SelectionDAGBuilder.cpp revision 47fd10f2fc45d280308b77ed4eda16f3c9c88248
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/CallingConv.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/GCMetadata.h"
28#include "llvm/CodeGen/GCStrategy.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Constants.h"
37#include "llvm/DataLayout.h"
38#include "llvm/DebugInfo.h"
39#include "llvm/DerivedTypes.h"
40#include "llvm/Function.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/InlineAsm.h"
43#include "llvm/Instructions.h"
44#include "llvm/IntrinsicInst.h"
45#include "llvm/Intrinsics.h"
46#include "llvm/LLVMContext.h"
47#include "llvm/Module.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/IntegersSubsetMapping.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetFrameLowering.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetIntrinsicInfo.h"
57#include "llvm/Target/TargetLibraryInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetOptions.h"
60#include <algorithm>
61using namespace llvm;
62
63/// LimitFloatPrecision - Generate low-precision inline sequences for
64/// some float libcalls (6, 8 or 12 bits).
65static unsigned LimitFloatPrecision;
66
67static cl::opt<unsigned, true>
68LimitFPPrecision("limit-float-precision",
69                 cl::desc("Generate low-precision inline sequences "
70                          "for some float libcalls"),
71                 cl::location(LimitFloatPrecision),
72                 cl::init(0));
73
74// Limit the width of DAG chains. This is important in general to prevent
75// prevent DAG-based analysis from blowing up. For example, alias analysis and
76// load clustering may not complete in reasonable time. It is difficult to
77// recognize and avoid this situation within each individual analysis, and
78// future analyses are likely to have the same behavior. Limiting DAG width is
79// the safe approach, and will be especially important with global DAGs.
80//
81// MaxParallelChains default is arbitrarily high to avoid affecting
82// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
83// sequence over this should have been converted to llvm.memcpy by the
84// frontend. It easy to induce this behavior with .ll code such as:
85// %buffer = alloca [4096 x i8]
86// %data = load [4096 x i8]* %argPtr
87// store [4096 x i8] %data, [4096 x i8]* %buffer
88static const unsigned MaxParallelChains = 64;
89
90static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
91                                      const SDValue *Parts, unsigned NumParts,
92                                      EVT PartVT, EVT ValueVT, const Value *V);
93
94/// getCopyFromParts - Create a value that contains the specified legal parts
95/// combined into the value they represent.  If the parts combine to a type
96/// larger then ValueVT then AssertOp can be used to specify whether the extra
97/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
98/// (ISD::AssertSext).
99static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
100                                const SDValue *Parts,
101                                unsigned NumParts, EVT PartVT, EVT ValueVT,
102                                const Value *V,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
106                                  PartVT, ValueVT, V);
107
108  assert(NumParts > 0 && "No parts to assemble!");
109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
110  SDValue Val = Parts[0];
111
112  if (NumParts > 1) {
113    // Assemble the value from multiple parts.
114    if (ValueVT.isInteger()) {
115      unsigned PartBits = PartVT.getSizeInBits();
116      unsigned ValueBits = ValueVT.getSizeInBits();
117
118      // Assemble the power of 2 part.
119      unsigned RoundParts = NumParts & (NumParts - 1) ?
120        1 << Log2_32(NumParts) : NumParts;
121      unsigned RoundBits = PartBits * RoundParts;
122      EVT RoundVT = RoundBits == ValueBits ?
123        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
124      SDValue Lo, Hi;
125
126      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
127
128      if (RoundParts > 2) {
129        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
130                              PartVT, HalfVT, V);
131        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
132                              RoundParts / 2, PartVT, HalfVT, V);
133      } else {
134        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
135        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
136      }
137
138      if (TLI.isBigEndian())
139        std::swap(Lo, Hi);
140
141      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
142
143      if (RoundParts < NumParts) {
144        // Assemble the trailing non-power-of-2 part.
145        unsigned OddParts = NumParts - RoundParts;
146        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
147        Hi = getCopyFromParts(DAG, DL,
148                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
149
150        // Combine the round and odd parts.
151        Lo = Val;
152        if (TLI.isBigEndian())
153          std::swap(Lo, Hi);
154        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
155        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
156        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
157                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
158                                         TLI.getPointerTy()));
159        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
160        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
161      }
162    } else if (PartVT.isFloatingPoint()) {
163      // FP split into multiple FP parts (for ppcf128)
164      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
165             "Unexpected split");
166      SDValue Lo, Hi;
167      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
168      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
169      if (TLI.isBigEndian())
170        std::swap(Lo, Hi);
171      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
172    } else {
173      // FP split into integer parts (soft fp)
174      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
175             !PartVT.isVector() && "Unexpected split");
176      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
177      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
178    }
179  }
180
181  // There is now one part, held in Val.  Correct it to match ValueVT.
182  PartVT = Val.getValueType();
183
184  if (PartVT == ValueVT)
185    return Val;
186
187  if (PartVT.isInteger() && ValueVT.isInteger()) {
188    if (ValueVT.bitsLT(PartVT)) {
189      // For a truncate, see if we have any information to
190      // indicate whether the truncated bits will always be
191      // zero or sign-extension.
192      if (AssertOp != ISD::DELETED_NODE)
193        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
194                          DAG.getValueType(ValueVT));
195      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
196    }
197    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
198  }
199
200  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
201    // FP_ROUND's are always exact here.
202    if (ValueVT.bitsLT(Val.getValueType()))
203      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
204                         DAG.getTargetConstant(1, TLI.getPointerTy()));
205
206    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
207  }
208
209  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
210    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
211
212  llvm_unreachable("Unknown mismatch!");
213}
214
215/// getCopyFromPartsVector - Create a value that contains the specified legal
216/// parts combined into the value they represent.  If the parts combine to a
217/// type larger then ValueVT then AssertOp can be used to specify whether the
218/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
219/// ValueVT (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      EVT PartVT, EVT ValueVT, const Value *V) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT;
231    MVT RegisterVT;
232    unsigned NumIntermediates;
233    unsigned NumRegs =
234    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
235                               NumIntermediates, RegisterVT);
236    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
237    NumParts = NumRegs; // Silence a compiler warning.
238    assert(RegisterVT == PartVT.getSimpleVT() &&
239           "Part type doesn't match vector breakdown!");
240    assert(RegisterVT == Parts[0].getSimpleValueType() &&
241           "Part type doesn't match part!");
242
243    // Assemble the parts into intermediate operands.
244    SmallVector<SDValue, 8> Ops(NumIntermediates);
245    if (NumIntermediates == NumParts) {
246      // If the register was not expanded, truncate or copy the value,
247      // as appropriate.
248      for (unsigned i = 0; i != NumParts; ++i)
249        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
250                                  PartVT, IntermediateVT, V);
251    } else if (NumParts > 0) {
252      // If the intermediate type was expanded, build the intermediate
253      // operands from the parts.
254      assert(NumParts % NumIntermediates == 0 &&
255             "Must expand into a divisible number of parts!");
256      unsigned Factor = NumParts / NumIntermediates;
257      for (unsigned i = 0; i != NumIntermediates; ++i)
258        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
259                                  PartVT, IntermediateVT, V);
260    }
261
262    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
263    // intermediate operands.
264    Val = DAG.getNode(IntermediateVT.isVector() ?
265                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
266                      ValueVT, &Ops[0], NumIntermediates);
267  }
268
269  // There is now one part, held in Val.  Correct it to match ValueVT.
270  PartVT = Val.getValueType();
271
272  if (PartVT == ValueVT)
273    return Val;
274
275  if (PartVT.isVector()) {
276    // If the element type of the source/dest vectors are the same, but the
277    // parts vector has more elements than the value vector, then we have a
278    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
279    // elements we want.
280    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
281      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
282             "Cannot narrow, it would be a lossy transformation");
283      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
284                         DAG.getIntPtrConstant(0));
285    }
286
287    // Vector/Vector bitcast.
288    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
289      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
290
291    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
292      "Cannot handle this kind of promotion");
293    // Promoted vector extract
294    bool Smaller = ValueVT.bitsLE(PartVT);
295    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
296                       DL, ValueVT, Val);
297
298  }
299
300  // Trivial bitcast if the types are the same size and the destination
301  // vector type is legal.
302  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
303      TLI.isTypeLegal(ValueVT))
304    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
305
306  // Handle cases such as i8 -> <1 x i1>
307  if (ValueVT.getVectorNumElements() != 1) {
308    LLVMContext &Ctx = *DAG.getContext();
309    Twine ErrMsg("non-trivial scalar-to-vector conversion");
310    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
311      if (const CallInst *CI = dyn_cast<CallInst>(I))
312        if (isa<InlineAsm>(CI->getCalledValue()))
313          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
314      Ctx.emitError(I, ErrMsg);
315    } else {
316      Ctx.emitError(ErrMsg);
317    }
318    report_fatal_error("Cannot handle scalar-to-vector conversion!");
319  }
320
321  if (ValueVT.getVectorNumElements() == 1 &&
322      ValueVT.getVectorElementType() != PartVT) {
323    bool Smaller = ValueVT.bitsLE(PartVT);
324    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
325                       DL, ValueVT.getScalarType(), Val);
326  }
327
328  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
329}
330
331static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
332                                 SDValue Val, SDValue *Parts, unsigned NumParts,
333                                 EVT PartVT, const Value *V);
334
335/// getCopyToParts - Create a series of nodes that contain the specified value
336/// split into legal parts.  If the parts contain more bits than Val, then, for
337/// integers, ExtendKind can be used to specify how to generate the extra bits.
338static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
339                           SDValue Val, SDValue *Parts, unsigned NumParts,
340                           EVT PartVT, const Value *V,
341                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
342  EVT ValueVT = Val.getValueType();
343
344  // Handle the vector case separately.
345  if (ValueVT.isVector())
346    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
347
348  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
349  unsigned PartBits = PartVT.getSizeInBits();
350  unsigned OrigNumParts = NumParts;
351  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
352
353  if (NumParts == 0)
354    return;
355
356  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
357  if (PartVT == ValueVT) {
358    assert(NumParts == 1 && "No-op copy with multiple parts!");
359    Parts[0] = Val;
360    return;
361  }
362
363  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
364    // If the parts cover more bits than the value has, promote the value.
365    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
366      assert(NumParts == 1 && "Do not know what to promote to!");
367      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
368    } else {
369      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
370             ValueVT.isInteger() &&
371             "Unknown mismatch!");
372      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
373      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
374      if (PartVT == MVT::x86mmx)
375        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
376    }
377  } else if (PartBits == ValueVT.getSizeInBits()) {
378    // Different types of the same size.
379    assert(NumParts == 1 && PartVT != ValueVT);
380    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
381  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
382    // If the parts cover less bits than value has, truncate the value.
383    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
384           ValueVT.isInteger() &&
385           "Unknown mismatch!");
386    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
387    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
388    if (PartVT == MVT::x86mmx)
389      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390  }
391
392  // The value may have changed - recompute ValueVT.
393  ValueVT = Val.getValueType();
394  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
395         "Failed to tile the value with PartVT!");
396
397  if (NumParts == 1) {
398    if (PartVT != ValueVT) {
399      LLVMContext &Ctx = *DAG.getContext();
400      Twine ErrMsg("scalar-to-vector conversion failed");
401      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
402        if (const CallInst *CI = dyn_cast<CallInst>(I))
403          if (isa<InlineAsm>(CI->getCalledValue()))
404            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
405        Ctx.emitError(I, ErrMsg);
406      } else {
407        Ctx.emitError(ErrMsg);
408      }
409    }
410
411    Parts[0] = Val;
412    return;
413  }
414
415  // Expand the value into multiple parts.
416  if (NumParts & (NumParts - 1)) {
417    // The number of parts is not a power of 2.  Split off and copy the tail.
418    assert(PartVT.isInteger() && ValueVT.isInteger() &&
419           "Do not know what to expand to!");
420    unsigned RoundParts = 1 << Log2_32(NumParts);
421    unsigned RoundBits = RoundParts * PartBits;
422    unsigned OddParts = NumParts - RoundParts;
423    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
424                                 DAG.getIntPtrConstant(RoundBits));
425    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
426
427    if (TLI.isBigEndian())
428      // The odd parts were reversed by getCopyToParts - unreverse them.
429      std::reverse(Parts + RoundParts, Parts + NumParts);
430
431    NumParts = RoundParts;
432    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
433    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
434  }
435
436  // The number of parts is a power of 2.  Repeatedly bisect the value using
437  // EXTRACT_ELEMENT.
438  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
439                         EVT::getIntegerVT(*DAG.getContext(),
440                                           ValueVT.getSizeInBits()),
441                         Val);
442
443  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
444    for (unsigned i = 0; i < NumParts; i += StepSize) {
445      unsigned ThisBits = StepSize * PartBits / 2;
446      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
447      SDValue &Part0 = Parts[i];
448      SDValue &Part1 = Parts[i+StepSize/2];
449
450      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451                          ThisVT, Part0, DAG.getIntPtrConstant(1));
452      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453                          ThisVT, Part0, DAG.getIntPtrConstant(0));
454
455      if (ThisBits == PartBits && ThisVT != PartVT) {
456        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
457        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
458      }
459    }
460  }
461
462  if (TLI.isBigEndian())
463    std::reverse(Parts, Parts + OrigNumParts);
464}
465
466
467/// getCopyToPartsVector - Create a series of nodes that contain the specified
468/// value split into legal parts.
469static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
470                                 SDValue Val, SDValue *Parts, unsigned NumParts,
471                                 EVT PartVT, const Value *V) {
472  EVT ValueVT = Val.getValueType();
473  assert(ValueVT.isVector() && "Not a vector");
474  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475
476  if (NumParts == 1) {
477    if (PartVT == ValueVT) {
478      // Nothing to do.
479    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
480      // Bitconvert vector->vector case.
481      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
482    } else if (PartVT.isVector() &&
483               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
484               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
485      EVT ElementVT = PartVT.getVectorElementType();
486      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
487      // undef elements.
488      SmallVector<SDValue, 16> Ops;
489      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
490        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
491                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
492
493      for (unsigned i = ValueVT.getVectorNumElements(),
494           e = PartVT.getVectorNumElements(); i != e; ++i)
495        Ops.push_back(DAG.getUNDEF(ElementVT));
496
497      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
498
499      // FIXME: Use CONCAT for 2x -> 4x.
500
501      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
502      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
503    } else if (PartVT.isVector() &&
504               PartVT.getVectorElementType().bitsGE(
505                 ValueVT.getVectorElementType()) &&
506               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
507
508      // Promoted vector extract
509      bool Smaller = PartVT.bitsLE(ValueVT);
510      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
511                        DL, PartVT, Val);
512    } else{
513      // Vector -> scalar conversion.
514      assert(ValueVT.getVectorNumElements() == 1 &&
515             "Only trivial vector-to-scalar conversions should get here!");
516      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
517                        PartVT, Val, DAG.getIntPtrConstant(0));
518
519      bool Smaller = ValueVT.bitsLE(PartVT);
520      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
521                         DL, PartVT, Val);
522    }
523
524    Parts[0] = Val;
525    return;
526  }
527
528  // Handle a multi-element vector.
529  EVT IntermediateVT;
530  MVT RegisterVT;
531  unsigned NumIntermediates;
532  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
533                                                IntermediateVT,
534                                                NumIntermediates, RegisterVT);
535  unsigned NumElements = ValueVT.getVectorNumElements();
536
537  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
538  NumParts = NumRegs; // Silence a compiler warning.
539  assert(RegisterVT == PartVT.getSimpleVT() &&
540         "Part type doesn't match vector breakdown!");
541
542  // Split the vector into intermediate operands.
543  SmallVector<SDValue, 8> Ops(NumIntermediates);
544  for (unsigned i = 0; i != NumIntermediates; ++i) {
545    if (IntermediateVT.isVector())
546      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
547                           IntermediateVT, Val,
548                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
549    else
550      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
551                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
552  }
553
554  // Split the intermediate operands into legal parts.
555  if (NumParts == NumIntermediates) {
556    // If the register was not expanded, promote or copy the value,
557    // as appropriate.
558    for (unsigned i = 0; i != NumParts; ++i)
559      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
560  } else if (NumParts > 0) {
561    // If the intermediate type was expanded, split each the value into
562    // legal parts.
563    assert(NumParts % NumIntermediates == 0 &&
564           "Must expand into a divisible number of parts!");
565    unsigned Factor = NumParts / NumIntermediates;
566    for (unsigned i = 0; i != NumIntermediates; ++i)
567      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
568  }
569}
570
571namespace {
572  /// RegsForValue - This struct represents the registers (physical or virtual)
573  /// that a particular set of values is assigned, and the type information
574  /// about the value. The most common situation is to represent one value at a
575  /// time, but struct or array values are handled element-wise as multiple
576  /// values.  The splitting of aggregates is performed recursively, so that we
577  /// never have aggregate-typed registers. The values at this point do not
578  /// necessarily have legal types, so each value may require one or more
579  /// registers of some legal type.
580  ///
581  struct RegsForValue {
582    /// ValueVTs - The value types of the values, which may not be legal, and
583    /// may need be promoted or synthesized from one or more registers.
584    ///
585    SmallVector<EVT, 4> ValueVTs;
586
587    /// RegVTs - The value types of the registers. This is the same size as
588    /// ValueVTs and it records, for each value, what the type of the assigned
589    /// register or registers are. (Individual values are never synthesized
590    /// from more than one type of register.)
591    ///
592    /// With virtual registers, the contents of RegVTs is redundant with TLI's
593    /// getRegisterType member function, however when with physical registers
594    /// it is necessary to have a separate record of the types.
595    ///
596    SmallVector<EVT, 4> RegVTs;
597
598    /// Regs - This list holds the registers assigned to the values.
599    /// Each legal or promoted value requires one register, and each
600    /// expanded value requires multiple registers.
601    ///
602    SmallVector<unsigned, 4> Regs;
603
604    RegsForValue() {}
605
606    RegsForValue(const SmallVector<unsigned, 4> &regs,
607                 EVT regvt, EVT valuevt)
608      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
609
610    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
611                 unsigned Reg, Type *Ty) {
612      ComputeValueVTs(tli, Ty, ValueVTs);
613
614      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
615        EVT ValueVT = ValueVTs[Value];
616        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
617        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
618        for (unsigned i = 0; i != NumRegs; ++i)
619          Regs.push_back(Reg + i);
620        RegVTs.push_back(RegisterVT);
621        Reg += NumRegs;
622      }
623    }
624
625    /// areValueTypesLegal - Return true if types of all the values are legal.
626    bool areValueTypesLegal(const TargetLowering &TLI) {
627      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
628        EVT RegisterVT = RegVTs[Value];
629        if (!TLI.isTypeLegal(RegisterVT))
630          return false;
631      }
632      return true;
633    }
634
635    /// append - Add the specified values to this one.
636    void append(const RegsForValue &RHS) {
637      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
638      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
639      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
640    }
641
642    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
643    /// this value and returns the result as a ValueVTs value.  This uses
644    /// Chain/Flag as the input and updates them for the output Chain/Flag.
645    /// If the Flag pointer is NULL, no flag is used.
646    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
647                            DebugLoc dl,
648                            SDValue &Chain, SDValue *Flag,
649                            const Value *V = 0) const;
650
651    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
652    /// specified value into the registers specified by this object.  This uses
653    /// Chain/Flag as the input and updates them for the output Chain/Flag.
654    /// If the Flag pointer is NULL, no flag is used.
655    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
656                       SDValue &Chain, SDValue *Flag, const Value *V) const;
657
658    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
659    /// operand list.  This adds the code marker, matching input operand index
660    /// (if applicable), and includes the number of values added into it.
661    void AddInlineAsmOperands(unsigned Kind,
662                              bool HasMatching, unsigned MatchingIdx,
663                              SelectionDAG &DAG,
664                              std::vector<SDValue> &Ops) const;
665  };
666}
667
668/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
669/// this value and returns the result as a ValueVT value.  This uses
670/// Chain/Flag as the input and updates them for the output Chain/Flag.
671/// If the Flag pointer is NULL, no flag is used.
672SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
673                                      FunctionLoweringInfo &FuncInfo,
674                                      DebugLoc dl,
675                                      SDValue &Chain, SDValue *Flag,
676                                      const Value *V) const {
677  // A Value with type {} or [0 x %t] needs no registers.
678  if (ValueVTs.empty())
679    return SDValue();
680
681  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
682
683  // Assemble the legal parts into the final values.
684  SmallVector<SDValue, 4> Values(ValueVTs.size());
685  SmallVector<SDValue, 8> Parts;
686  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
687    // Copy the legal parts from the registers.
688    EVT ValueVT = ValueVTs[Value];
689    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690    EVT RegisterVT = RegVTs[Value];
691
692    Parts.resize(NumRegs);
693    for (unsigned i = 0; i != NumRegs; ++i) {
694      SDValue P;
695      if (Flag == 0) {
696        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
697      } else {
698        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
699        *Flag = P.getValue(2);
700      }
701
702      Chain = P.getValue(1);
703      Parts[i] = P;
704
705      // If the source register was virtual and if we know something about it,
706      // add an assert node.
707      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
708          !RegisterVT.isInteger() || RegisterVT.isVector())
709        continue;
710
711      const FunctionLoweringInfo::LiveOutInfo *LOI =
712        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
713      if (!LOI)
714        continue;
715
716      unsigned RegSize = RegisterVT.getSizeInBits();
717      unsigned NumSignBits = LOI->NumSignBits;
718      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
719
720      // FIXME: We capture more information than the dag can represent.  For
721      // now, just use the tightest assertzext/assertsext possible.
722      bool isSExt = true;
723      EVT FromVT(MVT::Other);
724      if (NumSignBits == RegSize)
725        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
726      else if (NumZeroBits >= RegSize-1)
727        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
728      else if (NumSignBits > RegSize-8)
729        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
730      else if (NumZeroBits >= RegSize-8)
731        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
732      else if (NumSignBits > RegSize-16)
733        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
734      else if (NumZeroBits >= RegSize-16)
735        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
736      else if (NumSignBits > RegSize-32)
737        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
738      else if (NumZeroBits >= RegSize-32)
739        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
740      else
741        continue;
742
743      // Add an assertion node.
744      assert(FromVT != MVT::Other);
745      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
746                             RegisterVT, P, DAG.getValueType(FromVT));
747    }
748
749    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
750                                     NumRegs, RegisterVT, ValueVT, V);
751    Part += NumRegs;
752    Parts.clear();
753  }
754
755  return DAG.getNode(ISD::MERGE_VALUES, dl,
756                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
757                     &Values[0], ValueVTs.size());
758}
759
760/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
761/// specified value into the registers specified by this object.  This uses
762/// Chain/Flag as the input and updates them for the output Chain/Flag.
763/// If the Flag pointer is NULL, no flag is used.
764void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
765                                 SDValue &Chain, SDValue *Flag,
766                                 const Value *V) const {
767  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
768
769  // Get the list of the values's legal parts.
770  unsigned NumRegs = Regs.size();
771  SmallVector<SDValue, 8> Parts(NumRegs);
772  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
773    EVT ValueVT = ValueVTs[Value];
774    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
775    EVT RegisterVT = RegVTs[Value];
776    ISD::NodeType ExtendKind =
777      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
778
779    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
780                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
781    Part += NumParts;
782  }
783
784  // Copy the parts into the registers.
785  SmallVector<SDValue, 8> Chains(NumRegs);
786  for (unsigned i = 0; i != NumRegs; ++i) {
787    SDValue Part;
788    if (Flag == 0) {
789      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
790    } else {
791      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
792      *Flag = Part.getValue(1);
793    }
794
795    Chains[i] = Part.getValue(0);
796  }
797
798  if (NumRegs == 1 || Flag)
799    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
800    // flagged to it. That is the CopyToReg nodes and the user are considered
801    // a single scheduling unit. If we create a TokenFactor and return it as
802    // chain, then the TokenFactor is both a predecessor (operand) of the
803    // user as well as a successor (the TF operands are flagged to the user).
804    // c1, f1 = CopyToReg
805    // c2, f2 = CopyToReg
806    // c3     = TokenFactor c1, c2
807    // ...
808    //        = op c3, ..., f2
809    Chain = Chains[NumRegs-1];
810  else
811    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
812}
813
814/// AddInlineAsmOperands - Add this value to the specified inlineasm node
815/// operand list.  This adds the code marker and includes the number of
816/// values added into it.
817void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
818                                        unsigned MatchingIdx,
819                                        SelectionDAG &DAG,
820                                        std::vector<SDValue> &Ops) const {
821  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
822
823  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
824  if (HasMatching)
825    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
826  else if (!Regs.empty() &&
827           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
828    // Put the register class of the virtual registers in the flag word.  That
829    // way, later passes can recompute register class constraints for inline
830    // assembly as well as normal instructions.
831    // Don't do this for tied operands that can use the regclass information
832    // from the def.
833    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
834    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
835    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
836  }
837
838  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
839  Ops.push_back(Res);
840
841  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
842    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
843    EVT RegisterVT = RegVTs[Value];
844    for (unsigned i = 0; i != NumRegs; ++i) {
845      assert(Reg < Regs.size() && "Mismatch in # registers expected");
846      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
847    }
848  }
849}
850
851void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
852                               const TargetLibraryInfo *li) {
853  AA = &aa;
854  GFI = gfi;
855  LibInfo = li;
856  TD = DAG.getTarget().getDataLayout();
857  Context = DAG.getContext();
858  LPadToCallSiteMap.clear();
859}
860
861/// clear - Clear out the current SelectionDAG and the associated
862/// state and prepare this SelectionDAGBuilder object to be used
863/// for a new block. This doesn't clear out information about
864/// additional blocks that are needed to complete switch lowering
865/// or PHI node updating; that information is cleared out as it is
866/// consumed.
867void SelectionDAGBuilder::clear() {
868  NodeMap.clear();
869  UnusedArgNodeMap.clear();
870  PendingLoads.clear();
871  PendingExports.clear();
872  CurDebugLoc = DebugLoc();
873  HasTailCall = false;
874}
875
876/// clearDanglingDebugInfo - Clear the dangling debug information
877/// map. This function is separated from the clear so that debug
878/// information that is dangling in a basic block can be properly
879/// resolved in a different basic block. This allows the
880/// SelectionDAG to resolve dangling debug information attached
881/// to PHI nodes.
882void SelectionDAGBuilder::clearDanglingDebugInfo() {
883  DanglingDebugInfoMap.clear();
884}
885
886/// getRoot - Return the current virtual root of the Selection DAG,
887/// flushing any PendingLoad items. This must be done before emitting
888/// a store or any other node that may need to be ordered after any
889/// prior load instructions.
890///
891SDValue SelectionDAGBuilder::getRoot() {
892  if (PendingLoads.empty())
893    return DAG.getRoot();
894
895  if (PendingLoads.size() == 1) {
896    SDValue Root = PendingLoads[0];
897    DAG.setRoot(Root);
898    PendingLoads.clear();
899    return Root;
900  }
901
902  // Otherwise, we have to make a token factor node.
