SelectionDAGBuilder.cpp revision 8380c034b68d9d3768ee09b6fdc937696c93ee3d
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
284  }
285
286  assert(ValueVT.getVectorElementType() == PartVT &&
287         ValueVT.getVectorNumElements() == 1 &&
288         "Only trivial scalar-to-vector conversions should get here!");
289  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
290}
291
292
293
294
295static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
296                                 SDValue Val, SDValue *Parts, unsigned NumParts,
297                                 EVT PartVT);
298
299/// getCopyToParts - Create a series of nodes that contain the specified value
300/// split into legal parts.  If the parts contain more bits than Val, then, for
301/// integers, ExtendKind can be used to specify how to generate the extra bits.
302static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
303                           SDValue Val, SDValue *Parts, unsigned NumParts,
304                           EVT PartVT,
305                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
306  EVT ValueVT = Val.getValueType();
307
308  // Handle the vector case separately.
309  if (ValueVT.isVector())
310    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
311
312  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
313  unsigned PartBits = PartVT.getSizeInBits();
314  unsigned OrigNumParts = NumParts;
315  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
316
317  if (NumParts == 0)
318    return;
319
320  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
321  if (PartVT == ValueVT) {
322    assert(NumParts == 1 && "No-op copy with multiple parts!");
323    Parts[0] = Val;
324    return;
325  }
326
327  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
328    // If the parts cover more bits than the value has, promote the value.
329    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
330      assert(NumParts == 1 && "Do not know what to promote to!");
331      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
332    } else {
333      assert(PartVT.isInteger() && ValueVT.isInteger() &&
334             "Unknown mismatch!");
335      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
336      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
337    }
338  } else if (PartBits == ValueVT.getSizeInBits()) {
339    // Different types of the same size.
340    assert(NumParts == 1 && PartVT != ValueVT);
341    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
342  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
343    // If the parts cover less bits than value has, truncate the value.
344    assert(PartVT.isInteger() && ValueVT.isInteger() &&
345           "Unknown mismatch!");
346    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
347    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
348  }
349
350  // The value may have changed - recompute ValueVT.
351  ValueVT = Val.getValueType();
352  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
353         "Failed to tile the value with PartVT!");
354
355  if (NumParts == 1) {
356    assert(PartVT == ValueVT && "Type conversion failed!");
357    Parts[0] = Val;
358    return;
359  }
360
361  // Expand the value into multiple parts.
362  if (NumParts & (NumParts - 1)) {
363    // The number of parts is not a power of 2.  Split off and copy the tail.
364    assert(PartVT.isInteger() && ValueVT.isInteger() &&
365           "Do not know what to expand to!");
366    unsigned RoundParts = 1 << Log2_32(NumParts);
367    unsigned RoundBits = RoundParts * PartBits;
368    unsigned OddParts = NumParts - RoundParts;
369    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
370                                 DAG.getIntPtrConstant(RoundBits));
371    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
372
373    if (TLI.isBigEndian())
374      // The odd parts were reversed by getCopyToParts - unreverse them.
375      std::reverse(Parts + RoundParts, Parts + NumParts);
376
377    NumParts = RoundParts;
378    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
379    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
380  }
381
382  // The number of parts is a power of 2.  Repeatedly bisect the value using
383  // EXTRACT_ELEMENT.
384  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
385                         EVT::getIntegerVT(*DAG.getContext(),
386                                           ValueVT.getSizeInBits()),
387                         Val);
388
389  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
390    for (unsigned i = 0; i < NumParts; i += StepSize) {
391      unsigned ThisBits = StepSize * PartBits / 2;
392      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
393      SDValue &Part0 = Parts[i];
394      SDValue &Part1 = Parts[i+StepSize/2];
395
396      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
397                          ThisVT, Part0, DAG.getIntPtrConstant(1));
398      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
399                          ThisVT, Part0, DAG.getIntPtrConstant(0));
400
401      if (ThisBits == PartBits && ThisVT != PartVT) {
402        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
403        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
404      }
405    }
406  }
407
408  if (TLI.isBigEndian())
409    std::reverse(Parts, Parts + OrigNumParts);
410}
411
412
413/// getCopyToPartsVector - Create a series of nodes that contain the specified
414/// value split into legal parts.
415static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
416                                 SDValue Val, SDValue *Parts, unsigned NumParts,
417                                 EVT PartVT) {
418  EVT ValueVT = Val.getValueType();
419  assert(ValueVT.isVector() && "Not a vector");
420  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
421
422  if (NumParts == 1) {
423    if (PartVT == ValueVT) {
424      // Nothing to do.
425    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
426      // Bitconvert vector->vector case.
427      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
428    } else if (PartVT.isVector() &&
429               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
430               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
431      EVT ElementVT = PartVT.getVectorElementType();
432      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
433      // undef elements.
434      SmallVector<SDValue, 16> Ops;
435      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
436        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
437                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
438
439      for (unsigned i = ValueVT.getVectorNumElements(),
440           e = PartVT.getVectorNumElements(); i != e; ++i)
441        Ops.push_back(DAG.getUNDEF(ElementVT));
442
443      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
444
445      // FIXME: Use CONCAT for 2x -> 4x.
446
447      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
448      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
449    } else {
450      // Vector -> scalar conversion.
451      assert(ValueVT.getVectorElementType() == PartVT &&
452             ValueVT.getVectorNumElements() == 1 &&
453             "Only trivial vector-to-scalar conversions should get here!");
454      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
455                        PartVT, Val, DAG.getIntPtrConstant(0));
456    }
457
458    Parts[0] = Val;
459    return;
460  }
461
462  // Handle a multi-element vector.
463  EVT IntermediateVT, RegisterVT;
464  unsigned NumIntermediates;
465  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
466                                                IntermediateVT,
467                                                NumIntermediates, RegisterVT);
468  unsigned NumElements = ValueVT.getVectorNumElements();
469
470  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
471  NumParts = NumRegs; // Silence a compiler warning.
472  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
473
474  // Split the vector into intermediate operands.
475  SmallVector<SDValue, 8> Ops(NumIntermediates);
476  for (unsigned i = 0; i != NumIntermediates; ++i) {
477    if (IntermediateVT.isVector())
478      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
479                           IntermediateVT, Val,
480                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
481    else
482      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
483                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
484  }
485
486  // Split the intermediate operands into legal parts.
487  if (NumParts == NumIntermediates) {
488    // If the register was not expanded, promote or copy the value,
489    // as appropriate.
490    for (unsigned i = 0; i != NumParts; ++i)
491      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
492  } else if (NumParts > 0) {
493    // If the intermediate type was expanded, split each the value into
494    // legal parts.
495    assert(NumParts % NumIntermediates == 0 &&
496           "Must expand into a divisible number of parts!");
497    unsigned Factor = NumParts / NumIntermediates;
498    for (unsigned i = 0; i != NumIntermediates; ++i)
499      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
500  }
501}
502
503
504
505
506namespace {
507  /// RegsForValue - This struct represents the registers (physical or virtual)
508  /// that a particular set of values is assigned, and the type information
509  /// about the value. The most common situation is to represent one value at a
510  /// time, but struct or array values are handled element-wise as multiple
511  /// values.  The splitting of aggregates is performed recursively, so that we
512  /// never have aggregate-typed registers. The values at this point do not
513  /// necessarily have legal types, so each value may require one or more
514  /// registers of some legal type.
515  ///
516  struct RegsForValue {
517    /// ValueVTs - The value types of the values, which may not be legal, and
518    /// may need be promoted or synthesized from one or more registers.
519    ///
520    SmallVector<EVT, 4> ValueVTs;
521
522    /// RegVTs - The value types of the registers. This is the same size as
523    /// ValueVTs and it records, for each value, what the type of the assigned
524    /// register or registers are. (Individual values are never synthesized
525    /// from more than one type of register.)
526    ///
527    /// With virtual registers, the contents of RegVTs is redundant with TLI's
528    /// getRegisterType member function, however when with physical registers
529    /// it is necessary to have a separate record of the types.
530    ///
531    SmallVector<EVT, 4> RegVTs;
532
533    /// Regs - This list holds the registers assigned to the values.
534    /// Each legal or promoted value requires one register, and each
535    /// expanded value requires multiple registers.
536    ///
537    SmallVector<unsigned, 4> Regs;
538
539    RegsForValue() {}
540
541    RegsForValue(const SmallVector<unsigned, 4> &regs,
542                 EVT regvt, EVT valuevt)
543      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
544
545    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
546                 unsigned Reg, const Type *Ty) {
547      ComputeValueVTs(tli, Ty, ValueVTs);
548
549      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
550        EVT ValueVT = ValueVTs[Value];
551        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
552        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
553        for (unsigned i = 0; i != NumRegs; ++i)
554          Regs.push_back(Reg + i);
555        RegVTs.push_back(RegisterVT);
556        Reg += NumRegs;
557      }
558    }
559
560    /// areValueTypesLegal - Return true if types of all the values are legal.
561    bool areValueTypesLegal(const TargetLowering &TLI) {
562      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
563        EVT RegisterVT = RegVTs[Value];
564        if (!TLI.isTypeLegal(RegisterVT))
565          return false;
566      }
567      return true;
568    }
569
570    /// append - Add the specified values to this one.
571    void append(const RegsForValue &RHS) {
572      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
573      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
574      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
575    }
576
577    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
578    /// this value and returns the result as a ValueVTs value.  This uses
579    /// Chain/Flag as the input and updates them for the output Chain/Flag.
580    /// If the Flag pointer is NULL, no flag is used.
581    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
582                            DebugLoc dl,
583                            SDValue &Chain, SDValue *Flag) const;
584
585    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
586    /// specified value into the registers specified by this object.  This uses
587    /// Chain/Flag as the input and updates them for the output Chain/Flag.
588    /// If the Flag pointer is NULL, no flag is used.
589    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
590                       SDValue &Chain, SDValue *Flag) const;
591
592    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
593    /// operand list.  This adds the code marker, matching input operand index
594    /// (if applicable), and includes the number of values added into it.
595    void AddInlineAsmOperands(unsigned Kind,
596                              bool HasMatching, unsigned MatchingIdx,
597                              SelectionDAG &DAG,
598                              std::vector<SDValue> &Ops) const;
599  };
600}
601
602/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
603/// this value and returns the result as a ValueVT value.  This uses
604/// Chain/Flag as the input and updates them for the output Chain/Flag.
605/// If the Flag pointer is NULL, no flag is used.
606SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
607                                      FunctionLoweringInfo &FuncInfo,
608                                      DebugLoc dl,
609                                      SDValue &Chain, SDValue *Flag) const {
610  // A Value with type {} or [0 x %t] needs no registers.
611  if (ValueVTs.empty())
612    return SDValue();
613
614  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
615
616  // Assemble the legal parts into the final values.
617  SmallVector<SDValue, 4> Values(ValueVTs.size());
618  SmallVector<SDValue, 8> Parts;
619  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
620    // Copy the legal parts from the registers.
621    EVT ValueVT = ValueVTs[Value];
622    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
623    EVT RegisterVT = RegVTs[Value];
624
625    Parts.resize(NumRegs);
626    for (unsigned i = 0; i != NumRegs; ++i) {
627      SDValue P;
628      if (Flag == 0) {
629        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
630      } else {
631        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
632        *Flag = P.getValue(2);
633      }
634
635      Chain = P.getValue(1);
636      Parts[i] = P;
637
638      // If the source register was virtual and if we know something about it,
639      // add an assert node.
640      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
641          !RegisterVT.isInteger() || RegisterVT.isVector())
642        continue;
643
644      const FunctionLoweringInfo::LiveOutInfo *LOI =
645        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
646      if (!LOI)
647        continue;
648
649      unsigned RegSize = RegisterVT.getSizeInBits();
650      unsigned NumSignBits = LOI->NumSignBits;
651      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
652
653      // FIXME: We capture more information than the dag can represent.  For
654      // now, just use the tightest assertzext/assertsext possible.
655      bool isSExt = true;
656      EVT FromVT(MVT::Other);
657      if (NumSignBits == RegSize)
658        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
659      else if (NumZeroBits >= RegSize-1)
660        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
661      else if (NumSignBits > RegSize-8)
662        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
663      else if (NumZeroBits >= RegSize-8)
664        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
665      else if (NumSignBits > RegSize-16)
666        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
667      else if (NumZeroBits >= RegSize-16)
668        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
669      else if (NumSignBits > RegSize-32)
670        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
671      else if (NumZeroBits >= RegSize-32)
672        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
673      else
674        continue;
675
676      // Add an assertion node.
677      assert(FromVT != MVT::Other);
678      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
679                             RegisterVT, P, DAG.getValueType(FromVT));
680    }
681
682    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
683                                     NumRegs, RegisterVT, ValueVT);
684    Part += NumRegs;
685    Parts.clear();
686  }
687
688  return DAG.getNode(ISD::MERGE_VALUES, dl,
689                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
690                     &Values[0], ValueVTs.size());
691}
692
693/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
694/// specified value into the registers specified by this object.  This uses
695/// Chain/Flag as the input and updates them for the output Chain/Flag.
696/// If the Flag pointer is NULL, no flag is used.
697void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
698                                 SDValue &Chain, SDValue *Flag) const {
699  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
700
701  // Get the list of the values's legal parts.
702  unsigned NumRegs = Regs.size();
703  SmallVector<SDValue, 8> Parts(NumRegs);
704  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
705    EVT ValueVT = ValueVTs[Value];
706    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
707    EVT RegisterVT = RegVTs[Value];
708
709    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
710                   &Parts[Part], NumParts, RegisterVT);
711    Part += NumParts;
712  }
713
714  // Copy the parts into the registers.
715  SmallVector<SDValue, 8> Chains(NumRegs);
716  for (unsigned i = 0; i != NumRegs; ++i) {
717    SDValue Part;
718    if (Flag == 0) {
719      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
720    } else {
721      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
722      *Flag = Part.getValue(1);
723    }
724
725    Chains[i] = Part.getValue(0);
726  }
727
728  if (NumRegs == 1 || Flag)
729    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
730    // flagged to it. That is the CopyToReg nodes and the user are considered
731    // a single scheduling unit. If we create a TokenFactor and return it as
732    // chain, then the TokenFactor is both a predecessor (operand) of the
733    // user as well as a successor (the TF operands are flagged to the user).
734    // c1, f1 = CopyToReg
735    // c2, f2 = CopyToReg
736    // c3     = TokenFactor c1, c2
737    // ...
738    //        = op c3, ..., f2
739    Chain = Chains[NumRegs-1];
740  else
741    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
742}
743
744/// AddInlineAsmOperands - Add this value to the specified inlineasm node
745/// operand list.  This adds the code marker and includes the number of
746/// values added into it.
747void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
748                                        unsigned MatchingIdx,
749                                        SelectionDAG &DAG,
750                                        std::vector<SDValue> &Ops) const {
751  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
752
753  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
754  if (HasMatching)
755    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
756  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
757  Ops.push_back(Res);
758
759  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
760    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
761    EVT RegisterVT = RegVTs[Value];
762    for (unsigned i = 0; i != NumRegs; ++i) {
763      assert(Reg < Regs.size() && "Mismatch in # registers expected");
764      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
765    }
766  }
767}
768
769void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
770  AA = &aa;
771  GFI = gfi;
772  TD = DAG.getTarget().getTargetData();
773}
774
775/// clear - Clear out the current SelectionDAG and the associated
776/// state and prepare this SelectionDAGBuilder object to be used
777/// for a new block. This doesn't clear out information about
778/// additional blocks that are needed to complete switch lowering
779/// or PHI node updating; that information is cleared out as it is
780/// consumed.
781void SelectionDAGBuilder::clear() {
782  NodeMap.clear();
783  UnusedArgNodeMap.clear();
784  PendingLoads.clear();
785  PendingExports.clear();
786  DanglingDebugInfoMap.clear();
787  CurDebugLoc = DebugLoc();
788  HasTailCall = false;
789}
790
791/// getRoot - Return the current virtual root of the Selection DAG,
792/// flushing any PendingLoad items. This must be done before emitting
793/// a store or any other node that may need to be ordered after any
794/// prior load instructions.
795///
796SDValue SelectionDAGBuilder::getRoot() {
797  if (PendingLoads.empty())
798    return DAG.getRoot();
799
800  if (PendingLoads.size() == 1) {
801    SDValue Root = PendingLoads[0];
802    DAG.setRoot(Root);
803    PendingLoads.clear();
804    return Root;
805  }
806
807  // Otherwise, we have to make a token factor node.
