  // The SDNode we just created, which holds the value being switched on minus
1654  // the smallest case value, needs to be copied to a virtual register so it
1655  // can be used as an index into the jump table in a subsequent basic block.
1656  // This value may be smaller or larger than the target's pointer type, and
1657  // therefore require extension or truncating.
1658  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1659
1660  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1661  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1662                                    JumpTableReg, SwitchOp);
1663  JT.Reg = JumpTableReg;
1664
1665  // Emit the range check for the jump table, and branch to the default block
1666  // for the switch statement if the value being switched on exceeds the largest
1667  // case in the switch.
1668  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1669                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1670                             DAG.getConstant(JTH.Last-JTH.First,VT),
1671                             ISD::SETUGT);
1672
1673  // Set NextBlock to be the MBB immediately after the current one, if any.
1674  // This is used to avoid emitting unnecessary branches to the next block.
1675  MachineBasicBlock *NextBlock = 0;
1676  MachineFunction::iterator BBI = SwitchBB;
1677
1678  if (++BBI != FuncInfo.MF->end())
1679    NextBlock = BBI;
1680
1681  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1682                               MVT::Other, CopyTo, CMP,
1683                               DAG.getBasicBlock(JT.Default));
1684
1685  if (JT.MBB != NextBlock)
1686    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1687                         DAG.getBasicBlock(JT.MBB));
1688
1689  DAG.setRoot(BrCond);
1690}
1691
1692/// visitBitTestHeader - This function emits necessary code to produce value
1693/// suitable for "bit tests"
1694void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1695                                             MachineBasicBlock *SwitchBB) {
1696  // Subtract the minimum value
1697  SDValue SwitchOp = getValue(B.SValue);
1698  EVT VT = SwitchOp.getValueType();
1699  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1700                            DAG.getConstant(B.First, VT));
1701
1702  // Check range
1703  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1704                                  TLI.getSetCCResultType(Sub.getValueType()),
1705                                  Sub, DAG.getConstant(B.Range, VT),
1706                                  ISD::SETUGT);
1707
1708  // Determine the type of the test operands.
1709  bool UsePtrType = false;
1710  if (!TLI.isTypeLegal(VT))
1711    UsePtrType = true;
1712  else {
1713    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1714      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1715        // Switch table case range are encoded into series of masks.
1716        // Just use pointer type, it's guaranteed to fit.
1717        UsePtrType = true;
1718        break;
1719      }
1720  }
1721  if (UsePtrType) {
1722    VT = TLI.getPointerTy();
1723    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1724  }
1725
1726  B.RegVT = VT;
1727  B.Reg = FuncInfo.CreateReg(VT);
1728  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1729                                    B.Reg, Sub);
1730
1731  // Set NextBlock to be the MBB immediately after the current one, if any.
1732  // This is used to avoid emitting unnecessary branches to the next block.
1733  MachineBasicBlock *NextBlock = 0;
1734  MachineFunction::iterator BBI = SwitchBB;
1735  if (++BBI != FuncInfo.MF->end())
1736    NextBlock = BBI;
1737
1738  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1739
1740  addSuccessorWithWeight(SwitchBB, B.Default);
1741  addSuccessorWithWeight(SwitchBB, MBB);
1742
1743  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1744                                MVT::Other, CopyTo, RangeCmp,
1745                                DAG.getBasicBlock(B.Default));
1746
1747  if (MBB != NextBlock)
1748    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1749                          DAG.getBasicBlock(MBB));
1750
1751  DAG.setRoot(BrRange);
1752}
1753
1754/// visitBitTestCase - this function produces one "bit test"
1755void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1756                                           MachineBasicBlock* NextMBB,
1757                                           unsigned Reg,
1758                                           BitTestCase &B,
1759                                           MachineBasicBlock *SwitchBB) {
1760  EVT VT = BB.RegVT;
1761  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1762                                       Reg, VT);
1763  SDValue Cmp;
1764  unsigned PopCount = CountPopulation_64(B.Mask);
1765  if (PopCount == 1) {
1766    // Testing for a single bit; just compare the shift count with what it
1767    // would need to be to shift a 1 bit in that position.
1768    Cmp = DAG.getSetCC(getCurDebugLoc(),
1769                       TLI.getSetCCResultType(VT),
1770                       ShiftOp,
1771                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1772                       ISD::SETEQ);
1773  } else if (PopCount == BB.Range) {
1774    // There is only one zero bit in the range, test for it directly.
1775    Cmp = DAG.getSetCC(getCurDebugLoc(),
1776                       TLI.getSetCCResultType(VT),
1777                       ShiftOp,
1778                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1779                       ISD::SETNE);
1780  } else {
1781    // Make desired shift
1782    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1783                                    DAG.getConstant(1, VT), ShiftOp);
1784
1785    // Emit bit tests and jumps
1786    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1787                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1788    Cmp = DAG.getSetCC(getCurDebugLoc(),
1789                       TLI.getSetCCResultType(VT),
1790                       AndOp, DAG.getConstant(0, VT),
1791                       ISD::SETNE);
1792  }
1793
1794  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1795  addSuccessorWithWeight(SwitchBB, NextMBB);
1796
1797  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1798                              MVT::Other, getControlRoot(),
1799                              Cmp, DAG.getBasicBlock(B.TargetBB));
1800
1801  // Set NextBlock to be the MBB immediately after the current one, if any.
1802  // This is used to avoid emitting unnecessary branches to the next block.
1803  MachineBasicBlock *NextBlock = 0;
1804  MachineFunction::iterator BBI = SwitchBB;
1805  if (++BBI != FuncInfo.MF->end())
1806    NextBlock = BBI;
1807
1808  if (NextMBB != NextBlock)
1809    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1810                        DAG.getBasicBlock(NextMBB));
1811
1812  DAG.setRoot(BrAnd);
1813}
1814
1815void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1816  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1817
1818  // Retrieve successors.
1819  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1820  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1821
1822  const Value *Callee(I.getCalledValue());
1823  if (isa<InlineAsm>(Callee))
1824    visitInlineAsm(&I);
1825  else
1826    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1827
1828  // If the value of the invoke is used outside of its defining block, make it
1829  // available as a virtual register.
1830  CopyToExportRegsIfNeeded(&I);
1831
1832  // Update successor info
1833  addSuccessorWithWeight(InvokeMBB, Return);
1834  addSuccessorWithWeight(InvokeMBB, LandingPad);
1835
1836  // Drop into normal successor.
1837  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1838                          MVT::Other, getControlRoot(),
1839                          DAG.getBasicBlock(Return)));
1840}
1841
1842void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1843}
1844
1845void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1846  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1847}
1848
1849void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1850  assert(FuncInfo.MBB->isLandingPad() &&
1851         "Call to landingpad not in landing pad!");
1852
1853  MachineBasicBlock *MBB = FuncInfo.MBB;
1854  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1855  AddLandingPadInfo(LP, MMI, MBB);
1856
1857  SmallVector<EVT, 2> ValueVTs;
1858  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1859
1860  // Insert the EXCEPTIONADDR instruction.
1861  assert(FuncInfo.MBB->isLandingPad() &&
1862         "Call to eh.exception not in landing pad!");
1863  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1864  SDValue Ops[2];
1865  Ops[0] = DAG.getRoot();
1866  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1867  SDValue Chain = Op1.getValue(1);
1868
1869  // Insert the EHSELECTION instruction.
1870  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1871  Ops[0] = Op1;
1872  Ops[1] = Chain;
1873  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1874  Chain = Op2.getValue(1);
1875  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1876
1877  Ops[0] = Op1;
1878  Ops[1] = Op2;
1879  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1880                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1881                            &Ops[0], 2);
1882
1883  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1884  setValue(&LP, RetPair.first);
1885  DAG.setRoot(RetPair.second);
1886}
1887
1888/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1889/// small case ranges).
1890bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1891                                                 CaseRecVector& WorkList,
1892                                                 const Value* SV,
1893                                                 MachineBasicBlock *Default,
1894                                                 MachineBasicBlock *SwitchBB) {
1895  Case& BackCase  = *(CR.Range.second-1);
1896
1897  // Size is the number of Cases represented by this range.
1898  size_t Size = CR.Range.second - CR.Range.first;
1899  if (Size > 3)
1900    return false;
1901
1902  // Get the MachineFunction which holds the current MBB.  This is used when
1903  // inserting any additional MBBs necessary to represent the switch.
1904  MachineFunction *CurMF = FuncInfo.MF;
1905
1906  // Figure out which block is immediately after the current one.
1907  MachineBasicBlock *NextBlock = 0;
1908  MachineFunction::iterator BBI = CR.CaseBB;
1909
1910  if (++BBI != FuncInfo.MF->end())
1911    NextBlock = BBI;
1912
1913  // If any two of the cases has the same destination, and if one value
1914  // is the same as the other, but has one bit unset that the other has set,
1915  // use bit manipulation to do two compares at once.  For example:
1916  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1917  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1918  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1919  if (Size == 2 && CR.CaseBB == SwitchBB) {
1920    Case &Small = *CR.Range.first;
1921    Case &Big = *(CR.Range.second-1);
1922
1923    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1924      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1925      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1926
1927      // Check that there is only one bit different.
1928      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1929          (SmallValue | BigValue) == BigValue) {
1930        // Isolate the common bit.
1931        APInt CommonBit = BigValue & ~SmallValue;
1932        assert((SmallValue | CommonBit) == BigValue &&
1933               CommonBit.countPopulation() == 1 && "Not a common bit?");
1934
1935        SDValue CondLHS = getValue(SV);
1936        EVT VT = CondLHS.getValueType();
1937        DebugLoc DL = getCurDebugLoc();
1938
1939        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1940                                 DAG.getConstant(CommonBit, VT));
1941        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1942                                    Or, DAG.getConstant(BigValue, VT),
1943                                    ISD::SETEQ);
1944
1945        // Update successor info.
1946        addSuccessorWithWeight(SwitchBB, Small.BB);
1947        addSuccessorWithWeight(SwitchBB, Default);
1948
1949        // Insert the true branch.
1950        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1951                                     getControlRoot(), Cond,
1952                                     DAG.getBasicBlock(Small.BB));
1953
1954        // Insert the false branch.
1955        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1956                             DAG.getBasicBlock(Default));
1957
1958        DAG.setRoot(BrCond);
1959        return true;
1960      }
1961    }
1962  }
1963
1964  // Rearrange the case blocks so that the last one falls through if possible.
1965  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1966    // The last case block won't fall through into 'NextBlock' if we emit the
1967    // branches in this order.  See if rearranging a case value would help.
1968    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1969      if (I->BB == NextBlock) {
1970        std::swap(*I, BackCase);
1971        break;
1972      }
1973    }
1974  }
1975
1976  // Create a CaseBlock record representing a conditional branch to
1977  // the Case's target mbb if the value being switched on SV is equal
1978  // to C.
1979  MachineBasicBlock *CurBlock = CR.CaseBB;
1980  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1981    MachineBasicBlock *FallThrough;
1982    if (I != E-1) {
1983      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1984      CurMF->insert(BBI, FallThrough);
1985
1986      // Put SV in a virtual register to make it available from the new blocks.
1987      ExportFromCurrentBlock(SV);
1988    } else {
1989      // If the last case doesn't match, go to the default block.
1990      FallThrough = Default;
1991    }
1992
1993    const Value *RHS, *LHS, *MHS;
1994    ISD::CondCode CC;
1995    if (I->High == I->Low) {
1996      // This is just small small case range :) containing exactly 1 case
1997      CC = ISD::SETEQ;
1998      LHS = SV; RHS = I->High; MHS = NULL;
1999    } else {
2000      CC = ISD::SETLE;
2001      LHS = I->Low; MHS = SV; RHS = I->High;
2002    }
2003
2004    uint32_t ExtraWeight = I->ExtraWeight;
2005    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2006                 /* me */ CurBlock,
2007                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
2008
2009    // If emitting the first comparison, just call visitSwitchCase to emit the
2010    // code into the current block.  Otherwise, push the CaseBlock onto the
2011    // vector to be later processed by SDISel, and insert the node's MBB
2012    // before the next MBB.
2013    if (CurBlock == SwitchBB)
2014      visitSwitchCase(CB, SwitchBB);
2015    else
2016      SwitchCases.push_back(CB);
2017
2018    CurBlock = FallThrough;
2019  }
2020
2021  return true;
2022}
2023
2024static inline bool areJTsAllowed(const TargetLowering &TLI) {
2025  return !TLI.getTargetMachine().Options.DisableJumpTables &&
2026          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2027           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2028}
2029
2030static APInt ComputeRange(const APInt &First, const APInt &Last) {
2031  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2032  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2033  return (LastExt - FirstExt + 1ULL);
2034}
2035
2036/// handleJTSwitchCase - Emit jumptable for current switch case range
2037bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2038                                             CaseRecVector &WorkList,
2039                                             const Value *SV,
2040                                             MachineBasicBlock *Default,
2041                                             MachineBasicBlock *SwitchBB) {
2042  Case& FrontCase = *CR.Range.first;
2043  Case& BackCase  = *(CR.Range.second-1);
2044
2045  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2046  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2047
2048  APInt TSize(First.getBitWidth(), 0);
2049  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2050    TSize += I->size();
2051
2052  if (!areJTsAllowed(TLI) || TSize.ult(4))
2053    return false;
2054
2055  APInt Range = ComputeRange(First, Last);
2056  // The density is TSize / Range. Require at least 40%.
2057  // It should not be possible for IntTSize to saturate for sane code, but make
2058  // sure we handle Range saturation correctly.
2059  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2060  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2061  if (IntTSize * 10 < IntRange * 4)
2062    return false;
2063
2064  DEBUG(dbgs() << "Lowering jump table\n"
2065               << "First entry: " << First << ". Last entry: " << Last << '\n'
2066               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2067
2068  // Get the MachineFunction which holds the current MBB.  This is used when
2069  // inserting any additional MBBs necessary to represent the switch.
2070  MachineFunction *CurMF = FuncInfo.MF;
2071
2072  // Figure out which block is immediately after the current one.
2073  MachineFunction::iterator BBI = CR.CaseBB;
2074  ++BBI;
2075
2076  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2077
2078  // Create a new basic block to hold the code for loading the address
2079  // of the jump table, and jumping to it.  Update successor information;
2080  // we will either branch to the default case for the switch, or the jump
2081  // table.
2082  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2083  CurMF->insert(BBI, JumpTableBB);
2084
2085  addSuccessorWithWeight(CR.CaseBB, Default);
2086  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2087
2088  // Build a vector of destination BBs, corresponding to each target
2089  // of the jump table. If the value of the jump table slot corresponds to
2090  // a case statement, push the case's BB onto the vector, otherwise, push
2091  // the default BB.
2092  std::vector<MachineBasicBlock*> DestBBs;
2093  APInt TEI = First;
2094  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2095    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2096    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2097
2098    if (Low.sle(TEI) && TEI.sle(High)) {
2099      DestBBs.push_back(I->BB);
2100      if (TEI==High)
2101        ++I;
2102    } else {
2103      DestBBs.push_back(Default);
2104    }
2105  }
2106
2107  // Update successor info. Add one edge to each unique successor.
2108  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2109  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2110         E = DestBBs.end(); I != E; ++I) {
2111    if (!SuccsHandled[(*I)->getNumber()]) {
2112      SuccsHandled[(*I)->getNumber()] = true;
2113      addSuccessorWithWeight(JumpTableBB, *I);
2114    }
2115  }
2116
2117  // Create a jump table index for this jump table.
2118  unsigned JTEncoding = TLI.getJumpTableEncoding();
2119  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2120                       ->createJumpTableIndex(DestBBs);
2121
2122  // Set the jump table information so that we can codegen it as a second
2123  // MachineBasicBlock
2124  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2125  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2126  if (CR.CaseBB == SwitchBB)
2127    visitJumpTableHeader(JT, JTH, SwitchBB);
2128
2129  JTCases.push_back(JumpTableBlock(JTH, JT));
2130  return true;
2131}
2132
2133/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2134/// 2 subtrees.
2135bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2136                                                  CaseRecVector& WorkList,
2137                                                  const Value* SV,
2138                                                  MachineBasicBlock *Default,
2139                                                  MachineBasicBlock *SwitchBB) {
2140  // Get the MachineFunction which holds the current MBB.  This is used when
2141  // inserting any additional MBBs necessary to represent the switch.
2142  MachineFunction *CurMF = FuncInfo.MF;
2143
2144  // Figure out which block is immediately after the current one.
2145  MachineFunction::iterator BBI = CR.CaseBB;
2146  ++BBI;
2147
2148  Case& FrontCase = *CR.Range.first;
2149  Case& BackCase  = *(CR.Range.second-1);
2150  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2151
2152  // Size is the number of Cases represented by this range.
2153  unsigned Size = CR.Range.second - CR.Range.first;
2154
2155  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2156  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2157  double FMetric = 0;
2158  CaseItr Pivot = CR.Range.first + Size/2;
2159
2160  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2161  // (heuristically) allow us to emit JumpTable's later.
2162  APInt TSize(First.getBitWidth(), 0);
2163  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2164       I!=E; ++I)
2165    TSize += I->size();
2166
2167  APInt LSize = FrontCase.size();
2168  APInt RSize = TSize-LSize;
2169  DEBUG(dbgs() << "Selecting best pivot: \n"
2170               << "First: " << First << ", Last: " << Last <<'\n'
2171               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2172  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2173       J!=E; ++I, ++J) {
2174    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2175    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2176    APInt Range = ComputeRange(LEnd, RBegin);
2177    assert((Range - 2ULL).isNonNegative() &&
2178           "Invalid case distance");
2179    // Use volatile double here to avoid excess precision issues on some hosts,
2180    // e.g. that use 80-bit X87 registers.
2181    volatile double LDensity =
2182       (double)LSize.roundToDouble() /
2183                           (LEnd - First + 1ULL).roundToDouble();
2184    volatile double RDensity =
2185      (double)RSize.roundToDouble() /
2186                           (Last - RBegin + 1ULL).roundToDouble();
2187    double Metric = Range.logBase2()*(LDensity+RDensity);
2188    // Should always split in some non-trivial place
2189    DEBUG(dbgs() <<"=>Step\n"
2190                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2191                 << "LDensity: " << LDensity
2192                 << ", RDensity: " << RDensity << '\n'
2193                 << "Metric: " << Metric << '\n');
2194    if (FMetric < Metric) {
2195      Pivot = J;
2196      FMetric = Metric;
2197      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2198    }
2199
2200    LSize += J->size();
2201    RSize -= J->size();
2202  }
2203  if (areJTsAllowed(TLI)) {
2204    // If our case is dense we *really* should handle it earlier!
2205    assert((FMetric > 0) && "Should handle dense range earlier!");
2206  } else {
2207    Pivot = CR.Range.first + Size/2;
2208  }
2209
2210  CaseRange LHSR(CR.Range.first, Pivot);
2211  CaseRange RHSR(Pivot, CR.Range.second);
2212  const Constant *C = Pivot->Low;
2213  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2214
2215  // We know that we branch to the LHS if the Value being switched on is
2216  // less than the Pivot value, C.  We use this to optimize our binary
2217  // tree a bit, by recognizing that if SV is greater than or equal to the
2218  // LHS's Case Value, and that Case Value is exactly one less than the
2219  // Pivot's Value, then we can branch directly to the LHS's Target,
2220  // rather than creating a leaf node for it.
2221  if ((LHSR.second - LHSR.first) == 1 &&
2222      LHSR.first->High == CR.GE &&
2223      cast<ConstantInt>(C)->getValue() ==
2224      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2225    TrueBB = LHSR.first->BB;
2226  } else {
2227    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2228    CurMF->insert(BBI, TrueBB);
2229    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2230
2231    // Put SV in a virtual register to make it available from the new blocks.
2232    ExportFromCurrentBlock(SV);
2233  }
2234
2235  // Similar to the optimization above, if the Value being switched on is
2236  // known to be less than the Constant CR.LT, and the current Case Value
2237  // is CR.LT - 1, then we can branch directly to the target block for
2238  // the current Case Value, rather than emitting a RHS leaf node for it.
2239  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2240      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2241      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2242    FalseBB = RHSR.first->BB;
2243  } else {
2244    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2245    CurMF->insert(BBI, FalseBB);
2246    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2247
2248    // Put SV in a virtual register to make it available from the new blocks.
2249    ExportFromCurrentBlock(SV);
2250  }
2251
2252  // Create a CaseBlock record representing a conditional branch to
2253  // the LHS node if the value being switched on SV is less than C.
2254  // Otherwise, branch to LHS.
2255  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2256
2257  if (CR.CaseBB == SwitchBB)
2258    visitSwitchCase(CB, SwitchBB);
2259  else
2260    SwitchCases.push_back(CB);
2261
2262  return true;
2263}
2264
2265/// handleBitTestsSwitchCase - if current case range has few destination and
2266/// range span less, than machine word bitwidth, encode case range into series
2267/// of masks and emit bit tests with these masks.