903  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
904                               &PendingLoads[0], PendingLoads.size());
905  PendingLoads.clear();
906  DAG.setRoot(Root);
907  return Root;
908}
909
910/// getControlRoot - Similar to getRoot, but instead of flushing all the
911/// PendingLoad items, flush all the PendingExports items. It is necessary
912/// to do this before emitting a terminator instruction.
913///
914SDValue SelectionDAGBuilder::getControlRoot() {
915  SDValue Root = DAG.getRoot();
916
917  if (PendingExports.empty())
918    return Root;
919
920  // Turn all of the CopyToReg chains into one factored node.
921  if (Root.getOpcode() != ISD::EntryToken) {
922    unsigned i = 0, e = PendingExports.size();
923    for (; i != e; ++i) {
924      assert(PendingExports[i].getNode()->getNumOperands() > 1);
925      if (PendingExports[i].getNode()->getOperand(0) == Root)
926        break;  // Don't add the root if we already indirectly depend on it.
927    }
928
929    if (i == e)
930      PendingExports.push_back(Root);
931  }
932
933  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
934                     &PendingExports[0],
935                     PendingExports.size());
936  PendingExports.clear();
937  DAG.setRoot(Root);
938  return Root;
939}
940
941void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
942  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
943  DAG.AssignOrdering(Node, SDNodeOrder);
944
945  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
946    AssignOrderingToNode(Node->getOperand(I).getNode());
947}
948
949void SelectionDAGBuilder::visit(const Instruction &I) {
950  // Set up outgoing PHI node register values before emitting the terminator.
951  if (isa<TerminatorInst>(&I))
952    HandlePHINodesInSuccessorBlocks(I.getParent());
953
954  CurDebugLoc = I.getDebugLoc();
955
956  visit(I.getOpcode(), I);
957
958  if (!isa<TerminatorInst>(&I) && !HasTailCall)
959    CopyToExportRegsIfNeeded(&I);
960
961  CurDebugLoc = DebugLoc();
962}
963
964void SelectionDAGBuilder::visitPHI(const PHINode &) {
965  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
966}
967
968void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
969  // Note: this doesn't use InstVisitor, because it has to work with
970  // ConstantExpr's in addition to instructions.
971  switch (Opcode) {
972  default: llvm_unreachable("Unknown instruction type encountered!");
973    // Build the switch statement using the Instruction.def file.
974#define HANDLE_INST(NUM, OPCODE, CLASS) \
975    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
976#include "llvm/Instruction.def"
977  }
978
979  // Assign the ordering to the freshly created DAG nodes.
980  if (NodeMap.count(&I)) {
981    ++SDNodeOrder;
982    AssignOrderingToNode(getValue(&I).getNode());
983  }
984}
985
986// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
987// generate the debug data structures now that we've seen its definition.
988void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
989                                                   SDValue Val) {
990  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
991  if (DDI.getDI()) {
992    const DbgValueInst *DI = DDI.getDI();
993    DebugLoc dl = DDI.getdl();
994    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
995    MDNode *Variable = DI->getVariable();
996    uint64_t Offset = DI->getOffset();
997    SDDbgValue *SDV;
998    if (Val.getNode()) {
999      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1000        SDV = DAG.getDbgValue(Variable, Val.getNode(),
1001                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
1002        DAG.AddDbgValue(SDV, Val.getNode(), false);
1003      }
1004    } else
1005      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1006    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1007  }
1008}
1009
1010/// getValue - Return an SDValue for the given Value.
1011SDValue SelectionDAGBuilder::getValue(const Value *V) {
1012  // If we already have an SDValue for this value, use it. It's important
1013  // to do this first, so that we don't create a CopyFromReg if we already
1014  // have a regular SDValue.
1015  SDValue &N = NodeMap[V];
1016  if (N.getNode()) return N;
1017
1018  // If there's a virtual register allocated and initialized for this
1019  // value, use it.
1020  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1021  if (It != FuncInfo.ValueMap.end()) {
1022    unsigned InReg = It->second;
1023    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
1024    SDValue Chain = DAG.getEntryNode();
1025    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1026    resolveDanglingDebugInfo(V, N);
1027    return N;
1028  }
1029
1030  // Otherwise create a new SDValue and remember it.
1031  SDValue Val = getValueImpl(V);
1032  NodeMap[V] = Val;
1033  resolveDanglingDebugInfo(V, Val);
1034  return Val;
1035}
1036
1037/// getNonRegisterValue - Return an SDValue for the given Value, but
1038/// don't look in FuncInfo.ValueMap for a virtual register.
1039SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1040  // If we already have an SDValue for this value, use it.
1041  SDValue &N = NodeMap[V];
1042  if (N.getNode()) return N;
1043
1044  // Otherwise create a new SDValue and remember it.
1045  SDValue Val = getValueImpl(V);
1046  NodeMap[V] = Val;
1047  resolveDanglingDebugInfo(V, Val);
1048  return Val;
1049}
1050
1051/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1052/// Create an SDValue for the given value.
1053SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1054  if (const Constant *C = dyn_cast<Constant>(V)) {
1055    EVT VT = TLI.getValueType(V->getType(), true);
1056
1057    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1058      return DAG.getConstant(*CI, VT);
1059
1060    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1061      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1062
1063    if (isa<ConstantPointerNull>(C))
1064      return DAG.getConstant(0, TLI.getPointerTy());
1065
1066    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1067      return DAG.getConstantFP(*CFP, VT);
1068
1069    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1070      return DAG.getUNDEF(VT);
1071
1072    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1073      visit(CE->getOpcode(), *CE);
1074      SDValue N1 = NodeMap[V];
1075      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1076      return N1;
1077    }
1078
1079    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1080      SmallVector<SDValue, 4> Constants;
1081      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1082           OI != OE; ++OI) {
1083        SDNode *Val = getValue(*OI).getNode();
1084        // If the operand is an empty aggregate, there are no values.
1085        if (!Val) continue;
1086        // Add each leaf value from the operand to the Constants list
1087        // to form a flattened list of all the values.
1088        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1089          Constants.push_back(SDValue(Val, i));
1090      }
1091
1092      return DAG.getMergeValues(&Constants[0], Constants.size(),
1093                                getCurDebugLoc());
1094    }
1095
1096    if (const ConstantDataSequential *CDS =
1097          dyn_cast<ConstantDataSequential>(C)) {
1098      SmallVector<SDValue, 4> Ops;
1099      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1100        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1101        // Add each leaf value from the operand to the Constants list
1102        // to form a flattened list of all the values.
1103        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1104          Ops.push_back(SDValue(Val, i));
1105      }
1106
1107      if (isa<ArrayType>(CDS->getType()))
1108        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1109      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1110                                      VT, &Ops[0], Ops.size());
1111    }
1112
1113    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1114      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1115             "Unknown struct or array constant!");
1116
1117      SmallVector<EVT, 4> ValueVTs;
1118      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1119      unsigned NumElts = ValueVTs.size();
1120      if (NumElts == 0)
1121        return SDValue(); // empty struct
1122      SmallVector<SDValue, 4> Constants(NumElts);
1123      for (unsigned i = 0; i != NumElts; ++i) {
1124        EVT EltVT = ValueVTs[i];
1125        if (isa<UndefValue>(C))
1126          Constants[i] = DAG.getUNDEF(EltVT);
1127        else if (EltVT.isFloatingPoint())
1128          Constants[i] = DAG.getConstantFP(0, EltVT);
1129        else
1130          Constants[i] = DAG.getConstant(0, EltVT);
1131      }
1132
1133      return DAG.getMergeValues(&Constants[0], NumElts,
1134                                getCurDebugLoc());
1135    }
1136
1137    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1138      return DAG.getBlockAddress(BA, VT);
1139
1140    VectorType *VecTy = cast<VectorType>(V->getType());
1141    unsigned NumElements = VecTy->getNumElements();
1142
1143    // Now that we know the number and type of the elements, get that number of
1144    // elements into the Ops array based on what kind of constant it is.
1145    SmallVector<SDValue, 16> Ops;
1146    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1147      for (unsigned i = 0; i != NumElements; ++i)
1148        Ops.push_back(getValue(CV->getOperand(i)));
1149    } else {
1150      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1151      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1152
1153      SDValue Op;
1154      if (EltVT.isFloatingPoint())
1155        Op = DAG.getConstantFP(0, EltVT);
1156      else
1157        Op = DAG.getConstant(0, EltVT);
1158      Ops.assign(NumElements, Op);
1159    }
1160
1161    // Create a BUILD_VECTOR node.
1162    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1163                                    VT, &Ops[0], Ops.size());
1164  }
1165
1166  // If this is a static alloca, generate it as the frameindex instead of
1167  // computation.
1168  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169    DenseMap<const AllocaInst*, int>::iterator SI =
1170      FuncInfo.StaticAllocaMap.find(AI);
1171    if (SI != FuncInfo.StaticAllocaMap.end())
1172      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1173  }
1174
1175  // If this is an instruction which fast-isel has deferred, select it now.
1176  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1177    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1178    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1179    SDValue Chain = DAG.getEntryNode();
1180    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1181  }
1182
1183  llvm_unreachable("Can't get register for value!");
1184}
1185
1186void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1187  SDValue Chain = getControlRoot();
1188  SmallVector<ISD::OutputArg, 8> Outs;
1189  SmallVector<SDValue, 8> OutVals;
1190
1191  if (!FuncInfo.CanLowerReturn) {
1192    unsigned DemoteReg = FuncInfo.DemoteRegister;
1193    const Function *F = I.getParent()->getParent();
1194
1195    // Emit a store of the return value through the virtual register.
1196    // Leave Outs empty so that LowerReturn won't try to load return
1197    // registers the usual way.
1198    SmallVector<EVT, 1> PtrValueVTs;
1199    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1200                    PtrValueVTs);
1201
1202    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1203    SDValue RetOp = getValue(I.getOperand(0));
1204
1205    SmallVector<EVT, 4> ValueVTs;
1206    SmallVector<uint64_t, 4> Offsets;
1207    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1208    unsigned NumValues = ValueVTs.size();
1209
1210    SmallVector<SDValue, 4> Chains(NumValues);
1211    for (unsigned i = 0; i != NumValues; ++i) {
1212      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1213                                RetPtr.getValueType(), RetPtr,
1214                                DAG.getIntPtrConstant(Offsets[i]));
1215      Chains[i] =
1216        DAG.getStore(Chain, getCurDebugLoc(),
1217                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1218                     // FIXME: better loc info would be nice.
1219                     Add, MachinePointerInfo(), false, false, 0);
1220    }
1221
1222    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1223                        MVT::Other, &Chains[0], NumValues);
1224  } else if (I.getNumOperands() != 0) {
1225    SmallVector<EVT, 4> ValueVTs;
1226    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1227    unsigned NumValues = ValueVTs.size();
1228    if (NumValues) {
1229      SDValue RetOp = getValue(I.getOperand(0));
1230      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1231        EVT VT = ValueVTs[j];
1232
1233        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1234
1235        const Function *F = I.getParent()->getParent();
1236        if (F->getRetAttributes().hasAttribute(Attributes::SExt))
1237          ExtendKind = ISD::SIGN_EXTEND;
1238        else if (F->getRetAttributes().hasAttribute(Attributes::ZExt))
1239          ExtendKind = ISD::ZERO_EXTEND;
1240
1241        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1242          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(),
1243                                            VT.getSimpleVT(), ExtendKind);
1244
1245        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1246        MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1247        SmallVector<SDValue, 4> Parts(NumParts);
1248        getCopyToParts(DAG, getCurDebugLoc(),
1249                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1250                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1251
1252        // 'inreg' on function refers to return value
1253        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1254        if (F->getRetAttributes().hasAttribute(Attributes::InReg))
1255          Flags.setInReg();
1256
1257        // Propagate extension type if any
1258        if (ExtendKind == ISD::SIGN_EXTEND)
1259          Flags.setSExt();
1260        else if (ExtendKind == ISD::ZERO_EXTEND)
1261          Flags.setZExt();
1262
1263        for (unsigned i = 0; i < NumParts; ++i) {
1264          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1265                                        /*isfixed=*/true, 0, 0));
1266          OutVals.push_back(Parts[i]);
1267        }
1268      }
1269    }
1270  }
1271
1272  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1273  CallingConv::ID CallConv =
1274    DAG.getMachineFunction().getFunction()->getCallingConv();
1275  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1276                          Outs, OutVals, getCurDebugLoc(), DAG);
1277
1278  // Verify that the target's LowerReturn behaved as expected.
1279  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1280         "LowerReturn didn't return a valid chain!");
1281
1282  // Update the DAG with the new chain value resulting from return lowering.
1283  DAG.setRoot(Chain);
1284}
1285
1286/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1287/// created for it, emit nodes to copy the value into the virtual
1288/// registers.
1289void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1290  // Skip empty types
1291  if (V->getType()->isEmptyTy())
1292    return;
1293
1294  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1295  if (VMI != FuncInfo.ValueMap.end()) {
1296    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1297    CopyValueToVirtualRegister(V, VMI->second);
1298  }
1299}
1300
1301/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1302/// the current basic block, add it to ValueMap now so that we'll get a
1303/// CopyTo/FromReg.
1304void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1305  // No need to export constants.
1306  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1307
1308  // Already exported?
1309  if (FuncInfo.isExportedInst(V)) return;
1310
1311  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1312  CopyValueToVirtualRegister(V, Reg);
1313}
1314
1315bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1316                                                     const BasicBlock *FromBB) {
1317  // The operands of the setcc have to be in this block.  We don't know
1318  // how to export them from some other block.
1319  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1320    // Can export from current BB.
1321    if (VI->getParent() == FromBB)
1322      return true;
1323
1324    // Is already exported, noop.
1325    return FuncInfo.isExportedInst(V);
1326  }
1327
1328  // If this is an argument, we can export it if the BB is the entry block or
1329  // if it is already exported.
1330  if (isa<Argument>(V)) {
1331    if (FromBB == &FromBB->getParent()->getEntryBlock())
1332      return true;
1333
1334    // Otherwise, can only export this if it is already exported.
1335    return FuncInfo.isExportedInst(V);
1336  }
1337
1338  // Otherwise, constants can always be exported.
1339  return true;
1340}
1341
1342/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1343uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1344                                            const MachineBasicBlock *Dst) const {
1345  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1346  if (!BPI)
1347    return 0;
1348  const BasicBlock *SrcBB = Src->getBasicBlock();
1349  const BasicBlock *DstBB = Dst->getBasicBlock();
1350  return BPI->getEdgeWeight(SrcBB, DstBB);
1351}
1352
1353void SelectionDAGBuilder::
1354addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1355                       uint32_t Weight /* = 0 */) {
1356  if (!Weight)
1357    Weight = getEdgeWeight(Src, Dst);
1358  Src->addSuccessor(Dst, Weight);
1359}
1360
1361
1362static bool InBlock(const Value *V, const BasicBlock *BB) {
1363  if (const Instruction *I = dyn_cast<Instruction>(V))
1364    return I->getParent() == BB;
1365  return true;
1366}
1367
1368/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1369/// This function emits a branch and is used at the leaves of an OR or an
1370/// AND operator tree.
1371///
1372void
1373SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1374                                                  MachineBasicBlock *TBB,
1375                                                  MachineBasicBlock *FBB,
1376                                                  MachineBasicBlock *CurBB,
1377                                                  MachineBasicBlock *SwitchBB) {
1378  const BasicBlock *BB = CurBB->getBasicBlock();
1379
1380  // If the leaf of the tree is a comparison, merge the condition into
1381  // the caseblock.
1382  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1383    // The operands of the cmp have to be in this block.  We don't know
1384    // how to export them from some other block.  If this is the first block
1385    // of the sequence, no exporting is needed.
1386    if (CurBB == SwitchBB ||
1387        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1388         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1389      ISD::CondCode Condition;
1390      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1391        Condition = getICmpCondCode(IC->getPredicate());
1392      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1393        Condition = getFCmpCondCode(FC->getPredicate());
1394        if (TM.Options.NoNaNsFPMath)
1395          Condition = getFCmpCodeWithoutNaN(Condition);
1396      } else {
1397        Condition = ISD::SETEQ; // silence warning.
1398        llvm_unreachable("Unknown compare instruction");
1399      }
1400
1401      CaseBlock CB(Condition, BOp->getOperand(0),
1402                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1403      SwitchCases.push_back(CB);
1404      return;
1405    }
1406  }
1407
1408  // Create a CaseBlock record representing this branch.
1409  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1410               NULL, TBB, FBB, CurBB);
1411  SwitchCases.push_back(CB);
1412}
1413
1414/// FindMergedConditions - If Cond is an expression like
1415void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1416                                               MachineBasicBlock *TBB,
1417                                               MachineBasicBlock *FBB,
1418                                               MachineBasicBlock *CurBB,
1419                                               MachineBasicBlock *SwitchBB,
1420                                               unsigned Opc) {
1421  // If this node is not part of the or/and tree, emit it as a branch.
1422  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1423  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1424      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1425      BOp->getParent() != CurBB->getBasicBlock() ||
1426      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1427      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1428    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1429    return;
1430  }
1431
1432  //  Create TmpBB after CurBB.
1433  MachineFunction::iterator BBI = CurBB;
1434  MachineFunction &MF = DAG.getMachineFunction();
1435  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1436  CurBB->getParent()->insert(++BBI, TmpBB);
1437
1438  if (Opc == Instruction::Or) {
1439    // Codegen X | Y as:
1440    //   jmp_if_X TBB
1441    //   jmp TmpBB
1442    // TmpBB:
1443    //   jmp_if_Y TBB
1444    //   jmp FBB
1445    //
1446
1447    // Emit the LHS condition.
1448    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1449
1450    // Emit the RHS condition into TmpBB.
1451    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1452  } else {
1453    assert(Opc == Instruction::And && "Unknown merge op!");
1454    // Codegen X & Y as:
1455    //   jmp_if_X TmpBB
1456    //   jmp FBB
1457    // TmpBB:
1458    //   jmp_if_Y TBB
1459    //   jmp FBB
1460    //
1461    //  This requires creation of TmpBB after CurBB.
1462
1463    // Emit the LHS condition.
1464    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1465
1466    // Emit the RHS condition into TmpBB.
1467    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1468  }
1469}
1470
1471/// If the set of cases should be emitted as a series of branches, return true.
1472/// If we should emit this as a bunch of and/or'd together conditions, return
1473/// false.
1474bool
1475SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1476  if (Cases.size() != 2) return true;
1477
1478  // If this is two comparisons of the same values or'd or and'd together, they
1479  // will get folded into a single comparison, so don't emit two blocks.
1480  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1481       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1482      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1483       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1484    return false;
1485  }
1486
1487  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1488  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1489  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1490      Cases[0].CC == Cases[1].CC &&
1491      isa<Constant>(Cases[0].CmpRHS) &&
1492      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1493    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1494      return false;
1495    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1496      return false;
1497  }
1498
1499  return true;
1500}
1501
1502void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1503  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1504
1505  // Update machine-CFG edges.
1506  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1507
1508  // Figure out which block is immediately after the current one.
1509  MachineBasicBlock *NextBlock = 0;
1510  MachineFunction::iterator BBI = BrMBB;
1511  if (++BBI != FuncInfo.MF->end())
1512    NextBlock = BBI;
1513
1514  if (I.isUnconditional()) {
1515    // Update machine-CFG edges.
1516    BrMBB->addSuccessor(Succ0MBB);
1517
1518    // If this is not a fall-through branch, emit the branch.
1519    if (Succ0MBB != NextBlock)
1520      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1521                              MVT::Other, getControlRoot(),
1522                              DAG.getBasicBlock(Succ0MBB)));
1523
1524    return;
1525  }
1526
1527  // If this condition is one of the special cases we handle, do special stuff
1528  // now.
1529  const Value *CondVal = I.getCondition();
1530  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1531
1532  // If this is a series of conditions that are or'd or and'd together, emit
1533  // this as a sequence of branches instead of setcc's with and/or operations.
1534  // As long as jumps are not expensive, this should improve performance.
1535  // For example, instead of something like:
1536  //     cmp A, B
1537  //     C = seteq
1538  //     cmp D, E
1539  //     F = setle
1540  //     or C, F
1541  //     jnz foo
1542  // Emit:
1543  //     cmp A, B
1544  //     je foo
1545  //     cmp D, E
1546  //     jle foo
1547  //
1548  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1549    if (!TLI.isJumpExpensive() &&
1550        BOp->hasOneUse() &&
1551        (BOp->getOpcode() == Instruction::And ||
1552         BOp->getOpcode() == Instruction::Or)) {
1553      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1554                           BOp->getOpcode());
1555      // If the compares in later blocks need to use values not currently
1556      // exported from this block, export them now.  This block should always
1557      // be the first entry.
1558      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1559
1560      // Allow some cases to be rejected.
1561      if (ShouldEmitAsBranches(SwitchCases)) {
1562        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1563          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1564          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1565        }
1566
1567        // Emit the branch for this block.
1568        visitSwitchCase(SwitchCases[0], BrMBB);
1569        SwitchCases.erase(SwitchCases.begin());
1570        return;
1571      }
1572
1573      // Okay, we decided not to do this, remove any inserted MBB's and clear
1574      // SwitchCases.
1575      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1576        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1577
1578      SwitchCases.clear();
1579    }
1580  }
1581
1582  // Create a CaseBlock record representing this branch.
1583  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1584               NULL, Succ0MBB, Succ1MBB, BrMBB);
1585
1586  // Use visitSwitchCase to actually insert the fast branch sequence for this
1587  // cond branch.
1588  visitSwitchCase(CB, BrMBB);
1589}
1590
1591/// visitSwitchCase - Emits the necessary code to represent a single node in
1592/// the binary search tree resulting from lowering a switch instruction.
1593void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1594                                          MachineBasicBlock *SwitchBB) {
1595  SDValue Cond;
1596  SDValue CondLHS = getValue(CB.CmpLHS);
1597  DebugLoc dl = getCurDebugLoc();
1598
1599  // Build the setcc now.
1600  if (CB.CmpMHS == NULL) {
1601    // Fold "(X == true)" to X and "(X == false)" to !X to
1602    // handle common cases produced by branch lowering.
1603    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1604        CB.CC == ISD::SETEQ)
1605      Cond = CondLHS;
1606    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1607             CB.CC == ISD::SETEQ) {
1608      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1609      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1610    } else
1611      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1612  } else {
1613    assert(CB.CC == ISD::SETCC_INVALID &&
1614           "Condition is undefined for to-the-range belonging check.");
1615
1616    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1617    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1618
1619    SDValue CmpOp = getValue(CB.CmpMHS);
1620    EVT VT = CmpOp.getValueType();
1621
1622    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1623      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1624                          ISD::SETULE);
1625    } else {
1626      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1627                                VT, CmpOp, DAG.getConstant(Low, VT));
1628      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1629                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1630    }
1631  }
1632
1633  // Update successor info
1634  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1635  // TrueBB and FalseBB are always different unless the incoming IR is
1636  // degenerate. This only happens when running llc on weird IR.
1637  if (CB.TrueBB != CB.FalseBB)
1638    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1639
1640  // Set NextBlock to be the MBB immediately after the current one, if any.
1641  // This is used to avoid emitting unnecessary branches to the next block.
1642  MachineBasicBlock *NextBlock = 0;
1643  MachineFunction::iterator BBI = SwitchBB;
1644  if (++BBI != FuncInfo.MF->end())
1645    NextBlock = BBI;
1646
1647  // If the lhs block is the next block, invert the condition so that we can
1648  // fall through to the lhs instead of the rhs block.
1649  if (CB.TrueBB == NextBlock) {
1650    std::swap(CB.TrueBB, CB.FalseBB);
1651    SDValue True = DAG.getConstant(1, Cond.getValueType());
1652    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1653  }
1654
1655  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1656                               MVT::Other, getControlRoot(), Cond,
1657                               DAG.getBasicBlock(CB.TrueBB));
1658
1659  // Insert the false branch. Do this even if it's a fall through branch,
1660  // this makes it easier to do DAG optimizations which require inverting
1661  // the branch condition.
1662  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1663                       DAG.getBasicBlock(CB.FalseBB));
1664
1665  DAG.setRoot(BrCond);
1666}
1667
1668/// visitJumpTable - Emit JumpTable node in the current MBB
1669void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1670  // Emit the code for the jump table
1671  assert(JT.Reg != -1U && "Should lower JT Header first!");
1672  EVT PTy = TLI.getPointerTy();
1673  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1674                                     JT.Reg, PTy);
1675  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1676  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1677                                    MVT::Other, Index.getValue(1),
1678                                    Table, Index);
1679  DAG.setRoot(BrJumpTable);
1680}
1681
1682/// visitJumpTableHeader - This function emits necessary code to produce index
1683/// in the JumpTable from switch case.
1684void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1685                                               JumpTableHeader &JTH,
1686                                               MachineBasicBlock *SwitchBB) {
1687  // Subtract the lowest switch case value from the value being switched on and
1688  // conditional branch to default mbb if the result is greater than the
1689  // difference between smallest and largest cases.
1690  SDValue SwitchOp = getValue(JTH.SValue);
1691  EVT VT = SwitchOp.getValueType();
1692  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1693                            DAG.getConstant(JTH.First, VT));
1694
1695  // The SDNode we just created, which holds the value being switched on minus
1696  // the smallest case value, needs to be copied to a virtual register so it
1697  // can be used as an index into the jump table in a subsequent basic block.
1698  // This value may be smaller or larger than the target's pointer type, and
1699  // therefore require extension or truncating.
1700  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1701
1702  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1703  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1704                                    JumpTableReg, SwitchOp);
1705  JT.Reg = JumpTableReg;
1706
1707  // Emit the range check for the jump table, and branch to the default block
1708  // for the switch statement if the value being switched on exceeds the largest
1709  // case in the switch.
1710  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1711                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1712                             DAG.getConstant(JTH.Last-JTH.First,VT),
1713                             ISD::SETUGT);
1714
1715  // Set NextBlock to be the MBB immediately after the current one, if any.
1716  // This is used to avoid emitting unnecessary branches to the next block.
1717  MachineBasicBlock *NextBlock = 0;
1718  MachineFunction::iterator BBI = SwitchBB;
1719
1720  if (++BBI != FuncInfo.MF->end())
1721    NextBlock = BBI;
1722
1723  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1724                               MVT::Other, CopyTo, CMP,
1725                               DAG.getBasicBlock(JT.Default));
1726
1727  if (JT.MBB != NextBlock)
1728    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1729                         DAG.getBasicBlock(JT.MBB));
1730
1731  DAG.setRoot(BrCond);
1732}
1733
1734/// visitBitTestHeader - This function emits necessary code to produce value
1735/// suitable for "bit tests"
1736void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1737                                             MachineBasicBlock *SwitchBB) {
1738  // Subtract the minimum value
1739  SDValue SwitchOp = getValue(B.SValue);
1740  MVT VT = SwitchOp.getSimpleValueType();
1741  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1742                            DAG.getConstant(B.First, VT));
1743
1744  // Check range
1745  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1746                                  TLI.getSetCCResultType(Sub.getValueType()),
1747                                  Sub, DAG.getConstant(B.Range, VT),
1748                                  ISD::SETUGT);
1749
1750  // Determine the type of the test operands.
