SelectionDAGBuilder.cpp revision 55ba816883842e793cdeb32fcb805c4e011b527f
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert(PartVT.isInteger() && ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360    }
361  } else if (PartBits == ValueVT.getSizeInBits()) {
362    // Different types of the same size.
363    assert(NumParts == 1 && PartVT != ValueVT);
364    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366    // If the parts cover less bits than value has, truncate the value.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Unknown mismatch!");
369    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371  }
372
373  // The value may have changed - recompute ValueVT.
374  ValueVT = Val.getValueType();
375  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376         "Failed to tile the value with PartVT!");
377
378  if (NumParts == 1) {
379    assert(PartVT == ValueVT && "Type conversion failed!");
380    Parts[0] = Val;
381    return;
382  }
383
384  // Expand the value into multiple parts.
385  if (NumParts & (NumParts - 1)) {
386    // The number of parts is not a power of 2.  Split off and copy the tail.
387    assert(PartVT.isInteger() && ValueVT.isInteger() &&
388           "Do not know what to expand to!");
389    unsigned RoundParts = 1 << Log2_32(NumParts);
390    unsigned RoundBits = RoundParts * PartBits;
391    unsigned OddParts = NumParts - RoundParts;
392    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                 DAG.getIntPtrConstant(RoundBits));
394    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396    if (TLI.isBigEndian())
397      // The odd parts were reversed by getCopyToParts - unreverse them.
398      std::reverse(Parts + RoundParts, Parts + NumParts);
399
400    NumParts = RoundParts;
401    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403  }
404
405  // The number of parts is a power of 2.  Repeatedly bisect the value using
406  // EXTRACT_ELEMENT.
407  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                         EVT::getIntegerVT(*DAG.getContext(),
409                                           ValueVT.getSizeInBits()),
410                         Val);
411
412  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413    for (unsigned i = 0; i < NumParts; i += StepSize) {
414      unsigned ThisBits = StepSize * PartBits / 2;
415      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416      SDValue &Part0 = Parts[i];
417      SDValue &Part1 = Parts[i+StepSize/2];
418
419      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                          ThisVT, Part0, DAG.getIntPtrConstant(1));
421      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                          ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424      if (ThisBits == PartBits && ThisVT != PartVT) {
425        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427      }
428    }
429  }
430
431  if (TLI.isBigEndian())
432    std::reverse(Parts, Parts + OrigNumParts);
433}
434
435
436/// getCopyToPartsVector - Create a series of nodes that contain the specified
437/// value split into legal parts.
438static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                 SDValue Val, SDValue *Parts, unsigned NumParts,
440                                 EVT PartVT) {
441  EVT ValueVT = Val.getValueType();
442  assert(ValueVT.isVector() && "Not a vector");
443  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445  if (NumParts == 1) {
446    if (PartVT == ValueVT) {
447      // Nothing to do.
448    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449      // Bitconvert vector->vector case.
450      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451    } else if (PartVT.isVector() &&
452               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454      EVT ElementVT = PartVT.getVectorElementType();
455      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456      // undef elements.
457      SmallVector<SDValue, 16> Ops;
458      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462      for (unsigned i = ValueVT.getVectorNumElements(),
463           e = PartVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getUNDEF(ElementVT));
465
466      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468      // FIXME: Use CONCAT for 2x -> 4x.
469
470      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472    } else if (PartVT.isVector() &&
473               PartVT.getVectorElementType().bitsGE(
474                 ValueVT.getVectorElementType()) &&
475               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477      // Promoted vector extract
478      bool Smaller = PartVT.bitsLE(ValueVT);
479      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                        DL, PartVT, Val);
481    } else{
482      // Vector -> scalar conversion.
483      assert(ValueVT.getVectorNumElements() == 1 &&
484             "Only trivial vector-to-scalar conversions should get here!");
485      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                        PartVT, Val, DAG.getIntPtrConstant(0));
487
488      bool Smaller = ValueVT.bitsLE(PartVT);
489      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                         DL, PartVT, Val);
491    }
492
493    Parts[0] = Val;
494    return;
495  }
496
497  // Handle a multi-element vector.
498  EVT IntermediateVT, RegisterVT;
499  unsigned NumIntermediates;
500  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                IntermediateVT,
502                                                NumIntermediates, RegisterVT);
503  unsigned NumElements = ValueVT.getVectorNumElements();
504
505  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506  NumParts = NumRegs; // Silence a compiler warning.
507  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509  // Split the vector into intermediate operands.
510  SmallVector<SDValue, 8> Ops(NumIntermediates);
511  for (unsigned i = 0; i != NumIntermediates; ++i) {
512    if (IntermediateVT.isVector())
513      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                           IntermediateVT, Val,
515                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516    else
517      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
519  }
520
521  // Split the intermediate operands into legal parts.
522  if (NumParts == NumIntermediates) {
523    // If the register was not expanded, promote or copy the value,
524    // as appropriate.
525    for (unsigned i = 0; i != NumParts; ++i)
526      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527  } else if (NumParts > 0) {
528    // If the intermediate type was expanded, split each the value into
529    // legal parts.
530    assert(NumParts % NumIntermediates == 0 &&
531           "Must expand into a divisible number of parts!");
532    unsigned Factor = NumParts / NumIntermediates;
533    for (unsigned i = 0; i != NumIntermediates; ++i)
534      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535  }
536}
537
538
539
540
541namespace {
542  /// RegsForValue - This struct represents the registers (physical or virtual)
543  /// that a particular set of values is assigned, and the type information
544  /// about the value. The most common situation is to represent one value at a
545  /// time, but struct or array values are handled element-wise as multiple
546  /// values.  The splitting of aggregates is performed recursively, so that we
547  /// never have aggregate-typed registers. The values at this point do not
548  /// necessarily have legal types, so each value may require one or more
549  /// registers of some legal type.
550  ///
551  struct RegsForValue {
552    /// ValueVTs - The value types of the values, which may not be legal, and
553    /// may need be promoted or synthesized from one or more registers.
554    ///
555    SmallVector<EVT, 4> ValueVTs;
556
557    /// RegVTs - The value types of the registers. This is the same size as
558    /// ValueVTs and it records, for each value, what the type of the assigned
559    /// register or registers are. (Individual values are never synthesized
560    /// from more than one type of register.)
561    ///
562    /// With virtual registers, the contents of RegVTs is redundant with TLI's
563    /// getRegisterType member function, however when with physical registers
564    /// it is necessary to have a separate record of the types.
565    ///
566    SmallVector<EVT, 4> RegVTs;
567
568    /// Regs - This list holds the registers assigned to the values.
569    /// Each legal or promoted value requires one register, and each
570    /// expanded value requires multiple registers.
571    ///
572    SmallVector<unsigned, 4> Regs;
573
574    RegsForValue() {}
575
576    RegsForValue(const SmallVector<unsigned, 4> &regs,
577                 EVT regvt, EVT valuevt)
578      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
580    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                 unsigned Reg, Type *Ty) {
582      ComputeValueVTs(tli, Ty, ValueVTs);
583
584      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585        EVT ValueVT = ValueVTs[Value];
586        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588        for (unsigned i = 0; i != NumRegs; ++i)
589          Regs.push_back(Reg + i);
590        RegVTs.push_back(RegisterVT);
591        Reg += NumRegs;
592      }
593    }
594
595    /// areValueTypesLegal - Return true if types of all the values are legal.
596    bool areValueTypesLegal(const TargetLowering &TLI) {
597      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598        EVT RegisterVT = RegVTs[Value];
599        if (!TLI.isTypeLegal(RegisterVT))
600          return false;
601      }
602      return true;
603    }
604
605    /// append - Add the specified values to this one.
606    void append(const RegsForValue &RHS) {
607      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610    }
611
612    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613    /// this value and returns the result as a ValueVTs value.  This uses
614    /// Chain/Flag as the input and updates them for the output Chain/Flag.
615    /// If the Flag pointer is NULL, no flag is used.
616    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                            DebugLoc dl,
618                            SDValue &Chain, SDValue *Flag) const;
619
620    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621    /// specified value into the registers specified by this object.  This uses
622    /// Chain/Flag as the input and updates them for the output Chain/Flag.
623    /// If the Flag pointer is NULL, no flag is used.
624    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                       SDValue &Chain, SDValue *Flag) const;
626
627    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628    /// operand list.  This adds the code marker, matching input operand index
629    /// (if applicable), and includes the number of values added into it.
630    void AddInlineAsmOperands(unsigned Kind,
631                              bool HasMatching, unsigned MatchingIdx,
632                              SelectionDAG &DAG,
633                              std::vector<SDValue> &Ops) const;
634  };
635}
636
637/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638/// this value and returns the result as a ValueVT value.  This uses
639/// Chain/Flag as the input and updates them for the output Chain/Flag.
640/// If the Flag pointer is NULL, no flag is used.
641SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                      FunctionLoweringInfo &FuncInfo,
643                                      DebugLoc dl,
644                                      SDValue &Chain, SDValue *Flag) const {
645  // A Value with type {} or [0 x %t] needs no registers.
646  if (ValueVTs.empty())
647    return SDValue();
648
649  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651  // Assemble the legal parts into the final values.
652  SmallVector<SDValue, 4> Values(ValueVTs.size());
653  SmallVector<SDValue, 8> Parts;
654  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655    // Copy the legal parts from the registers.
656    EVT ValueVT = ValueVTs[Value];
657    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658    EVT RegisterVT = RegVTs[Value];
659
660    Parts.resize(NumRegs);
661    for (unsigned i = 0; i != NumRegs; ++i) {
662      SDValue P;
663      if (Flag == 0) {
664        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665      } else {
666        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667        *Flag = P.getValue(2);
668      }
669
670      Chain = P.getValue(1);
671      Parts[i] = P;
672
673      // If the source register was virtual and if we know something about it,
674      // add an assert node.
675      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676          !RegisterVT.isInteger() || RegisterVT.isVector())
677        continue;
678
679      const FunctionLoweringInfo::LiveOutInfo *LOI =
680        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681      if (!LOI)
682        continue;
683
684      unsigned RegSize = RegisterVT.getSizeInBits();
685      unsigned NumSignBits = LOI->NumSignBits;
686      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688      // FIXME: We capture more information than the dag can represent.  For
689      // now, just use the tightest assertzext/assertsext possible.
690      bool isSExt = true;
691      EVT FromVT(MVT::Other);
692      if (NumSignBits == RegSize)
693        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694      else if (NumZeroBits >= RegSize-1)
695        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696      else if (NumSignBits > RegSize-8)
697        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698      else if (NumZeroBits >= RegSize-8)
699        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700      else if (NumSignBits > RegSize-16)
701        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702      else if (NumZeroBits >= RegSize-16)
703        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704      else if (NumSignBits > RegSize-32)
705        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706      else if (NumZeroBits >= RegSize-32)
707        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708      else
709        continue;
710
711      // Add an assertion node.
712      assert(FromVT != MVT::Other);
713      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                             RegisterVT, P, DAG.getValueType(FromVT));
715    }
716
717    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                     NumRegs, RegisterVT, ValueVT);
719    Part += NumRegs;
720    Parts.clear();
721  }
722
723  return DAG.getNode(ISD::MERGE_VALUES, dl,
724                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                     &Values[0], ValueVTs.size());
726}
727
728/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729/// specified value into the registers specified by this object.  This uses
730/// Chain/Flag as the input and updates them for the output Chain/Flag.
731/// If the Flag pointer is NULL, no flag is used.
732void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                 SDValue &Chain, SDValue *Flag) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  // Get the list of the values's legal parts.
737  unsigned NumRegs = Regs.size();
738  SmallVector<SDValue, 8> Parts(NumRegs);
739  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740    EVT ValueVT = ValueVTs[Value];
741    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742    EVT RegisterVT = RegVTs[Value];
743
744    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                   &Parts[Part], NumParts, RegisterVT);
746    Part += NumParts;
747  }
748
749  // Copy the parts into the registers.
750  SmallVector<SDValue, 8> Chains(NumRegs);
751  for (unsigned i = 0; i != NumRegs; ++i) {
752    SDValue Part;
753    if (Flag == 0) {
754      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755    } else {
756      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757      *Flag = Part.getValue(1);
758    }
759
760    Chains[i] = Part.getValue(0);
761  }
762
763  if (NumRegs == 1 || Flag)
764    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765    // flagged to it. That is the CopyToReg nodes and the user are considered
766    // a single scheduling unit. If we create a TokenFactor and return it as
767    // chain, then the TokenFactor is both a predecessor (operand) of the
768    // user as well as a successor (the TF operands are flagged to the user).
769    // c1, f1 = CopyToReg
770    // c2, f2 = CopyToReg
771    // c3     = TokenFactor c1, c2
772    // ...
773    //        = op c3, ..., f2
774    Chain = Chains[NumRegs-1];
775  else
776    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777}
778
779/// AddInlineAsmOperands - Add this value to the specified inlineasm node
780/// operand list.  This adds the code marker and includes the number of
781/// values added into it.
782void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                        unsigned MatchingIdx,
784                                        SelectionDAG &DAG,
785                                        std::vector<SDValue> &Ops) const {
786  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789  if (HasMatching)
790    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792  Ops.push_back(Res);
793
794  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796    EVT RegisterVT = RegVTs[Value];
797    for (unsigned i = 0; i != NumRegs; ++i) {
798      assert(Reg < Regs.size() && "Mismatch in # registers expected");
799      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800    }
801  }
802}
803
804void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805  AA = &aa;
806  GFI = gfi;
807  TD = DAG.getTarget().getTargetData();
808}
809
810/// clear - Clear out the current SelectionDAG and the associated
811/// state and prepare this SelectionDAGBuilder object to be used
812/// for a new block. This doesn't clear out information about
813/// additional blocks that are needed to complete switch lowering
814/// or PHI node updating; that information is cleared out as it is
815/// consumed.
816void SelectionDAGBuilder::clear() {
817  NodeMap.clear();
818  UnusedArgNodeMap.clear();
819  PendingLoads.clear();
820  PendingExports.clear();
821  CurDebugLoc = DebugLoc();
822  HasTailCall = false;
823}
824
825/// clearDanglingDebugInfo - Clear the dangling debug information
826/// map. This function is seperated from the clear so that debug
827/// information that is dangling in a basic block can be properly
828/// resolved in a different basic block. This allows the
829/// SelectionDAG to resolve dangling debug information attached
830/// to PHI nodes.
831void SelectionDAGBuilder::clearDanglingDebugInfo() {
832  DanglingDebugInfoMap.clear();
833}
834
835/// getRoot - Return the current virtual root of the Selection DAG,
836/// flushing any PendingLoad items. This must be done before emitting
837/// a store or any other node that may need to be ordered after any
838/// prior load instructions.
839///
840SDValue SelectionDAGBuilder::getRoot() {
841  if (PendingLoads.empty())
842    return DAG.getRoot();
843
844  if (PendingLoads.size() == 1) {
845    SDValue Root = PendingLoads[0];
846    DAG.setRoot(Root);
847    PendingLoads.clear();
848    return Root;
849  }
850
851  // Otherwise, we have to make a token factor node.
852  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853                               &PendingLoads[0], PendingLoads.size());
854  PendingLoads.clear();
855  DAG.setRoot(Root);
856  return Root;
857}
858
859/// getControlRoot - Similar to getRoot, but instead of flushing all the
860/// PendingLoad items, flush all the PendingExports items. It is necessary
861/// to do this before emitting a terminator instruction.
862///
863SDValue SelectionDAGBuilder::getControlRoot() {
864  SDValue Root = DAG.getRoot();
865
866  if (PendingExports.empty())
867    return Root;
868
869  // Turn all of the CopyToReg chains into one factored node.
870  if (Root.getOpcode() != ISD::EntryToken) {
871    unsigned i = 0, e = PendingExports.size();
872    for (; i != e; ++i) {
873      assert(PendingExports[i].getNode()->getNumOperands() > 1);
874      if (PendingExports[i].getNode()->getOperand(0) == Root)
875        break;  // Don't add the root if we already indirectly depend on it.
876    }
877
878    if (i == e)
879      PendingExports.push_back(Root);
880  }
881
882  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883                     &PendingExports[0],
884                     PendingExports.size());
885  PendingExports.clear();
886  DAG.setRoot(Root);
887  return Root;
888}
889
890void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892  DAG.AssignOrdering(Node, SDNodeOrder);
893
894  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895    AssignOrderingToNode(Node->getOperand(I).getNode());
896}
897
898void SelectionDAGBuilder::visit(const Instruction &I) {
899  // Set up outgoing PHI node register values before emitting the terminator.
900  if (isa<TerminatorInst>(&I))
901    HandlePHINodesInSuccessorBlocks(I.getParent());
902
903  CurDebugLoc = I.getDebugLoc();
904
905  visit(I.getOpcode(), I);
906
907  if (!isa<TerminatorInst>(&I) && !HasTailCall)
908    CopyToExportRegsIfNeeded(&I);
909
910  CurDebugLoc = DebugLoc();
911}
912
913void SelectionDAGBuilder::visitPHI(const PHINode &) {
914  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915}
916
917void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918  // Note: this doesn't use InstVisitor, because it has to work with
919  // ConstantExpr's in addition to instructions.
920  switch (Opcode) {
921  default: llvm_unreachable("Unknown instruction type encountered!");
922    // Build the switch statement using the Instruction.def file.
923#define HANDLE_INST(NUM, OPCODE, CLASS) \
924    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925#include "llvm/Instruction.def"
926  }
927
928  // Assign the ordering to the freshly created DAG nodes.
929  if (NodeMap.count(&I)) {
930    ++SDNodeOrder;
931    AssignOrderingToNode(getValue(&I).getNode());
932  }
933}
934
935// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936// generate the debug data structures now that we've seen its definition.
937void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938                                                   SDValue Val) {
939  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940  if (DDI.getDI()) {
941    const DbgValueInst *DI = DDI.getDI();
942    DebugLoc dl = DDI.getdl();
943    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944    MDNode *Variable = DI->getVariable();
945    uint64_t Offset = DI->getOffset();
946    SDDbgValue *SDV;
947    if (Val.getNode()) {
948      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949        SDV = DAG.getDbgValue(Variable, Val.getNode(),
950                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951        DAG.AddDbgValue(SDV, Val.getNode(), false);
952      }
953    } else
954      DEBUG(dbgs() << "Dropping debug info for " << DI);
955    DanglingDebugInfoMap[V] = DanglingDebugInfo();
956  }
957}
958
959// getValue - Return an SDValue for the given Value.
960SDValue SelectionDAGBuilder::getValue(const Value *V) {
961  // If we already have an SDValue for this value, use it. It's important
962  // to do this first, so that we don't create a CopyFromReg if we already
963  // have a regular SDValue.
964  SDValue &N = NodeMap[V];
965  if (N.getNode()) return N;
966
967  // If there's a virtual register allocated and initialized for this
968  // value, use it.
969  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970  if (It != FuncInfo.ValueMap.end()) {
971    unsigned InReg = It->second;
972    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973    SDValue Chain = DAG.getEntryNode();
974    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975    resolveDanglingDebugInfo(V, N);
976    return N;
977  }
978
979  // Otherwise create a new SDValue and remember it.
980  SDValue Val = getValueImpl(V);
981  NodeMap[V] = Val;
982  resolveDanglingDebugInfo(V, Val);
983  return Val;
984}
985
986/// getNonRegisterValue - Return an SDValue for the given Value, but
987/// don't look in FuncInfo.ValueMap for a virtual register.
988SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989  // If we already have an SDValue for this value, use it.
990  SDValue &N = NodeMap[V];
991  if (N.getNode()) return N;
992
993  // Otherwise create a new SDValue and remember it.
994  SDValue Val = getValueImpl(V);
995  NodeMap[V] = Val;
996  resolveDanglingDebugInfo(V, Val);
997  return Val;
998}
999
1000/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001/// Create an SDValue for the given value.
1002SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003  if (const Constant *C = dyn_cast<Constant>(V)) {
1004    EVT VT = TLI.getValueType(V->getType(), true);
1005
1006    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007      return DAG.getConstant(*CI, VT);
1008
1009    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011
1012    if (isa<ConstantPointerNull>(C))
1013      return DAG.getConstant(0, TLI.getPointerTy());
1014
1015    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016      return DAG.getConstantFP(*CFP, VT);
1017
1018    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019      return DAG.getUNDEF(VT);
1020
1021    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022      visit(CE->getOpcode(), *CE);
1023      SDValue N1 = NodeMap[V];
1024      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025      return N1;
1026    }
1027
1028    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029      SmallVector<SDValue, 4> Constants;
1030      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031           OI != OE; ++OI) {
1032        SDNode *Val = getValue(*OI).getNode();
1033        // If the operand is an empty aggregate, there are no values.
1034        if (!Val) continue;
1035        // Add each leaf value from the operand to the Constants list
1036        // to form a flattened list of all the values.
1037        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038          Constants.push_back(SDValue(Val, i));
1039      }
1040
1041      return DAG.getMergeValues(&Constants[0], Constants.size(),
1042                                getCurDebugLoc());
1043    }
1044
1045    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047             "Unknown struct or array constant!");
1048
1049      SmallVector<EVT, 4> ValueVTs;
1050      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051      unsigned NumElts = ValueVTs.size();
1052      if (NumElts == 0)
1053        return SDValue(); // empty struct
1054      SmallVector<SDValue, 4> Constants(NumElts);
1055      for (unsigned i = 0; i != NumElts; ++i) {
1056        EVT EltVT = ValueVTs[i];
1057        if (isa<UndefValue>(C))
1058          Constants[i] = DAG.getUNDEF(EltVT);
1059        else if (EltVT.isFloatingPoint())
1060          Constants[i] = DAG.getConstantFP(0, EltVT);
1061        else
1062          Constants[i] = DAG.getConstant(0, EltVT);
1063      }
1064
1065      return DAG.getMergeValues(&Constants[0], NumElts,
1066                                getCurDebugLoc());
1067    }
1068
1069    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070      return DAG.getBlockAddress(BA, VT);
1071
1072    VectorType *VecTy = cast<VectorType>(V->getType());
1073    unsigned NumElements = VecTy->getNumElements();
1074
1075    // Now that we know the number and type of the elements, get that number of
1076    // elements into the Ops array based on what kind of constant it is.
1077    SmallVector<SDValue, 16> Ops;
1078    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079      for (unsigned i = 0; i != NumElements; ++i)
1080        Ops.push_back(getValue(CP->getOperand(i)));
1081    } else {
1082      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084
1085      SDValue Op;
1086      if (EltVT.isFloatingPoint())
1087        Op = DAG.getConstantFP(0, EltVT);
1088      else
1089        Op = DAG.getConstant(0, EltVT);
1090      Ops.assign(NumElements, Op);
1091    }
1092
1093    // Create a BUILD_VECTOR node.
1094    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095                                    VT, &Ops[0], Ops.size());
1096  }
1097
1098  // If this is a static alloca, generate it as the frameindex instead of
1099  // computation.
1100  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101    DenseMap<const AllocaInst*, int>::iterator SI =
1102      FuncInfo.StaticAllocaMap.find(AI);
1103    if (SI != FuncInfo.StaticAllocaMap.end())
1104      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105  }
1106
1107  // If this is an instruction which fast-isel has deferred, select it now.
1108  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111    SDValue Chain = DAG.getEntryNode();
1112    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113  }
1114
1115  llvm_unreachable("Can't get register for value!");
1116  return SDValue();
1117}
1118
1119void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120  SDValue Chain = getControlRoot();
1121  SmallVector<ISD::OutputArg, 8> Outs;
1122  SmallVector<SDValue, 8> OutVals;
1123
1124  if (!FuncInfo.CanLowerReturn) {
1125    unsigned DemoteReg = FuncInfo.DemoteRegister;
1126    const Function *F = I.getParent()->getParent();
1127
1128    // Emit a store of the return value through the virtual register.
1129    // Leave Outs empty so that LowerReturn won't try to load return
1130    // registers the usual way.
1131    SmallVector<EVT, 1> PtrValueVTs;
1132    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133                    PtrValueVTs);
1134
1135    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136    SDValue RetOp = getValue(I.getOperand(0));
1137
1138    SmallVector<EVT, 4> ValueVTs;
1139    SmallVector<uint64_t, 4> Offsets;
1140    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141    unsigned NumValues = ValueVTs.size();
1142
1143    SmallVector<SDValue, 4> Chains(NumValues);
1144    for (unsigned i = 0; i != NumValues; ++i) {
1145      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146                                RetPtr.getValueType(), RetPtr,
1147                                DAG.getIntPtrConstant(Offsets[i]));
1148      Chains[i] =
1149        DAG.getStore(Chain, getCurDebugLoc(),
1150                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151                     // FIXME: better loc info would be nice.