2268bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2269                                                   CaseRecVector& WorkList,
2270                                                   const Value* SV,
2271                                                   MachineBasicBlock* Default,
2272                                                   MachineBasicBlock *SwitchBB){
2273  EVT PTy = TLI.getPointerTy();
2274  unsigned IntPtrBits = PTy.getSizeInBits();
2275
2276  Case& FrontCase = *CR.Range.first;
2277  Case& BackCase  = *(CR.Range.second-1);
2278
2279  // Get the MachineFunction which holds the current MBB.  This is used when
2280  // inserting any additional MBBs necessary to represent the switch.
2281  MachineFunction *CurMF = FuncInfo.MF;
2282
2283  // If target does not have legal shift left, do not emit bit tests at all.
2284  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2285    return false;
2286
2287  size_t numCmps = 0;
2288  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2289       I!=E; ++I) {
2290    // Single case counts one, case range - two.
2291    numCmps += (I->Low == I->High ? 1 : 2);
2292  }
2293
2294  // Count unique destinations
2295  SmallSet<MachineBasicBlock*, 4> Dests;
2296  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2297    Dests.insert(I->BB);
2298    if (Dests.size() > 3)
2299      // Don't bother the code below, if there are too much unique destinations
2300      return false;
2301  }
2302  DEBUG(dbgs() << "Total number of unique destinations: "
2303        << Dests.size() << '\n'
2304        << "Total number of comparisons: " << numCmps << '\n');
2305
2306  // Compute span of values.
2307  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2308  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2309  APInt cmpRange = maxValue - minValue;
2310
2311  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2312               << "Low bound: " << minValue << '\n'
2313               << "High bound: " << maxValue << '\n');
2314
2315  if (cmpRange.uge(IntPtrBits) ||
2316      (!(Dests.size() == 1 && numCmps >= 3) &&
2317       !(Dests.size() == 2 && numCmps >= 5) &&
2318       !(Dests.size() >= 3 && numCmps >= 6)))
2319    return false;
2320
2321  DEBUG(dbgs() << "Emitting bit tests\n");
2322  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2323
2324  // Optimize the case where all the case values fit in a
2325  // word without having to subtract minValue. In this case,
2326  // we can optimize away the subtraction.
2327  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2328    cmpRange = maxValue;
2329  } else {
2330    lowBound = minValue;
2331  }
2332
2333  CaseBitsVector CasesBits;
2334  unsigned i, count = 0;
2335
2336  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2337    MachineBasicBlock* Dest = I->BB;
2338    for (i = 0; i < count; ++i)
2339      if (Dest == CasesBits[i].BB)
2340        break;
2341
2342    if (i == count) {
2343      assert((count < 3) && "Too much destinations to test!");
2344      CasesBits.push_back(CaseBits(0, Dest, 0));
2345      count++;
2346    }
2347
2348    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2349    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2350
2351    uint64_t lo = (lowValue - lowBound).getZExtValue();
2352    uint64_t hi = (highValue - lowBound).getZExtValue();
2353
2354    for (uint64_t j = lo; j <= hi; j++) {
2355      CasesBits[i].Mask |=  1ULL << j;
2356      CasesBits[i].Bits++;
2357    }
2358
2359  }
2360  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2361
2362  BitTestInfo BTC;
2363
2364  // Figure out which block is immediately after the current one.
2365  MachineFunction::iterator BBI = CR.CaseBB;
2366  ++BBI;
2367
2368  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2369
2370  DEBUG(dbgs() << "Cases:\n");
2371  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2372    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2373                 << ", Bits: " << CasesBits[i].Bits
2374                 << ", BB: " << CasesBits[i].BB << '\n');
2375
2376    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2377    CurMF->insert(BBI, CaseBB);
2378    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2379                              CaseBB,
2380                              CasesBits[i].BB));
2381
2382    // Put SV in a virtual register to make it available from the new blocks.
2383    ExportFromCurrentBlock(SV);
2384  }
2385
2386  BitTestBlock BTB(lowBound, cmpRange, SV,
2387                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2388                   CR.CaseBB, Default, BTC);
2389
2390  if (CR.CaseBB == SwitchBB)
2391    visitBitTestHeader(BTB, SwitchBB);
2392
2393  BitTestCases.push_back(BTB);
2394
2395  return true;
2396}
2397
2398/// Clusterify - Transform simple list of Cases into list of CaseRange's
2399size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2400                                       const SwitchInst& SI) {
2401  size_t numCmps = 0;
2402
2403  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2404  // Start with "simple" cases
2405  for (size_t i = 0; i < SI.getNumCases(); ++i) {
2406    BasicBlock *SuccBB = SI.getCaseSuccessor(i);
2407    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2408
2409    uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2410
2411    Cases.push_back(Case(SI.getCaseValue(i),
2412                         SI.getCaseValue(i),
2413                         SMBB, ExtraWeight));
2414  }
2415  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2416
2417  // Merge case into clusters
2418  if (Cases.size() >= 2)
2419    // Must recompute end() each iteration because it may be
2420    // invalidated by erase if we hold on to it
2421    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2422         J != Cases.end(); ) {
2423      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2424      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2425      MachineBasicBlock* nextBB = J->BB;
2426      MachineBasicBlock* currentBB = I->BB;
2427
2428      // If the two neighboring cases go to the same destination, merge them
2429      // into a single case.
2430      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2431        I->High = J->High;
2432        J = Cases.erase(J);
2433
2434        if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2435          uint32_t CurWeight = currentBB->getBasicBlock() ?
2436            BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2437          uint32_t NextWeight = nextBB->getBasicBlock() ?
2438            BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2439
2440          BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2441                             CurWeight + NextWeight);
2442        }
2443      } else {
2444        I = J++;
2445      }
2446    }
2447
2448  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2449    if (I->Low != I->High)
2450      // A range counts double, since it requires two compares.
2451      ++numCmps;
2452  }
2453
2454  return numCmps;
2455}
2456
2457void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2458                                           MachineBasicBlock *Last) {
2459  // Update JTCases.
2460  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2461    if (JTCases[i].first.HeaderBB == First)
2462      JTCases[i].first.HeaderBB = Last;
2463
2464  // Update BitTestCases.
2465  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2466    if (BitTestCases[i].Parent == First)
2467      BitTestCases[i].Parent = Last;
2468}
2469
2470void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2471  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2472
2473  // Figure out which block is immediately after the current one.
2474  MachineBasicBlock *NextBlock = 0;
2475  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2476
2477  // If there is only the default destination, branch to it if it is not the
2478  // next basic block.  Otherwise, just fall through.
2479  if (!SI.getNumCases()) {
2480    // Update machine-CFG edges.
2481
2482    // If this is not a fall-through branch, emit the branch.
2483    SwitchMBB->addSuccessor(Default);
2484    if (Default != NextBlock)
2485      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2486                              MVT::Other, getControlRoot(),
2487                              DAG.getBasicBlock(Default)));
2488
2489    return;
2490  }
2491
2492  // If there are any non-default case statements, create a vector of Cases
2493  // representing each one, and sort the vector so that we can efficiently
2494  // create a binary search tree from them.
2495  CaseVector Cases;
2496  size_t numCmps = Clusterify(Cases, SI);
2497  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2498               << ". Total compares: " << numCmps << '\n');
2499  (void)numCmps;
2500
2501  // Get the Value to be switched on and default basic blocks, which will be
2502  // inserted into CaseBlock records, representing basic blocks in the binary
2503  // search tree.
2504  const Value *SV = SI.getCondition();
2505
2506  // Push the initial CaseRec onto the worklist
2507  CaseRecVector WorkList;
2508  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2509                             CaseRange(Cases.begin(),Cases.end())));
2510
2511  while (!WorkList.empty()) {
2512    // Grab a record representing a case range to process off the worklist
2513    CaseRec CR = WorkList.back();
2514    WorkList.pop_back();
2515
2516    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2517      continue;
2518
2519    // If the range has few cases (two or less) emit a series of specific
2520    // tests.
2521    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2522      continue;
2523
2524    // If the switch has more than 5 blocks, and at least 40% dense, and the
2525    // target supports indirect branches, then emit a jump table rather than
2526    // lowering the switch to a binary tree of conditional branches.
2527    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2528      continue;
2529
2530    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2531    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2532    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2533  }
2534}
2535
2536void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2537  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2538
2539  // Update machine-CFG edges with unique successors.
2540  SmallVector<BasicBlock*, 32> succs;
2541  succs.reserve(I.getNumSuccessors());
2542  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2543    succs.push_back(I.getSuccessor(i));
2544  array_pod_sort(succs.begin(), succs.end());
2545  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2546  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2547    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2548    addSuccessorWithWeight(IndirectBrMBB, Succ);
2549  }
2550
2551  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2552                          MVT::Other, getControlRoot(),
2553                          getValue(I.getAddress())));
2554}
2555
2556void SelectionDAGBuilder::visitFSub(const User &I) {
2557  // -0.0 - X --> fneg
2558  Type *Ty = I.getType();
2559  if (isa<Constant>(I.getOperand(0)) &&
2560      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2561    SDValue Op2 = getValue(I.getOperand(1));
2562    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2563                             Op2.getValueType(), Op2));
2564    return;
2565  }
2566
2567  visitBinary(I, ISD::FSUB);
2568}
2569
2570void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2571  SDValue Op1 = getValue(I.getOperand(0));
2572  SDValue Op2 = getValue(I.getOperand(1));
2573  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2574                           Op1.getValueType(), Op1, Op2));
2575}
2576
2577void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2578  SDValue Op1 = getValue(I.getOperand(0));
2579  SDValue Op2 = getValue(I.getOperand(1));
2580
2581  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2582
2583  // Coerce the shift amount to the right type if we can.
2584  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2585    unsigned ShiftSize = ShiftTy.getSizeInBits();
2586    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2587    DebugLoc DL = getCurDebugLoc();
2588
2589    // If the operand is smaller than the shift count type, promote it.
2590    if (ShiftSize > Op2Size)
2591      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2592
2593    // If the operand is larger than the shift count type but the shift
2594    // count type has enough bits to represent any shift value, truncate
2595    // it now. This is a common case and it exposes the truncate to
2596    // optimization early.
2597    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2598      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2599    // Otherwise we'll need to temporarily settle for some other convenient
2600    // type.  Type legalization will make adjustments once the shiftee is split.
2601    else
2602      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2603  }
2604
2605  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2606                           Op1.getValueType(), Op1, Op2));
2607}
2608
2609void SelectionDAGBuilder::visitSDiv(const User &I) {
2610  SDValue Op1 = getValue(I.getOperand(0));
2611  SDValue Op2 = getValue(I.getOperand(1));
2612
2613  // Turn exact SDivs into multiplications.
2614  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2615  // exact bit.
2616  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2617      !isa<ConstantSDNode>(Op1) &&
2618      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2619    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2620  else
2621    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2622                             Op1, Op2));
2623}
2624
2625void SelectionDAGBuilder::visitICmp(const User &I) {
2626  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2627  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2628    predicate = IC->getPredicate();
2629  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2630    predicate = ICmpInst::Predicate(IC->getPredicate());
2631  SDValue Op1 = getValue(I.getOperand(0));
2632  SDValue Op2 = getValue(I.getOperand(1));
2633  ISD::CondCode Opcode = getICmpCondCode(predicate);
2634
2635  EVT DestVT = TLI.getValueType(I.getType());
2636  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2637}
2638
2639void SelectionDAGBuilder::visitFCmp(const User &I) {
2640  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2641  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2642    predicate = FC->getPredicate();
2643  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2644    predicate = FCmpInst::Predicate(FC->getPredicate());
2645  SDValue Op1 = getValue(I.getOperand(0));
2646  SDValue Op2 = getValue(I.getOperand(1));
2647  ISD::CondCode Condition = getFCmpCondCode(predicate);
2648  if (TM.Options.NoNaNsFPMath)
2649    Condition = getFCmpCodeWithoutNaN(Condition);
2650  EVT DestVT = TLI.getValueType(I.getType());
2651  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2652}
2653
2654void SelectionDAGBuilder::visitSelect(const User &I) {
2655  SmallVector<EVT, 4> ValueVTs;
2656  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2657  unsigned NumValues = ValueVTs.size();
2658  if (NumValues == 0) return;
2659
2660  SmallVector<SDValue, 4> Values(NumValues);
2661  SDValue Cond     = getValue(I.getOperand(0));
2662  SDValue TrueVal  = getValue(I.getOperand(1));
2663  SDValue FalseVal = getValue(I.getOperand(2));
2664  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2665    ISD::VSELECT : ISD::SELECT;
2666
2667  for (unsigned i = 0; i != NumValues; ++i)
2668    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2669                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2670                            Cond,
2671                            SDValue(TrueVal.getNode(),
2672                                    TrueVal.getResNo() + i),
2673                            SDValue(FalseVal.getNode(),
2674                                    FalseVal.getResNo() + i));
2675
2676  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2677                           DAG.getVTList(&ValueVTs[0], NumValues),
2678                           &Values[0], NumValues));
2679}
2680
2681void SelectionDAGBuilder::visitTrunc(const User &I) {
2682  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2683  SDValue N = getValue(I.getOperand(0));
2684  EVT DestVT = TLI.getValueType(I.getType());
2685  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2686}
2687
2688void SelectionDAGBuilder::visitZExt(const User &I) {
2689  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2690  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2691  SDValue N = getValue(I.getOperand(0));
2692  EVT DestVT = TLI.getValueType(I.getType());
2693  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2694}
2695
2696void SelectionDAGBuilder::visitSExt(const User &I) {
2697  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2698  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2699  SDValue N = getValue(I.getOperand(0));
2700  EVT DestVT = TLI.getValueType(I.getType());
2701  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2702}
2703
2704void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2705  // FPTrunc is never a no-op cast, no need to check
2706  SDValue N = getValue(I.getOperand(0));
2707  EVT DestVT = TLI.getValueType(I.getType());
2708  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2709                           DestVT, N,
2710                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2711}
2712
2713void SelectionDAGBuilder::visitFPExt(const User &I){
2714  // FPExt is never a no-op cast, no need to check
2715  SDValue N = getValue(I.getOperand(0));
2716  EVT DestVT = TLI.getValueType(I.getType());
2717  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2718}
2719
2720void SelectionDAGBuilder::visitFPToUI(const User &I) {
2721  // FPToUI is never a no-op cast, no need to check
2722  SDValue N = getValue(I.getOperand(0));
2723  EVT DestVT = TLI.getValueType(I.getType());
2724  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2725}
2726
2727void SelectionDAGBuilder::visitFPToSI(const User &I) {
2728  // FPToSI is never a no-op cast, no need to check
2729  SDValue N = getValue(I.getOperand(0));
2730  EVT DestVT = TLI.getValueType(I.getType());
2731  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2732}
2733
2734void SelectionDAGBuilder::visitUIToFP(const User &I) {
2735  // UIToFP is never a no-op cast, no need to check
2736  SDValue N = getValue(I.getOperand(0));
2737  EVT DestVT = TLI.getValueType(I.getType());
2738  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2739}
2740
2741void SelectionDAGBuilder::visitSIToFP(const User &I){
2742  // SIToFP is never a no-op cast, no need to check
2743  SDValue N = getValue(I.getOperand(0));
2744  EVT DestVT = TLI.getValueType(I.getType());
2745  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2746}
2747
2748void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2749  // What to do depends on the size of the integer and the size of the pointer.
2750  // We can either truncate, zero extend, or no-op, accordingly.
2751  SDValue N = getValue(I.getOperand(0));
2752  EVT DestVT = TLI.getValueType(I.getType());
2753  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2754}
2755
2756void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2757  // What to do depends on the size of the integer and the size of the pointer.
2758  // We can either truncate, zero extend, or no-op, accordingly.
2759  SDValue N = getValue(I.getOperand(0));
2760  EVT DestVT = TLI.getValueType(I.getType());
2761  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2762}
2763
2764void SelectionDAGBuilder::visitBitCast(const User &I) {
2765  SDValue N = getValue(I.getOperand(0));
2766  EVT DestVT = TLI.getValueType(I.getType());
2767
2768  // BitCast assures us that source and destination are the same size so this is
2769  // either a BITCAST or a no-op.
2770  if (DestVT != N.getValueType())
2771    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2772                             DestVT, N)); // convert types.
2773  else
2774    setValue(&I, N);            // noop cast.
2775}
2776
2777void SelectionDAGBuilder::visitInsertElement(const User &I) {
2778  SDValue InVec = getValue(I.getOperand(0));
2779  SDValue InVal = getValue(I.getOperand(1));
2780  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2781                              TLI.getPointerTy(),
2782                              getValue(I.getOperand(2)));
2783  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2784                           TLI.getValueType(I.getType()),
2785                           InVec, InVal, InIdx));
2786}
2787
2788void SelectionDAGBuilder::visitExtractElement(const User &I) {
2789  SDValue InVec = getValue(I.getOperand(0));
2790  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2791                              TLI.getPointerTy(),
2792                              getValue(I.getOperand(1)));
2793  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2794                           TLI.getValueType(I.getType()), InVec, InIdx));
2795}
2796
2797// Utility for visitShuffleVector - Return true if every element in Mask,
2798// begining // from position Pos and ending in Pos+Size, falls within the
2799// specified sequential range [L, L+Pos). or is undef.
2800static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2801                                int Pos, int Size, int Low) {
2802  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2803    if (Mask[i] >= 0 && Mask[i] != Low)
2804      return false;
2805  return true;
2806}
2807
2808void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2809  SDValue Src1 = getValue(I.getOperand(0));
2810  SDValue Src2 = getValue(I.getOperand(1));
2811
2812  SmallVector<int, 8> Mask;
2813  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2814  unsigned MaskNumElts = Mask.size();
2815
2816  EVT VT = TLI.getValueType(I.getType());
2817  EVT SrcVT = Src1.getValueType();
2818  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2819
2820  if (SrcNumElts == MaskNumElts) {
2821    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2822                                      &Mask[0]));
2823    return;
2824  }
2825
2826  // Normalize the shuffle vector since mask and vector length don't match.
2827  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2828    // Mask is longer than the source vectors and is a multiple of the source
2829    // vectors.  We can use concatenate vector to make the mask and vectors
2830    // lengths match.
2831    if (SrcNumElts*2 == MaskNumElts) {
2832      // First check for Src1 in low and Src2 in high
2833      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2834          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2835        // The shuffle is concatenating two vectors together.
2836        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2837                                 VT, Src1, Src2));
2838        return;
2839      }
2840      // Then check for Src2 in low and Src1 in high
2841      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2842          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2843        // The shuffle is concatenating two vectors together.
2844        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2845                                 VT, Src2, Src1));
2846        return;
2847      }
2848    }
2849
2850    // Pad both vectors with undefs to make them the same length as the mask.
2851    unsigned NumConcat = MaskNumElts / SrcNumElts;
2852    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2853    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2854    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2855
2856    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2857    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2858    MOps1[0] = Src1;
2859    MOps2[0] = Src2;
2860
2861    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2862                                                  getCurDebugLoc(), VT,
2863                                                  &MOps1[0], NumConcat);
2864    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2865                                                  getCurDebugLoc(), VT,
2866                                                  &MOps2[0], NumConcat);
2867
2868    // Readjust mask for new input vector length.
2869    SmallVector<int, 8> MappedOps;
2870    for (unsigned i = 0; i != MaskNumElts; ++i) {
2871      int Idx = Mask[i];
2872      if (Idx < (int)SrcNumElts)
2873        MappedOps.push_back(Idx);
2874      else
2875        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2876    }
2877
2878    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2879                                      &MappedOps[0]));
2880    return;
2881  }
2882
2883  if (SrcNumElts > MaskNumElts) {
2884    // Analyze the access pattern of the vector to see if we can extract
2885    // two subvectors and do the shuffle. The analysis is done by calculating
2886    // the range of elements the mask access on both vectors.
2887    int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2888                        static_cast<int>(SrcNumElts+1)};
2889    int MaxRange[2] = {-1, -1};
2890
2891    for (unsigned i = 0; i != MaskNumElts; ++i) {
2892      int Idx = Mask[i];
2893      int Input = 0;
2894      if (Idx < 0)
2895        continue;
2896
2897      if (Idx >= (int)SrcNumElts) {
2898        Input = 1;
2899        Idx -= SrcNumElts;
2900      }
2901      if (Idx > MaxRange[Input])
2902        MaxRange[Input] = Idx;
2903      if (Idx < MinRange[Input])
2904        MinRange[Input] = Idx;
2905    }
2906
2907    // Check if the access is smaller than the vector size and can we find
2908    // a reasonable extract index.
2909    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2910                                 // Extract.