1751  bool UsePtrType = false;
1752  if (!TLI.isTypeLegal(VT))
1753    UsePtrType = true;
1754  else {
1755    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1756      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1757        // Switch table case range are encoded into series of masks.
1758        // Just use pointer type, it's guaranteed to fit.
1759        UsePtrType = true;
1760        break;
1761      }
1762  }
1763  if (UsePtrType) {
1764    VT = TLI.getPointerTy();
1765    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1766  }
1767
1768  B.RegVT = VT;
1769  B.Reg = FuncInfo.CreateReg(VT);
1770  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1771                                    B.Reg, Sub);
1772
1773  // Set NextBlock to be the MBB immediately after the current one, if any.
1774  // This is used to avoid emitting unnecessary branches to the next block.
1775  MachineBasicBlock *NextBlock = 0;
1776  MachineFunction::iterator BBI = SwitchBB;
1777  if (++BBI != FuncInfo.MF->end())
1778    NextBlock = BBI;
1779
1780  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1781
1782  addSuccessorWithWeight(SwitchBB, B.Default);
1783  addSuccessorWithWeight(SwitchBB, MBB);
1784
1785  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1786                                MVT::Other, CopyTo, RangeCmp,
1787                                DAG.getBasicBlock(B.Default));
1788
1789  if (MBB != NextBlock)
1790    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1791                          DAG.getBasicBlock(MBB));
1792
1793  DAG.setRoot(BrRange);
1794}
1795
1796/// visitBitTestCase - this function produces one "bit test"
1797void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1798                                           MachineBasicBlock* NextMBB,
1799                                           uint32_t BranchWeightToNext,
1800                                           unsigned Reg,
1801                                           BitTestCase &B,
1802                                           MachineBasicBlock *SwitchBB) {
1803  EVT VT = BB.RegVT;
1804  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1805                                       Reg, VT);
1806  SDValue Cmp;
1807  unsigned PopCount = CountPopulation_64(B.Mask);
1808  if (PopCount == 1) {
1809    // Testing for a single bit; just compare the shift count with what it
1810    // would need to be to shift a 1 bit in that position.
1811    Cmp = DAG.getSetCC(getCurDebugLoc(),
1812                       TLI.getSetCCResultType(VT),
1813                       ShiftOp,
1814                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1815                       ISD::SETEQ);
1816  } else if (PopCount == BB.Range) {
1817    // There is only one zero bit in the range, test for it directly.
1818    Cmp = DAG.getSetCC(getCurDebugLoc(),
1819                       TLI.getSetCCResultType(VT),
1820                       ShiftOp,
1821                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1822                       ISD::SETNE);
1823  } else {
1824    // Make desired shift
1825    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1826                                    DAG.getConstant(1, VT), ShiftOp);
1827
1828    // Emit bit tests and jumps
1829    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1830                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1831    Cmp = DAG.getSetCC(getCurDebugLoc(),
1832                       TLI.getSetCCResultType(VT),
1833                       AndOp, DAG.getConstant(0, VT),
1834                       ISD::SETNE);
1835  }
1836
1837  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1838  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1839  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1840  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1841
1842  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1843                              MVT::Other, getControlRoot(),
1844                              Cmp, DAG.getBasicBlock(B.TargetBB));
1845
1846  // Set NextBlock to be the MBB immediately after the current one, if any.
1847  // This is used to avoid emitting unnecessary branches to the next block.
1848  MachineBasicBlock *NextBlock = 0;
1849  MachineFunction::iterator BBI = SwitchBB;
1850  if (++BBI != FuncInfo.MF->end())
1851    NextBlock = BBI;
1852
1853  if (NextMBB != NextBlock)
1854    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1855                        DAG.getBasicBlock(NextMBB));
1856
1857  DAG.setRoot(BrAnd);
1858}
1859
1860void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1861  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1862
1863  // Retrieve successors.
1864  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1865  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1866
1867  const Value *Callee(I.getCalledValue());
1868  const Function *Fn = dyn_cast<Function>(Callee);
1869  if (isa<InlineAsm>(Callee))
1870    visitInlineAsm(&I);
1871  else if (Fn && Fn->isIntrinsic()) {
1872    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1873    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1874  } else
1875    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1876
1877  // If the value of the invoke is used outside of its defining block, make it
1878  // available as a virtual register.
1879  CopyToExportRegsIfNeeded(&I);
1880
1881  // Update successor info
1882  addSuccessorWithWeight(InvokeMBB, Return);
1883  addSuccessorWithWeight(InvokeMBB, LandingPad);
1884
1885  // Drop into normal successor.
1886  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1887                          MVT::Other, getControlRoot(),
1888                          DAG.getBasicBlock(Return)));
1889}
1890
1891void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1892  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1893}
1894
1895void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1896  assert(FuncInfo.MBB->isLandingPad() &&
1897         "Call to landingpad not in landing pad!");
1898
1899  MachineBasicBlock *MBB = FuncInfo.MBB;
1900  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1901  AddLandingPadInfo(LP, MMI, MBB);
1902
1903  // If there aren't registers to copy the values into (e.g., during SjLj
1904  // exceptions), then don't bother to create these DAG nodes.
1905  if (TLI.getExceptionPointerRegister() == 0 &&
1906      TLI.getExceptionSelectorRegister() == 0)
1907    return;
1908
1909  SmallVector<EVT, 2> ValueVTs;
1910  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1911
1912  // Insert the EXCEPTIONADDR instruction.
1913  assert(FuncInfo.MBB->isLandingPad() &&
1914         "Call to eh.exception not in landing pad!");
1915  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1916  SDValue Ops[2];
1917  Ops[0] = DAG.getRoot();
1918  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1919  SDValue Chain = Op1.getValue(1);
1920
1921  // Insert the EHSELECTION instruction.
1922  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1923  Ops[0] = Op1;
1924  Ops[1] = Chain;
1925  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1926  Chain = Op2.getValue(1);
1927  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1928
1929  Ops[0] = Op1;
1930  Ops[1] = Op2;
1931  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1932                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1933                            &Ops[0], 2);
1934
1935  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1936  setValue(&LP, RetPair.first);
1937  DAG.setRoot(RetPair.second);
1938}
1939
1940/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1941/// small case ranges).
1942bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1943                                                 CaseRecVector& WorkList,
1944                                                 const Value* SV,
1945                                                 MachineBasicBlock *Default,
1946                                                 MachineBasicBlock *SwitchBB) {
1947  // Size is the number of Cases represented by this range.
1948  size_t Size = CR.Range.second - CR.Range.first;
1949  if (Size > 3)
1950    return false;
1951
1952  // Get the MachineFunction which holds the current MBB.  This is used when
1953  // inserting any additional MBBs necessary to represent the switch.
1954  MachineFunction *CurMF = FuncInfo.MF;
1955
1956  // Figure out which block is immediately after the current one.
1957  MachineBasicBlock *NextBlock = 0;
1958  MachineFunction::iterator BBI = CR.CaseBB;
1959
1960  if (++BBI != FuncInfo.MF->end())
1961    NextBlock = BBI;
1962
1963  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1964  // If any two of the cases has the same destination, and if one value
1965  // is the same as the other, but has one bit unset that the other has set,
1966  // use bit manipulation to do two compares at once.  For example:
1967  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1968  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1969  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1970  if (Size == 2 && CR.CaseBB == SwitchBB) {
1971    Case &Small = *CR.Range.first;
1972    Case &Big = *(CR.Range.second-1);
1973
1974    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1975      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1976      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1977
1978      // Check that there is only one bit different.
1979      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1980          (SmallValue | BigValue) == BigValue) {
1981        // Isolate the common bit.
1982        APInt CommonBit = BigValue & ~SmallValue;
1983        assert((SmallValue | CommonBit) == BigValue &&
1984               CommonBit.countPopulation() == 1 && "Not a common bit?");
1985
1986        SDValue CondLHS = getValue(SV);
1987        EVT VT = CondLHS.getValueType();
1988        DebugLoc DL = getCurDebugLoc();
1989
1990        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1991                                 DAG.getConstant(CommonBit, VT));
1992        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1993                                    Or, DAG.getConstant(BigValue, VT),
1994                                    ISD::SETEQ);
1995
1996        // Update successor info.
1997        // Both Small and Big will jump to Small.BB, so we sum up the weights.
1998        addSuccessorWithWeight(SwitchBB, Small.BB,
1999                               Small.ExtraWeight + Big.ExtraWeight);
2000        addSuccessorWithWeight(SwitchBB, Default,
2001          // The default destination is the first successor in IR.
2002          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2003
2004        // Insert the true branch.
2005        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2006                                     getControlRoot(), Cond,
2007                                     DAG.getBasicBlock(Small.BB));
2008
2009        // Insert the false branch.
2010        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2011                             DAG.getBasicBlock(Default));
2012
2013        DAG.setRoot(BrCond);
2014        return true;
2015      }
2016    }
2017  }
2018
2019  // Order cases by weight so the most likely case will be checked first.
2020  uint32_t UnhandledWeights = 0;
2021  if (BPI) {
2022    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2023      uint32_t IWeight = I->ExtraWeight;
2024      UnhandledWeights += IWeight;
2025      for (CaseItr J = CR.Range.first; J < I; ++J) {
2026        uint32_t JWeight = J->ExtraWeight;
2027        if (IWeight > JWeight)
2028          std::swap(*I, *J);
2029      }
2030    }
2031  }
2032  // Rearrange the case blocks so that the last one falls through if possible.
2033  Case &BackCase = *(CR.Range.second-1);
2034  if (Size > 1 &&
2035      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2036    // The last case block won't fall through into 'NextBlock' if we emit the
2037    // branches in this order.  See if rearranging a case value would help.
2038    // We start at the bottom as it's the case with the least weight.
2039    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2040      if (I->BB == NextBlock) {
2041        std::swap(*I, BackCase);
2042        break;
2043      }
2044    }
2045  }
2046
2047  // Create a CaseBlock record representing a conditional branch to
2048  // the Case's target mbb if the value being switched on SV is equal
2049  // to C.
2050  MachineBasicBlock *CurBlock = CR.CaseBB;
2051  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2052    MachineBasicBlock *FallThrough;
2053    if (I != E-1) {
2054      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2055      CurMF->insert(BBI, FallThrough);
2056
2057      // Put SV in a virtual register to make it available from the new blocks.
2058      ExportFromCurrentBlock(SV);
2059    } else {
2060      // If the last case doesn't match, go to the default block.
2061      FallThrough = Default;
2062    }
2063
2064    const Value *RHS, *LHS, *MHS;
2065    ISD::CondCode CC;
2066    if (I->High == I->Low) {
2067      // This is just small small case range :) containing exactly 1 case
2068      CC = ISD::SETEQ;
2069      LHS = SV; RHS = I->High; MHS = NULL;
2070    } else {
2071      CC = ISD::SETCC_INVALID;
2072      LHS = I->Low; MHS = SV; RHS = I->High;
2073    }
2074
2075    // The false weight should be sum of all un-handled cases.
2076    UnhandledWeights -= I->ExtraWeight;
2077    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2078                 /* me */ CurBlock,
2079                 /* trueweight */ I->ExtraWeight,
2080                 /* falseweight */ UnhandledWeights);
2081
2082    // If emitting the first comparison, just call visitSwitchCase to emit the
2083    // code into the current block.  Otherwise, push the CaseBlock onto the
2084    // vector to be later processed by SDISel, and insert the node's MBB
2085    // before the next MBB.
2086    if (CurBlock == SwitchBB)
2087      visitSwitchCase(CB, SwitchBB);
2088    else
2089      SwitchCases.push_back(CB);
2090
2091    CurBlock = FallThrough;
2092  }
2093
2094  return true;
2095}
2096
2097static inline bool areJTsAllowed(const TargetLowering &TLI) {
2098  return TLI.supportJumpTables() &&
2099          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2100           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2101}
2102
2103static APInt ComputeRange(const APInt &First, const APInt &Last) {
2104  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2105  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2106  return (LastExt - FirstExt + 1ULL);
2107}
2108
2109/// handleJTSwitchCase - Emit jumptable for current switch case range
2110bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2111                                             CaseRecVector &WorkList,
2112                                             const Value *SV,
2113                                             MachineBasicBlock *Default,
2114                                             MachineBasicBlock *SwitchBB) {
2115  Case& FrontCase = *CR.Range.first;
2116  Case& BackCase  = *(CR.Range.second-1);
2117
2118  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2119  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2120
2121  APInt TSize(First.getBitWidth(), 0);
2122  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2123    TSize += I->size();
2124
2125  if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2126    return false;
2127
2128  APInt Range = ComputeRange(First, Last);
2129  // The density is TSize / Range. Require at least 40%.
2130  // It should not be possible for IntTSize to saturate for sane code, but make
2131  // sure we handle Range saturation correctly.
2132  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2133  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2134  if (IntTSize * 10 < IntRange * 4)
2135    return false;
2136
2137  DEBUG(dbgs() << "Lowering jump table\n"
2138               << "First entry: " << First << ". Last entry: " << Last << '\n'
2139               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2140
2141  // Get the MachineFunction which holds the current MBB.  This is used when
2142  // inserting any additional MBBs necessary to represent the switch.
2143  MachineFunction *CurMF = FuncInfo.MF;
2144
2145  // Figure out which block is immediately after the current one.
2146  MachineFunction::iterator BBI = CR.CaseBB;
2147  ++BBI;
2148
2149  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2150
2151  // Create a new basic block to hold the code for loading the address
2152  // of the jump table, and jumping to it.  Update successor information;
2153  // we will either branch to the default case for the switch, or the jump
2154  // table.
2155  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2156  CurMF->insert(BBI, JumpTableBB);
2157
2158  addSuccessorWithWeight(CR.CaseBB, Default);
2159  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2160
2161  // Build a vector of destination BBs, corresponding to each target
2162  // of the jump table. If the value of the jump table slot corresponds to
2163  // a case statement, push the case's BB onto the vector, otherwise, push
2164  // the default BB.
2165  std::vector<MachineBasicBlock*> DestBBs;
2166  APInt TEI = First;
2167  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2168    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2169    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2170
2171    if (Low.ule(TEI) && TEI.ule(High)) {
2172      DestBBs.push_back(I->BB);
2173      if (TEI==High)
2174        ++I;
2175    } else {
2176      DestBBs.push_back(Default);
2177    }
2178  }
2179
2180  // Calculate weight for each unique destination in CR.
2181  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2182  if (FuncInfo.BPI)
2183    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2184      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2185          DestWeights.find(I->BB);
2186      if (Itr != DestWeights.end())
2187        Itr->second += I->ExtraWeight;
2188      else
2189        DestWeights[I->BB] = I->ExtraWeight;
2190    }
2191
2192  // Update successor info. Add one edge to each unique successor.
2193  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2194  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2195         E = DestBBs.end(); I != E; ++I) {
2196    if (!SuccsHandled[(*I)->getNumber()]) {
2197      SuccsHandled[(*I)->getNumber()] = true;
2198      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2199          DestWeights.find(*I);
2200      addSuccessorWithWeight(JumpTableBB, *I,
2201                             Itr != DestWeights.end() ? Itr->second : 0);
2202    }
2203  }
2204
2205  // Create a jump table index for this jump table.
2206  unsigned JTEncoding = TLI.getJumpTableEncoding();
2207  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2208                       ->createJumpTableIndex(DestBBs);
2209
2210  // Set the jump table information so that we can codegen it as a second
2211  // MachineBasicBlock
2212  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2213  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2214  if (CR.CaseBB == SwitchBB)
2215    visitJumpTableHeader(JT, JTH, SwitchBB);
2216
2217  JTCases.push_back(JumpTableBlock(JTH, JT));
2218  return true;
2219}
2220
2221/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2222/// 2 subtrees.
2223bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2224                                                  CaseRecVector& WorkList,
2225                                                  const Value* SV,
2226                                                  MachineBasicBlock *Default,
2227                                                  MachineBasicBlock *SwitchBB) {
2228  // Get the MachineFunction which holds the current MBB.  This is used when
2229  // inserting any additional MBBs necessary to represent the switch.
2230  MachineFunction *CurMF = FuncInfo.MF;
2231
2232  // Figure out which block is immediately after the current one.
2233  MachineFunction::iterator BBI = CR.CaseBB;
2234  ++BBI;
2235
2236  Case& FrontCase = *CR.Range.first;
2237  Case& BackCase  = *(CR.Range.second-1);
2238  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2239
2240  // Size is the number of Cases represented by this range.
2241  unsigned Size = CR.Range.second - CR.Range.first;
2242
2243  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2244  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2245  double FMetric = 0;
2246  CaseItr Pivot = CR.Range.first + Size/2;
2247
2248  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2249  // (heuristically) allow us to emit JumpTable's later.
2250  APInt TSize(First.getBitWidth(), 0);
2251  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2252       I!=E; ++I)
2253    TSize += I->size();
2254
2255  APInt LSize = FrontCase.size();
2256  APInt RSize = TSize-LSize;
2257  DEBUG(dbgs() << "Selecting best pivot: \n"
2258               << "First: " << First << ", Last: " << Last <<'\n'
2259               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2260  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2261       J!=E; ++I, ++J) {
2262    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2263    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2264    APInt Range = ComputeRange(LEnd, RBegin);
2265    assert((Range - 2ULL).isNonNegative() &&
2266           "Invalid case distance");
2267    // Use volatile double here to avoid excess precision issues on some hosts,
2268    // e.g. that use 80-bit X87 registers.
2269    volatile double LDensity =
2270       (double)LSize.roundToDouble() /
2271                           (LEnd - First + 1ULL).roundToDouble();
2272    volatile double RDensity =
2273      (double)RSize.roundToDouble() /
2274                           (Last - RBegin + 1ULL).roundToDouble();
2275    double Metric = Range.logBase2()*(LDensity+RDensity);
2276    // Should always split in some non-trivial place
2277    DEBUG(dbgs() <<"=>Step\n"
2278                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2279                 << "LDensity: " << LDensity
2280                 << ", RDensity: " << RDensity << '\n'
2281                 << "Metric: " << Metric << '\n');
2282    if (FMetric < Metric) {
2283      Pivot = J;
2284      FMetric = Metric;
2285      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2286    }
2287
2288    LSize += J->size();
2289    RSize -= J->size();
2290  }
2291  if (areJTsAllowed(TLI)) {
2292    // If our case is dense we *really* should handle it earlier!
2293    assert((FMetric > 0) && "Should handle dense range earlier!");
2294  } else {
2295    Pivot = CR.Range.first + Size/2;
2296  }
2297
2298  CaseRange LHSR(CR.Range.first, Pivot);
2299  CaseRange RHSR(Pivot, CR.Range.second);
2300  const Constant *C = Pivot->Low;
2301  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2302
2303  // We know that we branch to the LHS if the Value being switched on is
2304  // less than the Pivot value, C.  We use this to optimize our binary
2305  // tree a bit, by recognizing that if SV is greater than or equal to the
2306  // LHS's Case Value, and that Case Value is exactly one less than the
2307  // Pivot's Value, then we can branch directly to the LHS's Target,
2308  // rather than creating a leaf node for it.
2309  if ((LHSR.second - LHSR.first) == 1 &&
2310      LHSR.first->High == CR.GE &&
2311      cast<ConstantInt>(C)->getValue() ==
2312      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2313    TrueBB = LHSR.first->BB;
2314  } else {
2315    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2316    CurMF->insert(BBI, TrueBB);
2317    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2318
2319    // Put SV in a virtual register to make it available from the new blocks.
2320    ExportFromCurrentBlock(SV);
2321  }
2322
2323  // Similar to the optimization above, if the Value being switched on is
2324  // known to be less than the Constant CR.LT, and the current Case Value
2325  // is CR.LT - 1, then we can branch directly to the target block for
2326  // the current Case Value, rather than emitting a RHS leaf node for it.
2327  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2328      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2329      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2330    FalseBB = RHSR.first->BB;
2331  } else {
2332    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2333    CurMF->insert(BBI, FalseBB);
2334    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2335
2336    // Put SV in a virtual register to make it available from the new blocks.
2337    ExportFromCurrentBlock(SV);
2338  }
2339
2340  // Create a CaseBlock record representing a conditional branch to
2341  // the LHS node if the value being switched on SV is less than C.
2342  // Otherwise, branch to LHS.
2343  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2344
2345  if (CR.CaseBB == SwitchBB)
2346    visitSwitchCase(CB, SwitchBB);
2347  else
2348    SwitchCases.push_back(CB);
2349
2350  return true;
2351}
2352
2353/// handleBitTestsSwitchCase - if current case range has few destination and
2354/// range span less, than machine word bitwidth, encode case range into series
2355/// of masks and emit bit tests with these masks.
2356bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2357                                                   CaseRecVector& WorkList,
2358                                                   const Value* SV,
2359                                                   MachineBasicBlock* Default,
2360                                                   MachineBasicBlock *SwitchBB){
2361  EVT PTy = TLI.getPointerTy();
2362  unsigned IntPtrBits = PTy.getSizeInBits();
2363
2364  Case& FrontCase = *CR.Range.first;
2365  Case& BackCase  = *(CR.Range.second-1);
2366
2367  // Get the MachineFunction which holds the current MBB.  This is used when
2368  // inserting any additional MBBs necessary to represent the switch.
2369  MachineFunction *CurMF = FuncInfo.MF;
2370
2371  // If target does not have legal shift left, do not emit bit tests at all.
2372  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2373    return false;
2374
2375  size_t numCmps = 0;
2376  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2377       I!=E; ++I) {
2378    // Single case counts one, case range - two.
2379    numCmps += (I->Low == I->High ? 1 : 2);
2380  }
2381
2382  // Count unique destinations
2383  SmallSet<MachineBasicBlock*, 4> Dests;
2384  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2385    Dests.insert(I->BB);
2386    if (Dests.size() > 3)
2387      // Don't bother the code below, if there are too much unique destinations
2388      return false;
2389  }
2390  DEBUG(dbgs() << "Total number of unique destinations: "
2391        << Dests.size() << '\n'
2392        << "Total number of comparisons: " << numCmps << '\n');
2393
2394  // Compute span of values.
2395  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2396  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2397  APInt cmpRange = maxValue - minValue;
2398
2399  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2400               << "Low bound: " << minValue << '\n'
2401               << "High bound: " << maxValue << '\n');
2402
2403  if (cmpRange.uge(IntPtrBits) ||
2404      (!(Dests.size() == 1 && numCmps >= 3) &&
2405       !(Dests.size() == 2 && numCmps >= 5) &&
2406       !(Dests.size() >= 3 && numCmps >= 6)))
2407    return false;
2408
2409  DEBUG(dbgs() << "Emitting bit tests\n");
2410  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2411
2412  // Optimize the case where all the case values fit in a
2413  // word without having to subtract minValue. In this case,
2414  // we can optimize away the subtraction.
2415  if (maxValue.ult(IntPtrBits)) {
2416    cmpRange = maxValue;
2417  } else {
2418    lowBound = minValue;
2419  }
2420
2421  CaseBitsVector CasesBits;
2422  unsigned i, count = 0;
2423
2424  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2425    MachineBasicBlock* Dest = I->BB;
2426    for (i = 0; i < count; ++i)
2427      if (Dest == CasesBits[i].BB)
2428        break;
2429
2430    if (i == count) {
2431      assert((count < 3) && "Too much destinations to test!");
2432      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2433      count++;
2434    }
2435
2436    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2437    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2438
2439    uint64_t lo = (lowValue - lowBound).getZExtValue();
2440    uint64_t hi = (highValue - lowBound).getZExtValue();
2441    CasesBits[i].ExtraWeight += I->ExtraWeight;
2442
2443    for (uint64_t j = lo; j <= hi; j++) {
2444      CasesBits[i].Mask |=  1ULL << j;
2445      CasesBits[i].Bits++;
2446    }
2447
2448  }
2449  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2450
2451  BitTestInfo BTC;
2452
2453  // Figure out which block is immediately after the current one.
2454  MachineFunction::iterator BBI = CR.CaseBB;
2455  ++BBI;
2456
2457  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2458
2459  DEBUG(dbgs() << "Cases:\n");
2460  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2461    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2462                 << ", Bits: " << CasesBits[i].Bits
2463                 << ", BB: " << CasesBits[i].BB << '\n');
2464
2465    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2466    CurMF->insert(BBI, CaseBB);
2467    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2468                              CaseBB,
2469                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2470
2471    // Put SV in a virtual register to make it available from the new blocks.
2472    ExportFromCurrentBlock(SV);
2473  }
2474
2475  BitTestBlock BTB(lowBound, cmpRange, SV,
2476                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2477                   CR.CaseBB, Default, BTC);
2478
2479  if (CR.CaseBB == SwitchBB)
2480    visitBitTestHeader(BTB, SwitchBB);
2481
2482  BitTestCases.push_back(BTB);
2483
2484  return true;
2485}
2486
2487/// Clusterify - Transform simple list of Cases into list of CaseRange's
2488size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2489                                       const SwitchInst& SI) {
2490
2491  /// Use a shorter form of declaration, and also
2492  /// show the we want to use CRSBuilder as Clusterifier.
2493  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2494
2495  Clusterifier TheClusterifier;
2496
2497  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2498  // Start with "simple" cases
2499  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2500       i != e; ++i) {
2501    const BasicBlock *SuccBB = i.getCaseSuccessor();
2502    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2503
2504    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2505        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2506  }
2507
2508  TheClusterifier.optimize();
2509
2510  size_t numCmps = 0;
2511  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2512       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2513    Clusterifier::Cluster &C = *i;
2514    // Update edge weight for the cluster.
2515    unsigned W = C.first.Weight;
2516
2517    // FIXME: Currently work with ConstantInt based numbers.
2518    // Changing it to APInt based is a pretty heavy for this commit.
2519    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2520                         C.first.getHigh().toConstantInt(), C.second, W));
2521
2522    if (C.first.getLow() != C.first.getHigh())
2523    // A range counts double, since it requires two compares.
2524    ++numCmps;
2525  }
2526
2527  return numCmps;
2528}
2529
2530void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2531                                           MachineBasicBlock *Last) {
2532  // Update JTCases.
2533  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2534    if (JTCases[i].first.HeaderBB == First)
2535      JTCases[i].first.HeaderBB = Last;
2536
2537  // Update BitTestCases.
2538  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2539    if (BitTestCases[i].Parent == First)
2540      BitTestCases[i].Parent = Last;
2541}
2542
2543void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2544  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2545
2546  // Figure out which block is immediately after the current one.
2547  MachineBasicBlock *NextBlock = 0;
2548  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2549
2550  // If there is only the default destination, branch to it if it is not the
2551  // next basic block.  Otherwise, just fall through.
2552  if (!SI.getNumCases()) {
2553    // Update machine-CFG edges.
2554
2555    // If this is not a fall-through branch, emit the branch.
2556    SwitchMBB->addSuccessor(Default);
2557    if (Default != NextBlock)
2558      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2559                              MVT::Other, getControlRoot(),
2560                              DAG.getBasicBlock(Default)));
2561
2562    return;
2563  }
2564
2565  // If there are any non-default case statements, create a vector of Cases
2566  // representing each one, and sort the vector so that we can efficiently
2567  // create a binary search tree from them.