1152                     Add, MachinePointerInfo(), false, false, 0);
1153    }
1154
1155    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156                        MVT::Other, &Chains[0], NumValues);
1157  } else if (I.getNumOperands() != 0) {
1158    SmallVector<EVT, 4> ValueVTs;
1159    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160    unsigned NumValues = ValueVTs.size();
1161    if (NumValues) {
1162      SDValue RetOp = getValue(I.getOperand(0));
1163      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164        EVT VT = ValueVTs[j];
1165
1166        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167
1168        const Function *F = I.getParent()->getParent();
1169        if (F->paramHasAttr(0, Attribute::SExt))
1170          ExtendKind = ISD::SIGN_EXTEND;
1171        else if (F->paramHasAttr(0, Attribute::ZExt))
1172          ExtendKind = ISD::ZERO_EXTEND;
1173
1174        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176
1177        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179        SmallVector<SDValue, 4> Parts(NumParts);
1180        getCopyToParts(DAG, getCurDebugLoc(),
1181                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182                       &Parts[0], NumParts, PartVT, ExtendKind);
1183
1184        // 'inreg' on function refers to return value
1185        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186        if (F->paramHasAttr(0, Attribute::InReg))
1187          Flags.setInReg();
1188
1189        // Propagate extension type if any
1190        if (ExtendKind == ISD::SIGN_EXTEND)
1191          Flags.setSExt();
1192        else if (ExtendKind == ISD::ZERO_EXTEND)
1193          Flags.setZExt();
1194
1195        for (unsigned i = 0; i < NumParts; ++i) {
1196          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197                                        /*isfixed=*/true));
1198          OutVals.push_back(Parts[i]);
1199        }
1200      }
1201    }
1202  }
1203
1204  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205  CallingConv::ID CallConv =
1206    DAG.getMachineFunction().getFunction()->getCallingConv();
1207  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208                          Outs, OutVals, getCurDebugLoc(), DAG);
1209
1210  // Verify that the target's LowerReturn behaved as expected.
1211  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212         "LowerReturn didn't return a valid chain!");
1213
1214  // Update the DAG with the new chain value resulting from return lowering.
1215  DAG.setRoot(Chain);
1216}
1217
1218/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219/// created for it, emit nodes to copy the value into the virtual
1220/// registers.
1221void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222  // Skip empty types
1223  if (V->getType()->isEmptyTy())
1224    return;
1225
1226  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227  if (VMI != FuncInfo.ValueMap.end()) {
1228    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229    CopyValueToVirtualRegister(V, VMI->second);
1230  }
1231}
1232
1233/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234/// the current basic block, add it to ValueMap now so that we'll get a
1235/// CopyTo/FromReg.
1236void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237  // No need to export constants.
1238  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239
1240  // Already exported?
1241  if (FuncInfo.isExportedInst(V)) return;
1242
1243  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244  CopyValueToVirtualRegister(V, Reg);
1245}
1246
1247bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248                                                     const BasicBlock *FromBB) {
1249  // The operands of the setcc have to be in this block.  We don't know
1250  // how to export them from some other block.
1251  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252    // Can export from current BB.
1253    if (VI->getParent() == FromBB)
1254      return true;
1255
1256    // Is already exported, noop.
1257    return FuncInfo.isExportedInst(V);
1258  }
1259
1260  // If this is an argument, we can export it if the BB is the entry block or
1261  // if it is already exported.
1262  if (isa<Argument>(V)) {
1263    if (FromBB == &FromBB->getParent()->getEntryBlock())
1264      return true;
1265
1266    // Otherwise, can only export this if it is already exported.
1267    return FuncInfo.isExportedInst(V);
1268  }
1269
1270  // Otherwise, constants can always be exported.
1271  return true;
1272}
1273
1274/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276                                            MachineBasicBlock *Dst) {
1277  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278  if (!BPI)
1279    return 0;
1280  BasicBlock *SrcBB = const_cast<BasicBlock*>(Src->getBasicBlock());
1281  BasicBlock *DstBB = const_cast<BasicBlock*>(Dst->getBasicBlock());
1282  return BPI->getEdgeWeight(SrcBB, DstBB);
1283}
1284
1285void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock *Src,
1286                                                 MachineBasicBlock *Dst) {
1287  uint32_t weight = getEdgeWeight(Src, Dst);
1288  Src->addSuccessor(Dst, weight);
1289}
1290
1291
1292static bool InBlock(const Value *V, const BasicBlock *BB) {
1293  if (const Instruction *I = dyn_cast<Instruction>(V))
1294    return I->getParent() == BB;
1295  return true;
1296}
1297
1298/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1299/// This function emits a branch and is used at the leaves of an OR or an
1300/// AND operator tree.
1301///
1302void
1303SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1304                                                  MachineBasicBlock *TBB,
1305                                                  MachineBasicBlock *FBB,
1306                                                  MachineBasicBlock *CurBB,
1307                                                  MachineBasicBlock *SwitchBB) {
1308  const BasicBlock *BB = CurBB->getBasicBlock();
1309
1310  // If the leaf of the tree is a comparison, merge the condition into
1311  // the caseblock.
1312  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1313    // The operands of the cmp have to be in this block.  We don't know
1314    // how to export them from some other block.  If this is the first block
1315    // of the sequence, no exporting is needed.
1316    if (CurBB == SwitchBB ||
1317        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1318         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1319      ISD::CondCode Condition;
1320      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1321        Condition = getICmpCondCode(IC->getPredicate());
1322      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1323        Condition = getFCmpCondCode(FC->getPredicate());
1324      } else {
1325        Condition = ISD::SETEQ; // silence warning.
1326        llvm_unreachable("Unknown compare instruction");
1327      }
1328
1329      CaseBlock CB(Condition, BOp->getOperand(0),
1330                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1331      SwitchCases.push_back(CB);
1332      return;
1333    }
1334  }
1335
1336  // Create a CaseBlock record representing this branch.
1337  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1338               NULL, TBB, FBB, CurBB);
1339  SwitchCases.push_back(CB);
1340}
1341
1342/// FindMergedConditions - If Cond is an expression like
1343void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1344                                               MachineBasicBlock *TBB,
1345                                               MachineBasicBlock *FBB,
1346                                               MachineBasicBlock *CurBB,
1347                                               MachineBasicBlock *SwitchBB,
1348                                               unsigned Opc) {
1349  // If this node is not part of the or/and tree, emit it as a branch.
1350  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1351  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1352      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1353      BOp->getParent() != CurBB->getBasicBlock() ||
1354      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1355      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1356    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1357    return;
1358  }
1359
1360  //  Create TmpBB after CurBB.
1361  MachineFunction::iterator BBI = CurBB;
1362  MachineFunction &MF = DAG.getMachineFunction();
1363  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1364  CurBB->getParent()->insert(++BBI, TmpBB);
1365
1366  if (Opc == Instruction::Or) {
1367    // Codegen X | Y as:
1368    //   jmp_if_X TBB
1369    //   jmp TmpBB
1370    // TmpBB:
1371    //   jmp_if_Y TBB
1372    //   jmp FBB
1373    //
1374
1375    // Emit the LHS condition.
1376    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1377
1378    // Emit the RHS condition into TmpBB.
1379    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1380  } else {
1381    assert(Opc == Instruction::And && "Unknown merge op!");
1382    // Codegen X & Y as:
1383    //   jmp_if_X TmpBB
1384    //   jmp FBB
1385    // TmpBB:
1386    //   jmp_if_Y TBB
1387    //   jmp FBB
1388    //
1389    //  This requires creation of TmpBB after CurBB.
1390
1391    // Emit the LHS condition.
1392    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1393
1394    // Emit the RHS condition into TmpBB.
1395    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1396  }
1397}
1398
1399/// If the set of cases should be emitted as a series of branches, return true.
1400/// If we should emit this as a bunch of and/or'd together conditions, return
1401/// false.
1402bool
1403SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1404  if (Cases.size() != 2) return true;
1405
1406  // If this is two comparisons of the same values or'd or and'd together, they
1407  // will get folded into a single comparison, so don't emit two blocks.
1408  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1409       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1410      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1411       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1412    return false;
1413  }
1414
1415  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1416  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1417  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1418      Cases[0].CC == Cases[1].CC &&
1419      isa<Constant>(Cases[0].CmpRHS) &&
1420      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1421    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1422      return false;
1423    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1424      return false;
1425  }
1426
1427  return true;
1428}
1429
1430void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1431  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1432
1433  // Update machine-CFG edges.
1434  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1435
1436  // Figure out which block is immediately after the current one.
1437  MachineBasicBlock *NextBlock = 0;
1438  MachineFunction::iterator BBI = BrMBB;
1439  if (++BBI != FuncInfo.MF->end())
1440    NextBlock = BBI;
1441
1442  if (I.isUnconditional()) {
1443    // Update machine-CFG edges.
1444    BrMBB->addSuccessor(Succ0MBB);
1445
1446    // If this is not a fall-through branch, emit the branch.
1447    if (Succ0MBB != NextBlock)
1448      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1449                              MVT::Other, getControlRoot(),
1450                              DAG.getBasicBlock(Succ0MBB)));
1451
1452    return;
1453  }
1454
1455  // If this condition is one of the special cases we handle, do special stuff
1456  // now.
1457  const Value *CondVal = I.getCondition();
1458  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1459
1460  // If this is a series of conditions that are or'd or and'd together, emit
1461  // this as a sequence of branches instead of setcc's with and/or operations.
1462  // As long as jumps are not expensive, this should improve performance.
1463  // For example, instead of something like:
1464  //     cmp A, B
1465  //     C = seteq
1466  //     cmp D, E
1467  //     F = setle
1468  //     or C, F
1469  //     jnz foo
1470  // Emit:
1471  //     cmp A, B
1472  //     je foo
1473  //     cmp D, E
1474  //     jle foo
1475  //
1476  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1477    if (!TLI.isJumpExpensive() &&
1478        BOp->hasOneUse() &&
1479        (BOp->getOpcode() == Instruction::And ||
1480         BOp->getOpcode() == Instruction::Or)) {
1481      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1482                           BOp->getOpcode());
1483      // If the compares in later blocks need to use values not currently
1484      // exported from this block, export them now.  This block should always
1485      // be the first entry.
1486      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1487
1488      // Allow some cases to be rejected.
1489      if (ShouldEmitAsBranches(SwitchCases)) {
1490        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1491          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1492          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1493        }
1494
1495        // Emit the branch for this block.
1496        visitSwitchCase(SwitchCases[0], BrMBB);
1497        SwitchCases.erase(SwitchCases.begin());
1498        return;
1499      }
1500
1501      // Okay, we decided not to do this, remove any inserted MBB's and clear
1502      // SwitchCases.
1503      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1504        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1505
1506      SwitchCases.clear();
1507    }
1508  }
1509
1510  // Create a CaseBlock record representing this branch.
1511  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1512               NULL, Succ0MBB, Succ1MBB, BrMBB);
1513
1514  // Use visitSwitchCase to actually insert the fast branch sequence for this
1515  // cond branch.
1516  visitSwitchCase(CB, BrMBB);
1517}
1518
1519/// visitSwitchCase - Emits the necessary code to represent a single node in
1520/// the binary search tree resulting from lowering a switch instruction.
1521void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1522                                          MachineBasicBlock *SwitchBB) {
1523  SDValue Cond;
1524  SDValue CondLHS = getValue(CB.CmpLHS);
1525  DebugLoc dl = getCurDebugLoc();
1526
1527  // Build the setcc now.
1528  if (CB.CmpMHS == NULL) {
1529    // Fold "(X == true)" to X and "(X == false)" to !X to
1530    // handle common cases produced by branch lowering.
1531    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1532        CB.CC == ISD::SETEQ)
1533      Cond = CondLHS;
1534    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1535             CB.CC == ISD::SETEQ) {
1536      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1537      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1538    } else
1539      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1540  } else {
1541    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1542
1543    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1544    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1545
1546    SDValue CmpOp = getValue(CB.CmpMHS);
1547    EVT VT = CmpOp.getValueType();
1548
1549    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1550      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1551                          ISD::SETLE);
1552    } else {
1553      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1554                                VT, CmpOp, DAG.getConstant(Low, VT));
1555      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1556                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1557    }
1558  }
1559
1560  // Update successor info
1561  addSuccessorWithWeight(SwitchBB, CB.TrueBB);
1562  addSuccessorWithWeight(SwitchBB, CB.FalseBB);
1563
1564  // Set NextBlock to be the MBB immediately after the current one, if any.
1565  // This is used to avoid emitting unnecessary branches to the next block.
1566  MachineBasicBlock *NextBlock = 0;
1567  MachineFunction::iterator BBI = SwitchBB;
1568  if (++BBI != FuncInfo.MF->end())
1569    NextBlock = BBI;
1570
1571  // If the lhs block is the next block, invert the condition so that we can
1572  // fall through to the lhs instead of the rhs block.
1573  if (CB.TrueBB == NextBlock) {
1574    std::swap(CB.TrueBB, CB.FalseBB);
1575    SDValue True = DAG.getConstant(1, Cond.getValueType());
1576    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1577  }
1578
1579  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1580                               MVT::Other, getControlRoot(), Cond,
1581                               DAG.getBasicBlock(CB.TrueBB));
1582
1583  // Insert the false branch. Do this even if it's a fall through branch,
1584  // this makes it easier to do DAG optimizations which require inverting
1585  // the branch condition.
1586  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1587                       DAG.getBasicBlock(CB.FalseBB));
1588
1589  DAG.setRoot(BrCond);
1590}
1591
1592/// visitJumpTable - Emit JumpTable node in the current MBB
1593void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1594  // Emit the code for the jump table
1595  assert(JT.Reg != -1U && "Should lower JT Header first!");
1596  EVT PTy = TLI.getPointerTy();
1597  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1598                                     JT.Reg, PTy);
1599  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1600  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1601                                    MVT::Other, Index.getValue(1),
1602                                    Table, Index);
1603  DAG.setRoot(BrJumpTable);
1604}
1605
1606/// visitJumpTableHeader - This function emits necessary code to produce index
1607/// in the JumpTable from switch case.
1608void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1609                                               JumpTableHeader &JTH,
1610                                               MachineBasicBlock *SwitchBB) {
1611  // Subtract the lowest switch case value from the value being switched on and
1612  // conditional branch to default mbb if the result is greater than the
1613  // difference between smallest and largest cases.
1614  SDValue SwitchOp = getValue(JTH.SValue);
1615  EVT VT = SwitchOp.getValueType();
1616  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1617                            DAG.getConstant(JTH.First, VT));
1618
1619  // The SDNode we just created, which holds the value being switched on minus
1620  // the smallest case value, needs to be copied to a virtual register so it
1621  // can be used as an index into the jump table in a subsequent basic block.
1622  // This value may be smaller or larger than the target's pointer type, and
1623  // therefore require extension or truncating.
1624  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1625
1626  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1627  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1628                                    JumpTableReg, SwitchOp);
1629  JT.Reg = JumpTableReg;
1630
1631  // Emit the range check for the jump table, and branch to the default block
1632  // for the switch statement if the value being switched on exceeds the largest
1633  // case in the switch.
1634  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1635                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1636                             DAG.getConstant(JTH.Last-JTH.First,VT),
1637                             ISD::SETUGT);
1638
1639  // Set NextBlock to be the MBB immediately after the current one, if any.
1640  // This is used to avoid emitting unnecessary branches to the next block.
1641  MachineBasicBlock *NextBlock = 0;
1642  MachineFunction::iterator BBI = SwitchBB;
1643
1644  if (++BBI != FuncInfo.MF->end())
1645    NextBlock = BBI;
1646
1647  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1648                               MVT::Other, CopyTo, CMP,
1649                               DAG.getBasicBlock(JT.Default));
1650
1651  if (JT.MBB != NextBlock)
1652    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1653                         DAG.getBasicBlock(JT.MBB));
1654
1655  DAG.setRoot(BrCond);
1656}
1657
1658/// visitBitTestHeader - This function emits necessary code to produce value
1659/// suitable for "bit tests"
1660void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1661                                             MachineBasicBlock *SwitchBB) {
1662  // Subtract the minimum value
1663  SDValue SwitchOp = getValue(B.SValue);
1664  EVT VT = SwitchOp.getValueType();
1665  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1666                            DAG.getConstant(B.First, VT));
1667
1668  // Check range
1669  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1670                                  TLI.getSetCCResultType(Sub.getValueType()),
1671                                  Sub, DAG.getConstant(B.Range, VT),
1672                                  ISD::SETUGT);
1673
1674  // Determine the type of the test operands.
1675  bool UsePtrType = false;
1676  if (!TLI.isTypeLegal(VT))
1677    UsePtrType = true;
1678  else {
1679    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1680      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1681        // Switch table case range are encoded into series of masks.
1682        // Just use pointer type, it's guaranteed to fit.
1683        UsePtrType = true;
1684        break;
1685      }
1686  }
1687  if (UsePtrType) {
1688    VT = TLI.getPointerTy();
1689    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1690  }
1691
1692  B.RegVT = VT;
1693  B.Reg = FuncInfo.CreateReg(VT);
1694  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1695                                    B.Reg, Sub);
1696
1697  // Set NextBlock to be the MBB immediately after the current one, if any.
1698  // This is used to avoid emitting unnecessary branches to the next block.
1699  MachineBasicBlock *NextBlock = 0;
1700  MachineFunction::iterator BBI = SwitchBB;
1701  if (++BBI != FuncInfo.MF->end())
1702    NextBlock = BBI;
1703
1704  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1705
1706  addSuccessorWithWeight(SwitchBB, B.Default);
1707  addSuccessorWithWeight(SwitchBB, MBB);
1708
1709  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1710                                MVT::Other, CopyTo, RangeCmp,
1711                                DAG.getBasicBlock(B.Default));
1712
1713  if (MBB != NextBlock)
1714    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1715                          DAG.getBasicBlock(MBB));
1716
1717  DAG.setRoot(BrRange);
1718}
1719
1720/// visitBitTestCase - this function produces one "bit test"
1721void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1722                                           MachineBasicBlock* NextMBB,
1723                                           unsigned Reg,
1724                                           BitTestCase &B,
1725                                           MachineBasicBlock *SwitchBB) {
1726  EVT VT = BB.RegVT;
1727  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1728                                       Reg, VT);
1729  SDValue Cmp;
1730  unsigned PopCount = CountPopulation_64(B.Mask);
1731  if (PopCount == 1) {
1732    // Testing for a single bit; just compare the shift count with what it
1733    // would need to be to shift a 1 bit in that position.
1734    Cmp = DAG.getSetCC(getCurDebugLoc(),
1735                       TLI.getSetCCResultType(VT),
1736                       ShiftOp,
1737                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1738                       ISD::SETEQ);
1739  } else if (PopCount == BB.Range) {
1740    // There is only one zero bit in the range, test for it directly.
1741    Cmp = DAG.getSetCC(getCurDebugLoc(),
1742                       TLI.getSetCCResultType(VT),
1743                       ShiftOp,
1744                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1745                       ISD::SETNE);
1746  } else {
1747    // Make desired shift
1748    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1749                                    DAG.getConstant(1, VT), ShiftOp);
1750
1751    // Emit bit tests and jumps
1752    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1753                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1754    Cmp = DAG.getSetCC(getCurDebugLoc(),
1755                       TLI.getSetCCResultType(VT),
1756                       AndOp, DAG.getConstant(0, VT),
1757                       ISD::SETNE);
1758  }
1759
1760  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1761  addSuccessorWithWeight(SwitchBB, NextMBB);
1762
1763  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1764                              MVT::Other, getControlRoot(),
1765                              Cmp, DAG.getBasicBlock(B.TargetBB));
1766
1767  // Set NextBlock to be the MBB immediately after the current one, if any.
1768  // This is used to avoid emitting unnecessary branches to the next block.
1769  MachineBasicBlock *NextBlock = 0;
1770  MachineFunction::iterator BBI = SwitchBB;
1771  if (++BBI != FuncInfo.MF->end())
1772    NextBlock = BBI;
1773
1774  if (NextMBB != NextBlock)
1775    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1776                        DAG.getBasicBlock(NextMBB));
1777
1778  DAG.setRoot(BrAnd);
1779}
1780
1781void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1782  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1783
1784  // Retrieve successors.
1785  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1786  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1787
1788  const Value *Callee(I.getCalledValue());
1789  if (isa<InlineAsm>(Callee))
1790    visitInlineAsm(&I);
1791  else
1792    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1793
1794  // If the value of the invoke is used outside of its defining block, make it
1795  // available as a virtual register.
1796  CopyToExportRegsIfNeeded(&I);
1797
1798  // Update successor info
1799  InvokeMBB->addSuccessor(Return);
1800  InvokeMBB->addSuccessor(LandingPad);
1801
1802  // Drop into normal successor.
1803  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1804                          MVT::Other, getControlRoot(),
1805                          DAG.getBasicBlock(Return)));
1806}
1807
1808void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1809}
1810
1811void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1812  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1813}
1814
1815void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1816  // FIXME: Handle this
1817  assert(FuncInfo.MBB->isLandingPad() &&
1818         "Call to landingpad not in landing pad!");
1819
1820  MachineBasicBlock *MBB = FuncInfo.MBB;
1821  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1822  AddLandingPadInfo(LP, MMI, MBB);
1823
1824  SmallVector<EVT, 2> ValueVTs;
1825  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1826
1827  // Insert the EXCEPTIONADDR instruction.
1828  assert(FuncInfo.MBB->isLandingPad() &&
1829         "Call to eh.exception not in landing pad!");
1830  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1831  SDValue Ops[2];
1832  Ops[0] = DAG.getRoot();
1833  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1834  SDValue Chain = Op1.getValue(1);
1835
1836  // Insert the EHSELECTION instruction.
1837  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1838  Ops[0] = Op1;
1839  Ops[1] = Chain;
1840  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1841  Chain = Op2.getValue(1);
1842  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1843
1844  Ops[0] = Op1;
1845  Ops[1] = Op2;
1846  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1847                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1848                            &Ops[0], 2);
1849
1850  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1851  setValue(&LP, RetPair.first);
1852  DAG.setRoot(RetPair.second);
1853}
1854
1855/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1856/// small case ranges).
1857bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1858                                                 CaseRecVector& WorkList,
1859                                                 const Value* SV,
1860                                                 MachineBasicBlock *Default,
1861                                                 MachineBasicBlock *SwitchBB) {
1862  Case& BackCase  = *(CR.Range.second-1);
1863
1864  // Size is the number of Cases represented by this range.
1865  size_t Size = CR.Range.second - CR.Range.first;
1866  if (Size > 3)
1867    return false;
1868
1869  // Get the MachineFunction which holds the current MBB.  This is used when
1870  // inserting any additional MBBs necessary to represent the switch.
1871  MachineFunction *CurMF = FuncInfo.MF;
1872
1873  // Figure out which block is immediately after the current one.
1874  MachineBasicBlock *NextBlock = 0;
1875  MachineFunction::iterator BBI = CR.CaseBB;
1876
1877  if (++BBI != FuncInfo.MF->end())
1878    NextBlock = BBI;
1879
1880  // If any two of the cases has the same destination, and if one value
1881  // is the same as the other, but has one bit unset that the other has set,
1882  // use bit manipulation to do two compares at once.  For example:
1883  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1884  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1885  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1886  if (Size == 2 && CR.CaseBB == SwitchBB) {
1887    Case &Small = *CR.Range.first;
1888    Case &Big = *(CR.Range.second-1);
1889
1890    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1891      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1892      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1893
1894      // Check that there is only one bit different.
1895      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1896          (SmallValue | BigValue) == BigValue) {
1897        // Isolate the common bit.
1898        APInt CommonBit = BigValue & ~SmallValue;
1899        assert((SmallValue | CommonBit) == BigValue &&
1900               CommonBit.countPopulation() == 1 && "Not a common bit?");
1901
1902        SDValue CondLHS = getValue(SV);
1903        EVT VT = CondLHS.getValueType();
1904        DebugLoc DL = getCurDebugLoc();
1905
1906        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1907                                 DAG.getConstant(CommonBit, VT));
1908        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1909                                    Or, DAG.getConstant(BigValue, VT),
1910                                    ISD::SETEQ);
1911
1912        // Update successor info.
1913        SwitchBB->addSuccessor(Small.BB);
1914        SwitchBB->addSuccessor(Default);
1915
1916        // Insert the true branch.
1917        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1918                                     getControlRoot(), Cond,
1919                                     DAG.getBasicBlock(Small.BB));
1920
1921        // Insert the false branch.
1922        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1923                             DAG.getBasicBlock(Default));
1924
1925        DAG.setRoot(BrCond);
1926        return true;
1927      }
1928    }
1929  }
1930
1931  // Rearrange the case blocks so that the last one falls through if possible.
1932  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1933    // The last case block won't fall through into 'NextBlock' if we emit the
1934    // branches in this order.  See if rearranging a case value would help.
1935    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1936      if (I->BB == NextBlock) {
1937        std::swap(*I, BackCase);
1938        break;
1939      }
1940    }
1941  }
1942
1943  // Create a CaseBlock record representing a conditional branch to
1944  // the Case's target mbb if the value being switched on SV is equal
1945  // to C.
1946  MachineBasicBlock *CurBlock = CR.CaseBB;
1947  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1948    MachineBasicBlock *FallThrough;
1949    if (I != E-1) {
1950      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1951      CurMF->insert(BBI, FallThrough);
1952
1953      // Put SV in a virtual register to make it available from the new blocks.