2911    int StartIdx[2];  // StartIdx to extract from
2912    for (int Input=0; Input < 2; ++Input) {
2913      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2914        RangeUse[Input] = 0; // Unused
2915        StartIdx[Input] = 0;
2916      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2917        // Fits within range but we should see if we can find a good
2918        // start index that is a multiple of the mask length.
2919        if (MaxRange[Input] < (int)MaskNumElts) {
2920          RangeUse[Input] = 1; // Extract from beginning of the vector
2921          StartIdx[Input] = 0;
2922        } else {
2923          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2924          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2925              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2926            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2927        }
2928      }
2929    }
2930
2931    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2932      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2933      return;
2934    }
2935    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2936      // Extract appropriate subvector and generate a vector shuffle
2937      for (int Input=0; Input < 2; ++Input) {
2938        SDValue &Src = Input == 0 ? Src1 : Src2;
2939        if (RangeUse[Input] == 0)
2940          Src = DAG.getUNDEF(VT);
2941        else
2942          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2943                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2944      }
2945
2946      // Calculate new mask.
2947      SmallVector<int, 8> MappedOps;
2948      for (unsigned i = 0; i != MaskNumElts; ++i) {
2949        int Idx = Mask[i];
2950        if (Idx < 0)
2951          MappedOps.push_back(Idx);
2952        else if (Idx < (int)SrcNumElts)
2953          MappedOps.push_back(Idx - StartIdx[0]);
2954        else
2955          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2956      }
2957
2958      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2959                                        &MappedOps[0]));
2960      return;
2961    }
2962  }
2963
2964  // We can't use either concat vectors or extract subvectors so fall back to
2965  // replacing the shuffle with extract and build vector.
2966  // to insert and build vector.
2967  EVT EltVT = VT.getVectorElementType();
2968  EVT PtrVT = TLI.getPointerTy();
2969  SmallVector<SDValue,8> Ops;
2970  for (unsigned i = 0; i != MaskNumElts; ++i) {
2971    if (Mask[i] < 0) {
2972      Ops.push_back(DAG.getUNDEF(EltVT));
2973    } else {
2974      int Idx = Mask[i];
2975      SDValue Res;
2976
2977      if (Idx < (int)SrcNumElts)
2978        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2979                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2980      else
2981        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2982                          EltVT, Src2,
2983                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2984
2985      Ops.push_back(Res);
2986    }
2987  }
2988
2989  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2990                           VT, &Ops[0], Ops.size()));
2991}
2992
2993void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2994  const Value *Op0 = I.getOperand(0);
2995  const Value *Op1 = I.getOperand(1);
2996  Type *AggTy = I.getType();
2997  Type *ValTy = Op1->getType();
2998  bool IntoUndef = isa<UndefValue>(Op0);
2999  bool FromUndef = isa<UndefValue>(Op1);
3000
3001  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3002
3003  SmallVector<EVT, 4> AggValueVTs;
3004  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3005  SmallVector<EVT, 4> ValValueVTs;
3006  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3007
3008  unsigned NumAggValues = AggValueVTs.size();
3009  unsigned NumValValues = ValValueVTs.size();
3010  SmallVector<SDValue, 4> Values(NumAggValues);
3011
3012  SDValue Agg = getValue(Op0);
3013  unsigned i = 0;
3014  // Copy the beginning value(s) from the original aggregate.
3015  for (; i != LinearIndex; ++i)
3016    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3017                SDValue(Agg.getNode(), Agg.getResNo() + i);
3018  // Copy values from the inserted value(s).
3019  if (NumValValues) {
3020    SDValue Val = getValue(Op1);
3021    for (; i != LinearIndex + NumValValues; ++i)
3022      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3023                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3024  }
3025  // Copy remaining value(s) from the original aggregate.
3026  for (; i != NumAggValues; ++i)
3027    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3028                SDValue(Agg.getNode(), Agg.getResNo() + i);
3029
3030  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3031                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3032                           &Values[0], NumAggValues));
3033}
3034
3035void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3036  const Value *Op0 = I.getOperand(0);
3037  Type *AggTy = Op0->getType();
3038  Type *ValTy = I.getType();
3039  bool OutOfUndef = isa<UndefValue>(Op0);
3040
3041  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3042
3043  SmallVector<EVT, 4> ValValueVTs;
3044  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3045
3046  unsigned NumValValues = ValValueVTs.size();
3047
3048  // Ignore a extractvalue that produces an empty object
3049  if (!NumValValues) {
3050    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3051    return;
3052  }
3053
3054  SmallVector<SDValue, 4> Values(NumValValues);
3055
3056  SDValue Agg = getValue(Op0);
3057  // Copy out the selected value(s).
3058  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3059    Values[i - LinearIndex] =
3060      OutOfUndef ?
3061        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3062        SDValue(Agg.getNode(), Agg.getResNo() + i);
3063
3064  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3065                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3066                           &Values[0], NumValValues));
3067}
3068
3069void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3070  SDValue N = getValue(I.getOperand(0));
3071  Type *Ty = I.getOperand(0)->getType();
3072
3073  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3074       OI != E; ++OI) {
3075    const Value *Idx = *OI;
3076    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3077      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3078      if (Field) {
3079        // N = N + Offset
3080        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3081        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3082                        DAG.getIntPtrConstant(Offset));
3083      }
3084
3085      Ty = StTy->getElementType(Field);
3086    } else {
3087      Ty = cast<SequentialType>(Ty)->getElementType();
3088
3089      // If this is a constant subscript, handle it quickly.
3090      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3091        if (CI->isZero()) continue;
3092        uint64_t Offs =
3093            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3094        SDValue OffsVal;
3095        EVT PTy = TLI.getPointerTy();
3096        unsigned PtrBits = PTy.getSizeInBits();
3097        if (PtrBits < 64)
3098          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3099                                TLI.getPointerTy(),
3100                                DAG.getConstant(Offs, MVT::i64));
3101        else
3102          OffsVal = DAG.getIntPtrConstant(Offs);
3103
3104        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3105                        OffsVal);
3106        continue;
3107      }
3108
3109      // N = N + Idx * ElementSize;
3110      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3111                                TD->getTypeAllocSize(Ty));
3112      SDValue IdxN = getValue(Idx);
3113
3114      // If the index is smaller or larger than intptr_t, truncate or extend
3115      // it.
3116      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3117
3118      // If this is a multiply by a power of two, turn it into a shl
3119      // immediately.  This is a very common case.
3120      if (ElementSize != 1) {
3121        if (ElementSize.isPowerOf2()) {
3122          unsigned Amt = ElementSize.logBase2();
3123          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3124                             N.getValueType(), IdxN,
3125                             DAG.getConstant(Amt, IdxN.getValueType()));
3126        } else {
3127          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3128          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3129                             N.getValueType(), IdxN, Scale);
3130        }
3131      }
3132
3133      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3134                      N.getValueType(), N, IdxN);
3135    }
3136  }
3137
3138  setValue(&I, N);
3139}
3140
3141void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3142  // If this is a fixed sized alloca in the entry block of the function,
3143  // allocate it statically on the stack.
3144  if (FuncInfo.StaticAllocaMap.count(&I))
3145    return;   // getValue will auto-populate this.
3146
3147  Type *Ty = I.getAllocatedType();
3148  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3149  unsigned Align =
3150    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3151             I.getAlignment());
3152
3153  SDValue AllocSize = getValue(I.getArraySize());
3154
3155  EVT IntPtr = TLI.getPointerTy();
3156  if (AllocSize.getValueType() != IntPtr)
3157    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3158
3159  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3160                          AllocSize,
3161                          DAG.getConstant(TySize, IntPtr));
3162
3163  // Handle alignment.  If the requested alignment is less than or equal to
3164  // the stack alignment, ignore it.  If the size is greater than or equal to
3165  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3166  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3167  if (Align <= StackAlign)
3168    Align = 0;
3169
3170  // Round the size of the allocation up to the stack alignment size
3171  // by add SA-1 to the size.
3172  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3173                          AllocSize.getValueType(), AllocSize,
3174                          DAG.getIntPtrConstant(StackAlign-1));
3175
3176  // Mask out the low bits for alignment purposes.
3177  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3178                          AllocSize.getValueType(), AllocSize,
3179                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3180
3181  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3182  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3183  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3184                            VTs, Ops, 3);
3185  setValue(&I, DSA);
3186  DAG.setRoot(DSA.getValue(1));
3187
3188  // Inform the Frame Information that we have just allocated a variable-sized
3189  // object.
3190  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3191}
3192
3193void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3194  if (I.isAtomic())
3195    return visitAtomicLoad(I);
3196
3197  const Value *SV = I.getOperand(0);
3198  SDValue Ptr = getValue(SV);
3199
3200  Type *Ty = I.getType();
3201
3202  bool isVolatile = I.isVolatile();
3203  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3204  bool isInvariant = I.getMetadata("invariant.load") != 0;
3205  unsigned Alignment = I.getAlignment();
3206  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3207
3208  SmallVector<EVT, 4> ValueVTs;
3209  SmallVector<uint64_t, 4> Offsets;
3210  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3211  unsigned NumValues = ValueVTs.size();
3212  if (NumValues == 0)
3213    return;
3214
3215  SDValue Root;
3216  bool ConstantMemory = false;
3217  if (I.isVolatile() || NumValues > MaxParallelChains)
3218    // Serialize volatile loads with other side effects.
3219    Root = getRoot();
3220  else if (AA->pointsToConstantMemory(
3221             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3222    // Do not serialize (non-volatile) loads of constant memory with anything.
3223    Root = DAG.getEntryNode();
3224    ConstantMemory = true;
3225  } else {
3226    // Do not serialize non-volatile loads against each other.
3227    Root = DAG.getRoot();
3228  }
3229
3230  SmallVector<SDValue, 4> Values(NumValues);
3231  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3232                                          NumValues));
3233  EVT PtrVT = Ptr.getValueType();
3234  unsigned ChainI = 0;
3235  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3236    // Serializing loads here may result in excessive register pressure, and
3237    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3238    // could recover a bit by hoisting nodes upward in the chain by recognizing
3239    // they are side-effect free or do not alias. The optimizer should really
3240    // avoid this case by converting large object/array copies to llvm.memcpy
3241    // (MaxParallelChains should always remain as failsafe).
3242    if (ChainI == MaxParallelChains) {
3243      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3244      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3245                                  MVT::Other, &Chains[0], ChainI);
3246      Root = Chain;
3247      ChainI = 0;
3248    }
3249    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3250                            PtrVT, Ptr,
3251                            DAG.getConstant(Offsets[i], PtrVT));
3252    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3253                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3254                            isNonTemporal, isInvariant, Alignment, TBAAInfo);
3255
3256    Values[i] = L;
3257    Chains[ChainI] = L.getValue(1);
3258  }
3259
3260  if (!ConstantMemory) {
3261    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3262                                MVT::Other, &Chains[0], ChainI);
3263    if (isVolatile)
3264      DAG.setRoot(Chain);
3265    else
3266      PendingLoads.push_back(Chain);
3267  }
3268
3269  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3270                           DAG.getVTList(&ValueVTs[0], NumValues),
3271                           &Values[0], NumValues));
3272}
3273
3274void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3275  if (I.isAtomic())
3276    return visitAtomicStore(I);
3277
3278  const Value *SrcV = I.getOperand(0);
3279  const Value *PtrV = I.getOperand(1);
3280
3281  SmallVector<EVT, 4> ValueVTs;
3282  SmallVector<uint64_t, 4> Offsets;
3283  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3284  unsigned NumValues = ValueVTs.size();
3285  if (NumValues == 0)
3286    return;
3287
3288  // Get the lowered operands. Note that we do this after
3289  // checking if NumResults is zero, because with zero results
3290  // the operands won't have values in the map.
3291  SDValue Src = getValue(SrcV);
3292  SDValue Ptr = getValue(PtrV);
3293
3294  SDValue Root = getRoot();
3295  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3296                                          NumValues));
3297  EVT PtrVT = Ptr.getValueType();
3298  bool isVolatile = I.isVolatile();
3299  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3300  unsigned Alignment = I.getAlignment();
3301  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3302
3303  unsigned ChainI = 0;
3304  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3305    // See visitLoad comments.
3306    if (ChainI == MaxParallelChains) {
3307      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3308                                  MVT::Other, &Chains[0], ChainI);
3309      Root = Chain;
3310      ChainI = 0;
3311    }
3312    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3313                              DAG.getConstant(Offsets[i], PtrVT));
3314    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3315                              SDValue(Src.getNode(), Src.getResNo() + i),
3316                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3317                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3318    Chains[ChainI] = St;
3319  }
3320
3321  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3322                                  MVT::Other, &Chains[0], ChainI);
3323  ++SDNodeOrder;
3324  AssignOrderingToNode(StoreNode.getNode());
3325  DAG.setRoot(StoreNode);
3326}
3327
3328static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3329                                    SynchronizationScope Scope,
3330                                    bool Before, DebugLoc dl,
3331                                    SelectionDAG &DAG,
3332                                    const TargetLowering &TLI) {
3333  // Fence, if necessary
3334  if (Before) {
3335    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3336      Order = Release;
3337    else if (Order == Acquire || Order == Monotonic)
3338      return Chain;
3339  } else {
3340    if (Order == AcquireRelease)
3341      Order = Acquire;
3342    else if (Order == Release || Order == Monotonic)
3343      return Chain;
3344  }
3345  SDValue Ops[3];
3346  Ops[0] = Chain;
3347  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3348  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3349  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3350}
3351
3352void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3353  DebugLoc dl = getCurDebugLoc();
3354  AtomicOrdering Order = I.getOrdering();
3355  SynchronizationScope Scope = I.getSynchScope();
3356
3357  SDValue InChain = getRoot();
3358
3359  if (TLI.getInsertFencesForAtomic())
3360    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3361                                   DAG, TLI);
3362
3363  SDValue L =
3364    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3365                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3366                  InChain,
3367                  getValue(I.getPointerOperand()),
3368                  getValue(I.getCompareOperand()),
3369                  getValue(I.getNewValOperand()),
3370                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3371                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3372                  Scope);
3373
3374  SDValue OutChain = L.getValue(1);
3375
3376  if (TLI.getInsertFencesForAtomic())
3377    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3378                                    DAG, TLI);
3379
3380  setValue(&I, L);
3381  DAG.setRoot(OutChain);
3382}
3383
3384void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3385  DebugLoc dl = getCurDebugLoc();
3386  ISD::NodeType NT;
3387  switch (I.getOperation()) {
3388  default: llvm_unreachable("Unknown atomicrmw operation");
3389  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3390  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3391  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3392  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3393  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3394  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3395  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3396  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3397  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3398  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3399  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3400  }
3401  AtomicOrdering Order = I.getOrdering();
3402  SynchronizationScope Scope = I.getSynchScope();
3403
3404  SDValue InChain = getRoot();
3405
3406  if (TLI.getInsertFencesForAtomic())
3407    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3408                                   DAG, TLI);
3409
3410  SDValue L =
3411    DAG.getAtomic(NT, dl,
3412                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3413                  InChain,
3414                  getValue(I.getPointerOperand()),
3415                  getValue(I.getValOperand()),
3416                  I.getPointerOperand(), 0 /* Alignment */,
3417                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3418                  Scope);
3419
3420  SDValue OutChain = L.getValue(1);
3421
3422  if (TLI.getInsertFencesForAtomic())
3423    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3424                                    DAG, TLI);
3425
3426  setValue(&I, L);
3427  DAG.setRoot(OutChain);
3428}
3429
3430void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3431  DebugLoc dl = getCurDebugLoc();
3432  SDValue Ops[3];
3433  Ops[0] = getRoot();
3434  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3435  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3436  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3437}
3438
3439void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3440  DebugLoc dl = getCurDebugLoc();
3441  AtomicOrdering Order = I.getOrdering();
3442  SynchronizationScope Scope = I.getSynchScope();
3443
3444  SDValue InChain = getRoot();
3445
3446  EVT VT = EVT::getEVT(I.getType());
3447
3448  if (I.getAlignment() * 8 < VT.getSizeInBits())
3449    report_fatal_error("Cannot generate unaligned atomic load");
3450
3451  SDValue L =
3452    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3453                  getValue(I.getPointerOperand()),
3454                  I.getPointerOperand(), I.getAlignment(),
3455                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3456                  Scope);
3457
3458  SDValue OutChain = L.getValue(1);
3459
3460  if (TLI.getInsertFencesForAtomic())
3461    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3462                                    DAG, TLI);
3463
3464  setValue(&I, L);
3465  DAG.setRoot(OutChain);
3466}
3467
3468void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3469  DebugLoc dl = getCurDebugLoc();
3470
3471  AtomicOrdering Order = I.getOrdering();
3472  SynchronizationScope Scope = I.getSynchScope();
3473
3474  SDValue InChain = getRoot();
3475
3476  EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3477
3478  if (I.getAlignment() * 8 < VT.getSizeInBits())
3479    report_fatal_error("Cannot generate unaligned atomic store");
3480
3481  if (TLI.getInsertFencesForAtomic())
3482    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3483                                   DAG, TLI);
3484
3485  SDValue OutChain =
3486    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3487                  InChain,
3488                  getValue(I.getPointerOperand()),
3489                  getValue(I.getValueOperand()),
3490                  I.getPointerOperand(), I.getAlignment(),
3491                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3492                  Scope);
3493
3494  if (TLI.getInsertFencesForAtomic())
3495    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3496                                    DAG, TLI);
3497
3498  DAG.setRoot(OutChain);
3499}
3500
3501/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3502/// node.
3503void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3504                                               unsigned Intrinsic) {
3505  bool HasChain = !I.doesNotAccessMemory();
3506  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3507
3508  // Build the operand list.
3509  SmallVector<SDValue, 8> Ops;
3510  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3511    if (OnlyLoad) {
3512      // We don't need to serialize loads against other loads.
3513      Ops.push_back(DAG.getRoot());
3514    } else {
3515      Ops.push_back(getRoot());
3516    }
3517  }
3518
3519  // Info is set by getTgtMemInstrinsic
3520  TargetLowering::IntrinsicInfo Info;
3521  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3522
3523  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3524  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3525      Info.opc == ISD::INTRINSIC_W_CHAIN)
3526    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3527
3528  // Add all operands of the call to the operand list.
3529  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3530    SDValue Op = getValue(I.getArgOperand(i));
3531    Ops.push_back(Op);
3532  }
3533
3534  SmallVector<EVT, 4> ValueVTs;
3535  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3536
3537  if (HasChain)
3538    ValueVTs.push_back(MVT::Other);
3539
3540  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3541
3542  // Create the node.
3543  SDValue Result;
3544  if (IsTgtIntrinsic) {
3545    // This is target intrinsic that touches memory
3546    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3547                                     VTs, &Ops[0], Ops.size(),
3548                                     Info.memVT,
3549                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3550                                     Info.align, Info.vol,
3551                                     Info.readMem, Info.writeMem);
3552  } else if (!HasChain) {
3553    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3554                         VTs, &Ops[0], Ops.size());
3555  } else if (!I.getType()->isVoidTy()) {
3556    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3557                         VTs, &Ops[0], Ops.size());
3558  } else {
3559    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3560                         VTs, &Ops[0], Ops.size());
3561  }
3562
3563  if (HasChain) {
3564    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3565    if (OnlyLoad)
3566      PendingLoads.push_back(Chain);
3567    else
3568      DAG.setRoot(Chain);
3569  }
3570
3571  if (!I.getType()->isVoidTy()) {
3572    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3573      EVT VT = TLI.getValueType(PTy);
3574      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3575    }
3576
3577    setValue(&I, Result);
3578  }
3579}
3580
3581/// GetSignificand - Get the significand and build it into a floating-point
3582/// number with exponent of 1:
3583///
3584///   Op = (Op & 0x007fffff) | 0x3f800000;
3585///
3586/// where Op is the hexidecimal representation of floating point value.
3587static SDValue
3588GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3589  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3590                           DAG.getConstant(0x007fffff, MVT::i32));
3591  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3592                           DAG.getConstant(0x3f800000, MVT::i32));
3593  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3594}
3595
3596/// GetExponent - Get the exponent:
3597///
3598///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3599///
3600/// where Op is the hexidecimal representation of floating point value.
3601static SDValue
3602GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3603            DebugLoc dl) {
3604  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3605                           DAG.getConstant(0x7f800000, MVT::i32));
3606  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3607                           DAG.getConstant(23, TLI.getPointerTy()));
3608  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3609                           DAG.getConstant(127, MVT::i32));
3610  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3611}
3612
3613/// getF32Constant - Get 32-bit floating point constant.
3614static SDValue
3615getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3616  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3617}
3618
3619// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3620const char *
3621SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3622  SDValue Op1 = getValue(I.getArgOperand(0));
3623  SDValue Op2 = getValue(I.getArgOperand(1));
3624
3625  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3626  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3627  return 0;
3628}
3629
3630/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3631/// limited-precision mode.