2568  CaseVector Cases;
2569  size_t numCmps = Clusterify(Cases, SI);
2570  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2571               << ". Total compares: " << numCmps << '\n');
2572  (void)numCmps;
2573
2574  // Get the Value to be switched on and default basic blocks, which will be
2575  // inserted into CaseBlock records, representing basic blocks in the binary
2576  // search tree.
2577  const Value *SV = SI.getCondition();
2578
2579  // Push the initial CaseRec onto the worklist
2580  CaseRecVector WorkList;
2581  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2582                             CaseRange(Cases.begin(),Cases.end())));
2583
2584  while (!WorkList.empty()) {
2585    // Grab a record representing a case range to process off the worklist
2586    CaseRec CR = WorkList.back();
2587    WorkList.pop_back();
2588
2589    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2590      continue;
2591
2592    // If the range has few cases (two or less) emit a series of specific
2593    // tests.
2594    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2595      continue;
2596
2597    // If the switch has more than N blocks, and is at least 40% dense, and the
2598    // target supports indirect branches, then emit a jump table rather than
2599    // lowering the switch to a binary tree of conditional branches.
2600    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2601    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2602      continue;
2603
2604    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2605    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2606    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2607  }
2608}
2609
2610void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2611  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2612
2613  // Update machine-CFG edges with unique successors.
2614  SmallSet<BasicBlock*, 32> Done;
2615  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2616    BasicBlock *BB = I.getSuccessor(i);
2617    bool Inserted = Done.insert(BB);
2618    if (!Inserted)
2619        continue;
2620
2621    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2622    addSuccessorWithWeight(IndirectBrMBB, Succ);
2623  }
2624
2625  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2626                          MVT::Other, getControlRoot(),
2627                          getValue(I.getAddress())));
2628}
2629
2630void SelectionDAGBuilder::visitFSub(const User &I) {
2631  // -0.0 - X --> fneg
2632  Type *Ty = I.getType();
2633  if (isa<Constant>(I.getOperand(0)) &&
2634      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2635    SDValue Op2 = getValue(I.getOperand(1));
2636    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2637                             Op2.getValueType(), Op2));
2638    return;
2639  }
2640
2641  visitBinary(I, ISD::FSUB);
2642}
2643
2644void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2645  SDValue Op1 = getValue(I.getOperand(0));
2646  SDValue Op2 = getValue(I.getOperand(1));
2647  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2648                           Op1.getValueType(), Op1, Op2));
2649}
2650
2651void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2652  SDValue Op1 = getValue(I.getOperand(0));
2653  SDValue Op2 = getValue(I.getOperand(1));
2654
2655  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2656
2657  // Coerce the shift amount to the right type if we can.
2658  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2659    unsigned ShiftSize = ShiftTy.getSizeInBits();
2660    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2661    DebugLoc DL = getCurDebugLoc();
2662
2663    // If the operand is smaller than the shift count type, promote it.
2664    if (ShiftSize > Op2Size)
2665      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2666
2667    // If the operand is larger than the shift count type but the shift
2668    // count type has enough bits to represent any shift value, truncate
2669    // it now. This is a common case and it exposes the truncate to
2670    // optimization early.
2671    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2672      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2673    // Otherwise we'll need to temporarily settle for some other convenient
2674    // type.  Type legalization will make adjustments once the shiftee is split.
2675    else
2676      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2677  }
2678
2679  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2680                           Op1.getValueType(), Op1, Op2));
2681}
2682
2683void SelectionDAGBuilder::visitSDiv(const User &I) {
2684  SDValue Op1 = getValue(I.getOperand(0));
2685  SDValue Op2 = getValue(I.getOperand(1));
2686
2687  // Turn exact SDivs into multiplications.
2688  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2689  // exact bit.
2690  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2691      !isa<ConstantSDNode>(Op1) &&
2692      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2693    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2694  else
2695    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2696                             Op1, Op2));
2697}
2698
2699void SelectionDAGBuilder::visitICmp(const User &I) {
2700  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2701  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2702    predicate = IC->getPredicate();
2703  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2704    predicate = ICmpInst::Predicate(IC->getPredicate());
2705  SDValue Op1 = getValue(I.getOperand(0));
2706  SDValue Op2 = getValue(I.getOperand(1));
2707  ISD::CondCode Opcode = getICmpCondCode(predicate);
2708
2709  EVT DestVT = TLI.getValueType(I.getType());
2710  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2711}
2712
2713void SelectionDAGBuilder::visitFCmp(const User &I) {
2714  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2715  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2716    predicate = FC->getPredicate();
2717  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2718    predicate = FCmpInst::Predicate(FC->getPredicate());
2719  SDValue Op1 = getValue(I.getOperand(0));
2720  SDValue Op2 = getValue(I.getOperand(1));
2721  ISD::CondCode Condition = getFCmpCondCode(predicate);
2722  if (TM.Options.NoNaNsFPMath)
2723    Condition = getFCmpCodeWithoutNaN(Condition);
2724  EVT DestVT = TLI.getValueType(I.getType());
2725  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2726}
2727
2728void SelectionDAGBuilder::visitSelect(const User &I) {
2729  SmallVector<EVT, 4> ValueVTs;
2730  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2731  unsigned NumValues = ValueVTs.size();
2732  if (NumValues == 0) return;
2733
2734  SmallVector<SDValue, 4> Values(NumValues);
2735  SDValue Cond     = getValue(I.getOperand(0));
2736  SDValue TrueVal  = getValue(I.getOperand(1));
2737  SDValue FalseVal = getValue(I.getOperand(2));
2738  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2739    ISD::VSELECT : ISD::SELECT;
2740
2741  for (unsigned i = 0; i != NumValues; ++i)
2742    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2743                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2744                            Cond,
2745                            SDValue(TrueVal.getNode(),
2746                                    TrueVal.getResNo() + i),
2747                            SDValue(FalseVal.getNode(),
2748                                    FalseVal.getResNo() + i));
2749
2750  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2751                           DAG.getVTList(&ValueVTs[0], NumValues),
2752                           &Values[0], NumValues));
2753}
2754
2755void SelectionDAGBuilder::visitTrunc(const User &I) {
2756  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2757  SDValue N = getValue(I.getOperand(0));
2758  EVT DestVT = TLI.getValueType(I.getType());
2759  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2760}
2761
2762void SelectionDAGBuilder::visitZExt(const User &I) {
2763  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2764  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2765  SDValue N = getValue(I.getOperand(0));
2766  EVT DestVT = TLI.getValueType(I.getType());
2767  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2768}
2769
2770void SelectionDAGBuilder::visitSExt(const User &I) {
2771  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2772  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2773  SDValue N = getValue(I.getOperand(0));
2774  EVT DestVT = TLI.getValueType(I.getType());
2775  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2776}
2777
2778void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2779  // FPTrunc is never a no-op cast, no need to check
2780  SDValue N = getValue(I.getOperand(0));
2781  EVT DestVT = TLI.getValueType(I.getType());
2782  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2783                           DestVT, N,
2784                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2785}
2786
2787void SelectionDAGBuilder::visitFPExt(const User &I){
2788  // FPExt is never a no-op cast, no need to check
2789  SDValue N = getValue(I.getOperand(0));
2790  EVT DestVT = TLI.getValueType(I.getType());
2791  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2792}
2793
2794void SelectionDAGBuilder::visitFPToUI(const User &I) {
2795  // FPToUI is never a no-op cast, no need to check
2796  SDValue N = getValue(I.getOperand(0));
2797  EVT DestVT = TLI.getValueType(I.getType());
2798  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2799}
2800
2801void SelectionDAGBuilder::visitFPToSI(const User &I) {
2802  // FPToSI is never a no-op cast, no need to check
2803  SDValue N = getValue(I.getOperand(0));
2804  EVT DestVT = TLI.getValueType(I.getType());
2805  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2806}
2807
2808void SelectionDAGBuilder::visitUIToFP(const User &I) {
2809  // UIToFP is never a no-op cast, no need to check
2810  SDValue N = getValue(I.getOperand(0));
2811  EVT DestVT = TLI.getValueType(I.getType());
2812  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2813}
2814
2815void SelectionDAGBuilder::visitSIToFP(const User &I){
2816  // SIToFP is never a no-op cast, no need to check
2817  SDValue N = getValue(I.getOperand(0));
2818  EVT DestVT = TLI.getValueType(I.getType());
2819  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2820}
2821
2822void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2823  // What to do depends on the size of the integer and the size of the pointer.
2824  // We can either truncate, zero extend, or no-op, accordingly.
2825  SDValue N = getValue(I.getOperand(0));
2826  EVT DestVT = TLI.getValueType(I.getType());
2827  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2828}
2829
2830void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2831  // What to do depends on the size of the integer and the size of the pointer.
2832  // We can either truncate, zero extend, or no-op, accordingly.
2833  SDValue N = getValue(I.getOperand(0));
2834  EVT DestVT = TLI.getValueType(I.getType());
2835  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2836}
2837
2838void SelectionDAGBuilder::visitBitCast(const User &I) {
2839  SDValue N = getValue(I.getOperand(0));
2840  EVT DestVT = TLI.getValueType(I.getType());
2841
2842  // BitCast assures us that source and destination are the same size so this is
2843  // either a BITCAST or a no-op.
2844  if (DestVT != N.getValueType())
2845    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2846                             DestVT, N)); // convert types.
2847  else
2848    setValue(&I, N);            // noop cast.
2849}
2850
2851void SelectionDAGBuilder::visitInsertElement(const User &I) {
2852  SDValue InVec = getValue(I.getOperand(0));
2853  SDValue InVal = getValue(I.getOperand(1));
2854  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2855                              TLI.getPointerTy(),
2856                              getValue(I.getOperand(2)));
2857  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2858                           TLI.getValueType(I.getType()),
2859                           InVec, InVal, InIdx));
2860}
2861
2862void SelectionDAGBuilder::visitExtractElement(const User &I) {
2863  SDValue InVec = getValue(I.getOperand(0));
2864  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2865                              TLI.getPointerTy(),
2866                              getValue(I.getOperand(1)));
2867  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2868                           TLI.getValueType(I.getType()), InVec, InIdx));
2869}
2870
2871// Utility for visitShuffleVector - Return true if every element in Mask,
2872// beginning from position Pos and ending in Pos+Size, falls within the
2873// specified sequential range [L, L+Pos). or is undef.
2874static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2875                                unsigned Pos, unsigned Size, int Low) {
2876  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2877    if (Mask[i] >= 0 && Mask[i] != Low)
2878      return false;
2879  return true;
2880}
2881
2882void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2883  SDValue Src1 = getValue(I.getOperand(0));
2884  SDValue Src2 = getValue(I.getOperand(1));
2885
2886  SmallVector<int, 8> Mask;
2887  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2888  unsigned MaskNumElts = Mask.size();
2889
2890  EVT VT = TLI.getValueType(I.getType());
2891  EVT SrcVT = Src1.getValueType();
2892  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2893
2894  if (SrcNumElts == MaskNumElts) {
2895    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2896                                      &Mask[0]));
2897    return;
2898  }
2899
2900  // Normalize the shuffle vector since mask and vector length don't match.
2901  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2902    // Mask is longer than the source vectors and is a multiple of the source
2903    // vectors.  We can use concatenate vector to make the mask and vectors
2904    // lengths match.
2905    if (SrcNumElts*2 == MaskNumElts) {
2906      // First check for Src1 in low and Src2 in high
2907      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2908          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2909        // The shuffle is concatenating two vectors together.
2910        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2911                                 VT, Src1, Src2));
2912        return;
2913      }
2914      // Then check for Src2 in low and Src1 in high
2915      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2916          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2917        // The shuffle is concatenating two vectors together.
2918        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2919                                 VT, Src2, Src1));
2920        return;
2921      }
2922    }
2923
2924    // Pad both vectors with undefs to make them the same length as the mask.
2925    unsigned NumConcat = MaskNumElts / SrcNumElts;
2926    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2927    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2928    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2929
2930    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2931    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2932    MOps1[0] = Src1;
2933    MOps2[0] = Src2;
2934
2935    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2936                                                  getCurDebugLoc(), VT,
2937                                                  &MOps1[0], NumConcat);
2938    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2939                                                  getCurDebugLoc(), VT,
2940                                                  &MOps2[0], NumConcat);
2941
2942    // Readjust mask for new input vector length.
2943    SmallVector<int, 8> MappedOps;
2944    for (unsigned i = 0; i != MaskNumElts; ++i) {
2945      int Idx = Mask[i];
2946      if (Idx >= (int)SrcNumElts)
2947        Idx -= SrcNumElts - MaskNumElts;
2948      MappedOps.push_back(Idx);
2949    }
2950
2951    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2952                                      &MappedOps[0]));
2953    return;
2954  }
2955
2956  if (SrcNumElts > MaskNumElts) {
2957    // Analyze the access pattern of the vector to see if we can extract
2958    // two subvectors and do the shuffle. The analysis is done by calculating
2959    // the range of elements the mask access on both vectors.
2960    int MinRange[2] = { static_cast<int>(SrcNumElts),
2961                        static_cast<int>(SrcNumElts)};
2962    int MaxRange[2] = {-1, -1};
2963
2964    for (unsigned i = 0; i != MaskNumElts; ++i) {
2965      int Idx = Mask[i];
2966      unsigned Input = 0;
2967      if (Idx < 0)
2968        continue;
2969
2970      if (Idx >= (int)SrcNumElts) {
2971        Input = 1;
2972        Idx -= SrcNumElts;
2973      }
2974      if (Idx > MaxRange[Input])
2975        MaxRange[Input] = Idx;
2976      if (Idx < MinRange[Input])
2977        MinRange[Input] = Idx;
2978    }
2979
2980    // Check if the access is smaller than the vector size and can we find
2981    // a reasonable extract index.
2982    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2983                                   // Extract.
2984    int StartIdx[2];  // StartIdx to extract from
2985    for (unsigned Input = 0; Input < 2; ++Input) {
2986      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2987        RangeUse[Input] = 0; // Unused
2988        StartIdx[Input] = 0;
2989        continue;
2990      }
2991
2992      // Find a good start index that is a multiple of the mask length. Then
2993      // see if the rest of the elements are in range.
2994      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2995      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2996          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2997        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2998    }
2999
3000    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3001      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3002      return;
3003    }
3004    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3005      // Extract appropriate subvector and generate a vector shuffle
3006      for (unsigned Input = 0; Input < 2; ++Input) {
3007        SDValue &Src = Input == 0 ? Src1 : Src2;
3008        if (RangeUse[Input] == 0)
3009          Src = DAG.getUNDEF(VT);
3010        else
3011          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
3012                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
3013      }
3014
3015      // Calculate new mask.
3016      SmallVector<int, 8> MappedOps;
3017      for (unsigned i = 0; i != MaskNumElts; ++i) {
3018        int Idx = Mask[i];
3019        if (Idx >= 0) {
3020          if (Idx < (int)SrcNumElts)
3021            Idx -= StartIdx[0];
3022          else
3023            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3024        }
3025        MappedOps.push_back(Idx);
3026      }
3027
3028      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
3029                                        &MappedOps[0]));
3030      return;
3031    }
3032  }
3033
3034  // We can't use either concat vectors or extract subvectors so fall back to
3035  // replacing the shuffle with extract and build vector.
3036  // to insert and build vector.
3037  EVT EltVT = VT.getVectorElementType();
3038  EVT PtrVT = TLI.getPointerTy();
3039  SmallVector<SDValue,8> Ops;
3040  for (unsigned i = 0; i != MaskNumElts; ++i) {
3041    int Idx = Mask[i];
3042    SDValue Res;
3043
3044    if (Idx < 0) {
3045      Res = DAG.getUNDEF(EltVT);
3046    } else {
3047      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3048      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3049
3050      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
3051                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3052    }
3053
3054    Ops.push_back(Res);
3055  }
3056
3057  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
3058                           VT, &Ops[0], Ops.size()));
3059}
3060
3061void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3062  const Value *Op0 = I.getOperand(0);
3063  const Value *Op1 = I.getOperand(1);
3064  Type *AggTy = I.getType();
3065  Type *ValTy = Op1->getType();
3066  bool IntoUndef = isa<UndefValue>(Op0);
3067  bool FromUndef = isa<UndefValue>(Op1);
3068
3069  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3070
3071  SmallVector<EVT, 4> AggValueVTs;
3072  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3073  SmallVector<EVT, 4> ValValueVTs;
3074  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3075
3076  unsigned NumAggValues = AggValueVTs.size();
3077  unsigned NumValValues = ValValueVTs.size();
3078  SmallVector<SDValue, 4> Values(NumAggValues);
3079
3080  SDValue Agg = getValue(Op0);
3081  unsigned i = 0;
3082  // Copy the beginning value(s) from the original aggregate.
3083  for (; i != LinearIndex; ++i)
3084    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3085                SDValue(Agg.getNode(), Agg.getResNo() + i);
3086  // Copy values from the inserted value(s).
3087  if (NumValValues) {
3088    SDValue Val = getValue(Op1);
3089    for (; i != LinearIndex + NumValValues; ++i)
3090      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3091                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3092  }
3093  // Copy remaining value(s) from the original aggregate.
3094  for (; i != NumAggValues; ++i)
3095    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3096                SDValue(Agg.getNode(), Agg.getResNo() + i);
3097
3098  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3099                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3100                           &Values[0], NumAggValues));
3101}
3102
3103void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3104  const Value *Op0 = I.getOperand(0);
3105  Type *AggTy = Op0->getType();
3106  Type *ValTy = I.getType();
3107  bool OutOfUndef = isa<UndefValue>(Op0);
3108
3109  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3110
3111  SmallVector<EVT, 4> ValValueVTs;
3112  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3113
3114  unsigned NumValValues = ValValueVTs.size();
3115
3116  // Ignore a extractvalue that produces an empty object
3117  if (!NumValValues) {
3118    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3119    return;
3120  }
3121
3122  SmallVector<SDValue, 4> Values(NumValValues);
3123
3124  SDValue Agg = getValue(Op0);
3125  // Copy out the selected value(s).
3126  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3127    Values[i - LinearIndex] =
3128      OutOfUndef ?
3129        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3130        SDValue(Agg.getNode(), Agg.getResNo() + i);
3131
3132  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3133                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3134                           &Values[0], NumValValues));
3135}
3136
3137void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3138  SDValue N = getValue(I.getOperand(0));
3139  // Note that the pointer operand may be a vector of pointers. Take the scalar
3140  // element which holds a pointer.
3141  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3142
3143  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3144       OI != E; ++OI) {
3145    const Value *Idx = *OI;
3146    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3147      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3148      if (Field) {
3149        // N = N + Offset
3150        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3151        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3152                        DAG.getConstant(Offset, N.getValueType()));
3153      }
3154
3155      Ty = StTy->getElementType(Field);
3156    } else {
3157      Ty = cast<SequentialType>(Ty)->getElementType();
3158
3159      // If this is a constant subscript, handle it quickly.
3160      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3161        if (CI->isZero()) continue;
3162        uint64_t Offs =
3163            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3164        SDValue OffsVal;
3165        EVT PTy = TLI.getPointerTy();
3166        unsigned PtrBits = PTy.getSizeInBits();
3167        if (PtrBits < 64)
3168          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3169                                TLI.getPointerTy(),
3170                                DAG.getConstant(Offs, MVT::i64));
3171        else
3172          OffsVal = DAG.getIntPtrConstant(Offs);
3173
3174        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3175                        OffsVal);
3176        continue;
3177      }
3178
3179      // N = N + Idx * ElementSize;
3180      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3181                                TD->getTypeAllocSize(Ty));
3182      SDValue IdxN = getValue(Idx);
3183
3184      // If the index is smaller or larger than intptr_t, truncate or extend
3185      // it.
3186      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3187
3188      // If this is a multiply by a power of two, turn it into a shl
3189      // immediately.  This is a very common case.
3190      if (ElementSize != 1) {
3191        if (ElementSize.isPowerOf2()) {
3192          unsigned Amt = ElementSize.logBase2();
3193          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3194                             N.getValueType(), IdxN,
3195                             DAG.getConstant(Amt, IdxN.getValueType()));
3196        } else {
3197          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3198          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3199                             N.getValueType(), IdxN, Scale);
3200        }
3201      }
3202
3203      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3204                      N.getValueType(), N, IdxN);
3205    }
3206  }
3207
3208  setValue(&I, N);
3209}
3210
3211void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3212  // If this is a fixed sized alloca in the entry block of the function,
3213  // allocate it statically on the stack.
3214  if (FuncInfo.StaticAllocaMap.count(&I))
3215    return;   // getValue will auto-populate this.
3216
3217  Type *Ty = I.getAllocatedType();
3218  uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3219  unsigned Align =
3220    std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3221             I.getAlignment());
3222
3223  SDValue AllocSize = getValue(I.getArraySize());
3224
3225  EVT IntPtr = TLI.getPointerTy();
3226  if (AllocSize.getValueType() != IntPtr)
3227    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3228
3229  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3230                          AllocSize,
3231                          DAG.getConstant(TySize, IntPtr));
3232
3233  // Handle alignment.  If the requested alignment is less than or equal to
3234  // the stack alignment, ignore it.  If the size is greater than or equal to
3235  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3236  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3237  if (Align <= StackAlign)
3238    Align = 0;
3239
3240  // Round the size of the allocation up to the stack alignment size
3241  // by add SA-1 to the size.
3242  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3243                          AllocSize.getValueType(), AllocSize,
3244                          DAG.getIntPtrConstant(StackAlign-1));
3245
3246  // Mask out the low bits for alignment purposes.
3247  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3248                          AllocSize.getValueType(), AllocSize,
3249                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3250
3251  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3252  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3253  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3254                            VTs, Ops, 3);
3255  setValue(&I, DSA);
3256  DAG.setRoot(DSA.getValue(1));
3257
3258  // Inform the Frame Information that we have just allocated a variable-sized
3259  // object.
3260  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3261}
3262
3263void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3264  if (I.isAtomic())
3265    return visitAtomicLoad(I);
3266
3267  const Value *SV = I.getOperand(0);
3268  SDValue Ptr = getValue(SV);
3269
3270  Type *Ty = I.getType();
3271
3272  bool isVolatile = I.isVolatile();
3273  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3274  bool isInvariant = I.getMetadata("invariant.load") != 0;
3275  unsigned Alignment = I.getAlignment();
3276  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3277  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3278
3279  SmallVector<EVT, 4> ValueVTs;
3280  SmallVector<uint64_t, 4> Offsets;
3281  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3282  unsigned NumValues = ValueVTs.size();
3283  if (NumValues == 0)
3284    return;
3285
3286  SDValue Root;
3287  bool ConstantMemory = false;
3288  if (I.isVolatile() || NumValues > MaxParallelChains)
3289    // Serialize volatile loads with other side effects.
3290    Root = getRoot();
3291  else if (AA->pointsToConstantMemory(
3292             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3293    // Do not serialize (non-volatile) loads of constant memory with anything.
3294    Root = DAG.getEntryNode();
3295    ConstantMemory = true;
3296  } else {
3297    // Do not serialize non-volatile loads against each other.
3298    Root = DAG.getRoot();
3299  }
3300
3301  SmallVector<SDValue, 4> Values(NumValues);
3302  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3303                                          NumValues));
3304  EVT PtrVT = Ptr.getValueType();
3305  unsigned ChainI = 0;
3306  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3307    // Serializing loads here may result in excessive register pressure, and
3308    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3309    // could recover a bit by hoisting nodes upward in the chain by recognizing
3310    // they are side-effect free or do not alias. The optimizer should really
3311    // avoid this case by converting large object/array copies to llvm.memcpy
3312    // (MaxParallelChains should always remain as failsafe).
3313    if (ChainI == MaxParallelChains) {
3314      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3315      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3316                                  MVT::Other, &Chains[0], ChainI);
3317      Root = Chain;
3318      ChainI = 0;
3319    }
3320    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3321                            PtrVT, Ptr,
3322                            DAG.getConstant(Offsets[i], PtrVT));
3323    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3324                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3325                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3326                            Ranges);
3327
3328    Values[i] = L;
3329    Chains[ChainI] = L.getValue(1);
3330  }
3331
3332  if (!ConstantMemory) {
3333    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3334                                MVT::Other, &Chains[0], ChainI);
3335    if (isVolatile)
3336      DAG.setRoot(Chain);
3337    else
3338      PendingLoads.push_back(Chain);
3339  }
3340
3341  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3342                           DAG.getVTList(&ValueVTs[0], NumValues),
3343                           &Values[0], NumValues));
3344}
3345
3346void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3347  if (I.isAtomic())
3348    return visitAtomicStore(I);
3349
3350  const Value *SrcV = I.getOperand(0);
3351  const Value *PtrV = I.getOperand(1);
3352
3353  SmallVector<EVT, 4> ValueVTs;
3354  SmallVector<uint64_t, 4> Offsets;
3355  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3356  unsigned NumValues = ValueVTs.size();
3357  if (NumValues == 0)
3358    return;
3359
3360  // Get the lowered operands. Note that we do this after
3361  // checking if NumResults is zero, because with zero results
3362  // the operands won't have values in the map.
3363  SDValue Src = getValue(SrcV);
3364  SDValue Ptr = getValue(PtrV);
3365
3366  SDValue Root = getRoot();
3367  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3368                                          NumValues));
3369  EVT PtrVT = Ptr.getValueType();
3370  bool isVolatile = I.isVolatile();
3371  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3372  unsigned Alignment = I.getAlignment();
3373  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3374
3375  unsigned ChainI = 0;
3376  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3377    // See visitLoad comments.