1954      ExportFromCurrentBlock(SV);
1955    } else {
1956      // If the last case doesn't match, go to the default block.
1957      FallThrough = Default;
1958    }
1959
1960    const Value *RHS, *LHS, *MHS;
1961    ISD::CondCode CC;
1962    if (I->High == I->Low) {
1963      // This is just small small case range :) containing exactly 1 case
1964      CC = ISD::SETEQ;
1965      LHS = SV; RHS = I->High; MHS = NULL;
1966    } else {
1967      CC = ISD::SETLE;
1968      LHS = I->Low; MHS = SV; RHS = I->High;
1969    }
1970    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1971
1972    // If emitting the first comparison, just call visitSwitchCase to emit the
1973    // code into the current block.  Otherwise, push the CaseBlock onto the
1974    // vector to be later processed by SDISel, and insert the node's MBB
1975    // before the next MBB.
1976    if (CurBlock == SwitchBB)
1977      visitSwitchCase(CB, SwitchBB);
1978    else
1979      SwitchCases.push_back(CB);
1980
1981    CurBlock = FallThrough;
1982  }
1983
1984  return true;
1985}
1986
1987static inline bool areJTsAllowed(const TargetLowering &TLI) {
1988  return !DisableJumpTables &&
1989          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1990           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1991}
1992
1993static APInt ComputeRange(const APInt &First, const APInt &Last) {
1994  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1995  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1996  return (LastExt - FirstExt + 1ULL);
1997}
1998
1999/// handleJTSwitchCase - Emit jumptable for current switch case range
2000bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
2001                                             CaseRecVector& WorkList,
2002                                             const Value* SV,
2003                                             MachineBasicBlock* Default,
2004                                             MachineBasicBlock *SwitchBB) {
2005  Case& FrontCase = *CR.Range.first;
2006  Case& BackCase  = *(CR.Range.second-1);
2007
2008  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2009  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2010
2011  APInt TSize(First.getBitWidth(), 0);
2012  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2013       I!=E; ++I)
2014    TSize += I->size();
2015
2016  if (!areJTsAllowed(TLI) || TSize.ult(4))
2017    return false;
2018
2019  APInt Range = ComputeRange(First, Last);
2020  double Density = TSize.roundToDouble() / Range.roundToDouble();
2021  if (Density < 0.4)
2022    return false;
2023
2024  DEBUG(dbgs() << "Lowering jump table\n"
2025               << "First entry: " << First << ". Last entry: " << Last << '\n'
2026               << "Range: " << Range
2027               << ". Size: " << TSize << ". Density: " << Density << "\n\n");
2028
2029  // Get the MachineFunction which holds the current MBB.  This is used when
2030  // inserting any additional MBBs necessary to represent the switch.
2031  MachineFunction *CurMF = FuncInfo.MF;
2032
2033  // Figure out which block is immediately after the current one.
2034  MachineFunction::iterator BBI = CR.CaseBB;
2035  ++BBI;
2036
2037  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2038
2039  // Create a new basic block to hold the code for loading the address
2040  // of the jump table, and jumping to it.  Update successor information;
2041  // we will either branch to the default case for the switch, or the jump
2042  // table.
2043  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2044  CurMF->insert(BBI, JumpTableBB);
2045
2046  addSuccessorWithWeight(CR.CaseBB, Default);
2047  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2048
2049  // Build a vector of destination BBs, corresponding to each target
2050  // of the jump table. If the value of the jump table slot corresponds to
2051  // a case statement, push the case's BB onto the vector, otherwise, push
2052  // the default BB.
2053  std::vector<MachineBasicBlock*> DestBBs;
2054  APInt TEI = First;
2055  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2056    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2057    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2058
2059    if (Low.sle(TEI) && TEI.sle(High)) {
2060      DestBBs.push_back(I->BB);
2061      if (TEI==High)
2062        ++I;
2063    } else {
2064      DestBBs.push_back(Default);
2065    }
2066  }
2067
2068  // Update successor info. Add one edge to each unique successor.
2069  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2070  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2071         E = DestBBs.end(); I != E; ++I) {
2072    if (!SuccsHandled[(*I)->getNumber()]) {
2073      SuccsHandled[(*I)->getNumber()] = true;
2074      addSuccessorWithWeight(JumpTableBB, *I);
2075    }
2076  }
2077
2078  // Create a jump table index for this jump table.
2079  unsigned JTEncoding = TLI.getJumpTableEncoding();
2080  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2081                       ->createJumpTableIndex(DestBBs);
2082
2083  // Set the jump table information so that we can codegen it as a second
2084  // MachineBasicBlock
2085  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2086  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2087  if (CR.CaseBB == SwitchBB)
2088    visitJumpTableHeader(JT, JTH, SwitchBB);
2089
2090  JTCases.push_back(JumpTableBlock(JTH, JT));
2091
2092  return true;
2093}
2094
2095/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2096/// 2 subtrees.
2097bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2098                                                  CaseRecVector& WorkList,
2099                                                  const Value* SV,
2100                                                  MachineBasicBlock *Default,
2101                                                  MachineBasicBlock *SwitchBB) {
2102  // Get the MachineFunction which holds the current MBB.  This is used when
2103  // inserting any additional MBBs necessary to represent the switch.
2104  MachineFunction *CurMF = FuncInfo.MF;
2105
2106  // Figure out which block is immediately after the current one.
2107  MachineFunction::iterator BBI = CR.CaseBB;
2108  ++BBI;
2109
2110  Case& FrontCase = *CR.Range.first;
2111  Case& BackCase  = *(CR.Range.second-1);
2112  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2113
2114  // Size is the number of Cases represented by this range.
2115  unsigned Size = CR.Range.second - CR.Range.first;
2116
2117  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2118  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2119  double FMetric = 0;
2120  CaseItr Pivot = CR.Range.first + Size/2;
2121
2122  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2123  // (heuristically) allow us to emit JumpTable's later.
2124  APInt TSize(First.getBitWidth(), 0);
2125  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2126       I!=E; ++I)
2127    TSize += I->size();
2128
2129  APInt LSize = FrontCase.size();
2130  APInt RSize = TSize-LSize;
2131  DEBUG(dbgs() << "Selecting best pivot: \n"
2132               << "First: " << First << ", Last: " << Last <<'\n'
2133               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2134  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2135       J!=E; ++I, ++J) {
2136    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2137    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2138    APInt Range = ComputeRange(LEnd, RBegin);
2139    assert((Range - 2ULL).isNonNegative() &&
2140           "Invalid case distance");
2141    // Use volatile double here to avoid excess precision issues on some hosts,
2142    // e.g. that use 80-bit X87 registers.
2143    volatile double LDensity =
2144       (double)LSize.roundToDouble() /
2145                           (LEnd - First + 1ULL).roundToDouble();
2146    volatile double RDensity =
2147      (double)RSize.roundToDouble() /
2148                           (Last - RBegin + 1ULL).roundToDouble();
2149    double Metric = Range.logBase2()*(LDensity+RDensity);
2150    // Should always split in some non-trivial place
2151    DEBUG(dbgs() <<"=>Step\n"
2152                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2153                 << "LDensity: " << LDensity
2154                 << ", RDensity: " << RDensity << '\n'
2155                 << "Metric: " << Metric << '\n');
2156    if (FMetric < Metric) {
2157      Pivot = J;
2158      FMetric = Metric;
2159      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2160    }
2161
2162    LSize += J->size();
2163    RSize -= J->size();
2164  }
2165  if (areJTsAllowed(TLI)) {
2166    // If our case is dense we *really* should handle it earlier!
2167    assert((FMetric > 0) && "Should handle dense range earlier!");
2168  } else {
2169    Pivot = CR.Range.first + Size/2;
2170  }
2171
2172  CaseRange LHSR(CR.Range.first, Pivot);
2173  CaseRange RHSR(Pivot, CR.Range.second);
2174  Constant *C = Pivot->Low;
2175  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2176
2177  // We know that we branch to the LHS if the Value being switched on is
2178  // less than the Pivot value, C.  We use this to optimize our binary
2179  // tree a bit, by recognizing that if SV is greater than or equal to the
2180  // LHS's Case Value, and that Case Value is exactly one less than the
2181  // Pivot's Value, then we can branch directly to the LHS's Target,
2182  // rather than creating a leaf node for it.
2183  if ((LHSR.second - LHSR.first) == 1 &&
2184      LHSR.first->High == CR.GE &&
2185      cast<ConstantInt>(C)->getValue() ==
2186      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2187    TrueBB = LHSR.first->BB;
2188  } else {
2189    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2190    CurMF->insert(BBI, TrueBB);
2191    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2192
2193    // Put SV in a virtual register to make it available from the new blocks.
2194    ExportFromCurrentBlock(SV);
2195  }
2196
2197  // Similar to the optimization above, if the Value being switched on is
2198  // known to be less than the Constant CR.LT, and the current Case Value
2199  // is CR.LT - 1, then we can branch directly to the target block for
2200  // the current Case Value, rather than emitting a RHS leaf node for it.
2201  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2202      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2203      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2204    FalseBB = RHSR.first->BB;
2205  } else {
2206    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2207    CurMF->insert(BBI, FalseBB);
2208    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2209
2210    // Put SV in a virtual register to make it available from the new blocks.
2211    ExportFromCurrentBlock(SV);
2212  }
2213
2214  // Create a CaseBlock record representing a conditional branch to
2215  // the LHS node if the value being switched on SV is less than C.
2216  // Otherwise, branch to LHS.
2217  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2218
2219  if (CR.CaseBB == SwitchBB)
2220    visitSwitchCase(CB, SwitchBB);
2221  else
2222    SwitchCases.push_back(CB);
2223
2224  return true;
2225}
2226
2227/// handleBitTestsSwitchCase - if current case range has few destination and
2228/// range span less, than machine word bitwidth, encode case range into series
2229/// of masks and emit bit tests with these masks.
2230bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2231                                                   CaseRecVector& WorkList,
2232                                                   const Value* SV,
2233                                                   MachineBasicBlock* Default,
2234                                                   MachineBasicBlock *SwitchBB){
2235  EVT PTy = TLI.getPointerTy();
2236  unsigned IntPtrBits = PTy.getSizeInBits();
2237
2238  Case& FrontCase = *CR.Range.first;
2239  Case& BackCase  = *(CR.Range.second-1);
2240
2241  // Get the MachineFunction which holds the current MBB.  This is used when
2242  // inserting any additional MBBs necessary to represent the switch.
2243  MachineFunction *CurMF = FuncInfo.MF;
2244
2245  // If target does not have legal shift left, do not emit bit tests at all.
2246  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2247    return false;
2248
2249  size_t numCmps = 0;
2250  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2251       I!=E; ++I) {
2252    // Single case counts one, case range - two.
2253    numCmps += (I->Low == I->High ? 1 : 2);
2254  }
2255
2256  // Count unique destinations
2257  SmallSet<MachineBasicBlock*, 4> Dests;
2258  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2259    Dests.insert(I->BB);
2260    if (Dests.size() > 3)
2261      // Don't bother the code below, if there are too much unique destinations
2262      return false;
2263  }
2264  DEBUG(dbgs() << "Total number of unique destinations: "
2265        << Dests.size() << '\n'
2266        << "Total number of comparisons: " << numCmps << '\n');
2267
2268  // Compute span of values.
2269  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2270  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2271  APInt cmpRange = maxValue - minValue;
2272
2273  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2274               << "Low bound: " << minValue << '\n'
2275               << "High bound: " << maxValue << '\n');
2276
2277  if (cmpRange.uge(IntPtrBits) ||
2278      (!(Dests.size() == 1 && numCmps >= 3) &&
2279       !(Dests.size() == 2 && numCmps >= 5) &&
2280       !(Dests.size() >= 3 && numCmps >= 6)))
2281    return false;
2282
2283  DEBUG(dbgs() << "Emitting bit tests\n");
2284  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2285
2286  // Optimize the case where all the case values fit in a
2287  // word without having to subtract minValue. In this case,
2288  // we can optimize away the subtraction.
2289  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2290    cmpRange = maxValue;
2291  } else {
2292    lowBound = minValue;
2293  }
2294
2295  CaseBitsVector CasesBits;
2296  unsigned i, count = 0;
2297
2298  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2299    MachineBasicBlock* Dest = I->BB;
2300    for (i = 0; i < count; ++i)
2301      if (Dest == CasesBits[i].BB)
2302        break;
2303
2304    if (i == count) {
2305      assert((count < 3) && "Too much destinations to test!");
2306      CasesBits.push_back(CaseBits(0, Dest, 0));
2307      count++;
2308    }
2309
2310    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2311    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2312
2313    uint64_t lo = (lowValue - lowBound).getZExtValue();
2314    uint64_t hi = (highValue - lowBound).getZExtValue();
2315
2316    for (uint64_t j = lo; j <= hi; j++) {
2317      CasesBits[i].Mask |=  1ULL << j;
2318      CasesBits[i].Bits++;
2319    }
2320
2321  }
2322  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2323
2324  BitTestInfo BTC;
2325
2326  // Figure out which block is immediately after the current one.
2327  MachineFunction::iterator BBI = CR.CaseBB;
2328  ++BBI;
2329
2330  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2331
2332  DEBUG(dbgs() << "Cases:\n");
2333  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2334    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2335                 << ", Bits: " << CasesBits[i].Bits
2336                 << ", BB: " << CasesBits[i].BB << '\n');
2337
2338    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2339    CurMF->insert(BBI, CaseBB);
2340    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2341                              CaseBB,
2342                              CasesBits[i].BB));
2343
2344    // Put SV in a virtual register to make it available from the new blocks.
2345    ExportFromCurrentBlock(SV);
2346  }
2347
2348  BitTestBlock BTB(lowBound, cmpRange, SV,
2349                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2350                   CR.CaseBB, Default, BTC);
2351
2352  if (CR.CaseBB == SwitchBB)
2353    visitBitTestHeader(BTB, SwitchBB);
2354
2355  BitTestCases.push_back(BTB);
2356
2357  return true;
2358}
2359
2360/// Clusterify - Transform simple list of Cases into list of CaseRange's
2361size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2362                                       const SwitchInst& SI) {
2363  size_t numCmps = 0;
2364
2365  // Start with "simple" cases
2366  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2367    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2368    Cases.push_back(Case(SI.getSuccessorValue(i),
2369                         SI.getSuccessorValue(i),
2370                         SMBB));
2371  }
2372  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2373
2374  // Merge case into clusters
2375  if (Cases.size() >= 2)
2376    // Must recompute end() each iteration because it may be
2377    // invalidated by erase if we hold on to it
2378    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2379         J != Cases.end(); ) {
2380      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2381      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2382      MachineBasicBlock* nextBB = J->BB;
2383      MachineBasicBlock* currentBB = I->BB;
2384
2385      // If the two neighboring cases go to the same destination, merge them
2386      // into a single case.
2387      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2388        I->High = J->High;
2389        J = Cases.erase(J);
2390      } else {
2391        I = J++;
2392      }
2393    }
2394
2395  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2396    if (I->Low != I->High)
2397      // A range counts double, since it requires two compares.
2398      ++numCmps;
2399  }
2400
2401  return numCmps;
2402}
2403
2404void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2405                                           MachineBasicBlock *Last) {
2406  // Update JTCases.
2407  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2408    if (JTCases[i].first.HeaderBB == First)
2409      JTCases[i].first.HeaderBB = Last;
2410
2411  // Update BitTestCases.
2412  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2413    if (BitTestCases[i].Parent == First)
2414      BitTestCases[i].Parent = Last;
2415}
2416
2417void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2418  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2419
2420  // Figure out which block is immediately after the current one.
2421  MachineBasicBlock *NextBlock = 0;
2422  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2423
2424  // If there is only the default destination, branch to it if it is not the
2425  // next basic block.  Otherwise, just fall through.
2426  if (SI.getNumOperands() == 2) {
2427    // Update machine-CFG edges.
2428
2429    // If this is not a fall-through branch, emit the branch.
2430    SwitchMBB->addSuccessor(Default);
2431    if (Default != NextBlock)
2432      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2433                              MVT::Other, getControlRoot(),
2434                              DAG.getBasicBlock(Default)));
2435
2436    return;
2437  }
2438
2439  // If there are any non-default case statements, create a vector of Cases
2440  // representing each one, and sort the vector so that we can efficiently
2441  // create a binary search tree from them.
2442  CaseVector Cases;
2443  size_t numCmps = Clusterify(Cases, SI);
2444  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2445               << ". Total compares: " << numCmps << '\n');
2446  numCmps = 0;
2447
2448  // Get the Value to be switched on and default basic blocks, which will be
2449  // inserted into CaseBlock records, representing basic blocks in the binary
2450  // search tree.
2451  const Value *SV = SI.getOperand(0);
2452
2453  // Push the initial CaseRec onto the worklist
2454  CaseRecVector WorkList;
2455  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2456                             CaseRange(Cases.begin(),Cases.end())));
2457
2458  while (!WorkList.empty()) {
2459    // Grab a record representing a case range to process off the worklist
2460    CaseRec CR = WorkList.back();
2461    WorkList.pop_back();
2462
2463    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2464      continue;
2465
2466    // If the range has few cases (two or less) emit a series of specific
2467    // tests.
2468    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2469      continue;
2470
2471    // If the switch has more than 5 blocks, and at least 40% dense, and the
2472    // target supports indirect branches, then emit a jump table rather than
2473    // lowering the switch to a binary tree of conditional branches.
2474    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2475      continue;
2476
2477    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2478    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2479    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2480  }
2481}
2482
2483void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2484  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2485
2486  // Update machine-CFG edges with unique successors.
2487  SmallVector<BasicBlock*, 32> succs;
2488  succs.reserve(I.getNumSuccessors());
2489  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2490    succs.push_back(I.getSuccessor(i));
2491  array_pod_sort(succs.begin(), succs.end());
2492  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2493  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2494    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2495    addSuccessorWithWeight(IndirectBrMBB, Succ);
2496  }
2497
2498  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2499                          MVT::Other, getControlRoot(),
2500                          getValue(I.getAddress())));
2501}
2502
2503void SelectionDAGBuilder::visitFSub(const User &I) {
2504  // -0.0 - X --> fneg
2505  Type *Ty = I.getType();
2506  if (isa<Constant>(I.getOperand(0)) &&
2507      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2508    SDValue Op2 = getValue(I.getOperand(1));
2509    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2510                             Op2.getValueType(), Op2));
2511    return;
2512  }
2513
2514  visitBinary(I, ISD::FSUB);
2515}
2516
2517void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2518  SDValue Op1 = getValue(I.getOperand(0));
2519  SDValue Op2 = getValue(I.getOperand(1));
2520  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2521                           Op1.getValueType(), Op1, Op2));
2522}
2523
2524void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2525  SDValue Op1 = getValue(I.getOperand(0));
2526  SDValue Op2 = getValue(I.getOperand(1));
2527
2528  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2529
2530  // Coerce the shift amount to the right type if we can.
2531  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2532    unsigned ShiftSize = ShiftTy.getSizeInBits();
2533    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2534    DebugLoc DL = getCurDebugLoc();
2535
2536    // If the operand is smaller than the shift count type, promote it.
2537    if (ShiftSize > Op2Size)
2538      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2539
2540    // If the operand is larger than the shift count type but the shift
2541    // count type has enough bits to represent any shift value, truncate
2542    // it now. This is a common case and it exposes the truncate to
2543    // optimization early.
2544    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2545      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2546    // Otherwise we'll need to temporarily settle for some other convenient
2547    // type.  Type legalization will make adjustments once the shiftee is split.
2548    else
2549      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2550  }
2551
2552  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2553                           Op1.getValueType(), Op1, Op2));
2554}
2555
2556void SelectionDAGBuilder::visitSDiv(const User &I) {
2557  SDValue Op1 = getValue(I.getOperand(0));
2558  SDValue Op2 = getValue(I.getOperand(1));
2559
2560  // Turn exact SDivs into multiplications.
2561  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2562  // exact bit.
2563  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2564      !isa<ConstantSDNode>(Op1) &&
2565      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2566    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2567  else
2568    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2569                             Op1, Op2));
2570}
2571
2572void SelectionDAGBuilder::visitICmp(const User &I) {
2573  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2574  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2575    predicate = IC->getPredicate();
2576  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2577    predicate = ICmpInst::Predicate(IC->getPredicate());
2578  SDValue Op1 = getValue(I.getOperand(0));
2579  SDValue Op2 = getValue(I.getOperand(1));
2580  ISD::CondCode Opcode = getICmpCondCode(predicate);
2581
2582  EVT DestVT = TLI.getValueType(I.getType());
2583  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2584}
2585
2586void SelectionDAGBuilder::visitFCmp(const User &I) {
2587  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2588  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2589    predicate = FC->getPredicate();
2590  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2591    predicate = FCmpInst::Predicate(FC->getPredicate());
2592  SDValue Op1 = getValue(I.getOperand(0));
2593  SDValue Op2 = getValue(I.getOperand(1));
2594  ISD::CondCode Condition = getFCmpCondCode(predicate);
2595  EVT DestVT = TLI.getValueType(I.getType());
2596  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2597}
2598
2599void SelectionDAGBuilder::visitSelect(const User &I) {
2600  SmallVector<EVT, 4> ValueVTs;
2601  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2602  unsigned NumValues = ValueVTs.size();
2603  if (NumValues == 0) return;
2604
2605  SmallVector<SDValue, 4> Values(NumValues);
2606  SDValue Cond     = getValue(I.getOperand(0));
2607  SDValue TrueVal  = getValue(I.getOperand(1));
2608  SDValue FalseVal = getValue(I.getOperand(2));
2609
2610  for (unsigned i = 0; i != NumValues; ++i)
2611    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2612                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2613                            Cond,
2614                            SDValue(TrueVal.getNode(),
2615                                    TrueVal.getResNo() + i),
2616                            SDValue(FalseVal.getNode(),
2617                                    FalseVal.getResNo() + i));
2618
2619  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2620                           DAG.getVTList(&ValueVTs[0], NumValues),
2621                           &Values[0], NumValues));
2622}
2623
2624void SelectionDAGBuilder::visitTrunc(const User &I) {
2625  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2626  SDValue N = getValue(I.getOperand(0));
2627  EVT DestVT = TLI.getValueType(I.getType());
2628  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2629}
2630
2631void SelectionDAGBuilder::visitZExt(const User &I) {
2632  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2633  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2634  SDValue N = getValue(I.getOperand(0));
2635  EVT DestVT = TLI.getValueType(I.getType());
2636  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2637}
2638
2639void SelectionDAGBuilder::visitSExt(const User &I) {
2640  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2641  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2642  SDValue N = getValue(I.getOperand(0));
2643  EVT DestVT = TLI.getValueType(I.getType());
2644  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2645}
2646
2647void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2648  // FPTrunc is never a no-op cast, no need to check
2649  SDValue N = getValue(I.getOperand(0));
2650  EVT DestVT = TLI.getValueType(I.getType());
2651  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2652                           DestVT, N, DAG.getIntPtrConstant(0)));
2653}
2654
2655void SelectionDAGBuilder::visitFPExt(const User &I){
2656  // FPTrunc is never a no-op cast, no need to check
2657  SDValue N = getValue(I.getOperand(0));
2658  EVT DestVT = TLI.getValueType(I.getType());
2659  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2660}
2661
2662void SelectionDAGBuilder::visitFPToUI(const User &I) {
2663  // FPToUI is never a no-op cast, no need to check
2664  SDValue N = getValue(I.getOperand(0));
2665  EVT DestVT = TLI.getValueType(I.getType());
2666  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2667}
2668
2669void SelectionDAGBuilder::visitFPToSI(const User &I) {
2670  // FPToSI is never a no-op cast, no need to check
2671  SDValue N = getValue(I.getOperand(0));
2672  EVT DestVT = TLI.getValueType(I.getType());
2673  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2674}
2675
2676void SelectionDAGBuilder::visitUIToFP(const User &I) {
2677  // UIToFP is never a no-op cast, no need to check
2678  SDValue N = getValue(I.getOperand(0));
2679  EVT DestVT = TLI.getValueType(I.getType());
2680  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2681}
2682
2683void SelectionDAGBuilder::visitSIToFP(const User &I){
2684  // SIToFP is never a no-op cast, no need to check
2685  SDValue N = getValue(I.getOperand(0));
2686  EVT DestVT = TLI.getValueType(I.getType());
2687  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2688}
2689
2690void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2691  // What to do depends on the size of the integer and the size of the pointer.
2692  // We can either truncate, zero extend, or no-op, accordingly.
2693  SDValue N = getValue(I.getOperand(0));
2694  EVT DestVT = TLI.getValueType(I.getType());
2695  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2696}
2697
2698void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2699  // What to do depends on the size of the integer and the size of the pointer.
2700  // We can either truncate, zero extend, or no-op, accordingly.
2701  SDValue N = getValue(I.getOperand(0));
2702  EVT DestVT = TLI.getValueType(I.getType());
2703  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2704}
2705
2706void SelectionDAGBuilder::visitBitCast(const User &I) {
2707  SDValue N = getValue(I.getOperand(0));
2708  EVT DestVT = TLI.getValueType(I.getType());
2709
2710  // BitCast assures us that source and destination are the same size so this is
2711  // either a BITCAST or a no-op.