808  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
809                               &PendingLoads[0], PendingLoads.size());
810  PendingLoads.clear();
811  DAG.setRoot(Root);
812  return Root;
813}
814
815/// getControlRoot - Similar to getRoot, but instead of flushing all the
816/// PendingLoad items, flush all the PendingExports items. It is necessary
817/// to do this before emitting a terminator instruction.
818///
819SDValue SelectionDAGBuilder::getControlRoot() {
820  SDValue Root = DAG.getRoot();
821
822  if (PendingExports.empty())
823    return Root;
824
825  // Turn all of the CopyToReg chains into one factored node.
826  if (Root.getOpcode() != ISD::EntryToken) {
827    unsigned i = 0, e = PendingExports.size();
828    for (; i != e; ++i) {
829      assert(PendingExports[i].getNode()->getNumOperands() > 1);
830      if (PendingExports[i].getNode()->getOperand(0) == Root)
831        break;  // Don't add the root if we already indirectly depend on it.
832    }
833
834    if (i == e)
835      PendingExports.push_back(Root);
836  }
837
838  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
839                     &PendingExports[0],
840                     PendingExports.size());
841  PendingExports.clear();
842  DAG.setRoot(Root);
843  return Root;
844}
845
846void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
847  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
848  DAG.AssignOrdering(Node, SDNodeOrder);
849
850  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
851    AssignOrderingToNode(Node->getOperand(I).getNode());
852}
853
854void SelectionDAGBuilder::visit(const Instruction &I) {
855  // Set up outgoing PHI node register values before emitting the terminator.
856  if (isa<TerminatorInst>(&I))
857    HandlePHINodesInSuccessorBlocks(I.getParent());
858
859  CurDebugLoc = I.getDebugLoc();
860
861  visit(I.getOpcode(), I);
862
863  if (!isa<TerminatorInst>(&I) && !HasTailCall)
864    CopyToExportRegsIfNeeded(&I);
865
866  CurDebugLoc = DebugLoc();
867}
868
869void SelectionDAGBuilder::visitPHI(const PHINode &) {
870  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
871}
872
873void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
874  // Note: this doesn't use InstVisitor, because it has to work with
875  // ConstantExpr's in addition to instructions.
876  switch (Opcode) {
877  default: llvm_unreachable("Unknown instruction type encountered!");
878    // Build the switch statement using the Instruction.def file.
879#define HANDLE_INST(NUM, OPCODE, CLASS) \
880    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
881#include "llvm/Instruction.def"
882  }
883
884  // Assign the ordering to the freshly created DAG nodes.
885  if (NodeMap.count(&I)) {
886    ++SDNodeOrder;
887    AssignOrderingToNode(getValue(&I).getNode());
888  }
889}
890
891// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
892// generate the debug data structures now that we've seen its definition.
893void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
894                                                   SDValue Val) {
895  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
896  if (DDI.getDI()) {
897    const DbgValueInst *DI = DDI.getDI();
898    DebugLoc dl = DDI.getdl();
899    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
900    MDNode *Variable = DI->getVariable();
901    uint64_t Offset = DI->getOffset();
902    SDDbgValue *SDV;
903    if (Val.getNode()) {
904      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
905        SDV = DAG.getDbgValue(Variable, Val.getNode(),
906                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
907        DAG.AddDbgValue(SDV, Val.getNode(), false);
908      }
909    } else
910      DEBUG(dbgs() << "Dropping debug info for " << DI);
911    DanglingDebugInfoMap[V] = DanglingDebugInfo();
912  }
913}
914
915// getValue - Return an SDValue for the given Value.
916SDValue SelectionDAGBuilder::getValue(const Value *V) {
917  // If we already have an SDValue for this value, use it. It's important
918  // to do this first, so that we don't create a CopyFromReg if we already
919  // have a regular SDValue.
920  SDValue &N = NodeMap[V];
921  if (N.getNode()) return N;
922
923  // If there's a virtual register allocated and initialized for this
924  // value, use it.
925  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
926  if (It != FuncInfo.ValueMap.end()) {
927    unsigned InReg = It->second;
928    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
929    SDValue Chain = DAG.getEntryNode();
930    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
931    resolveDanglingDebugInfo(V, N);
932    return N;
933  }
934
935  // Otherwise create a new SDValue and remember it.
936  SDValue Val = getValueImpl(V);
937  NodeMap[V] = Val;
938  resolveDanglingDebugInfo(V, Val);
939  return Val;
940}
941
942/// getNonRegisterValue - Return an SDValue for the given Value, but
943/// don't look in FuncInfo.ValueMap for a virtual register.
944SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
945  // If we already have an SDValue for this value, use it.
946  SDValue &N = NodeMap[V];
947  if (N.getNode()) return N;
948
949  // Otherwise create a new SDValue and remember it.
950  SDValue Val = getValueImpl(V);
951  NodeMap[V] = Val;
952  resolveDanglingDebugInfo(V, Val);
953  return Val;
954}
955
956/// getValueImpl - Helper function for getValue and getNonRegisterValue.
957/// Create an SDValue for the given value.
958SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
959  if (const Constant *C = dyn_cast<Constant>(V)) {
960    EVT VT = TLI.getValueType(V->getType(), true);
961
962    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
963      return DAG.getConstant(*CI, VT);
964
965    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
966      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
967
968    if (isa<ConstantPointerNull>(C))
969      return DAG.getConstant(0, TLI.getPointerTy());
970
971    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
972      return DAG.getConstantFP(*CFP, VT);
973
974    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
975      return DAG.getUNDEF(VT);
976
977    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
978      visit(CE->getOpcode(), *CE);
979      SDValue N1 = NodeMap[V];
980      assert(N1.getNode() && "visit didn't populate the NodeMap!");
981      return N1;
982    }
983
984    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
985      SmallVector<SDValue, 4> Constants;
986      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
987           OI != OE; ++OI) {
988        SDNode *Val = getValue(*OI).getNode();
989        // If the operand is an empty aggregate, there are no values.
990        if (!Val) continue;
991        // Add each leaf value from the operand to the Constants list
992        // to form a flattened list of all the values.
993        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
994          Constants.push_back(SDValue(Val, i));
995      }
996
997      return DAG.getMergeValues(&Constants[0], Constants.size(),
998                                getCurDebugLoc());
999    }
1000
1001    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1002      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1003             "Unknown struct or array constant!");
1004
1005      SmallVector<EVT, 4> ValueVTs;
1006      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1007      unsigned NumElts = ValueVTs.size();
1008      if (NumElts == 0)
1009        return SDValue(); // empty struct
1010      SmallVector<SDValue, 4> Constants(NumElts);
1011      for (unsigned i = 0; i != NumElts; ++i) {
1012        EVT EltVT = ValueVTs[i];
1013        if (isa<UndefValue>(C))
1014          Constants[i] = DAG.getUNDEF(EltVT);
1015        else if (EltVT.isFloatingPoint())
1016          Constants[i] = DAG.getConstantFP(0, EltVT);
1017        else
1018          Constants[i] = DAG.getConstant(0, EltVT);
1019      }
1020
1021      return DAG.getMergeValues(&Constants[0], NumElts,
1022                                getCurDebugLoc());
1023    }
1024
1025    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1026      return DAG.getBlockAddress(BA, VT);
1027
1028    const VectorType *VecTy = cast<VectorType>(V->getType());
1029    unsigned NumElements = VecTy->getNumElements();
1030
1031    // Now that we know the number and type of the elements, get that number of
1032    // elements into the Ops array based on what kind of constant it is.
1033    SmallVector<SDValue, 16> Ops;
1034    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1035      for (unsigned i = 0; i != NumElements; ++i)
1036        Ops.push_back(getValue(CP->getOperand(i)));
1037    } else {
1038      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1039      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1040
1041      SDValue Op;
1042      if (EltVT.isFloatingPoint())
1043        Op = DAG.getConstantFP(0, EltVT);
1044      else
1045        Op = DAG.getConstant(0, EltVT);
1046      Ops.assign(NumElements, Op);
1047    }
1048
1049    // Create a BUILD_VECTOR node.
1050    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1051                                    VT, &Ops[0], Ops.size());
1052  }
1053
1054  // If this is a static alloca, generate it as the frameindex instead of
1055  // computation.
1056  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1057    DenseMap<const AllocaInst*, int>::iterator SI =
1058      FuncInfo.StaticAllocaMap.find(AI);
1059    if (SI != FuncInfo.StaticAllocaMap.end())
1060      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1061  }
1062
1063  // If this is an instruction which fast-isel has deferred, select it now.
1064  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1065    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1066    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1067    SDValue Chain = DAG.getEntryNode();
1068    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1069  }
1070
1071  llvm_unreachable("Can't get register for value!");
1072  return SDValue();
1073}
1074
1075void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1076  SDValue Chain = getControlRoot();
1077  SmallVector<ISD::OutputArg, 8> Outs;
1078  SmallVector<SDValue, 8> OutVals;
1079
1080  if (!FuncInfo.CanLowerReturn) {
1081    unsigned DemoteReg = FuncInfo.DemoteRegister;
1082    const Function *F = I.getParent()->getParent();
1083
1084    // Emit a store of the return value through the virtual register.
1085    // Leave Outs empty so that LowerReturn won't try to load return
1086    // registers the usual way.
1087    SmallVector<EVT, 1> PtrValueVTs;
1088    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1089                    PtrValueVTs);
1090
1091    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1092    SDValue RetOp = getValue(I.getOperand(0));
1093
1094    SmallVector<EVT, 4> ValueVTs;
1095    SmallVector<uint64_t, 4> Offsets;
1096    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1097    unsigned NumValues = ValueVTs.size();
1098
1099    SmallVector<SDValue, 4> Chains(NumValues);
1100    for (unsigned i = 0; i != NumValues; ++i) {
1101      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1102                                RetPtr.getValueType(), RetPtr,
1103                                DAG.getIntPtrConstant(Offsets[i]));
1104      Chains[i] =
1105        DAG.getStore(Chain, getCurDebugLoc(),
1106                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1107                     // FIXME: better loc info would be nice.
1108                     Add, MachinePointerInfo(), false, false, 0);
1109    }
1110
1111    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1112                        MVT::Other, &Chains[0], NumValues);
1113  } else if (I.getNumOperands() != 0) {
1114    SmallVector<EVT, 4> ValueVTs;
1115    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1116    unsigned NumValues = ValueVTs.size();
1117    if (NumValues) {
1118      SDValue RetOp = getValue(I.getOperand(0));
1119      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1120        EVT VT = ValueVTs[j];
1121
1122        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1123
1124        const Function *F = I.getParent()->getParent();
1125        if (F->paramHasAttr(0, Attribute::SExt))
1126          ExtendKind = ISD::SIGN_EXTEND;
1127        else if (F->paramHasAttr(0, Attribute::ZExt))
1128          ExtendKind = ISD::ZERO_EXTEND;
1129
1130        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1131          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1132
1133        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1134        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1135        SmallVector<SDValue, 4> Parts(NumParts);
1136        getCopyToParts(DAG, getCurDebugLoc(),
1137                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1138                       &Parts[0], NumParts, PartVT, ExtendKind);
1139
1140        // 'inreg' on function refers to return value
1141        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1142        if (F->paramHasAttr(0, Attribute::InReg))
1143          Flags.setInReg();
1144
1145        // Propagate extension type if any
1146        if (ExtendKind == ISD::SIGN_EXTEND)
1147          Flags.setSExt();
1148        else if (ExtendKind == ISD::ZERO_EXTEND)
1149          Flags.setZExt();
1150
1151        for (unsigned i = 0; i < NumParts; ++i) {
1152          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1153                                        /*isfixed=*/true));
1154          OutVals.push_back(Parts[i]);
1155        }
1156      }
1157    }
1158  }
1159
1160  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1161  CallingConv::ID CallConv =
1162    DAG.getMachineFunction().getFunction()->getCallingConv();
1163  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1164                          Outs, OutVals, getCurDebugLoc(), DAG);
1165
1166  // Verify that the target's LowerReturn behaved as expected.
1167  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1168         "LowerReturn didn't return a valid chain!");
1169
1170  // Update the DAG with the new chain value resulting from return lowering.
1171  DAG.setRoot(Chain);
1172}
1173
1174/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1175/// created for it, emit nodes to copy the value into the virtual
1176/// registers.
1177void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1178  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1179  if (VMI != FuncInfo.ValueMap.end()) {
1180    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1181    CopyValueToVirtualRegister(V, VMI->second);
1182  }
1183}
1184
1185/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1186/// the current basic block, add it to ValueMap now so that we'll get a
1187/// CopyTo/FromReg.
1188void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1189  // No need to export constants.
1190  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1191
1192  // Already exported?
1193  if (FuncInfo.isExportedInst(V)) return;
1194
1195  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1196  CopyValueToVirtualRegister(V, Reg);
1197}
1198
1199bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1200                                                     const BasicBlock *FromBB) {
1201  // The operands of the setcc have to be in this block.  We don't know
1202  // how to export them from some other block.
1203  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1204    // Can export from current BB.
1205    if (VI->getParent() == FromBB)
1206      return true;
1207
1208    // Is already exported, noop.
1209    return FuncInfo.isExportedInst(V);
1210  }
1211
1212  // If this is an argument, we can export it if the BB is the entry block or
1213  // if it is already exported.
1214  if (isa<Argument>(V)) {
1215    if (FromBB == &FromBB->getParent()->getEntryBlock())
1216      return true;
1217
1218    // Otherwise, can only export this if it is already exported.
1219    return FuncInfo.isExportedInst(V);
1220  }
1221
1222  // Otherwise, constants can always be exported.
1223  return true;
1224}
1225
1226static bool InBlock(const Value *V, const BasicBlock *BB) {
1227  if (const Instruction *I = dyn_cast<Instruction>(V))
1228    return I->getParent() == BB;
1229  return true;
1230}
1231
1232/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1233/// This function emits a branch and is used at the leaves of an OR or an
1234/// AND operator tree.
1235///
1236void
1237SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1238                                                  MachineBasicBlock *TBB,
1239                                                  MachineBasicBlock *FBB,
1240                                                  MachineBasicBlock *CurBB,
1241                                                  MachineBasicBlock *SwitchBB) {
1242  const BasicBlock *BB = CurBB->getBasicBlock();
1243
1244  // If the leaf of the tree is a comparison, merge the condition into
1245  // the caseblock.
1246  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1247    // The operands of the cmp have to be in this block.  We don't know
1248    // how to export them from some other block.  If this is the first block
1249    // of the sequence, no exporting is needed.
1250    if (CurBB == SwitchBB ||
1251        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1252         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1253      ISD::CondCode Condition;
1254      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1255        Condition = getICmpCondCode(IC->getPredicate());
1256      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1257        Condition = getFCmpCondCode(FC->getPredicate());
1258      } else {
1259        Condition = ISD::SETEQ; // silence warning.
1260        llvm_unreachable("Unknown compare instruction");
1261      }
1262
1263      CaseBlock CB(Condition, BOp->getOperand(0),
1264                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1265      SwitchCases.push_back(CB);
1266      return;
1267    }
1268  }
1269
1270  // Create a CaseBlock record representing this branch.
1271  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1272               NULL, TBB, FBB, CurBB);
1273  SwitchCases.push_back(CB);
1274}
1275
1276/// FindMergedConditions - If Cond is an expression like
1277void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1278                                               MachineBasicBlock *TBB,
1279                                               MachineBasicBlock *FBB,
1280                                               MachineBasicBlock *CurBB,
1281                                               MachineBasicBlock *SwitchBB,
1282                                               unsigned Opc) {
1283  // If this node is not part of the or/and tree, emit it as a branch.
1284  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1285  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1286      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1287      BOp->getParent() != CurBB->getBasicBlock() ||
1288      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1289      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1290    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1291    return;
1292  }
1293
1294  //  Create TmpBB after CurBB.
1295  MachineFunction::iterator BBI = CurBB;
1296  MachineFunction &MF = DAG.getMachineFunction();
1297  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1298  CurBB->getParent()->insert(++BBI, TmpBB);
1299
1300  if (Opc == Instruction::Or) {
1301    // Codegen X | Y as:
1302    //   jmp_if_X TBB
1303    //   jmp TmpBB
1304    // TmpBB:
1305    //   jmp_if_Y TBB
1306    //   jmp FBB
1307    //
1308
1309    // Emit the LHS condition.
1310    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1311
1312    // Emit the RHS condition into TmpBB.
1313    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1314  } else {
1315    assert(Opc == Instruction::And && "Unknown merge op!");
1316    // Codegen X & Y as:
1317    //   jmp_if_X TmpBB
1318    //   jmp FBB
1319    // TmpBB:
1320    //   jmp_if_Y TBB
1321    //   jmp FBB
1322    //
1323    //  This requires creation of TmpBB after CurBB.