3378    if (ChainI == MaxParallelChains) {
3379      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3380                                  MVT::Other, &Chains[0], ChainI);
3381      Root = Chain;
3382      ChainI = 0;
3383    }
3384    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3385                              DAG.getConstant(Offsets[i], PtrVT));
3386    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3387                              SDValue(Src.getNode(), Src.getResNo() + i),
3388                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3389                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3390    Chains[ChainI] = St;
3391  }
3392
3393  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3394                                  MVT::Other, &Chains[0], ChainI);
3395  ++SDNodeOrder;
3396  AssignOrderingToNode(StoreNode.getNode());
3397  DAG.setRoot(StoreNode);
3398}
3399
3400static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3401                                    SynchronizationScope Scope,
3402                                    bool Before, DebugLoc dl,
3403                                    SelectionDAG &DAG,
3404                                    const TargetLowering &TLI) {
3405  // Fence, if necessary
3406  if (Before) {
3407    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3408      Order = Release;
3409    else if (Order == Acquire || Order == Monotonic)
3410      return Chain;
3411  } else {
3412    if (Order == AcquireRelease)
3413      Order = Acquire;
3414    else if (Order == Release || Order == Monotonic)
3415      return Chain;
3416  }
3417  SDValue Ops[3];
3418  Ops[0] = Chain;
3419  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3420  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3421  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3422}
3423
3424void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3425  DebugLoc dl = getCurDebugLoc();
3426  AtomicOrdering Order = I.getOrdering();
3427  SynchronizationScope Scope = I.getSynchScope();
3428
3429  SDValue InChain = getRoot();
3430
3431  if (TLI.getInsertFencesForAtomic())
3432    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3433                                   DAG, TLI);
3434
3435  SDValue L =
3436    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3437                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3438                  InChain,
3439                  getValue(I.getPointerOperand()),
3440                  getValue(I.getCompareOperand()),
3441                  getValue(I.getNewValOperand()),
3442                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3443                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3444                  Scope);
3445
3446  SDValue OutChain = L.getValue(1);
3447
3448  if (TLI.getInsertFencesForAtomic())
3449    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3450                                    DAG, TLI);
3451
3452  setValue(&I, L);
3453  DAG.setRoot(OutChain);
3454}
3455
3456void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3457  DebugLoc dl = getCurDebugLoc();
3458  ISD::NodeType NT;
3459  switch (I.getOperation()) {
3460  default: llvm_unreachable("Unknown atomicrmw operation");
3461  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3462  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3463  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3464  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3465  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3466  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3467  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3468  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3469  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3470  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3471  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3472  }
3473  AtomicOrdering Order = I.getOrdering();
3474  SynchronizationScope Scope = I.getSynchScope();
3475
3476  SDValue InChain = getRoot();
3477
3478  if (TLI.getInsertFencesForAtomic())
3479    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3480                                   DAG, TLI);
3481
3482  SDValue L =
3483    DAG.getAtomic(NT, dl,
3484                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3485                  InChain,
3486                  getValue(I.getPointerOperand()),
3487                  getValue(I.getValOperand()),
3488                  I.getPointerOperand(), 0 /* Alignment */,
3489                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3490                  Scope);
3491
3492  SDValue OutChain = L.getValue(1);
3493
3494  if (TLI.getInsertFencesForAtomic())
3495    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3496                                    DAG, TLI);
3497
3498  setValue(&I, L);
3499  DAG.setRoot(OutChain);
3500}
3501
3502void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3503  DebugLoc dl = getCurDebugLoc();
3504  SDValue Ops[3];
3505  Ops[0] = getRoot();
3506  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3507  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3508  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3509}
3510
3511void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3512  DebugLoc dl = getCurDebugLoc();
3513  AtomicOrdering Order = I.getOrdering();
3514  SynchronizationScope Scope = I.getSynchScope();
3515
3516  SDValue InChain = getRoot();
3517
3518  EVT VT = TLI.getValueType(I.getType());
3519
3520  if (I.getAlignment() * 8 < VT.getSizeInBits())
3521    report_fatal_error("Cannot generate unaligned atomic load");
3522
3523  SDValue L =
3524    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3525                  getValue(I.getPointerOperand()),
3526                  I.getPointerOperand(), I.getAlignment(),
3527                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3528                  Scope);
3529
3530  SDValue OutChain = L.getValue(1);
3531
3532  if (TLI.getInsertFencesForAtomic())
3533    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3534                                    DAG, TLI);
3535
3536  setValue(&I, L);
3537  DAG.setRoot(OutChain);
3538}
3539
3540void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3541  DebugLoc dl = getCurDebugLoc();
3542
3543  AtomicOrdering Order = I.getOrdering();
3544  SynchronizationScope Scope = I.getSynchScope();
3545
3546  SDValue InChain = getRoot();
3547
3548  EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3549
3550  if (I.getAlignment() * 8 < VT.getSizeInBits())
3551    report_fatal_error("Cannot generate unaligned atomic store");
3552
3553  if (TLI.getInsertFencesForAtomic())
3554    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3555                                   DAG, TLI);
3556
3557  SDValue OutChain =
3558    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3559                  InChain,
3560                  getValue(I.getPointerOperand()),
3561                  getValue(I.getValueOperand()),
3562                  I.getPointerOperand(), I.getAlignment(),
3563                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3564                  Scope);
3565
3566  if (TLI.getInsertFencesForAtomic())
3567    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3568                                    DAG, TLI);
3569
3570  DAG.setRoot(OutChain);
3571}
3572
3573/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3574/// node.
3575void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3576                                               unsigned Intrinsic) {
3577  bool HasChain = !I.doesNotAccessMemory();
3578  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3579
3580  // Build the operand list.
3581  SmallVector<SDValue, 8> Ops;
3582  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3583    if (OnlyLoad) {
3584      // We don't need to serialize loads against other loads.
3585      Ops.push_back(DAG.getRoot());
3586    } else {
3587      Ops.push_back(getRoot());
3588    }
3589  }
3590
3591  // Info is set by getTgtMemInstrinsic
3592  TargetLowering::IntrinsicInfo Info;
3593  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3594
3595  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3596  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3597      Info.opc == ISD::INTRINSIC_W_CHAIN)
3598    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3599
3600  // Add all operands of the call to the operand list.
3601  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3602    SDValue Op = getValue(I.getArgOperand(i));
3603    Ops.push_back(Op);
3604  }
3605
3606  SmallVector<EVT, 4> ValueVTs;
3607  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3608
3609  if (HasChain)
3610    ValueVTs.push_back(MVT::Other);
3611
3612  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3613
3614  // Create the node.
3615  SDValue Result;
3616  if (IsTgtIntrinsic) {
3617    // This is target intrinsic that touches memory
3618    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3619                                     VTs, &Ops[0], Ops.size(),
3620                                     Info.memVT,
3621                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3622                                     Info.align, Info.vol,
3623                                     Info.readMem, Info.writeMem);
3624  } else if (!HasChain) {
3625    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3626                         VTs, &Ops[0], Ops.size());
3627  } else if (!I.getType()->isVoidTy()) {
3628    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3629                         VTs, &Ops[0], Ops.size());
3630  } else {
3631    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3632                         VTs, &Ops[0], Ops.size());
3633  }
3634
3635  if (HasChain) {
3636    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3637    if (OnlyLoad)
3638      PendingLoads.push_back(Chain);
3639    else
3640      DAG.setRoot(Chain);
3641  }
3642
3643  if (!I.getType()->isVoidTy()) {
3644    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3645      EVT VT = TLI.getValueType(PTy);
3646      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3647    }
3648
3649    setValue(&I, Result);
3650  } else {
3651    // Assign order to result here. If the intrinsic does not produce a result,
3652    // it won't be mapped to a SDNode and visit() will not assign it an order
3653    // number.
3654    ++SDNodeOrder;
3655    AssignOrderingToNode(Result.getNode());
3656  }
3657}
3658
3659/// GetSignificand - Get the significand and build it into a floating-point
3660/// number with exponent of 1:
3661///
3662///   Op = (Op & 0x007fffff) | 0x3f800000;
3663///
3664/// where Op is the hexidecimal representation of floating point value.
3665static SDValue
3666GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3667  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3668                           DAG.getConstant(0x007fffff, MVT::i32));
3669  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3670                           DAG.getConstant(0x3f800000, MVT::i32));
3671  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3672}
3673
3674/// GetExponent - Get the exponent:
3675///
3676///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3677///
3678/// where Op is the hexidecimal representation of floating point value.
3679static SDValue
3680GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3681            DebugLoc dl) {
3682  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3683                           DAG.getConstant(0x7f800000, MVT::i32));
3684  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3685                           DAG.getConstant(23, TLI.getPointerTy()));
3686  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3687                           DAG.getConstant(127, MVT::i32));
3688  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3689}
3690
3691/// getF32Constant - Get 32-bit floating point constant.
3692static SDValue
3693getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3694  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3695}
3696
3697/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3698/// limited-precision mode.
3699static SDValue expandExp(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3700                         const TargetLowering &TLI) {
3701  if (Op.getValueType() == MVT::f32 &&
3702      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3703
3704    // Put the exponent in the right bit position for later addition to the
3705    // final result:
3706    //
3707    //   #define LOG2OFe 1.4426950f
3708    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3709    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3710                             getF32Constant(DAG, 0x3fb8aa3b));
3711    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3712
3713    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3714    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3715    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3716
3717    //   IntegerPartOfX <<= 23;
3718    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3719                                 DAG.getConstant(23, TLI.getPointerTy()));
3720
3721    SDValue TwoToFracPartOfX;
3722    if (LimitFloatPrecision <= 6) {
3723      // For floating-point precision of 6:
3724      //
3725      //   TwoToFractionalPartOfX =
3726      //     0.997535578f +
3727      //       (0.735607626f + 0.252464424f * x) * x;
3728      //
3729      // error 0.0144103317, which is 6 bits
3730      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3731                               getF32Constant(DAG, 0x3e814304));
3732      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3733                               getF32Constant(DAG, 0x3f3c50c8));
3734      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3735      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3736                                     getF32Constant(DAG, 0x3f7f5e7e));
3737    } else if (LimitFloatPrecision <= 12) {
3738      // For floating-point precision of 12:
3739      //
3740      //   TwoToFractionalPartOfX =
3741      //     0.999892986f +
3742      //       (0.696457318f +
3743      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3744      //
3745      // 0.000107046256 error, which is 13 to 14 bits
3746      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3747                               getF32Constant(DAG, 0x3da235e3));
3748      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3749                               getF32Constant(DAG, 0x3e65b8f3));
3750      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3751      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3752                               getF32Constant(DAG, 0x3f324b07));
3753      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3754      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3755                                     getF32Constant(DAG, 0x3f7ff8fd));
3756    } else { // LimitFloatPrecision <= 18
3757      // For floating-point precision of 18:
3758      //
3759      //   TwoToFractionalPartOfX =
3760      //     0.999999982f +
3761      //       (0.693148872f +
3762      //         (0.240227044f +
3763      //           (0.554906021e-1f +
3764      //             (0.961591928e-2f +
3765      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3766      //
3767      // error 2.47208000*10^(-7), which is better than 18 bits
3768      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3769                               getF32Constant(DAG, 0x3924b03e));
3770      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3771                               getF32Constant(DAG, 0x3ab24b87));
3772      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3773      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3774                               getF32Constant(DAG, 0x3c1d8c17));
3775      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3776      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3777                               getF32Constant(DAG, 0x3d634a1d));
3778      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3779      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3780                               getF32Constant(DAG, 0x3e75fe14));
3781      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3782      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3783                                getF32Constant(DAG, 0x3f317234));
3784      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3785      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3786                                     getF32Constant(DAG, 0x3f800000));
3787    }
3788
3789    // Add the exponent into the result in integer domain.
3790    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3791    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3792                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3793                                   t13, IntegerPartOfX));
3794  }
3795
3796  // No special expansion.
3797  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3798}
3799
3800/// expandLog - Lower a log intrinsic. Handles the special sequences for
3801/// limited-precision mode.
3802static SDValue expandLog(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3803                         const TargetLowering &TLI) {
3804  if (Op.getValueType() == MVT::f32 &&
3805      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3806    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3807
3808    // Scale the exponent by log(2) [0.69314718f].
3809    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3810    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3811                                        getF32Constant(DAG, 0x3f317218));
3812
3813    // Get the significand and build it into a floating-point number with
3814    // exponent of 1.
3815    SDValue X = GetSignificand(DAG, Op1, dl);
3816
3817    SDValue LogOfMantissa;
3818    if (LimitFloatPrecision <= 6) {
3819      // For floating-point precision of 6:
3820      //
3821      //   LogofMantissa =
3822      //     -1.1609546f +
3823      //       (1.4034025f - 0.23903021f * x) * x;
3824      //
3825      // error 0.0034276066, which is better than 8 bits
3826      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3827                               getF32Constant(DAG, 0xbe74c456));
3828      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3829                               getF32Constant(DAG, 0x3fb3a2b1));
3830      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3831      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3832                                  getF32Constant(DAG, 0x3f949a29));
3833    } else if (LimitFloatPrecision <= 12) {
3834      // For floating-point precision of 12:
3835      //
3836      //   LogOfMantissa =
3837      //     -1.7417939f +
3838      //       (2.8212026f +
3839      //         (-1.4699568f +
3840      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3841      //
3842      // error 0.000061011436, which is 14 bits
3843      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3844                               getF32Constant(DAG, 0xbd67b6d6));
3845      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3846                               getF32Constant(DAG, 0x3ee4f4b8));
3847      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3848      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3849                               getF32Constant(DAG, 0x3fbc278b));
3850      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3851      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3852                               getF32Constant(DAG, 0x40348e95));
3853      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3854      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3855                                  getF32Constant(DAG, 0x3fdef31a));
3856    } else { // LimitFloatPrecision <= 18
3857      // For floating-point precision of 18:
3858      //
3859      //   LogOfMantissa =
3860      //     -2.1072184f +
3861      //       (4.2372794f +
3862      //         (-3.7029485f +
3863      //           (2.2781945f +
3864      //             (-0.87823314f +
3865      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3866      //
3867      // error 0.0000023660568, which is better than 18 bits
3868      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3869                               getF32Constant(DAG, 0xbc91e5ac));
3870      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3871                               getF32Constant(DAG, 0x3e4350aa));
3872      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3873      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3874                               getF32Constant(DAG, 0x3f60d3e3));
3875      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3876      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3877                               getF32Constant(DAG, 0x4011cdf0));
3878      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3879      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3880                               getF32Constant(DAG, 0x406cfd1c));
3881      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3882      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3883                               getF32Constant(DAG, 0x408797cb));
3884      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3885      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3886                                  getF32Constant(DAG, 0x4006dcab));
3887    }
3888
3889    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3890  }
3891
3892  // No special expansion.
3893  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3894}
3895
3896/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3897/// limited-precision mode.
3898static SDValue expandLog2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3899                          const TargetLowering &TLI) {
3900  if (Op.getValueType() == MVT::f32 &&
3901      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3902    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3903
3904    // Get the exponent.
3905    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3906
3907    // Get the significand and build it into a floating-point number with
3908    // exponent of 1.
3909    SDValue X = GetSignificand(DAG, Op1, dl);
3910
3911    // Different possible minimax approximations of significand in
3912    // floating-point for various degrees of accuracy over [1,2].
3913    SDValue Log2ofMantissa;
3914    if (LimitFloatPrecision <= 6) {
3915      // For floating-point precision of 6:
3916      //
3917      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3918      //
3919      // error 0.0049451742, which is more than 7 bits
3920      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3921                               getF32Constant(DAG, 0xbeb08fe0));
3922      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3923                               getF32Constant(DAG, 0x40019463));
3924      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3925      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3926                                   getF32Constant(DAG, 0x3fd6633d));
3927    } else if (LimitFloatPrecision <= 12) {
3928      // For floating-point precision of 12:
3929      //
3930      //   Log2ofMantissa =
3931      //     -2.51285454f +
3932      //       (4.07009056f +
3933      //         (-2.12067489f +
3934      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3935      //
3936      // error 0.0000876136000, which is better than 13 bits
3937      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3938                               getF32Constant(DAG, 0xbda7262e));
3939      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3940                               getF32Constant(DAG, 0x3f25280b));
3941      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3942      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3943                               getF32Constant(DAG, 0x4007b923));
3944      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3945      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3946                               getF32Constant(DAG, 0x40823e2f));
3947      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3948      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3949                                   getF32Constant(DAG, 0x4020d29c));
3950    } else { // LimitFloatPrecision <= 18
3951      // For floating-point precision of 18:
3952      //
3953      //   Log2ofMantissa =
3954      //     -3.0400495f +
3955      //       (6.1129976f +
3956      //         (-5.3420409f +
3957      //           (3.2865683f +
3958      //             (-1.2669343f +
3959      //               (0.27515199f -
3960      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3961      //
3962      // error 0.0000018516, which is better than 18 bits
3963      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3964                               getF32Constant(DAG, 0xbcd2769e));
3965      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3966                               getF32Constant(DAG, 0x3e8ce0b9));
3967      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3968      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3969                               getF32Constant(DAG, 0x3fa22ae7));
3970      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3971      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3972                               getF32Constant(DAG, 0x40525723));
3973      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3974      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3975                               getF32Constant(DAG, 0x40aaf200));
3976      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3977      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3978                               getF32Constant(DAG, 0x40c39dad));
3979      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3980      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3981                                   getF32Constant(DAG, 0x4042902c));
3982    }
3983
3984    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3985  }
3986
3987  // No special expansion.
3988  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
3989}
3990
3991/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
3992/// limited-precision mode.
3993static SDValue expandLog10(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3994                           const TargetLowering &TLI) {
3995  if (Op.getValueType() == MVT::f32 &&
3996      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3997    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3998
3999    // Scale the exponent by log10(2) [0.30102999f].
4000    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4001    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4002                                        getF32Constant(DAG, 0x3e9a209a));
4003
4004    // Get the significand and build it into a floating-point number with
4005    // exponent of 1.
4006    SDValue X = GetSignificand(DAG, Op1, dl);
4007
4008    SDValue Log10ofMantissa;
4009    if (LimitFloatPrecision <= 6) {
4010      // For floating-point precision of 6:
4011      //
4012      //   Log10ofMantissa =
4013      //     -0.50419619f +
4014      //       (0.60948995f - 0.10380950f * x) * x;
4015      //
4016      // error 0.0014886165, which is 6 bits
4017      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4018                               getF32Constant(DAG, 0xbdd49a13));
4019      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4020                               getF32Constant(DAG, 0x3f1c0789));
4021      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4022      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4023                                    getF32Constant(DAG, 0x3f011300));
4024    } else if (LimitFloatPrecision <= 12) {
4025      // For floating-point precision of 12:
4026      //
4027      //   Log10ofMantissa =
4028      //     -0.64831180f +
4029      //       (0.91751397f +
4030      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4031      //
4032      // error 0.00019228036, which is better than 12 bits
4033      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4034                               getF32Constant(DAG, 0x3d431f31));
4035      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4036                               getF32Constant(DAG, 0x3ea21fb2));
4037      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4038      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4039                               getF32Constant(DAG, 0x3f6ae232));
4040      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4041      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4042                                    getF32Constant(DAG, 0x3f25f7c3));
4043    } else { // LimitFloatPrecision <= 18
4044      // For floating-point precision of 18:
4045      //
4046      //   Log10ofMantissa =
4047      //     -0.84299375f +
4048      //       (1.5327582f +
4049      //         (-1.0688956f +
4050      //           (0.49102474f +
4051      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4052      //
4053      // error 0.0000037995730, which is better than 18 bits
4054      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4055                               getF32Constant(DAG, 0x3c5d51ce));
4056      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4057                               getF32Constant(DAG, 0x3e00685a));
4058      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4059      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4060                               getF32Constant(DAG, 0x3efb6798));
4061      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4062      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4063                               getF32Constant(DAG, 0x3f88d192));
4064      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4065      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4066                               getF32Constant(DAG, 0x3fc4316c));
4067      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4068      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4069                                    getF32Constant(DAG, 0x3f57ce70));
4070    }
4071
4072    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4073  }
4074
4075  // No special expansion.
4076  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4077}
4078
4079/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4080/// limited-precision mode.
4081static SDValue expandExp2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
4082                          const TargetLowering &TLI) {
4083  if (Op.getValueType() == MVT::f32 &&
4084      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4085    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4086
4087    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4088    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4089    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4090
4091    //   IntegerPartOfX <<= 23;
4092    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4093                                 DAG.getConstant(23, TLI.getPointerTy()));
4094
4095    SDValue TwoToFractionalPartOfX;
4096    if (LimitFloatPrecision <= 6) {
4097      // For floating-point precision of 6:
4098      //
4099      //   TwoToFractionalPartOfX =
4100      //     0.997535578f +
4101      //       (0.735607626f + 0.252464424f * x) * x;
4102      //
4103      // error 0.0144103317, which is 6 bits
4104      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4105                               getF32Constant(DAG, 0x3e814304));
4106      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4107                               getF32Constant(DAG, 0x3f3c50c8));
4108      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4109      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4110                                           getF32Constant(DAG, 0x3f7f5e7e));
4111    } else if (LimitFloatPrecision <= 12) {
4112      // For floating-point precision of 12:
4113      //
4114      //   TwoToFractionalPartOfX =
4115      //     0.999892986f +
4116      //       (0.696457318f +
4117      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4118      //
4119      // error 0.000107046256, which is 13 to 14 bits
4120      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4121                               getF32Constant(DAG, 0x3da235e3));
4122      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4123                               getF32Constant(DAG, 0x3e65b8f3));
4124      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4125      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4126                               getF32Constant(DAG, 0x3f324b07));
4127      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4128      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4129                                           getF32Constant(DAG, 0x3f7ff8fd));
4130    } else { // LimitFloatPrecision <= 18
4131      // For floating-point precision of 18:
4132      //
4133      //   TwoToFractionalPartOfX =
4134      //     0.999999982f +
4135      //       (0.693148872f +
4136      //         (0.240227044f +
4137      //           (0.554906021e-1f +
4138      //             (0.961591928e-2f +
4139      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4140      // error 2.47208000*10^(-7), which is better than 18 bits
4141      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4142                               getF32Constant(DAG, 0x3924b03e));
4143      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4144                               getF32Constant(DAG, 0x3ab24b87));
4145      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4146      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4147                               getF32Constant(DAG, 0x3c1d8c17));
4148      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4149      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4150                               getF32Constant(DAG, 0x3d634a1d));
4151      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4152      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4153                               getF32Constant(DAG, 0x3e75fe14));
4154      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4155      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4156                                getF32Constant(DAG, 0x3f317234));
4157      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4158      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4159                                           getF32Constant(DAG, 0x3f800000));
4160    }
4161
4162    // Add the exponent into the result in integer domain.
4163    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4164                              TwoToFractionalPartOfX);
4165    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4166                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4167                                   t13, IntegerPartOfX));
4168  }
4169
4170  // No special expansion.
4171  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4172}
4173
4174/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4175/// limited-precision mode with x == 10.0f.
4176static SDValue expandPow(DebugLoc dl, SDValue LHS, SDValue RHS,
4177                         SelectionDAG &DAG, const TargetLowering &TLI) {
4178  bool IsExp10 = false;
4179  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4180      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4181    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4182      APFloat Ten(10.0f);
4183      IsExp10 = LHSC->isExactlyValue(Ten);
4184    }
4185  }
4186
4187  if (IsExp10) {
4188    // Put the exponent in the right bit position for later addition to the
4189    // final result:
4190    //
4191    //   #define LOG2OF10 3.3219281f
4192    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4193    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4194                             getF32Constant(DAG, 0x40549a78));
4195    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4196
4197    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4198    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4199    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4200
4201    //   IntegerPartOfX <<= 23;
4202    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4203                                 DAG.getConstant(23, TLI.getPointerTy()));
4204
4205    SDValue TwoToFractionalPartOfX;
4206    if (LimitFloatPrecision <= 6) {
4207      // For floating-point precision of 6:
4208      //
4209      //   twoToFractionalPartOfX =
4210      //     0.997535578f +
4211      //       (0.735607626f + 0.252464424f * x) * x;
4212      //
4213      // error 0.0144103317, which is 6 bits
4214      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4215                               getF32Constant(DAG, 0x3e814304));
4216      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4217                               getF32Constant(DAG, 0x3f3c50c8));
4218      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4219      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4220                                           getF32Constant(DAG, 0x3f7f5e7e));
4221    } else if (LimitFloatPrecision <= 12) {
4222      // For floating-point precision of 12:
4223      //
4224      //   TwoToFractionalPartOfX =
4225      //     0.999892986f +
4226      //       (0.696457318f +
4227      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4228      //
4229      // error 0.000107046256, which is 13 to 14 bits
4230      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4231                               getF32Constant(DAG, 0x3da235e3));
4232      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4233                               getF32Constant(DAG, 0x3e65b8f3));
4234      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4235      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4236                               getF32Constant(DAG, 0x3f324b07));
4237      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4238      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4239                                           getF32Constant(DAG, 0x3f7ff8fd));
4240    } else { // LimitFloatPrecision <= 18
4241      // For floating-point precision of 18:
4242      //
4243      //   TwoToFractionalPartOfX =
4244      //     0.999999982f +
4245      //       (0.693148872f +
4246      //         (0.240227044f +
4247      //           (0.554906021e-1f +
4248      //             (0.961591928e-2f +
4249      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4250      // error 2.47208000*10^(-7), which is better than 18 bits
4251      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4252                               getF32Constant(DAG, 0x3924b03e));
4253      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4254                               getF32Constant(DAG, 0x3ab24b87));
4255      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4256      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4257                               getF32Constant(DAG, 0x3c1d8c17));
4258      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4259      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4260                               getF32Constant(DAG, 0x3d634a1d));
4261      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4262      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4263                               getF32Constant(DAG, 0x3e75fe14));
4264      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4265      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4266                                getF32Constant(DAG, 0x3f317234));
4267      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4268      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4269                                           getF32Constant(DAG, 0x3f800000));
4270    }
4271
4272    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4273    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4274                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4275                                   t13, IntegerPartOfX));
4276  }
4277
4278  // No special expansion.
4279  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4280}
4281
4282
4283/// ExpandPowI - Expand a llvm.powi intrinsic.
4284static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4285                          SelectionDAG &DAG) {
4286  // If RHS is a constant, we can expand this out to a multiplication tree,
4287  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4288  // optimizing for size, we only want to do this if the expansion would produce
4289  // a small number of multiplies, otherwise we do the full expansion.
4290  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4291    // Get the exponent as a positive value.
4292    unsigned Val = RHSC->getSExtValue();
4293    if ((int)Val < 0) Val = -Val;
4294
4295    // powi(x, 0) -> 1.0
4296    if (Val == 0)
4297      return DAG.getConstantFP(1.0, LHS.getValueType());
4298
4299    const Function *F = DAG.getMachineFunction().getFunction();
4300    if (!F->getFnAttributes().hasAttribute(Attributes::OptimizeForSize) ||
4301        // If optimizing for size, don't insert too many multiplies.  This
4302        // inserts up to 5 multiplies.
4303        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4304      // We use the simple binary decomposition method to generate the multiply
4305      // sequence.  There are more optimal ways to do this (for example,
4306      // powi(x,15) generates one more multiply than it should), but this has
4307      // the benefit of being both really simple and much better than a libcall.
4308      SDValue Res;  // Logically starts equal to 1.0
4309      SDValue CurSquare = LHS;
4310      while (Val) {
4311        if (Val & 1) {
4312          if (Res.getNode())
4313            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4314          else
4315            Res = CurSquare;  // 1.0*CurSquare.
4316        }
4317
4318        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4319                                CurSquare, CurSquare);
4320        Val >>= 1;
4321      }
4322
4323      // If the original was negative, invert the result, producing 1/(x*x*x).
4324      if (RHSC->getSExtValue() < 0)
4325        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4326                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4327      return Res;
4328    }
4329  }
4330
4331  // Otherwise, expand to a libcall.
4332  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4333}
4334
4335// getTruncatedArgReg - Find underlying register used for an truncated
4336// argument.
