SelectionDAGBuilder.cpp revision 5787124820f9f544216675c020ff0b33e090d181
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert(PartVT.isInteger() && ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360    }
361  } else if (PartBits == ValueVT.getSizeInBits()) {
362    // Different types of the same size.
363    assert(NumParts == 1 && PartVT != ValueVT);
364    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366    // If the parts cover less bits than value has, truncate the value.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Unknown mismatch!");
369    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371  }
372
373  // The value may have changed - recompute ValueVT.
374  ValueVT = Val.getValueType();
375  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376         "Failed to tile the value with PartVT!");
377
378  if (NumParts == 1) {
379    assert(PartVT == ValueVT && "Type conversion failed!");
380    Parts[0] = Val;
381    return;
382  }
383
384  // Expand the value into multiple parts.
385  if (NumParts & (NumParts - 1)) {
386    // The number of parts is not a power of 2.  Split off and copy the tail.
387    assert(PartVT.isInteger() && ValueVT.isInteger() &&
388           "Do not know what to expand to!");
389    unsigned RoundParts = 1 << Log2_32(NumParts);
390    unsigned RoundBits = RoundParts * PartBits;
391    unsigned OddParts = NumParts - RoundParts;
392    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                 DAG.getIntPtrConstant(RoundBits));
394    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396    if (TLI.isBigEndian())
397      // The odd parts were reversed by getCopyToParts - unreverse them.
398      std::reverse(Parts + RoundParts, Parts + NumParts);
399
400    NumParts = RoundParts;
401    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403  }
404
405  // The number of parts is a power of 2.  Repeatedly bisect the value using
406  // EXTRACT_ELEMENT.
407  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                         EVT::getIntegerVT(*DAG.getContext(),
409                                           ValueVT.getSizeInBits()),
410                         Val);
411
412  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413    for (unsigned i = 0; i < NumParts; i += StepSize) {
414      unsigned ThisBits = StepSize * PartBits / 2;
415      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416      SDValue &Part0 = Parts[i];
417      SDValue &Part1 = Parts[i+StepSize/2];
418
419      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                          ThisVT, Part0, DAG.getIntPtrConstant(1));
421      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                          ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424      if (ThisBits == PartBits && ThisVT != PartVT) {
425        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427      }
428    }
429  }
430
431  if (TLI.isBigEndian())
432    std::reverse(Parts, Parts + OrigNumParts);
433}
434
435
436/// getCopyToPartsVector - Create a series of nodes that contain the specified
437/// value split into legal parts.
438static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                 SDValue Val, SDValue *Parts, unsigned NumParts,
440                                 EVT PartVT) {
441  EVT ValueVT = Val.getValueType();
442  assert(ValueVT.isVector() && "Not a vector");
443  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445  if (NumParts == 1) {
446    if (PartVT == ValueVT) {
447      // Nothing to do.
448    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449      // Bitconvert vector->vector case.
450      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451    } else if (PartVT.isVector() &&
452               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454      EVT ElementVT = PartVT.getVectorElementType();
455      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456      // undef elements.
457      SmallVector<SDValue, 16> Ops;
458      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462      for (unsigned i = ValueVT.getVectorNumElements(),
463           e = PartVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getUNDEF(ElementVT));
465
466      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468      // FIXME: Use CONCAT for 2x -> 4x.
469
470      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472    } else if (PartVT.isVector() &&
473               PartVT.getVectorElementType().bitsGE(
474                 ValueVT.getVectorElementType()) &&
475               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477      // Promoted vector extract
478      bool Smaller = PartVT.bitsLE(ValueVT);
479      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                        DL, PartVT, Val);
481    } else{
482      // Vector -> scalar conversion.
483      assert(ValueVT.getVectorNumElements() == 1 &&
484             "Only trivial vector-to-scalar conversions should get here!");
485      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                        PartVT, Val, DAG.getIntPtrConstant(0));
487
488      bool Smaller = ValueVT.bitsLE(PartVT);
489      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                         DL, PartVT, Val);
491    }
492
493    Parts[0] = Val;
494    return;
495  }
496
497  // Handle a multi-element vector.
498  EVT IntermediateVT, RegisterVT;
499  unsigned NumIntermediates;
500  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                IntermediateVT,
502                                                NumIntermediates, RegisterVT);
503  unsigned NumElements = ValueVT.getVectorNumElements();
504
505  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506  NumParts = NumRegs; // Silence a compiler warning.
507  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509  // Split the vector into intermediate operands.
510  SmallVector<SDValue, 8> Ops(NumIntermediates);
511  for (unsigned i = 0; i != NumIntermediates; ++i) {
512    if (IntermediateVT.isVector())
513      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                           IntermediateVT, Val,
515                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516    else
517      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
519  }
520
521  // Split the intermediate operands into legal parts.
522  if (NumParts == NumIntermediates) {
523    // If the register was not expanded, promote or copy the value,
524    // as appropriate.
525    for (unsigned i = 0; i != NumParts; ++i)
526      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527  } else if (NumParts > 0) {
528    // If the intermediate type was expanded, split each the value into
529    // legal parts.
530    assert(NumParts % NumIntermediates == 0 &&
531           "Must expand into a divisible number of parts!");
532    unsigned Factor = NumParts / NumIntermediates;
533    for (unsigned i = 0; i != NumIntermediates; ++i)
534      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535  }
536}
537
538
539
540
541namespace {
542  /// RegsForValue - This struct represents the registers (physical or virtual)
543  /// that a particular set of values is assigned, and the type information
544  /// about the value. The most common situation is to represent one value at a
545  /// time, but struct or array values are handled element-wise as multiple
546  /// values.  The splitting of aggregates is performed recursively, so that we
547  /// never have aggregate-typed registers. The values at this point do not
548  /// necessarily have legal types, so each value may require one or more
549  /// registers of some legal type.
550  ///
551  struct RegsForValue {
552    /// ValueVTs - The value types of the values, which may not be legal, and
553    /// may need be promoted or synthesized from one or more registers.
554    ///
555    SmallVector<EVT, 4> ValueVTs;
556
557    /// RegVTs - The value types of the registers. This is the same size as
558    /// ValueVTs and it records, for each value, what the type of the assigned
559    /// register or registers are. (Individual values are never synthesized
560    /// from more than one type of register.)
561    ///
562    /// With virtual registers, the contents of RegVTs is redundant with TLI's
563    /// getRegisterType member function, however when with physical registers
564    /// it is necessary to have a separate record of the types.
565    ///
566    SmallVector<EVT, 4> RegVTs;
567
568    /// Regs - This list holds the registers assigned to the values.
569    /// Each legal or promoted value requires one register, and each
570    /// expanded value requires multiple registers.
571    ///
572    SmallVector<unsigned, 4> Regs;
573
574    RegsForValue() {}
575
576    RegsForValue(const SmallVector<unsigned, 4> &regs,
577                 EVT regvt, EVT valuevt)
578      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
580    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                 unsigned Reg, Type *Ty) {
582      ComputeValueVTs(tli, Ty, ValueVTs);
583
584      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585        EVT ValueVT = ValueVTs[Value];
586        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588        for (unsigned i = 0; i != NumRegs; ++i)
589          Regs.push_back(Reg + i);
590        RegVTs.push_back(RegisterVT);
591        Reg += NumRegs;
592      }
593    }
594
595    /// areValueTypesLegal - Return true if types of all the values are legal.
596    bool areValueTypesLegal(const TargetLowering &TLI) {
597      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598        EVT RegisterVT = RegVTs[Value];
599        if (!TLI.isTypeLegal(RegisterVT))
600          return false;
601      }
602      return true;
603    }
604
605    /// append - Add the specified values to this one.
606    void append(const RegsForValue &RHS) {
607      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610    }
611
612    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613    /// this value and returns the result as a ValueVTs value.  This uses
614    /// Chain/Flag as the input and updates them for the output Chain/Flag.
615    /// If the Flag pointer is NULL, no flag is used.
616    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                            DebugLoc dl,
618                            SDValue &Chain, SDValue *Flag) const;
619
620    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621    /// specified value into the registers specified by this object.  This uses
622    /// Chain/Flag as the input and updates them for the output Chain/Flag.
623    /// If the Flag pointer is NULL, no flag is used.
624    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                       SDValue &Chain, SDValue *Flag) const;
626
627    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628    /// operand list.  This adds the code marker, matching input operand index
629    /// (if applicable), and includes the number of values added into it.
630    void AddInlineAsmOperands(unsigned Kind,
631                              bool HasMatching, unsigned MatchingIdx,
632                              SelectionDAG &DAG,
633                              std::vector<SDValue> &Ops) const;
634  };
635}
636
637/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638/// this value and returns the result as a ValueVT value.  This uses
639/// Chain/Flag as the input and updates them for the output Chain/Flag.
640/// If the Flag pointer is NULL, no flag is used.
641SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                      FunctionLoweringInfo &FuncInfo,
643                                      DebugLoc dl,
644                                      SDValue &Chain, SDValue *Flag) const {
645  // A Value with type {} or [0 x %t] needs no registers.
646  if (ValueVTs.empty())
647    return SDValue();
648
649  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651  // Assemble the legal parts into the final values.
652  SmallVector<SDValue, 4> Values(ValueVTs.size());
653  SmallVector<SDValue, 8> Parts;
654  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655    // Copy the legal parts from the registers.
656    EVT ValueVT = ValueVTs[Value];
657    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658    EVT RegisterVT = RegVTs[Value];
659
660    Parts.resize(NumRegs);
661    for (unsigned i = 0; i != NumRegs; ++i) {
662      SDValue P;
663      if (Flag == 0) {
664        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665      } else {
666        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667        *Flag = P.getValue(2);
668      }
669
670      Chain = P.getValue(1);
671      Parts[i] = P;
672
673      // If the source register was virtual and if we know something about it,
674      // add an assert node.
675      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676          !RegisterVT.isInteger() || RegisterVT.isVector())
677        continue;
678
679      const FunctionLoweringInfo::LiveOutInfo *LOI =
680        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681      if (!LOI)
682        continue;
683
684      unsigned RegSize = RegisterVT.getSizeInBits();
685      unsigned NumSignBits = LOI->NumSignBits;
686      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688      // FIXME: We capture more information than the dag can represent.  For
689      // now, just use the tightest assertzext/assertsext possible.
690      bool isSExt = true;
691      EVT FromVT(MVT::Other);
692      if (NumSignBits == RegSize)
693        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694      else if (NumZeroBits >= RegSize-1)
695        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696      else if (NumSignBits > RegSize-8)
697        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698      else if (NumZeroBits >= RegSize-8)
699        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700      else if (NumSignBits > RegSize-16)
701        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702      else if (NumZeroBits >= RegSize-16)
703        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704      else if (NumSignBits > RegSize-32)
705        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706      else if (NumZeroBits >= RegSize-32)
707        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708      else
709        continue;
710
711      // Add an assertion node.
712      assert(FromVT != MVT::Other);
713      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                             RegisterVT, P, DAG.getValueType(FromVT));
715    }
716
717    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                     NumRegs, RegisterVT, ValueVT);
719    Part += NumRegs;
720    Parts.clear();
721  }
722
723  return DAG.getNode(ISD::MERGE_VALUES, dl,
724                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                     &Values[0], ValueVTs.size());
726}
727
728/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729/// specified value into the registers specified by this object.  This uses
730/// Chain/Flag as the input and updates them for the output Chain/Flag.
731/// If the Flag pointer is NULL, no flag is used.
732void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                 SDValue &Chain, SDValue *Flag) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  // Get the list of the values's legal parts.
737  unsigned NumRegs = Regs.size();
738  SmallVector<SDValue, 8> Parts(NumRegs);
739  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740    EVT ValueVT = ValueVTs[Value];
741    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742    EVT RegisterVT = RegVTs[Value];
743
744    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                   &Parts[Part], NumParts, RegisterVT);
746    Part += NumParts;
747  }
748
749  // Copy the parts into the registers.
750  SmallVector<SDValue, 8> Chains(NumRegs);
751  for (unsigned i = 0; i != NumRegs; ++i) {
752    SDValue Part;
753    if (Flag == 0) {
754      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755    } else {
756      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757      *Flag = Part.getValue(1);
758    }
759
760    Chains[i] = Part.getValue(0);
761  }
762
763  if (NumRegs == 1 || Flag)
764    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765    // flagged to it. That is the CopyToReg nodes and the user are considered
766    // a single scheduling unit. If we create a TokenFactor and return it as
767    // chain, then the TokenFactor is both a predecessor (operand) of the
768    // user as well as a successor (the TF operands are flagged to the user).
769    // c1, f1 = CopyToReg
770    // c2, f2 = CopyToReg
771    // c3     = TokenFactor c1, c2
772    // ...
773    //        = op c3, ..., f2
774    Chain = Chains[NumRegs-1];
775  else
776    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777}
778
779/// AddInlineAsmOperands - Add this value to the specified inlineasm node
780/// operand list.  This adds the code marker and includes the number of
781/// values added into it.
782void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                        unsigned MatchingIdx,
784                                        SelectionDAG &DAG,
785                                        std::vector<SDValue> &Ops) const {
786  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789  if (HasMatching)
790    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792  Ops.push_back(Res);
793
794  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796    EVT RegisterVT = RegVTs[Value];
797    for (unsigned i = 0; i != NumRegs; ++i) {
798      assert(Reg < Regs.size() && "Mismatch in # registers expected");
799      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800    }
801  }
802}
803
804void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805  AA = &aa;
806  GFI = gfi;
807  TD = DAG.getTarget().getTargetData();
808}
809
810/// clear - Clear out the current SelectionDAG and the associated
811/// state and prepare this SelectionDAGBuilder object to be used
812/// for a new block. This doesn't clear out information about
813/// additional blocks that are needed to complete switch lowering
814/// or PHI node updating; that information is cleared out as it is
815/// consumed.
816void SelectionDAGBuilder::clear() {
817  NodeMap.clear();
818  UnusedArgNodeMap.clear();
819  PendingLoads.clear();
820  PendingExports.clear();
821  CurDebugLoc = DebugLoc();
822  HasTailCall = false;
823}
824
825/// clearDanglingDebugInfo - Clear the dangling debug information
826/// map. This function is seperated from the clear so that debug
827/// information that is dangling in a basic block can be properly
828/// resolved in a different basic block. This allows the
829/// SelectionDAG to resolve dangling debug information attached
830/// to PHI nodes.
831void SelectionDAGBuilder::clearDanglingDebugInfo() {
832  DanglingDebugInfoMap.clear();
833}
834
835/// getRoot - Return the current virtual root of the Selection DAG,
836/// flushing any PendingLoad items. This must be done before emitting
837/// a store or any other node that may need to be ordered after any
838/// prior load instructions.
839///
840SDValue SelectionDAGBuilder::getRoot() {
841  if (PendingLoads.empty())
842    return DAG.getRoot();
843
844  if (PendingLoads.size() == 1) {
845    SDValue Root = PendingLoads[0];
846    DAG.setRoot(Root);
847    PendingLoads.clear();
848    return Root;
849  }
850
851  // Otherwise, we have to make a token factor node.
852  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853                               &PendingLoads[0], PendingLoads.size());
854  PendingLoads.clear();
855  DAG.setRoot(Root);
856  return Root;
857}
858
859/// getControlRoot - Similar to getRoot, but instead of flushing all the
860/// PendingLoad items, flush all the PendingExports items. It is necessary
861/// to do this before emitting a terminator instruction.
862///
863SDValue SelectionDAGBuilder::getControlRoot() {
864  SDValue Root = DAG.getRoot();
865
866  if (PendingExports.empty())
867    return Root;
868
869  // Turn all of the CopyToReg chains into one factored node.
870  if (Root.getOpcode() != ISD::EntryToken) {
871    unsigned i = 0, e = PendingExports.size();
872    for (; i != e; ++i) {
873      assert(PendingExports[i].getNode()->getNumOperands() > 1);
874      if (PendingExports[i].getNode()->getOperand(0) == Root)
875        break;  // Don't add the root if we already indirectly depend on it.
876    }
877
878    if (i == e)
879      PendingExports.push_back(Root);
880  }
881
882  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883                     &PendingExports[0],
884                     PendingExports.size());
885  PendingExports.clear();
886  DAG.setRoot(Root);
887  return Root;
888}
889
890void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892  DAG.AssignOrdering(Node, SDNodeOrder);
893
894  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895    AssignOrderingToNode(Node->getOperand(I).getNode());
896}
897
898void SelectionDAGBuilder::visit(const Instruction &I) {
899  // Set up outgoing PHI node register values before emitting the terminator.
900  if (isa<TerminatorInst>(&I))
901    HandlePHINodesInSuccessorBlocks(I.getParent());
902
903  CurDebugLoc = I.getDebugLoc();
904
905  visit(I.getOpcode(), I);
906
907  if (!isa<TerminatorInst>(&I) && !HasTailCall)
908    CopyToExportRegsIfNeeded(&I);
909
910  CurDebugLoc = DebugLoc();
911}
912
913void SelectionDAGBuilder::visitPHI(const PHINode &) {
914  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915}
916
917void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918  // Note: this doesn't use InstVisitor, because it has to work with
919  // ConstantExpr's in addition to instructions.
920  switch (Opcode) {
921  default: llvm_unreachable("Unknown instruction type encountered!");
922    // Build the switch statement using the Instruction.def file.
923#define HANDLE_INST(NUM, OPCODE, CLASS) \
924    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925#include "llvm/Instruction.def"
926  }
927
928  // Assign the ordering to the freshly created DAG nodes.
929  if (NodeMap.count(&I)) {
930    ++SDNodeOrder;
931    AssignOrderingToNode(getValue(&I).getNode());
932  }
933}
934
935// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936// generate the debug data structures now that we've seen its definition.
937void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938                                                   SDValue Val) {
939  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940  if (DDI.getDI()) {
941    const DbgValueInst *DI = DDI.getDI();
942    DebugLoc dl = DDI.getdl();
943    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944    MDNode *Variable = DI->getVariable();
945    uint64_t Offset = DI->getOffset();
946    SDDbgValue *SDV;
947    if (Val.getNode()) {
948      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949        SDV = DAG.getDbgValue(Variable, Val.getNode(),
950                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951        DAG.AddDbgValue(SDV, Val.getNode(), false);
952      }
953    } else
954      DEBUG(dbgs() << "Dropping debug info for " << DI);
955    DanglingDebugInfoMap[V] = DanglingDebugInfo();
956  }
957}
958
959// getValue - Return an SDValue for the given Value.
960SDValue SelectionDAGBuilder::getValue(const Value *V) {
961  // If we already have an SDValue for this value, use it. It's important
962  // to do this first, so that we don't create a CopyFromReg if we already
963  // have a regular SDValue.
964  SDValue &N = NodeMap[V];
965  if (N.getNode()) return N;
966
967  // If there's a virtual register allocated and initialized for this
968  // value, use it.
969  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970  if (It != FuncInfo.ValueMap.end()) {
971    unsigned InReg = It->second;
972    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973    SDValue Chain = DAG.getEntryNode();
974    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975    resolveDanglingDebugInfo(V, N);
976    return N;
977  }
978
979  // Otherwise create a new SDValue and remember it.
980  SDValue Val = getValueImpl(V);
981  NodeMap[V] = Val;
982  resolveDanglingDebugInfo(V, Val);
983  return Val;
984}
985
986/// getNonRegisterValue - Return an SDValue for the given Value, but
987/// don't look in FuncInfo.ValueMap for a virtual register.
988SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989  // If we already have an SDValue for this value, use it.
990  SDValue &N = NodeMap[V];
991  if (N.getNode()) return N;
992
993  // Otherwise create a new SDValue and remember it.
994  SDValue Val = getValueImpl(V);
995  NodeMap[V] = Val;
996  resolveDanglingDebugInfo(V, Val);
997  return Val;
998}
999
1000/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001/// Create an SDValue for the given value.
1002SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003  if (const Constant *C = dyn_cast<Constant>(V)) {
1004    EVT VT = TLI.getValueType(V->getType(), true);
1005
1006    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007      return DAG.getConstant(*CI, VT);
1008
1009    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011
1012    if (isa<ConstantPointerNull>(C))
1013      return DAG.getConstant(0, TLI.getPointerTy());
1014
1015    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016      return DAG.getConstantFP(*CFP, VT);
1017
1018    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019      return DAG.getUNDEF(VT);
1020
1021    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022      visit(CE->getOpcode(), *CE);
1023      SDValue N1 = NodeMap[V];
1024      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025      return N1;
1026    }
1027
1028    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029      SmallVector<SDValue, 4> Constants;
1030      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031           OI != OE; ++OI) {
1032        SDNode *Val = getValue(*OI).getNode();
1033        // If the operand is an empty aggregate, there are no values.
1034        if (!Val) continue;
1035        // Add each leaf value from the operand to the Constants list
1036        // to form a flattened list of all the values.
1037        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038          Constants.push_back(SDValue(Val, i));
1039      }
1040
1041      return DAG.getMergeValues(&Constants[0], Constants.size(),
1042                                getCurDebugLoc());
1043    }
1044
1045    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047             "Unknown struct or array constant!");
1048
1049      SmallVector<EVT, 4> ValueVTs;
1050      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051      unsigned NumElts = ValueVTs.size();
1052      if (NumElts == 0)
1053        return SDValue(); // empty struct
1054      SmallVector<SDValue, 4> Constants(NumElts);
1055      for (unsigned i = 0; i != NumElts; ++i) {
1056        EVT EltVT = ValueVTs[i];
1057        if (isa<UndefValue>(C))
1058          Constants[i] = DAG.getUNDEF(EltVT);
1059        else if (EltVT.isFloatingPoint())
1060          Constants[i] = DAG.getConstantFP(0, EltVT);
1061        else
1062          Constants[i] = DAG.getConstant(0, EltVT);
1063      }
1064
1065      return DAG.getMergeValues(&Constants[0], NumElts,
1066                                getCurDebugLoc());
1067    }
1068
1069    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070      return DAG.getBlockAddress(BA, VT);
1071
1072    VectorType *VecTy = cast<VectorType>(V->getType());
1073    unsigned NumElements = VecTy->getNumElements();
1074
1075    // Now that we know the number and type of the elements, get that number of
1076    // elements into the Ops array based on what kind of constant it is.
1077    SmallVector<SDValue, 16> Ops;
1078    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079      for (unsigned i = 0; i != NumElements; ++i)
1080        Ops.push_back(getValue(CP->getOperand(i)));
1081    } else {
1082      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084
1085      SDValue Op;
1086      if (EltVT.isFloatingPoint())
1087        Op = DAG.getConstantFP(0, EltVT);
1088      else
1089        Op = DAG.getConstant(0, EltVT);
1090      Ops.assign(NumElements, Op);
1091    }
1092
1093    // Create a BUILD_VECTOR node.
1094    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095                                    VT, &Ops[0], Ops.size());
1096  }
1097
1098  // If this is a static alloca, generate it as the frameindex instead of
1099  // computation.
1100  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101    DenseMap<const AllocaInst*, int>::iterator SI =
1102      FuncInfo.StaticAllocaMap.find(AI);
1103    if (SI != FuncInfo.StaticAllocaMap.end())
1104      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105  }
1106
1107  // If this is an instruction which fast-isel has deferred, select it now.
1108  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111    SDValue Chain = DAG.getEntryNode();
1112    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113  }
1114
1115  llvm_unreachable("Can't get register for value!");
1116  return SDValue();
1117}
1118
1119void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120  SDValue Chain = getControlRoot();
1121  SmallVector<ISD::OutputArg, 8> Outs;
1122  SmallVector<SDValue, 8> OutVals;
1123
1124  if (!FuncInfo.CanLowerReturn) {
1125    unsigned DemoteReg = FuncInfo.DemoteRegister;
1126    const Function *F = I.getParent()->getParent();
1127
1128    // Emit a store of the return value through the virtual register.
1129    // Leave Outs empty so that LowerReturn won't try to load return
1130    // registers the usual way.
1131    SmallVector<EVT, 1> PtrValueVTs;
1132    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133                    PtrValueVTs);
1134
1135    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136    SDValue RetOp = getValue(I.getOperand(0));
1137
1138    SmallVector<EVT, 4> ValueVTs;
1139    SmallVector<uint64_t, 4> Offsets;
1140    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141    unsigned NumValues = ValueVTs.size();
1142
1143    SmallVector<SDValue, 4> Chains(NumValues);
1144    for (unsigned i = 0; i != NumValues; ++i) {
1145      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146                                RetPtr.getValueType(), RetPtr,
1147                                DAG.getIntPtrConstant(Offsets[i]));
1148      Chains[i] =
1149        DAG.getStore(Chain, getCurDebugLoc(),
1150                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151                     // FIXME: better loc info would be nice.