2712  if (DestVT != N.getValueType())
2713    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2714                             DestVT, N)); // convert types.
2715  else
2716    setValue(&I, N);            // noop cast.
2717}
2718
2719void SelectionDAGBuilder::visitInsertElement(const User &I) {
2720  SDValue InVec = getValue(I.getOperand(0));
2721  SDValue InVal = getValue(I.getOperand(1));
2722  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2723                              TLI.getPointerTy(),
2724                              getValue(I.getOperand(2)));
2725  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2726                           TLI.getValueType(I.getType()),
2727                           InVec, InVal, InIdx));
2728}
2729
2730void SelectionDAGBuilder::visitExtractElement(const User &I) {
2731  SDValue InVec = getValue(I.getOperand(0));
2732  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2733                              TLI.getPointerTy(),
2734                              getValue(I.getOperand(1)));
2735  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2736                           TLI.getValueType(I.getType()), InVec, InIdx));
2737}
2738
2739// Utility for visitShuffleVector - Returns true if the mask is mask starting
2740// from SIndx and increasing to the element length (undefs are allowed).
2741static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2742  unsigned MaskNumElts = Mask.size();
2743  for (unsigned i = 0; i != MaskNumElts; ++i)
2744    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2745      return false;
2746  return true;
2747}
2748
2749void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2750  SmallVector<int, 8> Mask;
2751  SDValue Src1 = getValue(I.getOperand(0));
2752  SDValue Src2 = getValue(I.getOperand(1));
2753
2754  // Convert the ConstantVector mask operand into an array of ints, with -1
2755  // representing undef values.
2756  SmallVector<Constant*, 8> MaskElts;
2757  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2758  unsigned MaskNumElts = MaskElts.size();
2759  for (unsigned i = 0; i != MaskNumElts; ++i) {
2760    if (isa<UndefValue>(MaskElts[i]))
2761      Mask.push_back(-1);
2762    else
2763      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2764  }
2765
2766  EVT VT = TLI.getValueType(I.getType());
2767  EVT SrcVT = Src1.getValueType();
2768  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2769
2770  if (SrcNumElts == MaskNumElts) {
2771    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2772                                      &Mask[0]));
2773    return;
2774  }
2775
2776  // Normalize the shuffle vector since mask and vector length don't match.
2777  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2778    // Mask is longer than the source vectors and is a multiple of the source
2779    // vectors.  We can use concatenate vector to make the mask and vectors
2780    // lengths match.
2781    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2782      // The shuffle is concatenating two vectors together.
2783      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2784                               VT, Src1, Src2));
2785      return;
2786    }
2787
2788    // Pad both vectors with undefs to make them the same length as the mask.
2789    unsigned NumConcat = MaskNumElts / SrcNumElts;
2790    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2791    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2792    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2793
2794    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2795    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2796    MOps1[0] = Src1;
2797    MOps2[0] = Src2;
2798
2799    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2800                                                  getCurDebugLoc(), VT,
2801                                                  &MOps1[0], NumConcat);
2802    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2803                                                  getCurDebugLoc(), VT,
2804                                                  &MOps2[0], NumConcat);
2805
2806    // Readjust mask for new input vector length.
2807    SmallVector<int, 8> MappedOps;
2808    for (unsigned i = 0; i != MaskNumElts; ++i) {
2809      int Idx = Mask[i];
2810      if (Idx < (int)SrcNumElts)
2811        MappedOps.push_back(Idx);
2812      else
2813        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2814    }
2815
2816    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2817                                      &MappedOps[0]));
2818    return;
2819  }
2820
2821  if (SrcNumElts > MaskNumElts) {
2822    // Analyze the access pattern of the vector to see if we can extract
2823    // two subvectors and do the shuffle. The analysis is done by calculating
2824    // the range of elements the mask access on both vectors.
2825    int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2826                        static_cast<int>(SrcNumElts+1)};
2827    int MaxRange[2] = {-1, -1};
2828
2829    for (unsigned i = 0; i != MaskNumElts; ++i) {
2830      int Idx = Mask[i];
2831      int Input = 0;
2832      if (Idx < 0)
2833        continue;
2834
2835      if (Idx >= (int)SrcNumElts) {
2836        Input = 1;
2837        Idx -= SrcNumElts;
2838      }
2839      if (Idx > MaxRange[Input])
2840        MaxRange[Input] = Idx;
2841      if (Idx < MinRange[Input])
2842        MinRange[Input] = Idx;
2843    }
2844
2845    // Check if the access is smaller than the vector size and can we find
2846    // a reasonable extract index.
2847    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2848                                 // Extract.
2849    int StartIdx[2];  // StartIdx to extract from
2850    for (int Input=0; Input < 2; ++Input) {
2851      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2852        RangeUse[Input] = 0; // Unused
2853        StartIdx[Input] = 0;
2854      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2855        // Fits within range but we should see if we can find a good
2856        // start index that is a multiple of the mask length.
2857        if (MaxRange[Input] < (int)MaskNumElts) {
2858          RangeUse[Input] = 1; // Extract from beginning of the vector
2859          StartIdx[Input] = 0;
2860        } else {
2861          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2862          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2863              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2864            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2865        }
2866      }
2867    }
2868
2869    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2870      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2871      return;
2872    }
2873    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2874      // Extract appropriate subvector and generate a vector shuffle
2875      for (int Input=0; Input < 2; ++Input) {
2876        SDValue &Src = Input == 0 ? Src1 : Src2;
2877        if (RangeUse[Input] == 0)
2878          Src = DAG.getUNDEF(VT);
2879        else
2880          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2881                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2882      }
2883
2884      // Calculate new mask.
2885      SmallVector<int, 8> MappedOps;
2886      for (unsigned i = 0; i != MaskNumElts; ++i) {
2887        int Idx = Mask[i];
2888        if (Idx < 0)
2889          MappedOps.push_back(Idx);
2890        else if (Idx < (int)SrcNumElts)
2891          MappedOps.push_back(Idx - StartIdx[0]);
2892        else
2893          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2894      }
2895
2896      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2897                                        &MappedOps[0]));
2898      return;
2899    }
2900  }
2901
2902  // We can't use either concat vectors or extract subvectors so fall back to
2903  // replacing the shuffle with extract and build vector.
2904  // to insert and build vector.
2905  EVT EltVT = VT.getVectorElementType();
2906  EVT PtrVT = TLI.getPointerTy();
2907  SmallVector<SDValue,8> Ops;
2908  for (unsigned i = 0; i != MaskNumElts; ++i) {
2909    if (Mask[i] < 0) {
2910      Ops.push_back(DAG.getUNDEF(EltVT));
2911    } else {
2912      int Idx = Mask[i];
2913      SDValue Res;
2914
2915      if (Idx < (int)SrcNumElts)
2916        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2917                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2918      else
2919        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2920                          EltVT, Src2,
2921                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2922
2923      Ops.push_back(Res);
2924    }
2925  }
2926
2927  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2928                           VT, &Ops[0], Ops.size()));
2929}
2930
2931void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2932  const Value *Op0 = I.getOperand(0);
2933  const Value *Op1 = I.getOperand(1);
2934  Type *AggTy = I.getType();
2935  Type *ValTy = Op1->getType();
2936  bool IntoUndef = isa<UndefValue>(Op0);
2937  bool FromUndef = isa<UndefValue>(Op1);
2938
2939  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2940
2941  SmallVector<EVT, 4> AggValueVTs;
2942  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2943  SmallVector<EVT, 4> ValValueVTs;
2944  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2945
2946  unsigned NumAggValues = AggValueVTs.size();
2947  unsigned NumValValues = ValValueVTs.size();
2948  SmallVector<SDValue, 4> Values(NumAggValues);
2949
2950  SDValue Agg = getValue(Op0);
2951  unsigned i = 0;
2952  // Copy the beginning value(s) from the original aggregate.
2953  for (; i != LinearIndex; ++i)
2954    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2955                SDValue(Agg.getNode(), Agg.getResNo() + i);
2956  // Copy values from the inserted value(s).
2957  if (NumValValues) {
2958    SDValue Val = getValue(Op1);
2959    for (; i != LinearIndex + NumValValues; ++i)
2960      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2961                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2962  }
2963  // Copy remaining value(s) from the original aggregate.
2964  for (; i != NumAggValues; ++i)
2965    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2966                SDValue(Agg.getNode(), Agg.getResNo() + i);
2967
2968  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2969                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2970                           &Values[0], NumAggValues));
2971}
2972
2973void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2974  const Value *Op0 = I.getOperand(0);
2975  Type *AggTy = Op0->getType();
2976  Type *ValTy = I.getType();
2977  bool OutOfUndef = isa<UndefValue>(Op0);
2978
2979  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2980
2981  SmallVector<EVT, 4> ValValueVTs;
2982  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2983
2984  unsigned NumValValues = ValValueVTs.size();
2985
2986  // Ignore a extractvalue that produces an empty object
2987  if (!NumValValues) {
2988    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2989    return;
2990  }
2991
2992  SmallVector<SDValue, 4> Values(NumValValues);
2993
2994  SDValue Agg = getValue(Op0);
2995  // Copy out the selected value(s).
2996  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2997    Values[i - LinearIndex] =
2998      OutOfUndef ?
2999        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3000        SDValue(Agg.getNode(), Agg.getResNo() + i);
3001
3002  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3003                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3004                           &Values[0], NumValValues));
3005}
3006
3007void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3008  SDValue N = getValue(I.getOperand(0));
3009  Type *Ty = I.getOperand(0)->getType();
3010
3011  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3012       OI != E; ++OI) {
3013    const Value *Idx = *OI;
3014    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3015      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3016      if (Field) {
3017        // N = N + Offset
3018        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3019        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3020                        DAG.getIntPtrConstant(Offset));
3021      }
3022
3023      Ty = StTy->getElementType(Field);
3024    } else {
3025      Ty = cast<SequentialType>(Ty)->getElementType();
3026
3027      // If this is a constant subscript, handle it quickly.
3028      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3029        if (CI->isZero()) continue;
3030        uint64_t Offs =
3031            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3032        SDValue OffsVal;
3033        EVT PTy = TLI.getPointerTy();
3034        unsigned PtrBits = PTy.getSizeInBits();
3035        if (PtrBits < 64)
3036          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3037                                TLI.getPointerTy(),
3038                                DAG.getConstant(Offs, MVT::i64));
3039        else
3040          OffsVal = DAG.getIntPtrConstant(Offs);
3041
3042        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3043                        OffsVal);
3044        continue;
3045      }
3046
3047      // N = N + Idx * ElementSize;
3048      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3049                                TD->getTypeAllocSize(Ty));
3050      SDValue IdxN = getValue(Idx);
3051
3052      // If the index is smaller or larger than intptr_t, truncate or extend
3053      // it.
3054      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3055
3056      // If this is a multiply by a power of two, turn it into a shl
3057      // immediately.  This is a very common case.
3058      if (ElementSize != 1) {
3059        if (ElementSize.isPowerOf2()) {
3060          unsigned Amt = ElementSize.logBase2();
3061          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3062                             N.getValueType(), IdxN,
3063                             DAG.getConstant(Amt, TLI.getPointerTy()));
3064        } else {
3065          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3066          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3067                             N.getValueType(), IdxN, Scale);
3068        }
3069      }
3070
3071      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3072                      N.getValueType(), N, IdxN);
3073    }
3074  }
3075
3076  setValue(&I, N);
3077}
3078
3079void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3080  // If this is a fixed sized alloca in the entry block of the function,
3081  // allocate it statically on the stack.
3082  if (FuncInfo.StaticAllocaMap.count(&I))
3083    return;   // getValue will auto-populate this.
3084
3085  Type *Ty = I.getAllocatedType();
3086  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3087  unsigned Align =
3088    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3089             I.getAlignment());
3090
3091  SDValue AllocSize = getValue(I.getArraySize());
3092
3093  EVT IntPtr = TLI.getPointerTy();
3094  if (AllocSize.getValueType() != IntPtr)
3095    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3096
3097  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3098                          AllocSize,
3099                          DAG.getConstant(TySize, IntPtr));
3100
3101  // Handle alignment.  If the requested alignment is less than or equal to
3102  // the stack alignment, ignore it.  If the size is greater than or equal to
3103  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3104  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3105  if (Align <= StackAlign)
3106    Align = 0;
3107
3108  // Round the size of the allocation up to the stack alignment size
3109  // by add SA-1 to the size.
3110  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3111                          AllocSize.getValueType(), AllocSize,
3112                          DAG.getIntPtrConstant(StackAlign-1));
3113
3114  // Mask out the low bits for alignment purposes.
3115  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3116                          AllocSize.getValueType(), AllocSize,
3117                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3118
3119  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3120  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3121  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3122                            VTs, Ops, 3);
3123  setValue(&I, DSA);
3124  DAG.setRoot(DSA.getValue(1));
3125
3126  // Inform the Frame Information that we have just allocated a variable-sized
3127  // object.
3128  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3129}
3130
3131void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3132  const Value *SV = I.getOperand(0);
3133  SDValue Ptr = getValue(SV);
3134
3135  Type *Ty = I.getType();
3136
3137  bool isVolatile = I.isVolatile();
3138  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3139  unsigned Alignment = I.getAlignment();
3140  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3141
3142  SmallVector<EVT, 4> ValueVTs;
3143  SmallVector<uint64_t, 4> Offsets;
3144  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3145  unsigned NumValues = ValueVTs.size();
3146  if (NumValues == 0)
3147    return;
3148
3149  SDValue Root;
3150  bool ConstantMemory = false;
3151  if (I.isVolatile() || NumValues > MaxParallelChains)
3152    // Serialize volatile loads with other side effects.
3153    Root = getRoot();
3154  else if (AA->pointsToConstantMemory(
3155             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3156    // Do not serialize (non-volatile) loads of constant memory with anything.
3157    Root = DAG.getEntryNode();
3158    ConstantMemory = true;
3159  } else {
3160    // Do not serialize non-volatile loads against each other.
3161    Root = DAG.getRoot();
3162  }
3163
3164  SmallVector<SDValue, 4> Values(NumValues);
3165  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3166                                          NumValues));
3167  EVT PtrVT = Ptr.getValueType();
3168  unsigned ChainI = 0;
3169  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3170    // Serializing loads here may result in excessive register pressure, and
3171    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3172    // could recover a bit by hoisting nodes upward in the chain by recognizing
3173    // they are side-effect free or do not alias. The optimizer should really
3174    // avoid this case by converting large object/array copies to llvm.memcpy
3175    // (MaxParallelChains should always remain as failsafe).
3176    if (ChainI == MaxParallelChains) {
3177      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3178      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3179                                  MVT::Other, &Chains[0], ChainI);
3180      Root = Chain;
3181      ChainI = 0;
3182    }
3183    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3184                            PtrVT, Ptr,
3185                            DAG.getConstant(Offsets[i], PtrVT));
3186    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3187                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3188                            isNonTemporal, Alignment, TBAAInfo);
3189
3190    Values[i] = L;
3191    Chains[ChainI] = L.getValue(1);
3192  }
3193
3194  if (!ConstantMemory) {
3195    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3196                                MVT::Other, &Chains[0], ChainI);
3197    if (isVolatile)
3198      DAG.setRoot(Chain);
3199    else
3200      PendingLoads.push_back(Chain);
3201  }
3202
3203  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3204                           DAG.getVTList(&ValueVTs[0], NumValues),
3205                           &Values[0], NumValues));
3206}
3207
3208void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3209  const Value *SrcV = I.getOperand(0);
3210  const Value *PtrV = I.getOperand(1);
3211
3212  SmallVector<EVT, 4> ValueVTs;
3213  SmallVector<uint64_t, 4> Offsets;
3214  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3215  unsigned NumValues = ValueVTs.size();
3216  if (NumValues == 0)
3217    return;
3218
3219  // Get the lowered operands. Note that we do this after
3220  // checking if NumResults is zero, because with zero results
3221  // the operands won't have values in the map.
3222  SDValue Src = getValue(SrcV);
3223  SDValue Ptr = getValue(PtrV);
3224
3225  SDValue Root = getRoot();
3226  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3227                                          NumValues));
3228  EVT PtrVT = Ptr.getValueType();
3229  bool isVolatile = I.isVolatile();
3230  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3231  unsigned Alignment = I.getAlignment();
3232  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3233
3234  unsigned ChainI = 0;
3235  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3236    // See visitLoad comments.
3237    if (ChainI == MaxParallelChains) {
3238      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3239                                  MVT::Other, &Chains[0], ChainI);
3240      Root = Chain;
3241      ChainI = 0;
3242    }
3243    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3244                              DAG.getConstant(Offsets[i], PtrVT));
3245    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3246                              SDValue(Src.getNode(), Src.getResNo() + i),
3247                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3248                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3249    Chains[ChainI] = St;
3250  }
3251
3252  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3253                                  MVT::Other, &Chains[0], ChainI);
3254  ++SDNodeOrder;
3255  AssignOrderingToNode(StoreNode.getNode());
3256  DAG.setRoot(StoreNode);
3257}
3258
3259void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3260  SDValue Root = getRoot();
3261  SDValue L =
3262    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
3263                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3264                  Root,
3265                  getValue(I.getPointerOperand()),
3266                  getValue(I.getCompareOperand()),
3267                  getValue(I.getNewValOperand()),
3268                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3269                  I.getOrdering(), I.getSynchScope());
3270  setValue(&I, L);
3271  DAG.setRoot(L.getValue(1));
3272}
3273
3274void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3275  ISD::NodeType NT;
3276  switch (I.getOperation()) {
3277  default: llvm_unreachable("Unknown atomicrmw operation"); return;
3278  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3279  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3280  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3281  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3282  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3283  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3284  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3285  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3286  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3287  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3288  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3289  }
3290  SDValue L =
3291    DAG.getAtomic(NT, getCurDebugLoc(),
3292                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3293                  getRoot(),
3294                  getValue(I.getPointerOperand()),
3295                  getValue(I.getValOperand()),
3296                  I.getPointerOperand(), 0 /* Alignment */,
3297                  I.getOrdering(), I.getSynchScope());
3298  setValue(&I, L);
3299  DAG.setRoot(L.getValue(1));
3300}
3301
3302void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3303  DebugLoc dl = getCurDebugLoc();
3304  SDValue Ops[3];
3305  Ops[0] = getRoot();
3306  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3307  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3308  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3309}
3310
3311/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3312/// node.
3313void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3314                                               unsigned Intrinsic) {
3315  bool HasChain = !I.doesNotAccessMemory();
3316  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3317
3318  // Build the operand list.
3319  SmallVector<SDValue, 8> Ops;
3320  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3321    if (OnlyLoad) {
3322      // We don't need to serialize loads against other loads.
3323      Ops.push_back(DAG.getRoot());
3324    } else {
3325      Ops.push_back(getRoot());
3326    }
3327  }
3328
3329  // Info is set by getTgtMemInstrinsic
3330  TargetLowering::IntrinsicInfo Info;
3331  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3332
3333  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3334  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3335      Info.opc == ISD::INTRINSIC_W_CHAIN)
3336    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3337
3338  // Add all operands of the call to the operand list.
3339  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3340    SDValue Op = getValue(I.getArgOperand(i));
3341    assert(TLI.isTypeLegal(Op.getValueType()) &&
3342           "Intrinsic uses a non-legal type?");
3343    Ops.push_back(Op);
3344  }
3345
3346  SmallVector<EVT, 4> ValueVTs;
3347  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3348#ifndef NDEBUG
3349  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3350    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3351           "Intrinsic uses a non-legal type?");
3352  }
3353#endif // NDEBUG
3354
3355  if (HasChain)
3356    ValueVTs.push_back(MVT::Other);
3357
3358  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3359
3360  // Create the node.
3361  SDValue Result;
3362  if (IsTgtIntrinsic) {
3363    // This is target intrinsic that touches memory
3364    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3365                                     VTs, &Ops[0], Ops.size(),
3366                                     Info.memVT,
3367                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3368                                     Info.align, Info.vol,
3369                                     Info.readMem, Info.writeMem);
3370  } else if (!HasChain) {
3371    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3372                         VTs, &Ops[0], Ops.size());
3373  } else if (!I.getType()->isVoidTy()) {
3374    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3375                         VTs, &Ops[0], Ops.size());
3376  } else {
3377    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3378                         VTs, &Ops[0], Ops.size());
3379  }
3380
3381  if (HasChain) {
3382    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3383    if (OnlyLoad)
3384      PendingLoads.push_back(Chain);
3385    else
3386      DAG.setRoot(Chain);
3387  }
3388
3389  if (!I.getType()->isVoidTy()) {
3390    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3391      EVT VT = TLI.getValueType(PTy);
3392      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3393    }
3394
3395    setValue(&I, Result);
3396  }
3397}
3398
3399/// GetSignificand - Get the significand and build it into a floating-point
3400/// number with exponent of 1:
3401///
3402///   Op = (Op & 0x007fffff) | 0x3f800000;
3403///
3404/// where Op is the hexidecimal representation of floating point value.
3405static SDValue
3406GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3407  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3408                           DAG.getConstant(0x007fffff, MVT::i32));
3409  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3410                           DAG.getConstant(0x3f800000, MVT::i32));
3411  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3412}
3413
3414/// GetExponent - Get the exponent:
3415///
3416///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3417///
3418/// where Op is the hexidecimal representation of floating point value.
3419static SDValue
3420GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3421            DebugLoc dl) {
3422  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3423                           DAG.getConstant(0x7f800000, MVT::i32));
3424  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3425                           DAG.getConstant(23, TLI.getPointerTy()));
3426  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3427                           DAG.getConstant(127, MVT::i32));
3428  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3429}
3430
3431/// getF32Constant - Get 32-bit floating point constant.
3432static SDValue
3433getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3434  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3435}
3436
3437/// Inlined utility function to implement binary input atomic intrinsics for
3438/// visitIntrinsicCall: I is a call instruction
3439///                     Op is the associated NodeType for I
3440const char *
3441SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3442                                           ISD::NodeType Op) {
3443  SDValue Root = getRoot();
3444  SDValue L =
3445    DAG.getAtomic(Op, getCurDebugLoc(),
3446                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3447                  Root,
3448                  getValue(I.getArgOperand(0)),
3449                  getValue(I.getArgOperand(1)),
3450                  I.getArgOperand(0), 0 /* Alignment */,
3451                  Monotonic, CrossThread);
3452  setValue(&I, L);
3453  DAG.setRoot(L.getValue(1));
3454  return 0;
3455}
3456
3457// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3458const char *
3459SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3460  SDValue Op1 = getValue(I.getArgOperand(0));
3461  SDValue Op2 = getValue(I.getArgOperand(1));
3462
3463  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3464  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3465  return 0;
3466}
3467
3468/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3469/// limited-precision mode.
3470void
3471SelectionDAGBuilder::visitExp(const CallInst &I) {
3472  SDValue result;
3473  DebugLoc dl = getCurDebugLoc();
3474
3475  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3476      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3477    SDValue Op = getValue(I.getArgOperand(0));
3478
3479    // Put the exponent in the right bit position for later addition to the
3480    // final result:
3481    //
3482    //   #define LOG2OFe 1.4426950f
3483    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3484    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3485                             getF32Constant(DAG, 0x3fb8aa3b));
3486    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3487
3488    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3489    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3490    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3491
3492    //   IntegerPartOfX <<= 23;
3493    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3494                                 DAG.getConstant(23, TLI.getPointerTy()));
3495
3496    if (LimitFloatPrecision <= 6) {
3497      // For floating-point precision of 6:
3498      //
3499      //   TwoToFractionalPartOfX =
3500      //     0.997535578f +
3501      //       (0.735607626f + 0.252464424f * x) * x;
3502      //
3503      // error 0.0144103317, which is 6 bits
3504      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3505                               getF32Constant(DAG, 0x3e814304));
3506      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3507                               getF32Constant(DAG, 0x3f3c50c8));
3508      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3509      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3510                               getF32Constant(DAG, 0x3f7f5e7e));
3511      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3512
3513      // Add the exponent into the result in integer domain.
3514      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3515                               TwoToFracPartOfX, IntegerPartOfX);
3516
3517      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3518    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3519      // For floating-point precision of 12:
3520      //
3521      //   TwoToFractionalPartOfX =
3522      //     0.999892986f +
3523      //       (0.696457318f +
3524      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3525      //
3526      // 0.000107046256 error, which is 13 to 14 bits
3527      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3528                               getF32Constant(DAG, 0x3da235e3));
3529      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3530                               getF32Constant(DAG, 0x3e65b8f3));
3531      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3532      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3533                               getF32Constant(DAG, 0x3f324b07));
3534      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3535      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3536                               getF32Constant(DAG, 0x3f7ff8fd));
3537      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3538
3539      // Add the exponent into the result in integer domain.