4337static unsigned getTruncatedArgReg(const SDValue &N) {
4338  if (N.getOpcode() != ISD::TRUNCATE)
4339    return 0;
4340
4341  const SDValue &Ext = N.getOperand(0);
4342  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4343    const SDValue &CFR = Ext.getOperand(0);
4344    if (CFR.getOpcode() == ISD::CopyFromReg)
4345      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4346    if (CFR.getOpcode() == ISD::TRUNCATE)
4347      return getTruncatedArgReg(CFR);
4348  }
4349  return 0;
4350}
4351
4352/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4353/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4354/// At the end of instruction selection, they will be inserted to the entry BB.
4355bool
4356SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4357                                              int64_t Offset,
4358                                              const SDValue &N) {
4359  const Argument *Arg = dyn_cast<Argument>(V);
4360  if (!Arg)
4361    return false;
4362
4363  MachineFunction &MF = DAG.getMachineFunction();
4364  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4365  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4366
4367  // Ignore inlined function arguments here.
4368  DIVariable DV(Variable);
4369  if (DV.isInlinedFnArgument(MF.getFunction()))
4370    return false;
4371
4372  unsigned Reg = 0;
4373  // Some arguments' frame index is recorded during argument lowering.
4374  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4375  if (Offset)
4376    Reg = TRI->getFrameRegister(MF);
4377
4378  if (!Reg && N.getNode()) {
4379    if (N.getOpcode() == ISD::CopyFromReg)
4380      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4381    else
4382      Reg = getTruncatedArgReg(N);
4383    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4384      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4385      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4386      if (PR)
4387        Reg = PR;
4388    }
4389  }
4390
4391  if (!Reg) {
4392    // Check if ValueMap has reg number.
4393    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4394    if (VMI != FuncInfo.ValueMap.end())
4395      Reg = VMI->second;
4396  }
4397
4398  if (!Reg && N.getNode()) {
4399    // Check if frame index is available.
4400    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4401      if (FrameIndexSDNode *FINode =
4402          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4403        Reg = TRI->getFrameRegister(MF);
4404        Offset = FINode->getIndex();
4405      }
4406  }
4407
4408  if (!Reg)
4409    return false;
4410
4411  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4412                                    TII->get(TargetOpcode::DBG_VALUE))
4413    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4414  FuncInfo.ArgDbgValues.push_back(&*MIB);
4415  return true;
4416}
4417
4418// VisualStudio defines setjmp as _setjmp
4419#if defined(_MSC_VER) && defined(setjmp) && \
4420                         !defined(setjmp_undefined_for_msvc)
4421#  pragma push_macro("setjmp")
4422#  undef setjmp
4423#  define setjmp_undefined_for_msvc
4424#endif
4425
4426/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4427/// we want to emit this as a call to a named external function, return the name
4428/// otherwise lower it and return null.
4429const char *
4430SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4431  DebugLoc dl = getCurDebugLoc();
4432  SDValue Res;
4433
4434  switch (Intrinsic) {
4435  default:
4436    // By default, turn this into a target intrinsic node.
4437    visitTargetIntrinsic(I, Intrinsic);
4438    return 0;
4439  case Intrinsic::vastart:  visitVAStart(I); return 0;
4440  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4441  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4442  case Intrinsic::returnaddress:
4443    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4444                             getValue(I.getArgOperand(0))));
4445    return 0;
4446  case Intrinsic::frameaddress:
4447    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4448                             getValue(I.getArgOperand(0))));
4449    return 0;
4450  case Intrinsic::setjmp:
4451    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4452  case Intrinsic::longjmp:
4453    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4454  case Intrinsic::memcpy: {
4455    // Assert for address < 256 since we support only user defined address
4456    // spaces.
4457    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4458           < 256 &&
4459           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4460           < 256 &&
4461           "Unknown address space");
4462    SDValue Op1 = getValue(I.getArgOperand(0));
4463    SDValue Op2 = getValue(I.getArgOperand(1));
4464    SDValue Op3 = getValue(I.getArgOperand(2));
4465    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4466    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4467    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4468                              MachinePointerInfo(I.getArgOperand(0)),
4469                              MachinePointerInfo(I.getArgOperand(1))));
4470    return 0;
4471  }
4472  case Intrinsic::memset: {
4473    // Assert for address < 256 since we support only user defined address
4474    // spaces.
4475    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4476           < 256 &&
4477           "Unknown address space");
4478    SDValue Op1 = getValue(I.getArgOperand(0));
4479    SDValue Op2 = getValue(I.getArgOperand(1));
4480    SDValue Op3 = getValue(I.getArgOperand(2));
4481    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4482    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4483    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4484                              MachinePointerInfo(I.getArgOperand(0))));
4485    return 0;
4486  }
4487  case Intrinsic::memmove: {
4488    // Assert for address < 256 since we support only user defined address
4489    // spaces.
4490    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4491           < 256 &&
4492           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4493           < 256 &&
4494           "Unknown address space");
4495    SDValue Op1 = getValue(I.getArgOperand(0));
4496    SDValue Op2 = getValue(I.getArgOperand(1));
4497    SDValue Op3 = getValue(I.getArgOperand(2));
4498    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4499    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4500    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4501                               MachinePointerInfo(I.getArgOperand(0)),
4502                               MachinePointerInfo(I.getArgOperand(1))));
4503    return 0;
4504  }
4505  case Intrinsic::dbg_declare: {
4506    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4507    MDNode *Variable = DI.getVariable();
4508    const Value *Address = DI.getAddress();
4509    if (!Address || !DIVariable(Variable).Verify()) {
4510      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4511      return 0;
4512    }
4513
4514    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4515    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4516    // absolute, but not relative, values are different depending on whether
4517    // debug info exists.
4518    ++SDNodeOrder;
4519
4520    // Check if address has undef value.
4521    if (isa<UndefValue>(Address) ||
4522        (Address->use_empty() && !isa<Argument>(Address))) {
4523      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4524      return 0;
4525    }
4526
4527    SDValue &N = NodeMap[Address];
4528    if (!N.getNode() && isa<Argument>(Address))
4529      // Check unused arguments map.
4530      N = UnusedArgNodeMap[Address];
4531    SDDbgValue *SDV;
4532    if (N.getNode()) {
4533      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4534        Address = BCI->getOperand(0);
4535      // Parameters are handled specially.
4536      bool isParameter =
4537        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4538         isa<Argument>(Address));
4539
4540      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4541
4542      if (isParameter && !AI) {
4543        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4544        if (FINode)
4545          // Byval parameter.  We have a frame index at this point.
4546          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4547                                0, dl, SDNodeOrder);
4548        else {
4549          // Address is an argument, so try to emit its dbg value using
4550          // virtual register info from the FuncInfo.ValueMap.
4551          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4552          return 0;
4553        }
4554      } else if (AI)
4555        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4556                              0, dl, SDNodeOrder);
4557      else {
4558        // Can't do anything with other non-AI cases yet.
4559        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4560        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4561        DEBUG(Address->dump());
4562        return 0;
4563      }
4564      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4565    } else {
4566      // If Address is an argument then try to emit its dbg value using
4567      // virtual register info from the FuncInfo.ValueMap.
4568      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4569        // If variable is pinned by a alloca in dominating bb then
4570        // use StaticAllocaMap.
4571        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4572          if (AI->getParent() != DI.getParent()) {
4573            DenseMap<const AllocaInst*, int>::iterator SI =
4574              FuncInfo.StaticAllocaMap.find(AI);
4575            if (SI != FuncInfo.StaticAllocaMap.end()) {
4576              SDV = DAG.getDbgValue(Variable, SI->second,
4577                                    0, dl, SDNodeOrder);
4578              DAG.AddDbgValue(SDV, 0, false);
4579              return 0;
4580            }
4581          }
4582        }
4583        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4584      }
4585    }
4586    return 0;
4587  }
4588  case Intrinsic::dbg_value: {
4589    const DbgValueInst &DI = cast<DbgValueInst>(I);
4590    if (!DIVariable(DI.getVariable()).Verify())
4591      return 0;
4592
4593    MDNode *Variable = DI.getVariable();
4594    uint64_t Offset = DI.getOffset();
4595    const Value *V = DI.getValue();
4596    if (!V)
4597      return 0;
4598
4599    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4600    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4601    // absolute, but not relative, values are different depending on whether
4602    // debug info exists.
4603    ++SDNodeOrder;
4604    SDDbgValue *SDV;
4605    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4606      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4607      DAG.AddDbgValue(SDV, 0, false);
4608    } else {
4609      // Do not use getValue() in here; we don't want to generate code at
4610      // this point if it hasn't been done yet.
4611      SDValue N = NodeMap[V];
4612      if (!N.getNode() && isa<Argument>(V))
4613        // Check unused arguments map.
4614        N = UnusedArgNodeMap[V];
4615      if (N.getNode()) {
4616        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4617          SDV = DAG.getDbgValue(Variable, N.getNode(),
4618                                N.getResNo(), Offset, dl, SDNodeOrder);
4619          DAG.AddDbgValue(SDV, N.getNode(), false);
4620        }
4621      } else if (!V->use_empty() ) {
4622        // Do not call getValue(V) yet, as we don't want to generate code.
4623        // Remember it for later.
4624        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4625        DanglingDebugInfoMap[V] = DDI;
4626      } else {
4627        // We may expand this to cover more cases.  One case where we have no
4628        // data available is an unreferenced parameter.
4629        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4630      }
4631    }
4632
4633    // Build a debug info table entry.
4634    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4635      V = BCI->getOperand(0);
4636    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4637    // Don't handle byval struct arguments or VLAs, for example.
4638    if (!AI) {
4639      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4640      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4641      return 0;
4642    }
4643    DenseMap<const AllocaInst*, int>::iterator SI =
4644      FuncInfo.StaticAllocaMap.find(AI);
4645    if (SI == FuncInfo.StaticAllocaMap.end())
4646      return 0; // VLAs.
4647    int FI = SI->second;
4648
4649    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4650    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4651      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4652    return 0;
4653  }
4654
4655  case Intrinsic::eh_typeid_for: {
4656    // Find the type id for the given typeinfo.
4657    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4658    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4659    Res = DAG.getConstant(TypeID, MVT::i32);
4660    setValue(&I, Res);
4661    return 0;
4662  }
4663
4664  case Intrinsic::eh_return_i32:
4665  case Intrinsic::eh_return_i64:
4666    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4667    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4668                            MVT::Other,
4669                            getControlRoot(),
4670                            getValue(I.getArgOperand(0)),
4671                            getValue(I.getArgOperand(1))));
4672    return 0;
4673  case Intrinsic::eh_unwind_init:
4674    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4675    return 0;
4676  case Intrinsic::eh_dwarf_cfa: {
4677    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4678                                        TLI.getPointerTy());
4679    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4680                                 TLI.getPointerTy(),
4681                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4682                                             TLI.getPointerTy()),
4683                                 CfaArg);
4684    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4685                             TLI.getPointerTy(),
4686                             DAG.getConstant(0, TLI.getPointerTy()));
4687    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4688                             FA, Offset));
4689    return 0;
4690  }
4691  case Intrinsic::eh_sjlj_callsite: {
4692    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4693    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4694    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4695    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4696
4697    MMI.setCurrentCallSite(CI->getZExtValue());
4698    return 0;
4699  }
4700  case Intrinsic::eh_sjlj_functioncontext: {
4701    // Get and store the index of the function context.
4702    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4703    AllocaInst *FnCtx =
4704      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4705    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4706    MFI->setFunctionContextIndex(FI);
4707    return 0;
4708  }
4709  case Intrinsic::eh_sjlj_setjmp: {
4710    SDValue Ops[2];
4711    Ops[0] = getRoot();
4712    Ops[1] = getValue(I.getArgOperand(0));
4713    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4714                             DAG.getVTList(MVT::i32, MVT::Other),
4715                             Ops, 2);
4716    setValue(&I, Op.getValue(0));
4717    DAG.setRoot(Op.getValue(1));
4718    return 0;
4719  }
4720  case Intrinsic::eh_sjlj_longjmp: {
4721    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4722                            getRoot(), getValue(I.getArgOperand(0))));
4723    return 0;
4724  }
4725
4726  case Intrinsic::x86_mmx_pslli_w:
4727  case Intrinsic::x86_mmx_pslli_d:
4728  case Intrinsic::x86_mmx_pslli_q:
4729  case Intrinsic::x86_mmx_psrli_w:
4730  case Intrinsic::x86_mmx_psrli_d:
4731  case Intrinsic::x86_mmx_psrli_q:
4732  case Intrinsic::x86_mmx_psrai_w:
4733  case Intrinsic::x86_mmx_psrai_d: {
4734    SDValue ShAmt = getValue(I.getArgOperand(1));
4735    if (isa<ConstantSDNode>(ShAmt)) {
4736      visitTargetIntrinsic(I, Intrinsic);
4737      return 0;
4738    }
4739    unsigned NewIntrinsic = 0;
4740    EVT ShAmtVT = MVT::v2i32;
4741    switch (Intrinsic) {
4742    case Intrinsic::x86_mmx_pslli_w:
4743      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4744      break;
4745    case Intrinsic::x86_mmx_pslli_d:
4746      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4747      break;
4748    case Intrinsic::x86_mmx_pslli_q:
4749      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4750      break;
4751    case Intrinsic::x86_mmx_psrli_w:
4752      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4753      break;
4754    case Intrinsic::x86_mmx_psrli_d:
4755      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4756      break;
4757    case Intrinsic::x86_mmx_psrli_q:
4758      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4759      break;
4760    case Intrinsic::x86_mmx_psrai_w:
4761      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4762      break;
4763    case Intrinsic::x86_mmx_psrai_d:
4764      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4765      break;
4766    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4767    }
4768
4769    // The vector shift intrinsics with scalars uses 32b shift amounts but
4770    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4771    // to be zero.
4772    // We must do this early because v2i32 is not a legal type.
4773    SDValue ShOps[2];
4774    ShOps[0] = ShAmt;
4775    ShOps[1] = DAG.getConstant(0, MVT::i32);
4776    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4777    EVT DestVT = TLI.getValueType(I.getType());
4778    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4779    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4780                       DAG.getConstant(NewIntrinsic, MVT::i32),
4781                       getValue(I.getArgOperand(0)), ShAmt);
4782    setValue(&I, Res);
4783    return 0;
4784  }
4785  case Intrinsic::x86_avx_vinsertf128_pd_256:
4786  case Intrinsic::x86_avx_vinsertf128_ps_256:
4787  case Intrinsic::x86_avx_vinsertf128_si_256:
4788  case Intrinsic::x86_avx2_vinserti128: {
4789    EVT DestVT = TLI.getValueType(I.getType());
4790    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4791    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4792                   ElVT.getVectorNumElements();
4793    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4794                      getValue(I.getArgOperand(0)),
4795                      getValue(I.getArgOperand(1)),
4796                      DAG.getIntPtrConstant(Idx));
4797    setValue(&I, Res);
4798    return 0;
4799  }
4800  case Intrinsic::x86_avx_vextractf128_pd_256:
4801  case Intrinsic::x86_avx_vextractf128_ps_256:
4802  case Intrinsic::x86_avx_vextractf128_si_256:
4803  case Intrinsic::x86_avx2_vextracti128: {
4804    EVT DestVT = TLI.getValueType(I.getType());
4805    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4806                   DestVT.getVectorNumElements();
4807    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4808                      getValue(I.getArgOperand(0)),
4809                      DAG.getIntPtrConstant(Idx));
4810    setValue(&I, Res);
4811    return 0;
4812  }
4813  case Intrinsic::convertff:
4814  case Intrinsic::convertfsi:
4815  case Intrinsic::convertfui:
4816  case Intrinsic::convertsif:
4817  case Intrinsic::convertuif:
4818  case Intrinsic::convertss:
4819  case Intrinsic::convertsu:
4820  case Intrinsic::convertus:
4821  case Intrinsic::convertuu: {
4822    ISD::CvtCode Code = ISD::CVT_INVALID;
4823    switch (Intrinsic) {
4824    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4825    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4826    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4827    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4828    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4829    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4830    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4831    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4832    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4833    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4834    }
4835    EVT DestVT = TLI.getValueType(I.getType());
4836    const Value *Op1 = I.getArgOperand(0);
4837    Res = DAG.getConvertRndSat(DestVT, dl, getValue(Op1),
4838                               DAG.getValueType(DestVT),
4839                               DAG.getValueType(getValue(Op1).getValueType()),
4840                               getValue(I.getArgOperand(1)),
4841                               getValue(I.getArgOperand(2)),
4842                               Code);
4843    setValue(&I, Res);
4844    return 0;
4845  }
4846  case Intrinsic::powi:
4847    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4848                            getValue(I.getArgOperand(1)), DAG));
4849    return 0;
4850  case Intrinsic::log:
4851    setValue(&I, expandLog(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4852    return 0;
4853  case Intrinsic::log2:
4854    setValue(&I, expandLog2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4855    return 0;
4856  case Intrinsic::log10:
4857    setValue(&I, expandLog10(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4858    return 0;
4859  case Intrinsic::exp:
4860    setValue(&I, expandExp(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4861    return 0;
4862  case Intrinsic::exp2:
4863    setValue(&I, expandExp2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4864    return 0;
4865  case Intrinsic::pow:
4866    setValue(&I, expandPow(dl, getValue(I.getArgOperand(0)),
4867                           getValue(I.getArgOperand(1)), DAG, TLI));
4868    return 0;
4869  case Intrinsic::sqrt:
4870  case Intrinsic::fabs:
4871  case Intrinsic::sin:
4872  case Intrinsic::cos:
4873  case Intrinsic::floor:
4874  case Intrinsic::ceil:
4875  case Intrinsic::trunc:
4876  case Intrinsic::rint:
4877  case Intrinsic::nearbyint: {
4878    unsigned Opcode;
4879    switch (Intrinsic) {
4880    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4881    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4882    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4883    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4884    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4885    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4886    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4887    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4888    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4889    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4890    }
4891
4892    setValue(&I, DAG.getNode(Opcode, dl,
4893                             getValue(I.getArgOperand(0)).getValueType(),
4894                             getValue(I.getArgOperand(0))));
4895    return 0;
4896  }
4897  case Intrinsic::fma:
4898    setValue(&I, DAG.getNode(ISD::FMA, dl,
4899                             getValue(I.getArgOperand(0)).getValueType(),
4900                             getValue(I.getArgOperand(0)),
4901                             getValue(I.getArgOperand(1)),
4902                             getValue(I.getArgOperand(2))));
4903    return 0;
4904  case Intrinsic::fmuladd: {
4905    EVT VT = TLI.getValueType(I.getType());
4906    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4907        TLI.isOperationLegalOrCustom(ISD::FMA, VT) &&
4908        TLI.isFMAFasterThanMulAndAdd(VT)){
4909      setValue(&I, DAG.getNode(ISD::FMA, dl,
4910                               getValue(I.getArgOperand(0)).getValueType(),
4911                               getValue(I.getArgOperand(0)),
4912                               getValue(I.getArgOperand(1)),
4913                               getValue(I.getArgOperand(2))));
4914    } else {
4915      SDValue Mul = DAG.getNode(ISD::FMUL, dl,
4916                                getValue(I.getArgOperand(0)).getValueType(),
4917                                getValue(I.getArgOperand(0)),
4918                                getValue(I.getArgOperand(1)));
4919      SDValue Add = DAG.getNode(ISD::FADD, dl,
4920                                getValue(I.getArgOperand(0)).getValueType(),
4921                                Mul,
4922                                getValue(I.getArgOperand(2)));
4923      setValue(&I, Add);
4924    }
4925    return 0;
4926  }
4927  case Intrinsic::convert_to_fp16:
4928    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4929                             MVT::i16, getValue(I.getArgOperand(0))));
4930    return 0;
4931  case Intrinsic::convert_from_fp16:
4932    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4933                             MVT::f32, getValue(I.getArgOperand(0))));
4934    return 0;
4935  case Intrinsic::pcmarker: {
4936    SDValue Tmp = getValue(I.getArgOperand(0));
4937    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4938    return 0;
4939  }
4940  case Intrinsic::readcyclecounter: {
4941    SDValue Op = getRoot();
4942    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4943                      DAG.getVTList(MVT::i64, MVT::Other),
4944                      &Op, 1);
4945    setValue(&I, Res);
4946    DAG.setRoot(Res.getValue(1));
4947    return 0;
4948  }
4949  case Intrinsic::bswap:
4950    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4951                             getValue(I.getArgOperand(0)).getValueType(),
4952                             getValue(I.getArgOperand(0))));
4953    return 0;
4954  case Intrinsic::cttz: {
4955    SDValue Arg = getValue(I.getArgOperand(0));
4956    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4957    EVT Ty = Arg.getValueType();
4958    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4959                             dl, Ty, Arg));
4960    return 0;
4961  }
4962  case Intrinsic::ctlz: {
4963    SDValue Arg = getValue(I.getArgOperand(0));
4964    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4965    EVT Ty = Arg.getValueType();
4966    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4967                             dl, Ty, Arg));
4968    return 0;
4969  }
4970  case Intrinsic::ctpop: {
4971    SDValue Arg = getValue(I.getArgOperand(0));
4972    EVT Ty = Arg.getValueType();
4973    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4974    return 0;
4975  }
4976  case Intrinsic::stacksave: {
4977    SDValue Op = getRoot();
4978    Res = DAG.getNode(ISD::STACKSAVE, dl,
4979                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4980    setValue(&I, Res);
4981    DAG.setRoot(Res.getValue(1));
4982    return 0;
4983  }
4984  case Intrinsic::stackrestore: {
4985    Res = getValue(I.getArgOperand(0));
4986    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4987    return 0;
4988  }
4989  case Intrinsic::stackprotector: {
4990    // Emit code into the DAG to store the stack guard onto the stack.
4991    MachineFunction &MF = DAG.getMachineFunction();
4992    MachineFrameInfo *MFI = MF.getFrameInfo();
4993    EVT PtrTy = TLI.getPointerTy();
4994
4995    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4996    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4997
4998    int FI = FuncInfo.StaticAllocaMap[Slot];
4999    MFI->setStackProtectorIndex(FI);
5000
5001    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5002
5003    // Store the stack protector onto the stack.
5004    Res = DAG.getStore(getRoot(), dl, Src, FIN,
5005                       MachinePointerInfo::getFixedStack(FI),
5006                       true, false, 0);
5007    setValue(&I, Res);
5008    DAG.setRoot(Res);
5009    return 0;
5010  }
5011  case Intrinsic::objectsize: {
5012    // If we don't know by now, we're never going to know.
5013    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5014
5015    assert(CI && "Non-constant type in __builtin_object_size?");
5016
5017    SDValue Arg = getValue(I.getCalledValue());
5018    EVT Ty = Arg.getValueType();
5019
5020    if (CI->isZero())
5021      Res = DAG.getConstant(-1ULL, Ty);
5022    else
5023      Res = DAG.getConstant(0, Ty);
5024
5025    setValue(&I, Res);
5026    return 0;
5027  }
5028  case Intrinsic::var_annotation:
5029    // Discard annotate attributes
5030    return 0;
5031
5032  case Intrinsic::init_trampoline: {
5033    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5034
5035    SDValue Ops[6];
5036    Ops[0] = getRoot();
5037    Ops[1] = getValue(I.getArgOperand(0));
5038    Ops[2] = getValue(I.getArgOperand(1));
5039    Ops[3] = getValue(I.getArgOperand(2));
5040    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5041    Ops[5] = DAG.getSrcValue(F);
5042
5043    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5044
5045    DAG.setRoot(Res);
5046    return 0;
5047  }
5048  case Intrinsic::adjust_trampoline: {
5049    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5050                             TLI.getPointerTy(),
5051                             getValue(I.getArgOperand(0))));
5052    return 0;
5053  }
5054  case Intrinsic::gcroot:
5055    if (GFI) {
5056      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5057      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5058
5059      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5060      GFI->addStackRoot(FI->getIndex(), TypeMap);
5061    }
5062    return 0;
5063  case Intrinsic::gcread:
5064  case Intrinsic::gcwrite:
5065    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5066  case Intrinsic::flt_rounds:
5067    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5068    return 0;
5069
5070  case Intrinsic::expect: {
5071    // Just replace __builtin_expect(exp, c) with EXP.
5072    setValue(&I, getValue(I.getArgOperand(0)));
5073    return 0;
5074  }
5075
5076  case Intrinsic::debugtrap:
5077  case Intrinsic::trap: {
5078    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5079    if (TrapFuncName.empty()) {
5080      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5081        ISD::TRAP : ISD::DEBUGTRAP;
5082      DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot()));
5083      return 0;
5084    }
5085    TargetLowering::ArgListTy Args;
5086    TargetLowering::
5087    CallLoweringInfo CLI(getRoot(), I.getType(),
5088                 false, false, false, false, 0, CallingConv::C,
5089                 /*isTailCall=*/false,
5090                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5091                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5092                 Args, DAG, dl);
5093    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5094    DAG.setRoot(Result.second);
5095    return 0;
5096  }
5097
5098  case Intrinsic::uadd_with_overflow:
5099  case Intrinsic::sadd_with_overflow:
5100  case Intrinsic::usub_with_overflow:
5101  case Intrinsic::ssub_with_overflow:
5102  case Intrinsic::umul_with_overflow:
5103  case Intrinsic::smul_with_overflow: {
5104    ISD::NodeType Op;
5105    switch (Intrinsic) {
5106    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5107    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5108    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5109    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5110    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5111    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5112    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5113    }
5114    SDValue Op1 = getValue(I.getArgOperand(0));
5115    SDValue Op2 = getValue(I.getArgOperand(1));
5116
5117    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5118    setValue(&I, DAG.getNode(Op, dl, VTs, Op1, Op2));
5119    return 0;
5120  }
5121  case Intrinsic::prefetch: {
5122    SDValue Ops[5];
5123    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5124    Ops[0] = getRoot();
5125    Ops[1] = getValue(I.getArgOperand(0));
5126    Ops[2] = getValue(I.getArgOperand(1));
5127    Ops[3] = getValue(I.getArgOperand(2));
5128    Ops[4] = getValue(I.getArgOperand(3));
5129    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5130                                        DAG.getVTList(MVT::Other),
5131                                        &Ops[0], 5,
5132                                        EVT::getIntegerVT(*Context, 8),
5133                                        MachinePointerInfo(I.getArgOperand(0)),
5134                                        0, /* align */
5135                                        false, /* volatile */
5136                                        rw==0, /* read */
5137                                        rw==1)); /* write */
5138    return 0;
5139  }
5140  case Intrinsic::lifetime_start:
5141  case Intrinsic::lifetime_end: {
5142    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5143    // Stack coloring is not enabled in O0, discard region information.
5144    if (TM.getOptLevel() == CodeGenOpt::None)
5145      return 0;
5146
5147    SmallVector<Value *, 4> Allocas;
5148    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5149
5150    for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
5151         E = Allocas.end(); Object != E; ++Object) {
5152      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5153
5154      // Could not find an Alloca.
5155      if (!LifetimeObject)
5156        continue;
5157
5158      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5159
5160      SDValue Ops[2];
5161      Ops[0] = getRoot();
5162      Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5163      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5164
5165      Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2);
5166      DAG.setRoot(Res);
5167    }
5168  }
5169  case Intrinsic::invariant_start:
5170    // Discard region information.
5171    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5172    return 0;
5173  case Intrinsic::invariant_end:
5174    // Discard region information.