1324
1325    // Emit the LHS condition.
1326    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1327
1328    // Emit the RHS condition into TmpBB.
1329    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1330  }
1331}
1332
1333/// If the set of cases should be emitted as a series of branches, return true.
1334/// If we should emit this as a bunch of and/or'd together conditions, return
1335/// false.
1336bool
1337SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1338  if (Cases.size() != 2) return true;
1339
1340  // If this is two comparisons of the same values or'd or and'd together, they
1341  // will get folded into a single comparison, so don't emit two blocks.
1342  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1343       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1344      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1345       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1346    return false;
1347  }
1348
1349  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1350  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1351  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1352      Cases[0].CC == Cases[1].CC &&
1353      isa<Constant>(Cases[0].CmpRHS) &&
1354      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1355    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1356      return false;
1357    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1358      return false;
1359  }
1360
1361  return true;
1362}
1363
1364void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1365  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1366
1367  // Update machine-CFG edges.
1368  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1369
1370  // Figure out which block is immediately after the current one.
1371  MachineBasicBlock *NextBlock = 0;
1372  MachineFunction::iterator BBI = BrMBB;
1373  if (++BBI != FuncInfo.MF->end())
1374    NextBlock = BBI;
1375
1376  if (I.isUnconditional()) {
1377    // Update machine-CFG edges.
1378    BrMBB->addSuccessor(Succ0MBB);
1379
1380    // If this is not a fall-through branch, emit the branch.
1381    if (Succ0MBB != NextBlock)
1382      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1383                              MVT::Other, getControlRoot(),
1384                              DAG.getBasicBlock(Succ0MBB)));
1385
1386    return;
1387  }
1388
1389  // If this condition is one of the special cases we handle, do special stuff
1390  // now.
1391  const Value *CondVal = I.getCondition();
1392  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1393
1394  // If this is a series of conditions that are or'd or and'd together, emit
1395  // this as a sequence of branches instead of setcc's with and/or operations.
1396  // As long as jumps are not expensive, this should improve performance.
1397  // For example, instead of something like:
1398  //     cmp A, B
1399  //     C = seteq
1400  //     cmp D, E
1401  //     F = setle
1402  //     or C, F
1403  //     jnz foo
1404  // Emit:
1405  //     cmp A, B
1406  //     je foo
1407  //     cmp D, E
1408  //     jle foo
1409  //
1410  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1411    if (!TLI.isJumpExpensive() &&
1412        BOp->hasOneUse() &&
1413        (BOp->getOpcode() == Instruction::And ||
1414         BOp->getOpcode() == Instruction::Or)) {
1415      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1416                           BOp->getOpcode());
1417      // If the compares in later blocks need to use values not currently
1418      // exported from this block, export them now.  This block should always
1419      // be the first entry.
1420      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1421
1422      // Allow some cases to be rejected.
1423      if (ShouldEmitAsBranches(SwitchCases)) {
1424        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1425          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1426          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1427        }
1428
1429        // Emit the branch for this block.
1430        visitSwitchCase(SwitchCases[0], BrMBB);
1431        SwitchCases.erase(SwitchCases.begin());
1432        return;
1433      }
1434
1435      // Okay, we decided not to do this, remove any inserted MBB's and clear
1436      // SwitchCases.
1437      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1438        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1439
1440      SwitchCases.clear();
1441    }
1442  }
1443
1444  // Create a CaseBlock record representing this branch.
1445  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1446               NULL, Succ0MBB, Succ1MBB, BrMBB);
1447
1448  // Use visitSwitchCase to actually insert the fast branch sequence for this
1449  // cond branch.
1450  visitSwitchCase(CB, BrMBB);
1451}
1452
1453/// visitSwitchCase - Emits the necessary code to represent a single node in
1454/// the binary search tree resulting from lowering a switch instruction.
1455void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1456                                          MachineBasicBlock *SwitchBB) {
1457  SDValue Cond;
1458  SDValue CondLHS = getValue(CB.CmpLHS);
1459  DebugLoc dl = getCurDebugLoc();
1460
1461  // Build the setcc now.
1462  if (CB.CmpMHS == NULL) {
1463    // Fold "(X == true)" to X and "(X == false)" to !X to
1464    // handle common cases produced by branch lowering.
1465    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1466        CB.CC == ISD::SETEQ)
1467      Cond = CondLHS;
1468    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1469             CB.CC == ISD::SETEQ) {
1470      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1471      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1472    } else
1473      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1474  } else {
1475    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1476
1477    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1478    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1479
1480    SDValue CmpOp = getValue(CB.CmpMHS);
1481    EVT VT = CmpOp.getValueType();
1482
1483    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1484      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1485                          ISD::SETLE);
1486    } else {
1487      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1488                                VT, CmpOp, DAG.getConstant(Low, VT));
1489      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1490                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1491    }
1492  }
1493
1494  // Update successor info
1495  SwitchBB->addSuccessor(CB.TrueBB);
1496  SwitchBB->addSuccessor(CB.FalseBB);
1497
1498  // Set NextBlock to be the MBB immediately after the current one, if any.
1499  // This is used to avoid emitting unnecessary branches to the next block.
1500  MachineBasicBlock *NextBlock = 0;
1501  MachineFunction::iterator BBI = SwitchBB;
1502  if (++BBI != FuncInfo.MF->end())
1503    NextBlock = BBI;
1504
1505  // If the lhs block is the next block, invert the condition so that we can
1506  // fall through to the lhs instead of the rhs block.
1507  if (CB.TrueBB == NextBlock) {
1508    std::swap(CB.TrueBB, CB.FalseBB);
1509    SDValue True = DAG.getConstant(1, Cond.getValueType());
1510    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1511  }
1512
1513  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1514                               MVT::Other, getControlRoot(), Cond,
1515                               DAG.getBasicBlock(CB.TrueBB));
1516
1517  // Insert the false branch. Do this even if it's a fall through branch,
1518  // this makes it easier to do DAG optimizations which require inverting
1519  // the branch condition.
1520  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1521                       DAG.getBasicBlock(CB.FalseBB));
1522
1523  DAG.setRoot(BrCond);
1524}
1525
1526/// visitJumpTable - Emit JumpTable node in the current MBB
1527void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1528  // Emit the code for the jump table
1529  assert(JT.Reg != -1U && "Should lower JT Header first!");
1530  EVT PTy = TLI.getPointerTy();
1531  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1532                                     JT.Reg, PTy);
1533  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1534  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1535                                    MVT::Other, Index.getValue(1),
1536                                    Table, Index);
1537  DAG.setRoot(BrJumpTable);
1538}
1539
1540/// visitJumpTableHeader - This function emits necessary code to produce index
1541/// in the JumpTable from switch case.
1542void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1543                                               JumpTableHeader &JTH,
1544                                               MachineBasicBlock *SwitchBB) {
1545  // Subtract the lowest switch case value from the value being switched on and
1546  // conditional branch to default mbb if the result is greater than the
1547  // difference between smallest and largest cases.
1548  SDValue SwitchOp = getValue(JTH.SValue);
1549  EVT VT = SwitchOp.getValueType();
1550  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1551                            DAG.getConstant(JTH.First, VT));
1552
1553  // The SDNode we just created, which holds the value being switched on minus
1554  // the smallest case value, needs to be copied to a virtual register so it
1555  // can be used as an index into the jump table in a subsequent basic block.
1556  // This value may be smaller or larger than the target's pointer type, and
1557  // therefore require extension or truncating.
1558  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1559
1560  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1561  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1562                                    JumpTableReg, SwitchOp);
1563  JT.Reg = JumpTableReg;
1564
1565  // Emit the range check for the jump table, and branch to the default block
1566  // for the switch statement if the value being switched on exceeds the largest
1567  // case in the switch.
1568  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1569                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1570                             DAG.getConstant(JTH.Last-JTH.First,VT),
1571                             ISD::SETUGT);
1572
1573  // Set NextBlock to be the MBB immediately after the current one, if any.
1574  // This is used to avoid emitting unnecessary branches to the next block.
1575  MachineBasicBlock *NextBlock = 0;
1576  MachineFunction::iterator BBI = SwitchBB;
1577
1578  if (++BBI != FuncInfo.MF->end())
1579    NextBlock = BBI;
1580
1581  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1582                               MVT::Other, CopyTo, CMP,
1583                               DAG.getBasicBlock(JT.Default));
1584
1585  if (JT.MBB != NextBlock)
1586    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1587                         DAG.getBasicBlock(JT.MBB));
1588
1589  DAG.setRoot(BrCond);
1590}
1591
1592/// visitBitTestHeader - This function emits necessary code to produce value
1593/// suitable for "bit tests"
1594void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1595                                             MachineBasicBlock *SwitchBB) {
1596  // Subtract the minimum value
1597  SDValue SwitchOp = getValue(B.SValue);
1598  EVT VT = SwitchOp.getValueType();
1599  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1600                            DAG.getConstant(B.First, VT));
1601
1602  // Check range
1603  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1604                                  TLI.getSetCCResultType(Sub.getValueType()),
1605                                  Sub, DAG.getConstant(B.Range, VT),
1606                                  ISD::SETUGT);
1607
1608  // Determine the type of the test operands.
1609  bool UsePtrType = false;
1610  if (!TLI.isTypeLegal(VT))
1611    UsePtrType = true;
1612  else {
1613    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1614      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1615        // Switch table case range are encoded into series of masks.
1616        // Just use pointer type, it's guaranteed to fit.
1617        UsePtrType = true;
1618        break;
1619      }
1620  }
1621  if (UsePtrType) {
1622    VT = TLI.getPointerTy();
1623    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1624  }
1625
1626  B.RegVT = VT;
1627  B.Reg = FuncInfo.CreateReg(VT);
1628  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1629                                    B.Reg, Sub);
1630
1631  // Set NextBlock to be the MBB immediately after the current one, if any.
1632  // This is used to avoid emitting unnecessary branches to the next block.
1633  MachineBasicBlock *NextBlock = 0;
1634  MachineFunction::iterator BBI = SwitchBB;
1635  if (++BBI != FuncInfo.MF->end())
1636    NextBlock = BBI;
1637
1638  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1639
1640  SwitchBB->addSuccessor(B.Default);
1641  SwitchBB->addSuccessor(MBB);
1642
1643  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1644                                MVT::Other, CopyTo, RangeCmp,
1645                                DAG.getBasicBlock(B.Default));
1646
1647  if (MBB != NextBlock)
1648    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1649                          DAG.getBasicBlock(MBB));
1650
1651  DAG.setRoot(BrRange);
1652}
1653
1654/// visitBitTestCase - this function produces one "bit test"
1655void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1656                                           MachineBasicBlock* NextMBB,
1657                                           unsigned Reg,
1658                                           BitTestCase &B,
1659                                           MachineBasicBlock *SwitchBB) {
1660  EVT VT = BB.RegVT;
1661  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1662                                       Reg, VT);
1663  SDValue Cmp;
1664  if (CountPopulation_64(B.Mask) == 1) {
1665    // Testing for a single bit; just compare the shift count with what it
1666    // would need to be to shift a 1 bit in that position.
1667    Cmp = DAG.getSetCC(getCurDebugLoc(),
1668                       TLI.getSetCCResultType(VT),
1669                       ShiftOp,
1670                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1671                       ISD::SETEQ);
1672  } else {
1673    // Make desired shift
1674    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1675                                    DAG.getConstant(1, VT), ShiftOp);
1676
1677    // Emit bit tests and jumps
1678    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1679                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1680    Cmp = DAG.getSetCC(getCurDebugLoc(),
1681                       TLI.getSetCCResultType(VT),
1682                       AndOp, DAG.getConstant(0, VT),
1683                       ISD::SETNE);
1684  }
1685
1686  SwitchBB->addSuccessor(B.TargetBB);
1687  SwitchBB->addSuccessor(NextMBB);
1688
1689  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1690                              MVT::Other, getControlRoot(),
1691                              Cmp, DAG.getBasicBlock(B.TargetBB));
1692
1693  // Set NextBlock to be the MBB immediately after the current one, if any.
1694  // This is used to avoid emitting unnecessary branches to the next block.
1695  MachineBasicBlock *NextBlock = 0;
1696  MachineFunction::iterator BBI = SwitchBB;
1697  if (++BBI != FuncInfo.MF->end())
1698    NextBlock = BBI;
1699
1700  if (NextMBB != NextBlock)
1701    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1702                        DAG.getBasicBlock(NextMBB));
1703
1704  DAG.setRoot(BrAnd);
1705}
1706
1707void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1708  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1709
1710  // Retrieve successors.
1711  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1712  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1713
1714  const Value *Callee(I.getCalledValue());
1715  if (isa<InlineAsm>(Callee))
1716    visitInlineAsm(&I);
1717  else
1718    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1719
1720  // If the value of the invoke is used outside of its defining block, make it
1721  // available as a virtual register.
1722  CopyToExportRegsIfNeeded(&I);
1723
1724  // Update successor info
1725  InvokeMBB->addSuccessor(Return);
1726  InvokeMBB->addSuccessor(LandingPad);
1727
1728  // Drop into normal successor.
1729  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1730                          MVT::Other, getControlRoot(),
1731                          DAG.getBasicBlock(Return)));
1732}
1733
1734void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1735}
1736
1737/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1738/// small case ranges).
1739bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1740                                                 CaseRecVector& WorkList,
1741                                                 const Value* SV,
1742                                                 MachineBasicBlock *Default,
1743                                                 MachineBasicBlock *SwitchBB) {
1744  Case& BackCase  = *(CR.Range.second-1);
1745
1746  // Size is the number of Cases represented by this range.
1747  size_t Size = CR.Range.second - CR.Range.first;
1748  if (Size > 3)
1749    return false;
1750
1751  // Get the MachineFunction which holds the current MBB.  This is used when
1752  // inserting any additional MBBs necessary to represent the switch.
1753  MachineFunction *CurMF = FuncInfo.MF;
1754
1755  // Figure out which block is immediately after the current one.
1756  MachineBasicBlock *NextBlock = 0;
1757  MachineFunction::iterator BBI = CR.CaseBB;
1758
1759  if (++BBI != FuncInfo.MF->end())
1760    NextBlock = BBI;
1761
1762  // If any two of the cases has the same destination, and if one value
1763  // is the same as the other, but has one bit unset that the other has set,
1764  // use bit manipulation to do two compares at once.  For example:
1765  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1766  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1767  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1768  if (Size == 2 && CR.CaseBB == SwitchBB) {
1769    Case &Small = *CR.Range.first;
1770    Case &Big = *(CR.Range.second-1);
1771
1772    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1773      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1774      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1775
1776      // Check that there is only one bit different.
1777      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1778          (SmallValue | BigValue) == BigValue) {
1779        // Isolate the common bit.
1780        APInt CommonBit = BigValue & ~SmallValue;
1781        assert((SmallValue | CommonBit) == BigValue &&
1782               CommonBit.countPopulation() == 1 && "Not a common bit?");
1783
1784        SDValue CondLHS = getValue(SV);
1785        EVT VT = CondLHS.getValueType();
1786        DebugLoc DL = getCurDebugLoc();
1787
1788        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1789                                 DAG.getConstant(CommonBit, VT));
1790        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1791                                    Or, DAG.getConstant(BigValue, VT),
1792                                    ISD::SETEQ);
1793
1794        // Update successor info.
1795        SwitchBB->addSuccessor(Small.BB);
1796        SwitchBB->addSuccessor(Default);
1797
1798        // Insert the true branch.
1799        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1800                                     getControlRoot(), Cond,
1801                                     DAG.getBasicBlock(Small.BB));
1802
1803        // Insert the false branch.
1804        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1805                             DAG.getBasicBlock(Default));
1806
1807        DAG.setRoot(BrCond);
1808        return true;
1809      }
1810    }
1811  }
1812
1813  // Rearrange the case blocks so that the last one falls through if possible.
1814  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1815    // The last case block won't fall through into 'NextBlock' if we emit the
1816    // branches in this order.  See if rearranging a case value would help.
1817    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1818      if (I->BB == NextBlock) {
1819        std::swap(*I, BackCase);
1820        break;
1821      }
1822    }
1823  }
1824
1825  // Create a CaseBlock record representing a conditional branch to
1826  // the Case's target mbb if the value being switched on SV is equal
1827  // to C.
1828  MachineBasicBlock *CurBlock = CR.CaseBB;
1829  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1830    MachineBasicBlock *FallThrough;
1831    if (I != E-1) {
1832      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1833      CurMF->insert(BBI, FallThrough);
1834
1835      // Put SV in a virtual register to make it available from the new blocks.