1152                     Add, MachinePointerInfo(), false, false, 0);
1153    }
1154
1155    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156                        MVT::Other, &Chains[0], NumValues);
1157  } else if (I.getNumOperands() != 0) {
1158    SmallVector<EVT, 4> ValueVTs;
1159    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160    unsigned NumValues = ValueVTs.size();
1161    if (NumValues) {
1162      SDValue RetOp = getValue(I.getOperand(0));
1163      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164        EVT VT = ValueVTs[j];
1165
1166        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167
1168        const Function *F = I.getParent()->getParent();
1169        if (F->paramHasAttr(0, Attribute::SExt))
1170          ExtendKind = ISD::SIGN_EXTEND;
1171        else if (F->paramHasAttr(0, Attribute::ZExt))
1172          ExtendKind = ISD::ZERO_EXTEND;
1173
1174        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176
1177        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179        SmallVector<SDValue, 4> Parts(NumParts);
1180        getCopyToParts(DAG, getCurDebugLoc(),
1181                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182                       &Parts[0], NumParts, PartVT, ExtendKind);
1183
1184        // 'inreg' on function refers to return value
1185        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186        if (F->paramHasAttr(0, Attribute::InReg))
1187          Flags.setInReg();
1188
1189        // Propagate extension type if any
1190        if (ExtendKind == ISD::SIGN_EXTEND)
1191          Flags.setSExt();
1192        else if (ExtendKind == ISD::ZERO_EXTEND)
1193          Flags.setZExt();
1194
1195        for (unsigned i = 0; i < NumParts; ++i) {
1196          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197                                        /*isfixed=*/true));
1198          OutVals.push_back(Parts[i]);
1199        }
1200      }
1201    }
1202  }
1203
1204  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205  CallingConv::ID CallConv =
1206    DAG.getMachineFunction().getFunction()->getCallingConv();
1207  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208                          Outs, OutVals, getCurDebugLoc(), DAG);
1209
1210  // Verify that the target's LowerReturn behaved as expected.
1211  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212         "LowerReturn didn't return a valid chain!");
1213
1214  // Update the DAG with the new chain value resulting from return lowering.
1215  DAG.setRoot(Chain);
1216}
1217
1218/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219/// created for it, emit nodes to copy the value into the virtual
1220/// registers.
1221void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222  // Skip empty types
1223  if (V->getType()->isEmptyTy())
1224    return;
1225
1226  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227  if (VMI != FuncInfo.ValueMap.end()) {
1228    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229    CopyValueToVirtualRegister(V, VMI->second);
1230  }
1231}
1232
1233/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234/// the current basic block, add it to ValueMap now so that we'll get a
1235/// CopyTo/FromReg.
1236void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237  // No need to export constants.
1238  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239
1240  // Already exported?
1241  if (FuncInfo.isExportedInst(V)) return;
1242
1243  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244  CopyValueToVirtualRegister(V, Reg);
1245}
1246
1247bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248                                                     const BasicBlock *FromBB) {
1249  // The operands of the setcc have to be in this block.  We don't know
1250  // how to export them from some other block.
1251  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252    // Can export from current BB.
1253    if (VI->getParent() == FromBB)
1254      return true;
1255
1256    // Is already exported, noop.
1257    return FuncInfo.isExportedInst(V);
1258  }
1259
1260  // If this is an argument, we can export it if the BB is the entry block or
1261  // if it is already exported.
1262  if (isa<Argument>(V)) {
1263    if (FromBB == &FromBB->getParent()->getEntryBlock())
1264      return true;
1265
1266    // Otherwise, can only export this if it is already exported.
1267    return FuncInfo.isExportedInst(V);
1268  }
1269
1270  // Otherwise, constants can always be exported.
1271  return true;
1272}
1273
1274/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276                                            MachineBasicBlock *Dst) {
1277  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278  if (!BPI)
1279    return 0;
1280  const BasicBlock *SrcBB = Src->getBasicBlock();
1281  const BasicBlock *DstBB = Dst->getBasicBlock();
1282  return BPI->getEdgeWeight(SrcBB, DstBB);
1283}
1284
1285void SelectionDAGBuilder::
1286addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1287                       uint32_t Weight /* = 0 */) {
1288  if (!Weight)
1289    Weight = getEdgeWeight(Src, Dst);
1290  Src->addSuccessor(Dst, Weight);
1291}
1292
1293
1294static bool InBlock(const Value *V, const BasicBlock *BB) {
1295  if (const Instruction *I = dyn_cast<Instruction>(V))
1296    return I->getParent() == BB;
1297  return true;
1298}
1299
1300/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1301/// This function emits a branch and is used at the leaves of an OR or an
1302/// AND operator tree.
1303///
1304void
1305SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1306                                                  MachineBasicBlock *TBB,
1307                                                  MachineBasicBlock *FBB,
1308                                                  MachineBasicBlock *CurBB,
1309                                                  MachineBasicBlock *SwitchBB) {
1310  const BasicBlock *BB = CurBB->getBasicBlock();
1311
1312  // If the leaf of the tree is a comparison, merge the condition into
1313  // the caseblock.
1314  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1315    // The operands of the cmp have to be in this block.  We don't know
1316    // how to export them from some other block.  If this is the first block
1317    // of the sequence, no exporting is needed.
1318    if (CurBB == SwitchBB ||
1319        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1320         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1321      ISD::CondCode Condition;
1322      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1323        Condition = getICmpCondCode(IC->getPredicate());
1324      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1325        Condition = getFCmpCondCode(FC->getPredicate());
1326      } else {
1327        Condition = ISD::SETEQ; // silence warning.
1328        llvm_unreachable("Unknown compare instruction");
1329      }
1330
1331      CaseBlock CB(Condition, BOp->getOperand(0),
1332                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1333      SwitchCases.push_back(CB);
1334      return;
1335    }
1336  }
1337
1338  // Create a CaseBlock record representing this branch.
1339  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1340               NULL, TBB, FBB, CurBB);
1341  SwitchCases.push_back(CB);
1342}
1343
1344/// FindMergedConditions - If Cond is an expression like
1345void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1346                                               MachineBasicBlock *TBB,
1347                                               MachineBasicBlock *FBB,
1348                                               MachineBasicBlock *CurBB,
1349                                               MachineBasicBlock *SwitchBB,
1350                                               unsigned Opc) {
1351  // If this node is not part of the or/and tree, emit it as a branch.
1352  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1353  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1354      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1355      BOp->getParent() != CurBB->getBasicBlock() ||
1356      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1357      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1358    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1359    return;
1360  }
1361
1362  //  Create TmpBB after CurBB.
1363  MachineFunction::iterator BBI = CurBB;
1364  MachineFunction &MF = DAG.getMachineFunction();
1365  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1366  CurBB->getParent()->insert(++BBI, TmpBB);
1367
1368  if (Opc == Instruction::Or) {
1369    // Codegen X | Y as:
1370    //   jmp_if_X TBB
1371    //   jmp TmpBB
1372    // TmpBB:
1373    //   jmp_if_Y TBB
1374    //   jmp FBB
1375    //
1376
1377    // Emit the LHS condition.
1378    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1379
1380    // Emit the RHS condition into TmpBB.
1381    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1382  } else {
1383    assert(Opc == Instruction::And && "Unknown merge op!");
1384    // Codegen X & Y as:
1385    //   jmp_if_X TmpBB
1386    //   jmp FBB
1387    // TmpBB:
1388    //   jmp_if_Y TBB
1389    //   jmp FBB
1390    //
1391    //  This requires creation of TmpBB after CurBB.
1392
1393    // Emit the LHS condition.
1394    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1395
1396    // Emit the RHS condition into TmpBB.
1397    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1398  }
1399}
1400
1401/// If the set of cases should be emitted as a series of branches, return true.
1402/// If we should emit this as a bunch of and/or'd together conditions, return
1403/// false.
1404bool
1405SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1406  if (Cases.size() != 2) return true;
1407
1408  // If this is two comparisons of the same values or'd or and'd together, they
1409  // will get folded into a single comparison, so don't emit two blocks.
1410  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1411       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1412      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1413       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1414    return false;
1415  }
1416
1417  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1418  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1419  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1420      Cases[0].CC == Cases[1].CC &&
1421      isa<Constant>(Cases[0].CmpRHS) &&
1422      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1423    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1424      return false;
1425    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1426      return false;
1427  }
1428
1429  return true;
1430}
1431
1432void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1433  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1434
1435  // Update machine-CFG edges.
1436  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1437
1438  // Figure out which block is immediately after the current one.
1439  MachineBasicBlock *NextBlock = 0;
1440  MachineFunction::iterator BBI = BrMBB;
1441  if (++BBI != FuncInfo.MF->end())
1442    NextBlock = BBI;
1443
1444  if (I.isUnconditional()) {
1445    // Update machine-CFG edges.
1446    BrMBB->addSuccessor(Succ0MBB);
1447
1448    // If this is not a fall-through branch, emit the branch.
1449    if (Succ0MBB != NextBlock)
1450      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1451                              MVT::Other, getControlRoot(),
1452                              DAG.getBasicBlock(Succ0MBB)));
1453
1454    return;
1455  }
1456
1457  // If this condition is one of the special cases we handle, do special stuff
1458  // now.
1459  const Value *CondVal = I.getCondition();
1460  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1461
1462  // If this is a series of conditions that are or'd or and'd together, emit
1463  // this as a sequence of branches instead of setcc's with and/or operations.
1464  // As long as jumps are not expensive, this should improve performance.
1465  // For example, instead of something like:
1466  //     cmp A, B
1467  //     C = seteq
1468  //     cmp D, E
1469  //     F = setle
1470  //     or C, F
1471  //     jnz foo
1472  // Emit:
1473  //     cmp A, B
1474  //     je foo
1475  //     cmp D, E
1476  //     jle foo
1477  //
1478  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1479    if (!TLI.isJumpExpensive() &&
1480        BOp->hasOneUse() &&
1481        (BOp->getOpcode() == Instruction::And ||
1482         BOp->getOpcode() == Instruction::Or)) {
1483      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1484                           BOp->getOpcode());
1485      // If the compares in later blocks need to use values not currently
1486      // exported from this block, export them now.  This block should always
1487      // be the first entry.
1488      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1489
1490      // Allow some cases to be rejected.
1491      if (ShouldEmitAsBranches(SwitchCases)) {
1492        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1493          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1494          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1495        }
1496
1497        // Emit the branch for this block.
1498        visitSwitchCase(SwitchCases[0], BrMBB);
1499        SwitchCases.erase(SwitchCases.begin());
1500        return;
1501      }
1502
1503      // Okay, we decided not to do this, remove any inserted MBB's and clear
1504      // SwitchCases.
1505      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1506        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1507
1508      SwitchCases.clear();
1509    }
1510  }
1511
1512  // Create a CaseBlock record representing this branch.
1513  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1514               NULL, Succ0MBB, Succ1MBB, BrMBB);
1515
1516  // Use visitSwitchCase to actually insert the fast branch sequence for this
1517  // cond branch.
1518  visitSwitchCase(CB, BrMBB);
1519}
1520
1521/// visitSwitchCase - Emits the necessary code to represent a single node in
1522/// the binary search tree resulting from lowering a switch instruction.
1523void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1524                                          MachineBasicBlock *SwitchBB) {
1525  SDValue Cond;
1526  SDValue CondLHS = getValue(CB.CmpLHS);
1527  DebugLoc dl = getCurDebugLoc();
1528
1529  // Build the setcc now.
1530  if (CB.CmpMHS == NULL) {
1531    // Fold "(X == true)" to X and "(X == false)" to !X to
1532    // handle common cases produced by branch lowering.
1533    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1534        CB.CC == ISD::SETEQ)
1535      Cond = CondLHS;
1536    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1537             CB.CC == ISD::SETEQ) {
1538      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1539      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1540    } else
1541      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1542  } else {
1543    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1544
1545    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1546    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1547
1548    SDValue CmpOp = getValue(CB.CmpMHS);
1549    EVT VT = CmpOp.getValueType();
1550
1551    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1552      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1553                          ISD::SETLE);
1554    } else {
1555      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1556                                VT, CmpOp, DAG.getConstant(Low, VT));
1557      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1558                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1559    }
1560  }
1561
1562  // Update successor info
1563  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1564  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1565
1566  // Set NextBlock to be the MBB immediately after the current one, if any.
1567  // This is used to avoid emitting unnecessary branches to the next block.
1568  MachineBasicBlock *NextBlock = 0;
1569  MachineFunction::iterator BBI = SwitchBB;
1570  if (++BBI != FuncInfo.MF->end())
1571    NextBlock = BBI;
1572
1573  // If the lhs block is the next block, invert the condition so that we can
1574  // fall through to the lhs instead of the rhs block.
1575  if (CB.TrueBB == NextBlock) {
1576    std::swap(CB.TrueBB, CB.FalseBB);
1577    SDValue True = DAG.getConstant(1, Cond.getValueType());
1578    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1579  }
1580
1581  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1582                               MVT::Other, getControlRoot(), Cond,
1583                               DAG.getBasicBlock(CB.TrueBB));
1584
1585  // Insert the false branch. Do this even if it's a fall through branch,
1586  // this makes it easier to do DAG optimizations which require inverting
1587  // the branch condition.
1588  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1589                       DAG.getBasicBlock(CB.FalseBB));
1590
1591  DAG.setRoot(BrCond);
1592}
1593
1594/// visitJumpTable - Emit JumpTable node in the current MBB
1595void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1596  // Emit the code for the jump table
1597  assert(JT.Reg != -1U && "Should lower JT Header first!");
1598  EVT PTy = TLI.getPointerTy();
1599  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1600                                     JT.Reg, PTy);
1601  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1602  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1603                                    MVT::Other, Index.getValue(1),
1604                                    Table, Index);
1605  DAG.setRoot(BrJumpTable);
1606}
1607
1608/// visitJumpTableHeader - This function emits necessary code to produce index
1609/// in the JumpTable from switch case.
1610void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1611                                               JumpTableHeader &JTH,
1612                                               MachineBasicBlock *SwitchBB) {
1613  // Subtract the lowest switch case value from the value being switched on and
1614  // conditional branch to default mbb if the result is greater than the
1615  // difference between smallest and largest cases.
1616  SDValue SwitchOp = getValue(JTH.SValue);
1617  EVT VT = SwitchOp.getValueType();
1618  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1619                            DAG.getConstant(JTH.First, VT));
1620
1621  // The SDNode we just created, which holds the value being switched on minus
1622  // the smallest case value, needs to be copied to a virtual register so it
1623  // can be used as an index into the jump table in a subsequent basic block.
1624  // This value may be smaller or larger than the target's pointer type, and
1625  // therefore require extension or truncating.
1626  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1627
1628  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1629  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1630                                    JumpTableReg, SwitchOp);
1631  JT.Reg = JumpTableReg;
1632
1633  // Emit the range check for the jump table, and branch to the default block
1634  // for the switch statement if the value being switched on exceeds the largest
1635  // case in the switch.
1636  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1637                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1638                             DAG.getConstant(JTH.Last-JTH.First,VT),
1639                             ISD::SETUGT);
1640
1641  // Set NextBlock to be the MBB immediately after the current one, if any.
1642  // This is used to avoid emitting unnecessary branches to the next block.
1643  MachineBasicBlock *NextBlock = 0;
1644  MachineFunction::iterator BBI = SwitchBB;
1645
1646  if (++BBI != FuncInfo.MF->end())
1647    NextBlock = BBI;
1648
1649  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1650                               MVT::Other, CopyTo, CMP,
1651                               DAG.getBasicBlock(JT.Default));
1652
1653  if (JT.MBB != NextBlock)
1654    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1655                         DAG.getBasicBlock(JT.MBB));
1656
1657  DAG.setRoot(BrCond);
1658}
1659
1660/// visitBitTestHeader - This function emits necessary code to produce value
1661/// suitable for "bit tests"
1662void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1663                                             MachineBasicBlock *SwitchBB) {
1664  // Subtract the minimum value
1665  SDValue SwitchOp = getValue(B.SValue);
1666  EVT VT = SwitchOp.getValueType();
1667  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1668                            DAG.getConstant(B.First, VT));
1669
1670  // Check range
1671  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1672                                  TLI.getSetCCResultType(Sub.getValueType()),
1673                                  Sub, DAG.getConstant(B.Range, VT),
1674                                  ISD::SETUGT);
1675
1676  // Determine the type of the test operands.
1677  bool UsePtrType = false;
1678  if (!TLI.isTypeLegal(VT))
1679    UsePtrType = true;
1680  else {
1681    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1682      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1683        // Switch table case range are encoded into series of masks.
1684        // Just use pointer type, it's guaranteed to fit.
1685        UsePtrType = true;
1686        break;
1687      }
1688  }
1689  if (UsePtrType) {
1690    VT = TLI.getPointerTy();
1691    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1692  }
1693
1694  B.RegVT = VT;
1695  B.Reg = FuncInfo.CreateReg(VT);
1696  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1697                                    B.Reg, Sub);
1698
1699  // Set NextBlock to be the MBB immediately after the current one, if any.
1700  // This is used to avoid emitting unnecessary branches to the next block.
1701  MachineBasicBlock *NextBlock = 0;
1702  MachineFunction::iterator BBI = SwitchBB;
1703  if (++BBI != FuncInfo.MF->end())
1704    NextBlock = BBI;
1705
1706  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1707
1708  addSuccessorWithWeight(SwitchBB, B.Default);
1709  addSuccessorWithWeight(SwitchBB, MBB);
1710
1711  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1712                                MVT::Other, CopyTo, RangeCmp,
1713                                DAG.getBasicBlock(B.Default));
1714
1715  if (MBB != NextBlock)
1716    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1717                          DAG.getBasicBlock(MBB));
1718
1719  DAG.setRoot(BrRange);
1720}
1721
1722/// visitBitTestCase - this function produces one "bit test"
1723void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1724                                           MachineBasicBlock* NextMBB,
1725                                           unsigned Reg,
1726                                           BitTestCase &B,
1727                                           MachineBasicBlock *SwitchBB) {
1728  EVT VT = BB.RegVT;
1729  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1730                                       Reg, VT);
1731  SDValue Cmp;
1732  unsigned PopCount = CountPopulation_64(B.Mask);
1733  if (PopCount == 1) {
1734    // Testing for a single bit; just compare the shift count with what it
1735    // would need to be to shift a 1 bit in that position.
1736    Cmp = DAG.getSetCC(getCurDebugLoc(),
1737                       TLI.getSetCCResultType(VT),
1738                       ShiftOp,
1739                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1740                       ISD::SETEQ);
1741  } else if (PopCount == BB.Range) {
1742    // There is only one zero bit in the range, test for it directly.
1743    Cmp = DAG.getSetCC(getCurDebugLoc(),
1744                       TLI.getSetCCResultType(VT),
1745                       ShiftOp,
1746                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1747                       ISD::SETNE);
1748  } else {
1749    // Make desired shift
1750    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1751                                    DAG.getConstant(1, VT), ShiftOp);
1752
1753    // Emit bit tests and jumps
1754    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1755                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1756    Cmp = DAG.getSetCC(getCurDebugLoc(),
1757                       TLI.getSetCCResultType(VT),
1758                       AndOp, DAG.getConstant(0, VT),
1759                       ISD::SETNE);
1760  }
1761
1762  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1763  addSuccessorWithWeight(SwitchBB, NextMBB);
1764
1765  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1766                              MVT::Other, getControlRoot(),
1767                              Cmp, DAG.getBasicBlock(B.TargetBB));
1768
1769  // Set NextBlock to be the MBB immediately after the current one, if any.
1770  // This is used to avoid emitting unnecessary branches to the next block.
1771  MachineBasicBlock *NextBlock = 0;
1772  MachineFunction::iterator BBI = SwitchBB;
1773  if (++BBI != FuncInfo.MF->end())
1774    NextBlock = BBI;
1775
1776  if (NextMBB != NextBlock)
1777    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1778                        DAG.getBasicBlock(NextMBB));
1779
1780  DAG.setRoot(BrAnd);
1781}
1782
1783void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1784  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1785
1786  // Retrieve successors.
1787  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1788  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1789
1790  const Value *Callee(I.getCalledValue());
1791  if (isa<InlineAsm>(Callee))
1792    visitInlineAsm(&I);
1793  else
1794    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1795
1796  // If the value of the invoke is used outside of its defining block, make it
1797  // available as a virtual register.
1798  CopyToExportRegsIfNeeded(&I);
1799
1800  // Update successor info
1801  InvokeMBB->addSuccessor(Return);
1802  InvokeMBB->addSuccessor(LandingPad);
1803
1804  // Drop into normal successor.
1805  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1806                          MVT::Other, getControlRoot(),
1807                          DAG.getBasicBlock(Return)));
1808}
1809
1810void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1811}
1812
1813void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1814  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1815}
1816
1817/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1818/// small case ranges).
1819bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1820                                                 CaseRecVector& WorkList,
1821                                                 const Value* SV,
1822                                                 MachineBasicBlock *Default,
1823                                                 MachineBasicBlock *SwitchBB) {
1824  Case& BackCase  = *(CR.Range.second-1);
1825
1826  // Size is the number of Cases represented by this range.
1827  size_t Size = CR.Range.second - CR.Range.first;
1828  if (Size > 3)
1829    return false;
1830
1831  // Get the MachineFunction which holds the current MBB.  This is used when
1832  // inserting any additional MBBs necessary to represent the switch.
1833  MachineFunction *CurMF = FuncInfo.MF;
1834
1835  // Figure out which block is immediately after the current one.
1836  MachineBasicBlock *NextBlock = 0;
1837  MachineFunction::iterator BBI = CR.CaseBB;
1838
1839  if (++BBI != FuncInfo.MF->end())
1840    NextBlock = BBI;
1841
1842  // If any two of the cases has the same destination, and if one value
1843  // is the same as the other, but has one bit unset that the other has set,
1844  // use bit manipulation to do two compares at once.  For example:
1845  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1846  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1847  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1848  if (Size == 2 && CR.CaseBB == SwitchBB) {
1849    Case &Small = *CR.Range.first;
1850    Case &Big = *(CR.Range.second-1);
1851
1852    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1853      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1854      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1855
1856      // Check that there is only one bit different.
1857      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1858          (SmallValue | BigValue) == BigValue) {
1859        // Isolate the common bit.
1860        APInt CommonBit = BigValue & ~SmallValue;
1861        assert((SmallValue | CommonBit) == BigValue &&
1862               CommonBit.countPopulation() == 1 && "Not a common bit?");
1863
1864        SDValue CondLHS = getValue(SV);
1865        EVT VT = CondLHS.getValueType();
1866        DebugLoc DL = getCurDebugLoc();
1867
1868        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1869                                 DAG.getConstant(CommonBit, VT));
1870        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1871                                    Or, DAG.getConstant(BigValue, VT),
1872                                    ISD::SETEQ);
1873
1874        // Update successor info.
1875        addSuccessorWithWeight(SwitchBB, Small.BB);
1876        addSuccessorWithWeight(SwitchBB, Default);
1877
1878        // Insert the true branch.
1879        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1880                                     getControlRoot(), Cond,
1881                                     DAG.getBasicBlock(Small.BB));
1882
1883        // Insert the false branch.
1884        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1885                             DAG.getBasicBlock(Default));
1886
1887        DAG.setRoot(BrCond);
1888        return true;
1889      }
1890    }
1891  }
1892
1893  // Rearrange the case blocks so that the last one falls through if possible.
1894  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1895    // The last case block won't fall through into 'NextBlock' if we emit the
1896    // branches in this order.  See if rearranging a case value would help.
1897    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1898      if (I->BB == NextBlock) {
1899        std::swap(*I, BackCase);
1900        break;
1901      }
1902    }
1903  }
1904
1905  // Create a CaseBlock record representing a conditional branch to
1906  // the Case's target mbb if the value being switched on SV is equal
1907  // to C.
1908  MachineBasicBlock *CurBlock = CR.CaseBB;
1909  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1910    MachineBasicBlock *FallThrough;
1911    if (I != E-1) {
1912      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1913      CurMF->insert(BBI, FallThrough);
1914
1915      // Put SV in a virtual register to make it available from the new blocks.
1916      ExportFromCurrentBlock(SV);
1917    } else {
1918      // If the last case doesn't match, go to the default block.
1919      FallThrough = Default;
1920    }
1921
1922    const Value *RHS, *LHS, *MHS;
1923    ISD::CondCode CC;
1924    if (I->High == I->Low) {
1925      // This is just small small case range :) containing exactly 1 case
1926      CC = ISD::SETEQ;
1927      LHS = SV; RHS = I->High; MHS = NULL;
1928    } else {
1929      CC = ISD::SETLE;
1930      LHS = I->Low; MHS = SV; RHS = I->High;
1931    }
1932
1933    uint32_t ExtraWeight = I->ExtraWeight;
1934    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1935                 /* me */ CurBlock,
1936                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1937
1938    // If emitting the first comparison, just call visitSwitchCase to emit the
1939    // code into the current block.  Otherwise, push the CaseBlock onto the
1940    // vector to be later processed by SDISel, and insert the node's MBB
1941    // before the next MBB.