5175    return 0;
5176  case Intrinsic::donothing:
5177    // ignore
5178    return 0;
5179  }
5180}
5181
5182void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5183                                      bool isTailCall,
5184                                      MachineBasicBlock *LandingPad) {
5185  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5186  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5187  Type *RetTy = FTy->getReturnType();
5188  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5189  MCSymbol *BeginLabel = 0;
5190
5191  TargetLowering::ArgListTy Args;
5192  TargetLowering::ArgListEntry Entry;
5193  Args.reserve(CS.arg_size());
5194
5195  // Check whether the function can return without sret-demotion.
5196  SmallVector<ISD::OutputArg, 4> Outs;
5197  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5198                Outs, TLI);
5199
5200  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5201                                           DAG.getMachineFunction(),
5202                                           FTy->isVarArg(), Outs,
5203                                           FTy->getContext());
5204
5205  SDValue DemoteStackSlot;
5206  int DemoteStackIdx = -100;
5207
5208  if (!CanLowerReturn) {
5209    uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(
5210                      FTy->getReturnType());
5211    unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(
5212                      FTy->getReturnType());
5213    MachineFunction &MF = DAG.getMachineFunction();
5214    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5215    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5216
5217    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5218    Entry.Node = DemoteStackSlot;
5219    Entry.Ty = StackSlotPtrType;
5220    Entry.isSExt = false;
5221    Entry.isZExt = false;
5222    Entry.isInReg = false;
5223    Entry.isSRet = true;
5224    Entry.isNest = false;
5225    Entry.isByVal = false;
5226    Entry.Alignment = Align;
5227    Args.push_back(Entry);
5228    RetTy = Type::getVoidTy(FTy->getContext());
5229  }
5230
5231  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5232       i != e; ++i) {
5233    const Value *V = *i;
5234
5235    // Skip empty types
5236    if (V->getType()->isEmptyTy())
5237      continue;
5238
5239    SDValue ArgNode = getValue(V);
5240    Entry.Node = ArgNode; Entry.Ty = V->getType();
5241
5242    unsigned attrInd = i - CS.arg_begin() + 1;
5243    Entry.isSExt  = CS.paramHasAttr(attrInd, Attributes::SExt);
5244    Entry.isZExt  = CS.paramHasAttr(attrInd, Attributes::ZExt);
5245    Entry.isInReg = CS.paramHasAttr(attrInd, Attributes::InReg);
5246    Entry.isSRet  = CS.paramHasAttr(attrInd, Attributes::StructRet);
5247    Entry.isNest  = CS.paramHasAttr(attrInd, Attributes::Nest);
5248    Entry.isByVal = CS.paramHasAttr(attrInd, Attributes::ByVal);
5249    Entry.Alignment = CS.getParamAlignment(attrInd);
5250    Args.push_back(Entry);
5251  }
5252
5253  if (LandingPad) {
5254    // Insert a label before the invoke call to mark the try range.  This can be
5255    // used to detect deletion of the invoke via the MachineModuleInfo.
5256    BeginLabel = MMI.getContext().CreateTempSymbol();
5257
5258    // For SjLj, keep track of which landing pads go with which invokes
5259    // so as to maintain the ordering of pads in the LSDA.
5260    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5261    if (CallSiteIndex) {
5262      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5263      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5264
5265      // Now that the call site is handled, stop tracking it.
5266      MMI.setCurrentCallSite(0);
5267    }
5268
5269    // Both PendingLoads and PendingExports must be flushed here;
5270    // this call might not return.
5271    (void)getRoot();
5272    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5273  }
5274
5275  // Check if target-independent constraints permit a tail call here.
5276  // Target-dependent constraints are checked within TLI.LowerCallTo.
5277  if (isTailCall &&
5278      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5279    isTailCall = false;
5280
5281  TargetLowering::
5282  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5283                       getCurDebugLoc(), CS);
5284  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5285  assert((isTailCall || Result.second.getNode()) &&
5286         "Non-null chain expected with non-tail call!");
5287  assert((Result.second.getNode() || !Result.first.getNode()) &&
5288         "Null value expected with tail call!");
5289  if (Result.first.getNode()) {
5290    setValue(CS.getInstruction(), Result.first);
5291  } else if (!CanLowerReturn && Result.second.getNode()) {
5292    // The instruction result is the result of loading from the
5293    // hidden sret parameter.
5294    SmallVector<EVT, 1> PVTs;
5295    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5296
5297    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5298    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5299    EVT PtrVT = PVTs[0];
5300
5301    SmallVector<EVT, 4> RetTys;
5302    SmallVector<uint64_t, 4> Offsets;
5303    RetTy = FTy->getReturnType();
5304    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5305
5306    unsigned NumValues = RetTys.size();
5307    SmallVector<SDValue, 4> Values(NumValues);
5308    SmallVector<SDValue, 4> Chains(NumValues);
5309
5310    for (unsigned i = 0; i < NumValues; ++i) {
5311      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5312                                DemoteStackSlot,
5313                                DAG.getConstant(Offsets[i], PtrVT));
5314      SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5315                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5316                              false, false, false, 1);
5317      Values[i] = L;
5318      Chains[i] = L.getValue(1);
5319    }
5320
5321    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5322                                MVT::Other, &Chains[0], NumValues);
5323    PendingLoads.push_back(Chain);
5324
5325    setValue(CS.getInstruction(),
5326             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5327                         DAG.getVTList(&RetTys[0], RetTys.size()),
5328                         &Values[0], Values.size()));
5329  }
5330
5331  // Assign order to nodes here. If the call does not produce a result, it won't
5332  // be mapped to a SDNode and visit() will not assign it an order number.
5333  if (!Result.second.getNode()) {
5334    // As a special case, a null chain means that a tail call has been emitted and
5335    // the DAG root is already updated.
5336    HasTailCall = true;
5337    ++SDNodeOrder;
5338    AssignOrderingToNode(DAG.getRoot().getNode());
5339  } else {
5340    DAG.setRoot(Result.second);
5341    ++SDNodeOrder;
5342    AssignOrderingToNode(Result.second.getNode());
5343  }
5344
5345  if (LandingPad) {
5346    // Insert a label at the end of the invoke call to mark the try range.  This
5347    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5348    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5349    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5350
5351    // Inform MachineModuleInfo of range.
5352    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5353  }
5354}
5355
5356/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5357/// value is equal or not-equal to zero.
5358static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5359  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5360       UI != E; ++UI) {
5361    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5362      if (IC->isEquality())
5363        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5364          if (C->isNullValue())
5365            continue;
5366    // Unknown instruction.
5367    return false;
5368  }
5369  return true;
5370}
5371
5372static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5373                             Type *LoadTy,
5374                             SelectionDAGBuilder &Builder) {
5375
5376  // Check to see if this load can be trivially constant folded, e.g. if the
5377  // input is from a string literal.
5378  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5379    // Cast pointer to the type we really want to load.
5380    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5381                                         PointerType::getUnqual(LoadTy));
5382
5383    if (const Constant *LoadCst =
5384          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5385                                       Builder.TD))
5386      return Builder.getValue(LoadCst);
5387  }
5388
5389  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5390  // still constant memory, the input chain can be the entry node.
5391  SDValue Root;
5392  bool ConstantMemory = false;
5393
5394  // Do not serialize (non-volatile) loads of constant memory with anything.
5395  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5396    Root = Builder.DAG.getEntryNode();
5397    ConstantMemory = true;
5398  } else {
5399    // Do not serialize non-volatile loads against each other.
5400    Root = Builder.DAG.getRoot();
5401  }
5402
5403  SDValue Ptr = Builder.getValue(PtrVal);
5404  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5405                                        Ptr, MachinePointerInfo(PtrVal),
5406                                        false /*volatile*/,
5407                                        false /*nontemporal*/,
5408                                        false /*isinvariant*/, 1 /* align=1 */);
5409
5410  if (!ConstantMemory)
5411    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5412  return LoadVal;
5413}
5414
5415
5416/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5417/// If so, return true and lower it, otherwise return false and it will be
5418/// lowered like a normal call.
5419bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5420  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5421  if (I.getNumArgOperands() != 3)
5422    return false;
5423
5424  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5425  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5426      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5427      !I.getType()->isIntegerTy())
5428    return false;
5429
5430  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5431
5432  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5433  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5434  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5435    bool ActuallyDoIt = true;
5436    MVT LoadVT;
5437    Type *LoadTy;
5438    switch (Size->getZExtValue()) {
5439    default:
5440      LoadVT = MVT::Other;
5441      LoadTy = 0;
5442      ActuallyDoIt = false;
5443      break;
5444    case 2:
5445      LoadVT = MVT::i16;
5446      LoadTy = Type::getInt16Ty(Size->getContext());
5447      break;
5448    case 4:
5449      LoadVT = MVT::i32;
5450      LoadTy = Type::getInt32Ty(Size->getContext());
5451      break;
5452    case 8:
5453      LoadVT = MVT::i64;
5454      LoadTy = Type::getInt64Ty(Size->getContext());
5455      break;
5456        /*
5457    case 16:
5458      LoadVT = MVT::v4i32;
5459      LoadTy = Type::getInt32Ty(Size->getContext());
5460      LoadTy = VectorType::get(LoadTy, 4);
5461      break;
5462         */
5463    }
5464
5465    // This turns into unaligned loads.  We only do this if the target natively
5466    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5467    // we'll only produce a small number of byte loads.
5468
5469    // Require that we can find a legal MVT, and only do this if the target
5470    // supports unaligned loads of that type.  Expanding into byte loads would
5471    // bloat the code.
5472    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5473      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5474      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5475      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5476        ActuallyDoIt = false;
5477    }
5478
5479    if (ActuallyDoIt) {
5480      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5481      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5482
5483      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5484                                 ISD::SETNE);
5485      EVT CallVT = TLI.getValueType(I.getType(), true);
5486      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5487      return true;
5488    }
5489  }
5490
5491
5492  return false;
5493}
5494
5495/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5496/// operation (as expected), translate it to an SDNode with the specified opcode
5497/// and return true.
5498bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5499                                              unsigned Opcode) {
5500  // Sanity check that it really is a unary floating-point call.
5501  if (I.getNumArgOperands() != 1 ||
5502      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5503      I.getType() != I.getArgOperand(0)->getType() ||
5504      !I.onlyReadsMemory())
5505    return false;
5506
5507  SDValue Tmp = getValue(I.getArgOperand(0));
5508  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp));
5509  return true;
5510}
5511
5512void SelectionDAGBuilder::visitCall(const CallInst &I) {
5513  // Handle inline assembly differently.
5514  if (isa<InlineAsm>(I.getCalledValue())) {
5515    visitInlineAsm(&I);
5516    return;
5517  }
5518
5519  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5520  ComputeUsesVAFloatArgument(I, &MMI);
5521
5522  const char *RenameFn = 0;
5523  if (Function *F = I.getCalledFunction()) {
5524    if (F->isDeclaration()) {
5525      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5526        if (unsigned IID = II->getIntrinsicID(F)) {
5527          RenameFn = visitIntrinsicCall(I, IID);
5528          if (!RenameFn)
5529            return;
5530        }
5531      }
5532      if (unsigned IID = F->getIntrinsicID()) {
5533        RenameFn = visitIntrinsicCall(I, IID);
5534        if (!RenameFn)
5535          return;
5536      }
5537    }
5538
5539    // Check for well-known libc/libm calls.  If the function is internal, it
5540    // can't be a library call.
5541    LibFunc::Func Func;
5542    if (!F->hasLocalLinkage() && F->hasName() &&
5543        LibInfo->getLibFunc(F->getName(), Func) &&
5544        LibInfo->hasOptimizedCodeGen(Func)) {
5545      switch (Func) {
5546      default: break;
5547      case LibFunc::copysign:
5548      case LibFunc::copysignf:
5549      case LibFunc::copysignl:
5550        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5551            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5552            I.getType() == I.getArgOperand(0)->getType() &&
5553            I.getType() == I.getArgOperand(1)->getType() &&
5554            I.onlyReadsMemory()) {
5555          SDValue LHS = getValue(I.getArgOperand(0));
5556          SDValue RHS = getValue(I.getArgOperand(1));
5557          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5558                                   LHS.getValueType(), LHS, RHS));
5559          return;
5560        }
5561        break;
5562      case LibFunc::fabs:
5563      case LibFunc::fabsf:
5564      case LibFunc::fabsl:
5565        if (visitUnaryFloatCall(I, ISD::FABS))
5566          return;
5567        break;
5568      case LibFunc::sin:
5569      case LibFunc::sinf:
5570      case LibFunc::sinl:
5571        if (visitUnaryFloatCall(I, ISD::FSIN))
5572          return;
5573        break;
5574      case LibFunc::cos:
5575      case LibFunc::cosf:
5576      case LibFunc::cosl:
5577        if (visitUnaryFloatCall(I, ISD::FCOS))
5578          return;
5579        break;
5580      case LibFunc::sqrt:
5581      case LibFunc::sqrtf:
5582      case LibFunc::sqrtl:
5583        if (visitUnaryFloatCall(I, ISD::FSQRT))
5584          return;
5585        break;
5586      case LibFunc::floor:
5587      case LibFunc::floorf:
5588      case LibFunc::floorl:
5589        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5590          return;
5591        break;
5592      case LibFunc::nearbyint:
5593      case LibFunc::nearbyintf:
5594      case LibFunc::nearbyintl:
5595        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5596          return;
5597        break;
5598      case LibFunc::ceil:
5599      case LibFunc::ceilf:
5600      case LibFunc::ceill:
5601        if (visitUnaryFloatCall(I, ISD::FCEIL))
5602          return;
5603        break;
5604      case LibFunc::rint:
5605      case LibFunc::rintf:
5606      case LibFunc::rintl:
5607        if (visitUnaryFloatCall(I, ISD::FRINT))
5608          return;
5609        break;
5610      case LibFunc::trunc:
5611      case LibFunc::truncf:
5612      case LibFunc::truncl:
5613        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5614          return;
5615        break;
5616      case LibFunc::log2:
5617      case LibFunc::log2f:
5618      case LibFunc::log2l:
5619        if (visitUnaryFloatCall(I, ISD::FLOG2))
5620          return;
5621        break;
5622      case LibFunc::exp2:
5623      case LibFunc::exp2f:
5624      case LibFunc::exp2l:
5625        if (visitUnaryFloatCall(I, ISD::FEXP2))
5626          return;
5627        break;
5628      case LibFunc::memcmp:
5629        if (visitMemCmpCall(I))
5630          return;
5631        break;
5632      }
5633    }
5634  }
5635
5636  SDValue Callee;
5637  if (!RenameFn)
5638    Callee = getValue(I.getCalledValue());
5639  else
5640    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5641
5642  // Check if we can potentially perform a tail call. More detailed checking is
5643  // be done within LowerCallTo, after more information about the call is known.
5644  LowerCallTo(&I, Callee, I.isTailCall());
5645}
5646
5647namespace {
5648
5649/// AsmOperandInfo - This contains information for each constraint that we are
5650/// lowering.
5651class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5652public:
5653  /// CallOperand - If this is the result output operand or a clobber
5654  /// this is null, otherwise it is the incoming operand to the CallInst.
5655  /// This gets modified as the asm is processed.
5656  SDValue CallOperand;
5657
5658  /// AssignedRegs - If this is a register or register class operand, this
5659  /// contains the set of register corresponding to the operand.
5660  RegsForValue AssignedRegs;
5661
5662  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5663    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5664  }
5665
5666  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5667  /// corresponds to.  If there is no Value* for this operand, it returns
5668  /// MVT::Other.
5669  EVT getCallOperandValEVT(LLVMContext &Context,
5670                           const TargetLowering &TLI,
5671                           const DataLayout *TD) const {
5672    if (CallOperandVal == 0) return MVT::Other;
5673
5674    if (isa<BasicBlock>(CallOperandVal))
5675      return TLI.getPointerTy();
5676
5677    llvm::Type *OpTy = CallOperandVal->getType();
5678
5679    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5680    // If this is an indirect operand, the operand is a pointer to the
5681    // accessed type.
5682    if (isIndirect) {
5683      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5684      if (!PtrTy)
5685        report_fatal_error("Indirect operand for inline asm not a pointer!");
5686      OpTy = PtrTy->getElementType();
5687    }
5688
5689    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5690    if (StructType *STy = dyn_cast<StructType>(OpTy))
5691      if (STy->getNumElements() == 1)
5692        OpTy = STy->getElementType(0);
5693
5694    // If OpTy is not a single value, it may be a struct/union that we
5695    // can tile with integers.
5696    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5697      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5698      switch (BitSize) {
5699      default: break;
5700      case 1:
5701      case 8:
5702      case 16:
5703      case 32:
5704      case 64:
5705      case 128:
5706        OpTy = IntegerType::get(Context, BitSize);
5707        break;
5708      }
5709    }
5710
5711    return TLI.getValueType(OpTy, true);
5712  }
5713};
5714
5715typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5716
5717} // end anonymous namespace
5718
5719/// GetRegistersForValue - Assign registers (virtual or physical) for the
5720/// specified operand.  We prefer to assign virtual registers, to allow the
5721/// register allocator to handle the assignment process.  However, if the asm
5722/// uses features that we can't model on machineinstrs, we have SDISel do the
5723/// allocation.  This produces generally horrible, but correct, code.
5724///
5725///   OpInfo describes the operand.
5726///
5727static void GetRegistersForValue(SelectionDAG &DAG,
5728                                 const TargetLowering &TLI,
5729                                 DebugLoc DL,
5730                                 SDISelAsmOperandInfo &OpInfo) {
5731  LLVMContext &Context = *DAG.getContext();
5732
5733  MachineFunction &MF = DAG.getMachineFunction();
5734  SmallVector<unsigned, 4> Regs;
5735
5736  // If this is a constraint for a single physreg, or a constraint for a
5737  // register class, find it.
5738  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5739    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5740                                     OpInfo.ConstraintVT);
5741
5742  unsigned NumRegs = 1;
5743  if (OpInfo.ConstraintVT != MVT::Other) {
5744    // If this is a FP input in an integer register (or visa versa) insert a bit
5745    // cast of the input value.  More generally, handle any case where the input
5746    // value disagrees with the register class we plan to stick this in.
5747    if (OpInfo.Type == InlineAsm::isInput &&
5748        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5749      // Try to convert to the first EVT that the reg class contains.  If the
5750      // types are identical size, use a bitcast to convert (e.g. two differing
5751      // vector types).
5752      EVT RegVT = *PhysReg.second->vt_begin();
5753      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5754        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5755                                         RegVT, OpInfo.CallOperand);
5756        OpInfo.ConstraintVT = RegVT;
5757      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5758        // If the input is a FP value and we want it in FP registers, do a
5759        // bitcast to the corresponding integer type.  This turns an f64 value
5760        // into i64, which can be passed with two i32 values on a 32-bit
5761        // machine.
5762        RegVT = EVT::getIntegerVT(Context,
5763                                  OpInfo.ConstraintVT.getSizeInBits());
5764        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5765                                         RegVT, OpInfo.CallOperand);
5766        OpInfo.ConstraintVT = RegVT;
5767      }
5768    }
5769
5770    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5771  }
5772
5773  EVT RegVT;
5774  EVT ValueVT = OpInfo.ConstraintVT;
5775
5776  // If this is a constraint for a specific physical register, like {r17},
5777  // assign it now.
5778  if (unsigned AssignedReg = PhysReg.first) {
5779    const TargetRegisterClass *RC = PhysReg.second;
5780    if (OpInfo.ConstraintVT == MVT::Other)
5781      ValueVT = *RC->vt_begin();
5782
5783    // Get the actual register value type.  This is important, because the user
5784    // may have asked for (e.g.) the AX register in i32 type.  We need to
5785    // remember that AX is actually i16 to get the right extension.
5786    RegVT = *RC->vt_begin();
5787
5788    // This is a explicit reference to a physical register.
5789    Regs.push_back(AssignedReg);
5790
5791    // If this is an expanded reference, add the rest of the regs to Regs.
5792    if (NumRegs != 1) {
5793      TargetRegisterClass::iterator I = RC->begin();
5794      for (; *I != AssignedReg; ++I)
5795        assert(I != RC->end() && "Didn't find reg!");
5796
5797      // Already added the first reg.
5798      --NumRegs; ++I;
5799      for (; NumRegs; --NumRegs, ++I) {
5800        assert(I != RC->end() && "Ran out of registers to allocate!");
5801        Regs.push_back(*I);
5802      }
5803    }
5804
5805    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5806    return;
5807  }
5808
5809  // Otherwise, if this was a reference to an LLVM register class, create vregs
5810  // for this reference.
5811  if (const TargetRegisterClass *RC = PhysReg.second) {
5812    RegVT = *RC->vt_begin();
5813    if (OpInfo.ConstraintVT == MVT::Other)
5814      ValueVT = RegVT;
5815
5816    // Create the appropriate number of virtual registers.
5817    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5818    for (; NumRegs; --NumRegs)
5819      Regs.push_back(RegInfo.createVirtualRegister(RC));
5820
5821    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5822    return;
5823  }
5824
5825  // Otherwise, we couldn't allocate enough registers for this.
5826}
5827
5828/// visitInlineAsm - Handle a call to an InlineAsm object.
5829///
5830void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5831  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5832
5833  /// ConstraintOperands - Information about all of the constraints.
5834  SDISelAsmOperandInfoVector ConstraintOperands;
5835
5836  TargetLowering::AsmOperandInfoVector
5837    TargetConstraints = TLI.ParseConstraints(CS);
5838
5839  bool hasMemory = false;
5840
5841  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5842  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5843  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5844    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5845    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5846
5847    EVT OpVT = MVT::Other;
5848
5849    // Compute the value type for each operand.
5850    switch (OpInfo.Type) {
5851    case InlineAsm::isOutput:
5852      // Indirect outputs just consume an argument.
5853      if (OpInfo.isIndirect) {
5854        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5855        break;
5856      }
5857
5858      // The return value of the call is this value.  As such, there is no
5859      // corresponding argument.
5860      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5861      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5862        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5863      } else {
5864        assert(ResNo == 0 && "Asm only has one result!");
5865        OpVT = TLI.getValueType(CS.getType());
5866      }
5867      ++ResNo;
5868      break;
5869    case InlineAsm::isInput:
5870      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5871      break;
5872    case InlineAsm::isClobber:
5873      // Nothing to do.
5874      break;
5875    }
5876
5877    // If this is an input or an indirect output, process the call argument.
5878    // BasicBlocks are labels, currently appearing only in asm's.
5879    if (OpInfo.CallOperandVal) {
5880      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5881        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5882      } else {
5883        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5884      }
5885
5886      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5887    }
5888
5889    OpInfo.ConstraintVT = OpVT;
5890
5891    // Indirect operand accesses access memory.
5892    if (OpInfo.isIndirect)
5893      hasMemory = true;
5894    else {
5895      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5896        TargetLowering::ConstraintType
5897          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5898        if (CType == TargetLowering::C_Memory) {
5899          hasMemory = true;
5900          break;
5901        }
5902      }
5903    }
5904  }
5905
5906  SDValue Chain, Flag;
5907
5908  // We won't need to flush pending loads if this asm doesn't touch
5909  // memory and is nonvolatile.
5910  if (hasMemory || IA->hasSideEffects())
5911    Chain = getRoot();
5912  else
5913    Chain = DAG.getRoot();
5914
5915  // Second pass over the constraints: compute which constraint option to use
5916  // and assign registers to constraints that want a specific physreg.
5917  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5918    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5919
5920    // If this is an output operand with a matching input operand, look up the
5921    // matching input. If their types mismatch, e.g. one is an integer, the
5922    // other is floating point, or their sizes are different, flag it as an
5923    // error.
5924    if (OpInfo.hasMatchingInput()) {
5925      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5926
5927      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5928        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5929          TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5930                                           OpInfo.ConstraintVT);
5931        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5932          TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5933                                           Input.ConstraintVT);
5934        if ((OpInfo.ConstraintVT.isInteger() !=
5935             Input.ConstraintVT.isInteger()) ||
5936            (MatchRC.second != InputRC.second)) {
5937          report_fatal_error("Unsupported asm: input constraint"
5938                             " with a matching output constraint of"
5939                             " incompatible type!");
5940        }
5941        Input.ConstraintVT = OpInfo.ConstraintVT;
5942      }
5943    }
5944
5945    // Compute the constraint code and ConstraintType to use.
5946    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5947
5948    // If this is a memory input, and if the operand is not indirect, do what we
5949    // need to to provide an address for the memory input.
5950    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5951        !OpInfo.isIndirect) {
5952      assert((OpInfo.isMultipleAlternative ||
5953              (OpInfo.Type == InlineAsm::isInput)) &&
5954             "Can only indirectify direct input operands!");
5955
5956      // Memory operands really want the address of the value.  If we don't have
5957      // an indirect input, put it in the constpool if we can, otherwise spill
5958      // it to a stack slot.
5959      // TODO: This isn't quite right. We need to handle these according to
5960      // the addressing mode that the constraint wants. Also, this may take
5961      // an additional register for the computation and we don't want that
5962      // either.
5963
5964      // If the operand is a float, integer, or vector constant, spill to a
5965      // constant pool entry to get its address.
5966      const Value *OpVal = OpInfo.CallOperandVal;
5967      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5968          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5969        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5970                                                 TLI.getPointerTy());
5971      } else {
5972        // Otherwise, create a stack slot and emit a store to it before the
5973        // asm.
5974        Type *Ty = OpVal->getType();
5975        uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
5976        unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
5977        MachineFunction &MF = DAG.getMachineFunction();
5978        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5979        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5980        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5981                             OpInfo.CallOperand, StackSlot,
5982                             MachinePointerInfo::getFixedStack(SSFI),
5983                             false, false, 0);
5984        OpInfo.CallOperand = StackSlot;
5985      }
5986
5987      // There is no longer a Value* corresponding to this operand.
5988      OpInfo.CallOperandVal = 0;
5989
5990      // It is now an indirect operand.
5991      OpInfo.isIndirect = true;
5992    }
5993
5994    // If this constraint is for a specific register, allocate it before
5995    // anything else.
5996    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5997      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
5998  }
5999
6000  // Second pass - Loop over all of the operands, assigning virtual or physregs
6001  // to register class operands.
6002  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6003    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6004
6005    // C_Register operands have already been allocated, Other/Memory don't need
6006    // to be.
6007    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6008      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6009  }
6010
6011  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6012  std::vector<SDValue> AsmNodeOperands;
6013  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6014  AsmNodeOperands.push_back(
6015          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6016                                      TLI.getPointerTy()));
6017
6018  // If we have a !srcloc metadata node associated with it, we want to attach
6019  // this to the ultimately generated inline asm machineinstr.  To do this, we
6020  // pass in the third operand as this (potentially null) inline asm MDNode.
6021  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6022  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6023
6024  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6025  // bits as operand 3.
6026  unsigned ExtraInfo = 0;
6027  if (IA->hasSideEffects())
6028    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6029  if (IA->isAlignStack())
6030    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6031  // Set the asm dialect.
