SelectionDAGBuilder.cpp revision 327236cd6c211e54fc6288b0ac2b413901cc0611
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert(PartVT.isInteger() && ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360    }
361  } else if (PartBits == ValueVT.getSizeInBits()) {
362    // Different types of the same size.
363    assert(NumParts == 1 && PartVT != ValueVT);
364    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366    // If the parts cover less bits than value has, truncate the value.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Unknown mismatch!");
369    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371  }
372
373  // The value may have changed - recompute ValueVT.
374  ValueVT = Val.getValueType();
375  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376         "Failed to tile the value with PartVT!");
377
378  if (NumParts == 1) {
379    assert(PartVT == ValueVT && "Type conversion failed!");
380    Parts[0] = Val;
381    return;
382  }
383
384  // Expand the value into multiple parts.
385  if (NumParts & (NumParts - 1)) {
386    // The number of parts is not a power of 2.  Split off and copy the tail.
387    assert(PartVT.isInteger() && ValueVT.isInteger() &&
388           "Do not know what to expand to!");
389    unsigned RoundParts = 1 << Log2_32(NumParts);
390    unsigned RoundBits = RoundParts * PartBits;
391    unsigned OddParts = NumParts - RoundParts;
392    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                 DAG.getIntPtrConstant(RoundBits));
394    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396    if (TLI.isBigEndian())
397      // The odd parts were reversed by getCopyToParts - unreverse them.
398      std::reverse(Parts + RoundParts, Parts + NumParts);
399
400    NumParts = RoundParts;
401    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403  }
404
405  // The number of parts is a power of 2.  Repeatedly bisect the value using
406  // EXTRACT_ELEMENT.
407  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                         EVT::getIntegerVT(*DAG.getContext(),
409                                           ValueVT.getSizeInBits()),
410                         Val);
411
412  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413    for (unsigned i = 0; i < NumParts; i += StepSize) {
414      unsigned ThisBits = StepSize * PartBits / 2;
415      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416      SDValue &Part0 = Parts[i];
417      SDValue &Part1 = Parts[i+StepSize/2];
418
419      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                          ThisVT, Part0, DAG.getIntPtrConstant(1));
421      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                          ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424      if (ThisBits == PartBits && ThisVT != PartVT) {
425        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427      }
428    }
429  }
430
431  if (TLI.isBigEndian())
432    std::reverse(Parts, Parts + OrigNumParts);
433}
434
435
436/// getCopyToPartsVector - Create a series of nodes that contain the specified
437/// value split into legal parts.
438static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                 SDValue Val, SDValue *Parts, unsigned NumParts,
440                                 EVT PartVT) {
441  EVT ValueVT = Val.getValueType();
442  assert(ValueVT.isVector() && "Not a vector");
443  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445  if (NumParts == 1) {
446    if (PartVT == ValueVT) {
447      // Nothing to do.
448    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449      // Bitconvert vector->vector case.
450      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451    } else if (PartVT.isVector() &&
452               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454      EVT ElementVT = PartVT.getVectorElementType();
455      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456      // undef elements.
457      SmallVector<SDValue, 16> Ops;
458      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462      for (unsigned i = ValueVT.getVectorNumElements(),
463           e = PartVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getUNDEF(ElementVT));
465
466      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468      // FIXME: Use CONCAT for 2x -> 4x.
469
470      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472    } else if (PartVT.isVector() &&
473               PartVT.getVectorElementType().bitsGE(
474                 ValueVT.getVectorElementType()) &&
475               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477      // Promoted vector extract
478      bool Smaller = PartVT.bitsLE(ValueVT);
479      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                        DL, PartVT, Val);
481    } else{
482      // Vector -> scalar conversion.
483      assert(ValueVT.getVectorNumElements() == 1 &&
484             "Only trivial vector-to-scalar conversions should get here!");
485      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                        PartVT, Val, DAG.getIntPtrConstant(0));
487
488      bool Smaller = ValueVT.bitsLE(PartVT);
489      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                         DL, PartVT, Val);
491    }
492
493    Parts[0] = Val;
494    return;
495  }
496
497  // Handle a multi-element vector.
498  EVT IntermediateVT, RegisterVT;
499  unsigned NumIntermediates;
500  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                IntermediateVT,
502                                                NumIntermediates, RegisterVT);
503  unsigned NumElements = ValueVT.getVectorNumElements();
504
505  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506  NumParts = NumRegs; // Silence a compiler warning.
507  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509  // Split the vector into intermediate operands.
510  SmallVector<SDValue, 8> Ops(NumIntermediates);
511  for (unsigned i = 0; i != NumIntermediates; ++i) {
512    if (IntermediateVT.isVector())
513      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                           IntermediateVT, Val,
515                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516    else
517      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
519  }
520
521  // Split the intermediate operands into legal parts.
522  if (NumParts == NumIntermediates) {
523    // If the register was not expanded, promote or copy the value,
524    // as appropriate.
525    for (unsigned i = 0; i != NumParts; ++i)
526      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527  } else if (NumParts > 0) {
528    // If the intermediate type was expanded, split each the value into
529    // legal parts.
530    assert(NumParts % NumIntermediates == 0 &&
531           "Must expand into a divisible number of parts!");
532    unsigned Factor = NumParts / NumIntermediates;
533    for (unsigned i = 0; i != NumIntermediates; ++i)
534      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535  }
536}
537
538
539
540
541namespace {
542  /// RegsForValue - This struct represents the registers (physical or virtual)
543  /// that a particular set of values is assigned, and the type information
544  /// about the value. The most common situation is to represent one value at a
545  /// time, but struct or array values are handled element-wise as multiple
546  /// values.  The splitting of aggregates is performed recursively, so that we
547  /// never have aggregate-typed registers. The values at this point do not
548  /// necessarily have legal types, so each value may require one or more
549  /// registers of some legal type.
550  ///
551  struct RegsForValue {
552    /// ValueVTs - The value types of the values, which may not be legal, and
553    /// may need be promoted or synthesized from one or more registers.
554    ///
555    SmallVector<EVT, 4> ValueVTs;
556
557    /// RegVTs - The value types of the registers. This is the same size as
558    /// ValueVTs and it records, for each value, what the type of the assigned
559    /// register or registers are. (Individual values are never synthesized
560    /// from more than one type of register.)
561    ///
562    /// With virtual registers, the contents of RegVTs is redundant with TLI's
563    /// getRegisterType member function, however when with physical registers
564    /// it is necessary to have a separate record of the types.
565    ///
566    SmallVector<EVT, 4> RegVTs;
567
568    /// Regs - This list holds the registers assigned to the values.
569    /// Each legal or promoted value requires one register, and each
570    /// expanded value requires multiple registers.
571    ///
572    SmallVector<unsigned, 4> Regs;
573
574    RegsForValue() {}
575
576    RegsForValue(const SmallVector<unsigned, 4> &regs,
577                 EVT regvt, EVT valuevt)
578      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
580    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                 unsigned Reg, Type *Ty) {
582      ComputeValueVTs(tli, Ty, ValueVTs);
583
584      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585        EVT ValueVT = ValueVTs[Value];
586        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588        for (unsigned i = 0; i != NumRegs; ++i)
589          Regs.push_back(Reg + i);
590        RegVTs.push_back(RegisterVT);
591        Reg += NumRegs;
592      }
593    }
594
595    /// areValueTypesLegal - Return true if types of all the values are legal.
596    bool areValueTypesLegal(const TargetLowering &TLI) {
597      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598        EVT RegisterVT = RegVTs[Value];
599        if (!TLI.isTypeLegal(RegisterVT))
600          return false;
601      }
602      return true;
603    }
604
605    /// append - Add the specified values to this one.
606    void append(const RegsForValue &RHS) {
607      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610    }
611
612    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613    /// this value and returns the result as a ValueVTs value.  This uses
614    /// Chain/Flag as the input and updates them for the output Chain/Flag.
615    /// If the Flag pointer is NULL, no flag is used.
616    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                            DebugLoc dl,
618                            SDValue &Chain, SDValue *Flag) const;
619
620    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621    /// specified value into the registers specified by this object.  This uses
622    /// Chain/Flag as the input and updates them for the output Chain/Flag.
623    /// If the Flag pointer is NULL, no flag is used.
624    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                       SDValue &Chain, SDValue *Flag) const;
626
627    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628    /// operand list.  This adds the code marker, matching input operand index
629    /// (if applicable), and includes the number of values added into it.
630    void AddInlineAsmOperands(unsigned Kind,
631                              bool HasMatching, unsigned MatchingIdx,
632                              SelectionDAG &DAG,
633                              std::vector<SDValue> &Ops) const;
634  };
635}
636
637/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638/// this value and returns the result as a ValueVT value.  This uses
639/// Chain/Flag as the input and updates them for the output Chain/Flag.
640/// If the Flag pointer is NULL, no flag is used.
641SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                      FunctionLoweringInfo &FuncInfo,
643                                      DebugLoc dl,
644                                      SDValue &Chain, SDValue *Flag) const {
645  // A Value with type {} or [0 x %t] needs no registers.
646  if (ValueVTs.empty())
647    return SDValue();
648
649  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651  // Assemble the legal parts into the final values.
652  SmallVector<SDValue, 4> Values(ValueVTs.size());
653  SmallVector<SDValue, 8> Parts;
654  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655    // Copy the legal parts from the registers.
656    EVT ValueVT = ValueVTs[Value];
657    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658    EVT RegisterVT = RegVTs[Value];
659
660    Parts.resize(NumRegs);
661    for (unsigned i = 0; i != NumRegs; ++i) {
662      SDValue P;
663      if (Flag == 0) {
664        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665      } else {
666        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667        *Flag = P.getValue(2);
668      }
669
670      Chain = P.getValue(1);
671      Parts[i] = P;
672
673      // If the source register was virtual and if we know something about it,
674      // add an assert node.
675      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676          !RegisterVT.isInteger() || RegisterVT.isVector())
677        continue;
678
679      const FunctionLoweringInfo::LiveOutInfo *LOI =
680        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681      if (!LOI)
682        continue;
683
684      unsigned RegSize = RegisterVT.getSizeInBits();
685      unsigned NumSignBits = LOI->NumSignBits;
686      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688      // FIXME: We capture more information than the dag can represent.  For
689      // now, just use the tightest assertzext/assertsext possible.
690      bool isSExt = true;
691      EVT FromVT(MVT::Other);
692      if (NumSignBits == RegSize)
693        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694      else if (NumZeroBits >= RegSize-1)
695        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696      else if (NumSignBits > RegSize-8)
697        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698      else if (NumZeroBits >= RegSize-8)
699        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700      else if (NumSignBits > RegSize-16)
701        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702      else if (NumZeroBits >= RegSize-16)
703        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704      else if (NumSignBits > RegSize-32)
705        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706      else if (NumZeroBits >= RegSize-32)
707        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708      else
709        continue;
710
711      // Add an assertion node.
712      assert(FromVT != MVT::Other);
713      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                             RegisterVT, P, DAG.getValueType(FromVT));
715    }
716
717    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                     NumRegs, RegisterVT, ValueVT);
719    Part += NumRegs;
720    Parts.clear();
721  }
722
723  return DAG.getNode(ISD::MERGE_VALUES, dl,
724                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                     &Values[0], ValueVTs.size());
726}
727
728/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729/// specified value into the registers specified by this object.  This uses
730/// Chain/Flag as the input and updates them for the output Chain/Flag.
731/// If the Flag pointer is NULL, no flag is used.
732void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                 SDValue &Chain, SDValue *Flag) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  // Get the list of the values's legal parts.
737  unsigned NumRegs = Regs.size();
738  SmallVector<SDValue, 8> Parts(NumRegs);
739  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740    EVT ValueVT = ValueVTs[Value];
741    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742    EVT RegisterVT = RegVTs[Value];
743
744    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                   &Parts[Part], NumParts, RegisterVT);
746    Part += NumParts;
747  }
748
749  // Copy the parts into the registers.
750  SmallVector<SDValue, 8> Chains(NumRegs);
751  for (unsigned i = 0; i != NumRegs; ++i) {
752    SDValue Part;
753    if (Flag == 0) {
754      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755    } else {
756      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757      *Flag = Part.getValue(1);
758    }
759
760    Chains[i] = Part.getValue(0);
761  }
762
763  if (NumRegs == 1 || Flag)
764    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765    // flagged to it. That is the CopyToReg nodes and the user are considered
766    // a single scheduling unit. If we create a TokenFactor and return it as
767    // chain, then the TokenFactor is both a predecessor (operand) of the
768    // user as well as a successor (the TF operands are flagged to the user).
769    // c1, f1 = CopyToReg
770    // c2, f2 = CopyToReg
771    // c3     = TokenFactor c1, c2
772    // ...
773    //        = op c3, ..., f2
774    Chain = Chains[NumRegs-1];
775  else
776    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777}
778
779/// AddInlineAsmOperands - Add this value to the specified inlineasm node
780/// operand list.  This adds the code marker and includes the number of
781/// values added into it.
782void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                        unsigned MatchingIdx,
784                                        SelectionDAG &DAG,
785                                        std::vector<SDValue> &Ops) const {
786  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789  if (HasMatching)
790    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792  Ops.push_back(Res);
793
794  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796    EVT RegisterVT = RegVTs[Value];
797    for (unsigned i = 0; i != NumRegs; ++i) {
798      assert(Reg < Regs.size() && "Mismatch in # registers expected");
799      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800    }
801  }
802}
803
804void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805  AA = &aa;
806  GFI = gfi;
807  TD = DAG.getTarget().getTargetData();
808}
809
810/// clear - Clear out the current SelectionDAG and the associated
811/// state and prepare this SelectionDAGBuilder object to be used
812/// for a new block. This doesn't clear out information about
813/// additional blocks that are needed to complete switch lowering
814/// or PHI node updating; that information is cleared out as it is
815/// consumed.
816void SelectionDAGBuilder::clear() {
817  NodeMap.clear();
818  UnusedArgNodeMap.clear();
819  PendingLoads.clear();
820  PendingExports.clear();
821  CurDebugLoc = DebugLoc();
822  HasTailCall = false;
823}
824
825/// clearDanglingDebugInfo - Clear the dangling debug information
826/// map. This function is seperated from the clear so that debug
827/// information that is dangling in a basic block can be properly
828/// resolved in a different basic block. This allows the
829/// SelectionDAG to resolve dangling debug information attached
830/// to PHI nodes.
831void SelectionDAGBuilder::clearDanglingDebugInfo() {
832  DanglingDebugInfoMap.clear();
833}
834
835/// getRoot - Return the current virtual root of the Selection DAG,
836/// flushing any PendingLoad items. This must be done before emitting
837/// a store or any other node that may need to be ordered after any
838/// prior load instructions.
839///
840SDValue SelectionDAGBuilder::getRoot() {
841  if (PendingLoads.empty())
842    return DAG.getRoot();
843
844  if (PendingLoads.size() == 1) {
845    SDValue Root = PendingLoads[0];
846    DAG.setRoot(Root);
847    PendingLoads.clear();
848    return Root;
849  }
850
851  // Otherwise, we have to make a token factor node.
852  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853                               &PendingLoads[0], PendingLoads.size());
854  PendingLoads.clear();
855  DAG.setRoot(Root);
856  return Root;
857}
858
859/// getControlRoot - Similar to getRoot, but instead of flushing all the
860/// PendingLoad items, flush all the PendingExports items. It is necessary
861/// to do this before emitting a terminator instruction.
862///
863SDValue SelectionDAGBuilder::getControlRoot() {
864  SDValue Root = DAG.getRoot();
865
866  if (PendingExports.empty())
867    return Root;
868
869  // Turn all of the CopyToReg chains into one factored node.
870  if (Root.getOpcode() != ISD::EntryToken) {
871    unsigned i = 0, e = PendingExports.size();
872    for (; i != e; ++i) {
873      assert(PendingExports[i].getNode()->getNumOperands() > 1);
874      if (PendingExports[i].getNode()->getOperand(0) == Root)
875        break;  // Don't add the root if we already indirectly depend on it.
876    }
877
878    if (i == e)
879      PendingExports.push_back(Root);
880  }
881
882  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883                     &PendingExports[0],
884                     PendingExports.size());
885  PendingExports.clear();
886  DAG.setRoot(Root);
887  return Root;
888}
889
890void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892  DAG.AssignOrdering(Node, SDNodeOrder);
893
894  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895    AssignOrderingToNode(Node->getOperand(I).getNode());
896}
897
898void SelectionDAGBuilder::visit(const Instruction &I) {
899  // Set up outgoing PHI node register values before emitting the terminator.
900  if (isa<TerminatorInst>(&I))
901    HandlePHINodesInSuccessorBlocks(I.getParent());
902
903  CurDebugLoc = I.getDebugLoc();
904
905  visit(I.getOpcode(), I);
906
907  if (!isa<TerminatorInst>(&I) && !HasTailCall)
908    CopyToExportRegsIfNeeded(&I);
909
910  CurDebugLoc = DebugLoc();
911}
912
913void SelectionDAGBuilder::visitPHI(const PHINode &) {
914  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915}
916
917void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918  // Note: this doesn't use InstVisitor, because it has to work with
919  // ConstantExpr's in addition to instructions.
920  switch (Opcode) {
921  default: llvm_unreachable("Unknown instruction type encountered!");
922    // Build the switch statement using the Instruction.def file.
923#define HANDLE_INST(NUM, OPCODE, CLASS) \
924    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925#include "llvm/Instruction.def"
926  }
927
928  // Assign the ordering to the freshly created DAG nodes.
929  if (NodeMap.count(&I)) {
930    ++SDNodeOrder;
931    AssignOrderingToNode(getValue(&I).getNode());
932  }
933}
934
935// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936// generate the debug data structures now that we've seen its definition.
937void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938                                                   SDValue Val) {
939  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940  if (DDI.getDI()) {
941    const DbgValueInst *DI = DDI.getDI();
942    DebugLoc dl = DDI.getdl();
943    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944    MDNode *Variable = DI->getVariable();
945    uint64_t Offset = DI->getOffset();
946    SDDbgValue *SDV;
947    if (Val.getNode()) {
948      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949        SDV = DAG.getDbgValue(Variable, Val.getNode(),
950                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951        DAG.AddDbgValue(SDV, Val.getNode(), false);
952      }
953    } else
954      DEBUG(dbgs() << "Dropping debug info for " << DI);
955    DanglingDebugInfoMap[V] = DanglingDebugInfo();
956  }
957}
958
959// getValue - Return an SDValue for the given Value.
960SDValue SelectionDAGBuilder::getValue(const Value *V) {
961  // If we already have an SDValue for this value, use it. It's important
962  // to do this first, so that we don't create a CopyFromReg if we already
963  // have a regular SDValue.
964  SDValue &N = NodeMap[V];
965  if (N.getNode()) return N;
966
967  // If there's a virtual register allocated and initialized for this
968  // value, use it.
969  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970  if (It != FuncInfo.ValueMap.end()) {
971    unsigned InReg = It->second;
972    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973    SDValue Chain = DAG.getEntryNode();
974    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975    resolveDanglingDebugInfo(V, N);
976    return N;
977  }
978
979  // Otherwise create a new SDValue and remember it.
980  SDValue Val = getValueImpl(V);
981  NodeMap[V] = Val;
982  resolveDanglingDebugInfo(V, Val);
983  return Val;
984}
985
986/// getNonRegisterValue - Return an SDValue for the given Value, but
987/// don't look in FuncInfo.ValueMap for a virtual register.
988SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989  // If we already have an SDValue for this value, use it.
990  SDValue &N = NodeMap[V];
991  if (N.getNode()) return N;
992
993  // Otherwise create a new SDValue and remember it.
994  SDValue Val = getValueImpl(V);
995  NodeMap[V] = Val;
996  resolveDanglingDebugInfo(V, Val);
997  return Val;
998}
999
1000/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001/// Create an SDValue for the given value.
1002SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003  if (const Constant *C = dyn_cast<Constant>(V)) {
1004    EVT VT = TLI.getValueType(V->getType(), true);
1005
1006    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007      return DAG.getConstant(*CI, VT);
1008
1009    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011
1012    if (isa<ConstantPointerNull>(C))
1013      return DAG.getConstant(0, TLI.getPointerTy());
1014
1015    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016      return DAG.getConstantFP(*CFP, VT);
1017
1018    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019      return DAG.getUNDEF(VT);
1020
1021    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022      visit(CE->getOpcode(), *CE);
1023      SDValue N1 = NodeMap[V];
1024      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025      return N1;
1026    }
1027
1028    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029      SmallVector<SDValue, 4> Constants;
1030      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031           OI != OE; ++OI) {
1032        SDNode *Val = getValue(*OI).getNode();
1033        // If the operand is an empty aggregate, there are no values.
1034        if (!Val) continue;
1035        // Add each leaf value from the operand to the Constants list
1036        // to form a flattened list of all the values.
1037        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038          Constants.push_back(SDValue(Val, i));
1039      }
1040
1041      return DAG.getMergeValues(&Constants[0], Constants.size(),
1042                                getCurDebugLoc());
1043    }
1044
1045    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047             "Unknown struct or array constant!");
1048
1049      SmallVector<EVT, 4> ValueVTs;
1050      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051      unsigned NumElts = ValueVTs.size();
1052      if (NumElts == 0)
1053        return SDValue(); // empty struct
1054      SmallVector<SDValue, 4> Constants(NumElts);
1055      for (unsigned i = 0; i != NumElts; ++i) {
1056        EVT EltVT = ValueVTs[i];
1057        if (isa<UndefValue>(C))
1058          Constants[i] = DAG.getUNDEF(EltVT);
1059        else if (EltVT.isFloatingPoint())
1060          Constants[i] = DAG.getConstantFP(0, EltVT);
1061        else
1062          Constants[i] = DAG.getConstant(0, EltVT);
1063      }
1064
1065      return DAG.getMergeValues(&Constants[0], NumElts,
1066                                getCurDebugLoc());
1067    }
1068
1069    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070      return DAG.getBlockAddress(BA, VT);
1071
1072    VectorType *VecTy = cast<VectorType>(V->getType());
1073    unsigned NumElements = VecTy->getNumElements();
1074
1075    // Now that we know the number and type of the elements, get that number of
1076    // elements into the Ops array based on what kind of constant it is.
1077    SmallVector<SDValue, 16> Ops;
1078    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079      for (unsigned i = 0; i != NumElements; ++i)
1080        Ops.push_back(getValue(CP->getOperand(i)));
1081    } else {
1082      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084
1085      SDValue Op;
1086      if (EltVT.isFloatingPoint())
1087        Op = DAG.getConstantFP(0, EltVT);
1088      else
1089        Op = DAG.getConstant(0, EltVT);
1090      Ops.assign(NumElements, Op);
1091    }
1092
1093    // Create a BUILD_VECTOR node.
1094    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095                                    VT, &Ops[0], Ops.size());
1096  }
1097
1098  // If this is a static alloca, generate it as the frameindex instead of
1099  // computation.
1100  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101    DenseMap<const AllocaInst*, int>::iterator SI =
1102      FuncInfo.StaticAllocaMap.find(AI);
1103    if (SI != FuncInfo.StaticAllocaMap.end())
1104      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105  }
1106
1107  // If this is an instruction which fast-isel has deferred, select it now.
1108  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111    SDValue Chain = DAG.getEntryNode();
1112    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113  }
1114
1115  llvm_unreachable("Can't get register for value!");
1116  return SDValue();
1117}
1118
1119void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120  SDValue Chain = getControlRoot();
1121  SmallVector<ISD::OutputArg, 8> Outs;
1122  SmallVector<SDValue, 8> OutVals;
1123
1124  if (!FuncInfo.CanLowerReturn) {
1125    unsigned DemoteReg = FuncInfo.DemoteRegister;
1126    const Function *F = I.getParent()->getParent();
1127
1128    // Emit a store of the return value through the virtual register.
1129    // Leave Outs empty so that LowerReturn won't try to load return
1130    // registers the usual way.
1131    SmallVector<EVT, 1> PtrValueVTs;
1132    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133                    PtrValueVTs);
1134
1135    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136    SDValue RetOp = getValue(I.getOperand(0));
1137
1138    SmallVector<EVT, 4> ValueVTs;
1139    SmallVector<uint64_t, 4> Offsets;
1140    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141    unsigned NumValues = ValueVTs.size();
1142
1143    SmallVector<SDValue, 4> Chains(NumValues);
1144    for (unsigned i = 0; i != NumValues; ++i) {
1145      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146                                RetPtr.getValueType(), RetPtr,
1147                                DAG.getIntPtrConstant(Offsets[i]));
1148      Chains[i] =
1149        DAG.getStore(Chain, getCurDebugLoc(),
1150                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151                     // FIXME: better loc info would be nice.