1942    if (CurBlock == SwitchBB)
1943      visitSwitchCase(CB, SwitchBB);
1944    else
1945      SwitchCases.push_back(CB);
1946
1947    CurBlock = FallThrough;
1948  }
1949
1950  return true;
1951}
1952
1953static inline bool areJTsAllowed(const TargetLowering &TLI) {
1954  return !DisableJumpTables &&
1955          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1956           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1957}
1958
1959static APInt ComputeRange(const APInt &First, const APInt &Last) {
1960  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1961  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1962  return (LastExt - FirstExt + 1ULL);
1963}
1964
1965/// handleJTSwitchCase - Emit jumptable for current switch case range
1966bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1967                                             CaseRecVector& WorkList,
1968                                             const Value* SV,
1969                                             MachineBasicBlock* Default,
1970                                             MachineBasicBlock *SwitchBB) {
1971  Case& FrontCase = *CR.Range.first;
1972  Case& BackCase  = *(CR.Range.second-1);
1973
1974  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1975  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1976
1977  APInt TSize(First.getBitWidth(), 0);
1978  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1979       I!=E; ++I)
1980    TSize += I->size();
1981
1982  if (!areJTsAllowed(TLI) || TSize.ult(4))
1983    return false;
1984
1985  APInt Range = ComputeRange(First, Last);
1986  double Density = TSize.roundToDouble() / Range.roundToDouble();
1987  if (Density < 0.4)
1988    return false;
1989
1990  DEBUG(dbgs() << "Lowering jump table\n"
1991               << "First entry: " << First << ". Last entry: " << Last << '\n'
1992               << "Range: " << Range
1993               << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1994
1995  // Get the MachineFunction which holds the current MBB.  This is used when
1996  // inserting any additional MBBs necessary to represent the switch.
1997  MachineFunction *CurMF = FuncInfo.MF;
1998
1999  // Figure out which block is immediately after the current one.
2000  MachineFunction::iterator BBI = CR.CaseBB;
2001  ++BBI;
2002
2003  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2004
2005  // Create a new basic block to hold the code for loading the address
2006  // of the jump table, and jumping to it.  Update successor information;
2007  // we will either branch to the default case for the switch, or the jump
2008  // table.
2009  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2010  CurMF->insert(BBI, JumpTableBB);
2011
2012  addSuccessorWithWeight(CR.CaseBB, Default);
2013  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2014
2015  // Build a vector of destination BBs, corresponding to each target
2016  // of the jump table. If the value of the jump table slot corresponds to
2017  // a case statement, push the case's BB onto the vector, otherwise, push
2018  // the default BB.
2019  std::vector<MachineBasicBlock*> DestBBs;
2020  APInt TEI = First;
2021  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2022    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2023    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2024
2025    if (Low.sle(TEI) && TEI.sle(High)) {
2026      DestBBs.push_back(I->BB);
2027      if (TEI==High)
2028        ++I;
2029    } else {
2030      DestBBs.push_back(Default);
2031    }
2032  }
2033
2034  // Update successor info. Add one edge to each unique successor.
2035  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2036  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2037         E = DestBBs.end(); I != E; ++I) {
2038    if (!SuccsHandled[(*I)->getNumber()]) {
2039      SuccsHandled[(*I)->getNumber()] = true;
2040      addSuccessorWithWeight(JumpTableBB, *I);
2041    }
2042  }
2043
2044  // Create a jump table index for this jump table.
2045  unsigned JTEncoding = TLI.getJumpTableEncoding();
2046  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2047                       ->createJumpTableIndex(DestBBs);
2048
2049  // Set the jump table information so that we can codegen it as a second
2050  // MachineBasicBlock
2051  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2052  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2053  if (CR.CaseBB == SwitchBB)
2054    visitJumpTableHeader(JT, JTH, SwitchBB);
2055
2056  JTCases.push_back(JumpTableBlock(JTH, JT));
2057
2058  return true;
2059}
2060
2061/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2062/// 2 subtrees.
2063bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2064                                                  CaseRecVector& WorkList,
2065                                                  const Value* SV,
2066                                                  MachineBasicBlock *Default,
2067                                                  MachineBasicBlock *SwitchBB) {
2068  // Get the MachineFunction which holds the current MBB.  This is used when
2069  // inserting any additional MBBs necessary to represent the switch.
2070  MachineFunction *CurMF = FuncInfo.MF;
2071
2072  // Figure out which block is immediately after the current one.
2073  MachineFunction::iterator BBI = CR.CaseBB;
2074  ++BBI;
2075
2076  Case& FrontCase = *CR.Range.first;
2077  Case& BackCase  = *(CR.Range.second-1);
2078  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2079
2080  // Size is the number of Cases represented by this range.
2081  unsigned Size = CR.Range.second - CR.Range.first;
2082
2083  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2084  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2085  double FMetric = 0;
2086  CaseItr Pivot = CR.Range.first + Size/2;
2087
2088  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2089  // (heuristically) allow us to emit JumpTable's later.
2090  APInt TSize(First.getBitWidth(), 0);
2091  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2092       I!=E; ++I)
2093    TSize += I->size();
2094
2095  APInt LSize = FrontCase.size();
2096  APInt RSize = TSize-LSize;
2097  DEBUG(dbgs() << "Selecting best pivot: \n"
2098               << "First: " << First << ", Last: " << Last <<'\n'
2099               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2100  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2101       J!=E; ++I, ++J) {
2102    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2103    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2104    APInt Range = ComputeRange(LEnd, RBegin);
2105    assert((Range - 2ULL).isNonNegative() &&
2106           "Invalid case distance");
2107    // Use volatile double here to avoid excess precision issues on some hosts,
2108    // e.g. that use 80-bit X87 registers.
2109    volatile double LDensity =
2110       (double)LSize.roundToDouble() /
2111                           (LEnd - First + 1ULL).roundToDouble();
2112    volatile double RDensity =
2113      (double)RSize.roundToDouble() /
2114                           (Last - RBegin + 1ULL).roundToDouble();
2115    double Metric = Range.logBase2()*(LDensity+RDensity);
2116    // Should always split in some non-trivial place
2117    DEBUG(dbgs() <<"=>Step\n"
2118                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2119                 << "LDensity: " << LDensity
2120                 << ", RDensity: " << RDensity << '\n'
2121                 << "Metric: " << Metric << '\n');
2122    if (FMetric < Metric) {
2123      Pivot = J;
2124      FMetric = Metric;
2125      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2126    }
2127
2128    LSize += J->size();
2129    RSize -= J->size();
2130  }
2131  if (areJTsAllowed(TLI)) {
2132    // If our case is dense we *really* should handle it earlier!
2133    assert((FMetric > 0) && "Should handle dense range earlier!");
2134  } else {
2135    Pivot = CR.Range.first + Size/2;
2136  }
2137
2138  CaseRange LHSR(CR.Range.first, Pivot);
2139  CaseRange RHSR(Pivot, CR.Range.second);
2140  Constant *C = Pivot->Low;
2141  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2142
2143  // We know that we branch to the LHS if the Value being switched on is
2144  // less than the Pivot value, C.  We use this to optimize our binary
2145  // tree a bit, by recognizing that if SV is greater than or equal to the
2146  // LHS's Case Value, and that Case Value is exactly one less than the
2147  // Pivot's Value, then we can branch directly to the LHS's Target,
2148  // rather than creating a leaf node for it.
2149  if ((LHSR.second - LHSR.first) == 1 &&
2150      LHSR.first->High == CR.GE &&
2151      cast<ConstantInt>(C)->getValue() ==
2152      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2153    TrueBB = LHSR.first->BB;
2154  } else {
2155    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2156    CurMF->insert(BBI, TrueBB);
2157    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2158
2159    // Put SV in a virtual register to make it available from the new blocks.
2160    ExportFromCurrentBlock(SV);
2161  }
2162
2163  // Similar to the optimization above, if the Value being switched on is
2164  // known to be less than the Constant CR.LT, and the current Case Value
2165  // is CR.LT - 1, then we can branch directly to the target block for
2166  // the current Case Value, rather than emitting a RHS leaf node for it.
2167  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2168      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2169      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2170    FalseBB = RHSR.first->BB;
2171  } else {
2172    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2173    CurMF->insert(BBI, FalseBB);
2174    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2175
2176    // Put SV in a virtual register to make it available from the new blocks.
2177    ExportFromCurrentBlock(SV);
2178  }
2179
2180  // Create a CaseBlock record representing a conditional branch to
2181  // the LHS node if the value being switched on SV is less than C.
2182  // Otherwise, branch to LHS.
2183  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2184
2185  if (CR.CaseBB == SwitchBB)
2186    visitSwitchCase(CB, SwitchBB);
2187  else
2188    SwitchCases.push_back(CB);
2189
2190  return true;
2191}
2192
2193/// handleBitTestsSwitchCase - if current case range has few destination and
2194/// range span less, than machine word bitwidth, encode case range into series
2195/// of masks and emit bit tests with these masks.
2196bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2197                                                   CaseRecVector& WorkList,
2198                                                   const Value* SV,
2199                                                   MachineBasicBlock* Default,
2200                                                   MachineBasicBlock *SwitchBB){
2201  EVT PTy = TLI.getPointerTy();
2202  unsigned IntPtrBits = PTy.getSizeInBits();
2203
2204  Case& FrontCase = *CR.Range.first;
2205  Case& BackCase  = *(CR.Range.second-1);
2206
2207  // Get the MachineFunction which holds the current MBB.  This is used when
2208  // inserting any additional MBBs necessary to represent the switch.
2209  MachineFunction *CurMF = FuncInfo.MF;
2210
2211  // If target does not have legal shift left, do not emit bit tests at all.
2212  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2213    return false;
2214
2215  size_t numCmps = 0;
2216  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2217       I!=E; ++I) {
2218    // Single case counts one, case range - two.
2219    numCmps += (I->Low == I->High ? 1 : 2);
2220  }
2221
2222  // Count unique destinations
2223  SmallSet<MachineBasicBlock*, 4> Dests;
2224  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2225    Dests.insert(I->BB);
2226    if (Dests.size() > 3)
2227      // Don't bother the code below, if there are too much unique destinations
2228      return false;
2229  }
2230  DEBUG(dbgs() << "Total number of unique destinations: "
2231        << Dests.size() << '\n'
2232        << "Total number of comparisons: " << numCmps << '\n');
2233
2234  // Compute span of values.
2235  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2236  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2237  APInt cmpRange = maxValue - minValue;
2238
2239  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2240               << "Low bound: " << minValue << '\n'
2241               << "High bound: " << maxValue << '\n');
2242
2243  if (cmpRange.uge(IntPtrBits) ||
2244      (!(Dests.size() == 1 && numCmps >= 3) &&
2245       !(Dests.size() == 2 && numCmps >= 5) &&
2246       !(Dests.size() >= 3 && numCmps >= 6)))
2247    return false;
2248
2249  DEBUG(dbgs() << "Emitting bit tests\n");
2250  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2251
2252  // Optimize the case where all the case values fit in a
2253  // word without having to subtract minValue. In this case,
2254  // we can optimize away the subtraction.
2255  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2256    cmpRange = maxValue;
2257  } else {
2258    lowBound = minValue;
2259  }
2260
2261  CaseBitsVector CasesBits;
2262  unsigned i, count = 0;
2263
2264  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2265    MachineBasicBlock* Dest = I->BB;
2266    for (i = 0; i < count; ++i)
2267      if (Dest == CasesBits[i].BB)
2268        break;
2269
2270    if (i == count) {
2271      assert((count < 3) && "Too much destinations to test!");
2272      CasesBits.push_back(CaseBits(0, Dest, 0));
2273      count++;
2274    }
2275
2276    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2277    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2278
2279    uint64_t lo = (lowValue - lowBound).getZExtValue();
2280    uint64_t hi = (highValue - lowBound).getZExtValue();
2281
2282    for (uint64_t j = lo; j <= hi; j++) {
2283      CasesBits[i].Mask |=  1ULL << j;
2284      CasesBits[i].Bits++;
2285    }
2286
2287  }
2288  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2289
2290  BitTestInfo BTC;
2291
2292  // Figure out which block is immediately after the current one.
2293  MachineFunction::iterator BBI = CR.CaseBB;
2294  ++BBI;
2295
2296  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2297
2298  DEBUG(dbgs() << "Cases:\n");
2299  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2300    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2301                 << ", Bits: " << CasesBits[i].Bits
2302                 << ", BB: " << CasesBits[i].BB << '\n');
2303
2304    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2305    CurMF->insert(BBI, CaseBB);
2306    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2307                              CaseBB,
2308                              CasesBits[i].BB));
2309
2310    // Put SV in a virtual register to make it available from the new blocks.
2311    ExportFromCurrentBlock(SV);
2312  }
2313
2314  BitTestBlock BTB(lowBound, cmpRange, SV,
2315                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2316                   CR.CaseBB, Default, BTC);
2317
2318  if (CR.CaseBB == SwitchBB)
2319    visitBitTestHeader(BTB, SwitchBB);
2320
2321  BitTestCases.push_back(BTB);
2322
2323  return true;
2324}
2325
2326/// Clusterify - Transform simple list of Cases into list of CaseRange's
2327size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2328                                       const SwitchInst& SI) {
2329  size_t numCmps = 0;
2330
2331  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2332  // Start with "simple" cases
2333  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2334    BasicBlock *SuccBB = SI.getSuccessor(i);
2335    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2336
2337    uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2338
2339    Cases.push_back(Case(SI.getSuccessorValue(i),
2340                         SI.getSuccessorValue(i),
2341                         SMBB, ExtraWeight));
2342  }
2343  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2344
2345  // Merge case into clusters
2346  if (Cases.size() >= 2)
2347    // Must recompute end() each iteration because it may be
2348    // invalidated by erase if we hold on to it
2349    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2350         J != Cases.end(); ) {
2351      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2352      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2353      MachineBasicBlock* nextBB = J->BB;
2354      MachineBasicBlock* currentBB = I->BB;
2355
2356      // If the two neighboring cases go to the same destination, merge them
2357      // into a single case.
2358      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2359        I->High = J->High;
2360        J = Cases.erase(J);
2361
2362        if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2363          uint32_t CurWeight = currentBB->getBasicBlock() ?
2364            BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2365          uint32_t NextWeight = nextBB->getBasicBlock() ?
2366            BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2367
2368          BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2369                             CurWeight + NextWeight);
2370        }
2371      } else {
2372        I = J++;
2373      }
2374    }
2375
2376  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2377    if (I->Low != I->High)
2378      // A range counts double, since it requires two compares.
2379      ++numCmps;
2380  }
2381
2382  return numCmps;
2383}
2384
2385void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2386                                           MachineBasicBlock *Last) {
2387  // Update JTCases.
2388  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2389    if (JTCases[i].first.HeaderBB == First)
2390      JTCases[i].first.HeaderBB = Last;
2391
2392  // Update BitTestCases.
2393  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2394    if (BitTestCases[i].Parent == First)
2395      BitTestCases[i].Parent = Last;
2396}
2397
2398void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2399  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2400
2401  // Figure out which block is immediately after the current one.
2402  MachineBasicBlock *NextBlock = 0;
2403  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2404
2405  // If there is only the default destination, branch to it if it is not the
2406  // next basic block.  Otherwise, just fall through.
2407  if (SI.getNumOperands() == 2) {
2408    // Update machine-CFG edges.
2409
2410    // If this is not a fall-through branch, emit the branch.
2411    SwitchMBB->addSuccessor(Default);
2412    if (Default != NextBlock)
2413      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2414                              MVT::Other, getControlRoot(),
2415                              DAG.getBasicBlock(Default)));
2416
2417    return;
2418  }
2419
2420  // If there are any non-default case statements, create a vector of Cases
2421  // representing each one, and sort the vector so that we can efficiently
2422  // create a binary search tree from them.
2423  CaseVector Cases;
2424  size_t numCmps = Clusterify(Cases, SI);
2425  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2426               << ". Total compares: " << numCmps << '\n');
2427  numCmps = 0;
2428
2429  // Get the Value to be switched on and default basic blocks, which will be
2430  // inserted into CaseBlock records, representing basic blocks in the binary
2431  // search tree.
2432  const Value *SV = SI.getOperand(0);
2433
2434  // Push the initial CaseRec onto the worklist
2435  CaseRecVector WorkList;
2436  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2437                             CaseRange(Cases.begin(),Cases.end())));
2438
2439  while (!WorkList.empty()) {
2440    // Grab a record representing a case range to process off the worklist
2441    CaseRec CR = WorkList.back();
2442    WorkList.pop_back();
2443
2444    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2445      continue;
2446
2447    // If the range has few cases (two or less) emit a series of specific
2448    // tests.
2449    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2450      continue;
2451
2452    // If the switch has more than 5 blocks, and at least 40% dense, and the
2453    // target supports indirect branches, then emit a jump table rather than
2454    // lowering the switch to a binary tree of conditional branches.
2455    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2456      continue;
2457
2458    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2459    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2460    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2461  }
2462}
2463
2464void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2465  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2466
2467  // Update machine-CFG edges with unique successors.
2468  SmallVector<BasicBlock*, 32> succs;
2469  succs.reserve(I.getNumSuccessors());
2470  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2471    succs.push_back(I.getSuccessor(i));
2472  array_pod_sort(succs.begin(), succs.end());
2473  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2474  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2475    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2476    addSuccessorWithWeight(IndirectBrMBB, Succ);
2477  }
2478
2479  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2480                          MVT::Other, getControlRoot(),
2481                          getValue(I.getAddress())));
2482}
2483
2484void SelectionDAGBuilder::visitFSub(const User &I) {
2485  // -0.0 - X --> fneg
2486  Type *Ty = I.getType();
2487  if (isa<Constant>(I.getOperand(0)) &&
2488      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2489    SDValue Op2 = getValue(I.getOperand(1));
2490    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2491                             Op2.getValueType(), Op2));
2492    return;
2493  }
2494
2495  visitBinary(I, ISD::FSUB);
2496}
2497
2498void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2499  SDValue Op1 = getValue(I.getOperand(0));
2500  SDValue Op2 = getValue(I.getOperand(1));
2501  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2502                           Op1.getValueType(), Op1, Op2));
2503}
2504
2505void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2506  SDValue Op1 = getValue(I.getOperand(0));
2507  SDValue Op2 = getValue(I.getOperand(1));
2508
2509  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2510
2511  // Coerce the shift amount to the right type if we can.
2512  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2513    unsigned ShiftSize = ShiftTy.getSizeInBits();
2514    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2515    DebugLoc DL = getCurDebugLoc();
2516
2517    // If the operand is smaller than the shift count type, promote it.
2518    if (ShiftSize > Op2Size)
2519      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2520
2521    // If the operand is larger than the shift count type but the shift
2522    // count type has enough bits to represent any shift value, truncate
2523    // it now. This is a common case and it exposes the truncate to
2524    // optimization early.
2525    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2526      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2527    // Otherwise we'll need to temporarily settle for some other convenient
2528    // type.  Type legalization will make adjustments once the shiftee is split.
2529    else
2530      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2531  }
2532
2533  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2534                           Op1.getValueType(), Op1, Op2));
2535}
2536
2537void SelectionDAGBuilder::visitSDiv(const User &I) {
2538  SDValue Op1 = getValue(I.getOperand(0));
2539  SDValue Op2 = getValue(I.getOperand(1));
2540
2541  // Turn exact SDivs into multiplications.
2542  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2543  // exact bit.
2544  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2545      !isa<ConstantSDNode>(Op1) &&
2546      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2547    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2548  else
2549    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2550                             Op1, Op2));
2551}
2552
2553void SelectionDAGBuilder::visitICmp(const User &I) {
2554  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2555  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2556    predicate = IC->getPredicate();
2557  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2558    predicate = ICmpInst::Predicate(IC->getPredicate());
2559  SDValue Op1 = getValue(I.getOperand(0));
2560  SDValue Op2 = getValue(I.getOperand(1));
2561  ISD::CondCode Opcode = getICmpCondCode(predicate);
2562
2563  EVT DestVT = TLI.getValueType(I.getType());
2564  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2565}
2566
2567void SelectionDAGBuilder::visitFCmp(const User &I) {
2568  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2569  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2570    predicate = FC->getPredicate();
2571  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2572    predicate = FCmpInst::Predicate(FC->getPredicate());
2573  SDValue Op1 = getValue(I.getOperand(0));
2574  SDValue Op2 = getValue(I.getOperand(1));
2575  ISD::CondCode Condition = getFCmpCondCode(predicate);
2576  EVT DestVT = TLI.getValueType(I.getType());
2577  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2578}
2579
2580void SelectionDAGBuilder::visitSelect(const User &I) {
2581  SmallVector<EVT, 4> ValueVTs;
2582  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2583  unsigned NumValues = ValueVTs.size();
2584  if (NumValues == 0) return;
2585
2586  SmallVector<SDValue, 4> Values(NumValues);
2587  SDValue Cond     = getValue(I.getOperand(0));
2588  SDValue TrueVal  = getValue(I.getOperand(1));
2589  SDValue FalseVal = getValue(I.getOperand(2));
2590
2591  for (unsigned i = 0; i != NumValues; ++i)
2592    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2593                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2594                            Cond,
2595                            SDValue(TrueVal.getNode(),
2596                                    TrueVal.getResNo() + i),
2597                            SDValue(FalseVal.getNode(),
2598                                    FalseVal.getResNo() + i));
2599
2600  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2601                           DAG.getVTList(&ValueVTs[0], NumValues),
2602                           &Values[0], NumValues));
2603}
2604
2605void SelectionDAGBuilder::visitTrunc(const User &I) {
2606  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2607  SDValue N = getValue(I.getOperand(0));
2608  EVT DestVT = TLI.getValueType(I.getType());
2609  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2610}
2611
2612void SelectionDAGBuilder::visitZExt(const User &I) {
2613  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2614  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2615  SDValue N = getValue(I.getOperand(0));
2616  EVT DestVT = TLI.getValueType(I.getType());
2617  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2618}
2619
2620void SelectionDAGBuilder::visitSExt(const User &I) {
2621  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2622  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2623  SDValue N = getValue(I.getOperand(0));
2624  EVT DestVT = TLI.getValueType(I.getType());
2625  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2626}
2627
2628void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2629  // FPTrunc is never a no-op cast, no need to check
2630  SDValue N = getValue(I.getOperand(0));
2631  EVT DestVT = TLI.getValueType(I.getType());
2632  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2633                           DestVT, N, DAG.getIntPtrConstant(0)));
2634}
2635
2636void SelectionDAGBuilder::visitFPExt(const User &I){
2637  // FPTrunc is never a no-op cast, no need to check
2638  SDValue N = getValue(I.getOperand(0));
2639  EVT DestVT = TLI.getValueType(I.getType());
2640  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2641}
2642
2643void SelectionDAGBuilder::visitFPToUI(const User &I) {
2644  // FPToUI is never a no-op cast, no need to check
2645  SDValue N = getValue(I.getOperand(0));
2646  EVT DestVT = TLI.getValueType(I.getType());
2647  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2648}
2649
2650void SelectionDAGBuilder::visitFPToSI(const User &I) {
2651  // FPToSI is never a no-op cast, no need to check
2652  SDValue N = getValue(I.getOperand(0));
2653  EVT DestVT = TLI.getValueType(I.getType());
2654  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2655}
2656
2657void SelectionDAGBuilder::visitUIToFP(const User &I) {
2658  // UIToFP is never a no-op cast, no need to check
2659  SDValue N = getValue(I.getOperand(0));
2660  EVT DestVT = TLI.getValueType(I.getType());
2661  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2662}
2663
2664void SelectionDAGBuilder::visitSIToFP(const User &I){
2665  // SIToFP is never a no-op cast, no need to check
2666  SDValue N = getValue(I.getOperand(0));
2667  EVT DestVT = TLI.getValueType(I.getType());
2668  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2669}
2670
2671void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2672  // What to do depends on the size of the integer and the size of the pointer.
2673  // We can either truncate, zero extend, or no-op, accordingly.
2674  SDValue N = getValue(I.getOperand(0));
2675  EVT DestVT = TLI.getValueType(I.getType());
2676  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2677}
2678
2679void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2680  // What to do depends on the size of the integer and the size of the pointer.
2681  // We can either truncate, zero extend, or no-op, accordingly.
2682  SDValue N = getValue(I.getOperand(0));
2683  EVT DestVT = TLI.getValueType(I.getType());
2684  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2685}
2686
2687void SelectionDAGBuilder::visitBitCast(const User &I) {
2688  SDValue N = getValue(I.getOperand(0));
2689  EVT DestVT = TLI.getValueType(I.getType());
2690
2691  // BitCast assures us that source and destination are the same size so this is
2692  // either a BITCAST or a no-op.
2693  if (DestVT != N.getValueType())
2694    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2695                             DestVT, N)); // convert types.
2696  else
2697    setValue(&I, N);            // noop cast.
2698}
2699
2700void SelectionDAGBuilder::visitInsertElement(const User &I) {
2701  SDValue InVec = getValue(I.getOperand(0));
2702  SDValue InVal = getValue(I.getOperand(1));
2703  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2704                              TLI.getPointerTy(),
2705                              getValue(I.getOperand(2)));
2706  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2707                           TLI.getValueType(I.getType()),
2708                           InVec, InVal, InIdx));
2709}
2710
2711void SelectionDAGBuilder::visitExtractElement(const User &I) {
2712  SDValue InVec = getValue(I.getOperand(0));
2713  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2714                              TLI.getPointerTy(),
2715                              getValue(I.getOperand(1)));
2716  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2717                           TLI.getValueType(I.getType()), InVec, InIdx));
2718}
2719
2720// Utility for visitShuffleVector - Returns true if the mask is mask starting
2721// from SIndx and increasing to the element length (undefs are allowed).