3540      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3541                               TwoToFracPartOfX, IntegerPartOfX);
3542
3543      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3544    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3545      // For floating-point precision of 18:
3546      //
3547      //   TwoToFractionalPartOfX =
3548      //     0.999999982f +
3549      //       (0.693148872f +
3550      //         (0.240227044f +
3551      //           (0.554906021e-1f +
3552      //             (0.961591928e-2f +
3553      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3554      //
3555      // error 2.47208000*10^(-7), which is better than 18 bits
3556      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3557                               getF32Constant(DAG, 0x3924b03e));
3558      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3559                               getF32Constant(DAG, 0x3ab24b87));
3560      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3561      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3562                               getF32Constant(DAG, 0x3c1d8c17));
3563      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3564      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3565                               getF32Constant(DAG, 0x3d634a1d));
3566      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3567      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3568                               getF32Constant(DAG, 0x3e75fe14));
3569      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3570      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3571                                getF32Constant(DAG, 0x3f317234));
3572      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3573      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3574                                getF32Constant(DAG, 0x3f800000));
3575      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3576                                             MVT::i32, t13);
3577
3578      // Add the exponent into the result in integer domain.
3579      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3580                                TwoToFracPartOfX, IntegerPartOfX);
3581
3582      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3583    }
3584  } else {
3585    // No special expansion.
3586    result = DAG.getNode(ISD::FEXP, dl,
3587                         getValue(I.getArgOperand(0)).getValueType(),
3588                         getValue(I.getArgOperand(0)));
3589  }
3590
3591  setValue(&I, result);
3592}
3593
3594/// visitLog - Lower a log intrinsic. Handles the special sequences for
3595/// limited-precision mode.
3596void
3597SelectionDAGBuilder::visitLog(const CallInst &I) {
3598  SDValue result;
3599  DebugLoc dl = getCurDebugLoc();
3600
3601  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3602      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3603    SDValue Op = getValue(I.getArgOperand(0));
3604    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3605
3606    // Scale the exponent by log(2) [0.69314718f].
3607    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3608    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3609                                        getF32Constant(DAG, 0x3f317218));
3610
3611    // Get the significand and build it into a floating-point number with
3612    // exponent of 1.
3613    SDValue X = GetSignificand(DAG, Op1, dl);
3614
3615    if (LimitFloatPrecision <= 6) {
3616      // For floating-point precision of 6:
3617      //
3618      //   LogofMantissa =
3619      //     -1.1609546f +
3620      //       (1.4034025f - 0.23903021f * x) * x;
3621      //
3622      // error 0.0034276066, which is better than 8 bits
3623      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3624                               getF32Constant(DAG, 0xbe74c456));
3625      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3626                               getF32Constant(DAG, 0x3fb3a2b1));
3627      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3628      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3629                                          getF32Constant(DAG, 0x3f949a29));
3630
3631      result = DAG.getNode(ISD::FADD, dl,
3632                           MVT::f32, LogOfExponent, LogOfMantissa);
3633    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3634      // For floating-point precision of 12:
3635      //
3636      //   LogOfMantissa =
3637      //     -1.7417939f +
3638      //       (2.8212026f +
3639      //         (-1.4699568f +
3640      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3641      //
3642      // error 0.000061011436, which is 14 bits
3643      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3644                               getF32Constant(DAG, 0xbd67b6d6));
3645      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3646                               getF32Constant(DAG, 0x3ee4f4b8));
3647      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3648      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3649                               getF32Constant(DAG, 0x3fbc278b));
3650      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3651      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3652                               getF32Constant(DAG, 0x40348e95));
3653      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3654      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3655                                          getF32Constant(DAG, 0x3fdef31a));
3656
3657      result = DAG.getNode(ISD::FADD, dl,
3658                           MVT::f32, LogOfExponent, LogOfMantissa);
3659    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3660      // For floating-point precision of 18:
3661      //
3662      //   LogOfMantissa =
3663      //     -2.1072184f +
3664      //       (4.2372794f +
3665      //         (-3.7029485f +
3666      //           (2.2781945f +
3667      //             (-0.87823314f +
3668      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3669      //
3670      // error 0.0000023660568, which is better than 18 bits
3671      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3672                               getF32Constant(DAG, 0xbc91e5ac));
3673      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3674                               getF32Constant(DAG, 0x3e4350aa));
3675      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3676      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3677                               getF32Constant(DAG, 0x3f60d3e3));
3678      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3679      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3680                               getF32Constant(DAG, 0x4011cdf0));
3681      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3682      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3683                               getF32Constant(DAG, 0x406cfd1c));
3684      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3685      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3686                               getF32Constant(DAG, 0x408797cb));
3687      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3688      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3689                                          getF32Constant(DAG, 0x4006dcab));
3690
3691      result = DAG.getNode(ISD::FADD, dl,
3692                           MVT::f32, LogOfExponent, LogOfMantissa);
3693    }
3694  } else {
3695    // No special expansion.
3696    result = DAG.getNode(ISD::FLOG, dl,
3697                         getValue(I.getArgOperand(0)).getValueType(),
3698                         getValue(I.getArgOperand(0)));
3699  }
3700
3701  setValue(&I, result);
3702}
3703
3704/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3705/// limited-precision mode.
3706void
3707SelectionDAGBuilder::visitLog2(const CallInst &I) {
3708  SDValue result;
3709  DebugLoc dl = getCurDebugLoc();
3710
3711  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3712      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3713    SDValue Op = getValue(I.getArgOperand(0));
3714    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3715
3716    // Get the exponent.
3717    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3718
3719    // Get the significand and build it into a floating-point number with
3720    // exponent of 1.
3721    SDValue X = GetSignificand(DAG, Op1, dl);
3722
3723    // Different possible minimax approximations of significand in
3724    // floating-point for various degrees of accuracy over [1,2].
3725    if (LimitFloatPrecision <= 6) {
3726      // For floating-point precision of 6:
3727      //
3728      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3729      //
3730      // error 0.0049451742, which is more than 7 bits
3731      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3732                               getF32Constant(DAG, 0xbeb08fe0));
3733      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3734                               getF32Constant(DAG, 0x40019463));
3735      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3736      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3737                                           getF32Constant(DAG, 0x3fd6633d));
3738
3739      result = DAG.getNode(ISD::FADD, dl,
3740                           MVT::f32, LogOfExponent, Log2ofMantissa);
3741    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3742      // For floating-point precision of 12:
3743      //
3744      //   Log2ofMantissa =
3745      //     -2.51285454f +
3746      //       (4.07009056f +
3747      //         (-2.12067489f +
3748      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3749      //
3750      // error 0.0000876136000, which is better than 13 bits
3751      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3752                               getF32Constant(DAG, 0xbda7262e));
3753      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3754                               getF32Constant(DAG, 0x3f25280b));
3755      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3756      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3757                               getF32Constant(DAG, 0x4007b923));
3758      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3759      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3760                               getF32Constant(DAG, 0x40823e2f));
3761      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3762      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3763                                           getF32Constant(DAG, 0x4020d29c));
3764
3765      result = DAG.getNode(ISD::FADD, dl,
3766                           MVT::f32, LogOfExponent, Log2ofMantissa);
3767    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3768      // For floating-point precision of 18:
3769      //
3770      //   Log2ofMantissa =
3771      //     -3.0400495f +
3772      //       (6.1129976f +
3773      //         (-5.3420409f +
3774      //           (3.2865683f +
3775      //             (-1.2669343f +
3776      //               (0.27515199f -
3777      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3778      //
3779      // error 0.0000018516, which is better than 18 bits
3780      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3781                               getF32Constant(DAG, 0xbcd2769e));
3782      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3783                               getF32Constant(DAG, 0x3e8ce0b9));
3784      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3785      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3786                               getF32Constant(DAG, 0x3fa22ae7));
3787      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3788      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3789                               getF32Constant(DAG, 0x40525723));
3790      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3791      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3792                               getF32Constant(DAG, 0x40aaf200));
3793      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3794      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3795                               getF32Constant(DAG, 0x40c39dad));
3796      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3797      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3798                                           getF32Constant(DAG, 0x4042902c));
3799
3800      result = DAG.getNode(ISD::FADD, dl,
3801                           MVT::f32, LogOfExponent, Log2ofMantissa);
3802    }
3803  } else {
3804    // No special expansion.
3805    result = DAG.getNode(ISD::FLOG2, dl,
3806                         getValue(I.getArgOperand(0)).getValueType(),
3807                         getValue(I.getArgOperand(0)));
3808  }
3809
3810  setValue(&I, result);
3811}
3812
3813/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3814/// limited-precision mode.
3815void
3816SelectionDAGBuilder::visitLog10(const CallInst &I) {
3817  SDValue result;
3818  DebugLoc dl = getCurDebugLoc();
3819
3820  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3821      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3822    SDValue Op = getValue(I.getArgOperand(0));
3823    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3824
3825    // Scale the exponent by log10(2) [0.30102999f].
3826    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3827    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3828                                        getF32Constant(DAG, 0x3e9a209a));
3829
3830    // Get the significand and build it into a floating-point number with
3831    // exponent of 1.
3832    SDValue X = GetSignificand(DAG, Op1, dl);
3833
3834    if (LimitFloatPrecision <= 6) {
3835      // For floating-point precision of 6:
3836      //
3837      //   Log10ofMantissa =
3838      //     -0.50419619f +
3839      //       (0.60948995f - 0.10380950f * x) * x;
3840      //
3841      // error 0.0014886165, which is 6 bits
3842      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3843                               getF32Constant(DAG, 0xbdd49a13));
3844      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3845                               getF32Constant(DAG, 0x3f1c0789));
3846      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3847      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3848                                            getF32Constant(DAG, 0x3f011300));
3849
3850      result = DAG.getNode(ISD::FADD, dl,
3851                           MVT::f32, LogOfExponent, Log10ofMantissa);
3852    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3853      // For floating-point precision of 12:
3854      //
3855      //   Log10ofMantissa =
3856      //     -0.64831180f +
3857      //       (0.91751397f +
3858      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3859      //
3860      // error 0.00019228036, which is better than 12 bits
3861      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3862                               getF32Constant(DAG, 0x3d431f31));
3863      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3864                               getF32Constant(DAG, 0x3ea21fb2));
3865      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3866      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3867                               getF32Constant(DAG, 0x3f6ae232));
3868      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3869      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3870                                            getF32Constant(DAG, 0x3f25f7c3));
3871
3872      result = DAG.getNode(ISD::FADD, dl,
3873                           MVT::f32, LogOfExponent, Log10ofMantissa);
3874    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3875      // For floating-point precision of 18:
3876      //
3877      //   Log10ofMantissa =
3878      //     -0.84299375f +
3879      //       (1.5327582f +
3880      //         (-1.0688956f +
3881      //           (0.49102474f +
3882      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3883      //
3884      // error 0.0000037995730, which is better than 18 bits
3885      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3886                               getF32Constant(DAG, 0x3c5d51ce));
3887      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3888                               getF32Constant(DAG, 0x3e00685a));
3889      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3890      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3891                               getF32Constant(DAG, 0x3efb6798));
3892      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3893      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3894                               getF32Constant(DAG, 0x3f88d192));
3895      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3896      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3897                               getF32Constant(DAG, 0x3fc4316c));
3898      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3899      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3900                                            getF32Constant(DAG, 0x3f57ce70));
3901
3902      result = DAG.getNode(ISD::FADD, dl,
3903                           MVT::f32, LogOfExponent, Log10ofMantissa);
3904    }
3905  } else {
3906    // No special expansion.
3907    result = DAG.getNode(ISD::FLOG10, dl,
3908                         getValue(I.getArgOperand(0)).getValueType(),
3909                         getValue(I.getArgOperand(0)));
3910  }
3911
3912  setValue(&I, result);
3913}
3914
3915/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3916/// limited-precision mode.
3917void
3918SelectionDAGBuilder::visitExp2(const CallInst &I) {
3919  SDValue result;
3920  DebugLoc dl = getCurDebugLoc();
3921
3922  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3923      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3924    SDValue Op = getValue(I.getArgOperand(0));
3925
3926    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3927
3928    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3929    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3930    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3931
3932    //   IntegerPartOfX <<= 23;
3933    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3934                                 DAG.getConstant(23, TLI.getPointerTy()));
3935
3936    if (LimitFloatPrecision <= 6) {
3937      // For floating-point precision of 6:
3938      //
3939      //   TwoToFractionalPartOfX =
3940      //     0.997535578f +
3941      //       (0.735607626f + 0.252464424f * x) * x;
3942      //
3943      // error 0.0144103317, which is 6 bits
3944      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3945                               getF32Constant(DAG, 0x3e814304));
3946      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3947                               getF32Constant(DAG, 0x3f3c50c8));
3948      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3949      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3950                               getF32Constant(DAG, 0x3f7f5e7e));
3951      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3952      SDValue TwoToFractionalPartOfX =
3953        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3954
3955      result = DAG.getNode(ISD::BITCAST, dl,
3956                           MVT::f32, TwoToFractionalPartOfX);
3957    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3958      // For floating-point precision of 12:
3959      //
3960      //   TwoToFractionalPartOfX =
3961      //     0.999892986f +
3962      //       (0.696457318f +
3963      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3964      //
3965      // error 0.000107046256, which is 13 to 14 bits
3966      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3967                               getF32Constant(DAG, 0x3da235e3));
3968      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3969                               getF32Constant(DAG, 0x3e65b8f3));
3970      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3971      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3972                               getF32Constant(DAG, 0x3f324b07));
3973      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3974      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3975                               getF32Constant(DAG, 0x3f7ff8fd));
3976      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3977      SDValue TwoToFractionalPartOfX =
3978        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3979
3980      result = DAG.getNode(ISD::BITCAST, dl,
3981                           MVT::f32, TwoToFractionalPartOfX);
3982    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3983      // For floating-point precision of 18:
3984      //
3985      //   TwoToFractionalPartOfX =
3986      //     0.999999982f +
3987      //       (0.693148872f +
3988      //         (0.240227044f +
3989      //           (0.554906021e-1f +
3990      //             (0.961591928e-2f +
3991      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3992      // error 2.47208000*10^(-7), which is better than 18 bits
3993      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3994                               getF32Constant(DAG, 0x3924b03e));
3995      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3996                               getF32Constant(DAG, 0x3ab24b87));
3997      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3998      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3999                               getF32Constant(DAG, 0x3c1d8c17));
4000      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4001      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4002                               getF32Constant(DAG, 0x3d634a1d));
4003      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4004      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4005                               getF32Constant(DAG, 0x3e75fe14));
4006      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4007      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4008                                getF32Constant(DAG, 0x3f317234));
4009      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4010      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4011                                getF32Constant(DAG, 0x3f800000));
4012      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4013      SDValue TwoToFractionalPartOfX =
4014        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4015
4016      result = DAG.getNode(ISD::BITCAST, dl,
4017                           MVT::f32, TwoToFractionalPartOfX);
4018    }
4019  } else {
4020    // No special expansion.
4021    result = DAG.getNode(ISD::FEXP2, dl,
4022                         getValue(I.getArgOperand(0)).getValueType(),
4023                         getValue(I.getArgOperand(0)));
4024  }
4025
4026  setValue(&I, result);
4027}
4028
4029/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4030/// limited-precision mode with x == 10.0f.
4031void
4032SelectionDAGBuilder::visitPow(const CallInst &I) {
4033  SDValue result;
4034  const Value *Val = I.getArgOperand(0);
4035  DebugLoc dl = getCurDebugLoc();
4036  bool IsExp10 = false;
4037
4038  if (getValue(Val).getValueType() == MVT::f32 &&
4039      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4040      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4041    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4042      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4043        APFloat Ten(10.0f);
4044        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4045      }
4046    }
4047  }
4048
4049  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4050    SDValue Op = getValue(I.getArgOperand(1));
4051
4052    // Put the exponent in the right bit position for later addition to the
4053    // final result:
4054    //
4055    //   #define LOG2OF10 3.3219281f
4056    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4057    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4058                             getF32Constant(DAG, 0x40549a78));
4059    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4060
4061    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4062    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4063    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4064
4065    //   IntegerPartOfX <<= 23;
4066    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4067                                 DAG.getConstant(23, TLI.getPointerTy()));
4068
4069    if (LimitFloatPrecision <= 6) {
4070      // For floating-point precision of 6:
4071      //
4072      //   twoToFractionalPartOfX =
4073      //     0.997535578f +
4074      //       (0.735607626f + 0.252464424f * x) * x;
4075      //
4076      // error 0.0144103317, which is 6 bits
4077      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4078                               getF32Constant(DAG, 0x3e814304));
4079      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4080                               getF32Constant(DAG, 0x3f3c50c8));
4081      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4082      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4083                               getF32Constant(DAG, 0x3f7f5e7e));
4084      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4085      SDValue TwoToFractionalPartOfX =
4086        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4087
4088      result = DAG.getNode(ISD::BITCAST, dl,
4089                           MVT::f32, TwoToFractionalPartOfX);
4090    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4091      // For floating-point precision of 12:
4092      //
4093      //   TwoToFractionalPartOfX =
4094      //     0.999892986f +
4095      //       (0.696457318f +
4096      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4097      //
4098      // error 0.000107046256, which is 13 to 14 bits
4099      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4100                               getF32Constant(DAG, 0x3da235e3));
4101      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4102                               getF32Constant(DAG, 0x3e65b8f3));
4103      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4104      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4105                               getF32Constant(DAG, 0x3f324b07));
4106      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4107      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4108                               getF32Constant(DAG, 0x3f7ff8fd));
4109      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4110      SDValue TwoToFractionalPartOfX =
4111        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4112
4113      result = DAG.getNode(ISD::BITCAST, dl,
4114                           MVT::f32, TwoToFractionalPartOfX);
4115    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4116      // For floating-point precision of 18:
4117      //
4118      //   TwoToFractionalPartOfX =
4119      //     0.999999982f +
4120      //       (0.693148872f +
4121      //         (0.240227044f +
4122      //           (0.554906021e-1f +
4123      //             (0.961591928e-2f +
4124      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4125      // error 2.47208000*10^(-7), which is better than 18 bits
4126      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4127                               getF32Constant(DAG, 0x3924b03e));
4128      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4129                               getF32Constant(DAG, 0x3ab24b87));
4130      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4131      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4132                               getF32Constant(DAG, 0x3c1d8c17));
4133      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4134      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4135                               getF32Constant(DAG, 0x3d634a1d));
4136      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4137      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4138                               getF32Constant(DAG, 0x3e75fe14));
4139      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4140      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4141                                getF32Constant(DAG, 0x3f317234));
4142      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4143      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4144                                getF32Constant(DAG, 0x3f800000));
4145      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4146      SDValue TwoToFractionalPartOfX =
4147        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4148
4149      result = DAG.getNode(ISD::BITCAST, dl,
4150                           MVT::f32, TwoToFractionalPartOfX);
4151    }
4152  } else {
4153    // No special expansion.
4154    result = DAG.getNode(ISD::FPOW, dl,
4155                         getValue(I.getArgOperand(0)).getValueType(),
4156                         getValue(I.getArgOperand(0)),
4157                         getValue(I.getArgOperand(1)));
4158  }
4159
4160  setValue(&I, result);
4161}
4162
4163
4164/// ExpandPowI - Expand a llvm.powi intrinsic.
4165static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4166                          SelectionDAG &DAG) {
4167  // If RHS is a constant, we can expand this out to a multiplication tree,
4168  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4169  // optimizing for size, we only want to do this if the expansion would produce
4170  // a small number of multiplies, otherwise we do the full expansion.
4171  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4172    // Get the exponent as a positive value.
4173    unsigned Val = RHSC->getSExtValue();
4174    if ((int)Val < 0) Val = -Val;
4175
4176    // powi(x, 0) -> 1.0
4177    if (Val == 0)
4178      return DAG.getConstantFP(1.0, LHS.getValueType());
4179
4180    const Function *F = DAG.getMachineFunction().getFunction();
4181    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4182        // If optimizing for size, don't insert too many multiplies.  This
4183        // inserts up to 5 multiplies.
4184        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4185      // We use the simple binary decomposition method to generate the multiply
4186      // sequence.  There are more optimal ways to do this (for example,
4187      // powi(x,15) generates one more multiply than it should), but this has
4188      // the benefit of being both really simple and much better than a libcall.
4189      SDValue Res;  // Logically starts equal to 1.0
4190      SDValue CurSquare = LHS;
4191      while (Val) {
4192        if (Val & 1) {
4193          if (Res.getNode())
4194            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4195          else
4196            Res = CurSquare;  // 1.0*CurSquare.
4197        }
4198
4199        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4200                                CurSquare, CurSquare);
4201        Val >>= 1;
4202      }
4203
4204      // If the original was negative, invert the result, producing 1/(x*x*x).
4205      if (RHSC->getSExtValue() < 0)
4206        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4207                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4208      return Res;
4209    }
4210  }
4211
4212  // Otherwise, expand to a libcall.
4213  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4214}
4215
4216// getTruncatedArgReg - Find underlying register used for an truncated
4217// argument.
4218static unsigned getTruncatedArgReg(const SDValue &N) {
4219  if (N.getOpcode() != ISD::TRUNCATE)
4220    return 0;
4221
4222  const SDValue &Ext = N.getOperand(0);
4223  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4224    const SDValue &CFR = Ext.getOperand(0);
4225    if (CFR.getOpcode() == ISD::CopyFromReg)
4226      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4227    else
4228      if (CFR.getOpcode() == ISD::TRUNCATE)
4229        return getTruncatedArgReg(CFR);
4230  }
4231  return 0;
4232}
4233
4234/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4235/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4236/// At the end of instruction selection, they will be inserted to the entry BB.
4237bool
4238SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4239                                              int64_t Offset,
4240                                              const SDValue &N) {
4241  const Argument *Arg = dyn_cast<Argument>(V);
4242  if (!Arg)
4243    return false;
4244
4245  MachineFunction &MF = DAG.getMachineFunction();
4246  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4247  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4248
4249  // Ignore inlined function arguments here.
4250  DIVariable DV(Variable);
4251  if (DV.isInlinedFnArgument(MF.getFunction()))
4252    return false;
4253
4254  unsigned Reg = 0;
4255  if (Arg->hasByValAttr()) {
4256    // Byval arguments' frame index is recorded during argument lowering.
4257    // Use this info directly.
4258    Reg = TRI->getFrameRegister(MF);
4259    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4260    // If byval argument ofset is not recorded then ignore this.
4261    if (!Offset)
4262      Reg = 0;
4263  }
4264
4265  if (N.getNode()) {
4266    if (N.getOpcode() == ISD::CopyFromReg)
4267      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4268    else
4269      Reg = getTruncatedArgReg(N);
4270    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4271      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4272      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4273      if (PR)
4274        Reg = PR;
4275    }
4276  }
4277
4278  if (!Reg) {
4279    // Check if ValueMap has reg number.
4280    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4281    if (VMI != FuncInfo.ValueMap.end())
4282      Reg = VMI->second;
4283  }
4284
4285  if (!Reg && N.getNode()) {
4286    // Check if frame index is available.
4287    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4288      if (FrameIndexSDNode *FINode =
4289          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4290        Reg = TRI->getFrameRegister(MF);
4291        Offset = FINode->getIndex();
4292      }
4293  }
4294
4295  if (!Reg)
4296    return false;
4297
4298  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4299                                    TII->get(TargetOpcode::DBG_VALUE))
4300    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4301  FuncInfo.ArgDbgValues.push_back(&*MIB);
4302  return true;
4303}
4304
4305// VisualStudio defines setjmp as _setjmp
4306#if defined(_MSC_VER) && defined(setjmp) && \
4307                         !defined(setjmp_undefined_for_msvc)
4308#  pragma push_macro("setjmp")
4309#  undef setjmp
4310#  define setjmp_undefined_for_msvc
4311#endif
4312
4313/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4314/// we want to emit this as a call to a named external function, return the name
4315/// otherwise lower it and return null.
4316const char *
4317SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4318  DebugLoc dl = getCurDebugLoc();
4319  SDValue Res;
4320
4321  switch (Intrinsic) {
4322  default:
4323    // By default, turn this into a target intrinsic node.
4324    visitTargetIntrinsic(I, Intrinsic);
4325    return 0;
4326  case Intrinsic::vastart:  visitVAStart(I); return 0;
4327  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4328  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4329  case Intrinsic::returnaddress:
4330    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4331                             getValue(I.getArgOperand(0))));
4332    return 0;
4333  case Intrinsic::frameaddress:
4334    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4335                             getValue(I.getArgOperand(0))));
4336    return 0;
4337  case Intrinsic::setjmp:
4338    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4339  case Intrinsic::longjmp:
4340    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4341  case Intrinsic::memcpy: {
4342    // Assert for address < 256 since we support only user defined address
4343    // spaces.
4344    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4345           < 256 &&
4346           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4347           < 256 &&
4348           "Unknown address space");
4349    SDValue Op1 = getValue(I.getArgOperand(0));
4350    SDValue Op2 = getValue(I.getArgOperand(1));
4351    SDValue Op3 = getValue(I.getArgOperand(2));
4352    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4353    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4354    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4355                              MachinePointerInfo(I.getArgOperand(0)),
4356                              MachinePointerInfo(I.getArgOperand(1))));
4357    return 0;
4358  }
4359  case Intrinsic::memset: {
4360    // Assert for address < 256 since we support only user defined address
4361    // spaces.