1836      ExportFromCurrentBlock(SV);
1837    } else {
1838      // If the last case doesn't match, go to the default block.
1839      FallThrough = Default;
1840    }
1841
1842    const Value *RHS, *LHS, *MHS;
1843    ISD::CondCode CC;
1844    if (I->High == I->Low) {
1845      // This is just small small case range :) containing exactly 1 case
1846      CC = ISD::SETEQ;
1847      LHS = SV; RHS = I->High; MHS = NULL;
1848    } else {
1849      CC = ISD::SETLE;
1850      LHS = I->Low; MHS = SV; RHS = I->High;
1851    }
1852    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1853
1854    // If emitting the first comparison, just call visitSwitchCase to emit the
1855    // code into the current block.  Otherwise, push the CaseBlock onto the
1856    // vector to be later processed by SDISel, and insert the node's MBB
1857    // before the next MBB.
1858    if (CurBlock == SwitchBB)
1859      visitSwitchCase(CB, SwitchBB);
1860    else
1861      SwitchCases.push_back(CB);
1862
1863    CurBlock = FallThrough;
1864  }
1865
1866  return true;
1867}
1868
1869static inline bool areJTsAllowed(const TargetLowering &TLI) {
1870  return !DisableJumpTables &&
1871          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1872           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1873}
1874
1875static APInt ComputeRange(const APInt &First, const APInt &Last) {
1876  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1877  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1878  return (LastExt - FirstExt + 1ULL);
1879}
1880
1881/// handleJTSwitchCase - Emit jumptable for current switch case range
1882bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1883                                             CaseRecVector& WorkList,
1884                                             const Value* SV,
1885                                             MachineBasicBlock* Default,
1886                                             MachineBasicBlock *SwitchBB) {
1887  Case& FrontCase = *CR.Range.first;
1888  Case& BackCase  = *(CR.Range.second-1);
1889
1890  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1891  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1892
1893  APInt TSize(First.getBitWidth(), 0);
1894  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1895       I!=E; ++I)
1896    TSize += I->size();
1897
1898  if (!areJTsAllowed(TLI) || TSize.ult(4))
1899    return false;
1900
1901  APInt Range = ComputeRange(First, Last);
1902  double Density = TSize.roundToDouble() / Range.roundToDouble();
1903  if (Density < 0.4)
1904    return false;
1905
1906  DEBUG(dbgs() << "Lowering jump table\n"
1907               << "First entry: " << First << ". Last entry: " << Last << '\n'
1908               << "Range: " << Range
1909               << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1910
1911  // Get the MachineFunction which holds the current MBB.  This is used when
1912  // inserting any additional MBBs necessary to represent the switch.
1913  MachineFunction *CurMF = FuncInfo.MF;
1914
1915  // Figure out which block is immediately after the current one.
1916  MachineFunction::iterator BBI = CR.CaseBB;
1917  ++BBI;
1918
1919  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1920
1921  // Create a new basic block to hold the code for loading the address
1922  // of the jump table, and jumping to it.  Update successor information;
1923  // we will either branch to the default case for the switch, or the jump
1924  // table.
1925  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1926  CurMF->insert(BBI, JumpTableBB);
1927  CR.CaseBB->addSuccessor(Default);
1928  CR.CaseBB->addSuccessor(JumpTableBB);
1929
1930  // Build a vector of destination BBs, corresponding to each target
1931  // of the jump table. If the value of the jump table slot corresponds to
1932  // a case statement, push the case's BB onto the vector, otherwise, push
1933  // the default BB.
1934  std::vector<MachineBasicBlock*> DestBBs;
1935  APInt TEI = First;
1936  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1937    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1938    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1939
1940    if (Low.sle(TEI) && TEI.sle(High)) {
1941      DestBBs.push_back(I->BB);
1942      if (TEI==High)
1943        ++I;
1944    } else {
1945      DestBBs.push_back(Default);
1946    }
1947  }
1948
1949  // Update successor info. Add one edge to each unique successor.
1950  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1951  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1952         E = DestBBs.end(); I != E; ++I) {
1953    if (!SuccsHandled[(*I)->getNumber()]) {
1954      SuccsHandled[(*I)->getNumber()] = true;
1955      JumpTableBB->addSuccessor(*I);
1956    }
1957  }
1958
1959  // Create a jump table index for this jump table.
1960  unsigned JTEncoding = TLI.getJumpTableEncoding();
1961  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1962                       ->createJumpTableIndex(DestBBs);
1963
1964  // Set the jump table information so that we can codegen it as a second
1965  // MachineBasicBlock
1966  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1967  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1968  if (CR.CaseBB == SwitchBB)
1969    visitJumpTableHeader(JT, JTH, SwitchBB);
1970
1971  JTCases.push_back(JumpTableBlock(JTH, JT));
1972
1973  return true;
1974}
1975
1976/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1977/// 2 subtrees.
1978bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1979                                                  CaseRecVector& WorkList,
1980                                                  const Value* SV,
1981                                                  MachineBasicBlock *Default,
1982                                                  MachineBasicBlock *SwitchBB) {
1983  // Get the MachineFunction which holds the current MBB.  This is used when
1984  // inserting any additional MBBs necessary to represent the switch.
1985  MachineFunction *CurMF = FuncInfo.MF;
1986
1987  // Figure out which block is immediately after the current one.
1988  MachineFunction::iterator BBI = CR.CaseBB;
1989  ++BBI;
1990
1991  Case& FrontCase = *CR.Range.first;
1992  Case& BackCase  = *(CR.Range.second-1);
1993  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1994
1995  // Size is the number of Cases represented by this range.
1996  unsigned Size = CR.Range.second - CR.Range.first;
1997
1998  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1999  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2000  double FMetric = 0;
2001  CaseItr Pivot = CR.Range.first + Size/2;
2002
2003  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2004  // (heuristically) allow us to emit JumpTable's later.
2005  APInt TSize(First.getBitWidth(), 0);
2006  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2007       I!=E; ++I)
2008    TSize += I->size();
2009
2010  APInt LSize = FrontCase.size();
2011  APInt RSize = TSize-LSize;
2012  DEBUG(dbgs() << "Selecting best pivot: \n"
2013               << "First: " << First << ", Last: " << Last <<'\n'
2014               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2015  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2016       J!=E; ++I, ++J) {
2017    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2018    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2019    APInt Range = ComputeRange(LEnd, RBegin);
2020    assert((Range - 2ULL).isNonNegative() &&
2021           "Invalid case distance");
2022    double LDensity = (double)LSize.roundToDouble() /
2023                           (LEnd - First + 1ULL).roundToDouble();
2024    double RDensity = (double)RSize.roundToDouble() /
2025                           (Last - RBegin + 1ULL).roundToDouble();
2026    double Metric = Range.logBase2()*(LDensity+RDensity);
2027    // Should always split in some non-trivial place
2028    DEBUG(dbgs() <<"=>Step\n"
2029                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2030                 << "LDensity: " << LDensity
2031                 << ", RDensity: " << RDensity << '\n'
2032                 << "Metric: " << Metric << '\n');
2033    if (FMetric < Metric) {
2034      Pivot = J;
2035      FMetric = Metric;
2036      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2037    }
2038
2039    LSize += J->size();
2040    RSize -= J->size();
2041  }
2042  if (areJTsAllowed(TLI)) {
2043    // If our case is dense we *really* should handle it earlier!
2044    assert((FMetric > 0) && "Should handle dense range earlier!");
2045  } else {
2046    Pivot = CR.Range.first + Size/2;
2047  }
2048
2049  CaseRange LHSR(CR.Range.first, Pivot);
2050  CaseRange RHSR(Pivot, CR.Range.second);
2051  Constant *C = Pivot->Low;
2052  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2053
2054  // We know that we branch to the LHS if the Value being switched on is
2055  // less than the Pivot value, C.  We use this to optimize our binary
2056  // tree a bit, by recognizing that if SV is greater than or equal to the
2057  // LHS's Case Value, and that Case Value is exactly one less than the
2058  // Pivot's Value, then we can branch directly to the LHS's Target,
2059  // rather than creating a leaf node for it.
2060  if ((LHSR.second - LHSR.first) == 1 &&
2061      LHSR.first->High == CR.GE &&
2062      cast<ConstantInt>(C)->getValue() ==
2063      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2064    TrueBB = LHSR.first->BB;
2065  } else {
2066    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2067    CurMF->insert(BBI, TrueBB);
2068    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2069
2070    // Put SV in a virtual register to make it available from the new blocks.
2071    ExportFromCurrentBlock(SV);
2072  }
2073
2074  // Similar to the optimization above, if the Value being switched on is
2075  // known to be less than the Constant CR.LT, and the current Case Value
2076  // is CR.LT - 1, then we can branch directly to the target block for
2077  // the current Case Value, rather than emitting a RHS leaf node for it.
2078  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2079      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2080      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2081    FalseBB = RHSR.first->BB;
2082  } else {
2083    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2084    CurMF->insert(BBI, FalseBB);
2085    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2086
2087    // Put SV in a virtual register to make it available from the new blocks.
2088    ExportFromCurrentBlock(SV);
2089  }
2090
2091  // Create a CaseBlock record representing a conditional branch to
2092  // the LHS node if the value being switched on SV is less than C.
2093  // Otherwise, branch to LHS.
2094  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2095
2096  if (CR.CaseBB == SwitchBB)
2097    visitSwitchCase(CB, SwitchBB);
2098  else
2099    SwitchCases.push_back(CB);
2100
2101  return true;
2102}
2103
2104/// handleBitTestsSwitchCase - if current case range has few destination and
2105/// range span less, than machine word bitwidth, encode case range into series
2106/// of masks and emit bit tests with these masks.
2107bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2108                                                   CaseRecVector& WorkList,
2109                                                   const Value* SV,
2110                                                   MachineBasicBlock* Default,
2111                                                   MachineBasicBlock *SwitchBB){
2112  EVT PTy = TLI.getPointerTy();
2113  unsigned IntPtrBits = PTy.getSizeInBits();
2114
2115  Case& FrontCase = *CR.Range.first;
2116  Case& BackCase  = *(CR.Range.second-1);
2117
2118  // Get the MachineFunction which holds the current MBB.  This is used when
2119  // inserting any additional MBBs necessary to represent the switch.
2120  MachineFunction *CurMF = FuncInfo.MF;
2121
2122  // If target does not have legal shift left, do not emit bit tests at all.
2123  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2124    return false;
2125
2126  size_t numCmps = 0;
2127  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2128       I!=E; ++I) {
2129    // Single case counts one, case range - two.
2130    numCmps += (I->Low == I->High ? 1 : 2);
2131  }
2132
2133  // Count unique destinations
2134  SmallSet<MachineBasicBlock*, 4> Dests;
2135  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2136    Dests.insert(I->BB);
2137    if (Dests.size() > 3)
2138      // Don't bother the code below, if there are too much unique destinations
2139      return false;
2140  }
2141  DEBUG(dbgs() << "Total number of unique destinations: "
2142        << Dests.size() << '\n'
2143        << "Total number of comparisons: " << numCmps << '\n');
2144
2145  // Compute span of values.
2146  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2147  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2148  APInt cmpRange = maxValue - minValue;
2149
2150  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2151               << "Low bound: " << minValue << '\n'
2152               << "High bound: " << maxValue << '\n');
2153
2154  if (cmpRange.uge(IntPtrBits) ||
2155      (!(Dests.size() == 1 && numCmps >= 3) &&
2156       !(Dests.size() == 2 && numCmps >= 5) &&
2157       !(Dests.size() >= 3 && numCmps >= 6)))
2158    return false;
2159
2160  DEBUG(dbgs() << "Emitting bit tests\n");
2161  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2162
2163  // Optimize the case where all the case values fit in a
2164  // word without having to subtract minValue. In this case,
2165  // we can optimize away the subtraction.
2166  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2167    cmpRange = maxValue;
2168  } else {
2169    lowBound = minValue;
2170  }
2171
2172  CaseBitsVector CasesBits;
2173  unsigned i, count = 0;
2174
2175  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2176    MachineBasicBlock* Dest = I->BB;
2177    for (i = 0; i < count; ++i)
2178      if (Dest == CasesBits[i].BB)
2179        break;
2180
2181    if (i == count) {
2182      assert((count < 3) && "Too much destinations to test!");
2183      CasesBits.push_back(CaseBits(0, Dest, 0));
2184      count++;
2185    }
2186
2187    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2188    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2189
2190    uint64_t lo = (lowValue - lowBound).getZExtValue();
2191    uint64_t hi = (highValue - lowBound).getZExtValue();
2192
2193    for (uint64_t j = lo; j <= hi; j++) {
2194      CasesBits[i].Mask |=  1ULL << j;
2195      CasesBits[i].Bits++;
2196    }
2197
2198  }
2199  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2200
2201  BitTestInfo BTC;
2202
2203  // Figure out which block is immediately after the current one.
2204  MachineFunction::iterator BBI = CR.CaseBB;
2205  ++BBI;
2206
2207  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2208
2209  DEBUG(dbgs() << "Cases:\n");
2210  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2211    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2212                 << ", Bits: " << CasesBits[i].Bits
2213                 << ", BB: " << CasesBits[i].BB << '\n');
2214
2215    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2216    CurMF->insert(BBI, CaseBB);
2217    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2218                              CaseBB,
2219                              CasesBits[i].BB));
2220
2221    // Put SV in a virtual register to make it available from the new blocks.
2222    ExportFromCurrentBlock(SV);
2223  }
2224
2225  BitTestBlock BTB(lowBound, cmpRange, SV,
2226                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2227                   CR.CaseBB, Default, BTC);
2228
2229  if (CR.CaseBB == SwitchBB)
2230    visitBitTestHeader(BTB, SwitchBB);
2231
2232  BitTestCases.push_back(BTB);
2233
2234  return true;
2235}
2236
2237/// Clusterify - Transform simple list of Cases into list of CaseRange's
2238size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2239                                       const SwitchInst& SI) {
2240  size_t numCmps = 0;
2241
2242  // Start with "simple" cases
2243  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2244    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2245    Cases.push_back(Case(SI.getSuccessorValue(i),
2246                         SI.getSuccessorValue(i),
2247                         SMBB));
2248  }
2249  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2250
2251  // Merge case into clusters
2252  if (Cases.size() >= 2)
2253    // Must recompute end() each iteration because it may be
2254    // invalidated by erase if we hold on to it
2255    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2256         J != Cases.end(); ) {
2257      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2258      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2259      MachineBasicBlock* nextBB = J->BB;
2260      MachineBasicBlock* currentBB = I->BB;
2261
2262      // If the two neighboring cases go to the same destination, merge them
2263      // into a single case.
2264      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2265        I->High = J->High;
2266        J = Cases.erase(J);
2267      } else {
2268        I = J++;
2269      }
2270    }
2271
2272  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2273    if (I->Low != I->High)
2274      // A range counts double, since it requires two compares.
2275      ++numCmps;
2276  }
2277
2278  return numCmps;
2279}
2280
2281void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2282                                           MachineBasicBlock *Last) {
2283  // Update JTCases.
2284  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2285    if (JTCases[i].first.HeaderBB == First)
2286      JTCases[i].first.HeaderBB = Last;
2287
2288  // Update BitTestCases.
2289  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2290    if (BitTestCases[i].Parent == First)
2291      BitTestCases[i].Parent = Last;
2292}
2293
2294void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2295  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2296
2297  // Figure out which block is immediately after the current one.
2298  MachineBasicBlock *NextBlock = 0;
2299  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2300
2301  // If there is only the default destination, branch to it if it is not the
2302  // next basic block.  Otherwise, just fall through.
2303  if (SI.getNumOperands() == 2) {
2304    // Update machine-CFG edges.
2305
2306    // If this is not a fall-through branch, emit the branch.
2307    SwitchMBB->addSuccessor(Default);
2308    if (Default != NextBlock)
2309      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2310                              MVT::Other, getControlRoot(),
2311                              DAG.getBasicBlock(Default)));
2312
2313    return;
2314  }
2315
2316  // If there are any non-default case statements, create a vector of Cases
2317  // representing each one, and sort the vector so that we can efficiently
2318  // create a binary search tree from them.
2319  CaseVector Cases;
2320  size_t numCmps = Clusterify(Cases, SI);
2321  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2322               << ". Total compares: " << numCmps << '\n');
2323  numCmps = 0;
2324
2325  // Get the Value to be switched on and default basic blocks, which will be
2326  // inserted into CaseBlock records, representing basic blocks in the binary
2327  // search tree.