2722static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2723  unsigned MaskNumElts = Mask.size();
2724  for (unsigned i = 0; i != MaskNumElts; ++i)
2725    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2726      return false;
2727  return true;
2728}
2729
2730void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2731  SmallVector<int, 8> Mask;
2732  SDValue Src1 = getValue(I.getOperand(0));
2733  SDValue Src2 = getValue(I.getOperand(1));
2734
2735  // Convert the ConstantVector mask operand into an array of ints, with -1
2736  // representing undef values.
2737  SmallVector<Constant*, 8> MaskElts;
2738  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2739  unsigned MaskNumElts = MaskElts.size();
2740  for (unsigned i = 0; i != MaskNumElts; ++i) {
2741    if (isa<UndefValue>(MaskElts[i]))
2742      Mask.push_back(-1);
2743    else
2744      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2745  }
2746
2747  EVT VT = TLI.getValueType(I.getType());
2748  EVT SrcVT = Src1.getValueType();
2749  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2750
2751  if (SrcNumElts == MaskNumElts) {
2752    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2753                                      &Mask[0]));
2754    return;
2755  }
2756
2757  // Normalize the shuffle vector since mask and vector length don't match.
2758  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2759    // Mask is longer than the source vectors and is a multiple of the source
2760    // vectors.  We can use concatenate vector to make the mask and vectors
2761    // lengths match.
2762    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2763      // The shuffle is concatenating two vectors together.
2764      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2765                               VT, Src1, Src2));
2766      return;
2767    }
2768
2769    // Pad both vectors with undefs to make them the same length as the mask.
2770    unsigned NumConcat = MaskNumElts / SrcNumElts;
2771    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2772    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2773    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2774
2775    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2776    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2777    MOps1[0] = Src1;
2778    MOps2[0] = Src2;
2779
2780    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2781                                                  getCurDebugLoc(), VT,
2782                                                  &MOps1[0], NumConcat);
2783    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2784                                                  getCurDebugLoc(), VT,
2785                                                  &MOps2[0], NumConcat);
2786
2787    // Readjust mask for new input vector length.
2788    SmallVector<int, 8> MappedOps;
2789    for (unsigned i = 0; i != MaskNumElts; ++i) {
2790      int Idx = Mask[i];
2791      if (Idx < (int)SrcNumElts)
2792        MappedOps.push_back(Idx);
2793      else
2794        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2795    }
2796
2797    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2798                                      &MappedOps[0]));
2799    return;
2800  }
2801
2802  if (SrcNumElts > MaskNumElts) {
2803    // Analyze the access pattern of the vector to see if we can extract
2804    // two subvectors and do the shuffle. The analysis is done by calculating
2805    // the range of elements the mask access on both vectors.
2806    int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2807                        static_cast<int>(SrcNumElts+1)};
2808    int MaxRange[2] = {-1, -1};
2809
2810    for (unsigned i = 0; i != MaskNumElts; ++i) {
2811      int Idx = Mask[i];
2812      int Input = 0;
2813      if (Idx < 0)
2814        continue;
2815
2816      if (Idx >= (int)SrcNumElts) {
2817        Input = 1;
2818        Idx -= SrcNumElts;
2819      }
2820      if (Idx > MaxRange[Input])
2821        MaxRange[Input] = Idx;
2822      if (Idx < MinRange[Input])
2823        MinRange[Input] = Idx;
2824    }
2825
2826    // Check if the access is smaller than the vector size and can we find
2827    // a reasonable extract index.
2828    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2829                                 // Extract.
2830    int StartIdx[2];  // StartIdx to extract from
2831    for (int Input=0; Input < 2; ++Input) {
2832      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2833        RangeUse[Input] = 0; // Unused
2834        StartIdx[Input] = 0;
2835      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2836        // Fits within range but we should see if we can find a good
2837        // start index that is a multiple of the mask length.
2838        if (MaxRange[Input] < (int)MaskNumElts) {
2839          RangeUse[Input] = 1; // Extract from beginning of the vector
2840          StartIdx[Input] = 0;
2841        } else {
2842          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2843          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2844              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2845            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2846        }
2847      }
2848    }
2849
2850    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2851      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2852      return;
2853    }
2854    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2855      // Extract appropriate subvector and generate a vector shuffle
2856      for (int Input=0; Input < 2; ++Input) {
2857        SDValue &Src = Input == 0 ? Src1 : Src2;
2858        if (RangeUse[Input] == 0)
2859          Src = DAG.getUNDEF(VT);
2860        else
2861          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2862                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2863      }
2864
2865      // Calculate new mask.
2866      SmallVector<int, 8> MappedOps;
2867      for (unsigned i = 0; i != MaskNumElts; ++i) {
2868        int Idx = Mask[i];
2869        if (Idx < 0)
2870          MappedOps.push_back(Idx);
2871        else if (Idx < (int)SrcNumElts)
2872          MappedOps.push_back(Idx - StartIdx[0]);
2873        else
2874          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2875      }
2876
2877      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2878                                        &MappedOps[0]));
2879      return;
2880    }
2881  }
2882
2883  // We can't use either concat vectors or extract subvectors so fall back to
2884  // replacing the shuffle with extract and build vector.
2885  // to insert and build vector.
2886  EVT EltVT = VT.getVectorElementType();
2887  EVT PtrVT = TLI.getPointerTy();
2888  SmallVector<SDValue,8> Ops;
2889  for (unsigned i = 0; i != MaskNumElts; ++i) {
2890    if (Mask[i] < 0) {
2891      Ops.push_back(DAG.getUNDEF(EltVT));
2892    } else {
2893      int Idx = Mask[i];
2894      SDValue Res;
2895
2896      if (Idx < (int)SrcNumElts)
2897        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2898                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2899      else
2900        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2901                          EltVT, Src2,
2902                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2903
2904      Ops.push_back(Res);
2905    }
2906  }
2907
2908  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2909                           VT, &Ops[0], Ops.size()));
2910}
2911
2912void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2913  const Value *Op0 = I.getOperand(0);
2914  const Value *Op1 = I.getOperand(1);
2915  Type *AggTy = I.getType();
2916  Type *ValTy = Op1->getType();
2917  bool IntoUndef = isa<UndefValue>(Op0);
2918  bool FromUndef = isa<UndefValue>(Op1);
2919
2920  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2921
2922  SmallVector<EVT, 4> AggValueVTs;
2923  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2924  SmallVector<EVT, 4> ValValueVTs;
2925  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2926
2927  unsigned NumAggValues = AggValueVTs.size();
2928  unsigned NumValValues = ValValueVTs.size();
2929  SmallVector<SDValue, 4> Values(NumAggValues);
2930
2931  SDValue Agg = getValue(Op0);
2932  unsigned i = 0;
2933  // Copy the beginning value(s) from the original aggregate.
2934  for (; i != LinearIndex; ++i)
2935    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2936                SDValue(Agg.getNode(), Agg.getResNo() + i);
2937  // Copy values from the inserted value(s).
2938  if (NumValValues) {
2939    SDValue Val = getValue(Op1);
2940    for (; i != LinearIndex + NumValValues; ++i)
2941      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2942                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2943  }
2944  // Copy remaining value(s) from the original aggregate.
2945  for (; i != NumAggValues; ++i)
2946    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2947                SDValue(Agg.getNode(), Agg.getResNo() + i);
2948
2949  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2950                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2951                           &Values[0], NumAggValues));
2952}
2953
2954void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2955  const Value *Op0 = I.getOperand(0);
2956  Type *AggTy = Op0->getType();
2957  Type *ValTy = I.getType();
2958  bool OutOfUndef = isa<UndefValue>(Op0);
2959
2960  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2961
2962  SmallVector<EVT, 4> ValValueVTs;
2963  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2964
2965  unsigned NumValValues = ValValueVTs.size();
2966
2967  // Ignore a extractvalue that produces an empty object
2968  if (!NumValValues) {
2969    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2970    return;
2971  }
2972
2973  SmallVector<SDValue, 4> Values(NumValValues);
2974
2975  SDValue Agg = getValue(Op0);
2976  // Copy out the selected value(s).
2977  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2978    Values[i - LinearIndex] =
2979      OutOfUndef ?
2980        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2981        SDValue(Agg.getNode(), Agg.getResNo() + i);
2982
2983  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2984                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2985                           &Values[0], NumValValues));
2986}
2987
2988void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2989  SDValue N = getValue(I.getOperand(0));
2990  Type *Ty = I.getOperand(0)->getType();
2991
2992  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2993       OI != E; ++OI) {
2994    const Value *Idx = *OI;
2995    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
2996      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2997      if (Field) {
2998        // N = N + Offset
2999        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3000        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3001                        DAG.getIntPtrConstant(Offset));
3002      }
3003
3004      Ty = StTy->getElementType(Field);
3005    } else {
3006      Ty = cast<SequentialType>(Ty)->getElementType();
3007
3008      // If this is a constant subscript, handle it quickly.
3009      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3010        if (CI->isZero()) continue;
3011        uint64_t Offs =
3012            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3013        SDValue OffsVal;
3014        EVT PTy = TLI.getPointerTy();
3015        unsigned PtrBits = PTy.getSizeInBits();
3016        if (PtrBits < 64)
3017          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3018                                TLI.getPointerTy(),
3019                                DAG.getConstant(Offs, MVT::i64));
3020        else
3021          OffsVal = DAG.getIntPtrConstant(Offs);
3022
3023        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3024                        OffsVal);
3025        continue;
3026      }
3027
3028      // N = N + Idx * ElementSize;
3029      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3030                                TD->getTypeAllocSize(Ty));
3031      SDValue IdxN = getValue(Idx);
3032
3033      // If the index is smaller or larger than intptr_t, truncate or extend
3034      // it.
3035      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3036
3037      // If this is a multiply by a power of two, turn it into a shl
3038      // immediately.  This is a very common case.
3039      if (ElementSize != 1) {
3040        if (ElementSize.isPowerOf2()) {
3041          unsigned Amt = ElementSize.logBase2();
3042          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3043                             N.getValueType(), IdxN,
3044                             DAG.getConstant(Amt, TLI.getPointerTy()));
3045        } else {
3046          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3047          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3048                             N.getValueType(), IdxN, Scale);
3049        }
3050      }
3051
3052      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3053                      N.getValueType(), N, IdxN);
3054    }
3055  }
3056
3057  setValue(&I, N);
3058}
3059
3060void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3061  // If this is a fixed sized alloca in the entry block of the function,
3062  // allocate it statically on the stack.
3063  if (FuncInfo.StaticAllocaMap.count(&I))
3064    return;   // getValue will auto-populate this.
3065
3066  Type *Ty = I.getAllocatedType();
3067  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3068  unsigned Align =
3069    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3070             I.getAlignment());
3071
3072  SDValue AllocSize = getValue(I.getArraySize());
3073
3074  EVT IntPtr = TLI.getPointerTy();
3075  if (AllocSize.getValueType() != IntPtr)
3076    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3077
3078  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3079                          AllocSize,
3080                          DAG.getConstant(TySize, IntPtr));
3081
3082  // Handle alignment.  If the requested alignment is less than or equal to
3083  // the stack alignment, ignore it.  If the size is greater than or equal to
3084  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3085  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3086  if (Align <= StackAlign)
3087    Align = 0;
3088
3089  // Round the size of the allocation up to the stack alignment size
3090  // by add SA-1 to the size.
3091  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3092                          AllocSize.getValueType(), AllocSize,
3093                          DAG.getIntPtrConstant(StackAlign-1));
3094
3095  // Mask out the low bits for alignment purposes.
3096  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3097                          AllocSize.getValueType(), AllocSize,
3098                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3099
3100  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3101  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3102  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3103                            VTs, Ops, 3);
3104  setValue(&I, DSA);
3105  DAG.setRoot(DSA.getValue(1));
3106
3107  // Inform the Frame Information that we have just allocated a variable-sized
3108  // object.
3109  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3110}
3111
3112void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3113  const Value *SV = I.getOperand(0);
3114  SDValue Ptr = getValue(SV);
3115
3116  Type *Ty = I.getType();
3117
3118  bool isVolatile = I.isVolatile();
3119  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3120  unsigned Alignment = I.getAlignment();
3121  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3122
3123  SmallVector<EVT, 4> ValueVTs;
3124  SmallVector<uint64_t, 4> Offsets;
3125  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3126  unsigned NumValues = ValueVTs.size();
3127  if (NumValues == 0)
3128    return;
3129
3130  SDValue Root;
3131  bool ConstantMemory = false;
3132  if (I.isVolatile() || NumValues > MaxParallelChains)
3133    // Serialize volatile loads with other side effects.
3134    Root = getRoot();
3135  else if (AA->pointsToConstantMemory(
3136             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3137    // Do not serialize (non-volatile) loads of constant memory with anything.
3138    Root = DAG.getEntryNode();
3139    ConstantMemory = true;
3140  } else {
3141    // Do not serialize non-volatile loads against each other.
3142    Root = DAG.getRoot();
3143  }
3144
3145  SmallVector<SDValue, 4> Values(NumValues);
3146  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3147                                          NumValues));
3148  EVT PtrVT = Ptr.getValueType();
3149  unsigned ChainI = 0;
3150  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3151    // Serializing loads here may result in excessive register pressure, and
3152    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3153    // could recover a bit by hoisting nodes upward in the chain by recognizing
3154    // they are side-effect free or do not alias. The optimizer should really
3155    // avoid this case by converting large object/array copies to llvm.memcpy
3156    // (MaxParallelChains should always remain as failsafe).
3157    if (ChainI == MaxParallelChains) {
3158      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3159      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3160                                  MVT::Other, &Chains[0], ChainI);
3161      Root = Chain;
3162      ChainI = 0;
3163    }
3164    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3165                            PtrVT, Ptr,
3166                            DAG.getConstant(Offsets[i], PtrVT));
3167    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3168                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3169                            isNonTemporal, Alignment, TBAAInfo);
3170
3171    Values[i] = L;
3172    Chains[ChainI] = L.getValue(1);
3173  }
3174
3175  if (!ConstantMemory) {
3176    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3177                                MVT::Other, &Chains[0], ChainI);
3178    if (isVolatile)
3179      DAG.setRoot(Chain);
3180    else
3181      PendingLoads.push_back(Chain);
3182  }
3183
3184  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3185                           DAG.getVTList(&ValueVTs[0], NumValues),
3186                           &Values[0], NumValues));
3187}
3188
3189void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3190  const Value *SrcV = I.getOperand(0);
3191  const Value *PtrV = I.getOperand(1);
3192
3193  SmallVector<EVT, 4> ValueVTs;
3194  SmallVector<uint64_t, 4> Offsets;
3195  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3196  unsigned NumValues = ValueVTs.size();
3197  if (NumValues == 0)
3198    return;
3199
3200  // Get the lowered operands. Note that we do this after
3201  // checking if NumResults is zero, because with zero results
3202  // the operands won't have values in the map.
3203  SDValue Src = getValue(SrcV);
3204  SDValue Ptr = getValue(PtrV);
3205
3206  SDValue Root = getRoot();
3207  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3208                                          NumValues));
3209  EVT PtrVT = Ptr.getValueType();
3210  bool isVolatile = I.isVolatile();
3211  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3212  unsigned Alignment = I.getAlignment();
3213  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3214
3215  unsigned ChainI = 0;
3216  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3217    // See visitLoad comments.
3218    if (ChainI == MaxParallelChains) {
3219      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3220                                  MVT::Other, &Chains[0], ChainI);
3221      Root = Chain;
3222      ChainI = 0;
3223    }
3224    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3225                              DAG.getConstant(Offsets[i], PtrVT));
3226    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3227                              SDValue(Src.getNode(), Src.getResNo() + i),
3228                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3229                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3230    Chains[ChainI] = St;
3231  }
3232
3233  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3234                                  MVT::Other, &Chains[0], ChainI);
3235  ++SDNodeOrder;
3236  AssignOrderingToNode(StoreNode.getNode());
3237  DAG.setRoot(StoreNode);
3238}
3239
3240static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3241                                    bool Before, DebugLoc dl,
3242                                    SelectionDAG &DAG,
3243                                    const TargetLowering &TLI) {
3244  // Fence, if necessary
3245  if (Before) {
3246    if (Order == AcquireRelease)
3247      Order = Release;
3248    else if (Order == Acquire || Order == Monotonic)
3249      return Chain;
3250  } else {
3251    if (Order == AcquireRelease)
3252      Order = Acquire;
3253    else if (Order == Release || Order == Monotonic)
3254      return Chain;
3255  }
3256  SDValue Ops[3];
3257  Ops[0] = Chain;
3258  Ops[1] = DAG.getConstant(SequentiallyConsistent, TLI.getPointerTy());
3259  Ops[2] = DAG.getConstant(Order, TLI.getPointerTy());
3260  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3261}
3262
3263void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3264  DebugLoc dl = getCurDebugLoc();
3265  AtomicOrdering Order = I.getOrdering();
3266
3267  SDValue InChain = getRoot();
3268
3269  if (TLI.getInsertFencesForAtomic())
3270    InChain = InsertFenceForAtomic(InChain, Order, true, dl, DAG, TLI);
3271
3272  SDValue L =
3273    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3274                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3275                  InChain,
3276                  getValue(I.getPointerOperand()),
3277                  getValue(I.getCompareOperand()),
3278                  getValue(I.getNewValOperand()),
3279                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3280                  I.getOrdering(), I.getSynchScope());
3281
3282  SDValue OutChain = L.getValue(1);
3283
3284  if (TLI.getInsertFencesForAtomic())
3285    OutChain = InsertFenceForAtomic(OutChain, Order, false, dl, DAG, TLI);
3286
3287  setValue(&I, L);
3288  DAG.setRoot(OutChain);
3289}
3290
3291void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3292  DebugLoc dl = getCurDebugLoc();
3293  ISD::NodeType NT;
3294  switch (I.getOperation()) {
3295  default: llvm_unreachable("Unknown atomicrmw operation"); return;
3296  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3297  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3298  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3299  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3300  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3301  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3302  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3303  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3304  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3305  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3306  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3307  }
3308  AtomicOrdering Order = I.getOrdering();
3309
3310  SDValue InChain = getRoot();
3311
3312  if (TLI.getInsertFencesForAtomic())
3313    InChain = InsertFenceForAtomic(InChain, Order, true, dl, DAG, TLI);
3314
3315  SDValue L =
3316    DAG.getAtomic(NT, dl,
3317                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3318                  InChain,
3319                  getValue(I.getPointerOperand()),
3320                  getValue(I.getValOperand()),
3321                  I.getPointerOperand(), 0 /* Alignment */,
3322                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3323                  I.getSynchScope());
3324
3325  SDValue OutChain = L.getValue(1);
3326
3327  if (TLI.getInsertFencesForAtomic())
3328    OutChain = InsertFenceForAtomic(OutChain, Order, false, dl, DAG, TLI);
3329
3330  setValue(&I, L);
3331  DAG.setRoot(OutChain);
3332}
3333
3334void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3335  DebugLoc dl = getCurDebugLoc();
3336  SDValue Ops[3];
3337  Ops[0] = getRoot();
3338  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3339  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3340  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3341}
3342
3343/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3344/// node.
3345void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3346                                               unsigned Intrinsic) {
3347  bool HasChain = !I.doesNotAccessMemory();
3348  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3349
3350  // Build the operand list.
3351  SmallVector<SDValue, 8> Ops;
3352  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3353    if (OnlyLoad) {
3354      // We don't need to serialize loads against other loads.
3355      Ops.push_back(DAG.getRoot());
3356    } else {
3357      Ops.push_back(getRoot());
3358    }
3359  }
3360
3361  // Info is set by getTgtMemInstrinsic
3362  TargetLowering::IntrinsicInfo Info;
3363  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3364
3365  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3366  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3367      Info.opc == ISD::INTRINSIC_W_CHAIN)
3368    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3369
3370  // Add all operands of the call to the operand list.
3371  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3372    SDValue Op = getValue(I.getArgOperand(i));
3373    assert(TLI.isTypeLegal(Op.getValueType()) &&
3374           "Intrinsic uses a non-legal type?");
3375    Ops.push_back(Op);
3376  }
3377
3378  SmallVector<EVT, 4> ValueVTs;
3379  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3380#ifndef NDEBUG
3381  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3382    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3383           "Intrinsic uses a non-legal type?");
3384  }
3385#endif // NDEBUG
3386
3387  if (HasChain)
3388    ValueVTs.push_back(MVT::Other);
3389
3390  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3391
3392  // Create the node.
3393  SDValue Result;
3394  if (IsTgtIntrinsic) {
3395    // This is target intrinsic that touches memory
3396    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3397                                     VTs, &Ops[0], Ops.size(),
3398                                     Info.memVT,
3399                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3400                                     Info.align, Info.vol,
3401                                     Info.readMem, Info.writeMem);
3402  } else if (!HasChain) {
3403    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3404                         VTs, &Ops[0], Ops.size());
3405  } else if (!I.getType()->isVoidTy()) {
3406    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3407                         VTs, &Ops[0], Ops.size());
3408  } else {
3409    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3410                         VTs, &Ops[0], Ops.size());
3411  }
3412
3413  if (HasChain) {
3414    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3415    if (OnlyLoad)
3416      PendingLoads.push_back(Chain);
3417    else
3418      DAG.setRoot(Chain);
3419  }
3420
3421  if (!I.getType()->isVoidTy()) {
3422    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3423      EVT VT = TLI.getValueType(PTy);
3424      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3425    }
3426
3427    setValue(&I, Result);
3428  }
3429}
3430
3431/// GetSignificand - Get the significand and build it into a floating-point
3432/// number with exponent of 1:
3433///
3434///   Op = (Op & 0x007fffff) | 0x3f800000;
3435///
3436/// where Op is the hexidecimal representation of floating point value.
3437static SDValue
3438GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3439  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3440                           DAG.getConstant(0x007fffff, MVT::i32));
3441  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3442                           DAG.getConstant(0x3f800000, MVT::i32));
3443  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3444}
3445
3446/// GetExponent - Get the exponent:
3447///
3448///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3449///
3450/// where Op is the hexidecimal representation of floating point value.
3451static SDValue
3452GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3453            DebugLoc dl) {
3454  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3455                           DAG.getConstant(0x7f800000, MVT::i32));
3456  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3457                           DAG.getConstant(23, TLI.getPointerTy()));
3458  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3459                           DAG.getConstant(127, MVT::i32));
3460  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3461}
3462
3463/// getF32Constant - Get 32-bit floating point constant.
3464static SDValue
3465getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3466  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3467}
3468
3469/// Inlined utility function to implement binary input atomic intrinsics for
3470/// visitIntrinsicCall: I is a call instruction
3471///                     Op is the associated NodeType for I
3472const char *
3473SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3474                                           ISD::NodeType Op) {
3475  SDValue Root = getRoot();
3476  SDValue L =
3477    DAG.getAtomic(Op, getCurDebugLoc(),
3478                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3479                  Root,
3480                  getValue(I.getArgOperand(0)),
3481                  getValue(I.getArgOperand(1)),
3482                  I.getArgOperand(0), 0 /* Alignment */,
3483                  Monotonic, CrossThread);
3484  setValue(&I, L);
3485  DAG.setRoot(L.getValue(1));
3486  return 0;
3487}
3488
3489// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3490const char *
3491SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3492  SDValue Op1 = getValue(I.getArgOperand(0));
3493  SDValue Op2 = getValue(I.getArgOperand(1));
3494
3495  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3496  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3497  return 0;
3498}
3499
3500/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3501/// limited-precision mode.
3502void
3503SelectionDAGBuilder::visitExp(const CallInst &I) {
3504  SDValue result;
3505  DebugLoc dl = getCurDebugLoc();
3506
3507  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3508      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3509    SDValue Op = getValue(I.getArgOperand(0));
3510
3511    // Put the exponent in the right bit position for later addition to the
3512    // final result:
3513    //
3514    //   #define LOG2OFe 1.4426950f
3515    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3516    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3517                             getF32Constant(DAG, 0x3fb8aa3b));
3518    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3519
3520    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3521    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3522    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3523
3524    //   IntegerPartOfX <<= 23;
3525    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3526                                 DAG.getConstant(23, TLI.getPointerTy()));
3527
3528    if (LimitFloatPrecision <= 6) {
3529      // For floating-point precision of 6:
3530      //
3531      //   TwoToFractionalPartOfX =
3532      //     0.997535578f +
3533      //       (0.735607626f + 0.252464424f * x) * x;
3534      //
3535      // error 0.0144103317, which is 6 bits
3536      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3537                               getF32Constant(DAG, 0x3e814304));
3538      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3539                               getF32Constant(DAG, 0x3f3c50c8));
3540      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3541      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3542                               getF32Constant(DAG, 0x3f7f5e7e));
3543      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3544
3545      // Add the exponent into the result in integer domain.
3546      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3547                               TwoToFracPartOfX, IntegerPartOfX);
3548
3549      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3550    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3551      // For floating-point precision of 12:
3552      //
3553      //   TwoToFractionalPartOfX =
3554      //     0.999892986f +
3555      //       (0.696457318f +
3556      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3557      //
3558      // 0.000107046256 error, which is 13 to 14 bits
3559      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3560                               getF32Constant(DAG, 0x3da235e3));
3561      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3562                               getF32Constant(DAG, 0x3e65b8f3));
3563      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3564      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3565                               getF32Constant(DAG, 0x3f324b07));
3566      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3567      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3568                               getF32Constant(DAG, 0x3f7ff8fd));
3569      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3570
3571      // Add the exponent into the result in integer domain.