1152                     Add, MachinePointerInfo(), false, false, 0);
1153    }
1154
1155    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156                        MVT::Other, &Chains[0], NumValues);
1157  } else if (I.getNumOperands() != 0) {
1158    SmallVector<EVT, 4> ValueVTs;
1159    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160    unsigned NumValues = ValueVTs.size();
1161    if (NumValues) {
1162      SDValue RetOp = getValue(I.getOperand(0));
1163      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164        EVT VT = ValueVTs[j];
1165
1166        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167
1168        const Function *F = I.getParent()->getParent();
1169        if (F->paramHasAttr(0, Attribute::SExt))
1170          ExtendKind = ISD::SIGN_EXTEND;
1171        else if (F->paramHasAttr(0, Attribute::ZExt))
1172          ExtendKind = ISD::ZERO_EXTEND;
1173
1174        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176
1177        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179        SmallVector<SDValue, 4> Parts(NumParts);
1180        getCopyToParts(DAG, getCurDebugLoc(),
1181                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182                       &Parts[0], NumParts, PartVT, ExtendKind);
1183
1184        // 'inreg' on function refers to return value
1185        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186        if (F->paramHasAttr(0, Attribute::InReg))
1187          Flags.setInReg();
1188
1189        // Propagate extension type if any
1190        if (ExtendKind == ISD::SIGN_EXTEND)
1191          Flags.setSExt();
1192        else if (ExtendKind == ISD::ZERO_EXTEND)
1193          Flags.setZExt();
1194
1195        for (unsigned i = 0; i < NumParts; ++i) {
1196          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197                                        /*isfixed=*/true));
1198          OutVals.push_back(Parts[i]);
1199        }
1200      }
1201    }
1202  }
1203
1204  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205  CallingConv::ID CallConv =
1206    DAG.getMachineFunction().getFunction()->getCallingConv();
1207  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208                          Outs, OutVals, getCurDebugLoc(), DAG);
1209
1210  // Verify that the target's LowerReturn behaved as expected.
1211  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212         "LowerReturn didn't return a valid chain!");
1213
1214  // Update the DAG with the new chain value resulting from return lowering.
1215  DAG.setRoot(Chain);
1216}
1217
1218/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219/// created for it, emit nodes to copy the value into the virtual
1220/// registers.
1221void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222  // Skip empty types
1223  if (V->getType()->isEmptyTy())
1224    return;
1225
1226  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227  if (VMI != FuncInfo.ValueMap.end()) {
1228    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229    CopyValueToVirtualRegister(V, VMI->second);
1230  }
1231}
1232
1233/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234/// the current basic block, add it to ValueMap now so that we'll get a
1235/// CopyTo/FromReg.
1236void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237  // No need to export constants.
1238  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239
1240  // Already exported?
1241  if (FuncInfo.isExportedInst(V)) return;
1242
1243  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244  CopyValueToVirtualRegister(V, Reg);
1245}
1246
1247bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248                                                     const BasicBlock *FromBB) {
1249  // The operands of the setcc have to be in this block.  We don't know
1250  // how to export them from some other block.
1251  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252    // Can export from current BB.
1253    if (VI->getParent() == FromBB)
1254      return true;
1255
1256    // Is already exported, noop.
1257    return FuncInfo.isExportedInst(V);
1258  }
1259
1260  // If this is an argument, we can export it if the BB is the entry block or
1261  // if it is already exported.
1262  if (isa<Argument>(V)) {
1263    if (FromBB == &FromBB->getParent()->getEntryBlock())
1264      return true;
1265
1266    // Otherwise, can only export this if it is already exported.
1267    return FuncInfo.isExportedInst(V);
1268  }
1269
1270  // Otherwise, constants can always be exported.
1271  return true;
1272}
1273
1274/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276                                            MachineBasicBlock *Dst) {
1277  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278  if (!BPI)
1279    return 0;
1280  const BasicBlock *SrcBB = Src->getBasicBlock();
1281  const BasicBlock *DstBB = Dst->getBasicBlock();
1282  return BPI->getEdgeWeight(SrcBB, DstBB);
1283}
1284
1285void SelectionDAGBuilder::
1286addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1287                       uint32_t Weight /* = 0 */) {
1288  if (!Weight)
1289    Weight = getEdgeWeight(Src, Dst);
1290  Src->addSuccessor(Dst, Weight);
1291}
1292
1293
1294static bool InBlock(const Value *V, const BasicBlock *BB) {
1295  if (const Instruction *I = dyn_cast<Instruction>(V))
1296    return I->getParent() == BB;
1297  return true;
1298}
1299
1300/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1301/// This function emits a branch and is used at the leaves of an OR or an
1302/// AND operator tree.
1303///
1304void
1305SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1306                                                  MachineBasicBlock *TBB,
1307                                                  MachineBasicBlock *FBB,
1308                                                  MachineBasicBlock *CurBB,
1309                                                  MachineBasicBlock *SwitchBB) {
1310  const BasicBlock *BB = CurBB->getBasicBlock();
1311
1312  // If the leaf of the tree is a comparison, merge the condition into
1313  // the caseblock.
1314  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1315    // The operands of the cmp have to be in this block.  We don't know
1316    // how to export them from some other block.  If this is the first block
1317    // of the sequence, no exporting is needed.
1318    if (CurBB == SwitchBB ||
1319        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1320         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1321      ISD::CondCode Condition;
1322      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1323        Condition = getICmpCondCode(IC->getPredicate());
1324      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1325        Condition = getFCmpCondCode(FC->getPredicate());
1326      } else {
1327        Condition = ISD::SETEQ; // silence warning.
1328        llvm_unreachable("Unknown compare instruction");
1329      }
1330
1331      CaseBlock CB(Condition, BOp->getOperand(0),
1332                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1333      SwitchCases.push_back(CB);
1334      return;
1335    }
1336  }
1337
1338  // Create a CaseBlock record representing this branch.
1339  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1340               NULL, TBB, FBB, CurBB);
1341  SwitchCases.push_back(CB);
1342}
1343
1344/// FindMergedConditions - If Cond is an expression like
1345void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1346                                               MachineBasicBlock *TBB,
1347                                               MachineBasicBlock *FBB,
1348                                               MachineBasicBlock *CurBB,
1349                                               MachineBasicBlock *SwitchBB,
1350                                               unsigned Opc) {
1351  // If this node is not part of the or/and tree, emit it as a branch.
1352  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1353  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1354      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1355      BOp->getParent() != CurBB->getBasicBlock() ||
1356      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1357      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1358    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1359    return;
1360  }
1361
1362  //  Create TmpBB after CurBB.
1363  MachineFunction::iterator BBI = CurBB;
1364  MachineFunction &MF = DAG.getMachineFunction();
1365  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1366  CurBB->getParent()->insert(++BBI, TmpBB);
1367
1368  if (Opc == Instruction::Or) {
1369    // Codegen X | Y as:
1370    //   jmp_if_X TBB
1371    //   jmp TmpBB
1372    // TmpBB:
1373    //   jmp_if_Y TBB
1374    //   jmp FBB
1375    //
1376
1377    // Emit the LHS condition.
1378    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1379
1380    // Emit the RHS condition into TmpBB.
1381    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1382  } else {
1383    assert(Opc == Instruction::And && "Unknown merge op!");
1384    // Codegen X & Y as:
1385    //   jmp_if_X TmpBB
1386    //   jmp FBB
1387    // TmpBB:
1388    //   jmp_if_Y TBB
1389    //   jmp FBB
1390    //
1391    //  This requires creation of TmpBB after CurBB.
1392
1393    // Emit the LHS condition.
1394    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1395
1396    // Emit the RHS condition into TmpBB.
1397    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1398  }
1399}
1400
1401/// If the set of cases should be emitted as a series of branches, return true.
1402/// If we should emit this as a bunch of and/or'd together conditions, return
1403/// false.
1404bool
1405SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1406  if (Cases.size() != 2) return true;
1407
1408  // If this is two comparisons of the same values or'd or and'd together, they
1409  // will get folded into a single comparison, so don't emit two blocks.
1410  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1411       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1412      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1413       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1414    return false;
1415  }
1416
1417  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1418  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1419  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1420      Cases[0].CC == Cases[1].CC &&
1421      isa<Constant>(Cases[0].CmpRHS) &&
1422      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1423    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1424      return false;
1425    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1426      return false;
1427  }
1428
1429  return true;
1430}
1431
1432void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1433  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1434
1435  // Update machine-CFG edges.
1436  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1437
1438  // Figure out which block is immediately after the current one.
1439  MachineBasicBlock *NextBlock = 0;
1440  MachineFunction::iterator BBI = BrMBB;
1441  if (++BBI != FuncInfo.MF->end())
1442    NextBlock = BBI;
1443
1444  if (I.isUnconditional()) {
1445    // Update machine-CFG edges.
1446    BrMBB->addSuccessor(Succ0MBB);
1447
1448    // If this is not a fall-through branch, emit the branch.
1449    if (Succ0MBB != NextBlock)
1450      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1451                              MVT::Other, getControlRoot(),
1452                              DAG.getBasicBlock(Succ0MBB)));
1453
1454    return;
1455  }
1456
1457  // If this condition is one of the special cases we handle, do special stuff
1458  // now.
1459  const Value *CondVal = I.getCondition();
1460  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1461
1462  // If this is a series of conditions that are or'd or and'd together, emit
1463  // this as a sequence of branches instead of setcc's with and/or operations.
1464  // As long as jumps are not expensive, this should improve performance.
1465  // For example, instead of something like:
1466  //     cmp A, B
1467  //     C = seteq
1468  //     cmp D, E
1469  //     F = setle
1470  //     or C, F
1471  //     jnz foo
1472  // Emit:
1473  //     cmp A, B
1474  //     je foo
1475  //     cmp D, E
1476  //     jle foo
1477  //
1478  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1479    if (!TLI.isJumpExpensive() &&
1480        BOp->hasOneUse() &&
1481        (BOp->getOpcode() == Instruction::And ||
1482         BOp->getOpcode() == Instruction::Or)) {
1483      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1484                           BOp->getOpcode());
1485      // If the compares in later blocks need to use values not currently
1486      // exported from this block, export them now.  This block should always
1487      // be the first entry.
1488      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1489
1490      // Allow some cases to be rejected.
1491      if (ShouldEmitAsBranches(SwitchCases)) {
1492        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1493          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1494          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1495        }
1496
1497        // Emit the branch for this block.
1498        visitSwitchCase(SwitchCases[0], BrMBB);
1499        SwitchCases.erase(SwitchCases.begin());
1500        return;
1501      }
1502
1503      // Okay, we decided not to do this, remove any inserted MBB's and clear
1504      // SwitchCases.
1505      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1506        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1507
1508      SwitchCases.clear();
1509    }
1510  }
1511
1512  // Create a CaseBlock record representing this branch.
1513  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1514               NULL, Succ0MBB, Succ1MBB, BrMBB);
1515
1516  // Use visitSwitchCase to actually insert the fast branch sequence for this
1517  // cond branch.
1518  visitSwitchCase(CB, BrMBB);
1519}
1520
1521/// visitSwitchCase - Emits the necessary code to represent a single node in
1522/// the binary search tree resulting from lowering a switch instruction.
1523void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1524                                          MachineBasicBlock *SwitchBB) {
1525  SDValue Cond;
1526  SDValue CondLHS = getValue(CB.CmpLHS);
1527  DebugLoc dl = getCurDebugLoc();
1528
1529  // Build the setcc now.
1530  if (CB.CmpMHS == NULL) {
1531    // Fold "(X == true)" to X and "(X == false)" to !X to
1532    // handle common cases produced by branch lowering.
1533    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1534        CB.CC == ISD::SETEQ)
1535      Cond = CondLHS;
1536    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1537             CB.CC == ISD::SETEQ) {
1538      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1539      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1540    } else
1541      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1542  } else {
1543    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1544
1545    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1546    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1547
1548    SDValue CmpOp = getValue(CB.CmpMHS);
1549    EVT VT = CmpOp.getValueType();
1550
1551    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1552      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1553                          ISD::SETLE);
1554    } else {
1555      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1556                                VT, CmpOp, DAG.getConstant(Low, VT));
1557      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1558                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1559    }
1560  }
1561
1562  // Update successor info
1563  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1564  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1565
1566  // Set NextBlock to be the MBB immediately after the current one, if any.
1567  // This is used to avoid emitting unnecessary branches to the next block.
1568  MachineBasicBlock *NextBlock = 0;
1569  MachineFunction::iterator BBI = SwitchBB;
1570  if (++BBI != FuncInfo.MF->end())
1571    NextBlock = BBI;
1572
1573  // If the lhs block is the next block, invert the condition so that we can
1574  // fall through to the lhs instead of the rhs block.
1575  if (CB.TrueBB == NextBlock) {
1576    std::swap(CB.TrueBB, CB.FalseBB);
1577    SDValue True = DAG.getConstant(1, Cond.getValueType());
1578    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1579  }
1580
1581  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1582                               MVT::Other, getControlRoot(), Cond,
1583                               DAG.getBasicBlock(CB.TrueBB));
1584
1585  // Insert the false branch. Do this even if it's a fall through branch,
1586  // this makes it easier to do DAG optimizations which require inverting
1587  // the branch condition.
1588  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1589                       DAG.getBasicBlock(CB.FalseBB));
1590
1591  DAG.setRoot(BrCond);
1592}
1593
1594/// visitJumpTable - Emit JumpTable node in the current MBB
1595void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1596  // Emit the code for the jump table
1597  assert(JT.Reg != -1U && "Should lower JT Header first!");
1598  EVT PTy = TLI.getPointerTy();
1599  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1600                                     JT.Reg, PTy);
1601  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1602  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1603                                    MVT::Other, Index.getValue(1),
1604                                    Table, Index);
1605  DAG.setRoot(BrJumpTable);
1606}
1607
1608/// visitJumpTableHeader - This function emits necessary code to produce index
1609/// in the JumpTable from switch case.
1610void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1611                                               JumpTableHeader &JTH,
1612                                               MachineBasicBlock *SwitchBB) {
1613  // Subtract the lowest switch case value from the value being switched on and
1614  // conditional branch to default mbb if the result is greater than the
1615  // difference between smallest and largest cases.
1616  SDValue SwitchOp = getValue(JTH.SValue);
1617  EVT VT = SwitchOp.getValueType();
1618  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1619                            DAG.getConstant(JTH.First, VT));
1620
1621  // The SDNode we just created, which holds the value being switched on minus
1622  // the smallest case value, needs to be copied to a virtual register so it
1623  // can be used as an index into the jump table in a subsequent basic block.
1624  // This value may be smaller or larger than the target's pointer type, and
1625  // therefore require extension or truncating.
1626  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1627
1628  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1629  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1630                                    JumpTableReg, SwitchOp);
1631  JT.Reg = JumpTableReg;
1632
1633  // Emit the range check for the jump table, and branch to the default block
1634  // for the switch statement if the value being switched on exceeds the largest
1635  // case in the switch.
1636  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1637                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1638                             DAG.getConstant(JTH.Last-JTH.First,VT),
1639                             ISD::SETUGT);
1640
1641  // Set NextBlock to be the MBB immediately after the current one, if any.
1642  // This is used to avoid emitting unnecessary branches to the next block.
1643  MachineBasicBlock *NextBlock = 0;
1644  MachineFunction::iterator BBI = SwitchBB;
1645
1646  if (++BBI != FuncInfo.MF->end())
1647    NextBlock = BBI;
1648
1649  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1650                               MVT::Other, CopyTo, CMP,
1651                               DAG.getBasicBlock(JT.Default));
1652
1653  if (JT.MBB != NextBlock)
1654    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1655                         DAG.getBasicBlock(JT.MBB));
1656
1657  DAG.setRoot(BrCond);
1658}
1659
1660/// visitBitTestHeader - This function emits necessary code to produce value
1661/// suitable for "bit tests"
1662void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1663                                             MachineBasicBlock *SwitchBB) {
1664  // Subtract the minimum value
1665  SDValue SwitchOp = getValue(B.SValue);
1666  EVT VT = SwitchOp.getValueType();
1667  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1668                            DAG.getConstant(B.First, VT));
1669
1670  // Check range
1671  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1672                                  TLI.getSetCCResultType(Sub.getValueType()),
1673                                  Sub, DAG.getConstant(B.Range, VT),
1674                                  ISD::SETUGT);
1675
1676  // Determine the type of the test operands.
1677  bool UsePtrType = false;
1678  if (!TLI.isTypeLegal(VT))
1679    UsePtrType = true;
1680  else {
1681    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1682      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1683        // Switch table case range are encoded into series of masks.
1684        // Just use pointer type, it's guaranteed to fit.
1685        UsePtrType = true;
1686        break;
1687      }
1688  }
1689  if (UsePtrType) {
1690    VT = TLI.getPointerTy();
1691    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1692  }
1693
1694  B.RegVT = VT;
1695  B.Reg = FuncInfo.CreateReg(VT);
1696  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1697                                    B.Reg, Sub);
1698
1699  // Set NextBlock to be the MBB immediately after the current one, if any.
1700  // This is used to avoid emitting unnecessary branches to the next block.
1701  MachineBasicBlock *NextBlock = 0;
1702  MachineFunction::iterator BBI = SwitchBB;
1703  if (++BBI != FuncInfo.MF->end())
1704    NextBlock = BBI;
1705
1706  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1707
1708  addSuccessorWithWeight(SwitchBB, B.Default);
1709  addSuccessorWithWeight(SwitchBB, MBB);
1710
1711  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1712                                MVT::Other, CopyTo, RangeCmp,
1713                                DAG.getBasicBlock(B.Default));
1714
1715  if (MBB != NextBlock)
1716    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1717                          DAG.getBasicBlock(MBB));
1718
1719  DAG.setRoot(BrRange);
1720}
1721
1722/// visitBitTestCase - this function produces one "bit test"
1723void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1724                                           MachineBasicBlock* NextMBB,
1725                                           unsigned Reg,
1726                                           BitTestCase &B,
1727                                           MachineBasicBlock *SwitchBB) {
1728  EVT VT = BB.RegVT;
1729  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1730                                       Reg, VT);
1731  SDValue Cmp;
1732  unsigned PopCount = CountPopulation_64(B.Mask);
1733  if (PopCount == 1) {
1734    // Testing for a single bit; just compare the shift count with what it
1735    // would need to be to shift a 1 bit in that position.
1736    Cmp = DAG.getSetCC(getCurDebugLoc(),
1737                       TLI.getSetCCResultType(VT),
1738                       ShiftOp,
1739                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1740                       ISD::SETEQ);
1741  } else if (PopCount == BB.Range) {
1742    // There is only one zero bit in the range, test for it directly.
1743    Cmp = DAG.getSetCC(getCurDebugLoc(),
1744                       TLI.getSetCCResultType(VT),
1745                       ShiftOp,
1746                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1747                       ISD::SETNE);
1748  } else {
1749    // Make desired shift
1750    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1751                                    DAG.getConstant(1, VT), ShiftOp);
1752
1753    // Emit bit tests and jumps
1754    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1755                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1756    Cmp = DAG.getSetCC(getCurDebugLoc(),
1757                       TLI.getSetCCResultType(VT),
1758                       AndOp, DAG.getConstant(0, VT),
1759                       ISD::SETNE);
1760  }
1761
1762  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1763  addSuccessorWithWeight(SwitchBB, NextMBB);
1764
1765  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1766                              MVT::Other, getControlRoot(),
1767                              Cmp, DAG.getBasicBlock(B.TargetBB));
1768
1769  // Set NextBlock to be the MBB immediately after the current one, if any.
1770  // This is used to avoid emitting unnecessary branches to the next block.
1771  MachineBasicBlock *NextBlock = 0;
1772  MachineFunction::iterator BBI = SwitchBB;
1773  if (++BBI != FuncInfo.MF->end())
1774    NextBlock = BBI;
1775
1776  if (NextMBB != NextBlock)
1777    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1778                        DAG.getBasicBlock(NextMBB));
1779
1780  DAG.setRoot(BrAnd);
1781}
1782
1783void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1784  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1785
1786  // Retrieve successors.
1787  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1788  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1789
1790  const Value *Callee(I.getCalledValue());
1791  if (isa<InlineAsm>(Callee))
1792    visitInlineAsm(&I);
1793  else
1794    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1795
1796  // If the value of the invoke is used outside of its defining block, make it
1797  // available as a virtual register.
1798  CopyToExportRegsIfNeeded(&I);
1799
1800  // Update successor info
1801  InvokeMBB->addSuccessor(Return);
1802  InvokeMBB->addSuccessor(LandingPad);
1803
1804  // Drop into normal successor.
1805  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1806                          MVT::Other, getControlRoot(),
1807                          DAG.getBasicBlock(Return)));
1808}
1809
1810void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1811}
1812
1813void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1814  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1815}
1816
1817void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1818  assert(FuncInfo.MBB->isLandingPad() &&
1819         "Call to landingpad not in landing pad!");
1820
1821  MachineBasicBlock *MBB = FuncInfo.MBB;
1822  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1823  AddLandingPadInfo(LP, MMI, MBB);
1824
1825  SmallVector<EVT, 2> ValueVTs;
1826  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1827
1828  // Insert the EXCEPTIONADDR instruction.
1829  assert(FuncInfo.MBB->isLandingPad() &&
1830         "Call to eh.exception not in landing pad!");
1831  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1832  SDValue Ops[2];
1833  Ops[0] = DAG.getRoot();
1834  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1835  SDValue Chain = Op1.getValue(1);
1836
1837  // Insert the EHSELECTION instruction.
1838  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1839  Ops[0] = Op1;
1840  Ops[1] = Chain;
1841  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1842  Chain = Op2.getValue(1);
1843  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1844
1845  Ops[0] = Op1;
1846  Ops[1] = Op2;
1847  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1848                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1849                            &Ops[0], 2);
1850
1851  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1852  setValue(&LP, RetPair.first);
1853  DAG.setRoot(RetPair.second);
1854}
1855
1856/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1857/// small case ranges).
1858bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1859                                                 CaseRecVector& WorkList,
1860                                                 const Value* SV,
1861                                                 MachineBasicBlock *Default,
1862                                                 MachineBasicBlock *SwitchBB) {
1863  Case& BackCase  = *(CR.Range.second-1);
1864
1865  // Size is the number of Cases represented by this range.
1866  size_t Size = CR.Range.second - CR.Range.first;
1867  if (Size > 3)
1868    return false;
1869
1870  // Get the MachineFunction which holds the current MBB.  This is used when
1871  // inserting any additional MBBs necessary to represent the switch.
1872  MachineFunction *CurMF = FuncInfo.MF;
1873
1874  // Figure out which block is immediately after the current one.
1875  MachineBasicBlock *NextBlock = 0;
1876  MachineFunction::iterator BBI = CR.CaseBB;
1877
1878  if (++BBI != FuncInfo.MF->end())
1879    NextBlock = BBI;
1880
1881  // If any two of the cases has the same destination, and if one value
1882  // is the same as the other, but has one bit unset that the other has set,
1883  // use bit manipulation to do two compares at once.  For example:
1884  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1885  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1886  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1887  if (Size == 2 && CR.CaseBB == SwitchBB) {
1888    Case &Small = *CR.Range.first;
1889    Case &Big = *(CR.Range.second-1);
1890
1891    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1892      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1893      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1894
1895      // Check that there is only one bit different.
1896      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1897          (SmallValue | BigValue) == BigValue) {
1898        // Isolate the common bit.
1899        APInt CommonBit = BigValue & ~SmallValue;
1900        assert((SmallValue | CommonBit) == BigValue &&
1901               CommonBit.countPopulation() == 1 && "Not a common bit?");
1902
1903        SDValue CondLHS = getValue(SV);
1904        EVT VT = CondLHS.getValueType();
1905        DebugLoc DL = getCurDebugLoc();
1906
1907        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1908                                 DAG.getConstant(CommonBit, VT));
1909        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1910                                    Or, DAG.getConstant(BigValue, VT),
1911                                    ISD::SETEQ);
1912
1913        // Update successor info.
1914        addSuccessorWithWeight(SwitchBB, Small.BB);
1915        addSuccessorWithWeight(SwitchBB, Default);
1916
1917        // Insert the true branch.
1918        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1919                                     getControlRoot(), Cond,
1920                                     DAG.getBasicBlock(Small.BB));
1921
1922        // Insert the false branch.
1923        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1924                             DAG.getBasicBlock(Default));
1925
1926        DAG.setRoot(BrCond);
1927        return true;
1928      }
1929    }
1930  }
1931
1932  // Rearrange the case blocks so that the last one falls through if possible.
1933  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1934    // The last case block won't fall through into 'NextBlock' if we emit the
1935    // branches in this order.  See if rearranging a case value would help.
1936    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1937      if (I->BB == NextBlock) {
1938        std::swap(*I, BackCase);
1939        break;
1940      }
1941    }
1942  }
1943
1944  // Create a CaseBlock record representing a conditional branch to
1945  // the Case's target mbb if the value being switched on SV is equal
1946  // to C.
1947  MachineBasicBlock *CurBlock = CR.CaseBB;
1948  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1949    MachineBasicBlock *FallThrough;
1950    if (I != E-1) {
1951      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1952      CurMF->insert(BBI, FallThrough);
1953
1954      // Put SV in a virtual register to make it available from the new blocks.
1955      ExportFromCurrentBlock(SV);
1956    } else {
1957      // If the last case doesn't match, go to the default block.
1958      FallThrough = Default;
1959    }
1960
1961    const Value *RHS, *LHS, *MHS;
1962    ISD::CondCode CC;
1963    if (I->High == I->Low) {
1964      // This is just small small case range :) containing exactly 1 case
1965      CC = ISD::SETEQ;
1966      LHS = SV; RHS = I->High; MHS = NULL;
1967    } else {
1968      CC = ISD::SETLE;
1969      LHS = I->Low; MHS = SV; RHS = I->High;
1970    }
1971
1972    uint32_t ExtraWeight = I->ExtraWeight;
1973    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1974                 /* me */ CurBlock,
1975                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1976
1977    // If emitting the first comparison, just call visitSwitchCase to emit the
1978    // code into the current block.  Otherwise, push the CaseBlock onto the
1979    // vector to be later processed by SDISel, and insert the node's MBB
1980    // before the next MBB.