2328  const Value *SV = SI.getOperand(0);
2329
2330  // Push the initial CaseRec onto the worklist
2331  CaseRecVector WorkList;
2332  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2333                             CaseRange(Cases.begin(),Cases.end())));
2334
2335  while (!WorkList.empty()) {
2336    // Grab a record representing a case range to process off the worklist
2337    CaseRec CR = WorkList.back();
2338    WorkList.pop_back();
2339
2340    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2341      continue;
2342
2343    // If the range has few cases (two or less) emit a series of specific
2344    // tests.
2345    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2346      continue;
2347
2348    // If the switch has more than 5 blocks, and at least 40% dense, and the
2349    // target supports indirect branches, then emit a jump table rather than
2350    // lowering the switch to a binary tree of conditional branches.
2351    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2352      continue;
2353
2354    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2355    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2356    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2357  }
2358}
2359
2360void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2361  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2362
2363  // Update machine-CFG edges with unique successors.
2364  SmallVector<BasicBlock*, 32> succs;
2365  succs.reserve(I.getNumSuccessors());
2366  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2367    succs.push_back(I.getSuccessor(i));
2368  array_pod_sort(succs.begin(), succs.end());
2369  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2370  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2371    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2372
2373  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2374                          MVT::Other, getControlRoot(),
2375                          getValue(I.getAddress())));
2376}
2377
2378void SelectionDAGBuilder::visitFSub(const User &I) {
2379  // -0.0 - X --> fneg
2380  const Type *Ty = I.getType();
2381  if (isa<Constant>(I.getOperand(0)) &&
2382      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2383    SDValue Op2 = getValue(I.getOperand(1));
2384    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2385                             Op2.getValueType(), Op2));
2386    return;
2387  }
2388
2389  visitBinary(I, ISD::FSUB);
2390}
2391
2392void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2393  SDValue Op1 = getValue(I.getOperand(0));
2394  SDValue Op2 = getValue(I.getOperand(1));
2395  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2396                           Op1.getValueType(), Op1, Op2));
2397}
2398
2399void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2400  SDValue Op1 = getValue(I.getOperand(0));
2401  SDValue Op2 = getValue(I.getOperand(1));
2402
2403  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2404
2405  // Coerce the shift amount to the right type if we can.
2406  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2407    unsigned ShiftSize = ShiftTy.getSizeInBits();
2408    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2409    DebugLoc DL = getCurDebugLoc();
2410
2411    // If the operand is smaller than the shift count type, promote it.
2412    if (ShiftSize > Op2Size)
2413      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2414
2415    // If the operand is larger than the shift count type but the shift
2416    // count type has enough bits to represent any shift value, truncate
2417    // it now. This is a common case and it exposes the truncate to
2418    // optimization early.
2419    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2420      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2421    // Otherwise we'll need to temporarily settle for some other convenient
2422    // type.  Type legalization will make adjustments once the shiftee is split.
2423    else
2424      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2425  }
2426
2427  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2428                           Op1.getValueType(), Op1, Op2));
2429}
2430
2431void SelectionDAGBuilder::visitICmp(const User &I) {
2432  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2433  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2434    predicate = IC->getPredicate();
2435  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2436    predicate = ICmpInst::Predicate(IC->getPredicate());
2437  SDValue Op1 = getValue(I.getOperand(0));
2438  SDValue Op2 = getValue(I.getOperand(1));
2439  ISD::CondCode Opcode = getICmpCondCode(predicate);
2440
2441  EVT DestVT = TLI.getValueType(I.getType());
2442  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2443}
2444
2445void SelectionDAGBuilder::visitFCmp(const User &I) {
2446  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2447  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2448    predicate = FC->getPredicate();
2449  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2450    predicate = FCmpInst::Predicate(FC->getPredicate());
2451  SDValue Op1 = getValue(I.getOperand(0));
2452  SDValue Op2 = getValue(I.getOperand(1));
2453  ISD::CondCode Condition = getFCmpCondCode(predicate);
2454  EVT DestVT = TLI.getValueType(I.getType());
2455  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2456}
2457
2458void SelectionDAGBuilder::visitSelect(const User &I) {
2459  SmallVector<EVT, 4> ValueVTs;
2460  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2461  unsigned NumValues = ValueVTs.size();
2462  if (NumValues == 0) return;
2463
2464  SmallVector<SDValue, 4> Values(NumValues);
2465  SDValue Cond     = getValue(I.getOperand(0));
2466  SDValue TrueVal  = getValue(I.getOperand(1));
2467  SDValue FalseVal = getValue(I.getOperand(2));
2468
2469  for (unsigned i = 0; i != NumValues; ++i)
2470    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2471                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2472                            Cond,
2473                            SDValue(TrueVal.getNode(),
2474                                    TrueVal.getResNo() + i),
2475                            SDValue(FalseVal.getNode(),
2476                                    FalseVal.getResNo() + i));
2477
2478  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2479                           DAG.getVTList(&ValueVTs[0], NumValues),
2480                           &Values[0], NumValues));
2481}
2482
2483void SelectionDAGBuilder::visitTrunc(const User &I) {
2484  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2485  SDValue N = getValue(I.getOperand(0));
2486  EVT DestVT = TLI.getValueType(I.getType());
2487  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2488}
2489
2490void SelectionDAGBuilder::visitZExt(const User &I) {
2491  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2492  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2493  SDValue N = getValue(I.getOperand(0));
2494  EVT DestVT = TLI.getValueType(I.getType());
2495  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2496}
2497
2498void SelectionDAGBuilder::visitSExt(const User &I) {
2499  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2500  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2501  SDValue N = getValue(I.getOperand(0));
2502  EVT DestVT = TLI.getValueType(I.getType());
2503  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2504}
2505
2506void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2507  // FPTrunc is never a no-op cast, no need to check
2508  SDValue N = getValue(I.getOperand(0));
2509  EVT DestVT = TLI.getValueType(I.getType());
2510  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2511                           DestVT, N, DAG.getIntPtrConstant(0)));
2512}
2513
2514void SelectionDAGBuilder::visitFPExt(const User &I){
2515  // FPTrunc is never a no-op cast, no need to check
2516  SDValue N = getValue(I.getOperand(0));
2517  EVT DestVT = TLI.getValueType(I.getType());
2518  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2519}
2520
2521void SelectionDAGBuilder::visitFPToUI(const User &I) {
2522  // FPToUI is never a no-op cast, no need to check
2523  SDValue N = getValue(I.getOperand(0));
2524  EVT DestVT = TLI.getValueType(I.getType());
2525  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2526}
2527
2528void SelectionDAGBuilder::visitFPToSI(const User &I) {
2529  // FPToSI is never a no-op cast, no need to check
2530  SDValue N = getValue(I.getOperand(0));
2531  EVT DestVT = TLI.getValueType(I.getType());
2532  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2533}
2534
2535void SelectionDAGBuilder::visitUIToFP(const User &I) {
2536  // UIToFP is never a no-op cast, no need to check
2537  SDValue N = getValue(I.getOperand(0));
2538  EVT DestVT = TLI.getValueType(I.getType());
2539  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2540}
2541
2542void SelectionDAGBuilder::visitSIToFP(const User &I){
2543  // SIToFP is never a no-op cast, no need to check
2544  SDValue N = getValue(I.getOperand(0));
2545  EVT DestVT = TLI.getValueType(I.getType());
2546  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2547}
2548
2549void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2550  // What to do depends on the size of the integer and the size of the pointer.
2551  // We can either truncate, zero extend, or no-op, accordingly.
2552  SDValue N = getValue(I.getOperand(0));
2553  EVT DestVT = TLI.getValueType(I.getType());
2554  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2555}
2556
2557void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2558  // What to do depends on the size of the integer and the size of the pointer.
2559  // We can either truncate, zero extend, or no-op, accordingly.
2560  SDValue N = getValue(I.getOperand(0));
2561  EVT DestVT = TLI.getValueType(I.getType());
2562  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2563}
2564
2565void SelectionDAGBuilder::visitBitCast(const User &I) {
2566  SDValue N = getValue(I.getOperand(0));
2567  EVT DestVT = TLI.getValueType(I.getType());
2568
2569  // BitCast assures us that source and destination are the same size so this is
2570  // either a BITCAST or a no-op.
2571  if (DestVT != N.getValueType())
2572    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2573                             DestVT, N)); // convert types.
2574  else
2575    setValue(&I, N);            // noop cast.
2576}
2577
2578void SelectionDAGBuilder::visitInsertElement(const User &I) {
2579  SDValue InVec = getValue(I.getOperand(0));
2580  SDValue InVal = getValue(I.getOperand(1));
2581  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2582                              TLI.getPointerTy(),
2583                              getValue(I.getOperand(2)));
2584  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2585                           TLI.getValueType(I.getType()),
2586                           InVec, InVal, InIdx));
2587}
2588
2589void SelectionDAGBuilder::visitExtractElement(const User &I) {
2590  SDValue InVec = getValue(I.getOperand(0));
2591  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2592                              TLI.getPointerTy(),
2593                              getValue(I.getOperand(1)));
2594  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2595                           TLI.getValueType(I.getType()), InVec, InIdx));
2596}
2597
2598// Utility for visitShuffleVector - Returns true if the mask is mask starting
2599// from SIndx and increasing to the element length (undefs are allowed).
2600static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2601  unsigned MaskNumElts = Mask.size();
2602  for (unsigned i = 0; i != MaskNumElts; ++i)
2603    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2604      return false;
2605  return true;
2606}
2607
2608void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2609  SmallVector<int, 8> Mask;
2610  SDValue Src1 = getValue(I.getOperand(0));
2611  SDValue Src2 = getValue(I.getOperand(1));
2612
2613  // Convert the ConstantVector mask operand into an array of ints, with -1
2614  // representing undef values.
2615  SmallVector<Constant*, 8> MaskElts;
2616  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2617  unsigned MaskNumElts = MaskElts.size();
2618  for (unsigned i = 0; i != MaskNumElts; ++i) {
2619    if (isa<UndefValue>(MaskElts[i]))
2620      Mask.push_back(-1);
2621    else
2622      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2623  }
2624
2625  EVT VT = TLI.getValueType(I.getType());
2626  EVT SrcVT = Src1.getValueType();
2627  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2628
2629  if (SrcNumElts == MaskNumElts) {
2630    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2631                                      &Mask[0]));
2632    return;
2633  }
2634
2635  // Normalize the shuffle vector since mask and vector length don't match.
2636  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2637    // Mask is longer than the source vectors and is a multiple of the source
2638    // vectors.  We can use concatenate vector to make the mask and vectors
2639    // lengths match.
2640    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2641      // The shuffle is concatenating two vectors together.
2642      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2643                               VT, Src1, Src2));
2644      return;
2645    }
2646
2647    // Pad both vectors with undefs to make them the same length as the mask.
2648    unsigned NumConcat = MaskNumElts / SrcNumElts;
2649    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2650    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2651    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2652
2653    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2654    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2655    MOps1[0] = Src1;
2656    MOps2[0] = Src2;
2657
2658    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2659                                                  getCurDebugLoc(), VT,
2660                                                  &MOps1[0], NumConcat);
2661    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2662                                                  getCurDebugLoc(), VT,
2663                                                  &MOps2[0], NumConcat);
2664
2665    // Readjust mask for new input vector length.
2666    SmallVector<int, 8> MappedOps;
2667    for (unsigned i = 0; i != MaskNumElts; ++i) {
2668      int Idx = Mask[i];
2669      if (Idx < (int)SrcNumElts)
2670        MappedOps.push_back(Idx);
2671      else
2672        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2673    }
2674
2675    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2676                                      &MappedOps[0]));
2677    return;
2678  }
2679
2680  if (SrcNumElts > MaskNumElts) {
2681    // Analyze the access pattern of the vector to see if we can extract
2682    // two subvectors and do the shuffle. The analysis is done by calculating
2683    // the range of elements the mask access on both vectors.
2684    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2685    int MaxRange[2] = {-1, -1};
2686
2687    for (unsigned i = 0; i != MaskNumElts; ++i) {
2688      int Idx = Mask[i];
2689      int Input = 0;
2690      if (Idx < 0)
2691        continue;
2692
2693      if (Idx >= (int)SrcNumElts) {
2694        Input = 1;
2695        Idx -= SrcNumElts;
2696      }
2697      if (Idx > MaxRange[Input])
2698        MaxRange[Input] = Idx;
2699      if (Idx < MinRange[Input])
2700        MinRange[Input] = Idx;
2701    }
2702
2703    // Check if the access is smaller than the vector size and can we find
2704    // a reasonable extract index.
2705    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2706                                 // Extract.
2707    int StartIdx[2];  // StartIdx to extract from
2708    for (int Input=0; Input < 2; ++Input) {
2709      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2710        RangeUse[Input] = 0; // Unused
2711        StartIdx[Input] = 0;
2712      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2713        // Fits within range but we should see if we can find a good
2714        // start index that is a multiple of the mask length.
2715        if (MaxRange[Input] < (int)MaskNumElts) {
2716          RangeUse[Input] = 1; // Extract from beginning of the vector
2717          StartIdx[Input] = 0;
2718        } else {
2719          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2720          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2721              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2722            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2723        }
2724      }
2725    }
2726
2727    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2728      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2729      return;
2730    }
2731    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2732      // Extract appropriate subvector and generate a vector shuffle
2733      for (int Input=0; Input < 2; ++Input) {
2734        SDValue &Src = Input == 0 ? Src1 : Src2;
2735        if (RangeUse[Input] == 0)
2736          Src = DAG.getUNDEF(VT);
2737        else
2738          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2739                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2740      }
2741
2742      // Calculate new mask.
2743      SmallVector<int, 8> MappedOps;
2744      for (unsigned i = 0; i != MaskNumElts; ++i) {
2745        int Idx = Mask[i];
2746        if (Idx < 0)
2747          MappedOps.push_back(Idx);
2748        else if (Idx < (int)SrcNumElts)
2749          MappedOps.push_back(Idx - StartIdx[0]);
2750        else
2751          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2752      }
2753
2754      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2755                                        &MappedOps[0]));
2756      return;
2757    }
2758  }
2759
2760  // We can't use either concat vectors or extract subvectors so fall back to
2761  // replacing the shuffle with extract and build vector.
2762  // to insert and build vector.
2763  EVT EltVT = VT.getVectorElementType();
2764  EVT PtrVT = TLI.getPointerTy();
2765  SmallVector<SDValue,8> Ops;
2766  for (unsigned i = 0; i != MaskNumElts; ++i) {
2767    if (Mask[i] < 0) {
2768      Ops.push_back(DAG.getUNDEF(EltVT));
2769    } else {
2770      int Idx = Mask[i];
2771      SDValue Res;
2772
2773      if (Idx < (int)SrcNumElts)
2774        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2775                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2776      else
2777        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2778                          EltVT, Src2,
2779                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2780
2781      Ops.push_back(Res);
2782    }
2783  }
2784
2785  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2786                           VT, &Ops[0], Ops.size()));
2787}
2788
2789void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2790  const Value *Op0 = I.getOperand(0);
2791  const Value *Op1 = I.getOperand(1);
2792  const Type *AggTy = I.getType();
2793  const Type *ValTy = Op1->getType();
2794  bool IntoUndef = isa<UndefValue>(Op0);
2795  bool FromUndef = isa<UndefValue>(Op1);
2796
2797  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2798
2799  SmallVector<EVT, 4> AggValueVTs;
2800  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2801  SmallVector<EVT, 4> ValValueVTs;
2802  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2803
2804  unsigned NumAggValues = AggValueVTs.size();
2805  unsigned NumValValues = ValValueVTs.size();
2806  SmallVector<SDValue, 4> Values(NumAggValues);
2807
2808  SDValue Agg = getValue(Op0);
2809  SDValue Val = getValue(Op1);
2810  unsigned i = 0;
2811  // Copy the beginning value(s) from the original aggregate.
2812  for (; i != LinearIndex; ++i)
2813    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2814                SDValue(Agg.getNode(), Agg.getResNo() + i);
2815  // Copy values from the inserted value(s).
2816  for (; i != LinearIndex + NumValValues; ++i)
2817    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2818                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2819  // Copy remaining value(s) from the original aggregate.
2820  for (; i != NumAggValues; ++i)
2821    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2822                SDValue(Agg.getNode(), Agg.getResNo() + i);
2823
2824  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2825                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2826                           &Values[0], NumAggValues));
2827}
2828
2829void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2830  const Value *Op0 = I.getOperand(0);
2831  const Type *AggTy = Op0->getType();
2832  const Type *ValTy = I.getType();
2833  bool OutOfUndef = isa<UndefValue>(Op0);
2834
2835  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2836
2837  SmallVector<EVT, 4> ValValueVTs;
2838  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2839
2840  unsigned NumValValues = ValValueVTs.size();
2841  SmallVector<SDValue, 4> Values(NumValValues);
2842
2843  SDValue Agg = getValue(Op0);
2844  // Copy out the selected value(s).