3572      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3573                               TwoToFracPartOfX, IntegerPartOfX);
3574
3575      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3576    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3577      // For floating-point precision of 18:
3578      //
3579      //   TwoToFractionalPartOfX =
3580      //     0.999999982f +
3581      //       (0.693148872f +
3582      //         (0.240227044f +
3583      //           (0.554906021e-1f +
3584      //             (0.961591928e-2f +
3585      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3586      //
3587      // error 2.47208000*10^(-7), which is better than 18 bits
3588      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3589                               getF32Constant(DAG, 0x3924b03e));
3590      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3591                               getF32Constant(DAG, 0x3ab24b87));
3592      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3593      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3594                               getF32Constant(DAG, 0x3c1d8c17));
3595      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3596      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3597                               getF32Constant(DAG, 0x3d634a1d));
3598      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3599      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3600                               getF32Constant(DAG, 0x3e75fe14));
3601      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3602      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3603                                getF32Constant(DAG, 0x3f317234));
3604      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3605      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3606                                getF32Constant(DAG, 0x3f800000));
3607      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3608                                             MVT::i32, t13);
3609
3610      // Add the exponent into the result in integer domain.
3611      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3612                                TwoToFracPartOfX, IntegerPartOfX);
3613
3614      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3615    }
3616  } else {
3617    // No special expansion.
3618    result = DAG.getNode(ISD::FEXP, dl,
3619                         getValue(I.getArgOperand(0)).getValueType(),
3620                         getValue(I.getArgOperand(0)));
3621  }
3622
3623  setValue(&I, result);
3624}
3625
3626/// visitLog - Lower a log intrinsic. Handles the special sequences for
3627/// limited-precision mode.
3628void
3629SelectionDAGBuilder::visitLog(const CallInst &I) {
3630  SDValue result;
3631  DebugLoc dl = getCurDebugLoc();
3632
3633  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3634      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3635    SDValue Op = getValue(I.getArgOperand(0));
3636    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3637
3638    // Scale the exponent by log(2) [0.69314718f].
3639    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3640    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3641                                        getF32Constant(DAG, 0x3f317218));
3642
3643    // Get the significand and build it into a floating-point number with
3644    // exponent of 1.
3645    SDValue X = GetSignificand(DAG, Op1, dl);
3646
3647    if (LimitFloatPrecision <= 6) {
3648      // For floating-point precision of 6:
3649      //
3650      //   LogofMantissa =
3651      //     -1.1609546f +
3652      //       (1.4034025f - 0.23903021f * x) * x;
3653      //
3654      // error 0.0034276066, which is better than 8 bits
3655      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3656                               getF32Constant(DAG, 0xbe74c456));
3657      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3658                               getF32Constant(DAG, 0x3fb3a2b1));
3659      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3660      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3661                                          getF32Constant(DAG, 0x3f949a29));
3662
3663      result = DAG.getNode(ISD::FADD, dl,
3664                           MVT::f32, LogOfExponent, LogOfMantissa);
3665    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3666      // For floating-point precision of 12:
3667      //
3668      //   LogOfMantissa =
3669      //     -1.7417939f +
3670      //       (2.8212026f +
3671      //         (-1.4699568f +
3672      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3673      //
3674      // error 0.000061011436, which is 14 bits
3675      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3676                               getF32Constant(DAG, 0xbd67b6d6));
3677      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3678                               getF32Constant(DAG, 0x3ee4f4b8));
3679      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3680      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3681                               getF32Constant(DAG, 0x3fbc278b));
3682      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3683      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3684                               getF32Constant(DAG, 0x40348e95));
3685      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3686      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3687                                          getF32Constant(DAG, 0x3fdef31a));
3688
3689      result = DAG.getNode(ISD::FADD, dl,
3690                           MVT::f32, LogOfExponent, LogOfMantissa);
3691    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3692      // For floating-point precision of 18:
3693      //
3694      //   LogOfMantissa =
3695      //     -2.1072184f +
3696      //       (4.2372794f +
3697      //         (-3.7029485f +
3698      //           (2.2781945f +
3699      //             (-0.87823314f +
3700      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3701      //
3702      // error 0.0000023660568, which is better than 18 bits
3703      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3704                               getF32Constant(DAG, 0xbc91e5ac));
3705      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3706                               getF32Constant(DAG, 0x3e4350aa));
3707      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3708      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3709                               getF32Constant(DAG, 0x3f60d3e3));
3710      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3711      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3712                               getF32Constant(DAG, 0x4011cdf0));
3713      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3714      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3715                               getF32Constant(DAG, 0x406cfd1c));
3716      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3717      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3718                               getF32Constant(DAG, 0x408797cb));
3719      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3720      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3721                                          getF32Constant(DAG, 0x4006dcab));
3722
3723      result = DAG.getNode(ISD::FADD, dl,
3724                           MVT::f32, LogOfExponent, LogOfMantissa);
3725    }
3726  } else {
3727    // No special expansion.
3728    result = DAG.getNode(ISD::FLOG, dl,
3729                         getValue(I.getArgOperand(0)).getValueType(),
3730                         getValue(I.getArgOperand(0)));
3731  }
3732
3733  setValue(&I, result);
3734}
3735
3736/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3737/// limited-precision mode.
3738void
3739SelectionDAGBuilder::visitLog2(const CallInst &I) {
3740  SDValue result;
3741  DebugLoc dl = getCurDebugLoc();
3742
3743  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3744      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3745    SDValue Op = getValue(I.getArgOperand(0));
3746    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3747
3748    // Get the exponent.
3749    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3750
3751    // Get the significand and build it into a floating-point number with
3752    // exponent of 1.
3753    SDValue X = GetSignificand(DAG, Op1, dl);
3754
3755    // Different possible minimax approximations of significand in
3756    // floating-point for various degrees of accuracy over [1,2].
3757    if (LimitFloatPrecision <= 6) {
3758      // For floating-point precision of 6:
3759      //
3760      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3761      //
3762      // error 0.0049451742, which is more than 7 bits
3763      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3764                               getF32Constant(DAG, 0xbeb08fe0));
3765      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3766                               getF32Constant(DAG, 0x40019463));
3767      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3768      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3769                                           getF32Constant(DAG, 0x3fd6633d));
3770
3771      result = DAG.getNode(ISD::FADD, dl,
3772                           MVT::f32, LogOfExponent, Log2ofMantissa);
3773    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3774      // For floating-point precision of 12:
3775      //
3776      //   Log2ofMantissa =
3777      //     -2.51285454f +
3778      //       (4.07009056f +
3779      //         (-2.12067489f +
3780      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3781      //
3782      // error 0.0000876136000, which is better than 13 bits
3783      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3784                               getF32Constant(DAG, 0xbda7262e));
3785      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3786                               getF32Constant(DAG, 0x3f25280b));
3787      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3788      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3789                               getF32Constant(DAG, 0x4007b923));
3790      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3791      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3792                               getF32Constant(DAG, 0x40823e2f));
3793      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3794      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3795                                           getF32Constant(DAG, 0x4020d29c));
3796
3797      result = DAG.getNode(ISD::FADD, dl,
3798                           MVT::f32, LogOfExponent, Log2ofMantissa);
3799    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3800      // For floating-point precision of 18:
3801      //
3802      //   Log2ofMantissa =
3803      //     -3.0400495f +
3804      //       (6.1129976f +
3805      //         (-5.3420409f +
3806      //           (3.2865683f +
3807      //             (-1.2669343f +
3808      //               (0.27515199f -
3809      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3810      //
3811      // error 0.0000018516, which is better than 18 bits
3812      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3813                               getF32Constant(DAG, 0xbcd2769e));
3814      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3815                               getF32Constant(DAG, 0x3e8ce0b9));
3816      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3817      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3818                               getF32Constant(DAG, 0x3fa22ae7));
3819      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3820      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3821                               getF32Constant(DAG, 0x40525723));
3822      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3823      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3824                               getF32Constant(DAG, 0x40aaf200));
3825      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3826      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3827                               getF32Constant(DAG, 0x40c39dad));
3828      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3829      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3830                                           getF32Constant(DAG, 0x4042902c));
3831
3832      result = DAG.getNode(ISD::FADD, dl,
3833                           MVT::f32, LogOfExponent, Log2ofMantissa);
3834    }
3835  } else {
3836    // No special expansion.
3837    result = DAG.getNode(ISD::FLOG2, dl,
3838                         getValue(I.getArgOperand(0)).getValueType(),
3839                         getValue(I.getArgOperand(0)));
3840  }
3841
3842  setValue(&I, result);
3843}
3844
3845/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3846/// limited-precision mode.
3847void
3848SelectionDAGBuilder::visitLog10(const CallInst &I) {
3849  SDValue result;
3850  DebugLoc dl = getCurDebugLoc();
3851
3852  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3853      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3854    SDValue Op = getValue(I.getArgOperand(0));
3855    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3856
3857    // Scale the exponent by log10(2) [0.30102999f].
3858    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3859    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3860                                        getF32Constant(DAG, 0x3e9a209a));
3861
3862    // Get the significand and build it into a floating-point number with
3863    // exponent of 1.
3864    SDValue X = GetSignificand(DAG, Op1, dl);
3865
3866    if (LimitFloatPrecision <= 6) {
3867      // For floating-point precision of 6:
3868      //
3869      //   Log10ofMantissa =
3870      //     -0.50419619f +
3871      //       (0.60948995f - 0.10380950f * x) * x;
3872      //
3873      // error 0.0014886165, which is 6 bits
3874      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3875                               getF32Constant(DAG, 0xbdd49a13));
3876      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3877                               getF32Constant(DAG, 0x3f1c0789));
3878      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3879      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3880                                            getF32Constant(DAG, 0x3f011300));
3881
3882      result = DAG.getNode(ISD::FADD, dl,
3883                           MVT::f32, LogOfExponent, Log10ofMantissa);
3884    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3885      // For floating-point precision of 12:
3886      //
3887      //   Log10ofMantissa =
3888      //     -0.64831180f +
3889      //       (0.91751397f +
3890      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3891      //
3892      // error 0.00019228036, which is better than 12 bits
3893      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3894                               getF32Constant(DAG, 0x3d431f31));
3895      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3896                               getF32Constant(DAG, 0x3ea21fb2));
3897      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3898      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3899                               getF32Constant(DAG, 0x3f6ae232));
3900      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3901      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3902                                            getF32Constant(DAG, 0x3f25f7c3));
3903
3904      result = DAG.getNode(ISD::FADD, dl,
3905                           MVT::f32, LogOfExponent, Log10ofMantissa);
3906    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3907      // For floating-point precision of 18:
3908      //
3909      //   Log10ofMantissa =
3910      //     -0.84299375f +
3911      //       (1.5327582f +
3912      //         (-1.0688956f +
3913      //           (0.49102474f +
3914      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3915      //
3916      // error 0.0000037995730, which is better than 18 bits
3917      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3918                               getF32Constant(DAG, 0x3c5d51ce));
3919      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3920                               getF32Constant(DAG, 0x3e00685a));
3921      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3922      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3923                               getF32Constant(DAG, 0x3efb6798));
3924      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3925      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3926                               getF32Constant(DAG, 0x3f88d192));
3927      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3928      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3929                               getF32Constant(DAG, 0x3fc4316c));
3930      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3931      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3932                                            getF32Constant(DAG, 0x3f57ce70));
3933
3934      result = DAG.getNode(ISD::FADD, dl,
3935                           MVT::f32, LogOfExponent, Log10ofMantissa);
3936    }
3937  } else {
3938    // No special expansion.
3939    result = DAG.getNode(ISD::FLOG10, dl,
3940                         getValue(I.getArgOperand(0)).getValueType(),
3941                         getValue(I.getArgOperand(0)));
3942  }
3943
3944  setValue(&I, result);
3945}
3946
3947/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3948/// limited-precision mode.
3949void
3950SelectionDAGBuilder::visitExp2(const CallInst &I) {
3951  SDValue result;
3952  DebugLoc dl = getCurDebugLoc();
3953
3954  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3955      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3956    SDValue Op = getValue(I.getArgOperand(0));
3957
3958    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3959
3960    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3961    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3962    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3963
3964    //   IntegerPartOfX <<= 23;
3965    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3966                                 DAG.getConstant(23, TLI.getPointerTy()));
3967
3968    if (LimitFloatPrecision <= 6) {
3969      // For floating-point precision of 6:
3970      //
3971      //   TwoToFractionalPartOfX =
3972      //     0.997535578f +
3973      //       (0.735607626f + 0.252464424f * x) * x;
3974      //
3975      // error 0.0144103317, which is 6 bits
3976      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3977                               getF32Constant(DAG, 0x3e814304));
3978      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3979                               getF32Constant(DAG, 0x3f3c50c8));
3980      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3981      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3982                               getF32Constant(DAG, 0x3f7f5e7e));
3983      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3984      SDValue TwoToFractionalPartOfX =
3985        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3986
3987      result = DAG.getNode(ISD::BITCAST, dl,
3988                           MVT::f32, TwoToFractionalPartOfX);
3989    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3990      // For floating-point precision of 12:
3991      //
3992      //   TwoToFractionalPartOfX =
3993      //     0.999892986f +
3994      //       (0.696457318f +
3995      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3996      //
3997      // error 0.000107046256, which is 13 to 14 bits
3998      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3999                               getF32Constant(DAG, 0x3da235e3));
4000      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4001                               getF32Constant(DAG, 0x3e65b8f3));
4002      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4003      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4004                               getF32Constant(DAG, 0x3f324b07));
4005      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4006      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4007                               getF32Constant(DAG, 0x3f7ff8fd));
4008      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4009      SDValue TwoToFractionalPartOfX =
4010        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4011
4012      result = DAG.getNode(ISD::BITCAST, dl,
4013                           MVT::f32, TwoToFractionalPartOfX);
4014    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4015      // For floating-point precision of 18:
4016      //
4017      //   TwoToFractionalPartOfX =
4018      //     0.999999982f +
4019      //       (0.693148872f +
4020      //         (0.240227044f +
4021      //           (0.554906021e-1f +
4022      //             (0.961591928e-2f +
4023      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4024      // error 2.47208000*10^(-7), which is better than 18 bits
4025      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4026                               getF32Constant(DAG, 0x3924b03e));
4027      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4028                               getF32Constant(DAG, 0x3ab24b87));
4029      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4030      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4031                               getF32Constant(DAG, 0x3c1d8c17));
4032      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4033      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4034                               getF32Constant(DAG, 0x3d634a1d));
4035      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4036      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4037                               getF32Constant(DAG, 0x3e75fe14));
4038      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4039      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4040                                getF32Constant(DAG, 0x3f317234));
4041      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4042      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4043                                getF32Constant(DAG, 0x3f800000));
4044      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4045      SDValue TwoToFractionalPartOfX =
4046        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4047
4048      result = DAG.getNode(ISD::BITCAST, dl,
4049                           MVT::f32, TwoToFractionalPartOfX);
4050    }
4051  } else {
4052    // No special expansion.
4053    result = DAG.getNode(ISD::FEXP2, dl,
4054                         getValue(I.getArgOperand(0)).getValueType(),
4055                         getValue(I.getArgOperand(0)));
4056  }
4057
4058  setValue(&I, result);
4059}
4060
4061/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4062/// limited-precision mode with x == 10.0f.
4063void
4064SelectionDAGBuilder::visitPow(const CallInst &I) {
4065  SDValue result;
4066  const Value *Val = I.getArgOperand(0);
4067  DebugLoc dl = getCurDebugLoc();
4068  bool IsExp10 = false;
4069
4070  if (getValue(Val).getValueType() == MVT::f32 &&
4071      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4072      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4073    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4074      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4075        APFloat Ten(10.0f);
4076        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4077      }
4078    }
4079  }
4080
4081  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4082    SDValue Op = getValue(I.getArgOperand(1));
4083
4084    // Put the exponent in the right bit position for later addition to the
4085    // final result:
4086    //
4087    //   #define LOG2OF10 3.3219281f
4088    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4089    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4090                             getF32Constant(DAG, 0x40549a78));
4091    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4092
4093    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4094    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4095    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4096
4097    //   IntegerPartOfX <<= 23;
4098    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4099                                 DAG.getConstant(23, TLI.getPointerTy()));
4100
4101    if (LimitFloatPrecision <= 6) {
4102      // For floating-point precision of 6:
4103      //
4104      //   twoToFractionalPartOfX =
4105      //     0.997535578f +
4106      //       (0.735607626f + 0.252464424f * x) * x;
4107      //
4108      // error 0.0144103317, which is 6 bits
4109      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4110                               getF32Constant(DAG, 0x3e814304));
4111      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4112                               getF32Constant(DAG, 0x3f3c50c8));
4113      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4114      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4115                               getF32Constant(DAG, 0x3f7f5e7e));
4116      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4117      SDValue TwoToFractionalPartOfX =
4118        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4119
4120      result = DAG.getNode(ISD::BITCAST, dl,
4121                           MVT::f32, TwoToFractionalPartOfX);
4122    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4123      // For floating-point precision of 12:
4124      //
4125      //   TwoToFractionalPartOfX =
4126      //     0.999892986f +
4127      //       (0.696457318f +
4128      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4129      //
4130      // error 0.000107046256, which is 13 to 14 bits
4131      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4132                               getF32Constant(DAG, 0x3da235e3));
4133      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4134                               getF32Constant(DAG, 0x3e65b8f3));
4135      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4136      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4137                               getF32Constant(DAG, 0x3f324b07));
4138      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4139      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4140                               getF32Constant(DAG, 0x3f7ff8fd));
4141      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4142      SDValue TwoToFractionalPartOfX =
4143        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4144
4145      result = DAG.getNode(ISD::BITCAST, dl,
4146                           MVT::f32, TwoToFractionalPartOfX);
4147    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4148      // For floating-point precision of 18:
4149      //
4150      //   TwoToFractionalPartOfX =
4151      //     0.999999982f +
4152      //       (0.693148872f +
4153      //         (0.240227044f +
4154      //           (0.554906021e-1f +
4155      //             (0.961591928e-2f +
4156      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4157      // error 2.47208000*10^(-7), which is better than 18 bits
4158      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4159                               getF32Constant(DAG, 0x3924b03e));
4160      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4161                               getF32Constant(DAG, 0x3ab24b87));
4162      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4163      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4164                               getF32Constant(DAG, 0x3c1d8c17));
4165      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4166      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4167                               getF32Constant(DAG, 0x3d634a1d));
4168      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4169      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4170                               getF32Constant(DAG, 0x3e75fe14));
4171      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4172      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4173                                getF32Constant(DAG, 0x3f317234));
4174      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4175      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4176                                getF32Constant(DAG, 0x3f800000));
4177      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4178      SDValue TwoToFractionalPartOfX =
4179        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4180
4181      result = DAG.getNode(ISD::BITCAST, dl,
4182                           MVT::f32, TwoToFractionalPartOfX);
4183    }
4184  } else {
4185    // No special expansion.
4186    result = DAG.getNode(ISD::FPOW, dl,
4187                         getValue(I.getArgOperand(0)).getValueType(),
4188                         getValue(I.getArgOperand(0)),
4189                         getValue(I.getArgOperand(1)));
4190  }
4191
4192  setValue(&I, result);
4193}
4194
4195
4196/// ExpandPowI - Expand a llvm.powi intrinsic.
4197static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4198                          SelectionDAG &DAG) {
4199  // If RHS is a constant, we can expand this out to a multiplication tree,
4200  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4201  // optimizing for size, we only want to do this if the expansion would produce
4202  // a small number of multiplies, otherwise we do the full expansion.
4203  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4204    // Get the exponent as a positive value.
4205    unsigned Val = RHSC->getSExtValue();
4206    if ((int)Val < 0) Val = -Val;
4207
4208    // powi(x, 0) -> 1.0
4209    if (Val == 0)
4210      return DAG.getConstantFP(1.0, LHS.getValueType());
4211
4212    const Function *F = DAG.getMachineFunction().getFunction();
4213    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4214        // If optimizing for size, don't insert too many multiplies.  This
4215        // inserts up to 5 multiplies.
4216        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4217      // We use the simple binary decomposition method to generate the multiply
4218      // sequence.  There are more optimal ways to do this (for example,
4219      // powi(x,15) generates one more multiply than it should), but this has
4220      // the benefit of being both really simple and much better than a libcall.
4221      SDValue Res;  // Logically starts equal to 1.0
4222      SDValue CurSquare = LHS;
4223      while (Val) {
4224        if (Val & 1) {
4225          if (Res.getNode())
4226            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4227          else
4228            Res = CurSquare;  // 1.0*CurSquare.
4229        }
4230
4231        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4232                                CurSquare, CurSquare);
4233        Val >>= 1;
4234      }
4235
4236      // If the original was negative, invert the result, producing 1/(x*x*x).
4237      if (RHSC->getSExtValue() < 0)
4238        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4239                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4240      return Res;
4241    }
4242  }
4243
4244  // Otherwise, expand to a libcall.
4245  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4246}
4247
4248// getTruncatedArgReg - Find underlying register used for an truncated
4249// argument.
4250static unsigned getTruncatedArgReg(const SDValue &N) {
4251  if (N.getOpcode() != ISD::TRUNCATE)
4252    return 0;
4253
4254  const SDValue &Ext = N.getOperand(0);
4255  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4256    const SDValue &CFR = Ext.getOperand(0);
4257    if (CFR.getOpcode() == ISD::CopyFromReg)
4258      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4259    else
4260      if (CFR.getOpcode() == ISD::TRUNCATE)
4261        return getTruncatedArgReg(CFR);
4262  }
4263  return 0;
4264}
4265
4266/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4267/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4268/// At the end of instruction selection, they will be inserted to the entry BB.
4269bool
4270SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4271                                              int64_t Offset,
4272                                              const SDValue &N) {
4273  const Argument *Arg = dyn_cast<Argument>(V);
4274  if (!Arg)
4275    return false;
4276
4277  MachineFunction &MF = DAG.getMachineFunction();
4278  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4279  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4280
4281  // Ignore inlined function arguments here.
4282  DIVariable DV(Variable);
4283  if (DV.isInlinedFnArgument(MF.getFunction()))
4284    return false;
4285
4286  unsigned Reg = 0;
4287  if (Arg->hasByValAttr()) {
4288    // Byval arguments' frame index is recorded during argument lowering.
4289    // Use this info directly.
4290    Reg = TRI->getFrameRegister(MF);
4291    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4292    // If byval argument ofset is not recorded then ignore this.
4293    if (!Offset)
4294      Reg = 0;
4295  }
4296
4297  if (N.getNode()) {
4298    if (N.getOpcode() == ISD::CopyFromReg)
4299      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4300    else
4301      Reg = getTruncatedArgReg(N);
4302    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4303      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4304      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4305      if (PR)
4306        Reg = PR;
4307    }
4308  }
4309
4310  if (!Reg) {
4311    // Check if ValueMap has reg number.
4312    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4313    if (VMI != FuncInfo.ValueMap.end())
4314      Reg = VMI->second;
4315  }
4316
4317  if (!Reg && N.getNode()) {
4318    // Check if frame index is available.
4319    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4320      if (FrameIndexSDNode *FINode =
4321          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4322        Reg = TRI->getFrameRegister(MF);
4323        Offset = FINode->getIndex();
4324      }
4325  }
4326
4327  if (!Reg)
4328    return false;
4329
4330  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4331                                    TII->get(TargetOpcode::DBG_VALUE))
4332    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4333  FuncInfo.ArgDbgValues.push_back(&*MIB);
4334  return true;
4335}
4336
4337// VisualStudio defines setjmp as _setjmp
4338#if defined(_MSC_VER) && defined(setjmp) && \
4339                         !defined(setjmp_undefined_for_msvc)
4340#  pragma push_macro("setjmp")
4341#  undef setjmp
4342#  define setjmp_undefined_for_msvc
4343#endif
4344
4345/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4346/// we want to emit this as a call to a named external function, return the name
4347/// otherwise lower it and return null.
4348const char *
4349SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4350  DebugLoc dl = getCurDebugLoc();
4351  SDValue Res;
4352
4353  switch (Intrinsic) {
4354  default:
4355    // By default, turn this into a target intrinsic node.
4356    visitTargetIntrinsic(I, Intrinsic);
4357    return 0;
4358  case Intrinsic::vastart:  visitVAStart(I); return 0;
4359  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4360  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4361  case Intrinsic::returnaddress:
4362    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4363                             getValue(I.getArgOperand(0))));
4364    return 0;
4365  case Intrinsic::frameaddress:
4366    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4367                             getValue(I.getArgOperand(0))));
4368    return 0;
4369  case Intrinsic::setjmp:
4370    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4371  case Intrinsic::longjmp:
4372    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4373  case Intrinsic::memcpy: {
4374    // Assert for address < 256 since we support only user defined address
4375    // spaces.
4376    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4377           < 256 &&
4378           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4379           < 256 &&
4380           "Unknown address space");
4381    SDValue Op1 = getValue(I.getArgOperand(0));
4382    SDValue Op2 = getValue(I.getArgOperand(1));
4383    SDValue Op3 = getValue(I.getArgOperand(2));
4384    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4385    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4386    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4387                              MachinePointerInfo(I.getArgOperand(0)),
4388                              MachinePointerInfo(I.getArgOperand(1))));
4389    return 0;
4390  }
4391  case Intrinsic::memset: {
4392    // Assert for address < 256 since we support only user defined address
4393    // spaces.