1981    if (CurBlock == SwitchBB)
1982      visitSwitchCase(CB, SwitchBB);
1983    else
1984      SwitchCases.push_back(CB);
1985
1986    CurBlock = FallThrough;
1987  }
1988
1989  return true;
1990}
1991
1992static inline bool areJTsAllowed(const TargetLowering &TLI) {
1993  return !DisableJumpTables &&
1994          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1995           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1996}
1997
1998static APInt ComputeRange(const APInt &First, const APInt &Last) {
1999  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2000  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2001  return (LastExt - FirstExt + 1ULL);
2002}
2003
2004/// handleJTSwitchCase - Emit jumptable for current switch case range
2005bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
2006                                             CaseRecVector& WorkList,
2007                                             const Value* SV,
2008                                             MachineBasicBlock* Default,
2009                                             MachineBasicBlock *SwitchBB) {
2010  Case& FrontCase = *CR.Range.first;
2011  Case& BackCase  = *(CR.Range.second-1);
2012
2013  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2014  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2015
2016  APInt TSize(First.getBitWidth(), 0);
2017  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2018       I!=E; ++I)
2019    TSize += I->size();
2020
2021  if (!areJTsAllowed(TLI) || TSize.ult(4))
2022    return false;
2023
2024  APInt Range = ComputeRange(First, Last);
2025  double Density = TSize.roundToDouble() / Range.roundToDouble();
2026  if (Density < 0.4)
2027    return false;
2028
2029  DEBUG(dbgs() << "Lowering jump table\n"
2030               << "First entry: " << First << ". Last entry: " << Last << '\n'
2031               << "Range: " << Range
2032               << ". Size: " << TSize << ". Density: " << Density << "\n\n");
2033
2034  // Get the MachineFunction which holds the current MBB.  This is used when
2035  // inserting any additional MBBs necessary to represent the switch.
2036  MachineFunction *CurMF = FuncInfo.MF;
2037
2038  // Figure out which block is immediately after the current one.
2039  MachineFunction::iterator BBI = CR.CaseBB;
2040  ++BBI;
2041
2042  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2043
2044  // Create a new basic block to hold the code for loading the address
2045  // of the jump table, and jumping to it.  Update successor information;
2046  // we will either branch to the default case for the switch, or the jump
2047  // table.
2048  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2049  CurMF->insert(BBI, JumpTableBB);
2050
2051  addSuccessorWithWeight(CR.CaseBB, Default);
2052  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2053
2054  // Build a vector of destination BBs, corresponding to each target
2055  // of the jump table. If the value of the jump table slot corresponds to
2056  // a case statement, push the case's BB onto the vector, otherwise, push
2057  // the default BB.
2058  std::vector<MachineBasicBlock*> DestBBs;
2059  APInt TEI = First;
2060  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2061    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2062    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2063
2064    if (Low.sle(TEI) && TEI.sle(High)) {
2065      DestBBs.push_back(I->BB);
2066      if (TEI==High)
2067        ++I;
2068    } else {
2069      DestBBs.push_back(Default);
2070    }
2071  }
2072
2073  // Update successor info. Add one edge to each unique successor.
2074  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2075  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2076         E = DestBBs.end(); I != E; ++I) {
2077    if (!SuccsHandled[(*I)->getNumber()]) {
2078      SuccsHandled[(*I)->getNumber()] = true;
2079      addSuccessorWithWeight(JumpTableBB, *I);
2080    }
2081  }
2082
2083  // Create a jump table index for this jump table.
2084  unsigned JTEncoding = TLI.getJumpTableEncoding();
2085  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2086                       ->createJumpTableIndex(DestBBs);
2087
2088  // Set the jump table information so that we can codegen it as a second
2089  // MachineBasicBlock
2090  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2091  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2092  if (CR.CaseBB == SwitchBB)
2093    visitJumpTableHeader(JT, JTH, SwitchBB);
2094
2095  JTCases.push_back(JumpTableBlock(JTH, JT));
2096
2097  return true;
2098}
2099
2100/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2101/// 2 subtrees.
2102bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2103                                                  CaseRecVector& WorkList,
2104                                                  const Value* SV,
2105                                                  MachineBasicBlock *Default,
2106                                                  MachineBasicBlock *SwitchBB) {
2107  // Get the MachineFunction which holds the current MBB.  This is used when
2108  // inserting any additional MBBs necessary to represent the switch.
2109  MachineFunction *CurMF = FuncInfo.MF;
2110
2111  // Figure out which block is immediately after the current one.
2112  MachineFunction::iterator BBI = CR.CaseBB;
2113  ++BBI;
2114
2115  Case& FrontCase = *CR.Range.first;
2116  Case& BackCase  = *(CR.Range.second-1);
2117  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2118
2119  // Size is the number of Cases represented by this range.
2120  unsigned Size = CR.Range.second - CR.Range.first;
2121
2122  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2123  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2124  double FMetric = 0;
2125  CaseItr Pivot = CR.Range.first + Size/2;
2126
2127  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2128  // (heuristically) allow us to emit JumpTable's later.
2129  APInt TSize(First.getBitWidth(), 0);
2130  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2131       I!=E; ++I)
2132    TSize += I->size();
2133
2134  APInt LSize = FrontCase.size();
2135  APInt RSize = TSize-LSize;
2136  DEBUG(dbgs() << "Selecting best pivot: \n"
2137               << "First: " << First << ", Last: " << Last <<'\n'
2138               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2139  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2140       J!=E; ++I, ++J) {
2141    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2142    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2143    APInt Range = ComputeRange(LEnd, RBegin);
2144    assert((Range - 2ULL).isNonNegative() &&
2145           "Invalid case distance");
2146    // Use volatile double here to avoid excess precision issues on some hosts,
2147    // e.g. that use 80-bit X87 registers.
2148    volatile double LDensity =
2149       (double)LSize.roundToDouble() /
2150                           (LEnd - First + 1ULL).roundToDouble();
2151    volatile double RDensity =
2152      (double)RSize.roundToDouble() /
2153                           (Last - RBegin + 1ULL).roundToDouble();
2154    double Metric = Range.logBase2()*(LDensity+RDensity);
2155    // Should always split in some non-trivial place
2156    DEBUG(dbgs() <<"=>Step\n"
2157                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2158                 << "LDensity: " << LDensity
2159                 << ", RDensity: " << RDensity << '\n'
2160                 << "Metric: " << Metric << '\n');
2161    if (FMetric < Metric) {
2162      Pivot = J;
2163      FMetric = Metric;
2164      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2165    }
2166
2167    LSize += J->size();
2168    RSize -= J->size();
2169  }
2170  if (areJTsAllowed(TLI)) {
2171    // If our case is dense we *really* should handle it earlier!
2172    assert((FMetric > 0) && "Should handle dense range earlier!");
2173  } else {
2174    Pivot = CR.Range.first + Size/2;
2175  }
2176
2177  CaseRange LHSR(CR.Range.first, Pivot);
2178  CaseRange RHSR(Pivot, CR.Range.second);
2179  Constant *C = Pivot->Low;
2180  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2181
2182  // We know that we branch to the LHS if the Value being switched on is
2183  // less than the Pivot value, C.  We use this to optimize our binary
2184  // tree a bit, by recognizing that if SV is greater than or equal to the
2185  // LHS's Case Value, and that Case Value is exactly one less than the
2186  // Pivot's Value, then we can branch directly to the LHS's Target,
2187  // rather than creating a leaf node for it.
2188  if ((LHSR.second - LHSR.first) == 1 &&
2189      LHSR.first->High == CR.GE &&
2190      cast<ConstantInt>(C)->getValue() ==
2191      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2192    TrueBB = LHSR.first->BB;
2193  } else {
2194    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2195    CurMF->insert(BBI, TrueBB);
2196    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2197
2198    // Put SV in a virtual register to make it available from the new blocks.
2199    ExportFromCurrentBlock(SV);
2200  }
2201
2202  // Similar to the optimization above, if the Value being switched on is
2203  // known to be less than the Constant CR.LT, and the current Case Value
2204  // is CR.LT - 1, then we can branch directly to the target block for
2205  // the current Case Value, rather than emitting a RHS leaf node for it.
2206  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2207      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2208      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2209    FalseBB = RHSR.first->BB;
2210  } else {
2211    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2212    CurMF->insert(BBI, FalseBB);
2213    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2214
2215    // Put SV in a virtual register to make it available from the new blocks.
2216    ExportFromCurrentBlock(SV);
2217  }
2218
2219  // Create a CaseBlock record representing a conditional branch to
2220  // the LHS node if the value being switched on SV is less than C.
2221  // Otherwise, branch to LHS.
2222  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2223
2224  if (CR.CaseBB == SwitchBB)
2225    visitSwitchCase(CB, SwitchBB);
2226  else
2227    SwitchCases.push_back(CB);
2228
2229  return true;
2230}
2231
2232/// handleBitTestsSwitchCase - if current case range has few destination and
2233/// range span less, than machine word bitwidth, encode case range into series
2234/// of masks and emit bit tests with these masks.
2235bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2236                                                   CaseRecVector& WorkList,
2237                                                   const Value* SV,
2238                                                   MachineBasicBlock* Default,
2239                                                   MachineBasicBlock *SwitchBB){
2240  EVT PTy = TLI.getPointerTy();
2241  unsigned IntPtrBits = PTy.getSizeInBits();
2242
2243  Case& FrontCase = *CR.Range.first;
2244  Case& BackCase  = *(CR.Range.second-1);
2245
2246  // Get the MachineFunction which holds the current MBB.  This is used when
2247  // inserting any additional MBBs necessary to represent the switch.
2248  MachineFunction *CurMF = FuncInfo.MF;
2249
2250  // If target does not have legal shift left, do not emit bit tests at all.
2251  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2252    return false;
2253
2254  size_t numCmps = 0;
2255  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2256       I!=E; ++I) {
2257    // Single case counts one, case range - two.
2258    numCmps += (I->Low == I->High ? 1 : 2);
2259  }
2260
2261  // Count unique destinations
2262  SmallSet<MachineBasicBlock*, 4> Dests;
2263  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2264    Dests.insert(I->BB);
2265    if (Dests.size() > 3)
2266      // Don't bother the code below, if there are too much unique destinations
2267      return false;
2268  }
2269  DEBUG(dbgs() << "Total number of unique destinations: "
2270        << Dests.size() << '\n'
2271        << "Total number of comparisons: " << numCmps << '\n');
2272
2273  // Compute span of values.
2274  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2275  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2276  APInt cmpRange = maxValue - minValue;
2277
2278  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2279               << "Low bound: " << minValue << '\n'
2280               << "High bound: " << maxValue << '\n');
2281
2282  if (cmpRange.uge(IntPtrBits) ||
2283      (!(Dests.size() == 1 && numCmps >= 3) &&
2284       !(Dests.size() == 2 && numCmps >= 5) &&
2285       !(Dests.size() >= 3 && numCmps >= 6)))
2286    return false;
2287
2288  DEBUG(dbgs() << "Emitting bit tests\n");
2289  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2290
2291  // Optimize the case where all the case values fit in a
2292  // word without having to subtract minValue. In this case,
2293  // we can optimize away the subtraction.
2294  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2295    cmpRange = maxValue;
2296  } else {
2297    lowBound = minValue;
2298  }
2299
2300  CaseBitsVector CasesBits;
2301  unsigned i, count = 0;
2302
2303  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2304    MachineBasicBlock* Dest = I->BB;
2305    for (i = 0; i < count; ++i)
2306      if (Dest == CasesBits[i].BB)
2307        break;
2308
2309    if (i == count) {
2310      assert((count < 3) && "Too much destinations to test!");
2311      CasesBits.push_back(CaseBits(0, Dest, 0));
2312      count++;
2313    }
2314
2315    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2316    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2317
2318    uint64_t lo = (lowValue - lowBound).getZExtValue();
2319    uint64_t hi = (highValue - lowBound).getZExtValue();
2320
2321    for (uint64_t j = lo; j <= hi; j++) {
2322      CasesBits[i].Mask |=  1ULL << j;
2323      CasesBits[i].Bits++;
2324    }
2325
2326  }
2327  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2328
2329  BitTestInfo BTC;
2330
2331  // Figure out which block is immediately after the current one.
2332  MachineFunction::iterator BBI = CR.CaseBB;
2333  ++BBI;
2334
2335  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2336
2337  DEBUG(dbgs() << "Cases:\n");
2338  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2339    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2340                 << ", Bits: " << CasesBits[i].Bits
2341                 << ", BB: " << CasesBits[i].BB << '\n');
2342
2343    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2344    CurMF->insert(BBI, CaseBB);
2345    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2346                              CaseBB,
2347                              CasesBits[i].BB));
2348
2349    // Put SV in a virtual register to make it available from the new blocks.
2350    ExportFromCurrentBlock(SV);
2351  }
2352
2353  BitTestBlock BTB(lowBound, cmpRange, SV,
2354                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2355                   CR.CaseBB, Default, BTC);
2356
2357  if (CR.CaseBB == SwitchBB)
2358    visitBitTestHeader(BTB, SwitchBB);
2359
2360  BitTestCases.push_back(BTB);
2361
2362  return true;
2363}
2364
2365/// Clusterify - Transform simple list of Cases into list of CaseRange's
2366size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2367                                       const SwitchInst& SI) {
2368  size_t numCmps = 0;
2369
2370  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2371  // Start with "simple" cases
2372  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2373    BasicBlock *SuccBB = SI.getSuccessor(i);
2374    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2375
2376    uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2377
2378    Cases.push_back(Case(SI.getSuccessorValue(i),
2379                         SI.getSuccessorValue(i),
2380                         SMBB, ExtraWeight));
2381  }
2382  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2383
2384  // Merge case into clusters
2385  if (Cases.size() >= 2)
2386    // Must recompute end() each iteration because it may be
2387    // invalidated by erase if we hold on to it
2388    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2389         J != Cases.end(); ) {
2390      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2391      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2392      MachineBasicBlock* nextBB = J->BB;
2393      MachineBasicBlock* currentBB = I->BB;
2394
2395      // If the two neighboring cases go to the same destination, merge them
2396      // into a single case.
2397      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2398        I->High = J->High;
2399        J = Cases.erase(J);
2400
2401        if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2402          uint32_t CurWeight = currentBB->getBasicBlock() ?
2403            BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2404          uint32_t NextWeight = nextBB->getBasicBlock() ?
2405            BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2406
2407          BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2408                             CurWeight + NextWeight);
2409        }
2410      } else {
2411        I = J++;
2412      }
2413    }
2414
2415  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2416    if (I->Low != I->High)
2417      // A range counts double, since it requires two compares.
2418      ++numCmps;
2419  }
2420
2421  return numCmps;
2422}
2423
2424void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2425                                           MachineBasicBlock *Last) {
2426  // Update JTCases.
2427  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2428    if (JTCases[i].first.HeaderBB == First)
2429      JTCases[i].first.HeaderBB = Last;
2430
2431  // Update BitTestCases.
2432  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2433    if (BitTestCases[i].Parent == First)
2434      BitTestCases[i].Parent = Last;
2435}
2436
2437void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2438  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2439
2440  // Figure out which block is immediately after the current one.
2441  MachineBasicBlock *NextBlock = 0;
2442  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2443
2444  // If there is only the default destination, branch to it if it is not the
2445  // next basic block.  Otherwise, just fall through.
2446  if (SI.getNumOperands() == 2) {
2447    // Update machine-CFG edges.
2448
2449    // If this is not a fall-through branch, emit the branch.
2450    SwitchMBB->addSuccessor(Default);
2451    if (Default != NextBlock)
2452      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2453                              MVT::Other, getControlRoot(),
2454                              DAG.getBasicBlock(Default)));
2455
2456    return;
2457  }
2458
2459  // If there are any non-default case statements, create a vector of Cases
2460  // representing each one, and sort the vector so that we can efficiently
2461  // create a binary search tree from them.
2462  CaseVector Cases;
2463  size_t numCmps = Clusterify(Cases, SI);
2464  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2465               << ". Total compares: " << numCmps << '\n');
2466  numCmps = 0;
2467
2468  // Get the Value to be switched on and default basic blocks, which will be
2469  // inserted into CaseBlock records, representing basic blocks in the binary
2470  // search tree.
2471  const Value *SV = SI.getOperand(0);
2472
2473  // Push the initial CaseRec onto the worklist
2474  CaseRecVector WorkList;
2475  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2476                             CaseRange(Cases.begin(),Cases.end())));
2477
2478  while (!WorkList.empty()) {
2479    // Grab a record representing a case range to process off the worklist
2480    CaseRec CR = WorkList.back();
2481    WorkList.pop_back();
2482
2483    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2484      continue;
2485
2486    // If the range has few cases (two or less) emit a series of specific
2487    // tests.
2488    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2489      continue;
2490
2491    // If the switch has more than 5 blocks, and at least 40% dense, and the
2492    // target supports indirect branches, then emit a jump table rather than
2493    // lowering the switch to a binary tree of conditional branches.
2494    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2495      continue;
2496
2497    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2498    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2499    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2500  }
2501}
2502
2503void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2504  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2505
2506  // Update machine-CFG edges with unique successors.
2507  SmallVector<BasicBlock*, 32> succs;
2508  succs.reserve(I.getNumSuccessors());
2509  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2510    succs.push_back(I.getSuccessor(i));
2511  array_pod_sort(succs.begin(), succs.end());
2512  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2513  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2514    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2515    addSuccessorWithWeight(IndirectBrMBB, Succ);
2516  }
2517
2518  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2519                          MVT::Other, getControlRoot(),
2520                          getValue(I.getAddress())));
2521}
2522
2523void SelectionDAGBuilder::visitFSub(const User &I) {
2524  // -0.0 - X --> fneg
2525  Type *Ty = I.getType();
2526  if (isa<Constant>(I.getOperand(0)) &&
2527      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2528    SDValue Op2 = getValue(I.getOperand(1));
2529    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2530                             Op2.getValueType(), Op2));
2531    return;
2532  }
2533
2534  visitBinary(I, ISD::FSUB);
2535}
2536
2537void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2538  SDValue Op1 = getValue(I.getOperand(0));
2539  SDValue Op2 = getValue(I.getOperand(1));
2540  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2541                           Op1.getValueType(), Op1, Op2));
2542}
2543
2544void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2545  SDValue Op1 = getValue(I.getOperand(0));
2546  SDValue Op2 = getValue(I.getOperand(1));
2547
2548  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2549
2550  // Coerce the shift amount to the right type if we can.
2551  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2552    unsigned ShiftSize = ShiftTy.getSizeInBits();
2553    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2554    DebugLoc DL = getCurDebugLoc();
2555
2556    // If the operand is smaller than the shift count type, promote it.
2557    if (ShiftSize > Op2Size)
2558      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2559
2560    // If the operand is larger than the shift count type but the shift
2561    // count type has enough bits to represent any shift value, truncate
2562    // it now. This is a common case and it exposes the truncate to
2563    // optimization early.
2564    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2565      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2566    // Otherwise we'll need to temporarily settle for some other convenient
2567    // type.  Type legalization will make adjustments once the shiftee is split.
2568    else
2569      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2570  }
2571
2572  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2573                           Op1.getValueType(), Op1, Op2));
2574}
2575
2576void SelectionDAGBuilder::visitSDiv(const User &I) {
2577  SDValue Op1 = getValue(I.getOperand(0));
2578  SDValue Op2 = getValue(I.getOperand(1));
2579
2580  // Turn exact SDivs into multiplications.
2581  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2582  // exact bit.
2583  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2584      !isa<ConstantSDNode>(Op1) &&
2585      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2586    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2587  else
2588    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2589                             Op1, Op2));
2590}
2591
2592void SelectionDAGBuilder::visitICmp(const User &I) {
2593  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2594  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2595    predicate = IC->getPredicate();
2596  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2597    predicate = ICmpInst::Predicate(IC->getPredicate());
2598  SDValue Op1 = getValue(I.getOperand(0));
2599  SDValue Op2 = getValue(I.getOperand(1));
2600  ISD::CondCode Opcode = getICmpCondCode(predicate);
2601
2602  EVT DestVT = TLI.getValueType(I.getType());
2603  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2604}
2605
2606void SelectionDAGBuilder::visitFCmp(const User &I) {
2607  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2608  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2609    predicate = FC->getPredicate();
2610  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2611    predicate = FCmpInst::Predicate(FC->getPredicate());
2612  SDValue Op1 = getValue(I.getOperand(0));
2613  SDValue Op2 = getValue(I.getOperand(1));
2614  ISD::CondCode Condition = getFCmpCondCode(predicate);
2615  EVT DestVT = TLI.getValueType(I.getType());
2616  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2617}
2618
2619void SelectionDAGBuilder::visitSelect(const User &I) {
2620  SmallVector<EVT, 4> ValueVTs;
2621  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2622  unsigned NumValues = ValueVTs.size();
2623  if (NumValues == 0) return;
2624
2625  SmallVector<SDValue, 4> Values(NumValues);
2626  SDValue Cond     = getValue(I.getOperand(0));
2627  SDValue TrueVal  = getValue(I.getOperand(1));
2628  SDValue FalseVal = getValue(I.getOperand(2));
2629
2630  for (unsigned i = 0; i != NumValues; ++i)
2631    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2632                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2633                            Cond,
2634                            SDValue(TrueVal.getNode(),
2635                                    TrueVal.getResNo() + i),
2636                            SDValue(FalseVal.getNode(),
2637                                    FalseVal.getResNo() + i));
2638
2639  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2640                           DAG.getVTList(&ValueVTs[0], NumValues),
2641                           &Values[0], NumValues));
2642}
2643
2644void SelectionDAGBuilder::visitTrunc(const User &I) {
2645  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2646  SDValue N = getValue(I.getOperand(0));
2647  EVT DestVT = TLI.getValueType(I.getType());
2648  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2649}
2650
2651void SelectionDAGBuilder::visitZExt(const User &I) {
2652  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2653  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2654  SDValue N = getValue(I.getOperand(0));
2655  EVT DestVT = TLI.getValueType(I.getType());
2656  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2657}
2658
2659void SelectionDAGBuilder::visitSExt(const User &I) {
2660  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2661  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2662  SDValue N = getValue(I.getOperand(0));
2663  EVT DestVT = TLI.getValueType(I.getType());
2664  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2665}
2666
2667void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2668  // FPTrunc is never a no-op cast, no need to check
2669  SDValue N = getValue(I.getOperand(0));
2670  EVT DestVT = TLI.getValueType(I.getType());
2671  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2672                           DestVT, N, DAG.getIntPtrConstant(0)));
2673}
2674
2675void SelectionDAGBuilder::visitFPExt(const User &I){
2676  // FPTrunc is never a no-op cast, no need to check
2677  SDValue N = getValue(I.getOperand(0));
2678  EVT DestVT = TLI.getValueType(I.getType());
2679  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2680}
2681
2682void SelectionDAGBuilder::visitFPToUI(const User &I) {
2683  // FPToUI is never a no-op cast, no need to check
2684  SDValue N = getValue(I.getOperand(0));
2685  EVT DestVT = TLI.getValueType(I.getType());
2686  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2687}
2688
2689void SelectionDAGBuilder::visitFPToSI(const User &I) {
2690  // FPToSI is never a no-op cast, no need to check
2691  SDValue N = getValue(I.getOperand(0));
2692  EVT DestVT = TLI.getValueType(I.getType());
2693  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2694}
2695
2696void SelectionDAGBuilder::visitUIToFP(const User &I) {
2697  // UIToFP is never a no-op cast, no need to check
2698  SDValue N = getValue(I.getOperand(0));
2699  EVT DestVT = TLI.getValueType(I.getType());
2700  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2701}
2702
2703void SelectionDAGBuilder::visitSIToFP(const User &I){
2704  // SIToFP is never a no-op cast, no need to check
2705  SDValue N = getValue(I.getOperand(0));
2706  EVT DestVT = TLI.getValueType(I.getType());
2707  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2708}
2709
2710void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2711  // What to do depends on the size of the integer and the size of the pointer.
2712  // We can either truncate, zero extend, or no-op, accordingly.
2713  SDValue N = getValue(I.getOperand(0));
2714  EVT DestVT = TLI.getValueType(I.getType());
2715  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2716}
2717
2718void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2719  // What to do depends on the size of the integer and the size of the pointer.
2720  // We can either truncate, zero extend, or no-op, accordingly.
2721  SDValue N = getValue(I.getOperand(0));
2722  EVT DestVT = TLI.getValueType(I.getType());
2723  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2724}
2725
2726void SelectionDAGBuilder::visitBitCast(const User &I) {
2727  SDValue N = getValue(I.getOperand(0));
2728  EVT DestVT = TLI.getValueType(I.getType());
2729
2730  // BitCast assures us that source and destination are the same size so this is
2731  // either a BITCAST or a no-op.
2732  if (DestVT != N.getValueType())
2733    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2734                             DestVT, N)); // convert types.
2735  else
2736    setValue(&I, N);            // noop cast.
2737}
2738
2739void SelectionDAGBuilder::visitInsertElement(const User &I) {
2740  SDValue InVec = getValue(I.getOperand(0));
2741  SDValue InVal = getValue(I.getOperand(1));
2742  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2743                              TLI.getPointerTy(),
2744                              getValue(I.getOperand(2)));
2745  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2746                           TLI.getValueType(I.getType()),
2747                           InVec, InVal, InIdx));
2748}
2749
2750void SelectionDAGBuilder::visitExtractElement(const User &I) {
2751  SDValue InVec = getValue(I.getOperand(0));
2752  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2753                              TLI.getPointerTy(),
2754                              getValue(I.getOperand(1)));
2755  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2756                           TLI.getValueType(I.getType()), InVec, InIdx));
2757}
2758
2759// Utility for visitShuffleVector - Returns true if the mask is mask starting
2760// from SIndx and increasing to the element length (undefs are allowed).