2845  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2846    Values[i - LinearIndex] =
2847      OutOfUndef ?
2848        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2849        SDValue(Agg.getNode(), Agg.getResNo() + i);
2850
2851  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2852                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2853                           &Values[0], NumValValues));
2854}
2855
2856void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2857  SDValue N = getValue(I.getOperand(0));
2858  const Type *Ty = I.getOperand(0)->getType();
2859
2860  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2861       OI != E; ++OI) {
2862    const Value *Idx = *OI;
2863    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2864      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2865      if (Field) {
2866        // N = N + Offset
2867        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2868        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2869                        DAG.getIntPtrConstant(Offset));
2870      }
2871
2872      Ty = StTy->getElementType(Field);
2873    } else {
2874      Ty = cast<SequentialType>(Ty)->getElementType();
2875
2876      // If this is a constant subscript, handle it quickly.
2877      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2878        if (CI->isZero()) continue;
2879        uint64_t Offs =
2880            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2881        SDValue OffsVal;
2882        EVT PTy = TLI.getPointerTy();
2883        unsigned PtrBits = PTy.getSizeInBits();
2884        if (PtrBits < 64)
2885          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2886                                TLI.getPointerTy(),
2887                                DAG.getConstant(Offs, MVT::i64));
2888        else
2889          OffsVal = DAG.getIntPtrConstant(Offs);
2890
2891        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2892                        OffsVal);
2893        continue;
2894      }
2895
2896      // N = N + Idx * ElementSize;
2897      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2898                                TD->getTypeAllocSize(Ty));
2899      SDValue IdxN = getValue(Idx);
2900
2901      // If the index is smaller or larger than intptr_t, truncate or extend
2902      // it.
2903      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2904
2905      // If this is a multiply by a power of two, turn it into a shl
2906      // immediately.  This is a very common case.
2907      if (ElementSize != 1) {
2908        if (ElementSize.isPowerOf2()) {
2909          unsigned Amt = ElementSize.logBase2();
2910          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2911                             N.getValueType(), IdxN,
2912                             DAG.getConstant(Amt, TLI.getPointerTy()));
2913        } else {
2914          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2915          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2916                             N.getValueType(), IdxN, Scale);
2917        }
2918      }
2919
2920      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2921                      N.getValueType(), N, IdxN);
2922    }
2923  }
2924
2925  setValue(&I, N);
2926}
2927
2928void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2929  // If this is a fixed sized alloca in the entry block of the function,
2930  // allocate it statically on the stack.
2931  if (FuncInfo.StaticAllocaMap.count(&I))
2932    return;   // getValue will auto-populate this.
2933
2934  const Type *Ty = I.getAllocatedType();
2935  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2936  unsigned Align =
2937    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2938             I.getAlignment());
2939
2940  SDValue AllocSize = getValue(I.getArraySize());
2941
2942  EVT IntPtr = TLI.getPointerTy();
2943  if (AllocSize.getValueType() != IntPtr)
2944    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2945
2946  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2947                          AllocSize,
2948                          DAG.getConstant(TySize, IntPtr));
2949
2950  // Handle alignment.  If the requested alignment is less than or equal to
2951  // the stack alignment, ignore it.  If the size is greater than or equal to
2952  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2953  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
2954  if (Align <= StackAlign)
2955    Align = 0;
2956
2957  // Round the size of the allocation up to the stack alignment size
2958  // by add SA-1 to the size.
2959  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2960                          AllocSize.getValueType(), AllocSize,
2961                          DAG.getIntPtrConstant(StackAlign-1));
2962
2963  // Mask out the low bits for alignment purposes.
2964  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2965                          AllocSize.getValueType(), AllocSize,
2966                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2967
2968  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2969  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2970  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2971                            VTs, Ops, 3);
2972  setValue(&I, DSA);
2973  DAG.setRoot(DSA.getValue(1));
2974
2975  // Inform the Frame Information that we have just allocated a variable-sized
2976  // object.
2977  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
2978}
2979
2980void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2981  const Value *SV = I.getOperand(0);
2982  SDValue Ptr = getValue(SV);
2983
2984  const Type *Ty = I.getType();
2985
2986  bool isVolatile = I.isVolatile();
2987  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2988  unsigned Alignment = I.getAlignment();
2989  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
2990
2991  SmallVector<EVT, 4> ValueVTs;
2992  SmallVector<uint64_t, 4> Offsets;
2993  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2994  unsigned NumValues = ValueVTs.size();
2995  if (NumValues == 0)
2996    return;
2997
2998  SDValue Root;
2999  bool ConstantMemory = false;
3000  if (I.isVolatile() || NumValues > MaxParallelChains)
3001    // Serialize volatile loads with other side effects.
3002    Root = getRoot();
3003  else if (AA->pointsToConstantMemory(
3004             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3005    // Do not serialize (non-volatile) loads of constant memory with anything.
3006    Root = DAG.getEntryNode();
3007    ConstantMemory = true;
3008  } else {
3009    // Do not serialize non-volatile loads against each other.
3010    Root = DAG.getRoot();
3011  }
3012
3013  SmallVector<SDValue, 4> Values(NumValues);
3014  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3015                                          NumValues));
3016  EVT PtrVT = Ptr.getValueType();
3017  unsigned ChainI = 0;
3018  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3019    // Serializing loads here may result in excessive register pressure, and
3020    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3021    // could recover a bit by hoisting nodes upward in the chain by recognizing
3022    // they are side-effect free or do not alias. The optimizer should really
3023    // avoid this case by converting large object/array copies to llvm.memcpy
3024    // (MaxParallelChains should always remain as failsafe).
3025    if (ChainI == MaxParallelChains) {
3026      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3027      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3028                                  MVT::Other, &Chains[0], ChainI);
3029      Root = Chain;
3030      ChainI = 0;
3031    }
3032    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3033                            PtrVT, Ptr,
3034                            DAG.getConstant(Offsets[i], PtrVT));
3035    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3036                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3037                            isNonTemporal, Alignment, TBAAInfo);
3038
3039    Values[i] = L;
3040    Chains[ChainI] = L.getValue(1);
3041  }
3042
3043  if (!ConstantMemory) {
3044    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3045                                MVT::Other, &Chains[0], ChainI);
3046    if (isVolatile)
3047      DAG.setRoot(Chain);
3048    else
3049      PendingLoads.push_back(Chain);
3050  }
3051
3052  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3053                           DAG.getVTList(&ValueVTs[0], NumValues),
3054                           &Values[0], NumValues));
3055}
3056
3057void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3058  const Value *SrcV = I.getOperand(0);
3059  const Value *PtrV = I.getOperand(1);
3060
3061  SmallVector<EVT, 4> ValueVTs;
3062  SmallVector<uint64_t, 4> Offsets;
3063  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3064  unsigned NumValues = ValueVTs.size();
3065  if (NumValues == 0)
3066    return;
3067
3068  // Get the lowered operands. Note that we do this after
3069  // checking if NumResults is zero, because with zero results
3070  // the operands won't have values in the map.
3071  SDValue Src = getValue(SrcV);
3072  SDValue Ptr = getValue(PtrV);
3073
3074  SDValue Root = getRoot();
3075  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3076                                          NumValues));
3077  EVT PtrVT = Ptr.getValueType();
3078  bool isVolatile = I.isVolatile();
3079  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3080  unsigned Alignment = I.getAlignment();
3081  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3082
3083  unsigned ChainI = 0;
3084  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3085    // See visitLoad comments.
3086    if (ChainI == MaxParallelChains) {
3087      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3088                                  MVT::Other, &Chains[0], ChainI);
3089      Root = Chain;
3090      ChainI = 0;
3091    }
3092    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3093                              DAG.getConstant(Offsets[i], PtrVT));
3094    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3095                              SDValue(Src.getNode(), Src.getResNo() + i),
3096                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3097                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3098    Chains[ChainI] = St;
3099  }
3100
3101  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3102                                  MVT::Other, &Chains[0], ChainI);
3103  ++SDNodeOrder;
3104  AssignOrderingToNode(StoreNode.getNode());
3105  DAG.setRoot(StoreNode);
3106}
3107
3108/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3109/// node.
3110void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3111                                               unsigned Intrinsic) {
3112  bool HasChain = !I.doesNotAccessMemory();
3113  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3114
3115  // Build the operand list.
3116  SmallVector<SDValue, 8> Ops;
3117  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3118    if (OnlyLoad) {
3119      // We don't need to serialize loads against other loads.
3120      Ops.push_back(DAG.getRoot());
3121    } else {
3122      Ops.push_back(getRoot());
3123    }
3124  }
3125
3126  // Info is set by getTgtMemInstrinsic
3127  TargetLowering::IntrinsicInfo Info;
3128  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3129
3130  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3131  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3132      Info.opc == ISD::INTRINSIC_W_CHAIN)
3133    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3134
3135  // Add all operands of the call to the operand list.
3136  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3137    SDValue Op = getValue(I.getArgOperand(i));
3138    assert(TLI.isTypeLegal(Op.getValueType()) &&
3139           "Intrinsic uses a non-legal type?");
3140    Ops.push_back(Op);
3141  }
3142
3143  SmallVector<EVT, 4> ValueVTs;
3144  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3145#ifndef NDEBUG
3146  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3147    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3148           "Intrinsic uses a non-legal type?");
3149  }
3150#endif // NDEBUG
3151
3152  if (HasChain)
3153    ValueVTs.push_back(MVT::Other);
3154
3155  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3156
3157  // Create the node.
3158  SDValue Result;
3159  if (IsTgtIntrinsic) {
3160    // This is target intrinsic that touches memory
3161    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3162                                     VTs, &Ops[0], Ops.size(),
3163                                     Info.memVT,
3164                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3165                                     Info.align, Info.vol,
3166                                     Info.readMem, Info.writeMem);
3167  } else if (!HasChain) {
3168    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3169                         VTs, &Ops[0], Ops.size());
3170  } else if (!I.getType()->isVoidTy()) {
3171    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3172                         VTs, &Ops[0], Ops.size());
3173  } else {
3174    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3175                         VTs, &Ops[0], Ops.size());
3176  }
3177
3178  if (HasChain) {
3179    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3180    if (OnlyLoad)
3181      PendingLoads.push_back(Chain);
3182    else
3183      DAG.setRoot(Chain);
3184  }
3185
3186  if (!I.getType()->isVoidTy()) {
3187    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3188      EVT VT = TLI.getValueType(PTy);
3189      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3190    }
3191
3192    setValue(&I, Result);
3193  }
3194}
3195
3196/// GetSignificand - Get the significand and build it into a floating-point
3197/// number with exponent of 1:
3198///
3199///   Op = (Op & 0x007fffff) | 0x3f800000;
3200///
3201/// where Op is the hexidecimal representation of floating point value.
3202static SDValue
3203GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3204  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3205                           DAG.getConstant(0x007fffff, MVT::i32));
3206  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3207                           DAG.getConstant(0x3f800000, MVT::i32));
3208  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3209}
3210
3211/// GetExponent - Get the exponent:
3212///
3213///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3214///
3215/// where Op is the hexidecimal representation of floating point value.
3216static SDValue
3217GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3218            DebugLoc dl) {
3219  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3220                           DAG.getConstant(0x7f800000, MVT::i32));
3221  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3222                           DAG.getConstant(23, TLI.getPointerTy()));
3223  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3224                           DAG.getConstant(127, MVT::i32));
3225  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3226}
3227
3228/// getF32Constant - Get 32-bit floating point constant.
3229static SDValue
3230getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3231  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3232}
3233
3234/// Inlined utility function to implement binary input atomic intrinsics for
3235/// visitIntrinsicCall: I is a call instruction
3236///                     Op is the associated NodeType for I
3237const char *
3238SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3239                                           ISD::NodeType Op) {
3240  SDValue Root = getRoot();
3241  SDValue L =
3242    DAG.getAtomic(Op, getCurDebugLoc(),
3243                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3244                  Root,
3245                  getValue(I.getArgOperand(0)),
3246                  getValue(I.getArgOperand(1)),
3247                  I.getArgOperand(0));
3248  setValue(&I, L);
3249  DAG.setRoot(L.getValue(1));
3250  return 0;
3251}
3252
3253// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3254const char *
3255SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3256  SDValue Op1 = getValue(I.getArgOperand(0));
3257  SDValue Op2 = getValue(I.getArgOperand(1));
3258
3259  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3260  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3261  return 0;
3262}
3263
3264/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3265/// limited-precision mode.
3266void
3267SelectionDAGBuilder::visitExp(const CallInst &I) {
3268  SDValue result;
3269  DebugLoc dl = getCurDebugLoc();
3270
3271  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3272      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3273    SDValue Op = getValue(I.getArgOperand(0));
3274
3275    // Put the exponent in the right bit position for later addition to the
3276    // final result:
3277    //
3278    //   #define LOG2OFe 1.4426950f
3279    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3280    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3281                             getF32Constant(DAG, 0x3fb8aa3b));
3282    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3283
3284    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3285    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3286    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3287
3288    //   IntegerPartOfX <<= 23;
3289    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3290                                 DAG.getConstant(23, TLI.getPointerTy()));
3291
3292    if (LimitFloatPrecision <= 6) {
3293      // For floating-point precision of 6:
3294      //
3295      //   TwoToFractionalPartOfX =
3296      //     0.997535578f +
3297      //       (0.735607626f + 0.252464424f * x) * x;
3298      //
3299      // error 0.0144103317, which is 6 bits
3300      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3301                               getF32Constant(DAG, 0x3e814304));
3302      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3303                               getF32Constant(DAG, 0x3f3c50c8));
3304      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3305      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3306                               getF32Constant(DAG, 0x3f7f5e7e));
3307      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3308
3309      // Add the exponent into the result in integer domain.
3310      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3311                               TwoToFracPartOfX, IntegerPartOfX);
3312
3313      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3314    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3315      // For floating-point precision of 12:
3316      //
3317      //   TwoToFractionalPartOfX =
3318      //     0.999892986f +
3319      //       (0.696457318f +
3320      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3321      //
3322      // 0.000107046256 error, which is 13 to 14 bits
3323      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3324                               getF32Constant(DAG, 0x3da235e3));
3325      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3326                               getF32Constant(DAG, 0x3e65b8f3));
3327      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3328      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3329                               getF32Constant(DAG, 0x3f324b07));
3330      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3331      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3332                               getF32Constant(DAG, 0x3f7ff8fd));
3333      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3334
3335      // Add the exponent into the result in integer domain.
3336      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3337                               TwoToFracPartOfX, IntegerPartOfX);
3338
3339      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3340    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3341      // For floating-point precision of 18:
3342      //
3343      //   TwoToFractionalPartOfX =
3344      //     0.999999982f +
3345      //       (0.693148872f +
3346      //         (0.240227044f +
3347      //           (0.554906021e-1f +
3348      //             (0.961591928e-2f +
3349      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3350      //
3351      // error 2.47208000*10^(-7), which is better than 18 bits
3352      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3353                               getF32Constant(DAG, 0x3924b03e));
3354      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3355                               getF32Constant(DAG, 0x3ab24b87));
3356      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3357      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3358                               getF32Constant(DAG, 0x3c1d8c17));
3359      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3360      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3361                               getF32Constant(DAG, 0x3d634a1d));
3362      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3363      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3364                               getF32Constant(DAG, 0x3e75fe14));
3365      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3366      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3367                                getF32Constant(DAG, 0x3f317234));
3368      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3369      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3370                                getF32Constant(DAG, 0x3f800000));
3371      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3372                                             MVT::i32, t13);
3373
3374      // Add the exponent into the result in integer domain.
3375      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3376                                TwoToFracPartOfX, IntegerPartOfX);
3377
3378      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3379    }
3380  } else {
3381    // No special expansion.
3382    result = DAG.getNode(ISD::FEXP, dl,
3383                         getValue(I.getArgOperand(0)).getValueType(),
3384                         getValue(I.getArgOperand(0)));
3385  }
3386
3387  setValue(&I, result);
3388}
3389
3390/// visitLog - Lower a log intrinsic. Handles the special sequences for
3391/// limited-precision mode.
3392void
3393SelectionDAGBuilder::visitLog(const CallInst &I) {
3394  SDValue result;
3395  DebugLoc dl = getCurDebugLoc();
3396
3397  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3398      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3399    SDValue Op = getValue(I.getArgOperand(0));
3400    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3401
3402    // Scale the exponent by log(2) [0.69314718f].