4394    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4395           < 256 &&
4396           "Unknown address space");
4397    SDValue Op1 = getValue(I.getArgOperand(0));
4398    SDValue Op2 = getValue(I.getArgOperand(1));
4399    SDValue Op3 = getValue(I.getArgOperand(2));
4400    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4401    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4402    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4403                              MachinePointerInfo(I.getArgOperand(0))));
4404    return 0;
4405  }
4406  case Intrinsic::memmove: {
4407    // Assert for address < 256 since we support only user defined address
4408    // spaces.
4409    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4410           < 256 &&
4411           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4412           < 256 &&
4413           "Unknown address space");
4414    SDValue Op1 = getValue(I.getArgOperand(0));
4415    SDValue Op2 = getValue(I.getArgOperand(1));
4416    SDValue Op3 = getValue(I.getArgOperand(2));
4417    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4418    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4419    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4420                               MachinePointerInfo(I.getArgOperand(0)),
4421                               MachinePointerInfo(I.getArgOperand(1))));
4422    return 0;
4423  }
4424  case Intrinsic::dbg_declare: {
4425    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4426    MDNode *Variable = DI.getVariable();
4427    const Value *Address = DI.getAddress();
4428    if (!Address || !DIVariable(DI.getVariable()).Verify())
4429      return 0;
4430
4431    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4432    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4433    // absolute, but not relative, values are different depending on whether
4434    // debug info exists.
4435    ++SDNodeOrder;
4436
4437    // Check if address has undef value.
4438    if (isa<UndefValue>(Address) ||
4439        (Address->use_empty() && !isa<Argument>(Address))) {
4440      DEBUG(dbgs() << "Dropping debug info for " << DI);
4441      return 0;
4442    }
4443
4444    SDValue &N = NodeMap[Address];
4445    if (!N.getNode() && isa<Argument>(Address))
4446      // Check unused arguments map.
4447      N = UnusedArgNodeMap[Address];
4448    SDDbgValue *SDV;
4449    if (N.getNode()) {
4450      // Parameters are handled specially.
4451      bool isParameter =
4452        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4453      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4454        Address = BCI->getOperand(0);
4455      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4456
4457      if (isParameter && !AI) {
4458        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4459        if (FINode)
4460          // Byval parameter.  We have a frame index at this point.
4461          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4462                                0, dl, SDNodeOrder);
4463        else {
4464          // Address is an argument, so try to emit its dbg value using
4465          // virtual register info from the FuncInfo.ValueMap.
4466          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4467          return 0;
4468        }
4469      } else if (AI)
4470        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4471                              0, dl, SDNodeOrder);
4472      else {
4473        // Can't do anything with other non-AI cases yet.
4474        DEBUG(dbgs() << "Dropping debug info for " << DI);
4475        return 0;
4476      }
4477      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4478    } else {
4479      // If Address is an argument then try to emit its dbg value using
4480      // virtual register info from the FuncInfo.ValueMap.
4481      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4482        // If variable is pinned by a alloca in dominating bb then
4483        // use StaticAllocaMap.
4484        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4485          if (AI->getParent() != DI.getParent()) {
4486            DenseMap<const AllocaInst*, int>::iterator SI =
4487              FuncInfo.StaticAllocaMap.find(AI);
4488            if (SI != FuncInfo.StaticAllocaMap.end()) {
4489              SDV = DAG.getDbgValue(Variable, SI->second,
4490                                    0, dl, SDNodeOrder);
4491              DAG.AddDbgValue(SDV, 0, false);
4492              return 0;
4493            }
4494          }
4495        }
4496        DEBUG(dbgs() << "Dropping debug info for " << DI);
4497      }
4498    }
4499    return 0;
4500  }
4501  case Intrinsic::dbg_value: {
4502    const DbgValueInst &DI = cast<DbgValueInst>(I);
4503    if (!DIVariable(DI.getVariable()).Verify())
4504      return 0;
4505
4506    MDNode *Variable = DI.getVariable();
4507    uint64_t Offset = DI.getOffset();
4508    const Value *V = DI.getValue();
4509    if (!V)
4510      return 0;
4511
4512    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4513    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4514    // absolute, but not relative, values are different depending on whether
4515    // debug info exists.
4516    ++SDNodeOrder;
4517    SDDbgValue *SDV;
4518    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4519      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4520      DAG.AddDbgValue(SDV, 0, false);
4521    } else {
4522      // Do not use getValue() in here; we don't want to generate code at
4523      // this point if it hasn't been done yet.
4524      SDValue N = NodeMap[V];
4525      if (!N.getNode() && isa<Argument>(V))
4526        // Check unused arguments map.
4527        N = UnusedArgNodeMap[V];
4528      if (N.getNode()) {
4529        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4530          SDV = DAG.getDbgValue(Variable, N.getNode(),
4531                                N.getResNo(), Offset, dl, SDNodeOrder);
4532          DAG.AddDbgValue(SDV, N.getNode(), false);
4533        }
4534      } else if (!V->use_empty() ) {
4535        // Do not call getValue(V) yet, as we don't want to generate code.
4536        // Remember it for later.
4537        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4538        DanglingDebugInfoMap[V] = DDI;
4539      } else {
4540        // We may expand this to cover more cases.  One case where we have no
4541        // data available is an unreferenced parameter.
4542        DEBUG(dbgs() << "Dropping debug info for " << DI);
4543      }
4544    }
4545
4546    // Build a debug info table entry.
4547    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4548      V = BCI->getOperand(0);
4549    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4550    // Don't handle byval struct arguments or VLAs, for example.
4551    if (!AI)
4552      return 0;
4553    DenseMap<const AllocaInst*, int>::iterator SI =
4554      FuncInfo.StaticAllocaMap.find(AI);
4555    if (SI == FuncInfo.StaticAllocaMap.end())
4556      return 0; // VLAs.
4557    int FI = SI->second;
4558
4559    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4560    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4561      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4562    return 0;
4563  }
4564  case Intrinsic::eh_exception: {
4565    // Insert the EXCEPTIONADDR instruction.
4566    assert(FuncInfo.MBB->isLandingPad() &&
4567           "Call to eh.exception not in landing pad!");
4568    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4569    SDValue Ops[1];
4570    Ops[0] = DAG.getRoot();
4571    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4572    setValue(&I, Op);
4573    DAG.setRoot(Op.getValue(1));
4574    return 0;
4575  }
4576
4577  case Intrinsic::eh_selector: {
4578    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4579    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4580    if (CallMBB->isLandingPad())
4581      AddCatchInfo(I, &MMI, CallMBB);
4582    else {
4583#ifndef NDEBUG
4584      FuncInfo.CatchInfoLost.insert(&I);
4585#endif
4586      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4587      unsigned Reg = TLI.getExceptionSelectorRegister();
4588      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4589    }
4590
4591    // Insert the EHSELECTION instruction.
4592    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4593    SDValue Ops[2];
4594    Ops[0] = getValue(I.getArgOperand(0));
4595    Ops[1] = getRoot();
4596    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4597    DAG.setRoot(Op.getValue(1));
4598    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4599    return 0;
4600  }
4601
4602  case Intrinsic::eh_typeid_for: {
4603    // Find the type id for the given typeinfo.
4604    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4605    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4606    Res = DAG.getConstant(TypeID, MVT::i32);
4607    setValue(&I, Res);
4608    return 0;
4609  }
4610
4611  case Intrinsic::eh_return_i32:
4612  case Intrinsic::eh_return_i64:
4613    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4614    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4615                            MVT::Other,
4616                            getControlRoot(),
4617                            getValue(I.getArgOperand(0)),
4618                            getValue(I.getArgOperand(1))));
4619    return 0;
4620  case Intrinsic::eh_unwind_init:
4621    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4622    return 0;
4623  case Intrinsic::eh_dwarf_cfa: {
4624    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4625                                        TLI.getPointerTy());
4626    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4627                                 TLI.getPointerTy(),
4628                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4629                                             TLI.getPointerTy()),
4630                                 CfaArg);
4631    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4632                             TLI.getPointerTy(),
4633                             DAG.getConstant(0, TLI.getPointerTy()));
4634    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4635                             FA, Offset));
4636    return 0;
4637  }
4638  case Intrinsic::eh_sjlj_callsite: {
4639    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4640    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4641    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4642    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4643
4644    MMI.setCurrentCallSite(CI->getZExtValue());
4645    return 0;
4646  }
4647  case Intrinsic::eh_sjlj_setjmp: {
4648    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4649                             getValue(I.getArgOperand(0))));
4650    return 0;
4651  }
4652  case Intrinsic::eh_sjlj_longjmp: {
4653    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4654                            getRoot(), getValue(I.getArgOperand(0))));
4655    return 0;
4656  }
4657  case Intrinsic::eh_sjlj_dispatch_setup: {
4658    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4659                            getRoot(), getValue(I.getArgOperand(0))));
4660    return 0;
4661  }
4662
4663  case Intrinsic::x86_mmx_pslli_w:
4664  case Intrinsic::x86_mmx_pslli_d:
4665  case Intrinsic::x86_mmx_pslli_q:
4666  case Intrinsic::x86_mmx_psrli_w:
4667  case Intrinsic::x86_mmx_psrli_d:
4668  case Intrinsic::x86_mmx_psrli_q:
4669  case Intrinsic::x86_mmx_psrai_w:
4670  case Intrinsic::x86_mmx_psrai_d: {
4671    SDValue ShAmt = getValue(I.getArgOperand(1));
4672    if (isa<ConstantSDNode>(ShAmt)) {
4673      visitTargetIntrinsic(I, Intrinsic);
4674      return 0;
4675    }
4676    unsigned NewIntrinsic = 0;
4677    EVT ShAmtVT = MVT::v2i32;
4678    switch (Intrinsic) {
4679    case Intrinsic::x86_mmx_pslli_w:
4680      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4681      break;
4682    case Intrinsic::x86_mmx_pslli_d:
4683      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4684      break;
4685    case Intrinsic::x86_mmx_pslli_q:
4686      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4687      break;
4688    case Intrinsic::x86_mmx_psrli_w:
4689      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4690      break;
4691    case Intrinsic::x86_mmx_psrli_d:
4692      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4693      break;
4694    case Intrinsic::x86_mmx_psrli_q:
4695      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4696      break;
4697    case Intrinsic::x86_mmx_psrai_w:
4698      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4699      break;
4700    case Intrinsic::x86_mmx_psrai_d:
4701      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4702      break;
4703    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4704    }
4705
4706    // The vector shift intrinsics with scalars uses 32b shift amounts but
4707    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4708    // to be zero.
4709    // We must do this early because v2i32 is not a legal type.
4710    DebugLoc dl = getCurDebugLoc();
4711    SDValue ShOps[2];
4712    ShOps[0] = ShAmt;
4713    ShOps[1] = DAG.getConstant(0, MVT::i32);
4714    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4715    EVT DestVT = TLI.getValueType(I.getType());
4716    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4717    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4718                       DAG.getConstant(NewIntrinsic, MVT::i32),
4719                       getValue(I.getArgOperand(0)), ShAmt);
4720    setValue(&I, Res);
4721    return 0;
4722  }
4723  case Intrinsic::convertff:
4724  case Intrinsic::convertfsi:
4725  case Intrinsic::convertfui:
4726  case Intrinsic::convertsif:
4727  case Intrinsic::convertuif:
4728  case Intrinsic::convertss:
4729  case Intrinsic::convertsu:
4730  case Intrinsic::convertus:
4731  case Intrinsic::convertuu: {
4732    ISD::CvtCode Code = ISD::CVT_INVALID;
4733    switch (Intrinsic) {
4734    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4735    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4736    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4737    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4738    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4739    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4740    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4741    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4742    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4743    }
4744    EVT DestVT = TLI.getValueType(I.getType());
4745    const Value *Op1 = I.getArgOperand(0);
4746    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4747                               DAG.getValueType(DestVT),
4748                               DAG.getValueType(getValue(Op1).getValueType()),
4749                               getValue(I.getArgOperand(1)),
4750                               getValue(I.getArgOperand(2)),
4751                               Code);
4752    setValue(&I, Res);
4753    return 0;
4754  }
4755  case Intrinsic::sqrt:
4756    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4757                             getValue(I.getArgOperand(0)).getValueType(),
4758                             getValue(I.getArgOperand(0))));
4759    return 0;
4760  case Intrinsic::powi:
4761    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4762                            getValue(I.getArgOperand(1)), DAG));
4763    return 0;
4764  case Intrinsic::sin:
4765    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4766                             getValue(I.getArgOperand(0)).getValueType(),
4767                             getValue(I.getArgOperand(0))));
4768    return 0;
4769  case Intrinsic::cos:
4770    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4771                             getValue(I.getArgOperand(0)).getValueType(),
4772                             getValue(I.getArgOperand(0))));
4773    return 0;
4774  case Intrinsic::log:
4775    visitLog(I);
4776    return 0;
4777  case Intrinsic::log2:
4778    visitLog2(I);
4779    return 0;
4780  case Intrinsic::log10:
4781    visitLog10(I);
4782    return 0;
4783  case Intrinsic::exp:
4784    visitExp(I);
4785    return 0;
4786  case Intrinsic::exp2:
4787    visitExp2(I);
4788    return 0;
4789  case Intrinsic::pow:
4790    visitPow(I);
4791    return 0;
4792  case Intrinsic::fma:
4793    setValue(&I, DAG.getNode(ISD::FMA, dl,
4794                             getValue(I.getArgOperand(0)).getValueType(),
4795                             getValue(I.getArgOperand(0)),
4796                             getValue(I.getArgOperand(1)),
4797                             getValue(I.getArgOperand(2))));
4798    return 0;
4799  case Intrinsic::convert_to_fp16:
4800    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4801                             MVT::i16, getValue(I.getArgOperand(0))));
4802    return 0;
4803  case Intrinsic::convert_from_fp16:
4804    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4805                             MVT::f32, getValue(I.getArgOperand(0))));
4806    return 0;
4807  case Intrinsic::pcmarker: {
4808    SDValue Tmp = getValue(I.getArgOperand(0));
4809    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4810    return 0;
4811  }
4812  case Intrinsic::readcyclecounter: {
4813    SDValue Op = getRoot();
4814    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4815                      DAG.getVTList(MVT::i64, MVT::Other),
4816                      &Op, 1);
4817    setValue(&I, Res);
4818    DAG.setRoot(Res.getValue(1));
4819    return 0;
4820  }
4821  case Intrinsic::bswap:
4822    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4823                             getValue(I.getArgOperand(0)).getValueType(),
4824                             getValue(I.getArgOperand(0))));
4825    return 0;
4826  case Intrinsic::cttz: {
4827    SDValue Arg = getValue(I.getArgOperand(0));
4828    EVT Ty = Arg.getValueType();
4829    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4830    return 0;
4831  }
4832  case Intrinsic::ctlz: {
4833    SDValue Arg = getValue(I.getArgOperand(0));
4834    EVT Ty = Arg.getValueType();
4835    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4836    return 0;
4837  }
4838  case Intrinsic::ctpop: {
4839    SDValue Arg = getValue(I.getArgOperand(0));
4840    EVT Ty = Arg.getValueType();
4841    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4842    return 0;
4843  }
4844  case Intrinsic::stacksave: {
4845    SDValue Op = getRoot();
4846    Res = DAG.getNode(ISD::STACKSAVE, dl,
4847                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4848    setValue(&I, Res);
4849    DAG.setRoot(Res.getValue(1));
4850    return 0;
4851  }
4852  case Intrinsic::stackrestore: {
4853    Res = getValue(I.getArgOperand(0));
4854    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4855    return 0;
4856  }
4857  case Intrinsic::stackprotector: {
4858    // Emit code into the DAG to store the stack guard onto the stack.
4859    MachineFunction &MF = DAG.getMachineFunction();
4860    MachineFrameInfo *MFI = MF.getFrameInfo();
4861    EVT PtrTy = TLI.getPointerTy();
4862
4863    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4864    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4865
4866    int FI = FuncInfo.StaticAllocaMap[Slot];
4867    MFI->setStackProtectorIndex(FI);
4868
4869    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4870
4871    // Store the stack protector onto the stack.
4872    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4873                       MachinePointerInfo::getFixedStack(FI),
4874                       true, false, 0);
4875    setValue(&I, Res);
4876    DAG.setRoot(Res);
4877    return 0;
4878  }
4879  case Intrinsic::objectsize: {
4880    // If we don't know by now, we're never going to know.
4881    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4882
4883    assert(CI && "Non-constant type in __builtin_object_size?");
4884
4885    SDValue Arg = getValue(I.getCalledValue());
4886    EVT Ty = Arg.getValueType();
4887
4888    if (CI->isZero())
4889      Res = DAG.getConstant(-1ULL, Ty);
4890    else
4891      Res = DAG.getConstant(0, Ty);
4892
4893    setValue(&I, Res);
4894    return 0;
4895  }
4896  case Intrinsic::var_annotation:
4897    // Discard annotate attributes
4898    return 0;
4899
4900  case Intrinsic::init_trampoline: {
4901    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4902
4903    SDValue Ops[6];
4904    Ops[0] = getRoot();
4905    Ops[1] = getValue(I.getArgOperand(0));
4906    Ops[2] = getValue(I.getArgOperand(1));
4907    Ops[3] = getValue(I.getArgOperand(2));
4908    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4909    Ops[5] = DAG.getSrcValue(F);
4910
4911    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4912                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4913                      Ops, 6);
4914
4915    setValue(&I, Res);
4916    DAG.setRoot(Res.getValue(1));
4917    return 0;
4918  }
4919  case Intrinsic::gcroot:
4920    if (GFI) {
4921      const Value *Alloca = I.getArgOperand(0);
4922      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4923
4924      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4925      GFI->addStackRoot(FI->getIndex(), TypeMap);
4926    }
4927    return 0;
4928  case Intrinsic::gcread:
4929  case Intrinsic::gcwrite:
4930    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4931    return 0;
4932  case Intrinsic::flt_rounds:
4933    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4934    return 0;
4935
4936  case Intrinsic::expect: {
4937    // Just replace __builtin_expect(exp, c) with EXP.
4938    setValue(&I, getValue(I.getArgOperand(0)));
4939    return 0;
4940  }
4941
4942  case Intrinsic::trap: {
4943    StringRef TrapFuncName = getTrapFunctionName();
4944    if (TrapFuncName.empty()) {
4945      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4946      return 0;
4947    }
4948    TargetLowering::ArgListTy Args;
4949    std::pair<SDValue, SDValue> Result =
4950      TLI.LowerCallTo(getRoot(), I.getType(),
4951                 false, false, false, false, 0, CallingConv::C,
4952                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4953                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4954                 Args, DAG, getCurDebugLoc());
4955    DAG.setRoot(Result.second);
4956    return 0;
4957  }
4958  case Intrinsic::uadd_with_overflow:
4959    return implVisitAluOverflow(I, ISD::UADDO);
4960  case Intrinsic::sadd_with_overflow:
4961    return implVisitAluOverflow(I, ISD::SADDO);
4962  case Intrinsic::usub_with_overflow:
4963    return implVisitAluOverflow(I, ISD::USUBO);
4964  case Intrinsic::ssub_with_overflow:
4965    return implVisitAluOverflow(I, ISD::SSUBO);
4966  case Intrinsic::umul_with_overflow:
4967    return implVisitAluOverflow(I, ISD::UMULO);
4968  case Intrinsic::smul_with_overflow:
4969    return implVisitAluOverflow(I, ISD::SMULO);
4970
4971  case Intrinsic::prefetch: {
4972    SDValue Ops[5];
4973    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4974    Ops[0] = getRoot();
4975    Ops[1] = getValue(I.getArgOperand(0));
4976    Ops[2] = getValue(I.getArgOperand(1));
4977    Ops[3] = getValue(I.getArgOperand(2));
4978    Ops[4] = getValue(I.getArgOperand(3));
4979    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4980                                        DAG.getVTList(MVT::Other),
4981                                        &Ops[0], 5,
4982                                        EVT::getIntegerVT(*Context, 8),
4983                                        MachinePointerInfo(I.getArgOperand(0)),
4984                                        0, /* align */
4985                                        false, /* volatile */
4986                                        rw==0, /* read */
4987                                        rw==1)); /* write */
4988    return 0;
4989  }
4990  case Intrinsic::memory_barrier: {
4991    SDValue Ops[6];
4992    Ops[0] = getRoot();
4993    for (int x = 1; x < 6; ++x)
4994      Ops[x] = getValue(I.getArgOperand(x - 1));
4995
4996    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4997    return 0;
4998  }
4999  case Intrinsic::atomic_cmp_swap: {
5000    SDValue Root = getRoot();
5001    SDValue L =
5002      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
5003                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
5004                    Root,
5005                    getValue(I.getArgOperand(0)),
5006                    getValue(I.getArgOperand(1)),
5007                    getValue(I.getArgOperand(2)),
5008                    MachinePointerInfo(I.getArgOperand(0)), 0 /* Alignment */,
5009                    Monotonic, CrossThread);
5010    setValue(&I, L);
5011    DAG.setRoot(L.getValue(1));
5012    return 0;
5013  }
5014  case Intrinsic::atomic_load_add:
5015    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
5016  case Intrinsic::atomic_load_sub:
5017    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
5018  case Intrinsic::atomic_load_or:
5019    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
5020  case Intrinsic::atomic_load_xor:
5021    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
5022  case Intrinsic::atomic_load_and:
5023    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
5024  case Intrinsic::atomic_load_nand:
5025    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
5026  case Intrinsic::atomic_load_max:
5027    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
5028  case Intrinsic::atomic_load_min:
5029    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
5030  case Intrinsic::atomic_load_umin:
5031    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
5032  case Intrinsic::atomic_load_umax:
5033    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
5034  case Intrinsic::atomic_swap:
5035    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
5036
5037  case Intrinsic::invariant_start:
5038  case Intrinsic::lifetime_start:
5039    // Discard region information.
5040    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5041    return 0;
5042  case Intrinsic::invariant_end:
5043  case Intrinsic::lifetime_end:
5044    // Discard region information.
5045    return 0;
5046  }
5047}
5048
5049void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5050                                      bool isTailCall,
5051                                      MachineBasicBlock *LandingPad) {
5052  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5053  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5054  Type *RetTy = FTy->getReturnType();
5055  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5056  MCSymbol *BeginLabel = 0;
5057
5058  TargetLowering::ArgListTy Args;
5059  TargetLowering::ArgListEntry Entry;
5060  Args.reserve(CS.arg_size());
5061
5062  // Check whether the function can return without sret-demotion.
5063  SmallVector<ISD::OutputArg, 4> Outs;
5064  SmallVector<uint64_t, 4> Offsets;
5065  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5066                Outs, TLI, &Offsets);
5067
5068  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5069					   DAG.getMachineFunction(),
5070					   FTy->isVarArg(), Outs,
5071					   FTy->getContext());
5072
5073  SDValue DemoteStackSlot;
5074  int DemoteStackIdx = -100;
5075
5076  if (!CanLowerReturn) {
5077    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5078                      FTy->getReturnType());
5079    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5080                      FTy->getReturnType());
5081    MachineFunction &MF = DAG.getMachineFunction();
5082    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5083    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5084
5085    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5086    Entry.Node = DemoteStackSlot;
5087    Entry.Ty = StackSlotPtrType;
5088    Entry.isSExt = false;
5089    Entry.isZExt = false;
5090    Entry.isInReg = false;
5091    Entry.isSRet = true;
5092    Entry.isNest = false;
5093    Entry.isByVal = false;
5094    Entry.Alignment = Align;
5095    Args.push_back(Entry);
5096    RetTy = Type::getVoidTy(FTy->getContext());
5097  }
5098
5099  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5100       i != e; ++i) {
5101    const Value *V = *i;
5102
5103    // Skip empty types
5104    if (V->getType()->isEmptyTy())
5105      continue;
5106
5107    SDValue ArgNode = getValue(V);
5108    Entry.Node = ArgNode; Entry.Ty = V->getType();
5109
5110    unsigned attrInd = i - CS.arg_begin() + 1;
5111    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5112    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5113    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5114    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5115    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5116    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5117    Entry.Alignment = CS.getParamAlignment(attrInd);
5118    Args.push_back(Entry);
5119  }
5120
5121  if (LandingPad) {
5122    // Insert a label before the invoke call to mark the try range.  This can be
5123    // used to detect deletion of the invoke via the MachineModuleInfo.
5124    BeginLabel = MMI.getContext().CreateTempSymbol();
5125
5126    // For SjLj, keep track of which landing pads go with which invokes
5127    // so as to maintain the ordering of pads in the LSDA.
5128    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5129    if (CallSiteIndex) {
5130      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5131      // Now that the call site is handled, stop tracking it.
5132      MMI.setCurrentCallSite(0);
5133    }
5134
5135    // Both PendingLoads and PendingExports must be flushed here;
5136    // this call might not return.
5137    (void)getRoot();
5138    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5139  }
5140
5141  // Check if target-independent constraints permit a tail call here.