3632void
3633SelectionDAGBuilder::visitExp(const CallInst &I) {
3634  SDValue result;
3635  DebugLoc dl = getCurDebugLoc();
3636
3637  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3638      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3639    SDValue Op = getValue(I.getArgOperand(0));
3640
3641    // Put the exponent in the right bit position for later addition to the
3642    // final result:
3643    //
3644    //   #define LOG2OFe 1.4426950f
3645    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3646    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3647                             getF32Constant(DAG, 0x3fb8aa3b));
3648    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3649
3650    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3651    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3652    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3653
3654    //   IntegerPartOfX <<= 23;
3655    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3656                                 DAG.getConstant(23, TLI.getPointerTy()));
3657
3658    if (LimitFloatPrecision <= 6) {
3659      // For floating-point precision of 6:
3660      //
3661      //   TwoToFractionalPartOfX =
3662      //     0.997535578f +
3663      //       (0.735607626f + 0.252464424f * x) * x;
3664      //
3665      // error 0.0144103317, which is 6 bits
3666      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3667                               getF32Constant(DAG, 0x3e814304));
3668      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3669                               getF32Constant(DAG, 0x3f3c50c8));
3670      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3671      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3672                               getF32Constant(DAG, 0x3f7f5e7e));
3673      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3674
3675      // Add the exponent into the result in integer domain.
3676      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3677                               TwoToFracPartOfX, IntegerPartOfX);
3678
3679      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3680    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3681      // For floating-point precision of 12:
3682      //
3683      //   TwoToFractionalPartOfX =
3684      //     0.999892986f +
3685      //       (0.696457318f +
3686      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3687      //
3688      // 0.000107046256 error, which is 13 to 14 bits
3689      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3690                               getF32Constant(DAG, 0x3da235e3));
3691      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3692                               getF32Constant(DAG, 0x3e65b8f3));
3693      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3694      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3695                               getF32Constant(DAG, 0x3f324b07));
3696      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3697      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3698                               getF32Constant(DAG, 0x3f7ff8fd));
3699      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3700
3701      // Add the exponent into the result in integer domain.
3702      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3703                               TwoToFracPartOfX, IntegerPartOfX);
3704
3705      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3706    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3707      // For floating-point precision of 18:
3708      //
3709      //   TwoToFractionalPartOfX =
3710      //     0.999999982f +
3711      //       (0.693148872f +
3712      //         (0.240227044f +
3713      //           (0.554906021e-1f +
3714      //             (0.961591928e-2f +
3715      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3716      //
3717      // error 2.47208000*10^(-7), which is better than 18 bits
3718      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3719                               getF32Constant(DAG, 0x3924b03e));
3720      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3721                               getF32Constant(DAG, 0x3ab24b87));
3722      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3723      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3724                               getF32Constant(DAG, 0x3c1d8c17));
3725      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3726      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3727                               getF32Constant(DAG, 0x3d634a1d));
3728      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3729      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3730                               getF32Constant(DAG, 0x3e75fe14));
3731      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3732      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3733                                getF32Constant(DAG, 0x3f317234));
3734      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3735      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3736                                getF32Constant(DAG, 0x3f800000));
3737      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3738                                             MVT::i32, t13);
3739
3740      // Add the exponent into the result in integer domain.
3741      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3742                                TwoToFracPartOfX, IntegerPartOfX);
3743
3744      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3745    }
3746  } else {
3747    // No special expansion.
3748    result = DAG.getNode(ISD::FEXP, dl,
3749                         getValue(I.getArgOperand(0)).getValueType(),
3750                         getValue(I.getArgOperand(0)));
3751  }
3752
3753  setValue(&I, result);
3754}
3755
3756/// visitLog - Lower a log intrinsic. Handles the special sequences for
3757/// limited-precision mode.
3758void
3759SelectionDAGBuilder::visitLog(const CallInst &I) {
3760  SDValue result;
3761  DebugLoc dl = getCurDebugLoc();
3762
3763  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3764      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3765    SDValue Op = getValue(I.getArgOperand(0));
3766    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3767
3768    // Scale the exponent by log(2) [0.69314718f].
3769    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3770    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3771                                        getF32Constant(DAG, 0x3f317218));
3772
3773    // Get the significand and build it into a floating-point number with
3774    // exponent of 1.
3775    SDValue X = GetSignificand(DAG, Op1, dl);
3776
3777    if (LimitFloatPrecision <= 6) {
3778      // For floating-point precision of 6:
3779      //
3780      //   LogofMantissa =
3781      //     -1.1609546f +
3782      //       (1.4034025f - 0.23903021f * x) * x;
3783      //
3784      // error 0.0034276066, which is better than 8 bits
3785      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3786                               getF32Constant(DAG, 0xbe74c456));
3787      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3788                               getF32Constant(DAG, 0x3fb3a2b1));
3789      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3790      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3791                                          getF32Constant(DAG, 0x3f949a29));
3792
3793      result = DAG.getNode(ISD::FADD, dl,
3794                           MVT::f32, LogOfExponent, LogOfMantissa);
3795    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3796      // For floating-point precision of 12:
3797      //
3798      //   LogOfMantissa =
3799      //     -1.7417939f +
3800      //       (2.8212026f +
3801      //         (-1.4699568f +
3802      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3803      //
3804      // error 0.000061011436, which is 14 bits
3805      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3806                               getF32Constant(DAG, 0xbd67b6d6));
3807      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3808                               getF32Constant(DAG, 0x3ee4f4b8));
3809      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3810      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3811                               getF32Constant(DAG, 0x3fbc278b));
3812      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3813      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3814                               getF32Constant(DAG, 0x40348e95));
3815      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3816      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3817                                          getF32Constant(DAG, 0x3fdef31a));
3818
3819      result = DAG.getNode(ISD::FADD, dl,
3820                           MVT::f32, LogOfExponent, LogOfMantissa);
3821    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3822      // For floating-point precision of 18:
3823      //
3824      //   LogOfMantissa =
3825      //     -2.1072184f +
3826      //       (4.2372794f +
3827      //         (-3.7029485f +
3828      //           (2.2781945f +
3829      //             (-0.87823314f +
3830      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3831      //
3832      // error 0.0000023660568, which is better than 18 bits
3833      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3834                               getF32Constant(DAG, 0xbc91e5ac));
3835      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3836                               getF32Constant(DAG, 0x3e4350aa));
3837      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3838      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3839                               getF32Constant(DAG, 0x3f60d3e3));
3840      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3841      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3842                               getF32Constant(DAG, 0x4011cdf0));
3843      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3844      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3845                               getF32Constant(DAG, 0x406cfd1c));
3846      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3847      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3848                               getF32Constant(DAG, 0x408797cb));
3849      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3850      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3851                                          getF32Constant(DAG, 0x4006dcab));
3852
3853      result = DAG.getNode(ISD::FADD, dl,
3854                           MVT::f32, LogOfExponent, LogOfMantissa);
3855    }
3856  } else {
3857    // No special expansion.
3858    result = DAG.getNode(ISD::FLOG, dl,
3859                         getValue(I.getArgOperand(0)).getValueType(),
3860                         getValue(I.getArgOperand(0)));
3861  }
3862
3863  setValue(&I, result);
3864}
3865
3866/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3867/// limited-precision mode.
3868void
3869SelectionDAGBuilder::visitLog2(const CallInst &I) {
3870  SDValue result;
3871  DebugLoc dl = getCurDebugLoc();
3872
3873  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3874      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3875    SDValue Op = getValue(I.getArgOperand(0));
3876    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3877
3878    // Get the exponent.
3879    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3880
3881    // Get the significand and build it into a floating-point number with
3882    // exponent of 1.
3883    SDValue X = GetSignificand(DAG, Op1, dl);
3884
3885    // Different possible minimax approximations of significand in
3886    // floating-point for various degrees of accuracy over [1,2].
3887    if (LimitFloatPrecision <= 6) {
3888      // For floating-point precision of 6:
3889      //
3890      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3891      //
3892      // error 0.0049451742, which is more than 7 bits
3893      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3894                               getF32Constant(DAG, 0xbeb08fe0));
3895      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3896                               getF32Constant(DAG, 0x40019463));
3897      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3898      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3899                                           getF32Constant(DAG, 0x3fd6633d));
3900
3901      result = DAG.getNode(ISD::FADD, dl,
3902                           MVT::f32, LogOfExponent, Log2ofMantissa);
3903    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3904      // For floating-point precision of 12:
3905      //
3906      //   Log2ofMantissa =
3907      //     -2.51285454f +
3908      //       (4.07009056f +
3909      //         (-2.12067489f +
3910      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3911      //
3912      // error 0.0000876136000, which is better than 13 bits
3913      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3914                               getF32Constant(DAG, 0xbda7262e));
3915      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3916                               getF32Constant(DAG, 0x3f25280b));
3917      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3918      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3919                               getF32Constant(DAG, 0x4007b923));
3920      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3921      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3922                               getF32Constant(DAG, 0x40823e2f));
3923      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3924      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3925                                           getF32Constant(DAG, 0x4020d29c));
3926
3927      result = DAG.getNode(ISD::FADD, dl,
3928                           MVT::f32, LogOfExponent, Log2ofMantissa);
3929    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3930      // For floating-point precision of 18:
3931      //
3932      //   Log2ofMantissa =
3933      //     -3.0400495f +
3934      //       (6.1129976f +
3935      //         (-5.3420409f +
3936      //           (3.2865683f +
3937      //             (-1.2669343f +
3938      //               (0.27515199f -
3939      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3940      //
3941      // error 0.0000018516, which is better than 18 bits
3942      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3943                               getF32Constant(DAG, 0xbcd2769e));
3944      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3945                               getF32Constant(DAG, 0x3e8ce0b9));
3946      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3947      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3948                               getF32Constant(DAG, 0x3fa22ae7));
3949      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3950      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3951                               getF32Constant(DAG, 0x40525723));
3952      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3953      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3954                               getF32Constant(DAG, 0x40aaf200));
3955      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3956      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3957                               getF32Constant(DAG, 0x40c39dad));
3958      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3959      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3960                                           getF32Constant(DAG, 0x4042902c));
3961
3962      result = DAG.getNode(ISD::FADD, dl,
3963                           MVT::f32, LogOfExponent, Log2ofMantissa);
3964    }
3965  } else {
3966    // No special expansion.
3967    result = DAG.getNode(ISD::FLOG2, dl,
3968                         getValue(I.getArgOperand(0)).getValueType(),
3969                         getValue(I.getArgOperand(0)));
3970  }
3971
3972  setValue(&I, result);
3973}
3974
3975/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3976/// limited-precision mode.
3977void
3978SelectionDAGBuilder::visitLog10(const CallInst &I) {
3979  SDValue result;
3980  DebugLoc dl = getCurDebugLoc();
3981
3982  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3983      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3984    SDValue Op = getValue(I.getArgOperand(0));
3985    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3986
3987    // Scale the exponent by log10(2) [0.30102999f].
3988    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3989    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3990                                        getF32Constant(DAG, 0x3e9a209a));
3991
3992    // Get the significand and build it into a floating-point number with
3993    // exponent of 1.
3994    SDValue X = GetSignificand(DAG, Op1, dl);
3995
3996    if (LimitFloatPrecision <= 6) {
3997      // For floating-point precision of 6:
3998      //
3999      //   Log10ofMantissa =
4000      //     -0.50419619f +
4001      //       (0.60948995f - 0.10380950f * x) * x;
4002      //
4003      // error 0.0014886165, which is 6 bits
4004      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4005                               getF32Constant(DAG, 0xbdd49a13));
4006      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4007                               getF32Constant(DAG, 0x3f1c0789));
4008      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4009      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4010                                            getF32Constant(DAG, 0x3f011300));
4011
4012      result = DAG.getNode(ISD::FADD, dl,
4013                           MVT::f32, LogOfExponent, Log10ofMantissa);
4014    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4015      // For floating-point precision of 12:
4016      //
4017      //   Log10ofMantissa =
4018      //     -0.64831180f +
4019      //       (0.91751397f +
4020      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4021      //
4022      // error 0.00019228036, which is better than 12 bits
4023      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4024                               getF32Constant(DAG, 0x3d431f31));
4025      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4026                               getF32Constant(DAG, 0x3ea21fb2));
4027      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4028      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4029                               getF32Constant(DAG, 0x3f6ae232));
4030      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4031      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4032                                            getF32Constant(DAG, 0x3f25f7c3));
4033
4034      result = DAG.getNode(ISD::FADD, dl,
4035                           MVT::f32, LogOfExponent, Log10ofMantissa);
4036    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4037      // For floating-point precision of 18:
4038      //
4039      //   Log10ofMantissa =
4040      //     -0.84299375f +
4041      //       (1.5327582f +
4042      //         (-1.0688956f +
4043      //           (0.49102474f +
4044      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4045      //
4046      // error 0.0000037995730, which is better than 18 bits
4047      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4048                               getF32Constant(DAG, 0x3c5d51ce));
4049      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4050                               getF32Constant(DAG, 0x3e00685a));
4051      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4052      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4053                               getF32Constant(DAG, 0x3efb6798));
4054      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4055      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4056                               getF32Constant(DAG, 0x3f88d192));
4057      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4058      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4059                               getF32Constant(DAG, 0x3fc4316c));
4060      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4061      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4062                                            getF32Constant(DAG, 0x3f57ce70));
4063
4064      result = DAG.getNode(ISD::FADD, dl,
4065                           MVT::f32, LogOfExponent, Log10ofMantissa);
4066    }
4067  } else {
4068    // No special expansion.
4069    result = DAG.getNode(ISD::FLOG10, dl,
4070                         getValue(I.getArgOperand(0)).getValueType(),
4071                         getValue(I.getArgOperand(0)));
4072  }
4073
4074  setValue(&I, result);
4075}
4076
4077/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4078/// limited-precision mode.
4079void
4080SelectionDAGBuilder::visitExp2(const CallInst &I) {
4081  SDValue result;
4082  DebugLoc dl = getCurDebugLoc();
4083
4084  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4085      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4086    SDValue Op = getValue(I.getArgOperand(0));
4087
4088    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4089
4090    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4091    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4092    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4093
4094    //   IntegerPartOfX <<= 23;
4095    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4096                                 DAG.getConstant(23, TLI.getPointerTy()));
4097
4098    if (LimitFloatPrecision <= 6) {
4099      // For floating-point precision of 6:
4100      //
4101      //   TwoToFractionalPartOfX =
4102      //     0.997535578f +
4103      //       (0.735607626f + 0.252464424f * x) * x;
4104      //
4105      // error 0.0144103317, which is 6 bits
4106      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4107                               getF32Constant(DAG, 0x3e814304));
4108      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4109                               getF32Constant(DAG, 0x3f3c50c8));
4110      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4111      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4112                               getF32Constant(DAG, 0x3f7f5e7e));
4113      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4114      SDValue TwoToFractionalPartOfX =
4115        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4116
4117      result = DAG.getNode(ISD::BITCAST, dl,
4118                           MVT::f32, TwoToFractionalPartOfX);
4119    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4120      // For floating-point precision of 12:
4121      //
4122      //   TwoToFractionalPartOfX =
4123      //     0.999892986f +
4124      //       (0.696457318f +
4125      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4126      //
4127      // error 0.000107046256, which is 13 to 14 bits
4128      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4129                               getF32Constant(DAG, 0x3da235e3));
4130      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4131                               getF32Constant(DAG, 0x3e65b8f3));
4132      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4133      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4134                               getF32Constant(DAG, 0x3f324b07));
4135      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4136      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4137                               getF32Constant(DAG, 0x3f7ff8fd));
4138      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4139      SDValue TwoToFractionalPartOfX =
4140        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4141
4142      result = DAG.getNode(ISD::BITCAST, dl,
4143                           MVT::f32, TwoToFractionalPartOfX);
4144    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4145      // For floating-point precision of 18:
4146      //
4147      //   TwoToFractionalPartOfX =
4148      //     0.999999982f +
4149      //       (0.693148872f +
4150      //         (0.240227044f +
4151      //           (0.554906021e-1f +
4152      //             (0.961591928e-2f +
4153      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4154      // error 2.47208000*10^(-7), which is better than 18 bits
4155      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4156                               getF32Constant(DAG, 0x3924b03e));
4157      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4158                               getF32Constant(DAG, 0x3ab24b87));
4159      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4160      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4161                               getF32Constant(DAG, 0x3c1d8c17));
4162      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4163      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4164                               getF32Constant(DAG, 0x3d634a1d));
4165      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4166      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4167                               getF32Constant(DAG, 0x3e75fe14));
4168      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4169      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4170                                getF32Constant(DAG, 0x3f317234));
4171      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4172      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4173                                getF32Constant(DAG, 0x3f800000));
4174      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4175      SDValue TwoToFractionalPartOfX =
4176        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4177
4178      result = DAG.getNode(ISD::BITCAST, dl,
4179                           MVT::f32, TwoToFractionalPartOfX);
4180    }
4181  } else {
4182    // No special expansion.
4183    result = DAG.getNode(ISD::FEXP2, dl,
4184                         getValue(I.getArgOperand(0)).getValueType(),
4185                         getValue(I.getArgOperand(0)));
4186  }
4187
4188  setValue(&I, result);
4189}
4190
4191/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4192/// limited-precision mode with x == 10.0f.
4193void
4194SelectionDAGBuilder::visitPow(const CallInst &I) {
4195  SDValue result;
4196  const Value *Val = I.getArgOperand(0);
4197  DebugLoc dl = getCurDebugLoc();
4198  bool IsExp10 = false;
4199
4200  if (getValue(Val).getValueType() == MVT::f32 &&
4201      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4202      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4203    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4204      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4205        APFloat Ten(10.0f);
4206        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4207      }
4208    }
4209  }
4210
4211  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4212    SDValue Op = getValue(I.getArgOperand(1));
4213
4214    // Put the exponent in the right bit position for later addition to the
4215    // final result:
4216    //
4217    //   #define LOG2OF10 3.3219281f
4218    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4219    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4220                             getF32Constant(DAG, 0x40549a78));
4221    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4222
4223    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4224    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4225    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4226
4227    //   IntegerPartOfX <<= 23;
4228    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4229                                 DAG.getConstant(23, TLI.getPointerTy()));
4230
4231    if (LimitFloatPrecision <= 6) {
4232      // For floating-point precision of 6:
4233      //
4234      //   twoToFractionalPartOfX =
4235      //     0.997535578f +
4236      //       (0.735607626f + 0.252464424f * x) * x;
4237      //
4238      // error 0.0144103317, which is 6 bits
4239      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4240                               getF32Constant(DAG, 0x3e814304));
4241      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4242                               getF32Constant(DAG, 0x3f3c50c8));
4243      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4244      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4245                               getF32Constant(DAG, 0x3f7f5e7e));
4246      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4247      SDValue TwoToFractionalPartOfX =
4248        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4249
4250      result = DAG.getNode(ISD::BITCAST, dl,
4251                           MVT::f32, TwoToFractionalPartOfX);
4252    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4253      // For floating-point precision of 12:
4254      //
4255      //   TwoToFractionalPartOfX =
4256      //     0.999892986f +
4257      //       (0.696457318f +
4258      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4259      //
4260      // error 0.000107046256, which is 13 to 14 bits
4261      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4262                               getF32Constant(DAG, 0x3da235e3));
4263      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4264                               getF32Constant(DAG, 0x3e65b8f3));
4265      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4266      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4267                               getF32Constant(DAG, 0x3f324b07));
4268      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4269      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4270                               getF32Constant(DAG, 0x3f7ff8fd));
4271      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4272      SDValue TwoToFractionalPartOfX =
4273        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4274
4275      result = DAG.getNode(ISD::BITCAST, dl,
4276                           MVT::f32, TwoToFractionalPartOfX);
4277    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4278      // For floating-point precision of 18:
4279      //
4280      //   TwoToFractionalPartOfX =
4281      //     0.999999982f +
4282      //       (0.693148872f +
4283      //         (0.240227044f +
4284      //           (0.554906021e-1f +
4285      //             (0.961591928e-2f +
4286      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4287      // error 2.47208000*10^(-7), which is better than 18 bits
4288      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4289                               getF32Constant(DAG, 0x3924b03e));
4290      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4291                               getF32Constant(DAG, 0x3ab24b87));
4292      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4293      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4294                               getF32Constant(DAG, 0x3c1d8c17));
4295      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4296      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4297                               getF32Constant(DAG, 0x3d634a1d));
4298      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4299      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4300                               getF32Constant(DAG, 0x3e75fe14));
4301      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4302      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4303                                getF32Constant(DAG, 0x3f317234));
4304      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4305      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4306                                getF32Constant(DAG, 0x3f800000));
4307      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4308      SDValue TwoToFractionalPartOfX =
4309        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4310
4311      result = DAG.getNode(ISD::BITCAST, dl,
4312                           MVT::f32, TwoToFractionalPartOfX);
4313    }
4314  } else {
4315    // No special expansion.