6032  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6033
6034  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6035  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6036    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6037
6038    // Compute the constraint code and ConstraintType to use.
6039    TLI.ComputeConstraintToUse(OpInfo, SDValue());
6040
6041    // Ideally, we would only check against memory constraints.  However, the
6042    // meaning of an other constraint can be target-specific and we can't easily
6043    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6044    // for other constriants as well.
6045    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6046        OpInfo.ConstraintType == TargetLowering::C_Other) {
6047      if (OpInfo.Type == InlineAsm::isInput)
6048        ExtraInfo |= InlineAsm::Extra_MayLoad;
6049      else if (OpInfo.Type == InlineAsm::isOutput)
6050        ExtraInfo |= InlineAsm::Extra_MayStore;
6051    }
6052  }
6053
6054  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6055                                                  TLI.getPointerTy()));
6056
6057  // Loop over all of the inputs, copying the operand values into the
6058  // appropriate registers and processing the output regs.
6059  RegsForValue RetValRegs;
6060
6061  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6062  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6063
6064  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6065    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6066
6067    switch (OpInfo.Type) {
6068    case InlineAsm::isOutput: {
6069      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6070          OpInfo.ConstraintType != TargetLowering::C_Register) {
6071        // Memory output, or 'other' output (e.g. 'X' constraint).
6072        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6073
6074        // Add information to the INLINEASM node to know about this output.
6075        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6076        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6077                                                        TLI.getPointerTy()));
6078        AsmNodeOperands.push_back(OpInfo.CallOperand);
6079        break;
6080      }
6081
6082      // Otherwise, this is a register or register class output.
6083
6084      // Copy the output from the appropriate register.  Find a register that
6085      // we can use.
6086      if (OpInfo.AssignedRegs.Regs.empty()) {
6087        LLVMContext &Ctx = *DAG.getContext();
6088        Ctx.emitError(CS.getInstruction(),
6089                      "couldn't allocate output register for constraint '" +
6090                           Twine(OpInfo.ConstraintCode) + "'");
6091        break;
6092      }
6093
6094      // If this is an indirect operand, store through the pointer after the
6095      // asm.
6096      if (OpInfo.isIndirect) {
6097        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6098                                                      OpInfo.CallOperandVal));
6099      } else {
6100        // This is the result value of the call.
6101        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6102        // Concatenate this output onto the outputs list.
6103        RetValRegs.append(OpInfo.AssignedRegs);
6104      }
6105
6106      // Add information to the INLINEASM node to know that this register is
6107      // set.
6108      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6109                                           InlineAsm::Kind_RegDefEarlyClobber :
6110                                               InlineAsm::Kind_RegDef,
6111                                               false,
6112                                               0,
6113                                               DAG,
6114                                               AsmNodeOperands);
6115      break;
6116    }
6117    case InlineAsm::isInput: {
6118      SDValue InOperandVal = OpInfo.CallOperand;
6119
6120      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6121        // If this is required to match an output register we have already set,
6122        // just use its register.
6123        unsigned OperandNo = OpInfo.getMatchedOperand();
6124
6125        // Scan until we find the definition we already emitted of this operand.
6126        // When we find it, create a RegsForValue operand.
6127        unsigned CurOp = InlineAsm::Op_FirstOperand;
6128        for (; OperandNo; --OperandNo) {
6129          // Advance to the next operand.
6130          unsigned OpFlag =
6131            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6132          assert((InlineAsm::isRegDefKind(OpFlag) ||
6133                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6134                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6135          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6136        }
6137
6138        unsigned OpFlag =
6139          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6140        if (InlineAsm::isRegDefKind(OpFlag) ||
6141            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6142          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6143          if (OpInfo.isIndirect) {
6144            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6145            LLVMContext &Ctx = *DAG.getContext();
6146            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6147                          " don't know how to handle tied "
6148                          "indirect register inputs");
6149          }
6150
6151          RegsForValue MatchedRegs;
6152          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6153          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6154          MatchedRegs.RegVTs.push_back(RegVT);
6155          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6156          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6157               i != e; ++i)
6158            MatchedRegs.Regs.push_back
6159              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6160
6161          // Use the produced MatchedRegs object to
6162          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6163                                    Chain, &Flag, CS.getInstruction());
6164          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6165                                           true, OpInfo.getMatchedOperand(),
6166                                           DAG, AsmNodeOperands);
6167          break;
6168        }
6169
6170        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6171        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6172               "Unexpected number of operands");
6173        // Add information to the INLINEASM node to know about this input.
6174        // See InlineAsm.h isUseOperandTiedToDef.
6175        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6176                                                    OpInfo.getMatchedOperand());
6177        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6178                                                        TLI.getPointerTy()));
6179        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6180        break;
6181      }
6182
6183      // Treat indirect 'X' constraint as memory.
6184      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6185          OpInfo.isIndirect)
6186        OpInfo.ConstraintType = TargetLowering::C_Memory;
6187
6188      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6189        std::vector<SDValue> Ops;
6190        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6191                                         Ops, DAG);
6192        if (Ops.empty()) {
6193          LLVMContext &Ctx = *DAG.getContext();
6194          Ctx.emitError(CS.getInstruction(),
6195                        "invalid operand for inline asm constraint '" +
6196                        Twine(OpInfo.ConstraintCode) + "'");
6197          break;
6198        }
6199
6200        // Add information to the INLINEASM node to know about this input.
6201        unsigned ResOpType =
6202          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6203        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6204                                                        TLI.getPointerTy()));
6205        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6206        break;
6207      }
6208
6209      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6210        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6211        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6212               "Memory operands expect pointer values");
6213
6214        // Add information to the INLINEASM node to know about this input.
6215        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6216        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6217                                                        TLI.getPointerTy()));
6218        AsmNodeOperands.push_back(InOperandVal);
6219        break;
6220      }
6221
6222      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6223              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6224             "Unknown constraint type!");
6225
6226      // TODO: Support this.
6227      if (OpInfo.isIndirect) {
6228        LLVMContext &Ctx = *DAG.getContext();
6229        Ctx.emitError(CS.getInstruction(),
6230                      "Don't know how to handle indirect register inputs yet "
6231                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6232        break;
6233      }
6234
6235      // Copy the input into the appropriate registers.
6236      if (OpInfo.AssignedRegs.Regs.empty()) {
6237        LLVMContext &Ctx = *DAG.getContext();
6238        Ctx.emitError(CS.getInstruction(),
6239                      "couldn't allocate input reg for constraint '" +
6240                           Twine(OpInfo.ConstraintCode) + "'");
6241        break;
6242      }
6243
6244      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6245                                        Chain, &Flag, CS.getInstruction());
6246
6247      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6248                                               DAG, AsmNodeOperands);
6249      break;
6250    }
6251    case InlineAsm::isClobber: {
6252      // Add the clobbered value to the operand list, so that the register
6253      // allocator is aware that the physreg got clobbered.
6254      if (!OpInfo.AssignedRegs.Regs.empty())
6255        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6256                                                 false, 0, DAG,
6257                                                 AsmNodeOperands);
6258      break;
6259    }
6260    }
6261  }
6262
6263  // Finish up input operands.  Set the input chain and add the flag last.
6264  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6265  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6266
6267  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6268                      DAG.getVTList(MVT::Other, MVT::Glue),
6269                      &AsmNodeOperands[0], AsmNodeOperands.size());
6270  Flag = Chain.getValue(1);
6271
6272  // If this asm returns a register value, copy the result from that register
6273  // and set it as the value of the call.
6274  if (!RetValRegs.Regs.empty()) {
6275    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6276                                             Chain, &Flag, CS.getInstruction());
6277
6278    // FIXME: Why don't we do this for inline asms with MRVs?
6279    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6280      EVT ResultType = TLI.getValueType(CS.getType());
6281
6282      // If any of the results of the inline asm is a vector, it may have the
6283      // wrong width/num elts.  This can happen for register classes that can
6284      // contain multiple different value types.  The preg or vreg allocated may
6285      // not have the same VT as was expected.  Convert it to the right type
6286      // with bit_convert.
6287      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6288        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6289                          ResultType, Val);
6290
6291      } else if (ResultType != Val.getValueType() &&
6292                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6293        // If a result value was tied to an input value, the computed result may
6294        // have a wider width than the expected result.  Extract the relevant
6295        // portion.
6296        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6297      }
6298
6299      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6300    }
6301
6302    setValue(CS.getInstruction(), Val);
6303    // Don't need to use this as a chain in this case.
6304    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6305      return;
6306  }
6307
6308  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6309
6310  // Process indirect outputs, first output all of the flagged copies out of
6311  // physregs.
6312  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6313    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6314    const Value *Ptr = IndirectStoresToEmit[i].second;
6315    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6316                                             Chain, &Flag, IA);
6317    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6318  }
6319
6320  // Emit the non-flagged stores from the physregs.
6321  SmallVector<SDValue, 8> OutChains;
6322  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6323    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6324                               StoresToEmit[i].first,
6325                               getValue(StoresToEmit[i].second),
6326                               MachinePointerInfo(StoresToEmit[i].second),
6327                               false, false, 0);
6328    OutChains.push_back(Val);
6329  }
6330
6331  if (!OutChains.empty())
6332    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6333                        &OutChains[0], OutChains.size());
6334
6335  DAG.setRoot(Chain);
6336}
6337
6338void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6339  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6340                          MVT::Other, getRoot(),
6341                          getValue(I.getArgOperand(0)),
6342                          DAG.getSrcValue(I.getArgOperand(0))));
6343}
6344
6345void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6346  const DataLayout &TD = *TLI.getDataLayout();
6347  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6348                           getRoot(), getValue(I.getOperand(0)),
6349                           DAG.getSrcValue(I.getOperand(0)),
6350                           TD.getABITypeAlignment(I.getType()));
6351  setValue(&I, V);
6352  DAG.setRoot(V.getValue(1));
6353}
6354
6355void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6356  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6357                          MVT::Other, getRoot(),
6358                          getValue(I.getArgOperand(0)),
6359                          DAG.getSrcValue(I.getArgOperand(0))));
6360}
6361
6362void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6363  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6364                          MVT::Other, getRoot(),
6365                          getValue(I.getArgOperand(0)),
6366                          getValue(I.getArgOperand(1)),
6367                          DAG.getSrcValue(I.getArgOperand(0)),
6368                          DAG.getSrcValue(I.getArgOperand(1))));
6369}
6370
6371/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6372/// implementation, which just calls LowerCall.
6373/// FIXME: When all targets are
6374/// migrated to using LowerCall, this hook should be integrated into SDISel.
6375std::pair<SDValue, SDValue>
6376TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6377  // Handle all of the outgoing arguments.
6378  CLI.Outs.clear();
6379  CLI.OutVals.clear();
6380  ArgListTy &Args = CLI.Args;
6381  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6382    SmallVector<EVT, 4> ValueVTs;
6383    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6384    for (unsigned Value = 0, NumValues = ValueVTs.size();
6385         Value != NumValues; ++Value) {
6386      EVT VT = ValueVTs[Value];
6387      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6388      SDValue Op = SDValue(Args[i].Node.getNode(),
6389                           Args[i].Node.getResNo() + Value);
6390      ISD::ArgFlagsTy Flags;
6391      unsigned OriginalAlignment =
6392        getDataLayout()->getABITypeAlignment(ArgTy);
6393
6394      if (Args[i].isZExt)
6395        Flags.setZExt();
6396      if (Args[i].isSExt)
6397        Flags.setSExt();
6398      if (Args[i].isInReg)
6399        Flags.setInReg();
6400      if (Args[i].isSRet)
6401        Flags.setSRet();
6402      if (Args[i].isByVal) {
6403        Flags.setByVal();
6404        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6405        Type *ElementTy = Ty->getElementType();
6406        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6407        // For ByVal, alignment should come from FE.  BE will guess if this
6408        // info is not there but there are cases it cannot get right.
6409        unsigned FrameAlign;
6410        if (Args[i].Alignment)
6411          FrameAlign = Args[i].Alignment;
6412        else
6413          FrameAlign = getByValTypeAlignment(ElementTy);
6414        Flags.setByValAlign(FrameAlign);
6415      }
6416      if (Args[i].isNest)
6417        Flags.setNest();
6418      Flags.setOrigAlign(OriginalAlignment);
6419
6420      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6421      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6422      SmallVector<SDValue, 4> Parts(NumParts);
6423      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6424
6425      if (Args[i].isSExt)
6426        ExtendKind = ISD::SIGN_EXTEND;
6427      else if (Args[i].isZExt)
6428        ExtendKind = ISD::ZERO_EXTEND;
6429
6430      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6431                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6432
6433      for (unsigned j = 0; j != NumParts; ++j) {
6434        // if it isn't first piece, alignment must be 1
6435        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6436                               i < CLI.NumFixedArgs,
6437                               i, j*Parts[j].getValueType().getStoreSize());
6438        if (NumParts > 1 && j == 0)
6439          MyFlags.Flags.setSplit();
6440        else if (j != 0)
6441          MyFlags.Flags.setOrigAlign(1);
6442
6443        CLI.Outs.push_back(MyFlags);
6444        CLI.OutVals.push_back(Parts[j]);
6445      }
6446    }
6447  }
6448
6449  // Handle the incoming return values from the call.
6450  CLI.Ins.clear();
6451  SmallVector<EVT, 4> RetTys;
6452  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6453  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6454    EVT VT = RetTys[I];
6455    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6456    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6457    for (unsigned i = 0; i != NumRegs; ++i) {
6458      ISD::InputArg MyFlags;
6459      MyFlags.VT = RegisterVT;
6460      MyFlags.Used = CLI.IsReturnValueUsed;
6461      if (CLI.RetSExt)
6462        MyFlags.Flags.setSExt();
6463      if (CLI.RetZExt)
6464        MyFlags.Flags.setZExt();
6465      if (CLI.IsInReg)
6466        MyFlags.Flags.setInReg();
6467      CLI.Ins.push_back(MyFlags);
6468    }
6469  }
6470
6471  SmallVector<SDValue, 4> InVals;
6472  CLI.Chain = LowerCall(CLI, InVals);
6473
6474  // Verify that the target's LowerCall behaved as expected.
6475  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6476         "LowerCall didn't return a valid chain!");
6477  assert((!CLI.IsTailCall || InVals.empty()) &&
6478         "LowerCall emitted a return value for a tail call!");
6479  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6480         "LowerCall didn't emit the correct number of values!");
6481
6482  // For a tail call, the return value is merely live-out and there aren't
6483  // any nodes in the DAG representing it. Return a special value to
6484  // indicate that a tail call has been emitted and no more Instructions
6485  // should be processed in the current block.
6486  if (CLI.IsTailCall) {
6487    CLI.DAG.setRoot(CLI.Chain);
6488    return std::make_pair(SDValue(), SDValue());
6489  }
6490
6491  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6492          assert(InVals[i].getNode() &&
6493                 "LowerCall emitted a null value!");
6494          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6495                 "LowerCall emitted a value with the wrong type!");
6496        });
6497
6498  // Collect the legal value parts into potentially illegal values
6499  // that correspond to the original function's return values.
6500  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6501  if (CLI.RetSExt)
6502    AssertOp = ISD::AssertSext;
6503  else if (CLI.RetZExt)
6504    AssertOp = ISD::AssertZext;
6505  SmallVector<SDValue, 4> ReturnValues;
6506  unsigned CurReg = 0;
6507  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6508    EVT VT = RetTys[I];
6509    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6510    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6511
6512    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6513                                            NumRegs, RegisterVT, VT, NULL,
6514                                            AssertOp));
6515    CurReg += NumRegs;
6516  }
6517
6518  // For a function returning void, there is no return value. We can't create
6519  // such a node, so we just return a null return value in that case. In
6520  // that case, nothing will actually look at the value.
6521  if (ReturnValues.empty())
6522    return std::make_pair(SDValue(), CLI.Chain);
6523
6524  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6525                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6526                            &ReturnValues[0], ReturnValues.size());
6527  return std::make_pair(Res, CLI.Chain);
6528}
6529
6530void TargetLowering::LowerOperationWrapper(SDNode *N,
6531                                           SmallVectorImpl<SDValue> &Results,
6532                                           SelectionDAG &DAG) const {
6533  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6534  if (Res.getNode())
6535    Results.push_back(Res);
6536}
6537
6538SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6539  llvm_unreachable("LowerOperation not implemented for this target!");
6540}
6541
6542void
6543SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6544  SDValue Op = getNonRegisterValue(V);
6545  assert((Op.getOpcode() != ISD::CopyFromReg ||
6546          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6547         "Copy from a reg to the same reg!");
6548  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6549
6550  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6551  SDValue Chain = DAG.getEntryNode();
6552  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V);
6553  PendingExports.push_back(Chain);
6554}
6555
6556#include "llvm/CodeGen/SelectionDAGISel.h"
6557
6558/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6559/// entry block, return true.  This includes arguments used by switches, since
6560/// the switch may expand into multiple basic blocks.
6561static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6562  // With FastISel active, we may be splitting blocks, so force creation
6563  // of virtual registers for all non-dead arguments.
6564  if (FastISel)
6565    return A->use_empty();
6566
6567  const BasicBlock *Entry = A->getParent()->begin();
6568  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6569       UI != E; ++UI) {
6570    const User *U = *UI;
6571    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6572      return false;  // Use not in entry block.
6573  }
6574  return true;
6575}
6576
6577void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6578  // If this is the entry block, emit arguments.
6579  const Function &F = *LLVMBB->getParent();
6580  SelectionDAG &DAG = SDB->DAG;
6581  DebugLoc dl = SDB->getCurDebugLoc();
6582  const DataLayout *TD = TLI.getDataLayout();
6583  SmallVector<ISD::InputArg, 16> Ins;
6584
6585  // Check whether the function can return without sret-demotion.
6586  SmallVector<ISD::OutputArg, 4> Outs;
6587  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6588                Outs, TLI);
6589
6590  if (!FuncInfo->CanLowerReturn) {
6591    // Put in an sret pointer parameter before all the other parameters.
6592    SmallVector<EVT, 1> ValueVTs;
6593    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6594
6595    // NOTE: Assuming that a pointer will never break down to more than one VT
6596    // or one register.
6597    ISD::ArgFlagsTy Flags;
6598    Flags.setSRet();
6599    MVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6600    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6601    Ins.push_back(RetArg);
6602  }
6603
6604  // Set up the incoming argument description vector.
6605  unsigned Idx = 1;
6606  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6607       I != E; ++I, ++Idx) {
6608    SmallVector<EVT, 4> ValueVTs;
6609    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6610    bool isArgValueUsed = !I->use_empty();
6611    for (unsigned Value = 0, NumValues = ValueVTs.size();
6612         Value != NumValues; ++Value) {
6613      EVT VT = ValueVTs[Value];
6614      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6615      ISD::ArgFlagsTy Flags;
6616      unsigned OriginalAlignment =
6617        TD->getABITypeAlignment(ArgTy);
6618
6619      if (F.getParamAttributes(Idx).hasAttribute(Attributes::ZExt))
6620        Flags.setZExt();
6621      if (F.getParamAttributes(Idx).hasAttribute(Attributes::SExt))
6622        Flags.setSExt();
6623      if (F.getParamAttributes(Idx).hasAttribute(Attributes::InReg))
6624        Flags.setInReg();
6625      if (F.getParamAttributes(Idx).hasAttribute(Attributes::StructRet))
6626        Flags.setSRet();
6627      if (F.getParamAttributes(Idx).hasAttribute(Attributes::ByVal)) {
6628        Flags.setByVal();
6629        PointerType *Ty = cast<PointerType>(I->getType());
6630        Type *ElementTy = Ty->getElementType();
6631        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6632        // For ByVal, alignment should be passed from FE.  BE will guess if
6633        // this info is not there but there are cases it cannot get right.
6634        unsigned FrameAlign;
6635        if (F.getParamAlignment(Idx))
6636          FrameAlign = F.getParamAlignment(Idx);
6637        else
6638          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6639        Flags.setByValAlign(FrameAlign);
6640      }
6641      if (F.getParamAttributes(Idx).hasAttribute(Attributes::Nest))
6642        Flags.setNest();
6643      Flags.setOrigAlign(OriginalAlignment);
6644
6645      MVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6646      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6647      for (unsigned i = 0; i != NumRegs; ++i) {
6648        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6649                              Idx-1, i*RegisterVT.getStoreSize());
6650        if (NumRegs > 1 && i == 0)
6651          MyFlags.Flags.setSplit();
6652        // if it isn't first piece, alignment must be 1
6653        else if (i > 0)
6654          MyFlags.Flags.setOrigAlign(1);
6655        Ins.push_back(MyFlags);
6656      }
6657    }
6658  }
6659
6660  // Call the target to set up the argument values.
6661  SmallVector<SDValue, 8> InVals;
6662  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6663                                             F.isVarArg(), Ins,
6664                                             dl, DAG, InVals);
6665
6666  // Verify that the target's LowerFormalArguments behaved as expected.
6667  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6668         "LowerFormalArguments didn't return a valid chain!");
6669  assert(InVals.size() == Ins.size() &&
6670         "LowerFormalArguments didn't emit the correct number of values!");
6671  DEBUG({
6672      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6673        assert(InVals[i].getNode() &&
6674               "LowerFormalArguments emitted a null value!");
6675        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6676               "LowerFormalArguments emitted a value with the wrong type!");
6677      }
6678    });
6679
6680  // Update the DAG with the new chain value resulting from argument lowering.
6681  DAG.setRoot(NewRoot);
6682
6683  // Set up the argument values.
6684  unsigned i = 0;
6685  Idx = 1;
6686  if (!FuncInfo->CanLowerReturn) {
6687    // Create a virtual register for the sret pointer, and put in a copy
6688    // from the sret argument into it.
6689    SmallVector<EVT, 1> ValueVTs;
6690    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6691    MVT VT = ValueVTs[0].getSimpleVT();
6692    MVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6693    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6694    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6695                                        RegVT, VT, NULL, AssertOp);
6696
6697    MachineFunction& MF = SDB->DAG.getMachineFunction();
6698    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6699    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6700    FuncInfo->DemoteRegister = SRetReg;
6701    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6702                                    SRetReg, ArgValue);
6703    DAG.setRoot(NewRoot);
6704
6705    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6706    // Idx indexes LLVM arguments.  Don't touch it.
6707    ++i;
6708  }
6709
6710  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6711      ++I, ++Idx) {
6712    SmallVector<SDValue, 4> ArgValues;
6713    SmallVector<EVT, 4> ValueVTs;
6714    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6715    unsigned NumValues = ValueVTs.size();
6716
6717    // If this argument is unused then remember its value. It is used to generate
6718    // debugging information.
6719    if (I->use_empty() && NumValues)
6720      SDB->setUnusedArgValue(I, InVals[i]);
6721
6722    for (unsigned Val = 0; Val != NumValues; ++Val) {
6723      EVT VT = ValueVTs[Val];
6724      MVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6725      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6726
6727      if (!I->use_empty()) {
6728        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6729        if (F.getParamAttributes(Idx).hasAttribute(Attributes::SExt))
6730          AssertOp = ISD::AssertSext;
6731        else if (F.getParamAttributes(Idx).hasAttribute(Attributes::ZExt))
6732          AssertOp = ISD::AssertZext;
6733
6734        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6735                                             NumParts, PartVT, VT,
6736                                             NULL, AssertOp));
6737      }
6738
6739      i += NumParts;
6740    }
6741
6742    // We don't need to do anything else for unused arguments.
6743    if (ArgValues.empty())
6744      continue;
6745
6746    // Note down frame index.
6747    if (FrameIndexSDNode *FI =
6748        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6749      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6750
6751    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6752                                     SDB->getCurDebugLoc());
6753
6754    SDB->setValue(I, Res);
6755    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6756      if (LoadSDNode *LNode =
6757          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6758        if (FrameIndexSDNode *FI =
6759            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6760        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6761    }
6762
6763    // If this argument is live outside of the entry block, insert a copy from
6764    // wherever we got it to the vreg that other BB's will reference it as.
6765    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6766      // If we can, though, try to skip creating an unnecessary vreg.
6767      // FIXME: This isn't very clean... it would be nice to make this more
6768      // general.  It's also subtly incompatible with the hacks FastISel
6769      // uses with vregs.
6770      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6771      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6772        FuncInfo->ValueMap[I] = Reg;
6773        continue;
6774      }
6775    }
6776    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6777      FuncInfo->InitializeRegForValue(I);
6778      SDB->CopyToExportRegsIfNeeded(I);
6779    }
6780  }
6781
6782  assert(i == InVals.size() && "Argument register count mismatch!");
6783
6784  // Finally, if the target has anything special to do, allow it to do so.
6785  // FIXME: this should insert code into the DAG!
6786  EmitFunctionEntryCode();
6787}
6788
6789/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6790/// ensure constants are generated when needed.  Remember the virtual registers
6791/// that need to be added to the Machine PHI nodes as input.  We cannot just
6792/// directly add them, because expansion might result in multiple MBB's for one
6793/// BB.  As such, the start of the BB might correspond to a different MBB than
6794/// the end.
6795///
6796void
6797SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6798  const TerminatorInst *TI = LLVMBB->getTerminator();
6799
6800  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6801
6802  // Check successor nodes' PHI nodes that expect a constant to be available
6803  // from this block.
6804  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6805    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6806    if (!isa<PHINode>(SuccBB->begin())) continue;
6807    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6808
6809    // If this terminator has multiple identical successors (common for
6810    // switches), only handle each succ once.
6811    if (!SuccsHandled.insert(SuccMBB)) continue;
6812
6813    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6814
6815    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6816    // nodes and Machine PHI nodes, but the incoming operands have not been
6817    // emitted yet.
6818    for (BasicBlock::const_iterator I = SuccBB->begin();
6819         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6820      // Ignore dead phi's.
6821      if (PN->use_empty()) continue;
6822
6823      // Skip empty types
6824      if (PN->getType()->isEmptyTy())
6825        continue;
6826
6827      unsigned Reg;
6828      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6829
6830      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6831        unsigned &RegOut = ConstantsOut[C];
6832        if (RegOut == 0) {
6833          RegOut = FuncInfo.CreateRegs(C->getType());
6834          CopyValueToVirtualRegister(C, RegOut);
6835        }
6836        Reg = RegOut;
6837      } else {
6838        DenseMap<const Value *, unsigned>::iterator I =
6839          FuncInfo.ValueMap.find(PHIOp);
6840        if (I != FuncInfo.ValueMap.end())
6841          Reg = I->second;
6842        else {
6843          assert(isa<AllocaInst>(PHIOp) &&
6844                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6845                 "Didn't codegen value into a register!??");
6846          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6847          CopyValueToVirtualRegister(PHIOp, Reg);
6848        }
6849      }
6850
6851      // Remember that this register needs to added to the machine PHI node as
6852      // the input for this MBB.
6853      SmallVector<EVT, 4> ValueVTs;
6854      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6855      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6856        EVT VT = ValueVTs[vti];
6857        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6858        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6859          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6860        Reg += NumRegisters;
6861      }
6862    }
6863  }
6864  ConstantsOut.clear();
6865}
6866