5142  // Target-dependent constraints are checked within TLI.LowerCallTo.
5143  if (isTailCall &&
5144      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5145    isTailCall = false;
5146
5147  // If there's a possibility that fast-isel has already selected some amount
5148  // of the current basic block, don't emit a tail call.
5149  if (isTailCall && EnableFastISel)
5150    isTailCall = false;
5151
5152  std::pair<SDValue,SDValue> Result =
5153    TLI.LowerCallTo(getRoot(), RetTy,
5154                    CS.paramHasAttr(0, Attribute::SExt),
5155                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5156                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5157                    CS.getCallingConv(),
5158                    isTailCall,
5159                    !CS.getInstruction()->use_empty(),
5160                    Callee, Args, DAG, getCurDebugLoc());
5161  assert((isTailCall || Result.second.getNode()) &&
5162         "Non-null chain expected with non-tail call!");
5163  assert((Result.second.getNode() || !Result.first.getNode()) &&
5164         "Null value expected with tail call!");
5165  if (Result.first.getNode()) {
5166    setValue(CS.getInstruction(), Result.first);
5167  } else if (!CanLowerReturn && Result.second.getNode()) {
5168    // The instruction result is the result of loading from the
5169    // hidden sret parameter.
5170    SmallVector<EVT, 1> PVTs;
5171    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5172
5173    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5174    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5175    EVT PtrVT = PVTs[0];
5176    unsigned NumValues = Outs.size();
5177    SmallVector<SDValue, 4> Values(NumValues);
5178    SmallVector<SDValue, 4> Chains(NumValues);
5179
5180    for (unsigned i = 0; i < NumValues; ++i) {
5181      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5182                                DemoteStackSlot,
5183                                DAG.getConstant(Offsets[i], PtrVT));
5184      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5185                              Add,
5186                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5187                              false, false, 1);
5188      Values[i] = L;
5189      Chains[i] = L.getValue(1);
5190    }
5191
5192    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5193                                MVT::Other, &Chains[0], NumValues);
5194    PendingLoads.push_back(Chain);
5195
5196    // Collect the legal value parts into potentially illegal values
5197    // that correspond to the original function's return values.
5198    SmallVector<EVT, 4> RetTys;
5199    RetTy = FTy->getReturnType();
5200    ComputeValueVTs(TLI, RetTy, RetTys);
5201    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5202    SmallVector<SDValue, 4> ReturnValues;
5203    unsigned CurReg = 0;
5204    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5205      EVT VT = RetTys[I];
5206      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5207      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5208
5209      SDValue ReturnValue =
5210        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5211                         RegisterVT, VT, AssertOp);
5212      ReturnValues.push_back(ReturnValue);
5213      CurReg += NumRegs;
5214    }
5215
5216    setValue(CS.getInstruction(),
5217             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5218                         DAG.getVTList(&RetTys[0], RetTys.size()),
5219                         &ReturnValues[0], ReturnValues.size()));
5220  }
5221
5222  // Assign order to nodes here. If the call does not produce a result, it won't
5223  // be mapped to a SDNode and visit() will not assign it an order number.
5224  if (!Result.second.getNode()) {
5225    // As a special case, a null chain means that a tail call has been emitted and
5226    // the DAG root is already updated.
5227    HasTailCall = true;
5228    ++SDNodeOrder;
5229    AssignOrderingToNode(DAG.getRoot().getNode());
5230  } else {
5231    DAG.setRoot(Result.second);
5232    ++SDNodeOrder;
5233    AssignOrderingToNode(Result.second.getNode());
5234  }
5235
5236  if (LandingPad) {
5237    // Insert a label at the end of the invoke call to mark the try range.  This
5238    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5239    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5240    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5241
5242    // Inform MachineModuleInfo of range.
5243    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5244  }
5245}
5246
5247/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5248/// value is equal or not-equal to zero.
5249static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5250  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5251       UI != E; ++UI) {
5252    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5253      if (IC->isEquality())
5254        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5255          if (C->isNullValue())
5256            continue;
5257    // Unknown instruction.
5258    return false;
5259  }
5260  return true;
5261}
5262
5263static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5264                             Type *LoadTy,
5265                             SelectionDAGBuilder &Builder) {
5266
5267  // Check to see if this load can be trivially constant folded, e.g. if the
5268  // input is from a string literal.
5269  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5270    // Cast pointer to the type we really want to load.
5271    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5272                                         PointerType::getUnqual(LoadTy));
5273
5274    if (const Constant *LoadCst =
5275          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5276                                       Builder.TD))
5277      return Builder.getValue(LoadCst);
5278  }
5279
5280  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5281  // still constant memory, the input chain can be the entry node.
5282  SDValue Root;
5283  bool ConstantMemory = false;
5284
5285  // Do not serialize (non-volatile) loads of constant memory with anything.
5286  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5287    Root = Builder.DAG.getEntryNode();
5288    ConstantMemory = true;
5289  } else {
5290    // Do not serialize non-volatile loads against each other.
5291    Root = Builder.DAG.getRoot();
5292  }
5293
5294  SDValue Ptr = Builder.getValue(PtrVal);
5295  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5296                                        Ptr, MachinePointerInfo(PtrVal),
5297                                        false /*volatile*/,
5298                                        false /*nontemporal*/, 1 /* align=1 */);
5299
5300  if (!ConstantMemory)
5301    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5302  return LoadVal;
5303}
5304
5305
5306/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5307/// If so, return true and lower it, otherwise return false and it will be
5308/// lowered like a normal call.
5309bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5310  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5311  if (I.getNumArgOperands() != 3)
5312    return false;
5313
5314  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5315  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5316      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5317      !I.getType()->isIntegerTy())
5318    return false;
5319
5320  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5321
5322  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5323  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5324  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5325    bool ActuallyDoIt = true;
5326    MVT LoadVT;
5327    Type *LoadTy;
5328    switch (Size->getZExtValue()) {
5329    default:
5330      LoadVT = MVT::Other;
5331      LoadTy = 0;
5332      ActuallyDoIt = false;
5333      break;
5334    case 2:
5335      LoadVT = MVT::i16;
5336      LoadTy = Type::getInt16Ty(Size->getContext());
5337      break;
5338    case 4:
5339      LoadVT = MVT::i32;
5340      LoadTy = Type::getInt32Ty(Size->getContext());
5341      break;
5342    case 8:
5343      LoadVT = MVT::i64;
5344      LoadTy = Type::getInt64Ty(Size->getContext());
5345      break;
5346        /*
5347    case 16:
5348      LoadVT = MVT::v4i32;
5349      LoadTy = Type::getInt32Ty(Size->getContext());
5350      LoadTy = VectorType::get(LoadTy, 4);
5351      break;
5352         */
5353    }
5354
5355    // This turns into unaligned loads.  We only do this if the target natively
5356    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5357    // we'll only produce a small number of byte loads.
5358
5359    // Require that we can find a legal MVT, and only do this if the target
5360    // supports unaligned loads of that type.  Expanding into byte loads would
5361    // bloat the code.
5362    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5363      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5364      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5365      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5366        ActuallyDoIt = false;
5367    }
5368
5369    if (ActuallyDoIt) {
5370      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5371      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5372
5373      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5374                                 ISD::SETNE);
5375      EVT CallVT = TLI.getValueType(I.getType(), true);
5376      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5377      return true;
5378    }
5379  }
5380
5381
5382  return false;
5383}
5384
5385
5386void SelectionDAGBuilder::visitCall(const CallInst &I) {
5387  // Handle inline assembly differently.
5388  if (isa<InlineAsm>(I.getCalledValue())) {
5389    visitInlineAsm(&I);
5390    return;
5391  }
5392
5393  // See if any floating point values are being passed to this function. This is
5394  // used to emit an undefined reference to fltused on Windows.
5395  FunctionType *FT =
5396    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5397  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5398  if (FT->isVarArg() &&
5399      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5400    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5401      Type* T = I.getArgOperand(i)->getType();
5402      for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5403           i != e; ++i) {
5404        if (!i->isFloatingPointTy()) continue;
5405        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5406        break;
5407      }
5408    }
5409  }
5410
5411  const char *RenameFn = 0;
5412  if (Function *F = I.getCalledFunction()) {
5413    if (F->isDeclaration()) {
5414      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5415        if (unsigned IID = II->getIntrinsicID(F)) {
5416          RenameFn = visitIntrinsicCall(I, IID);
5417          if (!RenameFn)
5418            return;
5419        }
5420      }
5421      if (unsigned IID = F->getIntrinsicID()) {
5422        RenameFn = visitIntrinsicCall(I, IID);
5423        if (!RenameFn)
5424          return;
5425      }
5426    }
5427
5428    // Check for well-known libc/libm calls.  If the function is internal, it
5429    // can't be a library call.
5430    if (!F->hasLocalLinkage() && F->hasName()) {
5431      StringRef Name = F->getName();
5432      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5433        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5434            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5435            I.getType() == I.getArgOperand(0)->getType() &&
5436            I.getType() == I.getArgOperand(1)->getType()) {
5437          SDValue LHS = getValue(I.getArgOperand(0));
5438          SDValue RHS = getValue(I.getArgOperand(1));
5439          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5440                                   LHS.getValueType(), LHS, RHS));
5441          return;
5442        }
5443      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5444        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5445            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5446            I.getType() == I.getArgOperand(0)->getType()) {
5447          SDValue Tmp = getValue(I.getArgOperand(0));
5448          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5449                                   Tmp.getValueType(), Tmp));
5450          return;
5451        }
5452      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5453        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5454            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5455            I.getType() == I.getArgOperand(0)->getType() &&
5456            I.onlyReadsMemory()) {
5457          SDValue Tmp = getValue(I.getArgOperand(0));
5458          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5459                                   Tmp.getValueType(), Tmp));
5460          return;
5461        }
5462      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5463        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5464            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5465            I.getType() == I.getArgOperand(0)->getType() &&
5466            I.onlyReadsMemory()) {
5467          SDValue Tmp = getValue(I.getArgOperand(0));
5468          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5469                                   Tmp.getValueType(), Tmp));
5470          return;
5471        }
5472      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5473        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5474            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5475            I.getType() == I.getArgOperand(0)->getType() &&
5476            I.onlyReadsMemory()) {
5477          SDValue Tmp = getValue(I.getArgOperand(0));
5478          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5479                                   Tmp.getValueType(), Tmp));
5480          return;
5481        }
5482      } else if (Name == "memcmp") {
5483        if (visitMemCmpCall(I))
5484          return;
5485      }
5486    }
5487  }
5488
5489  SDValue Callee;
5490  if (!RenameFn)
5491    Callee = getValue(I.getCalledValue());
5492  else
5493    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5494
5495  // Check if we can potentially perform a tail call. More detailed checking is
5496  // be done within LowerCallTo, after more information about the call is known.
5497  LowerCallTo(&I, Callee, I.isTailCall());
5498}
5499
5500namespace {
5501
5502/// AsmOperandInfo - This contains information for each constraint that we are
5503/// lowering.
5504class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5505public:
5506  /// CallOperand - If this is the result output operand or a clobber
5507  /// this is null, otherwise it is the incoming operand to the CallInst.
5508  /// This gets modified as the asm is processed.
5509  SDValue CallOperand;
5510
5511  /// AssignedRegs - If this is a register or register class operand, this
5512  /// contains the set of register corresponding to the operand.
5513  RegsForValue AssignedRegs;
5514
5515  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5516    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5517  }
5518
5519  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5520  /// busy in OutputRegs/InputRegs.
5521  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5522                         std::set<unsigned> &OutputRegs,
5523                         std::set<unsigned> &InputRegs,
5524                         const TargetRegisterInfo &TRI) const {
5525    if (isOutReg) {
5526      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5527        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5528    }
5529    if (isInReg) {
5530      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5531        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5532    }
5533  }
5534
5535  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5536  /// corresponds to.  If there is no Value* for this operand, it returns
5537  /// MVT::Other.
5538  EVT getCallOperandValEVT(LLVMContext &Context,
5539                           const TargetLowering &TLI,
5540                           const TargetData *TD) const {
5541    if (CallOperandVal == 0) return MVT::Other;
5542
5543    if (isa<BasicBlock>(CallOperandVal))
5544      return TLI.getPointerTy();
5545
5546    llvm::Type *OpTy = CallOperandVal->getType();
5547
5548    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5549    // If this is an indirect operand, the operand is a pointer to the
5550    // accessed type.
5551    if (isIndirect) {
5552      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5553      if (!PtrTy)
5554        report_fatal_error("Indirect operand for inline asm not a pointer!");
5555      OpTy = PtrTy->getElementType();
5556    }
5557
5558    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5559    if (StructType *STy = dyn_cast<StructType>(OpTy))
5560      if (STy->getNumElements() == 1)
5561        OpTy = STy->getElementType(0);
5562
5563    // If OpTy is not a single value, it may be a struct/union that we
5564    // can tile with integers.
5565    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5566      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5567      switch (BitSize) {
5568      default: break;
5569      case 1:
5570      case 8:
5571      case 16:
5572      case 32:
5573      case 64:
5574      case 128:
5575        OpTy = IntegerType::get(Context, BitSize);
5576        break;
5577      }
5578    }
5579
5580    return TLI.getValueType(OpTy, true);
5581  }
5582
5583private:
5584  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5585  /// specified set.
5586  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5587                                const TargetRegisterInfo &TRI) {
5588    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5589    Regs.insert(Reg);
5590    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5591      for (; *Aliases; ++Aliases)
5592        Regs.insert(*Aliases);
5593  }
5594};
5595
5596typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5597
5598} // end anonymous namespace
5599
5600/// GetRegistersForValue - Assign registers (virtual or physical) for the
5601/// specified operand.  We prefer to assign virtual registers, to allow the
5602/// register allocator to handle the assignment process.  However, if the asm
5603/// uses features that we can't model on machineinstrs, we have SDISel do the
5604/// allocation.  This produces generally horrible, but correct, code.
5605///
5606///   OpInfo describes the operand.
5607///   Input and OutputRegs are the set of already allocated physical registers.
5608///
5609static void GetRegistersForValue(SelectionDAG &DAG,
5610                                 const TargetLowering &TLI,
5611                                 DebugLoc DL,
5612                                 SDISelAsmOperandInfo &OpInfo,
5613                                 std::set<unsigned> &OutputRegs,
5614                                 std::set<unsigned> &InputRegs) {
5615  LLVMContext &Context = *DAG.getContext();
5616
5617  // Compute whether this value requires an input register, an output register,
5618  // or both.
5619  bool isOutReg = false;
5620  bool isInReg = false;
5621  switch (OpInfo.Type) {
5622  case InlineAsm::isOutput:
5623    isOutReg = true;
5624
5625    // If there is an input constraint that matches this, we need to reserve
5626    // the input register so no other inputs allocate to it.
5627    isInReg = OpInfo.hasMatchingInput();
5628    break;
5629  case InlineAsm::isInput:
5630    isInReg = true;
5631    isOutReg = false;
5632    break;
5633  case InlineAsm::isClobber:
5634    isOutReg = true;
5635    isInReg = true;
5636    break;
5637  }
5638
5639
5640  MachineFunction &MF = DAG.getMachineFunction();
5641  SmallVector<unsigned, 4> Regs;
5642
5643  // If this is a constraint for a single physreg, or a constraint for a
5644  // register class, find it.
5645  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5646    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5647                                     OpInfo.ConstraintVT);
5648
5649  unsigned NumRegs = 1;
5650  if (OpInfo.ConstraintVT != MVT::Other) {
5651    // If this is a FP input in an integer register (or visa versa) insert a bit
5652    // cast of the input value.  More generally, handle any case where the input
5653    // value disagrees with the register class we plan to stick this in.
5654    if (OpInfo.Type == InlineAsm::isInput &&
5655        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5656      // Try to convert to the first EVT that the reg class contains.  If the
5657      // types are identical size, use a bitcast to convert (e.g. two differing
5658      // vector types).
5659      EVT RegVT = *PhysReg.second->vt_begin();
5660      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5661        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5662                                         RegVT, OpInfo.CallOperand);
5663        OpInfo.ConstraintVT = RegVT;
5664      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5665        // If the input is a FP value and we want it in FP registers, do a
5666        // bitcast to the corresponding integer type.  This turns an f64 value
5667        // into i64, which can be passed with two i32 values on a 32-bit
5668        // machine.
5669        RegVT = EVT::getIntegerVT(Context,
5670                                  OpInfo.ConstraintVT.getSizeInBits());
5671        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5672                                         RegVT, OpInfo.CallOperand);
5673        OpInfo.ConstraintVT = RegVT;
5674      }
5675    }
5676
5677    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5678  }
5679
5680  EVT RegVT;
5681  EVT ValueVT = OpInfo.ConstraintVT;
5682
5683  // If this is a constraint for a specific physical register, like {r17},
5684  // assign it now.
5685  if (unsigned AssignedReg = PhysReg.first) {
5686    const TargetRegisterClass *RC = PhysReg.second;
5687    if (OpInfo.ConstraintVT == MVT::Other)
5688      ValueVT = *RC->vt_begin();
5689
5690    // Get the actual register value type.  This is important, because the user
5691    // may have asked for (e.g.) the AX register in i32 type.  We need to
5692    // remember that AX is actually i16 to get the right extension.
5693    RegVT = *RC->vt_begin();
5694
5695    // This is a explicit reference to a physical register.
5696    Regs.push_back(AssignedReg);
5697
5698    // If this is an expanded reference, add the rest of the regs to Regs.
5699    if (NumRegs != 1) {
5700      TargetRegisterClass::iterator I = RC->begin();
5701      for (; *I != AssignedReg; ++I)
5702        assert(I != RC->end() && "Didn't find reg!");
5703
5704      // Already added the first reg.
5705      --NumRegs; ++I;
5706      for (; NumRegs; --NumRegs, ++I) {
5707        assert(I != RC->end() && "Ran out of registers to allocate!");
5708        Regs.push_back(*I);
5709      }
5710    }
5711
5712    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5713    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5714    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5715    return;
5716  }
5717
5718  // Otherwise, if this was a reference to an LLVM register class, create vregs
5719  // for this reference.
5720  if (const TargetRegisterClass *RC = PhysReg.second) {
5721    RegVT = *RC->vt_begin();
5722    if (OpInfo.ConstraintVT == MVT::Other)
5723      ValueVT = RegVT;
5724
5725    // Create the appropriate number of virtual registers.
5726    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5727    for (; NumRegs; --NumRegs)
5728      Regs.push_back(RegInfo.createVirtualRegister(RC));
5729
5730    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5731    return;
5732  }
5733
5734  // Otherwise, we couldn't allocate enough registers for this.
5735}
5736
5737/// visitInlineAsm - Handle a call to an InlineAsm object.
5738///
5739void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5740  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5741
5742  /// ConstraintOperands - Information about all of the constraints.
5743  SDISelAsmOperandInfoVector ConstraintOperands;
5744
5745  std::set<unsigned> OutputRegs, InputRegs;
5746
5747  TargetLowering::AsmOperandInfoVector
5748    TargetConstraints = TLI.ParseConstraints(CS);
5749
5750  bool hasMemory = false;
5751
5752  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5753  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5754  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5755    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5756    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5757
5758    EVT OpVT = MVT::Other;
5759
5760    // Compute the value type for each operand.
5761    switch (OpInfo.Type) {
5762    case InlineAsm::isOutput:
5763      // Indirect outputs just consume an argument.
5764      if (OpInfo.isIndirect) {
5765        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5766        break;
5767      }
5768
5769      // The return value of the call is this value.  As such, there is no
5770      // corresponding argument.
5771      assert(!CS.getType()->isVoidTy() &&
5772             "Bad inline asm!");
5773      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5774        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5775      } else {
5776        assert(ResNo == 0 && "Asm only has one result!");
5777        OpVT = TLI.getValueType(CS.getType());
5778      }
5779      ++ResNo;
5780      break;
5781    case InlineAsm::isInput:
5782      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5783      break;
5784    case InlineAsm::isClobber:
5785      // Nothing to do.
5786      break;
5787    }
5788
5789    // If this is an input or an indirect output, process the call argument.
5790    // BasicBlocks are labels, currently appearing only in asm's.
5791    if (OpInfo.CallOperandVal) {
5792      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5793        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5794      } else {
5795        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5796      }
5797
5798      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5799    }
5800
5801    OpInfo.ConstraintVT = OpVT;
5802
5803    // Indirect operand accesses access memory.
5804    if (OpInfo.isIndirect)
5805      hasMemory = true;
5806    else {
5807      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5808        TargetLowering::ConstraintType
5809          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5810        if (CType == TargetLowering::C_Memory) {
5811          hasMemory = true;
5812          break;
5813        }
5814      }
5815    }
5816  }
5817
5818  SDValue Chain, Flag;
5819
5820  // We won't need to flush pending loads if this asm doesn't touch
5821  // memory and is nonvolatile.
5822  if (hasMemory || IA->hasSideEffects())
5823    Chain = getRoot();
5824  else
5825    Chain = DAG.getRoot();
5826
5827  // Second pass over the constraints: compute which constraint option to use
5828  // and assign registers to constraints that want a specific physreg.
5829  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5830    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5831
5832    // If this is an output operand with a matching input operand, look up the
5833    // matching input. If their types mismatch, e.g. one is an integer, the
5834    // other is floating point, or their sizes are different, flag it as an
5835    // error.
5836    if (OpInfo.hasMatchingInput()) {
5837      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5838
5839      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5840	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5841	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
5842	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5843	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
5844        if ((OpInfo.ConstraintVT.isInteger() !=
5845             Input.ConstraintVT.isInteger()) ||
5846            (MatchRC.second != InputRC.second)) {
5847          report_fatal_error("Unsupported asm: input constraint"
5848                             " with a matching output constraint of"
5849                             " incompatible type!");
5850        }
5851        Input.ConstraintVT = OpInfo.ConstraintVT;
5852      }
5853    }
5854
5855    // Compute the constraint code and ConstraintType to use.
5856    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5857
5858    // If this is a memory input, and if the operand is not indirect, do what we
5859    // need to to provide an address for the memory input.
5860    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5861        !OpInfo.isIndirect) {
5862      assert((OpInfo.isMultipleAlternative ||
5863              (OpInfo.Type == InlineAsm::isInput)) &&
5864             "Can only indirectify direct input operands!");
5865
5866      // Memory operands really want the address of the value.  If we don't have
5867      // an indirect input, put it in the constpool if we can, otherwise spill
5868      // it to a stack slot.
5869      // TODO: This isn't quite right. We need to handle these according to
5870      // the addressing mode that the constraint wants. Also, this may take
5871      // an additional register for the computation and we don't want that
5872      // either.
5873
5874      // If the operand is a float, integer, or vector constant, spill to a
5875      // constant pool entry to get its address.
5876      const Value *OpVal = OpInfo.CallOperandVal;
5877      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5878          isa<ConstantVector>(OpVal)) {
5879        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5880                                                 TLI.getPointerTy());
5881      } else {
5882        // Otherwise, create a stack slot and emit a store to it before the
5883        // asm.
5884        Type *Ty = OpVal->getType();
5885        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5886        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5887        MachineFunction &MF = DAG.getMachineFunction();
5888        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5889        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5890        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5891                             OpInfo.CallOperand, StackSlot,
5892                             MachinePointerInfo::getFixedStack(SSFI),
5893                             false, false, 0);
5894        OpInfo.CallOperand = StackSlot;
5895      }
5896
5897      // There is no longer a Value* corresponding to this operand.
5898      OpInfo.CallOperandVal = 0;
5899
5900      // It is now an indirect operand.
5901      OpInfo.isIndirect = true;
5902    }
5903
5904    // If this constraint is for a specific register, allocate it before
5905    // anything else.
5906    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5907      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5908                           InputRegs);
5909  }
5910
5911  // Second pass - Loop over all of the operands, assigning virtual or physregs
5912  // to register class operands.
5913  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5914    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5915
5916    // C_Register operands have already been allocated, Other/Memory don't need
5917    // to be.
5918    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5919      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5920                           InputRegs);
5921  }
5922
5923  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5924  std::vector<SDValue> AsmNodeOperands;
5925  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5926  AsmNodeOperands.push_back(
5927          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5928                                      TLI.getPointerTy()));
5929
5930  // If we have a !srcloc metadata node associated with it, we want to attach
5931  // this to the ultimately generated inline asm machineinstr.  To do this, we
5932  // pass in the third operand as this (potentially null) inline asm MDNode.
5933  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5934  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5935
5936  // Remember the HasSideEffect and AlignStack bits as operand 3.
5937  unsigned ExtraInfo = 0;
5938  if (IA->hasSideEffects())
5939    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5940  if (IA->isAlignStack())
5941    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5942  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5943                                                  TLI.getPointerTy()));
5944
5945  // Loop over all of the inputs, copying the operand values into the
5946  // appropriate registers and processing the output regs.
5947  RegsForValue RetValRegs;
5948
5949  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5950  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5951
5952  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5953    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5954
5955    switch (OpInfo.Type) {
5956    case InlineAsm::isOutput: {
5957      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5958          OpInfo.ConstraintType != TargetLowering::C_Register) {
5959        // Memory output, or 'other' output (e.g. 'X' constraint).
5960        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5961
5962        // Add information to the INLINEASM node to know about this output.