4362    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4363           < 256 &&
4364           "Unknown address space");
4365    SDValue Op1 = getValue(I.getArgOperand(0));
4366    SDValue Op2 = getValue(I.getArgOperand(1));
4367    SDValue Op3 = getValue(I.getArgOperand(2));
4368    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4369    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4370    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4371                              MachinePointerInfo(I.getArgOperand(0))));
4372    return 0;
4373  }
4374  case Intrinsic::memmove: {
4375    // Assert for address < 256 since we support only user defined address
4376    // spaces.
4377    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4378           < 256 &&
4379           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4380           < 256 &&
4381           "Unknown address space");
4382    SDValue Op1 = getValue(I.getArgOperand(0));
4383    SDValue Op2 = getValue(I.getArgOperand(1));
4384    SDValue Op3 = getValue(I.getArgOperand(2));
4385    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4386    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4387    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4388                               MachinePointerInfo(I.getArgOperand(0)),
4389                               MachinePointerInfo(I.getArgOperand(1))));
4390    return 0;
4391  }
4392  case Intrinsic::dbg_declare: {
4393    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4394    MDNode *Variable = DI.getVariable();
4395    const Value *Address = DI.getAddress();
4396    if (!Address || !DIVariable(DI.getVariable()).Verify())
4397      return 0;
4398
4399    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4400    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4401    // absolute, but not relative, values are different depending on whether
4402    // debug info exists.
4403    ++SDNodeOrder;
4404
4405    // Check if address has undef value.
4406    if (isa<UndefValue>(Address) ||
4407        (Address->use_empty() && !isa<Argument>(Address))) {
4408      DEBUG(dbgs() << "Dropping debug info for " << DI);
4409      return 0;
4410    }
4411
4412    SDValue &N = NodeMap[Address];
4413    if (!N.getNode() && isa<Argument>(Address))
4414      // Check unused arguments map.
4415      N = UnusedArgNodeMap[Address];
4416    SDDbgValue *SDV;
4417    if (N.getNode()) {
4418      // Parameters are handled specially.
4419      bool isParameter =
4420        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4421      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4422        Address = BCI->getOperand(0);
4423      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4424
4425      if (isParameter && !AI) {
4426        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4427        if (FINode)
4428          // Byval parameter.  We have a frame index at this point.
4429          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4430                                0, dl, SDNodeOrder);
4431        else {
4432          // Address is an argument, so try to emit its dbg value using
4433          // virtual register info from the FuncInfo.ValueMap.
4434          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4435          return 0;
4436        }
4437      } else if (AI)
4438        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4439                              0, dl, SDNodeOrder);
4440      else {
4441        // Can't do anything with other non-AI cases yet.
4442        DEBUG(dbgs() << "Dropping debug info for " << DI);
4443        return 0;
4444      }
4445      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4446    } else {
4447      // If Address is an argument then try to emit its dbg value using
4448      // virtual register info from the FuncInfo.ValueMap.
4449      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4450        // If variable is pinned by a alloca in dominating bb then
4451        // use StaticAllocaMap.
4452        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4453          if (AI->getParent() != DI.getParent()) {
4454            DenseMap<const AllocaInst*, int>::iterator SI =
4455              FuncInfo.StaticAllocaMap.find(AI);
4456            if (SI != FuncInfo.StaticAllocaMap.end()) {
4457              SDV = DAG.getDbgValue(Variable, SI->second,
4458                                    0, dl, SDNodeOrder);
4459              DAG.AddDbgValue(SDV, 0, false);
4460              return 0;
4461            }
4462          }
4463        }
4464        DEBUG(dbgs() << "Dropping debug info for " << DI);
4465      }
4466    }
4467    return 0;
4468  }
4469  case Intrinsic::dbg_value: {
4470    const DbgValueInst &DI = cast<DbgValueInst>(I);
4471    if (!DIVariable(DI.getVariable()).Verify())
4472      return 0;
4473
4474    MDNode *Variable = DI.getVariable();
4475    uint64_t Offset = DI.getOffset();
4476    const Value *V = DI.getValue();
4477    if (!V)
4478      return 0;
4479
4480    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4481    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4482    // absolute, but not relative, values are different depending on whether
4483    // debug info exists.
4484    ++SDNodeOrder;
4485    SDDbgValue *SDV;
4486    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4487      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4488      DAG.AddDbgValue(SDV, 0, false);
4489    } else {
4490      // Do not use getValue() in here; we don't want to generate code at
4491      // this point if it hasn't been done yet.
4492      SDValue N = NodeMap[V];
4493      if (!N.getNode() && isa<Argument>(V))
4494        // Check unused arguments map.
4495        N = UnusedArgNodeMap[V];
4496      if (N.getNode()) {
4497        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4498          SDV = DAG.getDbgValue(Variable, N.getNode(),
4499                                N.getResNo(), Offset, dl, SDNodeOrder);
4500          DAG.AddDbgValue(SDV, N.getNode(), false);
4501        }
4502      } else if (!V->use_empty() ) {
4503        // Do not call getValue(V) yet, as we don't want to generate code.
4504        // Remember it for later.
4505        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4506        DanglingDebugInfoMap[V] = DDI;
4507      } else {
4508        // We may expand this to cover more cases.  One case where we have no
4509        // data available is an unreferenced parameter.
4510        DEBUG(dbgs() << "Dropping debug info for " << DI);
4511      }
4512    }
4513
4514    // Build a debug info table entry.
4515    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4516      V = BCI->getOperand(0);
4517    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4518    // Don't handle byval struct arguments or VLAs, for example.
4519    if (!AI)
4520      return 0;
4521    DenseMap<const AllocaInst*, int>::iterator SI =
4522      FuncInfo.StaticAllocaMap.find(AI);
4523    if (SI == FuncInfo.StaticAllocaMap.end())
4524      return 0; // VLAs.
4525    int FI = SI->second;
4526
4527    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4528    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4529      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4530    return 0;
4531  }
4532  case Intrinsic::eh_exception: {
4533    // Insert the EXCEPTIONADDR instruction.
4534    assert(FuncInfo.MBB->isLandingPad() &&
4535           "Call to eh.exception not in landing pad!");
4536    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4537    SDValue Ops[1];
4538    Ops[0] = DAG.getRoot();
4539    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4540    setValue(&I, Op);
4541    DAG.setRoot(Op.getValue(1));
4542    return 0;
4543  }
4544
4545  case Intrinsic::eh_selector: {
4546    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4547    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4548    if (CallMBB->isLandingPad())
4549      AddCatchInfo(I, &MMI, CallMBB);
4550    else {
4551#ifndef NDEBUG
4552      FuncInfo.CatchInfoLost.insert(&I);
4553#endif
4554      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4555      unsigned Reg = TLI.getExceptionSelectorRegister();
4556      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4557    }
4558
4559    // Insert the EHSELECTION instruction.
4560    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4561    SDValue Ops[2];
4562    Ops[0] = getValue(I.getArgOperand(0));
4563    Ops[1] = getRoot();
4564    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4565    DAG.setRoot(Op.getValue(1));
4566    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4567    return 0;
4568  }
4569
4570  case Intrinsic::eh_typeid_for: {
4571    // Find the type id for the given typeinfo.
4572    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4573    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4574    Res = DAG.getConstant(TypeID, MVT::i32);
4575    setValue(&I, Res);
4576    return 0;
4577  }
4578
4579  case Intrinsic::eh_return_i32:
4580  case Intrinsic::eh_return_i64:
4581    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4582    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4583                            MVT::Other,
4584                            getControlRoot(),
4585                            getValue(I.getArgOperand(0)),
4586                            getValue(I.getArgOperand(1))));
4587    return 0;
4588  case Intrinsic::eh_unwind_init:
4589    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4590    return 0;
4591  case Intrinsic::eh_dwarf_cfa: {
4592    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4593                                        TLI.getPointerTy());
4594    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4595                                 TLI.getPointerTy(),
4596                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4597                                             TLI.getPointerTy()),
4598                                 CfaArg);
4599    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4600                             TLI.getPointerTy(),
4601                             DAG.getConstant(0, TLI.getPointerTy()));
4602    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4603                             FA, Offset));
4604    return 0;
4605  }
4606  case Intrinsic::eh_sjlj_callsite: {
4607    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4608    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4609    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4610    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4611
4612    MMI.setCurrentCallSite(CI->getZExtValue());
4613    return 0;
4614  }
4615  case Intrinsic::eh_sjlj_setjmp: {
4616    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4617                             getValue(I.getArgOperand(0))));
4618    return 0;
4619  }
4620  case Intrinsic::eh_sjlj_longjmp: {
4621    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4622                            getRoot(), getValue(I.getArgOperand(0))));
4623    return 0;
4624  }
4625  case Intrinsic::eh_sjlj_dispatch_setup: {
4626    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4627                            getRoot(), getValue(I.getArgOperand(0))));
4628    return 0;
4629  }
4630
4631  case Intrinsic::x86_mmx_pslli_w:
4632  case Intrinsic::x86_mmx_pslli_d:
4633  case Intrinsic::x86_mmx_pslli_q:
4634  case Intrinsic::x86_mmx_psrli_w:
4635  case Intrinsic::x86_mmx_psrli_d:
4636  case Intrinsic::x86_mmx_psrli_q:
4637  case Intrinsic::x86_mmx_psrai_w:
4638  case Intrinsic::x86_mmx_psrai_d: {
4639    SDValue ShAmt = getValue(I.getArgOperand(1));
4640    if (isa<ConstantSDNode>(ShAmt)) {
4641      visitTargetIntrinsic(I, Intrinsic);
4642      return 0;
4643    }
4644    unsigned NewIntrinsic = 0;
4645    EVT ShAmtVT = MVT::v2i32;
4646    switch (Intrinsic) {
4647    case Intrinsic::x86_mmx_pslli_w:
4648      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4649      break;
4650    case Intrinsic::x86_mmx_pslli_d:
4651      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4652      break;
4653    case Intrinsic::x86_mmx_pslli_q:
4654      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4655      break;
4656    case Intrinsic::x86_mmx_psrli_w:
4657      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4658      break;
4659    case Intrinsic::x86_mmx_psrli_d:
4660      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4661      break;
4662    case Intrinsic::x86_mmx_psrli_q:
4663      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4664      break;
4665    case Intrinsic::x86_mmx_psrai_w:
4666      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4667      break;
4668    case Intrinsic::x86_mmx_psrai_d:
4669      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4670      break;
4671    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4672    }
4673
4674    // The vector shift intrinsics with scalars uses 32b shift amounts but
4675    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4676    // to be zero.
4677    // We must do this early because v2i32 is not a legal type.
4678    DebugLoc dl = getCurDebugLoc();
4679    SDValue ShOps[2];
4680    ShOps[0] = ShAmt;
4681    ShOps[1] = DAG.getConstant(0, MVT::i32);
4682    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4683    EVT DestVT = TLI.getValueType(I.getType());
4684    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4685    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4686                       DAG.getConstant(NewIntrinsic, MVT::i32),
4687                       getValue(I.getArgOperand(0)), ShAmt);
4688    setValue(&I, Res);
4689    return 0;
4690  }
4691  case Intrinsic::convertff:
4692  case Intrinsic::convertfsi:
4693  case Intrinsic::convertfui:
4694  case Intrinsic::convertsif:
4695  case Intrinsic::convertuif:
4696  case Intrinsic::convertss:
4697  case Intrinsic::convertsu:
4698  case Intrinsic::convertus:
4699  case Intrinsic::convertuu: {
4700    ISD::CvtCode Code = ISD::CVT_INVALID;
4701    switch (Intrinsic) {
4702    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4703    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4704    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4705    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4706    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4707    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4708    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4709    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4710    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4711    }
4712    EVT DestVT = TLI.getValueType(I.getType());
4713    const Value *Op1 = I.getArgOperand(0);
4714    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4715                               DAG.getValueType(DestVT),
4716                               DAG.getValueType(getValue(Op1).getValueType()),
4717                               getValue(I.getArgOperand(1)),
4718                               getValue(I.getArgOperand(2)),
4719                               Code);
4720    setValue(&I, Res);
4721    return 0;
4722  }
4723  case Intrinsic::sqrt:
4724    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4725                             getValue(I.getArgOperand(0)).getValueType(),
4726                             getValue(I.getArgOperand(0))));
4727    return 0;
4728  case Intrinsic::powi:
4729    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4730                            getValue(I.getArgOperand(1)), DAG));
4731    return 0;
4732  case Intrinsic::sin:
4733    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4734                             getValue(I.getArgOperand(0)).getValueType(),
4735                             getValue(I.getArgOperand(0))));
4736    return 0;
4737  case Intrinsic::cos:
4738    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4739                             getValue(I.getArgOperand(0)).getValueType(),
4740                             getValue(I.getArgOperand(0))));
4741    return 0;
4742  case Intrinsic::log:
4743    visitLog(I);
4744    return 0;
4745  case Intrinsic::log2:
4746    visitLog2(I);
4747    return 0;
4748  case Intrinsic::log10:
4749    visitLog10(I);
4750    return 0;
4751  case Intrinsic::exp:
4752    visitExp(I);
4753    return 0;
4754  case Intrinsic::exp2:
4755    visitExp2(I);
4756    return 0;
4757  case Intrinsic::pow:
4758    visitPow(I);
4759    return 0;
4760  case Intrinsic::fma:
4761    setValue(&I, DAG.getNode(ISD::FMA, dl,
4762                             getValue(I.getArgOperand(0)).getValueType(),
4763                             getValue(I.getArgOperand(0)),
4764                             getValue(I.getArgOperand(1)),
4765                             getValue(I.getArgOperand(2))));
4766    return 0;
4767  case Intrinsic::convert_to_fp16:
4768    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4769                             MVT::i16, getValue(I.getArgOperand(0))));
4770    return 0;
4771  case Intrinsic::convert_from_fp16:
4772    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4773                             MVT::f32, getValue(I.getArgOperand(0))));
4774    return 0;
4775  case Intrinsic::pcmarker: {
4776    SDValue Tmp = getValue(I.getArgOperand(0));
4777    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4778    return 0;
4779  }
4780  case Intrinsic::readcyclecounter: {
4781    SDValue Op = getRoot();
4782    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4783                      DAG.getVTList(MVT::i64, MVT::Other),
4784                      &Op, 1);
4785    setValue(&I, Res);
4786    DAG.setRoot(Res.getValue(1));
4787    return 0;
4788  }
4789  case Intrinsic::bswap:
4790    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4791                             getValue(I.getArgOperand(0)).getValueType(),
4792                             getValue(I.getArgOperand(0))));
4793    return 0;
4794  case Intrinsic::cttz: {
4795    SDValue Arg = getValue(I.getArgOperand(0));
4796    EVT Ty = Arg.getValueType();
4797    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4798    return 0;
4799  }
4800  case Intrinsic::ctlz: {
4801    SDValue Arg = getValue(I.getArgOperand(0));
4802    EVT Ty = Arg.getValueType();
4803    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4804    return 0;
4805  }
4806  case Intrinsic::ctpop: {
4807    SDValue Arg = getValue(I.getArgOperand(0));
4808    EVT Ty = Arg.getValueType();
4809    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4810    return 0;
4811  }
4812  case Intrinsic::stacksave: {
4813    SDValue Op = getRoot();
4814    Res = DAG.getNode(ISD::STACKSAVE, dl,
4815                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4816    setValue(&I, Res);
4817    DAG.setRoot(Res.getValue(1));
4818    return 0;
4819  }
4820  case Intrinsic::stackrestore: {
4821    Res = getValue(I.getArgOperand(0));
4822    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4823    return 0;
4824  }
4825  case Intrinsic::stackprotector: {
4826    // Emit code into the DAG to store the stack guard onto the stack.
4827    MachineFunction &MF = DAG.getMachineFunction();
4828    MachineFrameInfo *MFI = MF.getFrameInfo();
4829    EVT PtrTy = TLI.getPointerTy();
4830
4831    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4832    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4833
4834    int FI = FuncInfo.StaticAllocaMap[Slot];
4835    MFI->setStackProtectorIndex(FI);
4836
4837    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4838
4839    // Store the stack protector onto the stack.
4840    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4841                       MachinePointerInfo::getFixedStack(FI),
4842                       true, false, 0);
4843    setValue(&I, Res);
4844    DAG.setRoot(Res);
4845    return 0;
4846  }
4847  case Intrinsic::objectsize: {
4848    // If we don't know by now, we're never going to know.
4849    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4850
4851    assert(CI && "Non-constant type in __builtin_object_size?");
4852
4853    SDValue Arg = getValue(I.getCalledValue());
4854    EVT Ty = Arg.getValueType();
4855
4856    if (CI->isZero())
4857      Res = DAG.getConstant(-1ULL, Ty);
4858    else
4859      Res = DAG.getConstant(0, Ty);
4860
4861    setValue(&I, Res);
4862    return 0;
4863  }
4864  case Intrinsic::var_annotation:
4865    // Discard annotate attributes
4866    return 0;
4867
4868  case Intrinsic::init_trampoline: {
4869    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4870
4871    SDValue Ops[6];
4872    Ops[0] = getRoot();
4873    Ops[1] = getValue(I.getArgOperand(0));
4874    Ops[2] = getValue(I.getArgOperand(1));
4875    Ops[3] = getValue(I.getArgOperand(2));
4876    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4877    Ops[5] = DAG.getSrcValue(F);
4878
4879    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4880                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4881                      Ops, 6);
4882
4883    setValue(&I, Res);
4884    DAG.setRoot(Res.getValue(1));
4885    return 0;
4886  }
4887  case Intrinsic::gcroot:
4888    if (GFI) {
4889      const Value *Alloca = I.getArgOperand(0);
4890      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4891
4892      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4893      GFI->addStackRoot(FI->getIndex(), TypeMap);
4894    }
4895    return 0;
4896  case Intrinsic::gcread:
4897  case Intrinsic::gcwrite:
4898    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4899    return 0;
4900  case Intrinsic::flt_rounds:
4901    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4902    return 0;
4903
4904  case Intrinsic::expect: {
4905    // Just replace __builtin_expect(exp, c) with EXP.
4906    setValue(&I, getValue(I.getArgOperand(0)));
4907    return 0;
4908  }
4909
4910  case Intrinsic::trap: {
4911    StringRef TrapFuncName = getTrapFunctionName();
4912    if (TrapFuncName.empty()) {
4913      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4914      return 0;
4915    }
4916    TargetLowering::ArgListTy Args;
4917    std::pair<SDValue, SDValue> Result =
4918      TLI.LowerCallTo(getRoot(), I.getType(),
4919                 false, false, false, false, 0, CallingConv::C,
4920                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4921                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4922                 Args, DAG, getCurDebugLoc());
4923    DAG.setRoot(Result.second);
4924    return 0;
4925  }
4926  case Intrinsic::uadd_with_overflow:
4927    return implVisitAluOverflow(I, ISD::UADDO);
4928  case Intrinsic::sadd_with_overflow:
4929    return implVisitAluOverflow(I, ISD::SADDO);
4930  case Intrinsic::usub_with_overflow:
4931    return implVisitAluOverflow(I, ISD::USUBO);
4932  case Intrinsic::ssub_with_overflow:
4933    return implVisitAluOverflow(I, ISD::SSUBO);
4934  case Intrinsic::umul_with_overflow:
4935    return implVisitAluOverflow(I, ISD::UMULO);
4936  case Intrinsic::smul_with_overflow:
4937    return implVisitAluOverflow(I, ISD::SMULO);
4938
4939  case Intrinsic::prefetch: {
4940    SDValue Ops[5];
4941    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4942    Ops[0] = getRoot();
4943    Ops[1] = getValue(I.getArgOperand(0));
4944    Ops[2] = getValue(I.getArgOperand(1));
4945    Ops[3] = getValue(I.getArgOperand(2));
4946    Ops[4] = getValue(I.getArgOperand(3));
4947    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4948                                        DAG.getVTList(MVT::Other),
4949                                        &Ops[0], 5,
4950                                        EVT::getIntegerVT(*Context, 8),
4951                                        MachinePointerInfo(I.getArgOperand(0)),
4952                                        0, /* align */
4953                                        false, /* volatile */
4954                                        rw==0, /* read */
4955                                        rw==1)); /* write */
4956    return 0;
4957  }
4958  case Intrinsic::memory_barrier: {
4959    SDValue Ops[6];
4960    Ops[0] = getRoot();
4961    for (int x = 1; x < 6; ++x)
4962      Ops[x] = getValue(I.getArgOperand(x - 1));
4963
4964    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4965    return 0;
4966  }
4967  case Intrinsic::atomic_cmp_swap: {
4968    SDValue Root = getRoot();
4969    SDValue L =
4970      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4971                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4972                    Root,
4973                    getValue(I.getArgOperand(0)),
4974                    getValue(I.getArgOperand(1)),
4975                    getValue(I.getArgOperand(2)),
4976                    MachinePointerInfo(I.getArgOperand(0)), 0 /* Alignment */,
4977                    Monotonic, CrossThread);
4978    setValue(&I, L);
4979    DAG.setRoot(L.getValue(1));
4980    return 0;
4981  }
4982  case Intrinsic::atomic_load_add:
4983    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4984  case Intrinsic::atomic_load_sub:
4985    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4986  case Intrinsic::atomic_load_or:
4987    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4988  case Intrinsic::atomic_load_xor:
4989    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4990  case Intrinsic::atomic_load_and:
4991    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4992  case Intrinsic::atomic_load_nand:
4993    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4994  case Intrinsic::atomic_load_max:
4995    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4996  case Intrinsic::atomic_load_min:
4997    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4998  case Intrinsic::atomic_load_umin:
4999    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
5000  case Intrinsic::atomic_load_umax:
5001    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
5002  case Intrinsic::atomic_swap:
5003    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
5004
5005  case Intrinsic::invariant_start:
5006  case Intrinsic::lifetime_start:
5007    // Discard region information.
5008    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5009    return 0;
5010  case Intrinsic::invariant_end:
5011  case Intrinsic::lifetime_end:
5012    // Discard region information.
5013    return 0;
5014  }
5015}
5016
5017void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5018                                      bool isTailCall,
5019                                      MachineBasicBlock *LandingPad) {
5020  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5021  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5022  Type *RetTy = FTy->getReturnType();
5023  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5024  MCSymbol *BeginLabel = 0;
5025
5026  TargetLowering::ArgListTy Args;
5027  TargetLowering::ArgListEntry Entry;
5028  Args.reserve(CS.arg_size());
5029
5030  // Check whether the function can return without sret-demotion.
5031  SmallVector<ISD::OutputArg, 4> Outs;
5032  SmallVector<uint64_t, 4> Offsets;
5033  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5034                Outs, TLI, &Offsets);
5035
5036  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5037					   DAG.getMachineFunction(),
5038					   FTy->isVarArg(), Outs,
5039					   FTy->getContext());
5040
5041  SDValue DemoteStackSlot;
5042  int DemoteStackIdx = -100;
5043
5044  if (!CanLowerReturn) {
5045    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5046                      FTy->getReturnType());
5047    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5048                      FTy->getReturnType());
5049    MachineFunction &MF = DAG.getMachineFunction();
5050    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5051    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5052
5053    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5054    Entry.Node = DemoteStackSlot;
5055    Entry.Ty = StackSlotPtrType;
5056    Entry.isSExt = false;
5057    Entry.isZExt = false;
5058    Entry.isInReg = false;
5059    Entry.isSRet = true;
5060    Entry.isNest = false;
5061    Entry.isByVal = false;
5062    Entry.Alignment = Align;
5063    Args.push_back(Entry);
5064    RetTy = Type::getVoidTy(FTy->getContext());
5065  }
5066
5067  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5068       i != e; ++i) {
5069    const Value *V = *i;
5070
5071    // Skip empty types
5072    if (V->getType()->isEmptyTy())
5073      continue;
5074
5075    SDValue ArgNode = getValue(V);
5076    Entry.Node = ArgNode; Entry.Ty = V->getType();
5077
5078    unsigned attrInd = i - CS.arg_begin() + 1;
5079    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5080    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5081    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5082    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5083    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5084    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5085    Entry.Alignment = CS.getParamAlignment(attrInd);
5086    Args.push_back(Entry);
5087  }
5088
5089  if (LandingPad) {
5090    // Insert a label before the invoke call to mark the try range.  This can be
5091    // used to detect deletion of the invoke via the MachineModuleInfo.
5092    BeginLabel = MMI.getContext().CreateTempSymbol();
5093
5094    // For SjLj, keep track of which landing pads go with which invokes
5095    // so as to maintain the ordering of pads in the LSDA.
5096    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5097    if (CallSiteIndex) {
5098      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5099      // Now that the call site is handled, stop tracking it.
5100      MMI.setCurrentCallSite(0);
5101    }
5102
5103    // Both PendingLoads and PendingExports must be flushed here;
5104    // this call might not return.
5105    (void)getRoot();
5106    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5107  }
5108
5109  // Check if target-independent constraints permit a tail call here.
5110  // Target-dependent constraints are checked within TLI.LowerCallTo.
5111  if (isTailCall &&
5112      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5113    isTailCall = false;
5114
5115  // If there's a possibility that fast-isel has already selected some amount
5116  // of the current basic block, don't emit a tail call.