4316    result = DAG.getNode(ISD::FPOW, dl,
4317                         getValue(I.getArgOperand(0)).getValueType(),
4318                         getValue(I.getArgOperand(0)),
4319                         getValue(I.getArgOperand(1)));
4320  }
4321
4322  setValue(&I, result);
4323}
4324
4325
4326/// ExpandPowI - Expand a llvm.powi intrinsic.
4327static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4328                          SelectionDAG &DAG) {
4329  // If RHS is a constant, we can expand this out to a multiplication tree,
4330  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4331  // optimizing for size, we only want to do this if the expansion would produce
4332  // a small number of multiplies, otherwise we do the full expansion.
4333  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4334    // Get the exponent as a positive value.
4335    unsigned Val = RHSC->getSExtValue();
4336    if ((int)Val < 0) Val = -Val;
4337
4338    // powi(x, 0) -> 1.0
4339    if (Val == 0)
4340      return DAG.getConstantFP(1.0, LHS.getValueType());
4341
4342    const Function *F = DAG.getMachineFunction().getFunction();
4343    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4344        // If optimizing for size, don't insert too many multiplies.  This
4345        // inserts up to 5 multiplies.
4346        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4347      // We use the simple binary decomposition method to generate the multiply
4348      // sequence.  There are more optimal ways to do this (for example,
4349      // powi(x,15) generates one more multiply than it should), but this has
4350      // the benefit of being both really simple and much better than a libcall.
4351      SDValue Res;  // Logically starts equal to 1.0
4352      SDValue CurSquare = LHS;
4353      while (Val) {
4354        if (Val & 1) {
4355          if (Res.getNode())
4356            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4357          else
4358            Res = CurSquare;  // 1.0*CurSquare.
4359        }
4360
4361        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4362                                CurSquare, CurSquare);
4363        Val >>= 1;
4364      }
4365
4366      // If the original was negative, invert the result, producing 1/(x*x*x).
4367      if (RHSC->getSExtValue() < 0)
4368        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4369                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4370      return Res;
4371    }
4372  }
4373
4374  // Otherwise, expand to a libcall.
4375  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4376}
4377
4378// getTruncatedArgReg - Find underlying register used for an truncated
4379// argument.
4380static unsigned getTruncatedArgReg(const SDValue &N) {
4381  if (N.getOpcode() != ISD::TRUNCATE)
4382    return 0;
4383
4384  const SDValue &Ext = N.getOperand(0);
4385  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4386    const SDValue &CFR = Ext.getOperand(0);
4387    if (CFR.getOpcode() == ISD::CopyFromReg)
4388      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4389    else
4390      if (CFR.getOpcode() == ISD::TRUNCATE)
4391        return getTruncatedArgReg(CFR);
4392  }
4393  return 0;
4394}
4395
4396/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4397/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4398/// At the end of instruction selection, they will be inserted to the entry BB.
4399bool
4400SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4401                                              int64_t Offset,
4402                                              const SDValue &N) {
4403  const Argument *Arg = dyn_cast<Argument>(V);
4404  if (!Arg)
4405    return false;
4406
4407  MachineFunction &MF = DAG.getMachineFunction();
4408  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4409  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4410
4411  // Ignore inlined function arguments here.
4412  DIVariable DV(Variable);
4413  if (DV.isInlinedFnArgument(MF.getFunction()))
4414    return false;
4415
4416  unsigned Reg = 0;
4417  // Some arguments' frame index is recorded during argument lowering.
4418  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4419  if (Offset)
4420      Reg = TRI->getFrameRegister(MF);
4421
4422  if (!Reg && N.getNode()) {
4423    if (N.getOpcode() == ISD::CopyFromReg)
4424      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4425    else
4426      Reg = getTruncatedArgReg(N);
4427    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4428      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4429      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4430      if (PR)
4431        Reg = PR;
4432    }
4433  }
4434
4435  if (!Reg) {
4436    // Check if ValueMap has reg number.
4437    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4438    if (VMI != FuncInfo.ValueMap.end())
4439      Reg = VMI->second;
4440  }
4441
4442  if (!Reg && N.getNode()) {
4443    // Check if frame index is available.
4444    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4445      if (FrameIndexSDNode *FINode =
4446          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4447        Reg = TRI->getFrameRegister(MF);
4448        Offset = FINode->getIndex();
4449      }
4450  }
4451
4452  if (!Reg)
4453    return false;
4454
4455  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4456                                    TII->get(TargetOpcode::DBG_VALUE))
4457    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4458  FuncInfo.ArgDbgValues.push_back(&*MIB);
4459  return true;
4460}
4461
4462// VisualStudio defines setjmp as _setjmp
4463#if defined(_MSC_VER) && defined(setjmp) && \
4464                         !defined(setjmp_undefined_for_msvc)
4465#  pragma push_macro("setjmp")
4466#  undef setjmp
4467#  define setjmp_undefined_for_msvc
4468#endif
4469
4470/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4471/// we want to emit this as a call to a named external function, return the name
4472/// otherwise lower it and return null.
4473const char *
4474SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4475  DebugLoc dl = getCurDebugLoc();
4476  SDValue Res;
4477
4478  switch (Intrinsic) {
4479  default:
4480    // By default, turn this into a target intrinsic node.
4481    visitTargetIntrinsic(I, Intrinsic);
4482    return 0;
4483  case Intrinsic::vastart:  visitVAStart(I); return 0;
4484  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4485  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4486  case Intrinsic::returnaddress:
4487    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4488                             getValue(I.getArgOperand(0))));
4489    return 0;
4490  case Intrinsic::frameaddress:
4491    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4492                             getValue(I.getArgOperand(0))));
4493    return 0;
4494  case Intrinsic::setjmp:
4495    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4496  case Intrinsic::longjmp:
4497    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4498  case Intrinsic::memcpy: {
4499    // Assert for address < 256 since we support only user defined address
4500    // spaces.
4501    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4502           < 256 &&
4503           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4504           < 256 &&
4505           "Unknown address space");
4506    SDValue Op1 = getValue(I.getArgOperand(0));
4507    SDValue Op2 = getValue(I.getArgOperand(1));
4508    SDValue Op3 = getValue(I.getArgOperand(2));
4509    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4510    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4511    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4512                              MachinePointerInfo(I.getArgOperand(0)),
4513                              MachinePointerInfo(I.getArgOperand(1))));
4514    return 0;
4515  }
4516  case Intrinsic::memset: {
4517    // Assert for address < 256 since we support only user defined address
4518    // spaces.
4519    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4520           < 256 &&
4521           "Unknown address space");
4522    SDValue Op1 = getValue(I.getArgOperand(0));
4523    SDValue Op2 = getValue(I.getArgOperand(1));
4524    SDValue Op3 = getValue(I.getArgOperand(2));
4525    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4526    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4527    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4528                              MachinePointerInfo(I.getArgOperand(0))));
4529    return 0;
4530  }
4531  case Intrinsic::memmove: {
4532    // Assert for address < 256 since we support only user defined address
4533    // spaces.
4534    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4535           < 256 &&
4536           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4537           < 256 &&
4538           "Unknown address space");
4539    SDValue Op1 = getValue(I.getArgOperand(0));
4540    SDValue Op2 = getValue(I.getArgOperand(1));
4541    SDValue Op3 = getValue(I.getArgOperand(2));
4542    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4543    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4544    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4545                               MachinePointerInfo(I.getArgOperand(0)),
4546                               MachinePointerInfo(I.getArgOperand(1))));
4547    return 0;
4548  }
4549  case Intrinsic::dbg_declare: {
4550    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4551    MDNode *Variable = DI.getVariable();
4552    const Value *Address = DI.getAddress();
4553    if (!Address || !DIVariable(Variable).Verify())
4554      return 0;
4555
4556    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4557    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4558    // absolute, but not relative, values are different depending on whether
4559    // debug info exists.
4560    ++SDNodeOrder;
4561
4562    // Check if address has undef value.
4563    if (isa<UndefValue>(Address) ||
4564        (Address->use_empty() && !isa<Argument>(Address))) {
4565      DEBUG(dbgs() << "Dropping debug info for " << DI);
4566      return 0;
4567    }
4568
4569    SDValue &N = NodeMap[Address];
4570    if (!N.getNode() && isa<Argument>(Address))
4571      // Check unused arguments map.
4572      N = UnusedArgNodeMap[Address];
4573    SDDbgValue *SDV;
4574    if (N.getNode()) {
4575      // Parameters are handled specially.
4576      bool isParameter =
4577        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4578      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4579        Address = BCI->getOperand(0);
4580      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4581
4582      if (isParameter && !AI) {
4583        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4584        if (FINode)
4585          // Byval parameter.  We have a frame index at this point.
4586          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4587                                0, dl, SDNodeOrder);
4588        else {
4589          // Address is an argument, so try to emit its dbg value using
4590          // virtual register info from the FuncInfo.ValueMap.
4591          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4592          return 0;
4593        }
4594      } else if (AI)
4595        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4596                              0, dl, SDNodeOrder);
4597      else {
4598        // Can't do anything with other non-AI cases yet.
4599        DEBUG(dbgs() << "Dropping debug info for " << DI);
4600        return 0;
4601      }
4602      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4603    } else {
4604      // If Address is an argument then try to emit its dbg value using
4605      // virtual register info from the FuncInfo.ValueMap.
4606      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4607        // If variable is pinned by a alloca in dominating bb then
4608        // use StaticAllocaMap.
4609        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4610          if (AI->getParent() != DI.getParent()) {
4611            DenseMap<const AllocaInst*, int>::iterator SI =
4612              FuncInfo.StaticAllocaMap.find(AI);
4613            if (SI != FuncInfo.StaticAllocaMap.end()) {
4614              SDV = DAG.getDbgValue(Variable, SI->second,
4615                                    0, dl, SDNodeOrder);
4616              DAG.AddDbgValue(SDV, 0, false);
4617              return 0;
4618            }
4619          }
4620        }
4621        DEBUG(dbgs() << "Dropping debug info for " << DI);
4622      }
4623    }
4624    return 0;
4625  }
4626  case Intrinsic::dbg_value: {
4627    const DbgValueInst &DI = cast<DbgValueInst>(I);
4628    if (!DIVariable(DI.getVariable()).Verify())
4629      return 0;
4630
4631    MDNode *Variable = DI.getVariable();
4632    uint64_t Offset = DI.getOffset();
4633    const Value *V = DI.getValue();
4634    if (!V)
4635      return 0;
4636
4637    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4638    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4639    // absolute, but not relative, values are different depending on whether
4640    // debug info exists.
4641    ++SDNodeOrder;
4642    SDDbgValue *SDV;
4643    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4644      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4645      DAG.AddDbgValue(SDV, 0, false);
4646    } else {
4647      // Do not use getValue() in here; we don't want to generate code at
4648      // this point if it hasn't been done yet.
4649      SDValue N = NodeMap[V];
4650      if (!N.getNode() && isa<Argument>(V))
4651        // Check unused arguments map.
4652        N = UnusedArgNodeMap[V];
4653      if (N.getNode()) {
4654        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4655          SDV = DAG.getDbgValue(Variable, N.getNode(),
4656                                N.getResNo(), Offset, dl, SDNodeOrder);
4657          DAG.AddDbgValue(SDV, N.getNode(), false);
4658        }
4659      } else if (!V->use_empty() ) {
4660        // Do not call getValue(V) yet, as we don't want to generate code.
4661        // Remember it for later.
4662        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4663        DanglingDebugInfoMap[V] = DDI;
4664      } else {
4665        // We may expand this to cover more cases.  One case where we have no
4666        // data available is an unreferenced parameter.
4667        DEBUG(dbgs() << "Dropping debug info for " << DI);
4668      }
4669    }
4670
4671    // Build a debug info table entry.
4672    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4673      V = BCI->getOperand(0);
4674    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4675    // Don't handle byval struct arguments or VLAs, for example.
4676    if (!AI)
4677      return 0;
4678    DenseMap<const AllocaInst*, int>::iterator SI =
4679      FuncInfo.StaticAllocaMap.find(AI);
4680    if (SI == FuncInfo.StaticAllocaMap.end())
4681      return 0; // VLAs.
4682    int FI = SI->second;
4683
4684    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4685    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4686      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4687    return 0;
4688  }
4689
4690  case Intrinsic::eh_typeid_for: {
4691    // Find the type id for the given typeinfo.
4692    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4693    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4694    Res = DAG.getConstant(TypeID, MVT::i32);
4695    setValue(&I, Res);
4696    return 0;
4697  }
4698
4699  case Intrinsic::eh_return_i32:
4700  case Intrinsic::eh_return_i64:
4701    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4702    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4703                            MVT::Other,
4704                            getControlRoot(),
4705                            getValue(I.getArgOperand(0)),
4706                            getValue(I.getArgOperand(1))));
4707    return 0;
4708  case Intrinsic::eh_unwind_init:
4709    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4710    return 0;
4711  case Intrinsic::eh_dwarf_cfa: {
4712    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4713                                        TLI.getPointerTy());
4714    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4715                                 TLI.getPointerTy(),
4716                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4717                                             TLI.getPointerTy()),
4718                                 CfaArg);
4719    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4720                             TLI.getPointerTy(),
4721                             DAG.getConstant(0, TLI.getPointerTy()));
4722    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4723                             FA, Offset));
4724    return 0;
4725  }
4726  case Intrinsic::eh_sjlj_callsite: {
4727    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4728    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4729    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4730    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4731
4732    MMI.setCurrentCallSite(CI->getZExtValue());
4733    return 0;
4734  }
4735  case Intrinsic::eh_sjlj_functioncontext: {
4736    // Get and store the index of the function context.
4737    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4738    AllocaInst *FnCtx =
4739      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4740    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4741    MFI->setFunctionContextIndex(FI);
4742    return 0;
4743  }
4744  case Intrinsic::eh_sjlj_setjmp: {
4745    SDValue Ops[2];
4746    Ops[0] = getRoot();
4747    Ops[1] = getValue(I.getArgOperand(0));
4748    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4749                             DAG.getVTList(MVT::i32, MVT::Other),
4750                             Ops, 2);
4751    setValue(&I, Op.getValue(0));
4752    DAG.setRoot(Op.getValue(1));
4753    return 0;
4754  }
4755  case Intrinsic::eh_sjlj_longjmp: {
4756    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4757                            getRoot(), getValue(I.getArgOperand(0))));
4758    return 0;
4759  }
4760
4761  case Intrinsic::x86_mmx_pslli_w:
4762  case Intrinsic::x86_mmx_pslli_d:
4763  case Intrinsic::x86_mmx_pslli_q:
4764  case Intrinsic::x86_mmx_psrli_w:
4765  case Intrinsic::x86_mmx_psrli_d:
4766  case Intrinsic::x86_mmx_psrli_q:
4767  case Intrinsic::x86_mmx_psrai_w:
4768  case Intrinsic::x86_mmx_psrai_d: {
4769    SDValue ShAmt = getValue(I.getArgOperand(1));
4770    if (isa<ConstantSDNode>(ShAmt)) {
4771      visitTargetIntrinsic(I, Intrinsic);
4772      return 0;
4773    }
4774    unsigned NewIntrinsic = 0;
4775    EVT ShAmtVT = MVT::v2i32;
4776    switch (Intrinsic) {
4777    case Intrinsic::x86_mmx_pslli_w:
4778      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4779      break;
4780    case Intrinsic::x86_mmx_pslli_d:
4781      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4782      break;
4783    case Intrinsic::x86_mmx_pslli_q:
4784      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4785      break;
4786    case Intrinsic::x86_mmx_psrli_w:
4787      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4788      break;
4789    case Intrinsic::x86_mmx_psrli_d:
4790      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4791      break;
4792    case Intrinsic::x86_mmx_psrli_q:
4793      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4794      break;
4795    case Intrinsic::x86_mmx_psrai_w:
4796      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4797      break;
4798    case Intrinsic::x86_mmx_psrai_d:
4799      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4800      break;
4801    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4802    }
4803
4804    // The vector shift intrinsics with scalars uses 32b shift amounts but
4805    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4806    // to be zero.
4807    // We must do this early because v2i32 is not a legal type.
4808    DebugLoc dl = getCurDebugLoc();
4809    SDValue ShOps[2];
4810    ShOps[0] = ShAmt;
4811    ShOps[1] = DAG.getConstant(0, MVT::i32);
4812    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4813    EVT DestVT = TLI.getValueType(I.getType());
4814    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4815    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4816                       DAG.getConstant(NewIntrinsic, MVT::i32),
4817                       getValue(I.getArgOperand(0)), ShAmt);
4818    setValue(&I, Res);
4819    return 0;
4820  }
4821  case Intrinsic::convertff:
4822  case Intrinsic::convertfsi:
4823  case Intrinsic::convertfui:
4824  case Intrinsic::convertsif:
4825  case Intrinsic::convertuif:
4826  case Intrinsic::convertss:
4827  case Intrinsic::convertsu:
4828  case Intrinsic::convertus:
4829  case Intrinsic::convertuu: {
4830    ISD::CvtCode Code = ISD::CVT_INVALID;
4831    switch (Intrinsic) {
4832    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4833    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4834    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4835    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4836    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4837    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4838    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4839    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4840    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4841    }
4842    EVT DestVT = TLI.getValueType(I.getType());
4843    const Value *Op1 = I.getArgOperand(0);
4844    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4845                               DAG.getValueType(DestVT),
4846                               DAG.getValueType(getValue(Op1).getValueType()),
4847                               getValue(I.getArgOperand(1)),
4848                               getValue(I.getArgOperand(2)),
4849                               Code);
4850    setValue(&I, Res);
4851    return 0;
4852  }
4853  case Intrinsic::sqrt:
4854    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4855                             getValue(I.getArgOperand(0)).getValueType(),
4856                             getValue(I.getArgOperand(0))));
4857    return 0;
4858  case Intrinsic::powi:
4859    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4860                            getValue(I.getArgOperand(1)), DAG));
4861    return 0;
4862  case Intrinsic::sin:
4863    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4864                             getValue(I.getArgOperand(0)).getValueType(),
4865                             getValue(I.getArgOperand(0))));
4866    return 0;
4867  case Intrinsic::cos:
4868    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4869                             getValue(I.getArgOperand(0)).getValueType(),
4870                             getValue(I.getArgOperand(0))));
4871    return 0;
4872  case Intrinsic::log:
4873    visitLog(I);
4874    return 0;
4875  case Intrinsic::log2:
4876    visitLog2(I);
4877    return 0;
4878  case Intrinsic::log10:
4879    visitLog10(I);
4880    return 0;
4881  case Intrinsic::exp:
4882    visitExp(I);
4883    return 0;
4884  case Intrinsic::exp2:
4885    visitExp2(I);
4886    return 0;
4887  case Intrinsic::pow:
4888    visitPow(I);
4889    return 0;
4890  case Intrinsic::fma:
4891    setValue(&I, DAG.getNode(ISD::FMA, dl,
4892                             getValue(I.getArgOperand(0)).getValueType(),
4893                             getValue(I.getArgOperand(0)),
4894                             getValue(I.getArgOperand(1)),
4895                             getValue(I.getArgOperand(2))));
4896    return 0;
4897  case Intrinsic::convert_to_fp16:
4898    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4899                             MVT::i16, getValue(I.getArgOperand(0))));
4900    return 0;
4901  case Intrinsic::convert_from_fp16:
4902    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4903                             MVT::f32, getValue(I.getArgOperand(0))));
4904    return 0;
4905  case Intrinsic::pcmarker: {
4906    SDValue Tmp = getValue(I.getArgOperand(0));
4907    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4908    return 0;
4909  }
4910  case Intrinsic::readcyclecounter: {
4911    SDValue Op = getRoot();
4912    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4913                      DAG.getVTList(MVT::i64, MVT::Other),
4914                      &Op, 1);
4915    setValue(&I, Res);
4916    DAG.setRoot(Res.getValue(1));
4917    return 0;
4918  }
4919  case Intrinsic::bswap:
4920    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4921                             getValue(I.getArgOperand(0)).getValueType(),
4922                             getValue(I.getArgOperand(0))));
4923    return 0;
4924  case Intrinsic::cttz: {
4925    SDValue Arg = getValue(I.getArgOperand(0));
4926    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4927    EVT Ty = Arg.getValueType();
4928    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4929                             dl, Ty, Arg));
4930    return 0;
4931  }
4932  case Intrinsic::ctlz: {
4933    SDValue Arg = getValue(I.getArgOperand(0));
4934    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4935    EVT Ty = Arg.getValueType();
4936    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4937                             dl, Ty, Arg));
4938    return 0;
4939  }
4940  case Intrinsic::ctpop: {
4941    SDValue Arg = getValue(I.getArgOperand(0));
4942    EVT Ty = Arg.getValueType();
4943    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4944    return 0;
4945  }
4946  case Intrinsic::stacksave: {
4947    SDValue Op = getRoot();
4948    Res = DAG.getNode(ISD::STACKSAVE, dl,
4949                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4950    setValue(&I, Res);
4951    DAG.setRoot(Res.getValue(1));
4952    return 0;
4953  }
4954  case Intrinsic::stackrestore: {
4955    Res = getValue(I.getArgOperand(0));
4956    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4957    return 0;
4958  }
4959  case Intrinsic::stackprotector: {
4960    // Emit code into the DAG to store the stack guard onto the stack.