2761static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2762  unsigned MaskNumElts = Mask.size();
2763  for (unsigned i = 0; i != MaskNumElts; ++i)
2764    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2765      return false;
2766  return true;
2767}
2768
2769void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2770  SmallVector<int, 8> Mask;
2771  SDValue Src1 = getValue(I.getOperand(0));
2772  SDValue Src2 = getValue(I.getOperand(1));
2773
2774  // Convert the ConstantVector mask operand into an array of ints, with -1
2775  // representing undef values.
2776  SmallVector<Constant*, 8> MaskElts;
2777  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2778  unsigned MaskNumElts = MaskElts.size();
2779  for (unsigned i = 0; i != MaskNumElts; ++i) {
2780    if (isa<UndefValue>(MaskElts[i]))
2781      Mask.push_back(-1);
2782    else
2783      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2784  }
2785
2786  EVT VT = TLI.getValueType(I.getType());
2787  EVT SrcVT = Src1.getValueType();
2788  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2789
2790  if (SrcNumElts == MaskNumElts) {
2791    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2792                                      &Mask[0]));
2793    return;
2794  }
2795
2796  // Normalize the shuffle vector since mask and vector length don't match.
2797  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2798    // Mask is longer than the source vectors and is a multiple of the source
2799    // vectors.  We can use concatenate vector to make the mask and vectors
2800    // lengths match.
2801    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2802      // The shuffle is concatenating two vectors together.
2803      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2804                               VT, Src1, Src2));
2805      return;
2806    }
2807
2808    // Pad both vectors with undefs to make them the same length as the mask.
2809    unsigned NumConcat = MaskNumElts / SrcNumElts;
2810    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2811    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2812    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2813
2814    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2815    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2816    MOps1[0] = Src1;
2817    MOps2[0] = Src2;
2818
2819    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2820                                                  getCurDebugLoc(), VT,
2821                                                  &MOps1[0], NumConcat);
2822    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2823                                                  getCurDebugLoc(), VT,
2824                                                  &MOps2[0], NumConcat);
2825
2826    // Readjust mask for new input vector length.
2827    SmallVector<int, 8> MappedOps;
2828    for (unsigned i = 0; i != MaskNumElts; ++i) {
2829      int Idx = Mask[i];
2830      if (Idx < (int)SrcNumElts)
2831        MappedOps.push_back(Idx);
2832      else
2833        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2834    }
2835
2836    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2837                                      &MappedOps[0]));
2838    return;
2839  }
2840
2841  if (SrcNumElts > MaskNumElts) {
2842    // Analyze the access pattern of the vector to see if we can extract
2843    // two subvectors and do the shuffle. The analysis is done by calculating
2844    // the range of elements the mask access on both vectors.
2845    int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2846                        static_cast<int>(SrcNumElts+1)};
2847    int MaxRange[2] = {-1, -1};
2848
2849    for (unsigned i = 0; i != MaskNumElts; ++i) {
2850      int Idx = Mask[i];
2851      int Input = 0;
2852      if (Idx < 0)
2853        continue;
2854
2855      if (Idx >= (int)SrcNumElts) {
2856        Input = 1;
2857        Idx -= SrcNumElts;
2858      }
2859      if (Idx > MaxRange[Input])
2860        MaxRange[Input] = Idx;
2861      if (Idx < MinRange[Input])
2862        MinRange[Input] = Idx;
2863    }
2864
2865    // Check if the access is smaller than the vector size and can we find
2866    // a reasonable extract index.
2867    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2868                                 // Extract.
2869    int StartIdx[2];  // StartIdx to extract from
2870    for (int Input=0; Input < 2; ++Input) {
2871      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2872        RangeUse[Input] = 0; // Unused
2873        StartIdx[Input] = 0;
2874      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2875        // Fits within range but we should see if we can find a good
2876        // start index that is a multiple of the mask length.
2877        if (MaxRange[Input] < (int)MaskNumElts) {
2878          RangeUse[Input] = 1; // Extract from beginning of the vector
2879          StartIdx[Input] = 0;
2880        } else {
2881          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2882          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2883              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2884            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2885        }
2886      }
2887    }
2888
2889    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2890      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2891      return;
2892    }
2893    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2894      // Extract appropriate subvector and generate a vector shuffle
2895      for (int Input=0; Input < 2; ++Input) {
2896        SDValue &Src = Input == 0 ? Src1 : Src2;
2897        if (RangeUse[Input] == 0)
2898          Src = DAG.getUNDEF(VT);
2899        else
2900          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2901                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2902      }
2903
2904      // Calculate new mask.
2905      SmallVector<int, 8> MappedOps;
2906      for (unsigned i = 0; i != MaskNumElts; ++i) {
2907        int Idx = Mask[i];
2908        if (Idx < 0)
2909          MappedOps.push_back(Idx);
2910        else if (Idx < (int)SrcNumElts)
2911          MappedOps.push_back(Idx - StartIdx[0]);
2912        else
2913          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2914      }
2915
2916      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2917                                        &MappedOps[0]));
2918      return;
2919    }
2920  }
2921
2922  // We can't use either concat vectors or extract subvectors so fall back to
2923  // replacing the shuffle with extract and build vector.
2924  // to insert and build vector.
2925  EVT EltVT = VT.getVectorElementType();
2926  EVT PtrVT = TLI.getPointerTy();
2927  SmallVector<SDValue,8> Ops;
2928  for (unsigned i = 0; i != MaskNumElts; ++i) {
2929    if (Mask[i] < 0) {
2930      Ops.push_back(DAG.getUNDEF(EltVT));
2931    } else {
2932      int Idx = Mask[i];
2933      SDValue Res;
2934
2935      if (Idx < (int)SrcNumElts)
2936        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2937                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2938      else
2939        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2940                          EltVT, Src2,
2941                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2942
2943      Ops.push_back(Res);
2944    }
2945  }
2946
2947  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2948                           VT, &Ops[0], Ops.size()));
2949}
2950
2951void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2952  const Value *Op0 = I.getOperand(0);
2953  const Value *Op1 = I.getOperand(1);
2954  Type *AggTy = I.getType();
2955  Type *ValTy = Op1->getType();
2956  bool IntoUndef = isa<UndefValue>(Op0);
2957  bool FromUndef = isa<UndefValue>(Op1);
2958
2959  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2960
2961  SmallVector<EVT, 4> AggValueVTs;
2962  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2963  SmallVector<EVT, 4> ValValueVTs;
2964  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2965
2966  unsigned NumAggValues = AggValueVTs.size();
2967  unsigned NumValValues = ValValueVTs.size();
2968  SmallVector<SDValue, 4> Values(NumAggValues);
2969
2970  SDValue Agg = getValue(Op0);
2971  unsigned i = 0;
2972  // Copy the beginning value(s) from the original aggregate.
2973  for (; i != LinearIndex; ++i)
2974    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2975                SDValue(Agg.getNode(), Agg.getResNo() + i);
2976  // Copy values from the inserted value(s).
2977  if (NumValValues) {
2978    SDValue Val = getValue(Op1);
2979    for (; i != LinearIndex + NumValValues; ++i)
2980      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2981                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2982  }
2983  // Copy remaining value(s) from the original aggregate.
2984  for (; i != NumAggValues; ++i)
2985    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2986                SDValue(Agg.getNode(), Agg.getResNo() + i);
2987
2988  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2989                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2990                           &Values[0], NumAggValues));
2991}
2992
2993void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2994  const Value *Op0 = I.getOperand(0);
2995  Type *AggTy = Op0->getType();
2996  Type *ValTy = I.getType();
2997  bool OutOfUndef = isa<UndefValue>(Op0);
2998
2999  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3000
3001  SmallVector<EVT, 4> ValValueVTs;
3002  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3003
3004  unsigned NumValValues = ValValueVTs.size();
3005
3006  // Ignore a extractvalue that produces an empty object
3007  if (!NumValValues) {
3008    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3009    return;
3010  }
3011
3012  SmallVector<SDValue, 4> Values(NumValValues);
3013
3014  SDValue Agg = getValue(Op0);
3015  // Copy out the selected value(s).
3016  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3017    Values[i - LinearIndex] =
3018      OutOfUndef ?
3019        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3020        SDValue(Agg.getNode(), Agg.getResNo() + i);
3021
3022  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3023                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3024                           &Values[0], NumValValues));
3025}
3026
3027void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3028  SDValue N = getValue(I.getOperand(0));
3029  Type *Ty = I.getOperand(0)->getType();
3030
3031  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3032       OI != E; ++OI) {
3033    const Value *Idx = *OI;
3034    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3035      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3036      if (Field) {
3037        // N = N + Offset
3038        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3039        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3040                        DAG.getIntPtrConstant(Offset));
3041      }
3042
3043      Ty = StTy->getElementType(Field);
3044    } else {
3045      Ty = cast<SequentialType>(Ty)->getElementType();
3046
3047      // If this is a constant subscript, handle it quickly.
3048      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3049        if (CI->isZero()) continue;
3050        uint64_t Offs =
3051            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3052        SDValue OffsVal;
3053        EVT PTy = TLI.getPointerTy();
3054        unsigned PtrBits = PTy.getSizeInBits();
3055        if (PtrBits < 64)
3056          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3057                                TLI.getPointerTy(),
3058                                DAG.getConstant(Offs, MVT::i64));
3059        else
3060          OffsVal = DAG.getIntPtrConstant(Offs);
3061
3062        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3063                        OffsVal);
3064        continue;
3065      }
3066
3067      // N = N + Idx * ElementSize;
3068      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3069                                TD->getTypeAllocSize(Ty));
3070      SDValue IdxN = getValue(Idx);
3071
3072      // If the index is smaller or larger than intptr_t, truncate or extend
3073      // it.
3074      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3075
3076      // If this is a multiply by a power of two, turn it into a shl
3077      // immediately.  This is a very common case.
3078      if (ElementSize != 1) {
3079        if (ElementSize.isPowerOf2()) {
3080          unsigned Amt = ElementSize.logBase2();
3081          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3082                             N.getValueType(), IdxN,
3083                             DAG.getConstant(Amt, TLI.getPointerTy()));
3084        } else {
3085          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3086          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3087                             N.getValueType(), IdxN, Scale);
3088        }
3089      }
3090
3091      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3092                      N.getValueType(), N, IdxN);
3093    }
3094  }
3095
3096  setValue(&I, N);
3097}
3098
3099void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3100  // If this is a fixed sized alloca in the entry block of the function,
3101  // allocate it statically on the stack.
3102  if (FuncInfo.StaticAllocaMap.count(&I))
3103    return;   // getValue will auto-populate this.
3104
3105  Type *Ty = I.getAllocatedType();
3106  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3107  unsigned Align =
3108    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3109             I.getAlignment());
3110
3111  SDValue AllocSize = getValue(I.getArraySize());
3112
3113  EVT IntPtr = TLI.getPointerTy();
3114  if (AllocSize.getValueType() != IntPtr)
3115    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3116
3117  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3118                          AllocSize,
3119                          DAG.getConstant(TySize, IntPtr));
3120
3121  // Handle alignment.  If the requested alignment is less than or equal to
3122  // the stack alignment, ignore it.  If the size is greater than or equal to
3123  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3124  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3125  if (Align <= StackAlign)
3126    Align = 0;
3127
3128  // Round the size of the allocation up to the stack alignment size
3129  // by add SA-1 to the size.
3130  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3131                          AllocSize.getValueType(), AllocSize,
3132                          DAG.getIntPtrConstant(StackAlign-1));
3133
3134  // Mask out the low bits for alignment purposes.
3135  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3136                          AllocSize.getValueType(), AllocSize,
3137                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3138
3139  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3140  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3141  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3142                            VTs, Ops, 3);
3143  setValue(&I, DSA);
3144  DAG.setRoot(DSA.getValue(1));
3145
3146  // Inform the Frame Information that we have just allocated a variable-sized
3147  // object.
3148  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3149}
3150
3151void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3152  if (I.isAtomic())
3153    return visitAtomicLoad(I);
3154
3155  const Value *SV = I.getOperand(0);
3156  SDValue Ptr = getValue(SV);
3157
3158  Type *Ty = I.getType();
3159
3160  bool isVolatile = I.isVolatile();
3161  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3162  unsigned Alignment = I.getAlignment();
3163  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3164
3165  SmallVector<EVT, 4> ValueVTs;
3166  SmallVector<uint64_t, 4> Offsets;
3167  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3168  unsigned NumValues = ValueVTs.size();
3169  if (NumValues == 0)
3170    return;
3171
3172  SDValue Root;
3173  bool ConstantMemory = false;
3174  if (I.isVolatile() || NumValues > MaxParallelChains)
3175    // Serialize volatile loads with other side effects.
3176    Root = getRoot();
3177  else if (AA->pointsToConstantMemory(
3178             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3179    // Do not serialize (non-volatile) loads of constant memory with anything.
3180    Root = DAG.getEntryNode();
3181    ConstantMemory = true;
3182  } else {
3183    // Do not serialize non-volatile loads against each other.
3184    Root = DAG.getRoot();
3185  }
3186
3187  SmallVector<SDValue, 4> Values(NumValues);
3188  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3189                                          NumValues));
3190  EVT PtrVT = Ptr.getValueType();
3191  unsigned ChainI = 0;
3192  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3193    // Serializing loads here may result in excessive register pressure, and
3194    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3195    // could recover a bit by hoisting nodes upward in the chain by recognizing
3196    // they are side-effect free or do not alias. The optimizer should really
3197    // avoid this case by converting large object/array copies to llvm.memcpy
3198    // (MaxParallelChains should always remain as failsafe).
3199    if (ChainI == MaxParallelChains) {
3200      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3201      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3202                                  MVT::Other, &Chains[0], ChainI);
3203      Root = Chain;
3204      ChainI = 0;
3205    }
3206    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3207                            PtrVT, Ptr,
3208                            DAG.getConstant(Offsets[i], PtrVT));
3209    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3210                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3211                            isNonTemporal, Alignment, TBAAInfo);
3212
3213    Values[i] = L;
3214    Chains[ChainI] = L.getValue(1);
3215  }
3216
3217  if (!ConstantMemory) {
3218    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3219                                MVT::Other, &Chains[0], ChainI);
3220    if (isVolatile)
3221      DAG.setRoot(Chain);
3222    else
3223      PendingLoads.push_back(Chain);
3224  }
3225
3226  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3227                           DAG.getVTList(&ValueVTs[0], NumValues),
3228                           &Values[0], NumValues));
3229}
3230
3231void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3232  if (I.isAtomic())
3233    return visitAtomicStore(I);
3234
3235  const Value *SrcV = I.getOperand(0);
3236  const Value *PtrV = I.getOperand(1);
3237
3238  SmallVector<EVT, 4> ValueVTs;
3239  SmallVector<uint64_t, 4> Offsets;
3240  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3241  unsigned NumValues = ValueVTs.size();
3242  if (NumValues == 0)
3243    return;
3244
3245  // Get the lowered operands. Note that we do this after
3246  // checking if NumResults is zero, because with zero results
3247  // the operands won't have values in the map.
3248  SDValue Src = getValue(SrcV);
3249  SDValue Ptr = getValue(PtrV);
3250
3251  SDValue Root = getRoot();
3252  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3253                                          NumValues));
3254  EVT PtrVT = Ptr.getValueType();
3255  bool isVolatile = I.isVolatile();
3256  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3257  unsigned Alignment = I.getAlignment();
3258  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3259
3260  unsigned ChainI = 0;
3261  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3262    // See visitLoad comments.
3263    if (ChainI == MaxParallelChains) {
3264      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3265                                  MVT::Other, &Chains[0], ChainI);
3266      Root = Chain;
3267      ChainI = 0;
3268    }
3269    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3270                              DAG.getConstant(Offsets[i], PtrVT));
3271    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3272                              SDValue(Src.getNode(), Src.getResNo() + i),
3273                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3274                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3275    Chains[ChainI] = St;
3276  }
3277
3278  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3279                                  MVT::Other, &Chains[0], ChainI);
3280  ++SDNodeOrder;
3281  AssignOrderingToNode(StoreNode.getNode());
3282  DAG.setRoot(StoreNode);
3283}
3284
3285static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3286                                    SynchronizationScope Scope,
3287                                    bool Before, DebugLoc dl,
3288                                    SelectionDAG &DAG,
3289                                    const TargetLowering &TLI) {
3290  // Fence, if necessary
3291  if (Before) {
3292    if (Order == AcquireRelease)
3293      Order = Release;
3294    else if (Order == Acquire || Order == Monotonic)
3295      return Chain;
3296  } else {
3297    if (Order == AcquireRelease)
3298      Order = Acquire;
3299    else if (Order == Release || Order == Monotonic)
3300      return Chain;
3301  }
3302  SDValue Ops[3];
3303  Ops[0] = Chain;
3304  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3305  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3306  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3307}
3308
3309void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3310  DebugLoc dl = getCurDebugLoc();
3311  AtomicOrdering Order = I.getOrdering();
3312  SynchronizationScope Scope = I.getSynchScope();
3313
3314  SDValue InChain = getRoot();
3315
3316  if (TLI.getInsertFencesForAtomic())
3317    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3318                                   DAG, TLI);
3319
3320  SDValue L =
3321    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3322                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3323                  InChain,
3324                  getValue(I.getPointerOperand()),
3325                  getValue(I.getCompareOperand()),
3326                  getValue(I.getNewValOperand()),
3327                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3328                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3329                  Scope);
3330
3331  SDValue OutChain = L.getValue(1);
3332
3333  if (TLI.getInsertFencesForAtomic())
3334    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3335                                    DAG, TLI);
3336
3337  setValue(&I, L);
3338  DAG.setRoot(OutChain);
3339}
3340
3341void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3342  DebugLoc dl = getCurDebugLoc();
3343  ISD::NodeType NT;
3344  switch (I.getOperation()) {
3345  default: llvm_unreachable("Unknown atomicrmw operation"); return;
3346  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3347  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3348  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3349  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3350  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3351  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3352  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3353  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3354  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3355  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3356  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3357  }
3358  AtomicOrdering Order = I.getOrdering();
3359  SynchronizationScope Scope = I.getSynchScope();
3360
3361  SDValue InChain = getRoot();
3362
3363  if (TLI.getInsertFencesForAtomic())
3364    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3365                                   DAG, TLI);
3366
3367  SDValue L =
3368    DAG.getAtomic(NT, dl,
3369                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3370                  InChain,
3371                  getValue(I.getPointerOperand()),
3372                  getValue(I.getValOperand()),
3373                  I.getPointerOperand(), 0 /* Alignment */,
3374                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3375                  Scope);
3376
3377  SDValue OutChain = L.getValue(1);
3378
3379  if (TLI.getInsertFencesForAtomic())
3380    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3381                                    DAG, TLI);
3382
3383  setValue(&I, L);
3384  DAG.setRoot(OutChain);
3385}
3386
3387void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3388  DebugLoc dl = getCurDebugLoc();
3389  SDValue Ops[3];
3390  Ops[0] = getRoot();
3391  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3392  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3393  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3394}
3395
3396void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3397  DebugLoc dl = getCurDebugLoc();
3398  AtomicOrdering Order = I.getOrdering();
3399  SynchronizationScope Scope = I.getSynchScope();
3400
3401  SDValue InChain = getRoot();
3402
3403  if (TLI.getInsertFencesForAtomic())
3404    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3405                                   DAG, TLI);
3406
3407  EVT VT = EVT::getEVT(I.getType());
3408
3409  SDValue L =
3410    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3411                  getValue(I.getPointerOperand()),
3412                  I.getPointerOperand(), I.getAlignment(),
3413                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3414                  Scope);
3415
3416  SDValue OutChain = L.getValue(1);
3417
3418  if (TLI.getInsertFencesForAtomic())
3419    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3420                                    DAG, TLI);
3421
3422  setValue(&I, L);
3423  DAG.setRoot(OutChain);
3424}
3425
3426void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3427  DebugLoc dl = getCurDebugLoc();
3428
3429  AtomicOrdering Order = I.getOrdering();
3430  SynchronizationScope Scope = I.getSynchScope();
3431
3432  SDValue InChain = getRoot();
3433
3434  if (TLI.getInsertFencesForAtomic())
3435    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3436                                   DAG, TLI);
3437
3438  SDValue OutChain =
3439    DAG.getAtomic(ISD::ATOMIC_STORE, dl,
3440                  getValue(I.getValueOperand()).getValueType().getSimpleVT(),
3441                  InChain,
3442                  getValue(I.getPointerOperand()),
3443                  getValue(I.getValueOperand()),
3444                  I.getPointerOperand(), I.getAlignment(),
3445                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3446                  Scope);
3447
3448  if (TLI.getInsertFencesForAtomic())
3449    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3450                                    DAG, TLI);
3451
3452  DAG.setRoot(OutChain);
3453}
3454
3455/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3456/// node.
3457void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3458                                               unsigned Intrinsic) {
3459  bool HasChain = !I.doesNotAccessMemory();
3460  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3461
3462  // Build the operand list.
3463  SmallVector<SDValue, 8> Ops;
3464  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3465    if (OnlyLoad) {
3466      // We don't need to serialize loads against other loads.
3467      Ops.push_back(DAG.getRoot());
3468    } else {
3469      Ops.push_back(getRoot());
3470    }
3471  }
3472
3473  // Info is set by getTgtMemInstrinsic
3474  TargetLowering::IntrinsicInfo Info;
3475  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3476
3477  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3478  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3479      Info.opc == ISD::INTRINSIC_W_CHAIN)
3480    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3481
3482  // Add all operands of the call to the operand list.
3483  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3484    SDValue Op = getValue(I.getArgOperand(i));
3485    assert(TLI.isTypeLegal(Op.getValueType()) &&
3486           "Intrinsic uses a non-legal type?");
3487    Ops.push_back(Op);
3488  }
3489
3490  SmallVector<EVT, 4> ValueVTs;
3491  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3492#ifndef NDEBUG
3493  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3494    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3495           "Intrinsic uses a non-legal type?");
3496  }
3497#endif // NDEBUG
3498
3499  if (HasChain)
3500    ValueVTs.push_back(MVT::Other);
3501
3502  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3503
3504  // Create the node.
3505  SDValue Result;
3506  if (IsTgtIntrinsic) {
3507    // This is target intrinsic that touches memory
3508    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3509                                     VTs, &Ops[0], Ops.size(),
3510                                     Info.memVT,
3511                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3512                                     Info.align, Info.vol,
3513                                     Info.readMem, Info.writeMem);
3514  } else if (!HasChain) {
3515    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3516                         VTs, &Ops[0], Ops.size());
3517  } else if (!I.getType()->isVoidTy()) {
3518    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3519                         VTs, &Ops[0], Ops.size());
3520  } else {
3521    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3522                         VTs, &Ops[0], Ops.size());
3523  }
3524
3525  if (HasChain) {
3526    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3527    if (OnlyLoad)
3528      PendingLoads.push_back(Chain);
3529    else
3530      DAG.setRoot(Chain);
3531  }
3532
3533  if (!I.getType()->isVoidTy()) {
3534    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3535      EVT VT = TLI.getValueType(PTy);
3536      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3537    }
3538
3539    setValue(&I, Result);
3540  }
3541}
3542
3543/// GetSignificand - Get the significand and build it into a floating-point
3544/// number with exponent of 1:
3545///
3546///   Op = (Op & 0x007fffff) | 0x3f800000;
3547///
3548/// where Op is the hexidecimal representation of floating point value.
3549static SDValue
3550GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3551  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3552                           DAG.getConstant(0x007fffff, MVT::i32));
3553  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3554                           DAG.getConstant(0x3f800000, MVT::i32));
3555  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3556}
3557
3558/// GetExponent - Get the exponent:
3559///
3560///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3561///
3562/// where Op is the hexidecimal representation of floating point value.
3563static SDValue
3564GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3565            DebugLoc dl) {
3566  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3567                           DAG.getConstant(0x7f800000, MVT::i32));
3568  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3569                           DAG.getConstant(23, TLI.getPointerTy()));
3570  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3571                           DAG.getConstant(127, MVT::i32));
3572  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3573}
3574
3575/// getF32Constant - Get 32-bit floating point constant.
3576static SDValue
3577getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3578  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3579}
3580
3581/// Inlined utility function to implement binary input atomic intrinsics for
3582/// visitIntrinsicCall: I is a call instruction
3583///                     Op is the associated NodeType for I
3584const char *
3585SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3586                                           ISD::NodeType Op) {
3587  SDValue Root = getRoot();
3588  SDValue L =
3589    DAG.getAtomic(Op, getCurDebugLoc(),
3590                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3591                  Root,
3592                  getValue(I.getArgOperand(0)),
3593                  getValue(I.getArgOperand(1)),
3594                  I.getArgOperand(0), 0 /* Alignment */,
3595                  Monotonic, CrossThread);
3596  setValue(&I, L);
3597  DAG.setRoot(L.getValue(1));
3598  return 0;
3599}
3600
3601// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3602const char *
3603SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3604  SDValue Op1 = getValue(I.getArgOperand(0));
3605  SDValue Op2 = getValue(I.getArgOperand(1));
3606
3607  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3608  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3609  return 0;
3610}
3611
3612/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3613/// limited-precision mode.