5117  if (isTailCall && EnableFastISel)
5118    isTailCall = false;
5119
5120  std::pair<SDValue,SDValue> Result =
5121    TLI.LowerCallTo(getRoot(), RetTy,
5122                    CS.paramHasAttr(0, Attribute::SExt),
5123                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5124                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5125                    CS.getCallingConv(),
5126                    isTailCall,
5127                    !CS.getInstruction()->use_empty(),
5128                    Callee, Args, DAG, getCurDebugLoc());
5129  assert((isTailCall || Result.second.getNode()) &&
5130         "Non-null chain expected with non-tail call!");
5131  assert((Result.second.getNode() || !Result.first.getNode()) &&
5132         "Null value expected with tail call!");
5133  if (Result.first.getNode()) {
5134    setValue(CS.getInstruction(), Result.first);
5135  } else if (!CanLowerReturn && Result.second.getNode()) {
5136    // The instruction result is the result of loading from the
5137    // hidden sret parameter.
5138    SmallVector<EVT, 1> PVTs;
5139    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5140
5141    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5142    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5143    EVT PtrVT = PVTs[0];
5144    unsigned NumValues = Outs.size();
5145    SmallVector<SDValue, 4> Values(NumValues);
5146    SmallVector<SDValue, 4> Chains(NumValues);
5147
5148    for (unsigned i = 0; i < NumValues; ++i) {
5149      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5150                                DemoteStackSlot,
5151                                DAG.getConstant(Offsets[i], PtrVT));
5152      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5153                              Add,
5154                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5155                              false, false, 1);
5156      Values[i] = L;
5157      Chains[i] = L.getValue(1);
5158    }
5159
5160    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5161                                MVT::Other, &Chains[0], NumValues);
5162    PendingLoads.push_back(Chain);
5163
5164    // Collect the legal value parts into potentially illegal values
5165    // that correspond to the original function's return values.
5166    SmallVector<EVT, 4> RetTys;
5167    RetTy = FTy->getReturnType();
5168    ComputeValueVTs(TLI, RetTy, RetTys);
5169    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5170    SmallVector<SDValue, 4> ReturnValues;
5171    unsigned CurReg = 0;
5172    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5173      EVT VT = RetTys[I];
5174      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5175      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5176
5177      SDValue ReturnValue =
5178        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5179                         RegisterVT, VT, AssertOp);
5180      ReturnValues.push_back(ReturnValue);
5181      CurReg += NumRegs;
5182    }
5183
5184    setValue(CS.getInstruction(),
5185             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5186                         DAG.getVTList(&RetTys[0], RetTys.size()),
5187                         &ReturnValues[0], ReturnValues.size()));
5188  }
5189
5190  // Assign order to nodes here. If the call does not produce a result, it won't
5191  // be mapped to a SDNode and visit() will not assign it an order number.
5192  if (!Result.second.getNode()) {
5193    // As a special case, a null chain means that a tail call has been emitted and
5194    // the DAG root is already updated.
5195    HasTailCall = true;
5196    ++SDNodeOrder;
5197    AssignOrderingToNode(DAG.getRoot().getNode());
5198  } else {
5199    DAG.setRoot(Result.second);
5200    ++SDNodeOrder;
5201    AssignOrderingToNode(Result.second.getNode());
5202  }
5203
5204  if (LandingPad) {
5205    // Insert a label at the end of the invoke call to mark the try range.  This
5206    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5207    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5208    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5209
5210    // Inform MachineModuleInfo of range.
5211    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5212  }
5213}
5214
5215/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5216/// value is equal or not-equal to zero.
5217static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5218  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5219       UI != E; ++UI) {
5220    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5221      if (IC->isEquality())
5222        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5223          if (C->isNullValue())
5224            continue;
5225    // Unknown instruction.
5226    return false;
5227  }
5228  return true;
5229}
5230
5231static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5232                             Type *LoadTy,
5233                             SelectionDAGBuilder &Builder) {
5234
5235  // Check to see if this load can be trivially constant folded, e.g. if the
5236  // input is from a string literal.
5237  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5238    // Cast pointer to the type we really want to load.
5239    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5240                                         PointerType::getUnqual(LoadTy));
5241
5242    if (const Constant *LoadCst =
5243          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5244                                       Builder.TD))
5245      return Builder.getValue(LoadCst);
5246  }
5247
5248  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5249  // still constant memory, the input chain can be the entry node.
5250  SDValue Root;
5251  bool ConstantMemory = false;
5252
5253  // Do not serialize (non-volatile) loads of constant memory with anything.
5254  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5255    Root = Builder.DAG.getEntryNode();
5256    ConstantMemory = true;
5257  } else {
5258    // Do not serialize non-volatile loads against each other.
5259    Root = Builder.DAG.getRoot();
5260  }
5261
5262  SDValue Ptr = Builder.getValue(PtrVal);
5263  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5264                                        Ptr, MachinePointerInfo(PtrVal),
5265                                        false /*volatile*/,
5266                                        false /*nontemporal*/, 1 /* align=1 */);
5267
5268  if (!ConstantMemory)
5269    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5270  return LoadVal;
5271}
5272
5273
5274/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5275/// If so, return true and lower it, otherwise return false and it will be
5276/// lowered like a normal call.
5277bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5278  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5279  if (I.getNumArgOperands() != 3)
5280    return false;
5281
5282  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5283  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5284      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5285      !I.getType()->isIntegerTy())
5286    return false;
5287
5288  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5289
5290  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5291  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5292  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5293    bool ActuallyDoIt = true;
5294    MVT LoadVT;
5295    Type *LoadTy;
5296    switch (Size->getZExtValue()) {
5297    default:
5298      LoadVT = MVT::Other;
5299      LoadTy = 0;
5300      ActuallyDoIt = false;
5301      break;
5302    case 2:
5303      LoadVT = MVT::i16;
5304      LoadTy = Type::getInt16Ty(Size->getContext());
5305      break;
5306    case 4:
5307      LoadVT = MVT::i32;
5308      LoadTy = Type::getInt32Ty(Size->getContext());
5309      break;
5310    case 8:
5311      LoadVT = MVT::i64;
5312      LoadTy = Type::getInt64Ty(Size->getContext());
5313      break;
5314        /*
5315    case 16:
5316      LoadVT = MVT::v4i32;
5317      LoadTy = Type::getInt32Ty(Size->getContext());
5318      LoadTy = VectorType::get(LoadTy, 4);
5319      break;
5320         */
5321    }
5322
5323    // This turns into unaligned loads.  We only do this if the target natively
5324    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5325    // we'll only produce a small number of byte loads.
5326
5327    // Require that we can find a legal MVT, and only do this if the target
5328    // supports unaligned loads of that type.  Expanding into byte loads would
5329    // bloat the code.
5330    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5331      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5332      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5333      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5334        ActuallyDoIt = false;
5335    }
5336
5337    if (ActuallyDoIt) {
5338      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5339      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5340
5341      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5342                                 ISD::SETNE);
5343      EVT CallVT = TLI.getValueType(I.getType(), true);
5344      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5345      return true;
5346    }
5347  }
5348
5349
5350  return false;
5351}
5352
5353
5354void SelectionDAGBuilder::visitCall(const CallInst &I) {
5355  // Handle inline assembly differently.
5356  if (isa<InlineAsm>(I.getCalledValue())) {
5357    visitInlineAsm(&I);
5358    return;
5359  }
5360
5361  // See if any floating point values are being passed to this function. This is
5362  // used to emit an undefined reference to fltused on Windows.
5363  FunctionType *FT =
5364    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5365  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5366  if (FT->isVarArg() &&
5367      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5368    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5369      Type* T = I.getArgOperand(i)->getType();
5370      for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5371           i != e; ++i) {
5372        if (!i->isFloatingPointTy()) continue;
5373        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5374        break;
5375      }
5376    }
5377  }
5378
5379  const char *RenameFn = 0;
5380  if (Function *F = I.getCalledFunction()) {
5381    if (F->isDeclaration()) {
5382      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5383        if (unsigned IID = II->getIntrinsicID(F)) {
5384          RenameFn = visitIntrinsicCall(I, IID);
5385          if (!RenameFn)
5386            return;
5387        }
5388      }
5389      if (unsigned IID = F->getIntrinsicID()) {
5390        RenameFn = visitIntrinsicCall(I, IID);
5391        if (!RenameFn)
5392          return;
5393      }
5394    }
5395
5396    // Check for well-known libc/libm calls.  If the function is internal, it
5397    // can't be a library call.
5398    if (!F->hasLocalLinkage() && F->hasName()) {
5399      StringRef Name = F->getName();
5400      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5401        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5402            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5403            I.getType() == I.getArgOperand(0)->getType() &&
5404            I.getType() == I.getArgOperand(1)->getType()) {
5405          SDValue LHS = getValue(I.getArgOperand(0));
5406          SDValue RHS = getValue(I.getArgOperand(1));
5407          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5408                                   LHS.getValueType(), LHS, RHS));
5409          return;
5410        }
5411      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5412        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5413            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5414            I.getType() == I.getArgOperand(0)->getType()) {
5415          SDValue Tmp = getValue(I.getArgOperand(0));
5416          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5417                                   Tmp.getValueType(), Tmp));
5418          return;
5419        }
5420      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5421        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5422            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5423            I.getType() == I.getArgOperand(0)->getType() &&
5424            I.onlyReadsMemory()) {
5425          SDValue Tmp = getValue(I.getArgOperand(0));
5426          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5427                                   Tmp.getValueType(), Tmp));
5428          return;
5429        }
5430      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5431        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5432            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5433            I.getType() == I.getArgOperand(0)->getType() &&
5434            I.onlyReadsMemory()) {
5435          SDValue Tmp = getValue(I.getArgOperand(0));
5436          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5437                                   Tmp.getValueType(), Tmp));
5438          return;
5439        }
5440      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5441        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5442            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5443            I.getType() == I.getArgOperand(0)->getType() &&
5444            I.onlyReadsMemory()) {
5445          SDValue Tmp = getValue(I.getArgOperand(0));
5446          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5447                                   Tmp.getValueType(), Tmp));
5448          return;
5449        }
5450      } else if (Name == "memcmp") {
5451        if (visitMemCmpCall(I))
5452          return;
5453      }
5454    }
5455  }
5456
5457  SDValue Callee;
5458  if (!RenameFn)
5459    Callee = getValue(I.getCalledValue());
5460  else
5461    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5462
5463  // Check if we can potentially perform a tail call. More detailed checking is
5464  // be done within LowerCallTo, after more information about the call is known.
5465  LowerCallTo(&I, Callee, I.isTailCall());
5466}
5467
5468namespace {
5469
5470/// AsmOperandInfo - This contains information for each constraint that we are
5471/// lowering.
5472class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5473public:
5474  /// CallOperand - If this is the result output operand or a clobber
5475  /// this is null, otherwise it is the incoming operand to the CallInst.
5476  /// This gets modified as the asm is processed.
5477  SDValue CallOperand;
5478
5479  /// AssignedRegs - If this is a register or register class operand, this
5480  /// contains the set of register corresponding to the operand.
5481  RegsForValue AssignedRegs;
5482
5483  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5484    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5485  }
5486
5487  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5488  /// busy in OutputRegs/InputRegs.
5489  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5490                         std::set<unsigned> &OutputRegs,
5491                         std::set<unsigned> &InputRegs,
5492                         const TargetRegisterInfo &TRI) const {
5493    if (isOutReg) {
5494      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5495        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5496    }
5497    if (isInReg) {
5498      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5499        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5500    }
5501  }
5502
5503  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5504  /// corresponds to.  If there is no Value* for this operand, it returns
5505  /// MVT::Other.
5506  EVT getCallOperandValEVT(LLVMContext &Context,
5507                           const TargetLowering &TLI,
5508                           const TargetData *TD) const {
5509    if (CallOperandVal == 0) return MVT::Other;
5510
5511    if (isa<BasicBlock>(CallOperandVal))
5512      return TLI.getPointerTy();
5513
5514    llvm::Type *OpTy = CallOperandVal->getType();
5515
5516    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5517    // If this is an indirect operand, the operand is a pointer to the
5518    // accessed type.
5519    if (isIndirect) {
5520      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5521      if (!PtrTy)
5522        report_fatal_error("Indirect operand for inline asm not a pointer!");
5523      OpTy = PtrTy->getElementType();
5524    }
5525
5526    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5527    if (StructType *STy = dyn_cast<StructType>(OpTy))
5528      if (STy->getNumElements() == 1)
5529        OpTy = STy->getElementType(0);
5530
5531    // If OpTy is not a single value, it may be a struct/union that we
5532    // can tile with integers.
5533    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5534      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5535      switch (BitSize) {
5536      default: break;
5537      case 1:
5538      case 8:
5539      case 16:
5540      case 32:
5541      case 64:
5542      case 128:
5543        OpTy = IntegerType::get(Context, BitSize);
5544        break;
5545      }
5546    }
5547
5548    return TLI.getValueType(OpTy, true);
5549  }
5550
5551private:
5552  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5553  /// specified set.
5554  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5555                                const TargetRegisterInfo &TRI) {
5556    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5557    Regs.insert(Reg);
5558    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5559      for (; *Aliases; ++Aliases)
5560        Regs.insert(*Aliases);
5561  }
5562};
5563
5564typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5565
5566} // end anonymous namespace
5567
5568/// GetRegistersForValue - Assign registers (virtual or physical) for the
5569/// specified operand.  We prefer to assign virtual registers, to allow the
5570/// register allocator to handle the assignment process.  However, if the asm
5571/// uses features that we can't model on machineinstrs, we have SDISel do the
5572/// allocation.  This produces generally horrible, but correct, code.
5573///
5574///   OpInfo describes the operand.
5575///   Input and OutputRegs are the set of already allocated physical registers.
5576///
5577static void GetRegistersForValue(SelectionDAG &DAG,
5578                                 const TargetLowering &TLI,
5579                                 DebugLoc DL,
5580                                 SDISelAsmOperandInfo &OpInfo,
5581                                 std::set<unsigned> &OutputRegs,
5582                                 std::set<unsigned> &InputRegs) {
5583  LLVMContext &Context = *DAG.getContext();
5584
5585  // Compute whether this value requires an input register, an output register,
5586  // or both.
5587  bool isOutReg = false;
5588  bool isInReg = false;
5589  switch (OpInfo.Type) {
5590  case InlineAsm::isOutput:
5591    isOutReg = true;
5592
5593    // If there is an input constraint that matches this, we need to reserve
5594    // the input register so no other inputs allocate to it.
5595    isInReg = OpInfo.hasMatchingInput();
5596    break;
5597  case InlineAsm::isInput:
5598    isInReg = true;
5599    isOutReg = false;
5600    break;
5601  case InlineAsm::isClobber:
5602    isOutReg = true;
5603    isInReg = true;
5604    break;
5605  }
5606
5607
5608  MachineFunction &MF = DAG.getMachineFunction();
5609  SmallVector<unsigned, 4> Regs;
5610
5611  // If this is a constraint for a single physreg, or a constraint for a
5612  // register class, find it.
5613  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5614    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5615                                     OpInfo.ConstraintVT);
5616
5617  unsigned NumRegs = 1;
5618  if (OpInfo.ConstraintVT != MVT::Other) {
5619    // If this is a FP input in an integer register (or visa versa) insert a bit
5620    // cast of the input value.  More generally, handle any case where the input
5621    // value disagrees with the register class we plan to stick this in.
5622    if (OpInfo.Type == InlineAsm::isInput &&
5623        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5624      // Try to convert to the first EVT that the reg class contains.  If the
5625      // types are identical size, use a bitcast to convert (e.g. two differing
5626      // vector types).
5627      EVT RegVT = *PhysReg.second->vt_begin();
5628      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5629        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5630                                         RegVT, OpInfo.CallOperand);
5631        OpInfo.ConstraintVT = RegVT;
5632      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5633        // If the input is a FP value and we want it in FP registers, do a
5634        // bitcast to the corresponding integer type.  This turns an f64 value
5635        // into i64, which can be passed with two i32 values on a 32-bit
5636        // machine.
5637        RegVT = EVT::getIntegerVT(Context,
5638                                  OpInfo.ConstraintVT.getSizeInBits());
5639        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5640                                         RegVT, OpInfo.CallOperand);
5641        OpInfo.ConstraintVT = RegVT;
5642      }
5643    }
5644
5645    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5646  }
5647
5648  EVT RegVT;
5649  EVT ValueVT = OpInfo.ConstraintVT;
5650
5651  // If this is a constraint for a specific physical register, like {r17},
5652  // assign it now.
5653  if (unsigned AssignedReg = PhysReg.first) {
5654    const TargetRegisterClass *RC = PhysReg.second;
5655    if (OpInfo.ConstraintVT == MVT::Other)
5656      ValueVT = *RC->vt_begin();
5657
5658    // Get the actual register value type.  This is important, because the user
5659    // may have asked for (e.g.) the AX register in i32 type.  We need to
5660    // remember that AX is actually i16 to get the right extension.
5661    RegVT = *RC->vt_begin();
5662
5663    // This is a explicit reference to a physical register.
5664    Regs.push_back(AssignedReg);
5665
5666    // If this is an expanded reference, add the rest of the regs to Regs.
5667    if (NumRegs != 1) {
5668      TargetRegisterClass::iterator I = RC->begin();
5669      for (; *I != AssignedReg; ++I)
5670        assert(I != RC->end() && "Didn't find reg!");
5671
5672      // Already added the first reg.
5673      --NumRegs; ++I;
5674      for (; NumRegs; --NumRegs, ++I) {
5675        assert(I != RC->end() && "Ran out of registers to allocate!");
5676        Regs.push_back(*I);
5677      }
5678    }
5679
5680    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5681    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5682    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5683    return;
5684  }
5685
5686  // Otherwise, if this was a reference to an LLVM register class, create vregs
5687  // for this reference.
5688  if (const TargetRegisterClass *RC = PhysReg.second) {
5689    RegVT = *RC->vt_begin();
5690    if (OpInfo.ConstraintVT == MVT::Other)
5691      ValueVT = RegVT;
5692
5693    // Create the appropriate number of virtual registers.
5694    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5695    for (; NumRegs; --NumRegs)
5696      Regs.push_back(RegInfo.createVirtualRegister(RC));
5697
5698    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5699    return;
5700  }
5701
5702  // Otherwise, we couldn't allocate enough registers for this.
5703}
5704
5705/// visitInlineAsm - Handle a call to an InlineAsm object.
5706///
5707void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5708  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5709
5710  /// ConstraintOperands - Information about all of the constraints.
5711  SDISelAsmOperandInfoVector ConstraintOperands;
5712
5713  std::set<unsigned> OutputRegs, InputRegs;
5714
5715  TargetLowering::AsmOperandInfoVector
5716    TargetConstraints = TLI.ParseConstraints(CS);
5717
5718  bool hasMemory = false;
5719
5720  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5721  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5722  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5723    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5724    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5725
5726    EVT OpVT = MVT::Other;
5727
5728    // Compute the value type for each operand.
5729    switch (OpInfo.Type) {
5730    case InlineAsm::isOutput:
5731      // Indirect outputs just consume an argument.
5732      if (OpInfo.isIndirect) {
5733        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5734        break;
5735      }
5736
5737      // The return value of the call is this value.  As such, there is no
5738      // corresponding argument.
5739      assert(!CS.getType()->isVoidTy() &&
5740             "Bad inline asm!");
5741      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5742        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5743      } else {
5744        assert(ResNo == 0 && "Asm only has one result!");
5745        OpVT = TLI.getValueType(CS.getType());
5746      }
5747      ++ResNo;
5748      break;
5749    case InlineAsm::isInput:
5750      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5751      break;
5752    case InlineAsm::isClobber:
5753      // Nothing to do.
5754      break;
5755    }
5756
5757    // If this is an input or an indirect output, process the call argument.
5758    // BasicBlocks are labels, currently appearing only in asm's.
5759    if (OpInfo.CallOperandVal) {
5760      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5761        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5762      } else {
5763        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5764      }
5765
5766      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5767    }
5768
5769    OpInfo.ConstraintVT = OpVT;
5770
5771    // Indirect operand accesses access memory.
5772    if (OpInfo.isIndirect)
5773      hasMemory = true;
5774    else {
5775      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5776        TargetLowering::ConstraintType
5777          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5778        if (CType == TargetLowering::C_Memory) {
5779          hasMemory = true;
5780          break;
5781        }
5782      }
5783    }
5784  }
5785
5786  SDValue Chain, Flag;
5787
5788  // We won't need to flush pending loads if this asm doesn't touch
5789  // memory and is nonvolatile.
5790  if (hasMemory || IA->hasSideEffects())
5791    Chain = getRoot();
5792  else
5793    Chain = DAG.getRoot();
5794
5795  // Second pass over the constraints: compute which constraint option to use
5796  // and assign registers to constraints that want a specific physreg.
5797  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5798    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5799
5800    // If this is an output operand with a matching input operand, look up the
5801    // matching input. If their types mismatch, e.g. one is an integer, the
5802    // other is floating point, or their sizes are different, flag it as an
5803    // error.
5804    if (OpInfo.hasMatchingInput()) {
5805      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5806
5807      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5808	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5809	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
5810	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5811	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
5812        if ((OpInfo.ConstraintVT.isInteger() !=
5813             Input.ConstraintVT.isInteger()) ||
5814            (MatchRC.second != InputRC.second)) {
5815          report_fatal_error("Unsupported asm: input constraint"
5816                             " with a matching output constraint of"
5817                             " incompatible type!");
5818        }
5819        Input.ConstraintVT = OpInfo.ConstraintVT;
5820      }
5821    }
5822
5823    // Compute the constraint code and ConstraintType to use.
5824    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5825
5826    // If this is a memory input, and if the operand is not indirect, do what we
5827    // need to to provide an address for the memory input.
5828    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5829        !OpInfo.isIndirect) {
5830      assert((OpInfo.isMultipleAlternative ||
5831              (OpInfo.Type == InlineAsm::isInput)) &&
5832             "Can only indirectify direct input operands!");
5833
5834      // Memory operands really want the address of the value.  If we don't have
5835      // an indirect input, put it in the constpool if we can, otherwise spill
5836      // it to a stack slot.
5837      // TODO: This isn't quite right. We need to handle these according to
5838      // the addressing mode that the constraint wants. Also, this may take
5839      // an additional register for the computation and we don't want that
5840      // either.
5841
5842      // If the operand is a float, integer, or vector constant, spill to a
5843      // constant pool entry to get its address.
5844      const Value *OpVal = OpInfo.CallOperandVal;
5845      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5846          isa<ConstantVector>(OpVal)) {
5847        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5848                                                 TLI.getPointerTy());
5849      } else {
5850        // Otherwise, create a stack slot and emit a store to it before the
5851        // asm.
5852        Type *Ty = OpVal->getType();
5853        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5854        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5855        MachineFunction &MF = DAG.getMachineFunction();
5856        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5857        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5858        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5859                             OpInfo.CallOperand, StackSlot,
5860                             MachinePointerInfo::getFixedStack(SSFI),
5861                             false, false, 0);
5862        OpInfo.CallOperand = StackSlot;
5863      }
5864
5865      // There is no longer a Value* corresponding to this operand.
5866      OpInfo.CallOperandVal = 0;
5867
5868      // It is now an indirect operand.
5869      OpInfo.isIndirect = true;
5870    }
5871
5872    // If this constraint is for a specific register, allocate it before
5873    // anything else.
5874    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5875      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5876                           InputRegs);
5877  }
5878
5879  // Second pass - Loop over all of the operands, assigning virtual or physregs
5880  // to register class operands.
5881  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5882    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5883
5884    // C_Register operands have already been allocated, Other/Memory don't need
5885    // to be.
5886    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5887      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5888                           InputRegs);
5889  }
5890
5891  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5892  std::vector<SDValue> AsmNodeOperands;
5893  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5894  AsmNodeOperands.push_back(
5895          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5896                                      TLI.getPointerTy()));
5897
5898  // If we have a !srcloc metadata node associated with it, we want to attach
5899  // this to the ultimately generated inline asm machineinstr.  To do this, we
5900  // pass in the third operand as this (potentially null) inline asm MDNode.
5901  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5902  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5903
5904  // Remember the HasSideEffect and AlignStack bits as operand 3.
5905  unsigned ExtraInfo = 0;
5906  if (IA->hasSideEffects())
5907    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5908  if (IA->isAlignStack())
5909    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5910  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5911                                                  TLI.getPointerTy()));
5912
5913  // Loop over all of the inputs, copying the operand values into the
5914  // appropriate registers and processing the output regs.
5915  RegsForValue RetValRegs;
5916
5917  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5918  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5919
5920  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5921    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5922
5923    switch (OpInfo.Type) {
5924    case InlineAsm::isOutput: {
5925      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5926          OpInfo.ConstraintType != TargetLowering::C_Register) {
5927        // Memory output, or 'other' output (e.g. 'X' constraint).
5928        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5929
5930        // Add information to the INLINEASM node to know about this output.
5931        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5932        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5933                                                        TLI.getPointerTy()));
5934        AsmNodeOperands.push_back(OpInfo.CallOperand);
5935        break;
5936      }
5937
5938      // Otherwise, this is a register or register class output.