4961    MachineFunction &MF = DAG.getMachineFunction();
4962    MachineFrameInfo *MFI = MF.getFrameInfo();
4963    EVT PtrTy = TLI.getPointerTy();
4964
4965    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4966    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4967
4968    int FI = FuncInfo.StaticAllocaMap[Slot];
4969    MFI->setStackProtectorIndex(FI);
4970
4971    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4972
4973    // Store the stack protector onto the stack.
4974    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4975                       MachinePointerInfo::getFixedStack(FI),
4976                       true, false, 0);
4977    setValue(&I, Res);
4978    DAG.setRoot(Res);
4979    return 0;
4980  }
4981  case Intrinsic::objectsize: {
4982    // If we don't know by now, we're never going to know.
4983    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4984
4985    assert(CI && "Non-constant type in __builtin_object_size?");
4986
4987    SDValue Arg = getValue(I.getCalledValue());
4988    EVT Ty = Arg.getValueType();
4989
4990    if (CI->isZero())
4991      Res = DAG.getConstant(-1ULL, Ty);
4992    else
4993      Res = DAG.getConstant(0, Ty);
4994
4995    setValue(&I, Res);
4996    return 0;
4997  }
4998  case Intrinsic::var_annotation:
4999    // Discard annotate attributes
5000    return 0;
5001
5002  case Intrinsic::init_trampoline: {
5003    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5004
5005    SDValue Ops[6];
5006    Ops[0] = getRoot();
5007    Ops[1] = getValue(I.getArgOperand(0));
5008    Ops[2] = getValue(I.getArgOperand(1));
5009    Ops[3] = getValue(I.getArgOperand(2));
5010    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5011    Ops[5] = DAG.getSrcValue(F);
5012
5013    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5014
5015    DAG.setRoot(Res);
5016    return 0;
5017  }
5018  case Intrinsic::adjust_trampoline: {
5019    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5020                             TLI.getPointerTy(),
5021                             getValue(I.getArgOperand(0))));
5022    return 0;
5023  }
5024  case Intrinsic::gcroot:
5025    if (GFI) {
5026      const Value *Alloca = I.getArgOperand(0);
5027      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5028
5029      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5030      GFI->addStackRoot(FI->getIndex(), TypeMap);
5031    }
5032    return 0;
5033  case Intrinsic::gcread:
5034  case Intrinsic::gcwrite:
5035    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5036  case Intrinsic::flt_rounds:
5037    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5038    return 0;
5039
5040  case Intrinsic::expect: {
5041    // Just replace __builtin_expect(exp, c) with EXP.
5042    setValue(&I, getValue(I.getArgOperand(0)));
5043    return 0;
5044  }
5045
5046  case Intrinsic::trap: {
5047    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5048    if (TrapFuncName.empty()) {
5049      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5050      return 0;
5051    }
5052    TargetLowering::ArgListTy Args;
5053    std::pair<SDValue, SDValue> Result =
5054      TLI.LowerCallTo(getRoot(), I.getType(),
5055                 false, false, false, false, 0, CallingConv::C,
5056                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
5057                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5058                 Args, DAG, getCurDebugLoc());
5059    DAG.setRoot(Result.second);
5060    return 0;
5061  }
5062  case Intrinsic::uadd_with_overflow:
5063    return implVisitAluOverflow(I, ISD::UADDO);
5064  case Intrinsic::sadd_with_overflow:
5065    return implVisitAluOverflow(I, ISD::SADDO);
5066  case Intrinsic::usub_with_overflow:
5067    return implVisitAluOverflow(I, ISD::USUBO);
5068  case Intrinsic::ssub_with_overflow:
5069    return implVisitAluOverflow(I, ISD::SSUBO);
5070  case Intrinsic::umul_with_overflow:
5071    return implVisitAluOverflow(I, ISD::UMULO);
5072  case Intrinsic::smul_with_overflow:
5073    return implVisitAluOverflow(I, ISD::SMULO);
5074
5075  case Intrinsic::prefetch: {
5076    SDValue Ops[5];
5077    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5078    Ops[0] = getRoot();
5079    Ops[1] = getValue(I.getArgOperand(0));
5080    Ops[2] = getValue(I.getArgOperand(1));
5081    Ops[3] = getValue(I.getArgOperand(2));
5082    Ops[4] = getValue(I.getArgOperand(3));
5083    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5084                                        DAG.getVTList(MVT::Other),
5085                                        &Ops[0], 5,
5086                                        EVT::getIntegerVT(*Context, 8),
5087                                        MachinePointerInfo(I.getArgOperand(0)),
5088                                        0, /* align */
5089                                        false, /* volatile */
5090                                        rw==0, /* read */
5091                                        rw==1)); /* write */
5092    return 0;
5093  }
5094
5095  case Intrinsic::invariant_start:
5096  case Intrinsic::lifetime_start:
5097    // Discard region information.
5098    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5099    return 0;
5100  case Intrinsic::invariant_end:
5101  case Intrinsic::lifetime_end:
5102    // Discard region information.
5103    return 0;
5104  }
5105}
5106
5107void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5108                                      bool isTailCall,
5109                                      MachineBasicBlock *LandingPad) {
5110  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5111  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5112  Type *RetTy = FTy->getReturnType();
5113  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5114  MCSymbol *BeginLabel = 0;
5115
5116  TargetLowering::ArgListTy Args;
5117  TargetLowering::ArgListEntry Entry;
5118  Args.reserve(CS.arg_size());
5119
5120  // Check whether the function can return without sret-demotion.
5121  SmallVector<ISD::OutputArg, 4> Outs;
5122  SmallVector<uint64_t, 4> Offsets;
5123  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5124                Outs, TLI, &Offsets);
5125
5126  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5127					   DAG.getMachineFunction(),
5128					   FTy->isVarArg(), Outs,
5129					   FTy->getContext());
5130
5131  SDValue DemoteStackSlot;
5132  int DemoteStackIdx = -100;
5133
5134  if (!CanLowerReturn) {
5135    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5136                      FTy->getReturnType());
5137    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5138                      FTy->getReturnType());
5139    MachineFunction &MF = DAG.getMachineFunction();
5140    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5141    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5142
5143    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5144    Entry.Node = DemoteStackSlot;
5145    Entry.Ty = StackSlotPtrType;
5146    Entry.isSExt = false;
5147    Entry.isZExt = false;
5148    Entry.isInReg = false;
5149    Entry.isSRet = true;
5150    Entry.isNest = false;
5151    Entry.isByVal = false;
5152    Entry.Alignment = Align;
5153    Args.push_back(Entry);
5154    RetTy = Type::getVoidTy(FTy->getContext());
5155  }
5156
5157  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5158       i != e; ++i) {
5159    const Value *V = *i;
5160
5161    // Skip empty types
5162    if (V->getType()->isEmptyTy())
5163      continue;
5164
5165    SDValue ArgNode = getValue(V);
5166    Entry.Node = ArgNode; Entry.Ty = V->getType();
5167
5168    unsigned attrInd = i - CS.arg_begin() + 1;
5169    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5170    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5171    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5172    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5173    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5174    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5175    Entry.Alignment = CS.getParamAlignment(attrInd);
5176    Args.push_back(Entry);
5177  }
5178
5179  if (LandingPad) {
5180    // Insert a label before the invoke call to mark the try range.  This can be
5181    // used to detect deletion of the invoke via the MachineModuleInfo.
5182    BeginLabel = MMI.getContext().CreateTempSymbol();
5183
5184    // For SjLj, keep track of which landing pads go with which invokes
5185    // so as to maintain the ordering of pads in the LSDA.
5186    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5187    if (CallSiteIndex) {
5188      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5189      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5190
5191      // Now that the call site is handled, stop tracking it.
5192      MMI.setCurrentCallSite(0);
5193    }
5194
5195    // Both PendingLoads and PendingExports must be flushed here;
5196    // this call might not return.
5197    (void)getRoot();
5198    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5199  }
5200
5201  // Check if target-independent constraints permit a tail call here.
5202  // Target-dependent constraints are checked within TLI.LowerCallTo.
5203  if (isTailCall &&
5204      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5205    isTailCall = false;
5206
5207  // If there's a possibility that fast-isel has already selected some amount
5208  // of the current basic block, don't emit a tail call.
5209  if (isTailCall && TM.Options.EnableFastISel)
5210    isTailCall = false;
5211
5212  std::pair<SDValue,SDValue> Result =
5213    TLI.LowerCallTo(getRoot(), RetTy,
5214                    CS.paramHasAttr(0, Attribute::SExt),
5215                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5216                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5217                    CS.getCallingConv(),
5218                    isTailCall,
5219                    !CS.getInstruction()->use_empty(),
5220                    Callee, Args, DAG, getCurDebugLoc());
5221  assert((isTailCall || Result.second.getNode()) &&
5222         "Non-null chain expected with non-tail call!");
5223  assert((Result.second.getNode() || !Result.first.getNode()) &&
5224         "Null value expected with tail call!");
5225  if (Result.first.getNode()) {
5226    setValue(CS.getInstruction(), Result.first);
5227  } else if (!CanLowerReturn && Result.second.getNode()) {
5228    // The instruction result is the result of loading from the
5229    // hidden sret parameter.
5230    SmallVector<EVT, 1> PVTs;
5231    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5232
5233    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5234    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5235    EVT PtrVT = PVTs[0];
5236    unsigned NumValues = Outs.size();
5237    SmallVector<SDValue, 4> Values(NumValues);
5238    SmallVector<SDValue, 4> Chains(NumValues);
5239
5240    for (unsigned i = 0; i < NumValues; ++i) {
5241      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5242                                DemoteStackSlot,
5243                                DAG.getConstant(Offsets[i], PtrVT));
5244      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5245                              Add,
5246                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5247                              false, false, false, 1);
5248      Values[i] = L;
5249      Chains[i] = L.getValue(1);
5250    }
5251
5252    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5253                                MVT::Other, &Chains[0], NumValues);
5254    PendingLoads.push_back(Chain);
5255
5256    // Collect the legal value parts into potentially illegal values
5257    // that correspond to the original function's return values.
5258    SmallVector<EVT, 4> RetTys;
5259    RetTy = FTy->getReturnType();
5260    ComputeValueVTs(TLI, RetTy, RetTys);
5261    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5262    SmallVector<SDValue, 4> ReturnValues;
5263    unsigned CurReg = 0;
5264    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5265      EVT VT = RetTys[I];
5266      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5267      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5268
5269      SDValue ReturnValue =
5270        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5271                         RegisterVT, VT, AssertOp);
5272      ReturnValues.push_back(ReturnValue);
5273      CurReg += NumRegs;
5274    }
5275
5276    setValue(CS.getInstruction(),
5277             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5278                         DAG.getVTList(&RetTys[0], RetTys.size()),
5279                         &ReturnValues[0], ReturnValues.size()));
5280  }
5281
5282  // Assign order to nodes here. If the call does not produce a result, it won't
5283  // be mapped to a SDNode and visit() will not assign it an order number.
5284  if (!Result.second.getNode()) {
5285    // As a special case, a null chain means that a tail call has been emitted and
5286    // the DAG root is already updated.
5287    HasTailCall = true;
5288    ++SDNodeOrder;
5289    AssignOrderingToNode(DAG.getRoot().getNode());
5290  } else {
5291    DAG.setRoot(Result.second);
5292    ++SDNodeOrder;
5293    AssignOrderingToNode(Result.second.getNode());
5294  }
5295
5296  if (LandingPad) {
5297    // Insert a label at the end of the invoke call to mark the try range.  This
5298    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5299    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5300    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5301
5302    // Inform MachineModuleInfo of range.
5303    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5304  }
5305}
5306
5307/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5308/// value is equal or not-equal to zero.
5309static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5310  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5311       UI != E; ++UI) {
5312    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5313      if (IC->isEquality())
5314        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5315          if (C->isNullValue())
5316            continue;
5317    // Unknown instruction.
5318    return false;
5319  }
5320  return true;
5321}
5322
5323static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5324                             Type *LoadTy,
5325                             SelectionDAGBuilder &Builder) {
5326
5327  // Check to see if this load can be trivially constant folded, e.g. if the
5328  // input is from a string literal.
5329  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5330    // Cast pointer to the type we really want to load.
5331    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5332                                         PointerType::getUnqual(LoadTy));
5333
5334    if (const Constant *LoadCst =
5335          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5336                                       Builder.TD))
5337      return Builder.getValue(LoadCst);
5338  }
5339
5340  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5341  // still constant memory, the input chain can be the entry node.
5342  SDValue Root;
5343  bool ConstantMemory = false;
5344
5345  // Do not serialize (non-volatile) loads of constant memory with anything.
5346  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5347    Root = Builder.DAG.getEntryNode();
5348    ConstantMemory = true;
5349  } else {
5350    // Do not serialize non-volatile loads against each other.
5351    Root = Builder.DAG.getRoot();
5352  }
5353
5354  SDValue Ptr = Builder.getValue(PtrVal);
5355  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5356                                        Ptr, MachinePointerInfo(PtrVal),
5357                                        false /*volatile*/,
5358                                        false /*nontemporal*/,
5359                                        false /*isinvariant*/, 1 /* align=1 */);
5360
5361  if (!ConstantMemory)
5362    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5363  return LoadVal;
5364}
5365
5366
5367/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5368/// If so, return true and lower it, otherwise return false and it will be
5369/// lowered like a normal call.
5370bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5371  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5372  if (I.getNumArgOperands() != 3)
5373    return false;
5374
5375  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5376  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5377      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5378      !I.getType()->isIntegerTy())
5379    return false;
5380
5381  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5382
5383  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5384  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5385  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5386    bool ActuallyDoIt = true;
5387    MVT LoadVT;
5388    Type *LoadTy;
5389    switch (Size->getZExtValue()) {
5390    default:
5391      LoadVT = MVT::Other;
5392      LoadTy = 0;
5393      ActuallyDoIt = false;
5394      break;
5395    case 2:
5396      LoadVT = MVT::i16;
5397      LoadTy = Type::getInt16Ty(Size->getContext());
5398      break;
5399    case 4:
5400      LoadVT = MVT::i32;
5401      LoadTy = Type::getInt32Ty(Size->getContext());
5402      break;
5403    case 8:
5404      LoadVT = MVT::i64;
5405      LoadTy = Type::getInt64Ty(Size->getContext());
5406      break;
5407        /*
5408    case 16:
5409      LoadVT = MVT::v4i32;
5410      LoadTy = Type::getInt32Ty(Size->getContext());
5411      LoadTy = VectorType::get(LoadTy, 4);
5412      break;
5413         */
5414    }
5415
5416    // This turns into unaligned loads.  We only do this if the target natively
5417    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5418    // we'll only produce a small number of byte loads.
5419
5420    // Require that we can find a legal MVT, and only do this if the target
5421    // supports unaligned loads of that type.  Expanding into byte loads would
5422    // bloat the code.
5423    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5424      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5425      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5426      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5427        ActuallyDoIt = false;
5428    }
5429
5430    if (ActuallyDoIt) {
5431      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5432      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5433
5434      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5435                                 ISD::SETNE);
5436      EVT CallVT = TLI.getValueType(I.getType(), true);
5437      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5438      return true;
5439    }
5440  }
5441
5442
5443  return false;
5444}
5445
5446
5447void SelectionDAGBuilder::visitCall(const CallInst &I) {
5448  // Handle inline assembly differently.
5449  if (isa<InlineAsm>(I.getCalledValue())) {
5450    visitInlineAsm(&I);
5451    return;
5452  }
5453
5454  // See if any floating point values are being passed to this function. This is
5455  // used to emit an undefined reference to fltused on Windows.
5456  FunctionType *FT =
5457    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5458  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5459  if (FT->isVarArg() &&
5460      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5461    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5462      Type* T = I.getArgOperand(i)->getType();
5463      for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5464           i != e; ++i) {
5465        if (!i->isFloatingPointTy()) continue;
5466        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5467        break;
5468      }
5469    }
5470  }
5471
5472  const char *RenameFn = 0;
5473  if (Function *F = I.getCalledFunction()) {
5474    if (F->isDeclaration()) {
5475      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5476        if (unsigned IID = II->getIntrinsicID(F)) {
5477          RenameFn = visitIntrinsicCall(I, IID);
5478          if (!RenameFn)
5479            return;
5480        }
5481      }
5482      if (unsigned IID = F->getIntrinsicID()) {
5483        RenameFn = visitIntrinsicCall(I, IID);
5484        if (!RenameFn)
5485          return;
5486      }
5487    }
5488
5489    // Check for well-known libc/libm calls.  If the function is internal, it
5490    // can't be a library call.
5491    if (!F->hasLocalLinkage() && F->hasName()) {
5492      StringRef Name = F->getName();
5493      if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") ||
5494          (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") ||
5495          (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) {
5496        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5497            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5498            I.getType() == I.getArgOperand(0)->getType() &&
5499            I.getType() == I.getArgOperand(1)->getType()) {
5500          SDValue LHS = getValue(I.getArgOperand(0));
5501          SDValue RHS = getValue(I.getArgOperand(1));
5502          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5503                                   LHS.getValueType(), LHS, RHS));
5504          return;
5505        }
5506      } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") ||
5507                 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") ||
5508                 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) {
5509        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5510            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5511            I.getType() == I.getArgOperand(0)->getType()) {
5512          SDValue Tmp = getValue(I.getArgOperand(0));
5513          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5514                                   Tmp.getValueType(), Tmp));
5515          return;
5516        }
5517      } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") ||
5518                 (LibInfo->has(LibFunc::sinf) && Name == "sinf") ||
5519                 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) {
5520        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5521            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5522            I.getType() == I.getArgOperand(0)->getType() &&
5523            I.onlyReadsMemory()) {
5524          SDValue Tmp = getValue(I.getArgOperand(0));
5525          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5526                                   Tmp.getValueType(), Tmp));
5527          return;
5528        }
5529      } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") ||
5530                 (LibInfo->has(LibFunc::cosf) && Name == "cosf") ||
5531                 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) {
5532        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5533            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5534            I.getType() == I.getArgOperand(0)->getType() &&
5535            I.onlyReadsMemory()) {
5536          SDValue Tmp = getValue(I.getArgOperand(0));
5537          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5538                                   Tmp.getValueType(), Tmp));
5539          return;
5540        }
5541      } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") ||
5542                 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") ||
5543                 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) {
5544        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5545            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5546            I.getType() == I.getArgOperand(0)->getType() &&
5547            I.onlyReadsMemory()) {
5548          SDValue Tmp = getValue(I.getArgOperand(0));
5549          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5550                                   Tmp.getValueType(), Tmp));
5551          return;
5552        }
5553      } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") ||
5554                 (LibInfo->has(LibFunc::floorf) && Name == "floorf") ||
5555                 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) {
5556        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5557            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5558            I.getType() == I.getArgOperand(0)->getType()) {
5559          SDValue Tmp = getValue(I.getArgOperand(0));
5560          setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(),
5561                                   Tmp.getValueType(), Tmp));
5562          return;
5563        }
5564      } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") ||
5565                 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") ||
5566                 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) {
5567        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5568            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5569            I.getType() == I.getArgOperand(0)->getType()) {
5570          SDValue Tmp = getValue(I.getArgOperand(0));
5571          setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(),
5572                                   Tmp.getValueType(), Tmp));
5573          return;
5574        }
5575      } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") ||
5576                 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") ||
5577                 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) {
5578        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5579            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5580            I.getType() == I.getArgOperand(0)->getType()) {
5581          SDValue Tmp = getValue(I.getArgOperand(0));
5582          setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(),
5583                                   Tmp.getValueType(), Tmp));
5584          return;
5585        }
5586      } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") ||
5587                 (LibInfo->has(LibFunc::rintf) && Name == "rintf") ||
5588                 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) {
5589        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5590            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5591            I.getType() == I.getArgOperand(0)->getType()) {
5592          SDValue Tmp = getValue(I.getArgOperand(0));
5593          setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(),
5594                                   Tmp.getValueType(), Tmp));
5595          return;
5596        }
5597      } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") ||
5598                 (LibInfo->has(LibFunc::truncf) && Name == "truncf") ||
5599                 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) {
5600        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5601            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5602            I.getType() == I.getArgOperand(0)->getType()) {
5603          SDValue Tmp = getValue(I.getArgOperand(0));
5604          setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(),
5605                                   Tmp.getValueType(), Tmp));
5606          return;
5607        }
5608      } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") ||
5609                 (LibInfo->has(LibFunc::log2f) && Name == "log2f") ||
5610                 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) {
5611        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5612            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5613            I.getType() == I.getArgOperand(0)->getType()) {
5614          SDValue Tmp = getValue(I.getArgOperand(0));
5615          setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(),
5616                                   Tmp.getValueType(), Tmp));
5617          return;
5618        }
5619      } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") ||
5620                 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") ||
5621                 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) {
5622        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5623            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5624            I.getType() == I.getArgOperand(0)->getType()) {
5625          SDValue Tmp = getValue(I.getArgOperand(0));
5626          setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(),
5627                                   Tmp.getValueType(), Tmp));
5628          return;
5629        }
5630      } else if (Name == "memcmp") {
5631        if (visitMemCmpCall(I))
5632          return;
5633      }
5634    }
5635  }
5636
5637  SDValue Callee;
5638  if (!RenameFn)
5639    Callee = getValue(I.getCalledValue());
5640  else
5641    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5642
5643  // Check if we can potentially perform a tail call. More detailed checking is
5644  // be done within LowerCallTo, after more information about the call is known.