3614void
3615SelectionDAGBuilder::visitExp(const CallInst &I) {
3616  SDValue result;
3617  DebugLoc dl = getCurDebugLoc();
3618
3619  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3620      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3621    SDValue Op = getValue(I.getArgOperand(0));
3622
3623    // Put the exponent in the right bit position for later addition to the
3624    // final result:
3625    //
3626    //   #define LOG2OFe 1.4426950f
3627    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3628    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3629                             getF32Constant(DAG, 0x3fb8aa3b));
3630    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3631
3632    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3633    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3634    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3635
3636    //   IntegerPartOfX <<= 23;
3637    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3638                                 DAG.getConstant(23, TLI.getPointerTy()));
3639
3640    if (LimitFloatPrecision <= 6) {
3641      // For floating-point precision of 6:
3642      //
3643      //   TwoToFractionalPartOfX =
3644      //     0.997535578f +
3645      //       (0.735607626f + 0.252464424f * x) * x;
3646      //
3647      // error 0.0144103317, which is 6 bits
3648      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3649                               getF32Constant(DAG, 0x3e814304));
3650      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3651                               getF32Constant(DAG, 0x3f3c50c8));
3652      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3653      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3654                               getF32Constant(DAG, 0x3f7f5e7e));
3655      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3656
3657      // Add the exponent into the result in integer domain.
3658      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3659                               TwoToFracPartOfX, IntegerPartOfX);
3660
3661      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3662    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3663      // For floating-point precision of 12:
3664      //
3665      //   TwoToFractionalPartOfX =
3666      //     0.999892986f +
3667      //       (0.696457318f +
3668      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3669      //
3670      // 0.000107046256 error, which is 13 to 14 bits
3671      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3672                               getF32Constant(DAG, 0x3da235e3));
3673      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3674                               getF32Constant(DAG, 0x3e65b8f3));
3675      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3676      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3677                               getF32Constant(DAG, 0x3f324b07));
3678      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3679      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3680                               getF32Constant(DAG, 0x3f7ff8fd));
3681      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3682
3683      // Add the exponent into the result in integer domain.
3684      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3685                               TwoToFracPartOfX, IntegerPartOfX);
3686
3687      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3688    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3689      // For floating-point precision of 18:
3690      //
3691      //   TwoToFractionalPartOfX =
3692      //     0.999999982f +
3693      //       (0.693148872f +
3694      //         (0.240227044f +
3695      //           (0.554906021e-1f +
3696      //             (0.961591928e-2f +
3697      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3698      //
3699      // error 2.47208000*10^(-7), which is better than 18 bits
3700      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3701                               getF32Constant(DAG, 0x3924b03e));
3702      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3703                               getF32Constant(DAG, 0x3ab24b87));
3704      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3705      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3706                               getF32Constant(DAG, 0x3c1d8c17));
3707      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3708      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3709                               getF32Constant(DAG, 0x3d634a1d));
3710      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3711      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3712                               getF32Constant(DAG, 0x3e75fe14));
3713      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3714      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3715                                getF32Constant(DAG, 0x3f317234));
3716      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3717      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3718                                getF32Constant(DAG, 0x3f800000));
3719      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3720                                             MVT::i32, t13);
3721
3722      // Add the exponent into the result in integer domain.
3723      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3724                                TwoToFracPartOfX, IntegerPartOfX);
3725
3726      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3727    }
3728  } else {
3729    // No special expansion.
3730    result = DAG.getNode(ISD::FEXP, dl,
3731                         getValue(I.getArgOperand(0)).getValueType(),
3732                         getValue(I.getArgOperand(0)));
3733  }
3734
3735  setValue(&I, result);
3736}
3737
3738/// visitLog - Lower a log intrinsic. Handles the special sequences for
3739/// limited-precision mode.
3740void
3741SelectionDAGBuilder::visitLog(const CallInst &I) {
3742  SDValue result;
3743  DebugLoc dl = getCurDebugLoc();
3744
3745  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3746      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3747    SDValue Op = getValue(I.getArgOperand(0));
3748    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3749
3750    // Scale the exponent by log(2) [0.69314718f].
3751    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3752    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3753                                        getF32Constant(DAG, 0x3f317218));
3754
3755    // Get the significand and build it into a floating-point number with
3756    // exponent of 1.
3757    SDValue X = GetSignificand(DAG, Op1, dl);
3758
3759    if (LimitFloatPrecision <= 6) {
3760      // For floating-point precision of 6:
3761      //
3762      //   LogofMantissa =
3763      //     -1.1609546f +
3764      //       (1.4034025f - 0.23903021f * x) * x;
3765      //
3766      // error 0.0034276066, which is better than 8 bits
3767      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3768                               getF32Constant(DAG, 0xbe74c456));
3769      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3770                               getF32Constant(DAG, 0x3fb3a2b1));
3771      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3772      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3773                                          getF32Constant(DAG, 0x3f949a29));
3774
3775      result = DAG.getNode(ISD::FADD, dl,
3776                           MVT::f32, LogOfExponent, LogOfMantissa);
3777    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3778      // For floating-point precision of 12:
3779      //
3780      //   LogOfMantissa =
3781      //     -1.7417939f +
3782      //       (2.8212026f +
3783      //         (-1.4699568f +
3784      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3785      //
3786      // error 0.000061011436, which is 14 bits
3787      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3788                               getF32Constant(DAG, 0xbd67b6d6));
3789      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3790                               getF32Constant(DAG, 0x3ee4f4b8));
3791      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3792      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3793                               getF32Constant(DAG, 0x3fbc278b));
3794      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3795      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3796                               getF32Constant(DAG, 0x40348e95));
3797      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3798      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3799                                          getF32Constant(DAG, 0x3fdef31a));
3800
3801      result = DAG.getNode(ISD::FADD, dl,
3802                           MVT::f32, LogOfExponent, LogOfMantissa);
3803    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3804      // For floating-point precision of 18:
3805      //
3806      //   LogOfMantissa =
3807      //     -2.1072184f +
3808      //       (4.2372794f +
3809      //         (-3.7029485f +
3810      //           (2.2781945f +
3811      //             (-0.87823314f +
3812      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3813      //
3814      // error 0.0000023660568, which is better than 18 bits
3815      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3816                               getF32Constant(DAG, 0xbc91e5ac));
3817      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3818                               getF32Constant(DAG, 0x3e4350aa));
3819      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3820      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3821                               getF32Constant(DAG, 0x3f60d3e3));
3822      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3823      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3824                               getF32Constant(DAG, 0x4011cdf0));
3825      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3826      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3827                               getF32Constant(DAG, 0x406cfd1c));
3828      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3829      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3830                               getF32Constant(DAG, 0x408797cb));
3831      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3832      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3833                                          getF32Constant(DAG, 0x4006dcab));
3834
3835      result = DAG.getNode(ISD::FADD, dl,
3836                           MVT::f32, LogOfExponent, LogOfMantissa);
3837    }
3838  } else {
3839    // No special expansion.
3840    result = DAG.getNode(ISD::FLOG, dl,
3841                         getValue(I.getArgOperand(0)).getValueType(),
3842                         getValue(I.getArgOperand(0)));
3843  }
3844
3845  setValue(&I, result);
3846}
3847
3848/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3849/// limited-precision mode.
3850void
3851SelectionDAGBuilder::visitLog2(const CallInst &I) {
3852  SDValue result;
3853  DebugLoc dl = getCurDebugLoc();
3854
3855  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3856      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3857    SDValue Op = getValue(I.getArgOperand(0));
3858    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3859
3860    // Get the exponent.
3861    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3862
3863    // Get the significand and build it into a floating-point number with
3864    // exponent of 1.
3865    SDValue X = GetSignificand(DAG, Op1, dl);
3866
3867    // Different possible minimax approximations of significand in
3868    // floating-point for various degrees of accuracy over [1,2].
3869    if (LimitFloatPrecision <= 6) {
3870      // For floating-point precision of 6:
3871      //
3872      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3873      //
3874      // error 0.0049451742, which is more than 7 bits
3875      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3876                               getF32Constant(DAG, 0xbeb08fe0));
3877      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3878                               getF32Constant(DAG, 0x40019463));
3879      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3880      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3881                                           getF32Constant(DAG, 0x3fd6633d));
3882
3883      result = DAG.getNode(ISD::FADD, dl,
3884                           MVT::f32, LogOfExponent, Log2ofMantissa);
3885    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3886      // For floating-point precision of 12:
3887      //
3888      //   Log2ofMantissa =
3889      //     -2.51285454f +
3890      //       (4.07009056f +
3891      //         (-2.12067489f +
3892      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3893      //
3894      // error 0.0000876136000, which is better than 13 bits
3895      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3896                               getF32Constant(DAG, 0xbda7262e));
3897      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3898                               getF32Constant(DAG, 0x3f25280b));
3899      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3900      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3901                               getF32Constant(DAG, 0x4007b923));
3902      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3903      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3904                               getF32Constant(DAG, 0x40823e2f));
3905      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3906      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3907                                           getF32Constant(DAG, 0x4020d29c));
3908
3909      result = DAG.getNode(ISD::FADD, dl,
3910                           MVT::f32, LogOfExponent, Log2ofMantissa);
3911    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3912      // For floating-point precision of 18:
3913      //
3914      //   Log2ofMantissa =
3915      //     -3.0400495f +
3916      //       (6.1129976f +
3917      //         (-5.3420409f +
3918      //           (3.2865683f +
3919      //             (-1.2669343f +
3920      //               (0.27515199f -
3921      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3922      //
3923      // error 0.0000018516, which is better than 18 bits
3924      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3925                               getF32Constant(DAG, 0xbcd2769e));
3926      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3927                               getF32Constant(DAG, 0x3e8ce0b9));
3928      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3929      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3930                               getF32Constant(DAG, 0x3fa22ae7));
3931      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3932      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3933                               getF32Constant(DAG, 0x40525723));
3934      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3935      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3936                               getF32Constant(DAG, 0x40aaf200));
3937      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3938      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3939                               getF32Constant(DAG, 0x40c39dad));
3940      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3941      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3942                                           getF32Constant(DAG, 0x4042902c));
3943
3944      result = DAG.getNode(ISD::FADD, dl,
3945                           MVT::f32, LogOfExponent, Log2ofMantissa);
3946    }
3947  } else {
3948    // No special expansion.
3949    result = DAG.getNode(ISD::FLOG2, dl,
3950                         getValue(I.getArgOperand(0)).getValueType(),
3951                         getValue(I.getArgOperand(0)));
3952  }
3953
3954  setValue(&I, result);
3955}
3956
3957/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3958/// limited-precision mode.
3959void
3960SelectionDAGBuilder::visitLog10(const CallInst &I) {
3961  SDValue result;
3962  DebugLoc dl = getCurDebugLoc();
3963
3964  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3965      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3966    SDValue Op = getValue(I.getArgOperand(0));
3967    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3968
3969    // Scale the exponent by log10(2) [0.30102999f].
3970    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3971    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3972                                        getF32Constant(DAG, 0x3e9a209a));
3973
3974    // Get the significand and build it into a floating-point number with
3975    // exponent of 1.
3976    SDValue X = GetSignificand(DAG, Op1, dl);
3977
3978    if (LimitFloatPrecision <= 6) {
3979      // For floating-point precision of 6:
3980      //
3981      //   Log10ofMantissa =
3982      //     -0.50419619f +
3983      //       (0.60948995f - 0.10380950f * x) * x;
3984      //
3985      // error 0.0014886165, which is 6 bits
3986      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3987                               getF32Constant(DAG, 0xbdd49a13));
3988      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3989                               getF32Constant(DAG, 0x3f1c0789));
3990      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3991      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3992                                            getF32Constant(DAG, 0x3f011300));
3993
3994      result = DAG.getNode(ISD::FADD, dl,
3995                           MVT::f32, LogOfExponent, Log10ofMantissa);
3996    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3997      // For floating-point precision of 12:
3998      //
3999      //   Log10ofMantissa =
4000      //     -0.64831180f +
4001      //       (0.91751397f +
4002      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4003      //
4004      // error 0.00019228036, which is better than 12 bits
4005      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4006                               getF32Constant(DAG, 0x3d431f31));
4007      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4008                               getF32Constant(DAG, 0x3ea21fb2));
4009      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4010      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4011                               getF32Constant(DAG, 0x3f6ae232));
4012      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4013      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4014                                            getF32Constant(DAG, 0x3f25f7c3));
4015
4016      result = DAG.getNode(ISD::FADD, dl,
4017                           MVT::f32, LogOfExponent, Log10ofMantissa);
4018    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4019      // For floating-point precision of 18:
4020      //
4021      //   Log10ofMantissa =
4022      //     -0.84299375f +
4023      //       (1.5327582f +
4024      //         (-1.0688956f +
4025      //           (0.49102474f +
4026      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4027      //
4028      // error 0.0000037995730, which is better than 18 bits
4029      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4030                               getF32Constant(DAG, 0x3c5d51ce));
4031      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4032                               getF32Constant(DAG, 0x3e00685a));
4033      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4034      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4035                               getF32Constant(DAG, 0x3efb6798));
4036      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4037      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4038                               getF32Constant(DAG, 0x3f88d192));
4039      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4040      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4041                               getF32Constant(DAG, 0x3fc4316c));
4042      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4043      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4044                                            getF32Constant(DAG, 0x3f57ce70));
4045
4046      result = DAG.getNode(ISD::FADD, dl,
4047                           MVT::f32, LogOfExponent, Log10ofMantissa);
4048    }
4049  } else {
4050    // No special expansion.
4051    result = DAG.getNode(ISD::FLOG10, dl,
4052                         getValue(I.getArgOperand(0)).getValueType(),
4053                         getValue(I.getArgOperand(0)));
4054  }
4055
4056  setValue(&I, result);
4057}
4058
4059/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4060/// limited-precision mode.
4061void
4062SelectionDAGBuilder::visitExp2(const CallInst &I) {
4063  SDValue result;
4064  DebugLoc dl = getCurDebugLoc();
4065
4066  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4067      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4068    SDValue Op = getValue(I.getArgOperand(0));
4069
4070    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4071
4072    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4073    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4074    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4075
4076    //   IntegerPartOfX <<= 23;
4077    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4078                                 DAG.getConstant(23, TLI.getPointerTy()));
4079
4080    if (LimitFloatPrecision <= 6) {
4081      // For floating-point precision of 6:
4082      //
4083      //   TwoToFractionalPartOfX =
4084      //     0.997535578f +
4085      //       (0.735607626f + 0.252464424f * x) * x;
4086      //
4087      // error 0.0144103317, which is 6 bits
4088      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4089                               getF32Constant(DAG, 0x3e814304));
4090      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4091                               getF32Constant(DAG, 0x3f3c50c8));
4092      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4093      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4094                               getF32Constant(DAG, 0x3f7f5e7e));
4095      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4096      SDValue TwoToFractionalPartOfX =
4097        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4098
4099      result = DAG.getNode(ISD::BITCAST, dl,
4100                           MVT::f32, TwoToFractionalPartOfX);
4101    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4102      // For floating-point precision of 12:
4103      //
4104      //   TwoToFractionalPartOfX =
4105      //     0.999892986f +
4106      //       (0.696457318f +
4107      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4108      //
4109      // error 0.000107046256, which is 13 to 14 bits
4110      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4111                               getF32Constant(DAG, 0x3da235e3));
4112      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4113                               getF32Constant(DAG, 0x3e65b8f3));
4114      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4115      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4116                               getF32Constant(DAG, 0x3f324b07));
4117      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4118      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4119                               getF32Constant(DAG, 0x3f7ff8fd));
4120      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4121      SDValue TwoToFractionalPartOfX =
4122        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4123
4124      result = DAG.getNode(ISD::BITCAST, dl,
4125                           MVT::f32, TwoToFractionalPartOfX);
4126    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4127      // For floating-point precision of 18:
4128      //
4129      //   TwoToFractionalPartOfX =
4130      //     0.999999982f +
4131      //       (0.693148872f +
4132      //         (0.240227044f +
4133      //           (0.554906021e-1f +
4134      //             (0.961591928e-2f +
4135      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4136      // error 2.47208000*10^(-7), which is better than 18 bits
4137      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4138                               getF32Constant(DAG, 0x3924b03e));
4139      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4140                               getF32Constant(DAG, 0x3ab24b87));
4141      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4142      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4143                               getF32Constant(DAG, 0x3c1d8c17));
4144      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4145      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4146                               getF32Constant(DAG, 0x3d634a1d));
4147      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4148      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4149                               getF32Constant(DAG, 0x3e75fe14));
4150      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4151      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4152                                getF32Constant(DAG, 0x3f317234));
4153      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4154      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4155                                getF32Constant(DAG, 0x3f800000));
4156      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4157      SDValue TwoToFractionalPartOfX =
4158        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4159
4160      result = DAG.getNode(ISD::BITCAST, dl,
4161                           MVT::f32, TwoToFractionalPartOfX);
4162    }
4163  } else {
4164    // No special expansion.
4165    result = DAG.getNode(ISD::FEXP2, dl,
4166                         getValue(I.getArgOperand(0)).getValueType(),
4167                         getValue(I.getArgOperand(0)));
4168  }
4169
4170  setValue(&I, result);
4171}
4172
4173/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4174/// limited-precision mode with x == 10.0f.
4175void
4176SelectionDAGBuilder::visitPow(const CallInst &I) {
4177  SDValue result;
4178  const Value *Val = I.getArgOperand(0);
4179  DebugLoc dl = getCurDebugLoc();
4180  bool IsExp10 = false;
4181
4182  if (getValue(Val).getValueType() == MVT::f32 &&
4183      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4184      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4185    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4186      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4187        APFloat Ten(10.0f);
4188        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4189      }
4190    }
4191  }
4192
4193  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4194    SDValue Op = getValue(I.getArgOperand(1));
4195
4196    // Put the exponent in the right bit position for later addition to the
4197    // final result:
4198    //
4199    //   #define LOG2OF10 3.3219281f
4200    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4201    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4202                             getF32Constant(DAG, 0x40549a78));
4203    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4204
4205    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4206    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4207    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4208
4209    //   IntegerPartOfX <<= 23;
4210    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4211                                 DAG.getConstant(23, TLI.getPointerTy()));
4212
4213    if (LimitFloatPrecision <= 6) {
4214      // For floating-point precision of 6:
4215      //
4216      //   twoToFractionalPartOfX =
4217      //     0.997535578f +
4218      //       (0.735607626f + 0.252464424f * x) * x;
4219      //
4220      // error 0.0144103317, which is 6 bits
4221      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4222                               getF32Constant(DAG, 0x3e814304));
4223      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4224                               getF32Constant(DAG, 0x3f3c50c8));
4225      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4226      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4227                               getF32Constant(DAG, 0x3f7f5e7e));
4228      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4229      SDValue TwoToFractionalPartOfX =
4230        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4231
4232      result = DAG.getNode(ISD::BITCAST, dl,
4233                           MVT::f32, TwoToFractionalPartOfX);
4234    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4235      // For floating-point precision of 12:
4236      //
4237      //   TwoToFractionalPartOfX =
4238      //     0.999892986f +
4239      //       (0.696457318f +
4240      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4241      //
4242      // error 0.000107046256, which is 13 to 14 bits
4243      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4244                               getF32Constant(DAG, 0x3da235e3));
4245      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4246                               getF32Constant(DAG, 0x3e65b8f3));
4247      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4248      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4249                               getF32Constant(DAG, 0x3f324b07));
4250      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4251      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4252                               getF32Constant(DAG, 0x3f7ff8fd));
4253      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4254      SDValue TwoToFractionalPartOfX =
4255        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4256
4257      result = DAG.getNode(ISD::BITCAST, dl,
4258                           MVT::f32, TwoToFractionalPartOfX);
4259    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4260      // For floating-point precision of 18:
4261      //
4262      //   TwoToFractionalPartOfX =
4263      //     0.999999982f +
4264      //       (0.693148872f +
4265      //         (0.240227044f +
4266      //           (0.554906021e-1f +
4267      //             (0.961591928e-2f +
4268      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4269      // error 2.47208000*10^(-7), which is better than 18 bits
4270      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4271                               getF32Constant(DAG, 0x3924b03e));
4272      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4273                               getF32Constant(DAG, 0x3ab24b87));
4274      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4275      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4276                               getF32Constant(DAG, 0x3c1d8c17));
4277      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4278      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4279                               getF32Constant(DAG, 0x3d634a1d));
4280      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4281      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4282                               getF32Constant(DAG, 0x3e75fe14));
4283      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4284      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4285                                getF32Constant(DAG, 0x3f317234));
4286      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4287      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4288                                getF32Constant(DAG, 0x3f800000));
4289      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4290      SDValue TwoToFractionalPartOfX =
4291        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4292
4293      result = DAG.getNode(ISD::BITCAST, dl,
4294                           MVT::f32, TwoToFractionalPartOfX);
4295    }
4296  } else {
4297    // No special expansion.
4298    result = DAG.getNode(ISD::FPOW, dl,
4299                         getValue(I.getArgOperand(0)).getValueType(),
4300                         getValue(I.getArgOperand(0)),
4301                         getValue(I.getArgOperand(1)));
4302  }
4303
4304  setValue(&I, result);
4305}
4306
4307
4308/// ExpandPowI - Expand a llvm.powi intrinsic.
4309static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4310                          SelectionDAG &DAG) {
4311  // If RHS is a constant, we can expand this out to a multiplication tree,
4312  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4313  // optimizing for size, we only want to do this if the expansion would produce
4314  // a small number of multiplies, otherwise we do the full expansion.
4315  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4316    // Get the exponent as a positive value.
4317    unsigned Val = RHSC->getSExtValue();
4318    if ((int)Val < 0) Val = -Val;
4319
4320    // powi(x, 0) -> 1.0
4321    if (Val == 0)
4322      return DAG.getConstantFP(1.0, LHS.getValueType());
4323
4324    const Function *F = DAG.getMachineFunction().getFunction();
4325    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4326        // If optimizing for size, don't insert too many multiplies.  This
4327        // inserts up to 5 multiplies.
4328        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4329      // We use the simple binary decomposition method to generate the multiply
4330      // sequence.  There are more optimal ways to do this (for example,
4331      // powi(x,15) generates one more multiply than it should), but this has
4332      // the benefit of being both really simple and much better than a libcall.
4333      SDValue Res;  // Logically starts equal to 1.0
4334      SDValue CurSquare = LHS;
4335      while (Val) {
4336        if (Val & 1) {
4337          if (Res.getNode())
4338            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4339          else
4340            Res = CurSquare;  // 1.0*CurSquare.
4341        }
4342
4343        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4344                                CurSquare, CurSquare);
4345        Val >>= 1;
4346      }
4347
4348      // If the original was negative, invert the result, producing 1/(x*x*x).
4349      if (RHSC->getSExtValue() < 0)
4350        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4351                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4352      return Res;
4353    }
4354  }
4355
4356  // Otherwise, expand to a libcall.
4357  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4358}
4359
4360// getTruncatedArgReg - Find underlying register used for an truncated
4361// argument.
4362static unsigned getTruncatedArgReg(const SDValue &N) {
4363  if (N.getOpcode() != ISD::TRUNCATE)
4364    return 0;
4365
4366  const SDValue &Ext = N.getOperand(0);
4367  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4368    const SDValue &CFR = Ext.getOperand(0);
4369    if (CFR.getOpcode() == ISD::CopyFromReg)
4370      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4371    else
4372      if (CFR.getOpcode() == ISD::TRUNCATE)
4373        return getTruncatedArgReg(CFR);
4374  }
4375  return 0;
4376}
4377
4378/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4379/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4380/// At the end of instruction selection, they will be inserted to the entry BB.
4381bool
4382SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4383                                              int64_t Offset,
4384                                              const SDValue &N) {
4385  const Argument *Arg = dyn_cast<Argument>(V);
4386  if (!Arg)
4387    return false;
4388
4389  MachineFunction &MF = DAG.getMachineFunction();
4390  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4391  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4392
4393  // Ignore inlined function arguments here.
4394  DIVariable DV(Variable);
4395  if (DV.isInlinedFnArgument(MF.getFunction()))
4396    return false;
4397
4398  unsigned Reg = 0;
4399  if (Arg->hasByValAttr()) {
4400    // Byval arguments' frame index is recorded during argument lowering.
4401    // Use this info directly.
4402    Reg = TRI->getFrameRegister(MF);
4403    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4404    // If byval argument ofset is not recorded then ignore this.
4405    if (!Offset)
4406      Reg = 0;
4407  }
4408
4409  if (N.getNode()) {
4410    if (N.getOpcode() == ISD::CopyFromReg)
4411      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4412    else
4413      Reg = getTruncatedArgReg(N);
4414    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4415      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4416      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4417      if (PR)
4418        Reg = PR;
4419    }
4420  }
4421
4422  if (!Reg) {
4423    // Check if ValueMap has reg number.
4424    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4425    if (VMI != FuncInfo.ValueMap.end())
4426      Reg = VMI->second;
4427  }
4428
4429  if (!Reg && N.getNode()) {
4430    // Check if frame index is available.
4431    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4432      if (FrameIndexSDNode *FINode =
4433          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4434        Reg = TRI->getFrameRegister(MF);
4435        Offset = FINode->getIndex();
4436      }
4437  }
4438
4439  if (!Reg)
4440    return false;
4441
4442  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4443                                    TII->get(TargetOpcode::DBG_VALUE))
4444    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4445  FuncInfo.ArgDbgValues.push_back(&*MIB);
4446  return true;
4447}
4448
4449// VisualStudio defines setjmp as _setjmp
4450#if defined(_MSC_VER) && defined(setjmp) && \
4451                         !defined(setjmp_undefined_for_msvc)
4452#  pragma push_macro("setjmp")
4453#  undef setjmp
4454#  define setjmp_undefined_for_msvc
4455#endif
4456
4457/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4458/// we want to emit this as a call to a named external function, return the name
4459/// otherwise lower it and return null.
4460const char *
4461SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4462  DebugLoc dl = getCurDebugLoc();
4463  SDValue Res;
4464
4465  switch (Intrinsic) {
4466  default:
4467    // By default, turn this into a target intrinsic node.