5963        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5964        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5965                                                        TLI.getPointerTy()));
5966        AsmNodeOperands.push_back(OpInfo.CallOperand);
5967        break;
5968      }
5969
5970      // Otherwise, this is a register or register class output.
5971
5972      // Copy the output from the appropriate register.  Find a register that
5973      // we can use.
5974      if (OpInfo.AssignedRegs.Regs.empty())
5975        report_fatal_error("Couldn't allocate output reg for constraint '" +
5976                           Twine(OpInfo.ConstraintCode) + "'!");
5977
5978      // If this is an indirect operand, store through the pointer after the
5979      // asm.
5980      if (OpInfo.isIndirect) {
5981        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5982                                                      OpInfo.CallOperandVal));
5983      } else {
5984        // This is the result value of the call.
5985        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5986        // Concatenate this output onto the outputs list.
5987        RetValRegs.append(OpInfo.AssignedRegs);
5988      }
5989
5990      // Add information to the INLINEASM node to know that this register is
5991      // set.
5992      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5993                                           InlineAsm::Kind_RegDefEarlyClobber :
5994                                               InlineAsm::Kind_RegDef,
5995                                               false,
5996                                               0,
5997                                               DAG,
5998                                               AsmNodeOperands);
5999      break;
6000    }
6001    case InlineAsm::isInput: {
6002      SDValue InOperandVal = OpInfo.CallOperand;
6003
6004      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6005        // If this is required to match an output register we have already set,
6006        // just use its register.
6007        unsigned OperandNo = OpInfo.getMatchedOperand();
6008
6009        // Scan until we find the definition we already emitted of this operand.
6010        // When we find it, create a RegsForValue operand.
6011        unsigned CurOp = InlineAsm::Op_FirstOperand;
6012        for (; OperandNo; --OperandNo) {
6013          // Advance to the next operand.
6014          unsigned OpFlag =
6015            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6016          assert((InlineAsm::isRegDefKind(OpFlag) ||
6017                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6018                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6019          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6020        }
6021
6022        unsigned OpFlag =
6023          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6024        if (InlineAsm::isRegDefKind(OpFlag) ||
6025            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6026          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6027          if (OpInfo.isIndirect) {
6028            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6029            LLVMContext &Ctx = *DAG.getContext();
6030            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6031                          " don't know how to handle tied "
6032                          "indirect register inputs");
6033          }
6034
6035          RegsForValue MatchedRegs;
6036          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6037          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6038          MatchedRegs.RegVTs.push_back(RegVT);
6039          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6040          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6041               i != e; ++i)
6042            MatchedRegs.Regs.push_back
6043              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6044
6045          // Use the produced MatchedRegs object to
6046          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6047                                    Chain, &Flag);
6048          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6049                                           true, OpInfo.getMatchedOperand(),
6050                                           DAG, AsmNodeOperands);
6051          break;
6052        }
6053
6054        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6055        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6056               "Unexpected number of operands");
6057        // Add information to the INLINEASM node to know about this input.
6058        // See InlineAsm.h isUseOperandTiedToDef.
6059        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6060                                                    OpInfo.getMatchedOperand());
6061        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6062                                                        TLI.getPointerTy()));
6063        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6064        break;
6065      }
6066
6067      // Treat indirect 'X' constraint as memory.
6068      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6069          OpInfo.isIndirect)
6070        OpInfo.ConstraintType = TargetLowering::C_Memory;
6071
6072      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6073        std::vector<SDValue> Ops;
6074        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6075                                         Ops, DAG);
6076        if (Ops.empty())
6077          report_fatal_error("Invalid operand for inline asm constraint '" +
6078                             Twine(OpInfo.ConstraintCode) + "'!");
6079
6080        // Add information to the INLINEASM node to know about this input.
6081        unsigned ResOpType =
6082          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6083        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6084                                                        TLI.getPointerTy()));
6085        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6086        break;
6087      }
6088
6089      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6090        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6091        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6092               "Memory operands expect pointer values");
6093
6094        // Add information to the INLINEASM node to know about this input.
6095        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6096        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6097                                                        TLI.getPointerTy()));
6098        AsmNodeOperands.push_back(InOperandVal);
6099        break;
6100      }
6101
6102      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6103              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6104             "Unknown constraint type!");
6105      assert(!OpInfo.isIndirect &&
6106             "Don't know how to handle indirect register inputs yet!");
6107
6108      // Copy the input into the appropriate registers.
6109      if (OpInfo.AssignedRegs.Regs.empty())
6110        report_fatal_error("Couldn't allocate input reg for constraint '" +
6111                           Twine(OpInfo.ConstraintCode) + "'!");
6112
6113      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6114                                        Chain, &Flag);
6115
6116      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6117                                               DAG, AsmNodeOperands);
6118      break;
6119    }
6120    case InlineAsm::isClobber: {
6121      // Add the clobbered value to the operand list, so that the register
6122      // allocator is aware that the physreg got clobbered.
6123      if (!OpInfo.AssignedRegs.Regs.empty())
6124        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6125                                                 false, 0, DAG,
6126                                                 AsmNodeOperands);
6127      break;
6128    }
6129    }
6130  }
6131
6132  // Finish up input operands.  Set the input chain and add the flag last.
6133  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6134  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6135
6136  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6137                      DAG.getVTList(MVT::Other, MVT::Glue),
6138                      &AsmNodeOperands[0], AsmNodeOperands.size());
6139  Flag = Chain.getValue(1);
6140
6141  // If this asm returns a register value, copy the result from that register
6142  // and set it as the value of the call.
6143  if (!RetValRegs.Regs.empty()) {
6144    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6145                                             Chain, &Flag);
6146
6147    // FIXME: Why don't we do this for inline asms with MRVs?
6148    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6149      EVT ResultType = TLI.getValueType(CS.getType());
6150
6151      // If any of the results of the inline asm is a vector, it may have the
6152      // wrong width/num elts.  This can happen for register classes that can
6153      // contain multiple different value types.  The preg or vreg allocated may
6154      // not have the same VT as was expected.  Convert it to the right type
6155      // with bit_convert.
6156      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6157        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6158                          ResultType, Val);
6159
6160      } else if (ResultType != Val.getValueType() &&
6161                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6162        // If a result value was tied to an input value, the computed result may
6163        // have a wider width than the expected result.  Extract the relevant
6164        // portion.
6165        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6166      }
6167
6168      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6169    }
6170
6171    setValue(CS.getInstruction(), Val);
6172    // Don't need to use this as a chain in this case.
6173    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6174      return;
6175  }
6176
6177  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6178
6179  // Process indirect outputs, first output all of the flagged copies out of
6180  // physregs.
6181  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6182    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6183    const Value *Ptr = IndirectStoresToEmit[i].second;
6184    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6185                                             Chain, &Flag);
6186    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6187  }
6188
6189  // Emit the non-flagged stores from the physregs.
6190  SmallVector<SDValue, 8> OutChains;
6191  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6192    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6193                               StoresToEmit[i].first,
6194                               getValue(StoresToEmit[i].second),
6195                               MachinePointerInfo(StoresToEmit[i].second),
6196                               false, false, 0);
6197    OutChains.push_back(Val);
6198  }
6199
6200  if (!OutChains.empty())
6201    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6202                        &OutChains[0], OutChains.size());
6203
6204  DAG.setRoot(Chain);
6205}
6206
6207void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6208  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6209                          MVT::Other, getRoot(),
6210                          getValue(I.getArgOperand(0)),
6211                          DAG.getSrcValue(I.getArgOperand(0))));
6212}
6213
6214void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6215  const TargetData &TD = *TLI.getTargetData();
6216  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6217                           getRoot(), getValue(I.getOperand(0)),
6218                           DAG.getSrcValue(I.getOperand(0)),
6219                           TD.getABITypeAlignment(I.getType()));
6220  setValue(&I, V);
6221  DAG.setRoot(V.getValue(1));
6222}
6223
6224void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6225  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6226                          MVT::Other, getRoot(),
6227                          getValue(I.getArgOperand(0)),
6228                          DAG.getSrcValue(I.getArgOperand(0))));
6229}
6230
6231void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6232  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6233                          MVT::Other, getRoot(),
6234                          getValue(I.getArgOperand(0)),
6235                          getValue(I.getArgOperand(1)),
6236                          DAG.getSrcValue(I.getArgOperand(0)),
6237                          DAG.getSrcValue(I.getArgOperand(1))));
6238}
6239
6240/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6241/// implementation, which just calls LowerCall.
6242/// FIXME: When all targets are
6243/// migrated to using LowerCall, this hook should be integrated into SDISel.
6244std::pair<SDValue, SDValue>
6245TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6246                            bool RetSExt, bool RetZExt, bool isVarArg,
6247                            bool isInreg, unsigned NumFixedArgs,
6248                            CallingConv::ID CallConv, bool isTailCall,
6249                            bool isReturnValueUsed,
6250                            SDValue Callee,
6251                            ArgListTy &Args, SelectionDAG &DAG,
6252                            DebugLoc dl) const {
6253  // Handle all of the outgoing arguments.
6254  SmallVector<ISD::OutputArg, 32> Outs;
6255  SmallVector<SDValue, 32> OutVals;
6256  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6257    SmallVector<EVT, 4> ValueVTs;
6258    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6259    for (unsigned Value = 0, NumValues = ValueVTs.size();
6260         Value != NumValues; ++Value) {
6261      EVT VT = ValueVTs[Value];
6262      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6263      SDValue Op = SDValue(Args[i].Node.getNode(),
6264                           Args[i].Node.getResNo() + Value);
6265      ISD::ArgFlagsTy Flags;
6266      unsigned OriginalAlignment =
6267        getTargetData()->getABITypeAlignment(ArgTy);
6268
6269      if (Args[i].isZExt)
6270        Flags.setZExt();
6271      if (Args[i].isSExt)
6272        Flags.setSExt();
6273      if (Args[i].isInReg)
6274        Flags.setInReg();
6275      if (Args[i].isSRet)
6276        Flags.setSRet();
6277      if (Args[i].isByVal) {
6278        Flags.setByVal();
6279        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6280        Type *ElementTy = Ty->getElementType();
6281        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6282        // For ByVal, alignment should come from FE.  BE will guess if this
6283        // info is not there but there are cases it cannot get right.
6284        unsigned FrameAlign;
6285        if (Args[i].Alignment)
6286          FrameAlign = Args[i].Alignment;
6287        else
6288          FrameAlign = getByValTypeAlignment(ElementTy);
6289        Flags.setByValAlign(FrameAlign);
6290      }
6291      if (Args[i].isNest)
6292        Flags.setNest();
6293      Flags.setOrigAlign(OriginalAlignment);
6294
6295      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6296      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6297      SmallVector<SDValue, 4> Parts(NumParts);
6298      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6299
6300      if (Args[i].isSExt)
6301        ExtendKind = ISD::SIGN_EXTEND;
6302      else if (Args[i].isZExt)
6303        ExtendKind = ISD::ZERO_EXTEND;
6304
6305      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6306                     PartVT, ExtendKind);
6307
6308      for (unsigned j = 0; j != NumParts; ++j) {
6309        // if it isn't first piece, alignment must be 1
6310        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6311                               i < NumFixedArgs);
6312        if (NumParts > 1 && j == 0)
6313          MyFlags.Flags.setSplit();
6314        else if (j != 0)
6315          MyFlags.Flags.setOrigAlign(1);
6316
6317        Outs.push_back(MyFlags);
6318        OutVals.push_back(Parts[j]);
6319      }
6320    }
6321  }
6322
6323  // Handle the incoming return values from the call.
6324  SmallVector<ISD::InputArg, 32> Ins;
6325  SmallVector<EVT, 4> RetTys;
6326  ComputeValueVTs(*this, RetTy, RetTys);
6327  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6328    EVT VT = RetTys[I];
6329    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6330    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6331    for (unsigned i = 0; i != NumRegs; ++i) {
6332      ISD::InputArg MyFlags;
6333      MyFlags.VT = RegisterVT.getSimpleVT();
6334      MyFlags.Used = isReturnValueUsed;
6335      if (RetSExt)
6336        MyFlags.Flags.setSExt();
6337      if (RetZExt)
6338        MyFlags.Flags.setZExt();
6339      if (isInreg)
6340        MyFlags.Flags.setInReg();
6341      Ins.push_back(MyFlags);
6342    }
6343  }
6344
6345  SmallVector<SDValue, 4> InVals;
6346  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6347                    Outs, OutVals, Ins, dl, DAG, InVals);
6348
6349  // Verify that the target's LowerCall behaved as expected.
6350  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6351         "LowerCall didn't return a valid chain!");
6352  assert((!isTailCall || InVals.empty()) &&
6353         "LowerCall emitted a return value for a tail call!");
6354  assert((isTailCall || InVals.size() == Ins.size()) &&
6355         "LowerCall didn't emit the correct number of values!");
6356
6357  // For a tail call, the return value is merely live-out and there aren't
6358  // any nodes in the DAG representing it. Return a special value to
6359  // indicate that a tail call has been emitted and no more Instructions
6360  // should be processed in the current block.
6361  if (isTailCall) {
6362    DAG.setRoot(Chain);
6363    return std::make_pair(SDValue(), SDValue());
6364  }
6365
6366  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6367          assert(InVals[i].getNode() &&
6368                 "LowerCall emitted a null value!");
6369          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6370                 "LowerCall emitted a value with the wrong type!");
6371        });
6372
6373  // Collect the legal value parts into potentially illegal values
6374  // that correspond to the original function's return values.
6375  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6376  if (RetSExt)
6377    AssertOp = ISD::AssertSext;
6378  else if (RetZExt)
6379    AssertOp = ISD::AssertZext;
6380  SmallVector<SDValue, 4> ReturnValues;
6381  unsigned CurReg = 0;
6382  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6383    EVT VT = RetTys[I];
6384    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6385    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6386
6387    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6388                                            NumRegs, RegisterVT, VT,
6389                                            AssertOp));
6390    CurReg += NumRegs;
6391  }
6392
6393  // For a function returning void, there is no return value. We can't create
6394  // such a node, so we just return a null return value in that case. In
6395  // that case, nothing will actually look at the value.
6396  if (ReturnValues.empty())
6397    return std::make_pair(SDValue(), Chain);
6398
6399  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6400                            DAG.getVTList(&RetTys[0], RetTys.size()),
6401                            &ReturnValues[0], ReturnValues.size());
6402  return std::make_pair(Res, Chain);
6403}
6404
6405void TargetLowering::LowerOperationWrapper(SDNode *N,
6406                                           SmallVectorImpl<SDValue> &Results,
6407                                           SelectionDAG &DAG) const {
6408  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6409  if (Res.getNode())
6410    Results.push_back(Res);
6411}
6412
6413SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6414  llvm_unreachable("LowerOperation not implemented for this target!");
6415  return SDValue();
6416}
6417
6418void
6419SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6420  SDValue Op = getNonRegisterValue(V);
6421  assert((Op.getOpcode() != ISD::CopyFromReg ||
6422          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6423         "Copy from a reg to the same reg!");
6424  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6425
6426  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6427  SDValue Chain = DAG.getEntryNode();
6428  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6429  PendingExports.push_back(Chain);
6430}
6431
6432#include "llvm/CodeGen/SelectionDAGISel.h"
6433
6434/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6435/// entry block, return true.  This includes arguments used by switches, since
6436/// the switch may expand into multiple basic blocks.
6437static bool isOnlyUsedInEntryBlock(const Argument *A) {
6438  // With FastISel active, we may be splitting blocks, so force creation
6439  // of virtual registers for all non-dead arguments.
6440  if (EnableFastISel)
6441    return A->use_empty();
6442
6443  const BasicBlock *Entry = A->getParent()->begin();
6444  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6445       UI != E; ++UI) {
6446    const User *U = *UI;
6447    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6448      return false;  // Use not in entry block.
6449  }
6450  return true;
6451}
6452
6453void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6454  // If this is the entry block, emit arguments.
6455  const Function &F = *LLVMBB->getParent();
6456  SelectionDAG &DAG = SDB->DAG;
6457  DebugLoc dl = SDB->getCurDebugLoc();
6458  const TargetData *TD = TLI.getTargetData();
6459  SmallVector<ISD::InputArg, 16> Ins;
6460
6461  // Check whether the function can return without sret-demotion.
6462  SmallVector<ISD::OutputArg, 4> Outs;
6463  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6464                Outs, TLI);
6465
6466  if (!FuncInfo->CanLowerReturn) {
6467    // Put in an sret pointer parameter before all the other parameters.
6468    SmallVector<EVT, 1> ValueVTs;
6469    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6470
6471    // NOTE: Assuming that a pointer will never break down to more than one VT
6472    // or one register.
6473    ISD::ArgFlagsTy Flags;
6474    Flags.setSRet();
6475    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6476    ISD::InputArg RetArg(Flags, RegisterVT, true);
6477    Ins.push_back(RetArg);
6478  }
6479
6480  // Set up the incoming argument description vector.
6481  unsigned Idx = 1;
6482  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6483       I != E; ++I, ++Idx) {
6484    SmallVector<EVT, 4> ValueVTs;
6485    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6486    bool isArgValueUsed = !I->use_empty();
6487    for (unsigned Value = 0, NumValues = ValueVTs.size();
6488         Value != NumValues; ++Value) {
6489      EVT VT = ValueVTs[Value];
6490      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6491      ISD::ArgFlagsTy Flags;
6492      unsigned OriginalAlignment =
6493        TD->getABITypeAlignment(ArgTy);
6494
6495      if (F.paramHasAttr(Idx, Attribute::ZExt))
6496        Flags.setZExt();
6497      if (F.paramHasAttr(Idx, Attribute::SExt))
6498        Flags.setSExt();
6499      if (F.paramHasAttr(Idx, Attribute::InReg))
6500        Flags.setInReg();
6501      if (F.paramHasAttr(Idx, Attribute::StructRet))
6502        Flags.setSRet();
6503      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6504        Flags.setByVal();
6505        PointerType *Ty = cast<PointerType>(I->getType());
6506        Type *ElementTy = Ty->getElementType();
6507        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6508        // For ByVal, alignment should be passed from FE.  BE will guess if
6509        // this info is not there but there are cases it cannot get right.
6510        unsigned FrameAlign;
6511        if (F.getParamAlignment(Idx))
6512          FrameAlign = F.getParamAlignment(Idx);
6513        else
6514          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6515        Flags.setByValAlign(FrameAlign);
6516      }
6517      if (F.paramHasAttr(Idx, Attribute::Nest))
6518        Flags.setNest();
6519      Flags.setOrigAlign(OriginalAlignment);
6520
6521      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6522      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6523      for (unsigned i = 0; i != NumRegs; ++i) {
6524        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6525        if (NumRegs > 1 && i == 0)
6526          MyFlags.Flags.setSplit();
6527        // if it isn't first piece, alignment must be 1
6528        else if (i > 0)
6529          MyFlags.Flags.setOrigAlign(1);
6530        Ins.push_back(MyFlags);
6531      }
6532    }
6533  }
6534
6535  // Call the target to set up the argument values.
6536  SmallVector<SDValue, 8> InVals;
6537  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6538                                             F.isVarArg(), Ins,
6539                                             dl, DAG, InVals);
6540
6541  // Verify that the target's LowerFormalArguments behaved as expected.
6542  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6543         "LowerFormalArguments didn't return a valid chain!");
6544  assert(InVals.size() == Ins.size() &&
6545         "LowerFormalArguments didn't emit the correct number of values!");
6546  DEBUG({
6547      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6548        assert(InVals[i].getNode() &&
6549               "LowerFormalArguments emitted a null value!");
6550        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6551               "LowerFormalArguments emitted a value with the wrong type!");
6552      }
6553    });
6554
6555  // Update the DAG with the new chain value resulting from argument lowering.
6556  DAG.setRoot(NewRoot);
6557
6558  // Set up the argument values.
6559  unsigned i = 0;
6560  Idx = 1;
6561  if (!FuncInfo->CanLowerReturn) {
6562    // Create a virtual register for the sret pointer, and put in a copy
6563    // from the sret argument into it.
6564    SmallVector<EVT, 1> ValueVTs;
6565    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6566    EVT VT = ValueVTs[0];
6567    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6568    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6569    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6570                                        RegVT, VT, AssertOp);
6571
6572    MachineFunction& MF = SDB->DAG.getMachineFunction();
6573    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6574    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6575    FuncInfo->DemoteRegister = SRetReg;
6576    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6577                                    SRetReg, ArgValue);
6578    DAG.setRoot(NewRoot);
6579
6580    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6581    // Idx indexes LLVM arguments.  Don't touch it.
6582    ++i;
6583  }
6584
6585  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6586      ++I, ++Idx) {
6587    SmallVector<SDValue, 4> ArgValues;
6588    SmallVector<EVT, 4> ValueVTs;
6589    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6590    unsigned NumValues = ValueVTs.size();
6591
6592    // If this argument is unused then remember its value. It is used to generate
6593    // debugging information.
6594    if (I->use_empty() && NumValues)
6595      SDB->setUnusedArgValue(I, InVals[i]);
6596
6597    for (unsigned Val = 0; Val != NumValues; ++Val) {
6598      EVT VT = ValueVTs[Val];
6599      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6600      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6601
6602      if (!I->use_empty()) {
6603        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6604        if (F.paramHasAttr(Idx, Attribute::SExt))
6605          AssertOp = ISD::AssertSext;
6606        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6607          AssertOp = ISD::AssertZext;
6608
6609        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6610                                             NumParts, PartVT, VT,
6611                                             AssertOp));
6612      }
6613
6614      i += NumParts;
6615    }
6616
6617    // We don't need to do anything else for unused arguments.
6618    if (ArgValues.empty())
6619      continue;
6620
6621    // Note down frame index for byval arguments.
6622    if (I->hasByValAttr())
6623      if (FrameIndexSDNode *FI =
6624          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6625        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6626
6627    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6628                                     SDB->getCurDebugLoc());
6629    SDB->setValue(I, Res);
6630
6631    // If this argument is live outside of the entry block, insert a copy from
6632    // wherever we got it to the vreg that other BB's will reference it as.
6633    if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6634      // If we can, though, try to skip creating an unnecessary vreg.
6635      // FIXME: This isn't very clean... it would be nice to make this more
6636      // general.  It's also subtly incompatible with the hacks FastISel
6637      // uses with vregs.
6638      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6639      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6640        FuncInfo->ValueMap[I] = Reg;
6641        continue;
6642      }
6643    }
6644    if (!isOnlyUsedInEntryBlock(I)) {
6645      FuncInfo->InitializeRegForValue(I);
6646      SDB->CopyToExportRegsIfNeeded(I);
6647    }
6648  }
6649
6650  assert(i == InVals.size() && "Argument register count mismatch!");
6651
6652  // Finally, if the target has anything special to do, allow it to do so.
6653  // FIXME: this should insert code into the DAG!
6654  EmitFunctionEntryCode();
6655}
6656
6657/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6658/// ensure constants are generated when needed.  Remember the virtual registers
6659/// that need to be added to the Machine PHI nodes as input.  We cannot just
6660/// directly add them, because expansion might result in multiple MBB's for one
6661/// BB.  As such, the start of the BB might correspond to a different MBB than
6662/// the end.
6663///
6664void
6665SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6666  const TerminatorInst *TI = LLVMBB->getTerminator();
6667
6668  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6669
6670  // Check successor nodes' PHI nodes that expect a constant to be available
6671  // from this block.
6672  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6673    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6674    if (!isa<PHINode>(SuccBB->begin())) continue;
6675    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6676
6677    // If this terminator has multiple identical successors (common for
6678    // switches), only handle each succ once.
6679    if (!SuccsHandled.insert(SuccMBB)) continue;
6680
6681    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6682
6683    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6684    // nodes and Machine PHI nodes, but the incoming operands have not been
6685    // emitted yet.
6686    for (BasicBlock::const_iterator I = SuccBB->begin();
6687         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6688      // Ignore dead phi's.
6689      if (PN->use_empty()) continue;
6690
6691      // Skip empty types
6692      if (PN->getType()->isEmptyTy())
6693        continue;
6694
6695      unsigned Reg;
6696      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6697
6698      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6699        unsigned &RegOut = ConstantsOut[C];
6700        if (RegOut == 0) {
6701          RegOut = FuncInfo.CreateRegs(C->getType());
6702          CopyValueToVirtualRegister(C, RegOut);
6703        }
6704        Reg = RegOut;
6705      } else {
6706        DenseMap<const Value *, unsigned>::iterator I =
6707          FuncInfo.ValueMap.find(PHIOp);
6708        if (I != FuncInfo.ValueMap.end())
6709          Reg = I->second;
6710        else {
6711          assert(isa<AllocaInst>(PHIOp) &&
6712                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6713                 "Didn't codegen value into a register!??");
6714          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6715          CopyValueToVirtualRegister(PHIOp, Reg);
6716        }
6717      }
6718
6719      // Remember that this register needs to added to the machine PHI node as
6720      // the input for this MBB.
6721      SmallVector<EVT, 4> ValueVTs;
6722      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6723      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6724        EVT VT = ValueVTs[vti];
6725        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6726        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6727          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6728        Reg += NumRegisters;
6729      }
6730    }
6731  }
6732  ConstantsOut.clear();
6733}
6734