3403    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3404    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3405                                        getF32Constant(DAG, 0x3f317218));
3406
3407    // Get the significand and build it into a floating-point number with
3408    // exponent of 1.
3409    SDValue X = GetSignificand(DAG, Op1, dl);
3410
3411    if (LimitFloatPrecision <= 6) {
3412      // For floating-point precision of 6:
3413      //
3414      //   LogofMantissa =
3415      //     -1.1609546f +
3416      //       (1.4034025f - 0.23903021f * x) * x;
3417      //
3418      // error 0.0034276066, which is better than 8 bits
3419      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3420                               getF32Constant(DAG, 0xbe74c456));
3421      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3422                               getF32Constant(DAG, 0x3fb3a2b1));
3423      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3424      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3425                                          getF32Constant(DAG, 0x3f949a29));
3426
3427      result = DAG.getNode(ISD::FADD, dl,
3428                           MVT::f32, LogOfExponent, LogOfMantissa);
3429    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3430      // For floating-point precision of 12:
3431      //
3432      //   LogOfMantissa =
3433      //     -1.7417939f +
3434      //       (2.8212026f +
3435      //         (-1.4699568f +
3436      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3437      //
3438      // error 0.000061011436, which is 14 bits
3439      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3440                               getF32Constant(DAG, 0xbd67b6d6));
3441      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3442                               getF32Constant(DAG, 0x3ee4f4b8));
3443      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3444      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3445                               getF32Constant(DAG, 0x3fbc278b));
3446      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3447      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3448                               getF32Constant(DAG, 0x40348e95));
3449      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3450      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3451                                          getF32Constant(DAG, 0x3fdef31a));
3452
3453      result = DAG.getNode(ISD::FADD, dl,
3454                           MVT::f32, LogOfExponent, LogOfMantissa);
3455    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3456      // For floating-point precision of 18:
3457      //
3458      //   LogOfMantissa =
3459      //     -2.1072184f +
3460      //       (4.2372794f +
3461      //         (-3.7029485f +
3462      //           (2.2781945f +
3463      //             (-0.87823314f +
3464      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3465      //
3466      // error 0.0000023660568, which is better than 18 bits
3467      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3468                               getF32Constant(DAG, 0xbc91e5ac));
3469      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3470                               getF32Constant(DAG, 0x3e4350aa));
3471      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3472      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3473                               getF32Constant(DAG, 0x3f60d3e3));
3474      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3475      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3476                               getF32Constant(DAG, 0x4011cdf0));
3477      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3478      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3479                               getF32Constant(DAG, 0x406cfd1c));
3480      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3481      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3482                               getF32Constant(DAG, 0x408797cb));
3483      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3484      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3485                                          getF32Constant(DAG, 0x4006dcab));
3486
3487      result = DAG.getNode(ISD::FADD, dl,
3488                           MVT::f32, LogOfExponent, LogOfMantissa);
3489    }
3490  } else {
3491    // No special expansion.
3492    result = DAG.getNode(ISD::FLOG, dl,
3493                         getValue(I.getArgOperand(0)).getValueType(),
3494                         getValue(I.getArgOperand(0)));
3495  }
3496
3497  setValue(&I, result);
3498}
3499
3500/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3501/// limited-precision mode.
3502void
3503SelectionDAGBuilder::visitLog2(const CallInst &I) {
3504  SDValue result;
3505  DebugLoc dl = getCurDebugLoc();
3506
3507  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3508      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3509    SDValue Op = getValue(I.getArgOperand(0));
3510    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3511
3512    // Get the exponent.
3513    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3514
3515    // Get the significand and build it into a floating-point number with
3516    // exponent of 1.
3517    SDValue X = GetSignificand(DAG, Op1, dl);
3518
3519    // Different possible minimax approximations of significand in
3520    // floating-point for various degrees of accuracy over [1,2].
3521    if (LimitFloatPrecision <= 6) {
3522      // For floating-point precision of 6:
3523      //
3524      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3525      //
3526      // error 0.0049451742, which is more than 7 bits
3527      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3528                               getF32Constant(DAG, 0xbeb08fe0));
3529      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3530                               getF32Constant(DAG, 0x40019463));
3531      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3532      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3533                                           getF32Constant(DAG, 0x3fd6633d));
3534
3535      result = DAG.getNode(ISD::FADD, dl,
3536                           MVT::f32, LogOfExponent, Log2ofMantissa);
3537    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3538      // For floating-point precision of 12:
3539      //
3540      //   Log2ofMantissa =
3541      //     -2.51285454f +
3542      //       (4.07009056f +
3543      //         (-2.12067489f +
3544      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3545      //
3546      // error 0.0000876136000, which is better than 13 bits
3547      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3548                               getF32Constant(DAG, 0xbda7262e));
3549      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3550                               getF32Constant(DAG, 0x3f25280b));
3551      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3552      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3553                               getF32Constant(DAG, 0x4007b923));
3554      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3555      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3556                               getF32Constant(DAG, 0x40823e2f));
3557      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3558      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3559                                           getF32Constant(DAG, 0x4020d29c));
3560
3561      result = DAG.getNode(ISD::FADD, dl,
3562                           MVT::f32, LogOfExponent, Log2ofMantissa);
3563    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3564      // For floating-point precision of 18:
3565      //
3566      //   Log2ofMantissa =
3567      //     -3.0400495f +
3568      //       (6.1129976f +
3569      //         (-5.3420409f +
3570      //           (3.2865683f +
3571      //             (-1.2669343f +
3572      //               (0.27515199f -
3573      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3574      //
3575      // error 0.0000018516, which is better than 18 bits
3576      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3577                               getF32Constant(DAG, 0xbcd2769e));
3578      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3579                               getF32Constant(DAG, 0x3e8ce0b9));
3580      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3581      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3582                               getF32Constant(DAG, 0x3fa22ae7));
3583      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3584      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3585                               getF32Constant(DAG, 0x40525723));
3586      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3587      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3588                               getF32Constant(DAG, 0x40aaf200));
3589      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3590      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3591                               getF32Constant(DAG, 0x40c39dad));
3592      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3593      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3594                                           getF32Constant(DAG, 0x4042902c));
3595
3596      result = DAG.getNode(ISD::FADD, dl,
3597                           MVT::f32, LogOfExponent, Log2ofMantissa);
3598    }
3599  } else {
3600    // No special expansion.
3601    result = DAG.getNode(ISD::FLOG2, dl,
3602                         getValue(I.getArgOperand(0)).getValueType(),
3603                         getValue(I.getArgOperand(0)));
3604  }
3605
3606  setValue(&I, result);
3607}
3608
3609/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3610/// limited-precision mode.
3611void
3612SelectionDAGBuilder::visitLog10(const CallInst &I) {
3613  SDValue result;
3614  DebugLoc dl = getCurDebugLoc();
3615
3616  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3617      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3618    SDValue Op = getValue(I.getArgOperand(0));
3619    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3620
3621    // Scale the exponent by log10(2) [0.30102999f].
3622    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3623    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3624                                        getF32Constant(DAG, 0x3e9a209a));
3625
3626    // Get the significand and build it into a floating-point number with
3627    // exponent of 1.
3628    SDValue X = GetSignificand(DAG, Op1, dl);
3629
3630    if (LimitFloatPrecision <= 6) {
3631      // For floating-point precision of 6:
3632      //
3633      //   Log10ofMantissa =
3634      //     -0.50419619f +
3635      //       (0.60948995f - 0.10380950f * x) * x;
3636      //
3637      // error 0.0014886165, which is 6 bits
3638      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3639                               getF32Constant(DAG, 0xbdd49a13));
3640      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3641                               getF32Constant(DAG, 0x3f1c0789));
3642      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3643      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3644                                            getF32Constant(DAG, 0x3f011300));
3645
3646      result = DAG.getNode(ISD::FADD, dl,
3647                           MVT::f32, LogOfExponent, Log10ofMantissa);
3648    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3649      // For floating-point precision of 12:
3650      //
3651      //   Log10ofMantissa =
3652      //     -0.64831180f +
3653      //       (0.91751397f +
3654      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3655      //
3656      // error 0.00019228036, which is better than 12 bits
3657      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3658                               getF32Constant(DAG, 0x3d431f31));
3659      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3660                               getF32Constant(DAG, 0x3ea21fb2));
3661      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3662      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3663                               getF32Constant(DAG, 0x3f6ae232));
3664      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3665      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3666                                            getF32Constant(DAG, 0x3f25f7c3));
3667
3668      result = DAG.getNode(ISD::FADD, dl,
3669                           MVT::f32, LogOfExponent, Log10ofMantissa);
3670    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3671      // For floating-point precision of 18:
3672      //
3673      //   Log10ofMantissa =
3674      //     -0.84299375f +
3675      //       (1.5327582f +
3676      //         (-1.0688956f +
3677      //           (0.49102474f +
3678      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3679      //
3680      // error 0.0000037995730, which is better than 18 bits
3681      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3682                               getF32Constant(DAG, 0x3c5d51ce));
3683      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3684                               getF32Constant(DAG, 0x3e00685a));
3685      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3686      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3687                               getF32Constant(DAG, 0x3efb6798));
3688      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3689      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3690                               getF32Constant(DAG, 0x3f88d192));
3691      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3692      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3693                               getF32Constant(DAG, 0x3fc4316c));
3694      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3695      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3696                                            getF32Constant(DAG, 0x3f57ce70));
3697
3698      result = DAG.getNode(ISD::FADD, dl,
3699                           MVT::f32, LogOfExponent, Log10ofMantissa);
3700    }
3701  } else {
3702    // No special expansion.
3703    result = DAG.getNode(ISD::FLOG10, dl,
3704                         getValue(I.getArgOperand(0)).getValueType(),
3705                         getValue(I.getArgOperand(0)));
3706  }
3707
3708  setValue(&I, result);
3709}
3710
3711/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3712/// limited-precision mode.
3713void
3714SelectionDAGBuilder::visitExp2(const CallInst &I) {
3715  SDValue result;
3716  DebugLoc dl = getCurDebugLoc();
3717
3718  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3719      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3720    SDValue Op = getValue(I.getArgOperand(0));
3721
3722    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3723
3724    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3725    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3726    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3727
3728    //   IntegerPartOfX <<= 23;
3729    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3730                                 DAG.getConstant(23, TLI.getPointerTy()));
3731
3732    if (LimitFloatPrecision <= 6) {
3733      // For floating-point precision of 6:
3734      //
3735      //   TwoToFractionalPartOfX =
3736      //     0.997535578f +
3737      //       (0.735607626f + 0.252464424f * x) * x;
3738      //
3739      // error 0.0144103317, which is 6 bits
3740      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3741                               getF32Constant(DAG, 0x3e814304));
3742      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3743                               getF32Constant(DAG, 0x3f3c50c8));
3744      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3745      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3746                               getF32Constant(DAG, 0x3f7f5e7e));
3747      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3748      SDValue TwoToFractionalPartOfX =
3749        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3750
3751      result = DAG.getNode(ISD::BITCAST, dl,
3752                           MVT::f32, TwoToFractionalPartOfX);
3753    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3754      // For floating-point precision of 12:
3755      //
3756      //   TwoToFractionalPartOfX =
3757      //     0.999892986f +
3758      //       (0.696457318f +
3759      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3760      //
3761      // error 0.000107046256, which is 13 to 14 bits
3762      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3763                               getF32Constant(DAG, 0x3da235e3));
3764      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3765                               getF32Constant(DAG, 0x3e65b8f3));
3766      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3767      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3768                               getF32Constant(DAG, 0x3f324b07));
3769      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3770      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3771                               getF32Constant(DAG, 0x3f7ff8fd));
3772      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3773      SDValue TwoToFractionalPartOfX =
3774        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3775
3776      result = DAG.getNode(ISD::BITCAST, dl,
3777                           MVT::f32, TwoToFractionalPartOfX);
3778    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3779      // For floating-point precision of 18:
3780      //
3781      //   TwoToFractionalPartOfX =
3782      //     0.999999982f +
3783      //       (0.693148872f +
3784      //         (0.240227044f +
3785      //           (0.554906021e-1f +
3786      //             (0.961591928e-2f +
3787      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3788      // error 2.47208000*10^(-7), which is better than 18 bits
3789      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3790                               getF32Constant(DAG, 0x3924b03e));
3791      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3792                               getF32Constant(DAG, 0x3ab24b87));
3793      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3794      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3795                               getF32Constant(DAG, 0x3c1d8c17));
3796      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3797      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3798                               getF32Constant(DAG, 0x3d634a1d));
3799      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3800      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3801                               getF32Constant(DAG, 0x3e75fe14));
3802      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3803      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3804                                getF32Constant(DAG, 0x3f317234));
3805      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3806      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3807                                getF32Constant(DAG, 0x3f800000));
3808      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3809      SDValue TwoToFractionalPartOfX =
3810        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3811
3812      result = DAG.getNode(ISD::BITCAST, dl,
3813                           MVT::f32, TwoToFractionalPartOfX);
3814    }
3815  } else {
3816    // No special expansion.
3817    result = DAG.getNode(ISD::FEXP2, dl,
3818                         getValue(I.getArgOperand(0)).getValueType(),
3819                         getValue(I.getArgOperand(0)));
3820  }
3821
3822  setValue(&I, result);
3823}
3824
3825/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3826/// limited-precision mode with x == 10.0f.
3827void
3828SelectionDAGBuilder::visitPow(const CallInst &I) {
3829  SDValue result;
3830  const Value *Val = I.getArgOperand(0);
3831  DebugLoc dl = getCurDebugLoc();
3832  bool IsExp10 = false;
3833
3834  if (getValue(Val).getValueType() == MVT::f32 &&
3835      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3836      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3837    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3838      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3839        APFloat Ten(10.0f);
3840        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3841      }
3842    }
3843  }
3844
3845  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3846    SDValue Op = getValue(I.getArgOperand(1));
3847
3848    // Put the exponent in the right bit position for later addition to the
3849    // final result:
3850    //
3851    //   #define LOG2OF10 3.3219281f
3852    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3853    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3854                             getF32Constant(DAG, 0x40549a78));
3855    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3856
3857    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3858    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3859    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3860
3861    //   IntegerPartOfX <<= 23;
3862    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3863                                 DAG.getConstant(23, TLI.getPointerTy()));
3864
3865    if (LimitFloatPrecision <= 6) {
3866      // For floating-point precision of 6:
3867      //
3868      //   twoToFractionalPartOfX =
3869      //     0.997535578f +
3870      //       (0.735607626f + 0.252464424f * x) * x;
3871      //
3872      // error 0.0144103317, which is 6 bits
3873      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3874                               getF32Constant(DAG, 0x3e814304));
3875      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3876                               getF32Constant(DAG, 0x3f3c50c8));
3877      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3878      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3879                               getF32Constant(DAG, 0x3f7f5e7e));
3880      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3881      SDValue TwoToFractionalPartOfX =
3882        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3883
3884      result = DAG.getNode(ISD::BITCAST, dl,
3885                           MVT::f32, TwoToFractionalPartOfX);
3886    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3887      // For floating-point precision of 12:
3888      //
3889      //   TwoToFractionalPartOfX =
3890      //     0.999892986f +
3891      //       (0.696457318f +
3892      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3893      //
3894      // error 0.000107046256, which is 13 to 14 bits
3895      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3896                               getF32Constant(DAG, 0x3da235e3));
3897      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3898                               getF32Constant(DAG, 0x3e65b8f3));
3899      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3900      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3901                               getF32Constant(DAG, 0x3f324b07));
3902      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3903      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3904                               getF32Constant(DAG, 0x3f7ff8fd));
3905      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3906      SDValue TwoToFractionalPartOfX =
3907        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3908
3909      result = DAG.getNode(ISD::BITCAST, dl,
3910                           MVT::f32, TwoToFractionalPartOfX);
3911    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3912      // For floating-point precision of 18:
3913      //
3914      //   TwoToFractionalPartOfX =
3915      //     0.999999982f +
3916      //       (0.693148872f +
3917      //         (0.240227044f +
3918      //           (0.554906021e-1f +
3919      //             (0.961591928e-2f +
3920      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3921      // error 2.47208000*10^(-7), which is better than 18 bits
3922      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3923                               getF32Constant(DAG, 0x3924b03e));
3924      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3925                               getF32Constant(DAG, 0x3ab24b87));
3926      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3927      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3928                               getF32Constant(DAG, 0x3c1d8c17));
3929      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3930      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3931                               getF32Constant(DAG, 0x3d634a1d));
3932      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3933      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3934                               getF32Constant(DAG, 0x3e75fe14));
3935      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3936      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3937                                getF32Constant(DAG, 0x3f317234));
3938      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3939      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3940                                getF32Constant(DAG, 0x3f800000));
3941      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3942      SDValue TwoToFractionalPartOfX =
3943        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3944
3945      result = DAG.getNode(ISD::BITCAST, dl,
3946                           MVT::f32, TwoToFractionalPartOfX);
3947    }
3948  } else {
3949    // No special expansion.