4468    visitTargetIntrinsic(I, Intrinsic);
4469    return 0;
4470  case Intrinsic::vastart:  visitVAStart(I); return 0;
4471  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4472  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4473  case Intrinsic::returnaddress:
4474    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4475                             getValue(I.getArgOperand(0))));
4476    return 0;
4477  case Intrinsic::frameaddress:
4478    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4479                             getValue(I.getArgOperand(0))));
4480    return 0;
4481  case Intrinsic::setjmp:
4482    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4483  case Intrinsic::longjmp:
4484    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4485  case Intrinsic::memcpy: {
4486    // Assert for address < 256 since we support only user defined address
4487    // spaces.
4488    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4489           < 256 &&
4490           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4491           < 256 &&
4492           "Unknown address space");
4493    SDValue Op1 = getValue(I.getArgOperand(0));
4494    SDValue Op2 = getValue(I.getArgOperand(1));
4495    SDValue Op3 = getValue(I.getArgOperand(2));
4496    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4497    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4498    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4499                              MachinePointerInfo(I.getArgOperand(0)),
4500                              MachinePointerInfo(I.getArgOperand(1))));
4501    return 0;
4502  }
4503  case Intrinsic::memset: {
4504    // Assert for address < 256 since we support only user defined address
4505    // spaces.
4506    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4507           < 256 &&
4508           "Unknown address space");
4509    SDValue Op1 = getValue(I.getArgOperand(0));
4510    SDValue Op2 = getValue(I.getArgOperand(1));
4511    SDValue Op3 = getValue(I.getArgOperand(2));
4512    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4513    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4514    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4515                              MachinePointerInfo(I.getArgOperand(0))));
4516    return 0;
4517  }
4518  case Intrinsic::memmove: {
4519    // Assert for address < 256 since we support only user defined address
4520    // spaces.
4521    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4522           < 256 &&
4523           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4524           < 256 &&
4525           "Unknown address space");
4526    SDValue Op1 = getValue(I.getArgOperand(0));
4527    SDValue Op2 = getValue(I.getArgOperand(1));
4528    SDValue Op3 = getValue(I.getArgOperand(2));
4529    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4530    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4531    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4532                               MachinePointerInfo(I.getArgOperand(0)),
4533                               MachinePointerInfo(I.getArgOperand(1))));
4534    return 0;
4535  }
4536  case Intrinsic::dbg_declare: {
4537    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4538    MDNode *Variable = DI.getVariable();
4539    const Value *Address = DI.getAddress();
4540    if (!Address || !DIVariable(DI.getVariable()).Verify())
4541      return 0;
4542
4543    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4544    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4545    // absolute, but not relative, values are different depending on whether
4546    // debug info exists.
4547    ++SDNodeOrder;
4548
4549    // Check if address has undef value.
4550    if (isa<UndefValue>(Address) ||
4551        (Address->use_empty() && !isa<Argument>(Address))) {
4552      DEBUG(dbgs() << "Dropping debug info for " << DI);
4553      return 0;
4554    }
4555
4556    SDValue &N = NodeMap[Address];
4557    if (!N.getNode() && isa<Argument>(Address))
4558      // Check unused arguments map.
4559      N = UnusedArgNodeMap[Address];
4560    SDDbgValue *SDV;
4561    if (N.getNode()) {
4562      // Parameters are handled specially.
4563      bool isParameter =
4564        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4565      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4566        Address = BCI->getOperand(0);
4567      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4568
4569      if (isParameter && !AI) {
4570        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4571        if (FINode)
4572          // Byval parameter.  We have a frame index at this point.
4573          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4574                                0, dl, SDNodeOrder);
4575        else {
4576          // Address is an argument, so try to emit its dbg value using
4577          // virtual register info from the FuncInfo.ValueMap.
4578          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4579          return 0;
4580        }
4581      } else if (AI)
4582        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4583                              0, dl, SDNodeOrder);
4584      else {
4585        // Can't do anything with other non-AI cases yet.
4586        DEBUG(dbgs() << "Dropping debug info for " << DI);
4587        return 0;
4588      }
4589      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4590    } else {
4591      // If Address is an argument then try to emit its dbg value using
4592      // virtual register info from the FuncInfo.ValueMap.
4593      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4594        // If variable is pinned by a alloca in dominating bb then
4595        // use StaticAllocaMap.
4596        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4597          if (AI->getParent() != DI.getParent()) {
4598            DenseMap<const AllocaInst*, int>::iterator SI =
4599              FuncInfo.StaticAllocaMap.find(AI);
4600            if (SI != FuncInfo.StaticAllocaMap.end()) {
4601              SDV = DAG.getDbgValue(Variable, SI->second,
4602                                    0, dl, SDNodeOrder);
4603              DAG.AddDbgValue(SDV, 0, false);
4604              return 0;
4605            }
4606          }
4607        }
4608        DEBUG(dbgs() << "Dropping debug info for " << DI);
4609      }
4610    }
4611    return 0;
4612  }
4613  case Intrinsic::dbg_value: {
4614    const DbgValueInst &DI = cast<DbgValueInst>(I);
4615    if (!DIVariable(DI.getVariable()).Verify())
4616      return 0;
4617
4618    MDNode *Variable = DI.getVariable();
4619    uint64_t Offset = DI.getOffset();
4620    const Value *V = DI.getValue();
4621    if (!V)
4622      return 0;
4623
4624    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4625    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4626    // absolute, but not relative, values are different depending on whether
4627    // debug info exists.
4628    ++SDNodeOrder;
4629    SDDbgValue *SDV;
4630    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4631      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4632      DAG.AddDbgValue(SDV, 0, false);
4633    } else {
4634      // Do not use getValue() in here; we don't want to generate code at
4635      // this point if it hasn't been done yet.
4636      SDValue N = NodeMap[V];
4637      if (!N.getNode() && isa<Argument>(V))
4638        // Check unused arguments map.
4639        N = UnusedArgNodeMap[V];
4640      if (N.getNode()) {
4641        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4642          SDV = DAG.getDbgValue(Variable, N.getNode(),
4643                                N.getResNo(), Offset, dl, SDNodeOrder);
4644          DAG.AddDbgValue(SDV, N.getNode(), false);
4645        }
4646      } else if (!V->use_empty() ) {
4647        // Do not call getValue(V) yet, as we don't want to generate code.
4648        // Remember it for later.
4649        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4650        DanglingDebugInfoMap[V] = DDI;
4651      } else {
4652        // We may expand this to cover more cases.  One case where we have no
4653        // data available is an unreferenced parameter.
4654        DEBUG(dbgs() << "Dropping debug info for " << DI);
4655      }
4656    }
4657
4658    // Build a debug info table entry.
4659    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4660      V = BCI->getOperand(0);
4661    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4662    // Don't handle byval struct arguments or VLAs, for example.
4663    if (!AI)
4664      return 0;
4665    DenseMap<const AllocaInst*, int>::iterator SI =
4666      FuncInfo.StaticAllocaMap.find(AI);
4667    if (SI == FuncInfo.StaticAllocaMap.end())
4668      return 0; // VLAs.
4669    int FI = SI->second;
4670
4671    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4672    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4673      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4674    return 0;
4675  }
4676  case Intrinsic::eh_exception: {
4677    // Insert the EXCEPTIONADDR instruction.
4678    assert(FuncInfo.MBB->isLandingPad() &&
4679           "Call to eh.exception not in landing pad!");
4680    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4681    SDValue Ops[1];
4682    Ops[0] = DAG.getRoot();
4683    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4684    setValue(&I, Op);
4685    DAG.setRoot(Op.getValue(1));
4686    return 0;
4687  }
4688
4689  case Intrinsic::eh_selector: {
4690    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4691    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4692    if (CallMBB->isLandingPad())
4693      AddCatchInfo(I, &MMI, CallMBB);
4694    else {
4695#ifndef NDEBUG
4696      FuncInfo.CatchInfoLost.insert(&I);
4697#endif
4698      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4699      unsigned Reg = TLI.getExceptionSelectorRegister();
4700      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4701    }
4702
4703    // Insert the EHSELECTION instruction.
4704    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4705    SDValue Ops[2];
4706    Ops[0] = getValue(I.getArgOperand(0));
4707    Ops[1] = getRoot();
4708    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4709    DAG.setRoot(Op.getValue(1));
4710    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4711    return 0;
4712  }
4713
4714  case Intrinsic::eh_typeid_for: {
4715    // Find the type id for the given typeinfo.
4716    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4717    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4718    Res = DAG.getConstant(TypeID, MVT::i32);
4719    setValue(&I, Res);
4720    return 0;
4721  }
4722
4723  case Intrinsic::eh_return_i32:
4724  case Intrinsic::eh_return_i64:
4725    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4726    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4727                            MVT::Other,
4728                            getControlRoot(),
4729                            getValue(I.getArgOperand(0)),
4730                            getValue(I.getArgOperand(1))));
4731    return 0;
4732  case Intrinsic::eh_unwind_init:
4733    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4734    return 0;
4735  case Intrinsic::eh_dwarf_cfa: {
4736    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4737                                        TLI.getPointerTy());
4738    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4739                                 TLI.getPointerTy(),
4740                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4741                                             TLI.getPointerTy()),
4742                                 CfaArg);
4743    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4744                             TLI.getPointerTy(),
4745                             DAG.getConstant(0, TLI.getPointerTy()));
4746    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4747                             FA, Offset));
4748    return 0;
4749  }
4750  case Intrinsic::eh_sjlj_callsite: {
4751    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4752    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4753    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4754    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4755
4756    MMI.setCurrentCallSite(CI->getZExtValue());
4757    return 0;
4758  }
4759  case Intrinsic::eh_sjlj_setjmp: {
4760    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4761                             getValue(I.getArgOperand(0))));
4762    return 0;
4763  }
4764  case Intrinsic::eh_sjlj_longjmp: {
4765    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4766                            getRoot(), getValue(I.getArgOperand(0))));
4767    return 0;
4768  }
4769  case Intrinsic::eh_sjlj_dispatch_setup: {
4770    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4771                            getRoot(), getValue(I.getArgOperand(0))));
4772    return 0;
4773  }
4774
4775  case Intrinsic::x86_mmx_pslli_w:
4776  case Intrinsic::x86_mmx_pslli_d:
4777  case Intrinsic::x86_mmx_pslli_q:
4778  case Intrinsic::x86_mmx_psrli_w:
4779  case Intrinsic::x86_mmx_psrli_d:
4780  case Intrinsic::x86_mmx_psrli_q:
4781  case Intrinsic::x86_mmx_psrai_w:
4782  case Intrinsic::x86_mmx_psrai_d: {
4783    SDValue ShAmt = getValue(I.getArgOperand(1));
4784    if (isa<ConstantSDNode>(ShAmt)) {
4785      visitTargetIntrinsic(I, Intrinsic);
4786      return 0;
4787    }
4788    unsigned NewIntrinsic = 0;
4789    EVT ShAmtVT = MVT::v2i32;
4790    switch (Intrinsic) {
4791    case Intrinsic::x86_mmx_pslli_w:
4792      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4793      break;
4794    case Intrinsic::x86_mmx_pslli_d:
4795      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4796      break;
4797    case Intrinsic::x86_mmx_pslli_q:
4798      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4799      break;
4800    case Intrinsic::x86_mmx_psrli_w:
4801      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4802      break;
4803    case Intrinsic::x86_mmx_psrli_d:
4804      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4805      break;
4806    case Intrinsic::x86_mmx_psrli_q:
4807      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4808      break;
4809    case Intrinsic::x86_mmx_psrai_w:
4810      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4811      break;
4812    case Intrinsic::x86_mmx_psrai_d:
4813      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4814      break;
4815    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4816    }
4817
4818    // The vector shift intrinsics with scalars uses 32b shift amounts but
4819    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4820    // to be zero.
4821    // We must do this early because v2i32 is not a legal type.
4822    DebugLoc dl = getCurDebugLoc();
4823    SDValue ShOps[2];
4824    ShOps[0] = ShAmt;
4825    ShOps[1] = DAG.getConstant(0, MVT::i32);
4826    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4827    EVT DestVT = TLI.getValueType(I.getType());
4828    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4829    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4830                       DAG.getConstant(NewIntrinsic, MVT::i32),
4831                       getValue(I.getArgOperand(0)), ShAmt);
4832    setValue(&I, Res);
4833    return 0;
4834  }
4835  case Intrinsic::convertff:
4836  case Intrinsic::convertfsi:
4837  case Intrinsic::convertfui:
4838  case Intrinsic::convertsif:
4839  case Intrinsic::convertuif:
4840  case Intrinsic::convertss:
4841  case Intrinsic::convertsu:
4842  case Intrinsic::convertus:
4843  case Intrinsic::convertuu: {
4844    ISD::CvtCode Code = ISD::CVT_INVALID;
4845    switch (Intrinsic) {
4846    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4847    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4848    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4849    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4850    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4851    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4852    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4853    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4854    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4855    }
4856    EVT DestVT = TLI.getValueType(I.getType());
4857    const Value *Op1 = I.getArgOperand(0);
4858    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4859                               DAG.getValueType(DestVT),
4860                               DAG.getValueType(getValue(Op1).getValueType()),
4861                               getValue(I.getArgOperand(1)),
4862                               getValue(I.getArgOperand(2)),
4863                               Code);
4864    setValue(&I, Res);
4865    return 0;
4866  }
4867  case Intrinsic::sqrt:
4868    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4869                             getValue(I.getArgOperand(0)).getValueType(),
4870                             getValue(I.getArgOperand(0))));
4871    return 0;
4872  case Intrinsic::powi:
4873    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4874                            getValue(I.getArgOperand(1)), DAG));
4875    return 0;
4876  case Intrinsic::sin:
4877    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4878                             getValue(I.getArgOperand(0)).getValueType(),
4879                             getValue(I.getArgOperand(0))));
4880    return 0;
4881  case Intrinsic::cos:
4882    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4883                             getValue(I.getArgOperand(0)).getValueType(),
4884                             getValue(I.getArgOperand(0))));
4885    return 0;
4886  case Intrinsic::log:
4887    visitLog(I);
4888    return 0;
4889  case Intrinsic::log2:
4890    visitLog2(I);
4891    return 0;
4892  case Intrinsic::log10:
4893    visitLog10(I);
4894    return 0;
4895  case Intrinsic::exp:
4896    visitExp(I);
4897    return 0;
4898  case Intrinsic::exp2:
4899    visitExp2(I);
4900    return 0;
4901  case Intrinsic::pow:
4902    visitPow(I);
4903    return 0;
4904  case Intrinsic::fma:
4905    setValue(&I, DAG.getNode(ISD::FMA, dl,
4906                             getValue(I.getArgOperand(0)).getValueType(),
4907                             getValue(I.getArgOperand(0)),
4908                             getValue(I.getArgOperand(1)),
4909                             getValue(I.getArgOperand(2))));
4910    return 0;
4911  case Intrinsic::convert_to_fp16:
4912    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4913                             MVT::i16, getValue(I.getArgOperand(0))));
4914    return 0;
4915  case Intrinsic::convert_from_fp16:
4916    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4917                             MVT::f32, getValue(I.getArgOperand(0))));
4918    return 0;
4919  case Intrinsic::pcmarker: {
4920    SDValue Tmp = getValue(I.getArgOperand(0));
4921    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4922    return 0;
4923  }
4924  case Intrinsic::readcyclecounter: {
4925    SDValue Op = getRoot();
4926    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4927                      DAG.getVTList(MVT::i64, MVT::Other),
4928                      &Op, 1);
4929    setValue(&I, Res);
4930    DAG.setRoot(Res.getValue(1));
4931    return 0;
4932  }
4933  case Intrinsic::bswap:
4934    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4935                             getValue(I.getArgOperand(0)).getValueType(),
4936                             getValue(I.getArgOperand(0))));
4937    return 0;
4938  case Intrinsic::cttz: {
4939    SDValue Arg = getValue(I.getArgOperand(0));
4940    EVT Ty = Arg.getValueType();
4941    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4942    return 0;
4943  }
4944  case Intrinsic::ctlz: {
4945    SDValue Arg = getValue(I.getArgOperand(0));
4946    EVT Ty = Arg.getValueType();
4947    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4948    return 0;
4949  }
4950  case Intrinsic::ctpop: {
4951    SDValue Arg = getValue(I.getArgOperand(0));
4952    EVT Ty = Arg.getValueType();
4953    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4954    return 0;
4955  }
4956  case Intrinsic::stacksave: {
4957    SDValue Op = getRoot();
4958    Res = DAG.getNode(ISD::STACKSAVE, dl,
4959                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4960    setValue(&I, Res);
4961    DAG.setRoot(Res.getValue(1));
4962    return 0;
4963  }
4964  case Intrinsic::stackrestore: {
4965    Res = getValue(I.getArgOperand(0));
4966    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4967    return 0;
4968  }
4969  case Intrinsic::stackprotector: {
4970    // Emit code into the DAG to store the stack guard onto the stack.
4971    MachineFunction &MF = DAG.getMachineFunction();
4972    MachineFrameInfo *MFI = MF.getFrameInfo();
4973    EVT PtrTy = TLI.getPointerTy();
4974
4975    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4976    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4977
4978    int FI = FuncInfo.StaticAllocaMap[Slot];
4979    MFI->setStackProtectorIndex(FI);
4980
4981    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4982
4983    // Store the stack protector onto the stack.
4984    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4985                       MachinePointerInfo::getFixedStack(FI),
4986                       true, false, 0);
4987    setValue(&I, Res);
4988    DAG.setRoot(Res);
4989    return 0;
4990  }
4991  case Intrinsic::objectsize: {
4992    // If we don't know by now, we're never going to know.
4993    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4994
4995    assert(CI && "Non-constant type in __builtin_object_size?");
4996
4997    SDValue Arg = getValue(I.getCalledValue());
4998    EVT Ty = Arg.getValueType();
4999
5000    if (CI->isZero())
5001      Res = DAG.getConstant(-1ULL, Ty);
5002    else
5003      Res = DAG.getConstant(0, Ty);
5004
5005    setValue(&I, Res);
5006    return 0;
5007  }
5008  case Intrinsic::var_annotation:
5009    // Discard annotate attributes
5010    return 0;
5011
5012  case Intrinsic::init_trampoline: {
5013    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5014
5015    SDValue Ops[6];
5016    Ops[0] = getRoot();
5017    Ops[1] = getValue(I.getArgOperand(0));
5018    Ops[2] = getValue(I.getArgOperand(1));
5019    Ops[3] = getValue(I.getArgOperand(2));
5020    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5021    Ops[5] = DAG.getSrcValue(F);
5022
5023    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
5024                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
5025                      Ops, 6);
5026
5027    setValue(&I, Res);
5028    DAG.setRoot(Res.getValue(1));
5029    return 0;
5030  }
5031  case Intrinsic::gcroot:
5032    if (GFI) {
5033      const Value *Alloca = I.getArgOperand(0);
5034      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5035
5036      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5037      GFI->addStackRoot(FI->getIndex(), TypeMap);
5038    }
5039    return 0;
5040  case Intrinsic::gcread:
5041  case Intrinsic::gcwrite:
5042    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5043    return 0;
5044  case Intrinsic::flt_rounds:
5045    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5046    return 0;
5047
5048  case Intrinsic::expect: {
5049    // Just replace __builtin_expect(exp, c) with EXP.
5050    setValue(&I, getValue(I.getArgOperand(0)));
5051    return 0;
5052  }
5053
5054  case Intrinsic::trap: {
5055    StringRef TrapFuncName = getTrapFunctionName();
5056    if (TrapFuncName.empty()) {
5057      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5058      return 0;
5059    }
5060    TargetLowering::ArgListTy Args;
5061    std::pair<SDValue, SDValue> Result =
5062      TLI.LowerCallTo(getRoot(), I.getType(),
5063                 false, false, false, false, 0, CallingConv::C,
5064                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
5065                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5066                 Args, DAG, getCurDebugLoc());
5067    DAG.setRoot(Result.second);
5068    return 0;
5069  }
5070  case Intrinsic::uadd_with_overflow:
5071    return implVisitAluOverflow(I, ISD::UADDO);
5072  case Intrinsic::sadd_with_overflow:
5073    return implVisitAluOverflow(I, ISD::SADDO);
5074  case Intrinsic::usub_with_overflow:
5075    return implVisitAluOverflow(I, ISD::USUBO);
5076  case Intrinsic::ssub_with_overflow:
5077    return implVisitAluOverflow(I, ISD::SSUBO);
5078  case Intrinsic::umul_with_overflow:
5079    return implVisitAluOverflow(I, ISD::UMULO);
5080  case Intrinsic::smul_with_overflow:
5081    return implVisitAluOverflow(I, ISD::SMULO);
5082
5083  case Intrinsic::prefetch: {
5084    SDValue Ops[5];
5085    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5086    Ops[0] = getRoot();
5087    Ops[1] = getValue(I.getArgOperand(0));
5088    Ops[2] = getValue(I.getArgOperand(1));
5089    Ops[3] = getValue(I.getArgOperand(2));
5090    Ops[4] = getValue(I.getArgOperand(3));
5091    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5092                                        DAG.getVTList(MVT::Other),
5093                                        &Ops[0], 5,
5094                                        EVT::getIntegerVT(*Context, 8),
5095                                        MachinePointerInfo(I.getArgOperand(0)),
5096                                        0, /* align */
5097                                        false, /* volatile */
5098                                        rw==0, /* read */
5099                                        rw==1)); /* write */
5100    return 0;
5101  }
5102  case Intrinsic::memory_barrier: {
5103    SDValue Ops[6];
5104    Ops[0] = getRoot();
5105    for (int x = 1; x < 6; ++x)
5106      Ops[x] = getValue(I.getArgOperand(x - 1));
5107
5108    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
5109    return 0;
5110  }
5111  case Intrinsic::atomic_cmp_swap: {
5112    SDValue Root = getRoot();
5113    SDValue L =
5114      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
5115                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
5116                    Root,
5117                    getValue(I.getArgOperand(0)),
5118                    getValue(I.getArgOperand(1)),
5119                    getValue(I.getArgOperand(2)),
5120                    MachinePointerInfo(I.getArgOperand(0)), 0 /* Alignment */,
5121                    Monotonic, CrossThread);
5122    setValue(&I, L);
5123    DAG.setRoot(L.getValue(1));
5124    return 0;
5125  }
5126  case Intrinsic::atomic_load_add:
5127    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
5128  case Intrinsic::atomic_load_sub:
5129    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
5130  case Intrinsic::atomic_load_or:
5131    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
5132  case Intrinsic::atomic_load_xor:
5133    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
5134  case Intrinsic::atomic_load_and:
5135    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
5136  case Intrinsic::atomic_load_nand:
5137    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
5138  case Intrinsic::atomic_load_max:
5139    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
5140  case Intrinsic::atomic_load_min:
5141    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
5142  case Intrinsic::atomic_load_umin:
5143    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
5144  case Intrinsic::atomic_load_umax:
5145    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
5146  case Intrinsic::atomic_swap:
5147    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
5148
5149  case Intrinsic::invariant_start:
5150  case Intrinsic::lifetime_start:
5151    // Discard region information.
5152    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5153    return 0;
5154  case Intrinsic::invariant_end:
5155  case Intrinsic::lifetime_end:
5156    // Discard region information.
5157    return 0;
5158  }
5159}
5160
5161void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5162                                      bool isTailCall,
5163                                      MachineBasicBlock *LandingPad) {
5164  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5165  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5166  Type *RetTy = FTy->getReturnType();
5167  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5168  MCSymbol *BeginLabel = 0;
5169
5170  TargetLowering::ArgListTy Args;
5171  TargetLowering::ArgListEntry Entry;
5172  Args.reserve(CS.arg_size());
5173
5174  // Check whether the function can return without sret-demotion.
5175  SmallVector<ISD::OutputArg, 4> Outs;
5176  SmallVector<uint64_t, 4> Offsets;
5177  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5178                Outs, TLI, &Offsets);
5179
5180  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5181					   DAG.getMachineFunction(),
5182					   FTy->isVarArg(), Outs,
5183					   FTy->getContext());
5184
5185  SDValue DemoteStackSlot;
5186  int DemoteStackIdx = -100;
5187
5188  if (!CanLowerReturn) {
5189    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5190                      FTy->getReturnType());
5191    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5192                      FTy->getReturnType());
5193    MachineFunction &MF = DAG.getMachineFunction();
5194    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5195    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5196
5197    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5198    Entry.Node = DemoteStackSlot;
5199    Entry.Ty = StackSlotPtrType;
5200    Entry.isSExt = false;
5201    Entry.isZExt = false;
5202    Entry.isInReg = false;
5203    Entry.isSRet = true;
5204    Entry.isNest = false;
5205    Entry.isByVal = false;
5206    Entry.Alignment = Align;
5207    Args.push_back(Entry);
5208    RetTy = Type::getVoidTy(FTy->getContext());
5209  }
5210
5211  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5212       i != e; ++i) {
5213    const Value *V = *i;
5214
5215    // Skip empty types
5216    if (V->getType()->isEmptyTy())
5217      continue;
5218
5219    SDValue ArgNode = getValue(V);
5220    Entry.Node = ArgNode; Entry.Ty = V->getType();
5221
5222    unsigned attrInd = i - CS.arg_begin() + 1;
5223    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5224    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5225    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5226    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5227    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5228    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5229    Entry.Alignment = CS.getParamAlignment(attrInd);
5230    Args.push_back(Entry);
5231  }
5232
5233  if (LandingPad) {
5234    // Insert a label before the invoke call to mark the try range.  This can be
5235    // used to detect deletion of the invoke via the MachineModuleInfo.