5645  LowerCallTo(&I, Callee, I.isTailCall());
5646}
5647
5648namespace {
5649
5650/// AsmOperandInfo - This contains information for each constraint that we are
5651/// lowering.
5652class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5653public:
5654  /// CallOperand - If this is the result output operand or a clobber
5655  /// this is null, otherwise it is the incoming operand to the CallInst.
5656  /// This gets modified as the asm is processed.
5657  SDValue CallOperand;
5658
5659  /// AssignedRegs - If this is a register or register class operand, this
5660  /// contains the set of register corresponding to the operand.
5661  RegsForValue AssignedRegs;
5662
5663  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5664    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5665  }
5666
5667  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5668  /// busy in OutputRegs/InputRegs.
5669  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5670                         std::set<unsigned> &OutputRegs,
5671                         std::set<unsigned> &InputRegs,
5672                         const TargetRegisterInfo &TRI) const {
5673    if (isOutReg) {
5674      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5675        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5676    }
5677    if (isInReg) {
5678      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5679        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5680    }
5681  }
5682
5683  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5684  /// corresponds to.  If there is no Value* for this operand, it returns
5685  /// MVT::Other.
5686  EVT getCallOperandValEVT(LLVMContext &Context,
5687                           const TargetLowering &TLI,
5688                           const TargetData *TD) const {
5689    if (CallOperandVal == 0) return MVT::Other;
5690
5691    if (isa<BasicBlock>(CallOperandVal))
5692      return TLI.getPointerTy();
5693
5694    llvm::Type *OpTy = CallOperandVal->getType();
5695
5696    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5697    // If this is an indirect operand, the operand is a pointer to the
5698    // accessed type.
5699    if (isIndirect) {
5700      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5701      if (!PtrTy)
5702        report_fatal_error("Indirect operand for inline asm not a pointer!");
5703      OpTy = PtrTy->getElementType();
5704    }
5705
5706    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5707    if (StructType *STy = dyn_cast<StructType>(OpTy))
5708      if (STy->getNumElements() == 1)
5709        OpTy = STy->getElementType(0);
5710
5711    // If OpTy is not a single value, it may be a struct/union that we
5712    // can tile with integers.
5713    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5714      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5715      switch (BitSize) {
5716      default: break;
5717      case 1:
5718      case 8:
5719      case 16:
5720      case 32:
5721      case 64:
5722      case 128:
5723        OpTy = IntegerType::get(Context, BitSize);
5724        break;
5725      }
5726    }
5727
5728    return TLI.getValueType(OpTy, true);
5729  }
5730
5731private:
5732  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5733  /// specified set.
5734  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5735                                const TargetRegisterInfo &TRI) {
5736    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5737    Regs.insert(Reg);
5738    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5739      for (; *Aliases; ++Aliases)
5740        Regs.insert(*Aliases);
5741  }
5742};
5743
5744typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5745
5746} // end anonymous namespace
5747
5748/// GetRegistersForValue - Assign registers (virtual or physical) for the
5749/// specified operand.  We prefer to assign virtual registers, to allow the
5750/// register allocator to handle the assignment process.  However, if the asm
5751/// uses features that we can't model on machineinstrs, we have SDISel do the
5752/// allocation.  This produces generally horrible, but correct, code.
5753///
5754///   OpInfo describes the operand.
5755///   Input and OutputRegs are the set of already allocated physical registers.
5756///
5757static void GetRegistersForValue(SelectionDAG &DAG,
5758                                 const TargetLowering &TLI,
5759                                 DebugLoc DL,
5760                                 SDISelAsmOperandInfo &OpInfo,
5761                                 std::set<unsigned> &OutputRegs,
5762                                 std::set<unsigned> &InputRegs) {
5763  LLVMContext &Context = *DAG.getContext();
5764
5765  // Compute whether this value requires an input register, an output register,
5766  // or both.
5767  bool isOutReg = false;
5768  bool isInReg = false;
5769  switch (OpInfo.Type) {
5770  case InlineAsm::isOutput:
5771    isOutReg = true;
5772
5773    // If there is an input constraint that matches this, we need to reserve
5774    // the input register so no other inputs allocate to it.
5775    isInReg = OpInfo.hasMatchingInput();
5776    break;
5777  case InlineAsm::isInput:
5778    isInReg = true;
5779    isOutReg = false;
5780    break;
5781  case InlineAsm::isClobber:
5782    isOutReg = true;
5783    isInReg = true;
5784    break;
5785  }
5786
5787
5788  MachineFunction &MF = DAG.getMachineFunction();
5789  SmallVector<unsigned, 4> Regs;
5790
5791  // If this is a constraint for a single physreg, or a constraint for a
5792  // register class, find it.
5793  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5794    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5795                                     OpInfo.ConstraintVT);
5796
5797  unsigned NumRegs = 1;
5798  if (OpInfo.ConstraintVT != MVT::Other) {
5799    // If this is a FP input in an integer register (or visa versa) insert a bit
5800    // cast of the input value.  More generally, handle any case where the input
5801    // value disagrees with the register class we plan to stick this in.
5802    if (OpInfo.Type == InlineAsm::isInput &&
5803        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5804      // Try to convert to the first EVT that the reg class contains.  If the
5805      // types are identical size, use a bitcast to convert (e.g. two differing
5806      // vector types).
5807      EVT RegVT = *PhysReg.second->vt_begin();
5808      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5809        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5810                                         RegVT, OpInfo.CallOperand);
5811        OpInfo.ConstraintVT = RegVT;
5812      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5813        // If the input is a FP value and we want it in FP registers, do a
5814        // bitcast to the corresponding integer type.  This turns an f64 value
5815        // into i64, which can be passed with two i32 values on a 32-bit
5816        // machine.
5817        RegVT = EVT::getIntegerVT(Context,
5818                                  OpInfo.ConstraintVT.getSizeInBits());
5819        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5820                                         RegVT, OpInfo.CallOperand);
5821        OpInfo.ConstraintVT = RegVT;
5822      }
5823    }
5824
5825    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5826  }
5827
5828  EVT RegVT;
5829  EVT ValueVT = OpInfo.ConstraintVT;
5830
5831  // If this is a constraint for a specific physical register, like {r17},
5832  // assign it now.
5833  if (unsigned AssignedReg = PhysReg.first) {
5834    const TargetRegisterClass *RC = PhysReg.second;
5835    if (OpInfo.ConstraintVT == MVT::Other)
5836      ValueVT = *RC->vt_begin();
5837
5838    // Get the actual register value type.  This is important, because the user
5839    // may have asked for (e.g.) the AX register in i32 type.  We need to
5840    // remember that AX is actually i16 to get the right extension.
5841    RegVT = *RC->vt_begin();
5842
5843    // This is a explicit reference to a physical register.
5844    Regs.push_back(AssignedReg);
5845
5846    // If this is an expanded reference, add the rest of the regs to Regs.
5847    if (NumRegs != 1) {
5848      TargetRegisterClass::iterator I = RC->begin();
5849      for (; *I != AssignedReg; ++I)
5850        assert(I != RC->end() && "Didn't find reg!");
5851
5852      // Already added the first reg.
5853      --NumRegs; ++I;
5854      for (; NumRegs; --NumRegs, ++I) {
5855        assert(I != RC->end() && "Ran out of registers to allocate!");
5856        Regs.push_back(*I);
5857      }
5858    }
5859
5860    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5861    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5862    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5863    return;
5864  }
5865
5866  // Otherwise, if this was a reference to an LLVM register class, create vregs
5867  // for this reference.
5868  if (const TargetRegisterClass *RC = PhysReg.second) {
5869    RegVT = *RC->vt_begin();
5870    if (OpInfo.ConstraintVT == MVT::Other)
5871      ValueVT = RegVT;
5872
5873    // Create the appropriate number of virtual registers.
5874    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5875    for (; NumRegs; --NumRegs)
5876      Regs.push_back(RegInfo.createVirtualRegister(RC));
5877
5878    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5879    return;
5880  }
5881
5882  // Otherwise, we couldn't allocate enough registers for this.
5883}
5884
5885/// visitInlineAsm - Handle a call to an InlineAsm object.
5886///
5887void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5888  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5889
5890  /// ConstraintOperands - Information about all of the constraints.
5891  SDISelAsmOperandInfoVector ConstraintOperands;
5892
5893  std::set<unsigned> OutputRegs, InputRegs;
5894
5895  TargetLowering::AsmOperandInfoVector
5896    TargetConstraints = TLI.ParseConstraints(CS);
5897
5898  bool hasMemory = false;
5899
5900  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5901  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5902  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5903    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5904    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5905
5906    EVT OpVT = MVT::Other;
5907
5908    // Compute the value type for each operand.
5909    switch (OpInfo.Type) {
5910    case InlineAsm::isOutput:
5911      // Indirect outputs just consume an argument.
5912      if (OpInfo.isIndirect) {
5913        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5914        break;
5915      }
5916
5917      // The return value of the call is this value.  As such, there is no
5918      // corresponding argument.
5919      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5920      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5921        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5922      } else {
5923        assert(ResNo == 0 && "Asm only has one result!");
5924        OpVT = TLI.getValueType(CS.getType());
5925      }
5926      ++ResNo;
5927      break;
5928    case InlineAsm::isInput:
5929      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5930      break;
5931    case InlineAsm::isClobber:
5932      // Nothing to do.
5933      break;
5934    }
5935
5936    // If this is an input or an indirect output, process the call argument.
5937    // BasicBlocks are labels, currently appearing only in asm's.
5938    if (OpInfo.CallOperandVal) {
5939      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5940        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5941      } else {
5942        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5943      }
5944
5945      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5946    }
5947
5948    OpInfo.ConstraintVT = OpVT;
5949
5950    // Indirect operand accesses access memory.
5951    if (OpInfo.isIndirect)
5952      hasMemory = true;
5953    else {
5954      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5955        TargetLowering::ConstraintType
5956          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5957        if (CType == TargetLowering::C_Memory) {
5958          hasMemory = true;
5959          break;
5960        }
5961      }
5962    }
5963  }
5964
5965  SDValue Chain, Flag;
5966
5967  // We won't need to flush pending loads if this asm doesn't touch
5968  // memory and is nonvolatile.
5969  if (hasMemory || IA->hasSideEffects())
5970    Chain = getRoot();
5971  else
5972    Chain = DAG.getRoot();
5973
5974  // Second pass over the constraints: compute which constraint option to use
5975  // and assign registers to constraints that want a specific physreg.
5976  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5977    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5978
5979    // If this is an output operand with a matching input operand, look up the
5980    // matching input. If their types mismatch, e.g. one is an integer, the
5981    // other is floating point, or their sizes are different, flag it as an
5982    // error.
5983    if (OpInfo.hasMatchingInput()) {
5984      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5985
5986      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5987	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5988	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5989                                           OpInfo.ConstraintVT);
5990	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5991	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5992                                           Input.ConstraintVT);
5993        if ((OpInfo.ConstraintVT.isInteger() !=
5994             Input.ConstraintVT.isInteger()) ||
5995            (MatchRC.second != InputRC.second)) {
5996          report_fatal_error("Unsupported asm: input constraint"
5997                             " with a matching output constraint of"
5998                             " incompatible type!");
5999        }
6000        Input.ConstraintVT = OpInfo.ConstraintVT;
6001      }
6002    }
6003
6004    // Compute the constraint code and ConstraintType to use.
6005    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6006
6007    // If this is a memory input, and if the operand is not indirect, do what we
6008    // need to to provide an address for the memory input.
6009    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6010        !OpInfo.isIndirect) {
6011      assert((OpInfo.isMultipleAlternative ||
6012              (OpInfo.Type == InlineAsm::isInput)) &&
6013             "Can only indirectify direct input operands!");
6014
6015      // Memory operands really want the address of the value.  If we don't have
6016      // an indirect input, put it in the constpool if we can, otherwise spill
6017      // it to a stack slot.
6018      // TODO: This isn't quite right. We need to handle these according to
6019      // the addressing mode that the constraint wants. Also, this may take
6020      // an additional register for the computation and we don't want that
6021      // either.
6022
6023      // If the operand is a float, integer, or vector constant, spill to a
6024      // constant pool entry to get its address.
6025      const Value *OpVal = OpInfo.CallOperandVal;
6026      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6027          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6028        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6029                                                 TLI.getPointerTy());
6030      } else {
6031        // Otherwise, create a stack slot and emit a store to it before the
6032        // asm.
6033        Type *Ty = OpVal->getType();
6034        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
6035        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
6036        MachineFunction &MF = DAG.getMachineFunction();
6037        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6038        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6039        Chain = DAG.getStore(Chain, getCurDebugLoc(),
6040                             OpInfo.CallOperand, StackSlot,
6041                             MachinePointerInfo::getFixedStack(SSFI),
6042                             false, false, 0);
6043        OpInfo.CallOperand = StackSlot;
6044      }
6045
6046      // There is no longer a Value* corresponding to this operand.
6047      OpInfo.CallOperandVal = 0;
6048
6049      // It is now an indirect operand.
6050      OpInfo.isIndirect = true;
6051    }
6052
6053    // If this constraint is for a specific register, allocate it before
6054    // anything else.
6055    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6056      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6057                           InputRegs);
6058  }
6059
6060  // Second pass - Loop over all of the operands, assigning virtual or physregs
6061  // to register class operands.
6062  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6063    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6064
6065    // C_Register operands have already been allocated, Other/Memory don't need
6066    // to be.
6067    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6068      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6069                           InputRegs);
6070  }
6071
6072  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6073  std::vector<SDValue> AsmNodeOperands;
6074  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6075  AsmNodeOperands.push_back(
6076          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6077                                      TLI.getPointerTy()));
6078
6079  // If we have a !srcloc metadata node associated with it, we want to attach
6080  // this to the ultimately generated inline asm machineinstr.  To do this, we
6081  // pass in the third operand as this (potentially null) inline asm MDNode.
6082  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6083  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6084
6085  // Remember the HasSideEffect and AlignStack bits as operand 3.
6086  unsigned ExtraInfo = 0;
6087  if (IA->hasSideEffects())
6088    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6089  if (IA->isAlignStack())
6090    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6091  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6092                                                  TLI.getPointerTy()));
6093
6094  // Loop over all of the inputs, copying the operand values into the
6095  // appropriate registers and processing the output regs.
6096  RegsForValue RetValRegs;
6097
6098  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6099  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6100
6101  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6102    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6103
6104    switch (OpInfo.Type) {
6105    case InlineAsm::isOutput: {
6106      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6107          OpInfo.ConstraintType != TargetLowering::C_Register) {
6108        // Memory output, or 'other' output (e.g. 'X' constraint).
6109        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6110
6111        // Add information to the INLINEASM node to know about this output.
6112        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6113        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6114                                                        TLI.getPointerTy()));
6115        AsmNodeOperands.push_back(OpInfo.CallOperand);
6116        break;
6117      }
6118
6119      // Otherwise, this is a register or register class output.
6120
6121      // Copy the output from the appropriate register.  Find a register that
6122      // we can use.
6123      if (OpInfo.AssignedRegs.Regs.empty()) {
6124        LLVMContext &Ctx = *DAG.getContext();
6125        Ctx.emitError(CS.getInstruction(),
6126                      "couldn't allocate output register for constraint '" +
6127                           Twine(OpInfo.ConstraintCode) + "'");
6128        break;
6129      }
6130
6131      // If this is an indirect operand, store through the pointer after the
6132      // asm.
6133      if (OpInfo.isIndirect) {
6134        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6135                                                      OpInfo.CallOperandVal));
6136      } else {
6137        // This is the result value of the call.
6138        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6139        // Concatenate this output onto the outputs list.
6140        RetValRegs.append(OpInfo.AssignedRegs);
6141      }
6142
6143      // Add information to the INLINEASM node to know that this register is
6144      // set.
6145      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6146                                           InlineAsm::Kind_RegDefEarlyClobber :
6147                                               InlineAsm::Kind_RegDef,
6148                                               false,
6149                                               0,
6150                                               DAG,
6151                                               AsmNodeOperands);
6152      break;
6153    }
6154    case InlineAsm::isInput: {
6155      SDValue InOperandVal = OpInfo.CallOperand;
6156
6157      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6158        // If this is required to match an output register we have already set,
6159        // just use its register.
6160        unsigned OperandNo = OpInfo.getMatchedOperand();
6161
6162        // Scan until we find the definition we already emitted of this operand.
6163        // When we find it, create a RegsForValue operand.
6164        unsigned CurOp = InlineAsm::Op_FirstOperand;
6165        for (; OperandNo; --OperandNo) {
6166          // Advance to the next operand.
6167          unsigned OpFlag =
6168            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6169          assert((InlineAsm::isRegDefKind(OpFlag) ||
6170                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6171                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6172          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6173        }
6174
6175        unsigned OpFlag =
6176          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6177        if (InlineAsm::isRegDefKind(OpFlag) ||
6178            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6179          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6180          if (OpInfo.isIndirect) {
6181            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6182            LLVMContext &Ctx = *DAG.getContext();
6183            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6184                          " don't know how to handle tied "
6185                          "indirect register inputs");
6186          }
6187
6188          RegsForValue MatchedRegs;
6189          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6190          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6191          MatchedRegs.RegVTs.push_back(RegVT);
6192          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6193          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6194               i != e; ++i)
6195            MatchedRegs.Regs.push_back
6196              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6197
6198          // Use the produced MatchedRegs object to
6199          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6200                                    Chain, &Flag);
6201          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6202                                           true, OpInfo.getMatchedOperand(),
6203                                           DAG, AsmNodeOperands);
6204          break;
6205        }
6206
6207        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6208        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6209               "Unexpected number of operands");
6210        // Add information to the INLINEASM node to know about this input.
6211        // See InlineAsm.h isUseOperandTiedToDef.
6212        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6213                                                    OpInfo.getMatchedOperand());
6214        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6215                                                        TLI.getPointerTy()));
6216        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6217        break;
6218      }
6219
6220      // Treat indirect 'X' constraint as memory.
6221      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6222          OpInfo.isIndirect)
6223        OpInfo.ConstraintType = TargetLowering::C_Memory;
6224
6225      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6226        std::vector<SDValue> Ops;
6227        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6228                                         Ops, DAG);
6229        if (Ops.empty()) {
6230          LLVMContext &Ctx = *DAG.getContext();
6231          Ctx.emitError(CS.getInstruction(),
6232                        "invalid operand for inline asm constraint '" +
6233                        Twine(OpInfo.ConstraintCode) + "'");
6234          break;
6235        }
6236
6237        // Add information to the INLINEASM node to know about this input.
6238        unsigned ResOpType =
6239          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6240        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6241                                                        TLI.getPointerTy()));
6242        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6243        break;
6244      }
6245
6246      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6247        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6248        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6249               "Memory operands expect pointer values");
6250
6251        // Add information to the INLINEASM node to know about this input.
6252        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6253        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6254                                                        TLI.getPointerTy()));
6255        AsmNodeOperands.push_back(InOperandVal);
6256        break;
6257      }
6258
6259      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6260              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6261             "Unknown constraint type!");
6262      assert(!OpInfo.isIndirect &&
6263             "Don't know how to handle indirect register inputs yet!");
6264
6265      // Copy the input into the appropriate registers.