5939
5940      // Copy the output from the appropriate register.  Find a register that
5941      // we can use.
5942      if (OpInfo.AssignedRegs.Regs.empty())
5943        report_fatal_error("Couldn't allocate output reg for constraint '" +
5944                           Twine(OpInfo.ConstraintCode) + "'!");
5945
5946      // If this is an indirect operand, store through the pointer after the
5947      // asm.
5948      if (OpInfo.isIndirect) {
5949        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5950                                                      OpInfo.CallOperandVal));
5951      } else {
5952        // This is the result value of the call.
5953        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5954        // Concatenate this output onto the outputs list.
5955        RetValRegs.append(OpInfo.AssignedRegs);
5956      }
5957
5958      // Add information to the INLINEASM node to know that this register is
5959      // set.
5960      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5961                                           InlineAsm::Kind_RegDefEarlyClobber :
5962                                               InlineAsm::Kind_RegDef,
5963                                               false,
5964                                               0,
5965                                               DAG,
5966                                               AsmNodeOperands);
5967      break;
5968    }
5969    case InlineAsm::isInput: {
5970      SDValue InOperandVal = OpInfo.CallOperand;
5971
5972      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5973        // If this is required to match an output register we have already set,
5974        // just use its register.
5975        unsigned OperandNo = OpInfo.getMatchedOperand();
5976
5977        // Scan until we find the definition we already emitted of this operand.
5978        // When we find it, create a RegsForValue operand.
5979        unsigned CurOp = InlineAsm::Op_FirstOperand;
5980        for (; OperandNo; --OperandNo) {
5981          // Advance to the next operand.
5982          unsigned OpFlag =
5983            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5984          assert((InlineAsm::isRegDefKind(OpFlag) ||
5985                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5986                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5987          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5988        }
5989
5990        unsigned OpFlag =
5991          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5992        if (InlineAsm::isRegDefKind(OpFlag) ||
5993            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5994          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5995          if (OpInfo.isIndirect) {
5996            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5997            LLVMContext &Ctx = *DAG.getContext();
5998            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5999                          " don't know how to handle tied "
6000                          "indirect register inputs");
6001          }
6002
6003          RegsForValue MatchedRegs;
6004          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6005          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6006          MatchedRegs.RegVTs.push_back(RegVT);
6007          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6008          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6009               i != e; ++i)
6010            MatchedRegs.Regs.push_back
6011              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6012
6013          // Use the produced MatchedRegs object to
6014          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6015                                    Chain, &Flag);
6016          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6017                                           true, OpInfo.getMatchedOperand(),
6018                                           DAG, AsmNodeOperands);
6019          break;
6020        }
6021
6022        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6023        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6024               "Unexpected number of operands");
6025        // Add information to the INLINEASM node to know about this input.
6026        // See InlineAsm.h isUseOperandTiedToDef.
6027        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6028                                                    OpInfo.getMatchedOperand());
6029        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6030                                                        TLI.getPointerTy()));
6031        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6032        break;
6033      }
6034
6035      // Treat indirect 'X' constraint as memory.
6036      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6037          OpInfo.isIndirect)
6038        OpInfo.ConstraintType = TargetLowering::C_Memory;
6039
6040      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6041        std::vector<SDValue> Ops;
6042        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6043                                         Ops, DAG);
6044        if (Ops.empty())
6045          report_fatal_error("Invalid operand for inline asm constraint '" +
6046                             Twine(OpInfo.ConstraintCode) + "'!");
6047
6048        // Add information to the INLINEASM node to know about this input.
6049        unsigned ResOpType =
6050          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6051        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6052                                                        TLI.getPointerTy()));
6053        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6054        break;
6055      }
6056
6057      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6058        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6059        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6060               "Memory operands expect pointer values");
6061
6062        // Add information to the INLINEASM node to know about this input.
6063        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6064        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6065                                                        TLI.getPointerTy()));
6066        AsmNodeOperands.push_back(InOperandVal);
6067        break;
6068      }
6069
6070      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6071              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6072             "Unknown constraint type!");
6073      assert(!OpInfo.isIndirect &&
6074             "Don't know how to handle indirect register inputs yet!");
6075
6076      // Copy the input into the appropriate registers.
6077      if (OpInfo.AssignedRegs.Regs.empty())
6078        report_fatal_error("Couldn't allocate input reg for constraint '" +
6079                           Twine(OpInfo.ConstraintCode) + "'!");
6080
6081      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6082                                        Chain, &Flag);
6083
6084      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6085                                               DAG, AsmNodeOperands);
6086      break;
6087    }
6088    case InlineAsm::isClobber: {
6089      // Add the clobbered value to the operand list, so that the register
6090      // allocator is aware that the physreg got clobbered.
6091      if (!OpInfo.AssignedRegs.Regs.empty())
6092        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6093                                                 false, 0, DAG,
6094                                                 AsmNodeOperands);
6095      break;
6096    }
6097    }
6098  }
6099
6100  // Finish up input operands.  Set the input chain and add the flag last.
6101  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6102  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6103
6104  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6105                      DAG.getVTList(MVT::Other, MVT::Glue),
6106                      &AsmNodeOperands[0], AsmNodeOperands.size());
6107  Flag = Chain.getValue(1);
6108
6109  // If this asm returns a register value, copy the result from that register
6110  // and set it as the value of the call.
6111  if (!RetValRegs.Regs.empty()) {
6112    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6113                                             Chain, &Flag);
6114
6115    // FIXME: Why don't we do this for inline asms with MRVs?
6116    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6117      EVT ResultType = TLI.getValueType(CS.getType());
6118
6119      // If any of the results of the inline asm is a vector, it may have the
6120      // wrong width/num elts.  This can happen for register classes that can
6121      // contain multiple different value types.  The preg or vreg allocated may
6122      // not have the same VT as was expected.  Convert it to the right type
6123      // with bit_convert.
6124      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6125        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6126                          ResultType, Val);
6127
6128      } else if (ResultType != Val.getValueType() &&
6129                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6130        // If a result value was tied to an input value, the computed result may
6131        // have a wider width than the expected result.  Extract the relevant
6132        // portion.
6133        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6134      }
6135
6136      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6137    }
6138
6139    setValue(CS.getInstruction(), Val);
6140    // Don't need to use this as a chain in this case.
6141    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6142      return;
6143  }
6144
6145  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6146
6147  // Process indirect outputs, first output all of the flagged copies out of
6148  // physregs.
6149  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6150    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6151    const Value *Ptr = IndirectStoresToEmit[i].second;
6152    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6153                                             Chain, &Flag);
6154    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6155  }
6156
6157  // Emit the non-flagged stores from the physregs.
6158  SmallVector<SDValue, 8> OutChains;
6159  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6160    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6161                               StoresToEmit[i].first,
6162                               getValue(StoresToEmit[i].second),
6163                               MachinePointerInfo(StoresToEmit[i].second),
6164                               false, false, 0);
6165    OutChains.push_back(Val);
6166  }
6167
6168  if (!OutChains.empty())
6169    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6170                        &OutChains[0], OutChains.size());
6171
6172  DAG.setRoot(Chain);
6173}
6174
6175void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6176  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6177                          MVT::Other, getRoot(),
6178                          getValue(I.getArgOperand(0)),
6179                          DAG.getSrcValue(I.getArgOperand(0))));
6180}
6181
6182void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6183  const TargetData &TD = *TLI.getTargetData();
6184  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6185                           getRoot(), getValue(I.getOperand(0)),
6186                           DAG.getSrcValue(I.getOperand(0)),
6187                           TD.getABITypeAlignment(I.getType()));
6188  setValue(&I, V);
6189  DAG.setRoot(V.getValue(1));
6190}
6191
6192void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6193  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6194                          MVT::Other, getRoot(),
6195                          getValue(I.getArgOperand(0)),
6196                          DAG.getSrcValue(I.getArgOperand(0))));
6197}
6198
6199void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6200  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6201                          MVT::Other, getRoot(),
6202                          getValue(I.getArgOperand(0)),
6203                          getValue(I.getArgOperand(1)),
6204                          DAG.getSrcValue(I.getArgOperand(0)),
6205                          DAG.getSrcValue(I.getArgOperand(1))));
6206}
6207
6208/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6209/// implementation, which just calls LowerCall.
6210/// FIXME: When all targets are
6211/// migrated to using LowerCall, this hook should be integrated into SDISel.
6212std::pair<SDValue, SDValue>
6213TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6214                            bool RetSExt, bool RetZExt, bool isVarArg,
6215                            bool isInreg, unsigned NumFixedArgs,
6216                            CallingConv::ID CallConv, bool isTailCall,
6217                            bool isReturnValueUsed,
6218                            SDValue Callee,
6219                            ArgListTy &Args, SelectionDAG &DAG,
6220                            DebugLoc dl) const {
6221  // Handle all of the outgoing arguments.
6222  SmallVector<ISD::OutputArg, 32> Outs;
6223  SmallVector<SDValue, 32> OutVals;
6224  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6225    SmallVector<EVT, 4> ValueVTs;
6226    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6227    for (unsigned Value = 0, NumValues = ValueVTs.size();
6228         Value != NumValues; ++Value) {
6229      EVT VT = ValueVTs[Value];
6230      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6231      SDValue Op = SDValue(Args[i].Node.getNode(),
6232                           Args[i].Node.getResNo() + Value);
6233      ISD::ArgFlagsTy Flags;
6234      unsigned OriginalAlignment =
6235        getTargetData()->getABITypeAlignment(ArgTy);
6236
6237      if (Args[i].isZExt)
6238        Flags.setZExt();
6239      if (Args[i].isSExt)
6240        Flags.setSExt();
6241      if (Args[i].isInReg)
6242        Flags.setInReg();
6243      if (Args[i].isSRet)
6244        Flags.setSRet();
6245      if (Args[i].isByVal) {
6246        Flags.setByVal();
6247        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6248        Type *ElementTy = Ty->getElementType();
6249        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6250        // For ByVal, alignment should come from FE.  BE will guess if this
6251        // info is not there but there are cases it cannot get right.
6252        unsigned FrameAlign;
6253        if (Args[i].Alignment)
6254          FrameAlign = Args[i].Alignment;
6255        else
6256          FrameAlign = getByValTypeAlignment(ElementTy);
6257        Flags.setByValAlign(FrameAlign);
6258      }
6259      if (Args[i].isNest)
6260        Flags.setNest();
6261      Flags.setOrigAlign(OriginalAlignment);
6262
6263      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6264      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6265      SmallVector<SDValue, 4> Parts(NumParts);
6266      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6267
6268      if (Args[i].isSExt)
6269        ExtendKind = ISD::SIGN_EXTEND;
6270      else if (Args[i].isZExt)
6271        ExtendKind = ISD::ZERO_EXTEND;
6272
6273      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6274                     PartVT, ExtendKind);
6275
6276      for (unsigned j = 0; j != NumParts; ++j) {
6277        // if it isn't first piece, alignment must be 1
6278        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6279                               i < NumFixedArgs);
6280        if (NumParts > 1 && j == 0)
6281          MyFlags.Flags.setSplit();
6282        else if (j != 0)
6283          MyFlags.Flags.setOrigAlign(1);
6284
6285        Outs.push_back(MyFlags);
6286        OutVals.push_back(Parts[j]);
6287      }
6288    }
6289  }
6290
6291  // Handle the incoming return values from the call.
6292  SmallVector<ISD::InputArg, 32> Ins;
6293  SmallVector<EVT, 4> RetTys;
6294  ComputeValueVTs(*this, RetTy, RetTys);
6295  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6296    EVT VT = RetTys[I];
6297    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6298    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6299    for (unsigned i = 0; i != NumRegs; ++i) {
6300      ISD::InputArg MyFlags;
6301      MyFlags.VT = RegisterVT.getSimpleVT();
6302      MyFlags.Used = isReturnValueUsed;
6303      if (RetSExt)
6304        MyFlags.Flags.setSExt();
6305      if (RetZExt)
6306        MyFlags.Flags.setZExt();
6307      if (isInreg)
6308        MyFlags.Flags.setInReg();
6309      Ins.push_back(MyFlags);
6310    }
6311  }
6312
6313  SmallVector<SDValue, 4> InVals;
6314  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6315                    Outs, OutVals, Ins, dl, DAG, InVals);
6316
6317  // Verify that the target's LowerCall behaved as expected.
6318  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6319         "LowerCall didn't return a valid chain!");
6320  assert((!isTailCall || InVals.empty()) &&
6321         "LowerCall emitted a return value for a tail call!");
6322  assert((isTailCall || InVals.size() == Ins.size()) &&
6323         "LowerCall didn't emit the correct number of values!");
6324
6325  // For a tail call, the return value is merely live-out and there aren't
6326  // any nodes in the DAG representing it. Return a special value to
6327  // indicate that a tail call has been emitted and no more Instructions
6328  // should be processed in the current block.
6329  if (isTailCall) {
6330    DAG.setRoot(Chain);
6331    return std::make_pair(SDValue(), SDValue());
6332  }
6333
6334  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6335          assert(InVals[i].getNode() &&
6336                 "LowerCall emitted a null value!");
6337          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6338                 "LowerCall emitted a value with the wrong type!");
6339        });
6340
6341  // Collect the legal value parts into potentially illegal values
6342  // that correspond to the original function's return values.
6343  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6344  if (RetSExt)
6345    AssertOp = ISD::AssertSext;
6346  else if (RetZExt)
6347    AssertOp = ISD::AssertZext;
6348  SmallVector<SDValue, 4> ReturnValues;
6349  unsigned CurReg = 0;
6350  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6351    EVT VT = RetTys[I];
6352    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6353    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6354
6355    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6356                                            NumRegs, RegisterVT, VT,
6357                                            AssertOp));
6358    CurReg += NumRegs;
6359  }
6360
6361  // For a function returning void, there is no return value. We can't create
6362  // such a node, so we just return a null return value in that case. In
6363  // that case, nothing will actually look at the value.
6364  if (ReturnValues.empty())
6365    return std::make_pair(SDValue(), Chain);
6366
6367  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6368                            DAG.getVTList(&RetTys[0], RetTys.size()),
6369                            &ReturnValues[0], ReturnValues.size());
6370  return std::make_pair(Res, Chain);
6371}
6372
6373void TargetLowering::LowerOperationWrapper(SDNode *N,
6374                                           SmallVectorImpl<SDValue> &Results,
6375                                           SelectionDAG &DAG) const {
6376  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6377  if (Res.getNode())
6378    Results.push_back(Res);
6379}
6380
6381SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6382  llvm_unreachable("LowerOperation not implemented for this target!");
6383  return SDValue();
6384}
6385
6386void
6387SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6388  SDValue Op = getNonRegisterValue(V);
6389  assert((Op.getOpcode() != ISD::CopyFromReg ||
6390          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6391         "Copy from a reg to the same reg!");
6392  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6393
6394  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6395  SDValue Chain = DAG.getEntryNode();
6396  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6397  PendingExports.push_back(Chain);
6398}
6399
6400#include "llvm/CodeGen/SelectionDAGISel.h"
6401
6402/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6403/// entry block, return true.  This includes arguments used by switches, since
6404/// the switch may expand into multiple basic blocks.
6405static bool isOnlyUsedInEntryBlock(const Argument *A) {
6406  // With FastISel active, we may be splitting blocks, so force creation
6407  // of virtual registers for all non-dead arguments.
6408  if (EnableFastISel)
6409    return A->use_empty();
6410
6411  const BasicBlock *Entry = A->getParent()->begin();
6412  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6413       UI != E; ++UI) {
6414    const User *U = *UI;
6415    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6416      return false;  // Use not in entry block.
6417  }
6418  return true;
6419}
6420
6421void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6422  // If this is the entry block, emit arguments.
6423  const Function &F = *LLVMBB->getParent();
6424  SelectionDAG &DAG = SDB->DAG;
6425  DebugLoc dl = SDB->getCurDebugLoc();
6426  const TargetData *TD = TLI.getTargetData();
6427  SmallVector<ISD::InputArg, 16> Ins;
6428
6429  // Check whether the function can return without sret-demotion.
6430  SmallVector<ISD::OutputArg, 4> Outs;
6431  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6432                Outs, TLI);
6433
6434  if (!FuncInfo->CanLowerReturn) {
6435    // Put in an sret pointer parameter before all the other parameters.
6436    SmallVector<EVT, 1> ValueVTs;
6437    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6438
6439    // NOTE: Assuming that a pointer will never break down to more than one VT
6440    // or one register.
6441    ISD::ArgFlagsTy Flags;
6442    Flags.setSRet();
6443    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6444    ISD::InputArg RetArg(Flags, RegisterVT, true);
6445    Ins.push_back(RetArg);
6446  }
6447
6448  // Set up the incoming argument description vector.
6449  unsigned Idx = 1;
6450  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6451       I != E; ++I, ++Idx) {
6452    SmallVector<EVT, 4> ValueVTs;
6453    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6454    bool isArgValueUsed = !I->use_empty();
6455    for (unsigned Value = 0, NumValues = ValueVTs.size();
6456         Value != NumValues; ++Value) {
6457      EVT VT = ValueVTs[Value];
6458      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6459      ISD::ArgFlagsTy Flags;
6460      unsigned OriginalAlignment =
6461        TD->getABITypeAlignment(ArgTy);
6462
6463      if (F.paramHasAttr(Idx, Attribute::ZExt))
6464        Flags.setZExt();
6465      if (F.paramHasAttr(Idx, Attribute::SExt))
6466        Flags.setSExt();
6467      if (F.paramHasAttr(Idx, Attribute::InReg))
6468        Flags.setInReg();
6469      if (F.paramHasAttr(Idx, Attribute::StructRet))
6470        Flags.setSRet();
6471      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6472        Flags.setByVal();
6473        PointerType *Ty = cast<PointerType>(I->getType());
6474        Type *ElementTy = Ty->getElementType();
6475        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6476        // For ByVal, alignment should be passed from FE.  BE will guess if
6477        // this info is not there but there are cases it cannot get right.
6478        unsigned FrameAlign;
6479        if (F.getParamAlignment(Idx))
6480          FrameAlign = F.getParamAlignment(Idx);
6481        else
6482          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6483        Flags.setByValAlign(FrameAlign);
6484      }
6485      if (F.paramHasAttr(Idx, Attribute::Nest))
6486        Flags.setNest();
6487      Flags.setOrigAlign(OriginalAlignment);
6488
6489      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6490      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6491      for (unsigned i = 0; i != NumRegs; ++i) {
6492        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6493        if (NumRegs > 1 && i == 0)
6494          MyFlags.Flags.setSplit();
6495        // if it isn't first piece, alignment must be 1
6496        else if (i > 0)
6497          MyFlags.Flags.setOrigAlign(1);
6498        Ins.push_back(MyFlags);
6499      }
6500    }
6501  }
6502
6503  // Call the target to set up the argument values.
6504  SmallVector<SDValue, 8> InVals;
6505  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6506                                             F.isVarArg(), Ins,
6507                                             dl, DAG, InVals);
6508
6509  // Verify that the target's LowerFormalArguments behaved as expected.
6510  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6511         "LowerFormalArguments didn't return a valid chain!");
6512  assert(InVals.size() == Ins.size() &&
6513         "LowerFormalArguments didn't emit the correct number of values!");
6514  DEBUG({
6515      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6516        assert(InVals[i].getNode() &&
6517               "LowerFormalArguments emitted a null value!");
6518        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6519               "LowerFormalArguments emitted a value with the wrong type!");
6520      }
6521    });
6522
6523  // Update the DAG with the new chain value resulting from argument lowering.
6524  DAG.setRoot(NewRoot);
6525
6526  // Set up the argument values.
6527  unsigned i = 0;
6528  Idx = 1;
6529  if (!FuncInfo->CanLowerReturn) {
6530    // Create a virtual register for the sret pointer, and put in a copy
6531    // from the sret argument into it.
6532    SmallVector<EVT, 1> ValueVTs;
6533    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6534    EVT VT = ValueVTs[0];
6535    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6536    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6537    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6538                                        RegVT, VT, AssertOp);
6539
6540    MachineFunction& MF = SDB->DAG.getMachineFunction();
6541    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6542    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6543    FuncInfo->DemoteRegister = SRetReg;
6544    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6545                                    SRetReg, ArgValue);
6546    DAG.setRoot(NewRoot);
6547
6548    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6549    // Idx indexes LLVM arguments.  Don't touch it.
6550    ++i;
6551  }
6552
6553  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6554      ++I, ++Idx) {
6555    SmallVector<SDValue, 4> ArgValues;
6556    SmallVector<EVT, 4> ValueVTs;
6557    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6558    unsigned NumValues = ValueVTs.size();
6559
6560    // If this argument is unused then remember its value. It is used to generate
6561    // debugging information.
6562    if (I->use_empty() && NumValues)
6563      SDB->setUnusedArgValue(I, InVals[i]);
6564
6565    for (unsigned Val = 0; Val != NumValues; ++Val) {
6566      EVT VT = ValueVTs[Val];
6567      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6568      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6569
6570      if (!I->use_empty()) {
6571        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6572        if (F.paramHasAttr(Idx, Attribute::SExt))
6573          AssertOp = ISD::AssertSext;
6574        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6575          AssertOp = ISD::AssertZext;
6576
6577        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6578                                             NumParts, PartVT, VT,
6579                                             AssertOp));
6580      }
6581
6582      i += NumParts;
6583    }
6584
6585    // We don't need to do anything else for unused arguments.
6586    if (ArgValues.empty())
6587      continue;
6588
6589    // Note down frame index for byval arguments.
6590    if (I->hasByValAttr())
6591      if (FrameIndexSDNode *FI =
6592          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6593        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6594
6595    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6596                                     SDB->getCurDebugLoc());
6597    SDB->setValue(I, Res);
6598
6599    // If this argument is live outside of the entry block, insert a copy from
6600    // wherever we got it to the vreg that other BB's will reference it as.
6601    if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6602      // If we can, though, try to skip creating an unnecessary vreg.
6603      // FIXME: This isn't very clean... it would be nice to make this more
6604      // general.  It's also subtly incompatible with the hacks FastISel
6605      // uses with vregs.
6606      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6607      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6608        FuncInfo->ValueMap[I] = Reg;
6609        continue;
6610      }
6611    }
6612    if (!isOnlyUsedInEntryBlock(I)) {
6613      FuncInfo->InitializeRegForValue(I);
6614      SDB->CopyToExportRegsIfNeeded(I);
6615    }
6616  }
6617
6618  assert(i == InVals.size() && "Argument register count mismatch!");
6619
6620  // Finally, if the target has anything special to do, allow it to do so.
6621  // FIXME: this should insert code into the DAG!
6622  EmitFunctionEntryCode();
6623}
6624
6625/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6626/// ensure constants are generated when needed.  Remember the virtual registers
6627/// that need to be added to the Machine PHI nodes as input.  We cannot just
6628/// directly add them, because expansion might result in multiple MBB's for one
6629/// BB.  As such, the start of the BB might correspond to a different MBB than
6630/// the end.
6631///
6632void
6633SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6634  const TerminatorInst *TI = LLVMBB->getTerminator();
6635
6636  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6637
6638  // Check successor nodes' PHI nodes that expect a constant to be available
6639  // from this block.
6640  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6641    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6642    if (!isa<PHINode>(SuccBB->begin())) continue;
6643    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6644
6645    // If this terminator has multiple identical successors (common for
6646    // switches), only handle each succ once.
6647    if (!SuccsHandled.insert(SuccMBB)) continue;
6648
6649    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6650
6651    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6652    // nodes and Machine PHI nodes, but the incoming operands have not been
6653    // emitted yet.
6654    for (BasicBlock::const_iterator I = SuccBB->begin();
6655         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6656      // Ignore dead phi's.
6657      if (PN->use_empty()) continue;
6658
6659      // Skip empty types
6660      if (PN->getType()->isEmptyTy())
6661        continue;
6662
6663      unsigned Reg;
6664      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6665
6666      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6667        unsigned &RegOut = ConstantsOut[C];
6668        if (RegOut == 0) {
6669          RegOut = FuncInfo.CreateRegs(C->getType());
6670          CopyValueToVirtualRegister(C, RegOut);
6671        }
6672        Reg = RegOut;
6673      } else {
6674        DenseMap<const Value *, unsigned>::iterator I =
6675          FuncInfo.ValueMap.find(PHIOp);
6676        if (I != FuncInfo.ValueMap.end())
6677          Reg = I->second;
6678        else {
6679          assert(isa<AllocaInst>(PHIOp) &&
6680                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6681                 "Didn't codegen value into a register!??");
6682          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6683          CopyValueToVirtualRegister(PHIOp, Reg);
6684        }
6685      }
6686
6687      // Remember that this register needs to added to the machine PHI node as
6688      // the input for this MBB.
6689      SmallVector<EVT, 4> ValueVTs;
6690      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6691      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6692        EVT VT = ValueVTs[vti];
6693        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6694        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6695          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6696        Reg += NumRegisters;
6697      }
6698    }
6699  }
6700  ConstantsOut.clear();
6701}
6702