5236    BeginLabel = MMI.getContext().CreateTempSymbol();
5237
5238    // For SjLj, keep track of which landing pads go with which invokes
5239    // so as to maintain the ordering of pads in the LSDA.
5240    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5241    if (CallSiteIndex) {
5242      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5243      // Now that the call site is handled, stop tracking it.
5244      MMI.setCurrentCallSite(0);
5245    }
5246
5247    // Both PendingLoads and PendingExports must be flushed here;
5248    // this call might not return.
5249    (void)getRoot();
5250    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5251  }
5252
5253  // Check if target-independent constraints permit a tail call here.
5254  // Target-dependent constraints are checked within TLI.LowerCallTo.
5255  if (isTailCall &&
5256      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5257    isTailCall = false;
5258
5259  // If there's a possibility that fast-isel has already selected some amount
5260  // of the current basic block, don't emit a tail call.
5261  if (isTailCall && EnableFastISel)
5262    isTailCall = false;
5263
5264  std::pair<SDValue,SDValue> Result =
5265    TLI.LowerCallTo(getRoot(), RetTy,
5266                    CS.paramHasAttr(0, Attribute::SExt),
5267                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5268                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5269                    CS.getCallingConv(),
5270                    isTailCall,
5271                    !CS.getInstruction()->use_empty(),
5272                    Callee, Args, DAG, getCurDebugLoc());
5273  assert((isTailCall || Result.second.getNode()) &&
5274         "Non-null chain expected with non-tail call!");
5275  assert((Result.second.getNode() || !Result.first.getNode()) &&
5276         "Null value expected with tail call!");
5277  if (Result.first.getNode()) {
5278    setValue(CS.getInstruction(), Result.first);
5279  } else if (!CanLowerReturn && Result.second.getNode()) {
5280    // The instruction result is the result of loading from the
5281    // hidden sret parameter.
5282    SmallVector<EVT, 1> PVTs;
5283    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5284
5285    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5286    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5287    EVT PtrVT = PVTs[0];
5288    unsigned NumValues = Outs.size();
5289    SmallVector<SDValue, 4> Values(NumValues);
5290    SmallVector<SDValue, 4> Chains(NumValues);
5291
5292    for (unsigned i = 0; i < NumValues; ++i) {
5293      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5294                                DemoteStackSlot,
5295                                DAG.getConstant(Offsets[i], PtrVT));
5296      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5297                              Add,
5298                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5299                              false, false, 1);
5300      Values[i] = L;
5301      Chains[i] = L.getValue(1);
5302    }
5303
5304    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5305                                MVT::Other, &Chains[0], NumValues);
5306    PendingLoads.push_back(Chain);
5307
5308    // Collect the legal value parts into potentially illegal values
5309    // that correspond to the original function's return values.
5310    SmallVector<EVT, 4> RetTys;
5311    RetTy = FTy->getReturnType();
5312    ComputeValueVTs(TLI, RetTy, RetTys);
5313    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5314    SmallVector<SDValue, 4> ReturnValues;
5315    unsigned CurReg = 0;
5316    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5317      EVT VT = RetTys[I];
5318      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5319      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5320
5321      SDValue ReturnValue =
5322        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5323                         RegisterVT, VT, AssertOp);
5324      ReturnValues.push_back(ReturnValue);
5325      CurReg += NumRegs;
5326    }
5327
5328    setValue(CS.getInstruction(),
5329             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5330                         DAG.getVTList(&RetTys[0], RetTys.size()),
5331                         &ReturnValues[0], ReturnValues.size()));
5332  }
5333
5334  // Assign order to nodes here. If the call does not produce a result, it won't
5335  // be mapped to a SDNode and visit() will not assign it an order number.
5336  if (!Result.second.getNode()) {
5337    // As a special case, a null chain means that a tail call has been emitted and
5338    // the DAG root is already updated.
5339    HasTailCall = true;
5340    ++SDNodeOrder;
5341    AssignOrderingToNode(DAG.getRoot().getNode());
5342  } else {
5343    DAG.setRoot(Result.second);
5344    ++SDNodeOrder;
5345    AssignOrderingToNode(Result.second.getNode());
5346  }
5347
5348  if (LandingPad) {
5349    // Insert a label at the end of the invoke call to mark the try range.  This
5350    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5351    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5352    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5353
5354    // Inform MachineModuleInfo of range.
5355    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5356  }
5357}
5358
5359/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5360/// value is equal or not-equal to zero.
5361static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5362  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5363       UI != E; ++UI) {
5364    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5365      if (IC->isEquality())
5366        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5367          if (C->isNullValue())
5368            continue;
5369    // Unknown instruction.
5370    return false;
5371  }
5372  return true;
5373}
5374
5375static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5376                             Type *LoadTy,
5377                             SelectionDAGBuilder &Builder) {
5378
5379  // Check to see if this load can be trivially constant folded, e.g. if the
5380  // input is from a string literal.
5381  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5382    // Cast pointer to the type we really want to load.
5383    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5384                                         PointerType::getUnqual(LoadTy));
5385
5386    if (const Constant *LoadCst =
5387          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5388                                       Builder.TD))
5389      return Builder.getValue(LoadCst);
5390  }
5391
5392  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5393  // still constant memory, the input chain can be the entry node.
5394  SDValue Root;
5395  bool ConstantMemory = false;
5396
5397  // Do not serialize (non-volatile) loads of constant memory with anything.
5398  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5399    Root = Builder.DAG.getEntryNode();
5400    ConstantMemory = true;
5401  } else {
5402    // Do not serialize non-volatile loads against each other.
5403    Root = Builder.DAG.getRoot();
5404  }
5405
5406  SDValue Ptr = Builder.getValue(PtrVal);
5407  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5408                                        Ptr, MachinePointerInfo(PtrVal),
5409                                        false /*volatile*/,
5410                                        false /*nontemporal*/, 1 /* align=1 */);
5411
5412  if (!ConstantMemory)
5413    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5414  return LoadVal;
5415}
5416
5417
5418/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5419/// If so, return true and lower it, otherwise return false and it will be
5420/// lowered like a normal call.
5421bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5422  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5423  if (I.getNumArgOperands() != 3)
5424    return false;
5425
5426  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5427  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5428      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5429      !I.getType()->isIntegerTy())
5430    return false;
5431
5432  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5433
5434  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5435  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5436  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5437    bool ActuallyDoIt = true;
5438    MVT LoadVT;
5439    Type *LoadTy;
5440    switch (Size->getZExtValue()) {
5441    default:
5442      LoadVT = MVT::Other;
5443      LoadTy = 0;
5444      ActuallyDoIt = false;
5445      break;
5446    case 2:
5447      LoadVT = MVT::i16;
5448      LoadTy = Type::getInt16Ty(Size->getContext());
5449      break;
5450    case 4:
5451      LoadVT = MVT::i32;
5452      LoadTy = Type::getInt32Ty(Size->getContext());
5453      break;
5454    case 8:
5455      LoadVT = MVT::i64;
5456      LoadTy = Type::getInt64Ty(Size->getContext());
5457      break;
5458        /*
5459    case 16:
5460      LoadVT = MVT::v4i32;
5461      LoadTy = Type::getInt32Ty(Size->getContext());
5462      LoadTy = VectorType::get(LoadTy, 4);
5463      break;
5464         */
5465    }
5466
5467    // This turns into unaligned loads.  We only do this if the target natively
5468    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5469    // we'll only produce a small number of byte loads.
5470
5471    // Require that we can find a legal MVT, and only do this if the target
5472    // supports unaligned loads of that type.  Expanding into byte loads would
5473    // bloat the code.
5474    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5475      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5476      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5477      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5478        ActuallyDoIt = false;
5479    }
5480
5481    if (ActuallyDoIt) {
5482      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5483      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5484
5485      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5486                                 ISD::SETNE);
5487      EVT CallVT = TLI.getValueType(I.getType(), true);
5488      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5489      return true;
5490    }
5491  }
5492
5493
5494  return false;
5495}
5496
5497
5498void SelectionDAGBuilder::visitCall(const CallInst &I) {
5499  // Handle inline assembly differently.
5500  if (isa<InlineAsm>(I.getCalledValue())) {
5501    visitInlineAsm(&I);
5502    return;
5503  }
5504
5505  // See if any floating point values are being passed to this function. This is
5506  // used to emit an undefined reference to fltused on Windows.
5507  FunctionType *FT =
5508    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5509  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5510  if (FT->isVarArg() &&
5511      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5512    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5513      Type* T = I.getArgOperand(i)->getType();
5514      for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5515           i != e; ++i) {
5516        if (!i->isFloatingPointTy()) continue;
5517        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5518        break;
5519      }
5520    }
5521  }
5522
5523  const char *RenameFn = 0;
5524  if (Function *F = I.getCalledFunction()) {
5525    if (F->isDeclaration()) {
5526      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5527        if (unsigned IID = II->getIntrinsicID(F)) {
5528          RenameFn = visitIntrinsicCall(I, IID);
5529          if (!RenameFn)
5530            return;
5531        }
5532      }
5533      if (unsigned IID = F->getIntrinsicID()) {
5534        RenameFn = visitIntrinsicCall(I, IID);
5535        if (!RenameFn)
5536          return;
5537      }
5538    }
5539
5540    // Check for well-known libc/libm calls.  If the function is internal, it
5541    // can't be a library call.
5542    if (!F->hasLocalLinkage() && F->hasName()) {
5543      StringRef Name = F->getName();
5544      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5545        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5546            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5547            I.getType() == I.getArgOperand(0)->getType() &&
5548            I.getType() == I.getArgOperand(1)->getType()) {
5549          SDValue LHS = getValue(I.getArgOperand(0));
5550          SDValue RHS = getValue(I.getArgOperand(1));
5551          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5552                                   LHS.getValueType(), LHS, RHS));
5553          return;
5554        }
5555      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5556        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5557            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5558            I.getType() == I.getArgOperand(0)->getType()) {
5559          SDValue Tmp = getValue(I.getArgOperand(0));
5560          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5561                                   Tmp.getValueType(), Tmp));
5562          return;
5563        }
5564      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5565        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5566            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5567            I.getType() == I.getArgOperand(0)->getType() &&
5568            I.onlyReadsMemory()) {
5569          SDValue Tmp = getValue(I.getArgOperand(0));
5570          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5571                                   Tmp.getValueType(), Tmp));
5572          return;
5573        }
5574      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5575        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5576            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5577            I.getType() == I.getArgOperand(0)->getType() &&
5578            I.onlyReadsMemory()) {
5579          SDValue Tmp = getValue(I.getArgOperand(0));
5580          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5581                                   Tmp.getValueType(), Tmp));
5582          return;
5583        }
5584      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5585        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5586            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5587            I.getType() == I.getArgOperand(0)->getType() &&
5588            I.onlyReadsMemory()) {
5589          SDValue Tmp = getValue(I.getArgOperand(0));
5590          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5591                                   Tmp.getValueType(), Tmp));
5592          return;
5593        }
5594      } else if (Name == "memcmp") {
5595        if (visitMemCmpCall(I))
5596          return;
5597      }
5598    }
5599  }
5600
5601  SDValue Callee;
5602  if (!RenameFn)
5603    Callee = getValue(I.getCalledValue());
5604  else
5605    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5606
5607  // Check if we can potentially perform a tail call. More detailed checking is
5608  // be done within LowerCallTo, after more information about the call is known.
5609  LowerCallTo(&I, Callee, I.isTailCall());
5610}
5611
5612namespace {
5613
5614/// AsmOperandInfo - This contains information for each constraint that we are
5615/// lowering.
5616class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5617public:
5618  /// CallOperand - If this is the result output operand or a clobber
5619  /// this is null, otherwise it is the incoming operand to the CallInst.
5620  /// This gets modified as the asm is processed.
5621  SDValue CallOperand;
5622
5623  /// AssignedRegs - If this is a register or register class operand, this
5624  /// contains the set of register corresponding to the operand.
5625  RegsForValue AssignedRegs;
5626
5627  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5628    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5629  }
5630
5631  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5632  /// busy in OutputRegs/InputRegs.
5633  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5634                         std::set<unsigned> &OutputRegs,
5635                         std::set<unsigned> &InputRegs,
5636                         const TargetRegisterInfo &TRI) const {
5637    if (isOutReg) {
5638      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5639        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5640    }
5641    if (isInReg) {
5642      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5643        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5644    }
5645  }
5646
5647  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5648  /// corresponds to.  If there is no Value* for this operand, it returns
5649  /// MVT::Other.
5650  EVT getCallOperandValEVT(LLVMContext &Context,
5651                           const TargetLowering &TLI,
5652                           const TargetData *TD) const {
5653    if (CallOperandVal == 0) return MVT::Other;
5654
5655    if (isa<BasicBlock>(CallOperandVal))
5656      return TLI.getPointerTy();
5657
5658    llvm::Type *OpTy = CallOperandVal->getType();
5659
5660    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5661    // If this is an indirect operand, the operand is a pointer to the
5662    // accessed type.
5663    if (isIndirect) {
5664      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5665      if (!PtrTy)
5666        report_fatal_error("Indirect operand for inline asm not a pointer!");
5667      OpTy = PtrTy->getElementType();
5668    }
5669
5670    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5671    if (StructType *STy = dyn_cast<StructType>(OpTy))
5672      if (STy->getNumElements() == 1)
5673        OpTy = STy->getElementType(0);
5674
5675    // If OpTy is not a single value, it may be a struct/union that we
5676    // can tile with integers.
5677    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5678      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5679      switch (BitSize) {
5680      default: break;
5681      case 1:
5682      case 8:
5683      case 16:
5684      case 32:
5685      case 64:
5686      case 128:
5687        OpTy = IntegerType::get(Context, BitSize);
5688        break;
5689      }
5690    }
5691
5692    return TLI.getValueType(OpTy, true);
5693  }
5694
5695private:
5696  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5697  /// specified set.
5698  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5699                                const TargetRegisterInfo &TRI) {
5700    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5701    Regs.insert(Reg);
5702    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5703      for (; *Aliases; ++Aliases)
5704        Regs.insert(*Aliases);
5705  }
5706};
5707
5708typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5709
5710} // end anonymous namespace
5711
5712/// GetRegistersForValue - Assign registers (virtual or physical) for the
5713/// specified operand.  We prefer to assign virtual registers, to allow the
5714/// register allocator to handle the assignment process.  However, if the asm
5715/// uses features that we can't model on machineinstrs, we have SDISel do the
5716/// allocation.  This produces generally horrible, but correct, code.
5717///
5718///   OpInfo describes the operand.
5719///   Input and OutputRegs are the set of already allocated physical registers.
5720///
5721static void GetRegistersForValue(SelectionDAG &DAG,
5722                                 const TargetLowering &TLI,
5723                                 DebugLoc DL,
5724                                 SDISelAsmOperandInfo &OpInfo,
5725                                 std::set<unsigned> &OutputRegs,
5726                                 std::set<unsigned> &InputRegs) {
5727  LLVMContext &Context = *DAG.getContext();
5728
5729  // Compute whether this value requires an input register, an output register,
5730  // or both.
5731  bool isOutReg = false;
5732  bool isInReg = false;
5733  switch (OpInfo.Type) {
5734  case InlineAsm::isOutput:
5735    isOutReg = true;
5736
5737    // If there is an input constraint that matches this, we need to reserve
5738    // the input register so no other inputs allocate to it.
5739    isInReg = OpInfo.hasMatchingInput();
5740    break;
5741  case InlineAsm::isInput:
5742    isInReg = true;
5743    isOutReg = false;
5744    break;
5745  case InlineAsm::isClobber:
5746    isOutReg = true;
5747    isInReg = true;
5748    break;
5749  }
5750
5751
5752  MachineFunction &MF = DAG.getMachineFunction();
5753  SmallVector<unsigned, 4> Regs;
5754
5755  // If this is a constraint for a single physreg, or a constraint for a
5756  // register class, find it.
5757  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5758    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5759                                     OpInfo.ConstraintVT);
5760
5761  unsigned NumRegs = 1;
5762  if (OpInfo.ConstraintVT != MVT::Other) {
5763    // If this is a FP input in an integer register (or visa versa) insert a bit
5764    // cast of the input value.  More generally, handle any case where the input
5765    // value disagrees with the register class we plan to stick this in.
5766    if (OpInfo.Type == InlineAsm::isInput &&
5767        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5768      // Try to convert to the first EVT that the reg class contains.  If the
5769      // types are identical size, use a bitcast to convert (e.g. two differing
5770      // vector types).
5771      EVT RegVT = *PhysReg.second->vt_begin();
5772      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5773        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5774                                         RegVT, OpInfo.CallOperand);
5775        OpInfo.ConstraintVT = RegVT;
5776      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5777        // If the input is a FP value and we want it in FP registers, do a
5778        // bitcast to the corresponding integer type.  This turns an f64 value
5779        // into i64, which can be passed with two i32 values on a 32-bit
5780        // machine.
5781        RegVT = EVT::getIntegerVT(Context,
5782                                  OpInfo.ConstraintVT.getSizeInBits());
5783        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5784                                         RegVT, OpInfo.CallOperand);
5785        OpInfo.ConstraintVT = RegVT;
5786      }
5787    }
5788
5789    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5790  }
5791
5792  EVT RegVT;
5793  EVT ValueVT = OpInfo.ConstraintVT;
5794
5795  // If this is a constraint for a specific physical register, like {r17},
5796  // assign it now.
5797  if (unsigned AssignedReg = PhysReg.first) {
5798    const TargetRegisterClass *RC = PhysReg.second;
5799    if (OpInfo.ConstraintVT == MVT::Other)
5800      ValueVT = *RC->vt_begin();
5801
5802    // Get the actual register value type.  This is important, because the user
5803    // may have asked for (e.g.) the AX register in i32 type.  We need to
5804    // remember that AX is actually i16 to get the right extension.
5805    RegVT = *RC->vt_begin();
5806
5807    // This is a explicit reference to a physical register.
5808    Regs.push_back(AssignedReg);
5809
5810    // If this is an expanded reference, add the rest of the regs to Regs.
5811    if (NumRegs != 1) {
5812      TargetRegisterClass::iterator I = RC->begin();
5813      for (; *I != AssignedReg; ++I)
5814        assert(I != RC->end() && "Didn't find reg!");
5815
5816      // Already added the first reg.
5817      --NumRegs; ++I;
5818      for (; NumRegs; --NumRegs, ++I) {
5819        assert(I != RC->end() && "Ran out of registers to allocate!");
5820        Regs.push_back(*I);
5821      }
5822    }
5823
5824    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5825    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5826    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5827    return;
5828  }
5829
5830  // Otherwise, if this was a reference to an LLVM register class, create vregs
5831  // for this reference.
5832  if (const TargetRegisterClass *RC = PhysReg.second) {
5833    RegVT = *RC->vt_begin();
5834    if (OpInfo.ConstraintVT == MVT::Other)
5835      ValueVT = RegVT;
5836
5837    // Create the appropriate number of virtual registers.
5838    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5839    for (; NumRegs; --NumRegs)
5840      Regs.push_back(RegInfo.createVirtualRegister(RC));
5841
5842    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5843    return;
5844  }
5845
5846  // Otherwise, we couldn't allocate enough registers for this.
5847}
5848
5849/// visitInlineAsm - Handle a call to an InlineAsm object.
5850///
5851void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5852  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5853
5854  /// ConstraintOperands - Information about all of the constraints.
5855  SDISelAsmOperandInfoVector ConstraintOperands;
5856
5857  std::set<unsigned> OutputRegs, InputRegs;
5858
5859  TargetLowering::AsmOperandInfoVector
5860    TargetConstraints = TLI.ParseConstraints(CS);
5861
5862  bool hasMemory = false;
5863
5864  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5865  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5866  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5867    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5868    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5869
5870    EVT OpVT = MVT::Other;
5871
5872    // Compute the value type for each operand.
5873    switch (OpInfo.Type) {
5874    case InlineAsm::isOutput:
5875      // Indirect outputs just consume an argument.
5876      if (OpInfo.isIndirect) {
5877        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5878        break;
5879      }
5880
5881      // The return value of the call is this value.  As such, there is no
5882      // corresponding argument.
5883      assert(!CS.getType()->isVoidTy() &&
5884             "Bad inline asm!");
5885      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5886        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5887      } else {
5888        assert(ResNo == 0 && "Asm only has one result!");
5889        OpVT = TLI.getValueType(CS.getType());
5890      }
5891      ++ResNo;
5892      break;
5893    case InlineAsm::isInput:
5894      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5895      break;
5896    case InlineAsm::isClobber:
5897      // Nothing to do.
5898      break;
5899    }
5900
5901    // If this is an input or an indirect output, process the call argument.
5902    // BasicBlocks are labels, currently appearing only in asm's.
5903    if (OpInfo.CallOperandVal) {
5904      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5905        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5906      } else {
5907        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5908      }
5909
5910      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5911    }
5912
5913    OpInfo.ConstraintVT = OpVT;
5914
5915    // Indirect operand accesses access memory.
5916    if (OpInfo.isIndirect)
5917      hasMemory = true;
5918    else {
5919      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5920        TargetLowering::ConstraintType
5921          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5922        if (CType == TargetLowering::C_Memory) {
5923          hasMemory = true;
5924          break;
5925        }
5926      }
5927    }
5928  }
5929
5930  SDValue Chain, Flag;
5931
5932  // We won't need to flush pending loads if this asm doesn't touch
5933  // memory and is nonvolatile.
5934  if (hasMemory || IA->hasSideEffects())
5935    Chain = getRoot();
5936  else
5937    Chain = DAG.getRoot();
5938
5939  // Second pass over the constraints: compute which constraint option to use
5940  // and assign registers to constraints that want a specific physreg.
5941  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5942    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5943
5944    // If this is an output operand with a matching input operand, look up the
5945    // matching input. If their types mismatch, e.g. one is an integer, the
5946    // other is floating point, or their sizes are different, flag it as an
5947    // error.
5948    if (OpInfo.hasMatchingInput()) {
5949      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5950
5951      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5952	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5953	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5954                                           OpInfo.ConstraintVT);
5955	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5956	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5957                                           Input.ConstraintVT);
5958        if ((OpInfo.ConstraintVT.isInteger() !=
5959             Input.ConstraintVT.isInteger()) ||
5960            (MatchRC.second != InputRC.second)) {
5961          report_fatal_error("Unsupported asm: input constraint"
5962                             " with a matching output constraint of"
5963                             " incompatible type!");
5964        }
5965        Input.ConstraintVT = OpInfo.ConstraintVT;
5966      }
5967    }
5968
5969    // Compute the constraint code and ConstraintType to use.
5970    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5971
5972    // If this is a memory input, and if the operand is not indirect, do what we
5973    // need to to provide an address for the memory input.
5974    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5975        !OpInfo.isIndirect) {
5976      assert((OpInfo.isMultipleAlternative ||
5977              (OpInfo.Type == InlineAsm::isInput)) &&
5978             "Can only indirectify direct input operands!");
5979
5980      // Memory operands really want the address of the value.  If we don't have
5981      // an indirect input, put it in the constpool if we can, otherwise spill
5982      // it to a stack slot.
5983      // TODO: This isn't quite right. We need to handle these according to
5984      // the addressing mode that the constraint wants. Also, this may take
5985      // an additional register for the computation and we don't want that
5986      // either.
5987
5988      // If the operand is a float, integer, or vector constant, spill to a
5989      // constant pool entry to get its address.
5990      const Value *OpVal = OpInfo.CallOperandVal;
5991      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5992          isa<ConstantVector>(OpVal)) {
5993        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5994                                                 TLI.getPointerTy());
5995      } else {
5996        // Otherwise, create a stack slot and emit a store to it before the
5997        // asm.
5998        Type *Ty = OpVal->getType();
5999        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
6000        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
6001        MachineFunction &MF = DAG.getMachineFunction();
6002        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6003        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6004        Chain = DAG.getStore(Chain, getCurDebugLoc(),
6005                             OpInfo.CallOperand, StackSlot,
6006                             MachinePointerInfo::getFixedStack(SSFI),
6007                             false, false, 0);
6008        OpInfo.CallOperand = StackSlot;
6009      }
6010
6011      // There is no longer a Value* corresponding to this operand.
6012      OpInfo.CallOperandVal = 0;
6013
6014      // It is now an indirect operand.
6015      OpInfo.isIndirect = true;
6016    }
6017
6018    // If this constraint is for a specific register, allocate it before
6019    // anything else.
6020    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6021      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6022                           InputRegs);
6023  }
6024
6025  // Second pass - Loop over all of the operands, assigning virtual or physregs
6026  // to register class operands.
6027  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6028    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6029
6030    // C_Register operands have already been allocated, Other/Memory don't need
6031    // to be.
6032    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6033      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6034                           InputRegs);
6035  }
6036
6037  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6038  std::vector<SDValue> AsmNodeOperands;
6039  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6040  AsmNodeOperands.push_back(
6041          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6042                                      TLI.getPointerTy()));
6043
6044  // If we have a !srcloc metadata node associated with it, we want to attach
6045  // this to the ultimately generated inline asm machineinstr.  To do this, we
6046  // pass in the third operand as this (potentially null) inline asm MDNode.
6047  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6048  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6049
6050  // Remember the HasSideEffect and AlignStack bits as operand 3.
6051  unsigned ExtraInfo = 0;
6052  if (IA->hasSideEffects())
6053    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6054  if (IA->isAlignStack())
6055    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6056  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6057                                                  TLI.getPointerTy()));
6058
6059  // Loop over all of the inputs, copying the operand values into the
6060  // appropriate registers and processing the output regs.