6266      if (OpInfo.AssignedRegs.Regs.empty()) {
6267        LLVMContext &Ctx = *DAG.getContext();
6268        Ctx.emitError(CS.getInstruction(),
6269                      "couldn't allocate input reg for constraint '" +
6270                           Twine(OpInfo.ConstraintCode) + "'");
6271        break;
6272      }
6273
6274      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6275                                        Chain, &Flag);
6276
6277      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6278                                               DAG, AsmNodeOperands);
6279      break;
6280    }
6281    case InlineAsm::isClobber: {
6282      // Add the clobbered value to the operand list, so that the register
6283      // allocator is aware that the physreg got clobbered.
6284      if (!OpInfo.AssignedRegs.Regs.empty())
6285        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6286                                                 false, 0, DAG,
6287                                                 AsmNodeOperands);
6288      break;
6289    }
6290    }
6291  }
6292
6293  // Finish up input operands.  Set the input chain and add the flag last.
6294  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6295  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6296
6297  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6298                      DAG.getVTList(MVT::Other, MVT::Glue),
6299                      &AsmNodeOperands[0], AsmNodeOperands.size());
6300  Flag = Chain.getValue(1);
6301
6302  // If this asm returns a register value, copy the result from that register
6303  // and set it as the value of the call.
6304  if (!RetValRegs.Regs.empty()) {
6305    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6306                                             Chain, &Flag);
6307
6308    // FIXME: Why don't we do this for inline asms with MRVs?
6309    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6310      EVT ResultType = TLI.getValueType(CS.getType());
6311
6312      // If any of the results of the inline asm is a vector, it may have the
6313      // wrong width/num elts.  This can happen for register classes that can
6314      // contain multiple different value types.  The preg or vreg allocated may
6315      // not have the same VT as was expected.  Convert it to the right type
6316      // with bit_convert.
6317      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6318        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6319                          ResultType, Val);
6320
6321      } else if (ResultType != Val.getValueType() &&
6322                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6323        // If a result value was tied to an input value, the computed result may
6324        // have a wider width than the expected result.  Extract the relevant
6325        // portion.
6326        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6327      }
6328
6329      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6330    }
6331
6332    setValue(CS.getInstruction(), Val);
6333    // Don't need to use this as a chain in this case.
6334    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6335      return;
6336  }
6337
6338  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6339
6340  // Process indirect outputs, first output all of the flagged copies out of
6341  // physregs.
6342  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6343    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6344    const Value *Ptr = IndirectStoresToEmit[i].second;
6345    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6346                                             Chain, &Flag);
6347    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6348  }
6349
6350  // Emit the non-flagged stores from the physregs.
6351  SmallVector<SDValue, 8> OutChains;
6352  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6353    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6354                               StoresToEmit[i].first,
6355                               getValue(StoresToEmit[i].second),
6356                               MachinePointerInfo(StoresToEmit[i].second),
6357                               false, false, 0);
6358    OutChains.push_back(Val);
6359  }
6360
6361  if (!OutChains.empty())
6362    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6363                        &OutChains[0], OutChains.size());
6364
6365  DAG.setRoot(Chain);
6366}
6367
6368void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6369  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6370                          MVT::Other, getRoot(),
6371                          getValue(I.getArgOperand(0)),
6372                          DAG.getSrcValue(I.getArgOperand(0))));
6373}
6374
6375void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6376  const TargetData &TD = *TLI.getTargetData();
6377  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6378                           getRoot(), getValue(I.getOperand(0)),
6379                           DAG.getSrcValue(I.getOperand(0)),
6380                           TD.getABITypeAlignment(I.getType()));
6381  setValue(&I, V);
6382  DAG.setRoot(V.getValue(1));
6383}
6384
6385void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6386  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6387                          MVT::Other, getRoot(),
6388                          getValue(I.getArgOperand(0)),
6389                          DAG.getSrcValue(I.getArgOperand(0))));
6390}
6391
6392void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6393  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6394                          MVT::Other, getRoot(),
6395                          getValue(I.getArgOperand(0)),
6396                          getValue(I.getArgOperand(1)),
6397                          DAG.getSrcValue(I.getArgOperand(0)),
6398                          DAG.getSrcValue(I.getArgOperand(1))));
6399}
6400
6401/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6402/// implementation, which just calls LowerCall.
6403/// FIXME: When all targets are
6404/// migrated to using LowerCall, this hook should be integrated into SDISel.
6405std::pair<SDValue, SDValue>
6406TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6407                            bool RetSExt, bool RetZExt, bool isVarArg,
6408                            bool isInreg, unsigned NumFixedArgs,
6409                            CallingConv::ID CallConv, bool isTailCall,
6410                            bool isReturnValueUsed,
6411                            SDValue Callee,
6412                            ArgListTy &Args, SelectionDAG &DAG,
6413                            DebugLoc dl) const {
6414  // Handle all of the outgoing arguments.
6415  SmallVector<ISD::OutputArg, 32> Outs;
6416  SmallVector<SDValue, 32> OutVals;
6417  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6418    SmallVector<EVT, 4> ValueVTs;
6419    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6420    for (unsigned Value = 0, NumValues = ValueVTs.size();
6421         Value != NumValues; ++Value) {
6422      EVT VT = ValueVTs[Value];
6423      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6424      SDValue Op = SDValue(Args[i].Node.getNode(),
6425                           Args[i].Node.getResNo() + Value);
6426      ISD::ArgFlagsTy Flags;
6427      unsigned OriginalAlignment =
6428        getTargetData()->getABITypeAlignment(ArgTy);
6429
6430      if (Args[i].isZExt)
6431        Flags.setZExt();
6432      if (Args[i].isSExt)
6433        Flags.setSExt();
6434      if (Args[i].isInReg)
6435        Flags.setInReg();
6436      if (Args[i].isSRet)
6437        Flags.setSRet();
6438      if (Args[i].isByVal) {
6439        Flags.setByVal();
6440        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6441        Type *ElementTy = Ty->getElementType();
6442        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6443        // For ByVal, alignment should come from FE.  BE will guess if this
6444        // info is not there but there are cases it cannot get right.
6445        unsigned FrameAlign;
6446        if (Args[i].Alignment)
6447          FrameAlign = Args[i].Alignment;
6448        else
6449          FrameAlign = getByValTypeAlignment(ElementTy);
6450        Flags.setByValAlign(FrameAlign);
6451      }
6452      if (Args[i].isNest)
6453        Flags.setNest();
6454      Flags.setOrigAlign(OriginalAlignment);
6455
6456      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6457      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6458      SmallVector<SDValue, 4> Parts(NumParts);
6459      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6460
6461      if (Args[i].isSExt)
6462        ExtendKind = ISD::SIGN_EXTEND;
6463      else if (Args[i].isZExt)
6464        ExtendKind = ISD::ZERO_EXTEND;
6465
6466      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6467                     PartVT, ExtendKind);
6468
6469      for (unsigned j = 0; j != NumParts; ++j) {
6470        // if it isn't first piece, alignment must be 1
6471        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6472                               i < NumFixedArgs);
6473        if (NumParts > 1 && j == 0)
6474          MyFlags.Flags.setSplit();
6475        else if (j != 0)
6476          MyFlags.Flags.setOrigAlign(1);
6477
6478        Outs.push_back(MyFlags);
6479        OutVals.push_back(Parts[j]);
6480      }
6481    }
6482  }
6483
6484  // Handle the incoming return values from the call.
6485  SmallVector<ISD::InputArg, 32> Ins;
6486  SmallVector<EVT, 4> RetTys;
6487  ComputeValueVTs(*this, RetTy, RetTys);
6488  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6489    EVT VT = RetTys[I];
6490    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6491    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6492    for (unsigned i = 0; i != NumRegs; ++i) {
6493      ISD::InputArg MyFlags;
6494      MyFlags.VT = RegisterVT.getSimpleVT();
6495      MyFlags.Used = isReturnValueUsed;
6496      if (RetSExt)
6497        MyFlags.Flags.setSExt();
6498      if (RetZExt)
6499        MyFlags.Flags.setZExt();
6500      if (isInreg)
6501        MyFlags.Flags.setInReg();
6502      Ins.push_back(MyFlags);
6503    }
6504  }
6505
6506  SmallVector<SDValue, 4> InVals;
6507  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6508                    Outs, OutVals, Ins, dl, DAG, InVals);
6509
6510  // Verify that the target's LowerCall behaved as expected.
6511  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6512         "LowerCall didn't return a valid chain!");
6513  assert((!isTailCall || InVals.empty()) &&
6514         "LowerCall emitted a return value for a tail call!");
6515  assert((isTailCall || InVals.size() == Ins.size()) &&
6516         "LowerCall didn't emit the correct number of values!");
6517
6518  // For a tail call, the return value is merely live-out and there aren't
6519  // any nodes in the DAG representing it. Return a special value to
6520  // indicate that a tail call has been emitted and no more Instructions
6521  // should be processed in the current block.
6522  if (isTailCall) {
6523    DAG.setRoot(Chain);
6524    return std::make_pair(SDValue(), SDValue());
6525  }
6526
6527  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6528          assert(InVals[i].getNode() &&
6529                 "LowerCall emitted a null value!");
6530          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6531                 "LowerCall emitted a value with the wrong type!");
6532        });
6533
6534  // Collect the legal value parts into potentially illegal values
6535  // that correspond to the original function's return values.
6536  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6537  if (RetSExt)
6538    AssertOp = ISD::AssertSext;
6539  else if (RetZExt)
6540    AssertOp = ISD::AssertZext;
6541  SmallVector<SDValue, 4> ReturnValues;
6542  unsigned CurReg = 0;
6543  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6544    EVT VT = RetTys[I];
6545    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6546    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6547
6548    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6549                                            NumRegs, RegisterVT, VT,
6550                                            AssertOp));
6551    CurReg += NumRegs;
6552  }
6553
6554  // For a function returning void, there is no return value. We can't create
6555  // such a node, so we just return a null return value in that case. In
6556  // that case, nothing will actually look at the value.
6557  if (ReturnValues.empty())
6558    return std::make_pair(SDValue(), Chain);
6559
6560  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6561                            DAG.getVTList(&RetTys[0], RetTys.size()),
6562                            &ReturnValues[0], ReturnValues.size());
6563  return std::make_pair(Res, Chain);
6564}
6565
6566void TargetLowering::LowerOperationWrapper(SDNode *N,
6567                                           SmallVectorImpl<SDValue> &Results,
6568                                           SelectionDAG &DAG) const {
6569  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6570  if (Res.getNode())
6571    Results.push_back(Res);
6572}
6573
6574SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6575  llvm_unreachable("LowerOperation not implemented for this target!");
6576}
6577
6578void
6579SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6580  SDValue Op = getNonRegisterValue(V);
6581  assert((Op.getOpcode() != ISD::CopyFromReg ||
6582          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6583         "Copy from a reg to the same reg!");
6584  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6585
6586  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6587  SDValue Chain = DAG.getEntryNode();
6588  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6589  PendingExports.push_back(Chain);
6590}
6591
6592#include "llvm/CodeGen/SelectionDAGISel.h"
6593
6594/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6595/// entry block, return true.  This includes arguments used by switches, since
6596/// the switch may expand into multiple basic blocks.
6597static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6598  // With FastISel active, we may be splitting blocks, so force creation
6599  // of virtual registers for all non-dead arguments.
6600  if (FastISel)
6601    return A->use_empty();
6602
6603  const BasicBlock *Entry = A->getParent()->begin();
6604  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6605       UI != E; ++UI) {
6606    const User *U = *UI;
6607    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6608      return false;  // Use not in entry block.
6609  }
6610  return true;
6611}
6612
6613void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6614  // If this is the entry block, emit arguments.
6615  const Function &F = *LLVMBB->getParent();
6616  SelectionDAG &DAG = SDB->DAG;
6617  DebugLoc dl = SDB->getCurDebugLoc();
6618  const TargetData *TD = TLI.getTargetData();
6619  SmallVector<ISD::InputArg, 16> Ins;
6620
6621  // Check whether the function can return without sret-demotion.
6622  SmallVector<ISD::OutputArg, 4> Outs;
6623  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6624                Outs, TLI);
6625
6626  if (!FuncInfo->CanLowerReturn) {
6627    // Put in an sret pointer parameter before all the other parameters.
6628    SmallVector<EVT, 1> ValueVTs;
6629    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6630
6631    // NOTE: Assuming that a pointer will never break down to more than one VT
6632    // or one register.
6633    ISD::ArgFlagsTy Flags;
6634    Flags.setSRet();
6635    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6636    ISD::InputArg RetArg(Flags, RegisterVT, true);
6637    Ins.push_back(RetArg);
6638  }
6639
6640  // Set up the incoming argument description vector.
6641  unsigned Idx = 1;
6642  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6643       I != E; ++I, ++Idx) {
6644    SmallVector<EVT, 4> ValueVTs;
6645    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6646    bool isArgValueUsed = !I->use_empty();
6647    for (unsigned Value = 0, NumValues = ValueVTs.size();
6648         Value != NumValues; ++Value) {
6649      EVT VT = ValueVTs[Value];
6650      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6651      ISD::ArgFlagsTy Flags;
6652      unsigned OriginalAlignment =
6653        TD->getABITypeAlignment(ArgTy);
6654
6655      if (F.paramHasAttr(Idx, Attribute::ZExt))
6656        Flags.setZExt();
6657      if (F.paramHasAttr(Idx, Attribute::SExt))
6658        Flags.setSExt();
6659      if (F.paramHasAttr(Idx, Attribute::InReg))
6660        Flags.setInReg();
6661      if (F.paramHasAttr(Idx, Attribute::StructRet))
6662        Flags.setSRet();
6663      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6664        Flags.setByVal();
6665        PointerType *Ty = cast<PointerType>(I->getType());
6666        Type *ElementTy = Ty->getElementType();
6667        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6668        // For ByVal, alignment should be passed from FE.  BE will guess if
6669        // this info is not there but there are cases it cannot get right.
6670        unsigned FrameAlign;
6671        if (F.getParamAlignment(Idx))
6672          FrameAlign = F.getParamAlignment(Idx);
6673        else
6674          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6675        Flags.setByValAlign(FrameAlign);
6676      }
6677      if (F.paramHasAttr(Idx, Attribute::Nest))
6678        Flags.setNest();
6679      Flags.setOrigAlign(OriginalAlignment);
6680
6681      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6682      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6683      for (unsigned i = 0; i != NumRegs; ++i) {
6684        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6685        if (NumRegs > 1 && i == 0)
6686          MyFlags.Flags.setSplit();
6687        // if it isn't first piece, alignment must be 1
6688        else if (i > 0)
6689          MyFlags.Flags.setOrigAlign(1);
6690        Ins.push_back(MyFlags);
6691      }
6692    }
6693  }
6694
6695  // Call the target to set up the argument values.
6696  SmallVector<SDValue, 8> InVals;
6697  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6698                                             F.isVarArg(), Ins,
6699                                             dl, DAG, InVals);
6700
6701  // Verify that the target's LowerFormalArguments behaved as expected.
6702  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6703         "LowerFormalArguments didn't return a valid chain!");
6704  assert(InVals.size() == Ins.size() &&
6705         "LowerFormalArguments didn't emit the correct number of values!");
6706  DEBUG({
6707      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6708        assert(InVals[i].getNode() &&
6709               "LowerFormalArguments emitted a null value!");
6710        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6711               "LowerFormalArguments emitted a value with the wrong type!");
6712      }
6713    });
6714
6715  // Update the DAG with the new chain value resulting from argument lowering.
6716  DAG.setRoot(NewRoot);
6717
6718  // Set up the argument values.
6719  unsigned i = 0;
6720  Idx = 1;
6721  if (!FuncInfo->CanLowerReturn) {
6722    // Create a virtual register for the sret pointer, and put in a copy
6723    // from the sret argument into it.
6724    SmallVector<EVT, 1> ValueVTs;
6725    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6726    EVT VT = ValueVTs[0];
6727    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6728    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6729    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6730                                        RegVT, VT, AssertOp);
6731
6732    MachineFunction& MF = SDB->DAG.getMachineFunction();
6733    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6734    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6735    FuncInfo->DemoteRegister = SRetReg;
6736    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6737                                    SRetReg, ArgValue);
6738    DAG.setRoot(NewRoot);
6739
6740    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6741    // Idx indexes LLVM arguments.  Don't touch it.
6742    ++i;
6743  }
6744
6745  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6746      ++I, ++Idx) {
6747    SmallVector<SDValue, 4> ArgValues;
6748    SmallVector<EVT, 4> ValueVTs;
6749    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6750    unsigned NumValues = ValueVTs.size();
6751
6752    // If this argument is unused then remember its value. It is used to generate
6753    // debugging information.
6754    if (I->use_empty() && NumValues)
6755      SDB->setUnusedArgValue(I, InVals[i]);
6756
6757    for (unsigned Val = 0; Val != NumValues; ++Val) {
6758      EVT VT = ValueVTs[Val];
6759      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6760      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6761
6762      if (!I->use_empty()) {
6763        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6764        if (F.paramHasAttr(Idx, Attribute::SExt))
6765          AssertOp = ISD::AssertSext;
6766        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6767          AssertOp = ISD::AssertZext;
6768
6769        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6770                                             NumParts, PartVT, VT,
6771                                             AssertOp));
6772      }
6773
6774      i += NumParts;
6775    }
6776
6777    // We don't need to do anything else for unused arguments.
6778    if (ArgValues.empty())
6779      continue;
6780
6781    // Note down frame index.
6782    if (FrameIndexSDNode *FI =
6783	dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6784      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6785
6786    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6787                                     SDB->getCurDebugLoc());
6788
6789    SDB->setValue(I, Res);
6790    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6791      if (LoadSDNode *LNode =
6792          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6793        if (FrameIndexSDNode *FI =
6794            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6795        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6796    }
6797
6798    // If this argument is live outside of the entry block, insert a copy from
6799    // wherever we got it to the vreg that other BB's will reference it as.
6800    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6801      // If we can, though, try to skip creating an unnecessary vreg.
6802      // FIXME: This isn't very clean... it would be nice to make this more
6803      // general.  It's also subtly incompatible with the hacks FastISel
6804      // uses with vregs.
6805      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6806      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6807        FuncInfo->ValueMap[I] = Reg;
6808        continue;
6809      }
6810    }
6811    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6812      FuncInfo->InitializeRegForValue(I);
6813      SDB->CopyToExportRegsIfNeeded(I);
6814    }
6815  }
6816
6817  assert(i == InVals.size() && "Argument register count mismatch!");
6818
6819  // Finally, if the target has anything special to do, allow it to do so.
6820  // FIXME: this should insert code into the DAG!
6821  EmitFunctionEntryCode();
6822}
6823
6824/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6825/// ensure constants are generated when needed.  Remember the virtual registers
6826/// that need to be added to the Machine PHI nodes as input.  We cannot just
6827/// directly add them, because expansion might result in multiple MBB's for one
6828/// BB.  As such, the start of the BB might correspond to a different MBB than
6829/// the end.
6830///
6831void
6832SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6833  const TerminatorInst *TI = LLVMBB->getTerminator();
6834
6835  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6836
6837  // Check successor nodes' PHI nodes that expect a constant to be available
6838  // from this block.
6839  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6840    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6841    if (!isa<PHINode>(SuccBB->begin())) continue;
6842    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6843
6844    // If this terminator has multiple identical successors (common for
6845    // switches), only handle each succ once.
6846    if (!SuccsHandled.insert(SuccMBB)) continue;
6847
6848    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6849
6850    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6851    // nodes and Machine PHI nodes, but the incoming operands have not been
6852    // emitted yet.
6853    for (BasicBlock::const_iterator I = SuccBB->begin();
6854         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6855      // Ignore dead phi's.
6856      if (PN->use_empty()) continue;
6857
6858      // Skip empty types
6859      if (PN->getType()->isEmptyTy())
6860        continue;
6861
6862      unsigned Reg;
6863      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6864
6865      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6866        unsigned &RegOut = ConstantsOut[C];
6867        if (RegOut == 0) {
6868          RegOut = FuncInfo.CreateRegs(C->getType());
6869          CopyValueToVirtualRegister(C, RegOut);
6870        }
6871        Reg = RegOut;
6872      } else {
6873        DenseMap<const Value *, unsigned>::iterator I =
6874          FuncInfo.ValueMap.find(PHIOp);
6875        if (I != FuncInfo.ValueMap.end())
6876          Reg = I->second;
6877        else {
6878          assert(isa<AllocaInst>(PHIOp) &&
6879                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6880                 "Didn't codegen value into a register!??");
6881          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6882          CopyValueToVirtualRegister(PHIOp, Reg);
6883        }
6884      }
6885
6886      // Remember that this register needs to added to the machine PHI node as
6887      // the input for this MBB.
6888      SmallVector<EVT, 4> ValueVTs;
6889      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6890      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6891        EVT VT = ValueVTs[vti];
6892        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6893        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6894          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6895        Reg += NumRegisters;
6896      }
6897    }
6898  }
6899  ConstantsOut.clear();
6900}
6901