6061  RegsForValue RetValRegs;
6062
6063  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6064  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6065
6066  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6067    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6068
6069    switch (OpInfo.Type) {
6070    case InlineAsm::isOutput: {
6071      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6072          OpInfo.ConstraintType != TargetLowering::C_Register) {
6073        // Memory output, or 'other' output (e.g. 'X' constraint).
6074        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6075
6076        // Add information to the INLINEASM node to know about this output.
6077        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6078        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6079                                                        TLI.getPointerTy()));
6080        AsmNodeOperands.push_back(OpInfo.CallOperand);
6081        break;
6082      }
6083
6084      // Otherwise, this is a register or register class output.
6085
6086      // Copy the output from the appropriate register.  Find a register that
6087      // we can use.
6088      if (OpInfo.AssignedRegs.Regs.empty())
6089        report_fatal_error("Couldn't allocate output reg for constraint '" +
6090                           Twine(OpInfo.ConstraintCode) + "'!");
6091
6092      // If this is an indirect operand, store through the pointer after the
6093      // asm.
6094      if (OpInfo.isIndirect) {
6095        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6096                                                      OpInfo.CallOperandVal));
6097      } else {
6098        // This is the result value of the call.
6099        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6100        // Concatenate this output onto the outputs list.
6101        RetValRegs.append(OpInfo.AssignedRegs);
6102      }
6103
6104      // Add information to the INLINEASM node to know that this register is
6105      // set.
6106      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6107                                           InlineAsm::Kind_RegDefEarlyClobber :
6108                                               InlineAsm::Kind_RegDef,
6109                                               false,
6110                                               0,
6111                                               DAG,
6112                                               AsmNodeOperands);
6113      break;
6114    }
6115    case InlineAsm::isInput: {
6116      SDValue InOperandVal = OpInfo.CallOperand;
6117
6118      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6119        // If this is required to match an output register we have already set,
6120        // just use its register.
6121        unsigned OperandNo = OpInfo.getMatchedOperand();
6122
6123        // Scan until we find the definition we already emitted of this operand.
6124        // When we find it, create a RegsForValue operand.
6125        unsigned CurOp = InlineAsm::Op_FirstOperand;
6126        for (; OperandNo; --OperandNo) {
6127          // Advance to the next operand.
6128          unsigned OpFlag =
6129            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6130          assert((InlineAsm::isRegDefKind(OpFlag) ||
6131                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6132                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6133          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6134        }
6135
6136        unsigned OpFlag =
6137          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6138        if (InlineAsm::isRegDefKind(OpFlag) ||
6139            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6140          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6141          if (OpInfo.isIndirect) {
6142            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6143            LLVMContext &Ctx = *DAG.getContext();
6144            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6145                          " don't know how to handle tied "
6146                          "indirect register inputs");
6147          }
6148
6149          RegsForValue MatchedRegs;
6150          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6151          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6152          MatchedRegs.RegVTs.push_back(RegVT);
6153          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6154          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6155               i != e; ++i)
6156            MatchedRegs.Regs.push_back
6157              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6158
6159          // Use the produced MatchedRegs object to
6160          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6161                                    Chain, &Flag);
6162          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6163                                           true, OpInfo.getMatchedOperand(),
6164                                           DAG, AsmNodeOperands);
6165          break;
6166        }
6167
6168        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6169        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6170               "Unexpected number of operands");
6171        // Add information to the INLINEASM node to know about this input.
6172        // See InlineAsm.h isUseOperandTiedToDef.
6173        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6174                                                    OpInfo.getMatchedOperand());
6175        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6176                                                        TLI.getPointerTy()));
6177        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6178        break;
6179      }
6180
6181      // Treat indirect 'X' constraint as memory.
6182      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6183          OpInfo.isIndirect)
6184        OpInfo.ConstraintType = TargetLowering::C_Memory;
6185
6186      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6187        std::vector<SDValue> Ops;
6188        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6189                                         Ops, DAG);
6190        if (Ops.empty())
6191          report_fatal_error("Invalid operand for inline asm constraint '" +
6192                             Twine(OpInfo.ConstraintCode) + "'!");
6193
6194        // Add information to the INLINEASM node to know about this input.
6195        unsigned ResOpType =
6196          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6197        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6198                                                        TLI.getPointerTy()));
6199        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6200        break;
6201      }
6202
6203      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6204        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6205        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6206               "Memory operands expect pointer values");
6207
6208        // Add information to the INLINEASM node to know about this input.
6209        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6210        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6211                                                        TLI.getPointerTy()));
6212        AsmNodeOperands.push_back(InOperandVal);
6213        break;
6214      }
6215
6216      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6217              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6218             "Unknown constraint type!");
6219      assert(!OpInfo.isIndirect &&
6220             "Don't know how to handle indirect register inputs yet!");
6221
6222      // Copy the input into the appropriate registers.
6223      if (OpInfo.AssignedRegs.Regs.empty())
6224        report_fatal_error("Couldn't allocate input reg for constraint '" +
6225                           Twine(OpInfo.ConstraintCode) + "'!");
6226
6227      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6228                                        Chain, &Flag);
6229
6230      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6231                                               DAG, AsmNodeOperands);
6232      break;
6233    }
6234    case InlineAsm::isClobber: {
6235      // Add the clobbered value to the operand list, so that the register
6236      // allocator is aware that the physreg got clobbered.
6237      if (!OpInfo.AssignedRegs.Regs.empty())
6238        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6239                                                 false, 0, DAG,
6240                                                 AsmNodeOperands);
6241      break;
6242    }
6243    }
6244  }
6245
6246  // Finish up input operands.  Set the input chain and add the flag last.
6247  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6248  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6249
6250  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6251                      DAG.getVTList(MVT::Other, MVT::Glue),
6252                      &AsmNodeOperands[0], AsmNodeOperands.size());
6253  Flag = Chain.getValue(1);
6254
6255  // If this asm returns a register value, copy the result from that register
6256  // and set it as the value of the call.
6257  if (!RetValRegs.Regs.empty()) {
6258    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6259                                             Chain, &Flag);
6260
6261    // FIXME: Why don't we do this for inline asms with MRVs?
6262    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6263      EVT ResultType = TLI.getValueType(CS.getType());
6264
6265      // If any of the results of the inline asm is a vector, it may have the
6266      // wrong width/num elts.  This can happen for register classes that can
6267      // contain multiple different value types.  The preg or vreg allocated may
6268      // not have the same VT as was expected.  Convert it to the right type
6269      // with bit_convert.
6270      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6271        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6272                          ResultType, Val);
6273
6274      } else if (ResultType != Val.getValueType() &&
6275                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6276        // If a result value was tied to an input value, the computed result may
6277        // have a wider width than the expected result.  Extract the relevant
6278        // portion.
6279        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6280      }
6281
6282      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6283    }
6284
6285    setValue(CS.getInstruction(), Val);
6286    // Don't need to use this as a chain in this case.
6287    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6288      return;
6289  }
6290
6291  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6292
6293  // Process indirect outputs, first output all of the flagged copies out of
6294  // physregs.
6295  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6296    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6297    const Value *Ptr = IndirectStoresToEmit[i].second;
6298    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6299                                             Chain, &Flag);
6300    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6301  }
6302
6303  // Emit the non-flagged stores from the physregs.
6304  SmallVector<SDValue, 8> OutChains;
6305  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6306    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6307                               StoresToEmit[i].first,
6308                               getValue(StoresToEmit[i].second),
6309                               MachinePointerInfo(StoresToEmit[i].second),
6310                               false, false, 0);
6311    OutChains.push_back(Val);
6312  }
6313
6314  if (!OutChains.empty())
6315    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6316                        &OutChains[0], OutChains.size());
6317
6318  DAG.setRoot(Chain);
6319}
6320
6321void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6322  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6323                          MVT::Other, getRoot(),
6324                          getValue(I.getArgOperand(0)),
6325                          DAG.getSrcValue(I.getArgOperand(0))));
6326}
6327
6328void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6329  const TargetData &TD = *TLI.getTargetData();
6330  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6331                           getRoot(), getValue(I.getOperand(0)),
6332                           DAG.getSrcValue(I.getOperand(0)),
6333                           TD.getABITypeAlignment(I.getType()));
6334  setValue(&I, V);
6335  DAG.setRoot(V.getValue(1));
6336}
6337
6338void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6339  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6340                          MVT::Other, getRoot(),
6341                          getValue(I.getArgOperand(0)),
6342                          DAG.getSrcValue(I.getArgOperand(0))));
6343}
6344
6345void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6346  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6347                          MVT::Other, getRoot(),
6348                          getValue(I.getArgOperand(0)),
6349                          getValue(I.getArgOperand(1)),
6350                          DAG.getSrcValue(I.getArgOperand(0)),
6351                          DAG.getSrcValue(I.getArgOperand(1))));
6352}
6353
6354/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6355/// implementation, which just calls LowerCall.
6356/// FIXME: When all targets are
6357/// migrated to using LowerCall, this hook should be integrated into SDISel.
6358std::pair<SDValue, SDValue>
6359TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6360                            bool RetSExt, bool RetZExt, bool isVarArg,
6361                            bool isInreg, unsigned NumFixedArgs,
6362                            CallingConv::ID CallConv, bool isTailCall,
6363                            bool isReturnValueUsed,
6364                            SDValue Callee,
6365                            ArgListTy &Args, SelectionDAG &DAG,
6366                            DebugLoc dl) const {
6367  // Handle all of the outgoing arguments.
6368  SmallVector<ISD::OutputArg, 32> Outs;
6369  SmallVector<SDValue, 32> OutVals;
6370  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6371    SmallVector<EVT, 4> ValueVTs;
6372    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6373    for (unsigned Value = 0, NumValues = ValueVTs.size();
6374         Value != NumValues; ++Value) {
6375      EVT VT = ValueVTs[Value];
6376      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6377      SDValue Op = SDValue(Args[i].Node.getNode(),
6378                           Args[i].Node.getResNo() + Value);
6379      ISD::ArgFlagsTy Flags;
6380      unsigned OriginalAlignment =
6381        getTargetData()->getABITypeAlignment(ArgTy);
6382
6383      if (Args[i].isZExt)
6384        Flags.setZExt();
6385      if (Args[i].isSExt)
6386        Flags.setSExt();
6387      if (Args[i].isInReg)
6388        Flags.setInReg();
6389      if (Args[i].isSRet)
6390        Flags.setSRet();
6391      if (Args[i].isByVal) {
6392        Flags.setByVal();
6393        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6394        Type *ElementTy = Ty->getElementType();
6395        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6396        // For ByVal, alignment should come from FE.  BE will guess if this
6397        // info is not there but there are cases it cannot get right.
6398        unsigned FrameAlign;
6399        if (Args[i].Alignment)
6400          FrameAlign = Args[i].Alignment;
6401        else
6402          FrameAlign = getByValTypeAlignment(ElementTy);
6403        Flags.setByValAlign(FrameAlign);
6404      }
6405      if (Args[i].isNest)
6406        Flags.setNest();
6407      Flags.setOrigAlign(OriginalAlignment);
6408
6409      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6410      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6411      SmallVector<SDValue, 4> Parts(NumParts);
6412      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6413
6414      if (Args[i].isSExt)
6415        ExtendKind = ISD::SIGN_EXTEND;
6416      else if (Args[i].isZExt)
6417        ExtendKind = ISD::ZERO_EXTEND;
6418
6419      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6420                     PartVT, ExtendKind);
6421
6422      for (unsigned j = 0; j != NumParts; ++j) {
6423        // if it isn't first piece, alignment must be 1
6424        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6425                               i < NumFixedArgs);
6426        if (NumParts > 1 && j == 0)
6427          MyFlags.Flags.setSplit();
6428        else if (j != 0)
6429          MyFlags.Flags.setOrigAlign(1);
6430
6431        Outs.push_back(MyFlags);
6432        OutVals.push_back(Parts[j]);
6433      }
6434    }
6435  }
6436
6437  // Handle the incoming return values from the call.
6438  SmallVector<ISD::InputArg, 32> Ins;
6439  SmallVector<EVT, 4> RetTys;
6440  ComputeValueVTs(*this, RetTy, RetTys);
6441  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6442    EVT VT = RetTys[I];
6443    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6444    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6445    for (unsigned i = 0; i != NumRegs; ++i) {
6446      ISD::InputArg MyFlags;
6447      MyFlags.VT = RegisterVT.getSimpleVT();
6448      MyFlags.Used = isReturnValueUsed;
6449      if (RetSExt)
6450        MyFlags.Flags.setSExt();
6451      if (RetZExt)
6452        MyFlags.Flags.setZExt();
6453      if (isInreg)
6454        MyFlags.Flags.setInReg();
6455      Ins.push_back(MyFlags);
6456    }
6457  }
6458
6459  SmallVector<SDValue, 4> InVals;
6460  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6461                    Outs, OutVals, Ins, dl, DAG, InVals);
6462
6463  // Verify that the target's LowerCall behaved as expected.
6464  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6465         "LowerCall didn't return a valid chain!");
6466  assert((!isTailCall || InVals.empty()) &&
6467         "LowerCall emitted a return value for a tail call!");
6468  assert((isTailCall || InVals.size() == Ins.size()) &&
6469         "LowerCall didn't emit the correct number of values!");
6470
6471  // For a tail call, the return value is merely live-out and there aren't
6472  // any nodes in the DAG representing it. Return a special value to
6473  // indicate that a tail call has been emitted and no more Instructions
6474  // should be processed in the current block.
6475  if (isTailCall) {
6476    DAG.setRoot(Chain);
6477    return std::make_pair(SDValue(), SDValue());
6478  }
6479
6480  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6481          assert(InVals[i].getNode() &&
6482                 "LowerCall emitted a null value!");
6483          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6484                 "LowerCall emitted a value with the wrong type!");
6485        });
6486
6487  // Collect the legal value parts into potentially illegal values
6488  // that correspond to the original function's return values.
6489  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6490  if (RetSExt)
6491    AssertOp = ISD::AssertSext;
6492  else if (RetZExt)
6493    AssertOp = ISD::AssertZext;
6494  SmallVector<SDValue, 4> ReturnValues;
6495  unsigned CurReg = 0;
6496  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6497    EVT VT = RetTys[I];
6498    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6499    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6500
6501    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6502                                            NumRegs, RegisterVT, VT,
6503                                            AssertOp));
6504    CurReg += NumRegs;
6505  }
6506
6507  // For a function returning void, there is no return value. We can't create
6508  // such a node, so we just return a null return value in that case. In
6509  // that case, nothing will actually look at the value.
6510  if (ReturnValues.empty())
6511    return std::make_pair(SDValue(), Chain);
6512
6513  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6514                            DAG.getVTList(&RetTys[0], RetTys.size()),
6515                            &ReturnValues[0], ReturnValues.size());
6516  return std::make_pair(Res, Chain);
6517}
6518
6519void TargetLowering::LowerOperationWrapper(SDNode *N,
6520                                           SmallVectorImpl<SDValue> &Results,
6521                                           SelectionDAG &DAG) const {
6522  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6523  if (Res.getNode())
6524    Results.push_back(Res);
6525}
6526
6527SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6528  llvm_unreachable("LowerOperation not implemented for this target!");
6529  return SDValue();
6530}
6531
6532void
6533SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6534  SDValue Op = getNonRegisterValue(V);
6535  assert((Op.getOpcode() != ISD::CopyFromReg ||
6536          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6537         "Copy from a reg to the same reg!");
6538  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6539
6540  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6541  SDValue Chain = DAG.getEntryNode();
6542  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6543  PendingExports.push_back(Chain);
6544}
6545
6546#include "llvm/CodeGen/SelectionDAGISel.h"
6547
6548/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6549/// entry block, return true.  This includes arguments used by switches, since
6550/// the switch may expand into multiple basic blocks.
6551static bool isOnlyUsedInEntryBlock(const Argument *A) {
6552  // With FastISel active, we may be splitting blocks, so force creation
6553  // of virtual registers for all non-dead arguments.
6554  if (EnableFastISel)
6555    return A->use_empty();
6556
6557  const BasicBlock *Entry = A->getParent()->begin();
6558  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6559       UI != E; ++UI) {
6560    const User *U = *UI;
6561    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6562      return false;  // Use not in entry block.
6563  }
6564  return true;
6565}
6566
6567void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6568  // If this is the entry block, emit arguments.
6569  const Function &F = *LLVMBB->getParent();
6570  SelectionDAG &DAG = SDB->DAG;
6571  DebugLoc dl = SDB->getCurDebugLoc();
6572  const TargetData *TD = TLI.getTargetData();
6573  SmallVector<ISD::InputArg, 16> Ins;
6574
6575  // Check whether the function can return without sret-demotion.
6576  SmallVector<ISD::OutputArg, 4> Outs;
6577  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6578                Outs, TLI);
6579
6580  if (!FuncInfo->CanLowerReturn) {
6581    // Put in an sret pointer parameter before all the other parameters.
6582    SmallVector<EVT, 1> ValueVTs;
6583    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6584
6585    // NOTE: Assuming that a pointer will never break down to more than one VT
6586    // or one register.
6587    ISD::ArgFlagsTy Flags;
6588    Flags.setSRet();
6589    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6590    ISD::InputArg RetArg(Flags, RegisterVT, true);
6591    Ins.push_back(RetArg);
6592  }
6593
6594  // Set up the incoming argument description vector.
6595  unsigned Idx = 1;
6596  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6597       I != E; ++I, ++Idx) {
6598    SmallVector<EVT, 4> ValueVTs;
6599    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6600    bool isArgValueUsed = !I->use_empty();
6601    for (unsigned Value = 0, NumValues = ValueVTs.size();
6602         Value != NumValues; ++Value) {
6603      EVT VT = ValueVTs[Value];
6604      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6605      ISD::ArgFlagsTy Flags;
6606      unsigned OriginalAlignment =
6607        TD->getABITypeAlignment(ArgTy);
6608
6609      if (F.paramHasAttr(Idx, Attribute::ZExt))
6610        Flags.setZExt();
6611      if (F.paramHasAttr(Idx, Attribute::SExt))
6612        Flags.setSExt();
6613      if (F.paramHasAttr(Idx, Attribute::InReg))
6614        Flags.setInReg();
6615      if (F.paramHasAttr(Idx, Attribute::StructRet))
6616        Flags.setSRet();
6617      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6618        Flags.setByVal();
6619        PointerType *Ty = cast<PointerType>(I->getType());
6620        Type *ElementTy = Ty->getElementType();
6621        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6622        // For ByVal, alignment should be passed from FE.  BE will guess if
6623        // this info is not there but there are cases it cannot get right.
6624        unsigned FrameAlign;
6625        if (F.getParamAlignment(Idx))
6626          FrameAlign = F.getParamAlignment(Idx);
6627        else
6628          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6629        Flags.setByValAlign(FrameAlign);
6630      }
6631      if (F.paramHasAttr(Idx, Attribute::Nest))
6632        Flags.setNest();
6633      Flags.setOrigAlign(OriginalAlignment);
6634
6635      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6636      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6637      for (unsigned i = 0; i != NumRegs; ++i) {
6638        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6639        if (NumRegs > 1 && i == 0)
6640          MyFlags.Flags.setSplit();
6641        // if it isn't first piece, alignment must be 1
6642        else if (i > 0)
6643          MyFlags.Flags.setOrigAlign(1);
6644        Ins.push_back(MyFlags);
6645      }
6646    }
6647  }
6648
6649  // Call the target to set up the argument values.
6650  SmallVector<SDValue, 8> InVals;
6651  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6652                                             F.isVarArg(), Ins,
6653                                             dl, DAG, InVals);
6654
6655  // Verify that the target's LowerFormalArguments behaved as expected.
6656  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6657         "LowerFormalArguments didn't return a valid chain!");
6658  assert(InVals.size() == Ins.size() &&
6659         "LowerFormalArguments didn't emit the correct number of values!");
6660  DEBUG({
6661      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6662        assert(InVals[i].getNode() &&
6663               "LowerFormalArguments emitted a null value!");
6664        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6665               "LowerFormalArguments emitted a value with the wrong type!");
6666      }
6667    });
6668
6669  // Update the DAG with the new chain value resulting from argument lowering.
6670  DAG.setRoot(NewRoot);
6671
6672  // Set up the argument values.
6673  unsigned i = 0;
6674  Idx = 1;
6675  if (!FuncInfo->CanLowerReturn) {
6676    // Create a virtual register for the sret pointer, and put in a copy
6677    // from the sret argument into it.
6678    SmallVector<EVT, 1> ValueVTs;
6679    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6680    EVT VT = ValueVTs[0];
6681    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6682    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6683    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6684                                        RegVT, VT, AssertOp);
6685
6686    MachineFunction& MF = SDB->DAG.getMachineFunction();
6687    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6688    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6689    FuncInfo->DemoteRegister = SRetReg;
6690    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6691                                    SRetReg, ArgValue);
6692    DAG.setRoot(NewRoot);
6693
6694    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6695    // Idx indexes LLVM arguments.  Don't touch it.
6696    ++i;
6697  }
6698
6699  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6700      ++I, ++Idx) {
6701    SmallVector<SDValue, 4> ArgValues;
6702    SmallVector<EVT, 4> ValueVTs;
6703    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6704    unsigned NumValues = ValueVTs.size();
6705
6706    // If this argument is unused then remember its value. It is used to generate
6707    // debugging information.
6708    if (I->use_empty() && NumValues)
6709      SDB->setUnusedArgValue(I, InVals[i]);
6710
6711    for (unsigned Val = 0; Val != NumValues; ++Val) {
6712      EVT VT = ValueVTs[Val];
6713      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6714      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6715
6716      if (!I->use_empty()) {
6717        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6718        if (F.paramHasAttr(Idx, Attribute::SExt))
6719          AssertOp = ISD::AssertSext;
6720        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6721          AssertOp = ISD::AssertZext;
6722
6723        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6724                                             NumParts, PartVT, VT,
6725                                             AssertOp));
6726      }
6727
6728      i += NumParts;
6729    }
6730
6731    // We don't need to do anything else for unused arguments.
6732    if (ArgValues.empty())
6733      continue;
6734
6735    // Note down frame index for byval arguments.
6736    if (I->hasByValAttr())
6737      if (FrameIndexSDNode *FI =
6738          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6739        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6740
6741    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6742                                     SDB->getCurDebugLoc());
6743    SDB->setValue(I, Res);
6744
6745    // If this argument is live outside of the entry block, insert a copy from
6746    // wherever we got it to the vreg that other BB's will reference it as.
6747    if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6748      // If we can, though, try to skip creating an unnecessary vreg.
6749      // FIXME: This isn't very clean... it would be nice to make this more
6750      // general.  It's also subtly incompatible with the hacks FastISel
6751      // uses with vregs.
6752      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6753      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6754        FuncInfo->ValueMap[I] = Reg;
6755        continue;
6756      }
6757    }
6758    if (!isOnlyUsedInEntryBlock(I)) {
6759      FuncInfo->InitializeRegForValue(I);
6760      SDB->CopyToExportRegsIfNeeded(I);
6761    }
6762  }
6763
6764  assert(i == InVals.size() && "Argument register count mismatch!");
6765
6766  // Finally, if the target has anything special to do, allow it to do so.
6767  // FIXME: this should insert code into the DAG!
6768  EmitFunctionEntryCode();
6769}
6770
6771/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6772/// ensure constants are generated when needed.  Remember the virtual registers
6773/// that need to be added to the Machine PHI nodes as input.  We cannot just
6774/// directly add them, because expansion might result in multiple MBB's for one
6775/// BB.  As such, the start of the BB might correspond to a different MBB than
6776/// the end.
6777///
6778void
6779SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6780  const TerminatorInst *TI = LLVMBB->getTerminator();
6781
6782  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6783
6784  // Check successor nodes' PHI nodes that expect a constant to be available
6785  // from this block.
6786  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6787    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6788    if (!isa<PHINode>(SuccBB->begin())) continue;
6789    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6790
6791    // If this terminator has multiple identical successors (common for
6792    // switches), only handle each succ once.
6793    if (!SuccsHandled.insert(SuccMBB)) continue;
6794
6795    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6796
6797    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6798    // nodes and Machine PHI nodes, but the incoming operands have not been
6799    // emitted yet.
6800    for (BasicBlock::const_iterator I = SuccBB->begin();
6801         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6802      // Ignore dead phi's.
6803      if (PN->use_empty()) continue;
6804
6805      // Skip empty types
6806      if (PN->getType()->isEmptyTy())
6807        continue;
6808
6809      unsigned Reg;
6810      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6811
6812      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6813        unsigned &RegOut = ConstantsOut[C];
6814        if (RegOut == 0) {
6815          RegOut = FuncInfo.CreateRegs(C->getType());
6816          CopyValueToVirtualRegister(C, RegOut);
6817        }
6818        Reg = RegOut;
6819      } else {
6820        DenseMap<const Value *, unsigned>::iterator I =
6821          FuncInfo.ValueMap.find(PHIOp);
6822        if (I != FuncInfo.ValueMap.end())
6823          Reg = I->second;
6824        else {
6825          assert(isa<AllocaInst>(PHIOp) &&
6826                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6827                 "Didn't codegen value into a register!??");
6828          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6829          CopyValueToVirtualRegister(PHIOp, Reg);
6830        }
6831      }
6832
6833      // Remember that this register needs to added to the machine PHI node as
6834      // the input for this MBB.
6835      SmallVector<EVT, 4> ValueVTs;
6836      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6837      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6838        EVT VT = ValueVTs[vti];
6839        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6840        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6841          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6842        Reg += NumRegisters;
6843      }
6844    }
6845  }
6846  ConstantsOut.clear();
6847}
6848