3950    result = DAG.getNode(ISD::FPOW, dl,
3951                         getValue(I.getArgOperand(0)).getValueType(),
3952                         getValue(I.getArgOperand(0)),
3953                         getValue(I.getArgOperand(1)));
3954  }
3955
3956  setValue(&I, result);
3957}
3958
3959
3960/// ExpandPowI - Expand a llvm.powi intrinsic.
3961static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3962                          SelectionDAG &DAG) {
3963  // If RHS is a constant, we can expand this out to a multiplication tree,
3964  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3965  // optimizing for size, we only want to do this if the expansion would produce
3966  // a small number of multiplies, otherwise we do the full expansion.
3967  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3968    // Get the exponent as a positive value.
3969    unsigned Val = RHSC->getSExtValue();
3970    if ((int)Val < 0) Val = -Val;
3971
3972    // powi(x, 0) -> 1.0
3973    if (Val == 0)
3974      return DAG.getConstantFP(1.0, LHS.getValueType());
3975
3976    const Function *F = DAG.getMachineFunction().getFunction();
3977    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3978        // If optimizing for size, don't insert too many multiplies.  This
3979        // inserts up to 5 multiplies.
3980        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3981      // We use the simple binary decomposition method to generate the multiply
3982      // sequence.  There are more optimal ways to do this (for example,
3983      // powi(x,15) generates one more multiply than it should), but this has
3984      // the benefit of being both really simple and much better than a libcall.
3985      SDValue Res;  // Logically starts equal to 1.0
3986      SDValue CurSquare = LHS;
3987      while (Val) {
3988        if (Val & 1) {
3989          if (Res.getNode())
3990            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3991          else
3992            Res = CurSquare;  // 1.0*CurSquare.
3993        }
3994
3995        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3996                                CurSquare, CurSquare);
3997        Val >>= 1;
3998      }
3999
4000      // If the original was negative, invert the result, producing 1/(x*x*x).
4001      if (RHSC->getSExtValue() < 0)
4002        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4003                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4004      return Res;
4005    }
4006  }
4007
4008  // Otherwise, expand to a libcall.
4009  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4010}
4011
4012/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4013/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4014/// At the end of instruction selection, they will be inserted to the entry BB.
4015bool
4016SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4017                                              int64_t Offset,
4018                                              const SDValue &N) {
4019  const Argument *Arg = dyn_cast<Argument>(V);
4020  if (!Arg)
4021    return false;
4022
4023  MachineFunction &MF = DAG.getMachineFunction();
4024  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4025  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4026
4027  // Ignore inlined function arguments here.
4028  DIVariable DV(Variable);
4029  if (DV.isInlinedFnArgument(MF.getFunction()))
4030    return false;
4031
4032  MachineBasicBlock *MBB = FuncInfo.MBB;
4033  if (MBB != &MF.front())
4034    return false;
4035
4036  unsigned Reg = 0;
4037  if (Arg->hasByValAttr()) {
4038    // Byval arguments' frame index is recorded during argument lowering.
4039    // Use this info directly.
4040    Reg = TRI->getFrameRegister(MF);
4041    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4042    // If byval argument ofset is not recorded then ignore this.
4043    if (!Offset)
4044      Reg = 0;
4045  }
4046
4047  if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) {
4048    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4049    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4050      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4051      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4052      if (PR)
4053        Reg = PR;
4054    }
4055  }
4056
4057  if (!Reg) {
4058    // Check if ValueMap has reg number.
4059    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4060    if (VMI != FuncInfo.ValueMap.end())
4061      Reg = VMI->second;
4062  }
4063
4064  if (!Reg && N.getNode()) {
4065    // Check if frame index is available.
4066    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4067      if (FrameIndexSDNode *FINode =
4068          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4069        Reg = TRI->getFrameRegister(MF);
4070        Offset = FINode->getIndex();
4071      }
4072  }
4073
4074  if (!Reg)
4075    return false;
4076
4077  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4078                                    TII->get(TargetOpcode::DBG_VALUE))
4079    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4080  FuncInfo.ArgDbgValues.push_back(&*MIB);
4081  return true;
4082}
4083
4084// VisualStudio defines setjmp as _setjmp
4085#if defined(_MSC_VER) && defined(setjmp) && \
4086                         !defined(setjmp_undefined_for_msvc)
4087#  pragma push_macro("setjmp")
4088#  undef setjmp
4089#  define setjmp_undefined_for_msvc
4090#endif
4091
4092/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4093/// we want to emit this as a call to a named external function, return the name
4094/// otherwise lower it and return null.
4095const char *
4096SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4097  DebugLoc dl = getCurDebugLoc();
4098  SDValue Res;
4099
4100  switch (Intrinsic) {
4101  default:
4102    // By default, turn this into a target intrinsic node.
4103    visitTargetIntrinsic(I, Intrinsic);
4104    return 0;
4105  case Intrinsic::vastart:  visitVAStart(I); return 0;
4106  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4107  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4108  case Intrinsic::returnaddress:
4109    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4110                             getValue(I.getArgOperand(0))));
4111    return 0;
4112  case Intrinsic::frameaddress:
4113    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4114                             getValue(I.getArgOperand(0))));
4115    return 0;
4116  case Intrinsic::setjmp:
4117    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4118  case Intrinsic::longjmp:
4119    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4120  case Intrinsic::memcpy: {
4121    // Assert for address < 256 since we support only user defined address
4122    // spaces.
4123    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4124           < 256 &&
4125           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4126           < 256 &&
4127           "Unknown address space");
4128    SDValue Op1 = getValue(I.getArgOperand(0));
4129    SDValue Op2 = getValue(I.getArgOperand(1));
4130    SDValue Op3 = getValue(I.getArgOperand(2));
4131    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4132    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4133    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4134                              MachinePointerInfo(I.getArgOperand(0)),
4135                              MachinePointerInfo(I.getArgOperand(1))));
4136    return 0;
4137  }
4138  case Intrinsic::memset: {
4139    // Assert for address < 256 since we support only user defined address
4140    // spaces.
4141    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4142           < 256 &&
4143           "Unknown address space");
4144    SDValue Op1 = getValue(I.getArgOperand(0));
4145    SDValue Op2 = getValue(I.getArgOperand(1));
4146    SDValue Op3 = getValue(I.getArgOperand(2));
4147    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4148    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4149    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4150                              MachinePointerInfo(I.getArgOperand(0))));
4151    return 0;
4152  }
4153  case Intrinsic::memmove: {
4154    // Assert for address < 256 since we support only user defined address
4155    // spaces.
4156    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4157           < 256 &&
4158           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4159           < 256 &&
4160           "Unknown address space");
4161    SDValue Op1 = getValue(I.getArgOperand(0));
4162    SDValue Op2 = getValue(I.getArgOperand(1));
4163    SDValue Op3 = getValue(I.getArgOperand(2));
4164    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4165    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4166    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4167                               MachinePointerInfo(I.getArgOperand(0)),
4168                               MachinePointerInfo(I.getArgOperand(1))));
4169    return 0;
4170  }
4171  case Intrinsic::dbg_declare: {
4172    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4173    MDNode *Variable = DI.getVariable();
4174    const Value *Address = DI.getAddress();
4175    if (!Address || !DIVariable(DI.getVariable()).Verify())
4176      return 0;
4177
4178    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4179    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4180    // absolute, but not relative, values are different depending on whether
4181    // debug info exists.
4182    ++SDNodeOrder;
4183
4184    // Check if address has undef value.
4185    if (isa<UndefValue>(Address) ||
4186        (Address->use_empty() && !isa<Argument>(Address))) {
4187      DEBUG(dbgs() << "Dropping debug info for " << DI);
4188      return 0;
4189    }
4190
4191    SDValue &N = NodeMap[Address];
4192    if (!N.getNode() && isa<Argument>(Address))
4193      // Check unused arguments map.
4194      N = UnusedArgNodeMap[Address];
4195    SDDbgValue *SDV;
4196    if (N.getNode()) {
4197      // Parameters are handled specially.
4198      bool isParameter =
4199        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4200      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4201        Address = BCI->getOperand(0);
4202      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4203
4204      if (isParameter && !AI) {
4205        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4206        if (FINode)
4207          // Byval parameter.  We have a frame index at this point.
4208          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4209                                0, dl, SDNodeOrder);
4210        else {
4211          // Can't do anything with other non-AI cases yet.  This might be a
4212          // parameter of a callee function that got inlined, for example.
4213          DEBUG(dbgs() << "Dropping debug info for " << DI);
4214          return 0;
4215        }
4216      } else if (AI)
4217        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4218                              0, dl, SDNodeOrder);
4219      else {
4220        // Can't do anything with other non-AI cases yet.
4221        DEBUG(dbgs() << "Dropping debug info for " << DI);
4222        return 0;
4223      }
4224      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4225    } else {
4226      // If Address is an argument then try to emit its dbg value using
4227      // virtual register info from the FuncInfo.ValueMap.
4228      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4229        // If variable is pinned by a alloca in dominating bb then
4230        // use StaticAllocaMap.
4231        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4232          if (AI->getParent() != DI.getParent()) {
4233            DenseMap<const AllocaInst*, int>::iterator SI =
4234              FuncInfo.StaticAllocaMap.find(AI);
4235            if (SI != FuncInfo.StaticAllocaMap.end()) {
4236              SDV = DAG.getDbgValue(Variable, SI->second,
4237                                    0, dl, SDNodeOrder);
4238              DAG.AddDbgValue(SDV, 0, false);
4239              return 0;
4240            }
4241          }
4242        }
4243        DEBUG(dbgs() << "Dropping debug info for " << DI);
4244      }
4245    }
4246    return 0;
4247  }
4248  case Intrinsic::dbg_value: {
4249    const DbgValueInst &DI = cast<DbgValueInst>(I);
4250    if (!DIVariable(DI.getVariable()).Verify())
4251      return 0;
4252
4253    MDNode *Variable = DI.getVariable();
4254    uint64_t Offset = DI.getOffset();
4255    const Value *V = DI.getValue();
4256    if (!V)
4257      return 0;
4258
4259    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4260    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4261    // absolute, but not relative, values are different depending on whether
4262    // debug info exists.
4263    ++SDNodeOrder;
4264    SDDbgValue *SDV;
4265    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4266      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4267      DAG.AddDbgValue(SDV, 0, false);
4268    } else {
4269      // Do not use getValue() in here; we don't want to generate code at
4270      // this point if it hasn't been done yet.
4271      SDValue N = NodeMap[V];
4272      if (!N.getNode() && isa<Argument>(V))
4273        // Check unused arguments map.
4274        N = UnusedArgNodeMap[V];
4275      if (N.getNode()) {
4276        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4277          SDV = DAG.getDbgValue(Variable, N.getNode(),
4278                                N.getResNo(), Offset, dl, SDNodeOrder);
4279          DAG.AddDbgValue(SDV, N.getNode(), false);
4280        }
4281      } else if (!V->use_empty() ) {
4282        // Do not call getValue(V) yet, as we don't want to generate code.
4283        // Remember it for later.
4284        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4285        DanglingDebugInfoMap[V] = DDI;
4286      } else {
4287        // We may expand this to cover more cases.  One case where we have no
4288        // data available is an unreferenced parameter.
4289        DEBUG(dbgs() << "Dropping debug info for " << DI);
4290      }
4291    }
4292
4293    // Build a debug info table entry.
4294    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4295      V = BCI->getOperand(0);
4296    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4297    // Don't handle byval struct arguments or VLAs, for example.
4298    if (!AI)
4299      return 0;
4300    DenseMap<const AllocaInst*, int>::iterator SI =
4301      FuncInfo.StaticAllocaMap.find(AI);
4302    if (SI == FuncInfo.StaticAllocaMap.end())
4303      return 0; // VLAs.
4304    int FI = SI->second;
4305
4306    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4307    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4308      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4309    return 0;
4310  }
4311  case Intrinsic::eh_exception: {
4312    // Insert the EXCEPTIONADDR instruction.
4313    assert(FuncInfo.MBB->isLandingPad() &&
4314           "Call to eh.exception not in landing pad!");
4315    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4316    SDValue Ops[1];
4317    Ops[0] = DAG.getRoot();
4318    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4319    setValue(&I, Op);
4320    DAG.setRoot(Op.getValue(1));
4321    return 0;
4322  }
4323
4324  case Intrinsic::eh_selector: {
4325    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4326    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4327    if (CallMBB->isLandingPad())
4328      AddCatchInfo(I, &MMI, CallMBB);
4329    else {
4330#ifndef NDEBUG
4331      FuncInfo.CatchInfoLost.insert(&I);
4332#endif
4333      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4334      unsigned Reg = TLI.getExceptionSelectorRegister();
4335      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4336    }
4337
4338    // Insert the EHSELECTION instruction.
4339    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4340    SDValue Ops[2];
4341    Ops[0] = getValue(I.getArgOperand(0));
4342    Ops[1] = getRoot();
4343    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4344    DAG.setRoot(Op.getValue(1));
4345    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4346    return 0;
4347  }
4348
4349  case Intrinsic::eh_typeid_for: {
4350    // Find the type id for the given typeinfo.
4351    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4352    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4353    Res = DAG.getConstant(TypeID, MVT::i32);
4354    setValue(&I, Res);
4355    return 0;
4356  }
4357
4358  case Intrinsic::eh_return_i32:
4359  case Intrinsic::eh_return_i64:
4360    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4361    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4362                            MVT::Other,
4363                            getControlRoot(),
4364                            getValue(I.getArgOperand(0)),
4365                            getValue(I.getArgOperand(1))));
4366    return 0;
4367  case Intrinsic::eh_unwind_init:
4368    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4369    return 0;
4370  case Intrinsic::eh_dwarf_cfa: {
4371    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4372                                        TLI.getPointerTy());
4373    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4374                                 TLI.getPointerTy(),
4375                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4376                                             TLI.getPointerTy()),
4377                                 CfaArg);
4378    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4379                             TLI.getPointerTy(),
4380                             DAG.getConstant(0, TLI.getPointerTy()));
4381    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4382                             FA, Offset));
4383    return 0;
4384  }
4385  case Intrinsic::eh_sjlj_callsite: {
4386    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4387    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4388    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4389    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4390
4391    MMI.setCurrentCallSite(CI->getZExtValue());
4392    return 0;
4393  }
4394  case Intrinsic::eh_sjlj_setjmp: {
4395    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4396                             getValue(I.getArgOperand(0))));
4397    return 0;
4398  }
4399  case Intrinsic::eh_sjlj_longjmp: {
4400    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4401                            getRoot(), getValue(I.getArgOperand(0))));
4402    return 0;
4403  }
4404  case Intrinsic::eh_sjlj_dispatch_setup: {
4405    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4406                            getRoot(), getValue(I.getArgOperand(0))));
4407    return 0;
4408  }
4409
4410  case Intrinsic::x86_mmx_pslli_w:
4411  case Intrinsic::x86_mmx_pslli_d:
4412  case Intrinsic::x86_mmx_pslli_q:
4413  case Intrinsic::x86_mmx_psrli_w:
4414  case Intrinsic::x86_mmx_psrli_d:
4415  case Intrinsic::x86_mmx_psrli_q:
4416  case Intrinsic::x86_mmx_psrai_w:
4417  case Intrinsic::x86_mmx_psrai_d: {
4418    SDValue ShAmt = getValue(I.getArgOperand(1));
4419    if (isa<ConstantSDNode>(ShAmt)) {
4420      visitTargetIntrinsic(I, Intrinsic);
4421      return 0;
4422    }
4423    unsigned NewIntrinsic = 0;
4424    EVT ShAmtVT = MVT::v2i32;
4425    switch (Intrinsic) {
4426    case Intrinsic::x86_mmx_pslli_w:
4427      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4428      break;
4429    case Intrinsic::x86_mmx_pslli_d:
4430      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4431      break;
4432    case Intrinsic::x86_mmx_pslli_q:
4433      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4434      break;
4435    case Intrinsic::x86_mmx_psrli_w:
4436      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4437      break;
4438    case Intrinsic::x86_mmx_psrli_d:
4439      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4440      break;
4441    case Intrinsic::x86_mmx_psrli_q:
4442      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4443      break;
4444    case Intrinsic::x86_mmx_psrai_w:
4445      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4446      break;
4447    case Intrinsic::x86_mmx_psrai_d:
4448      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4449      break;
4450    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4451    }
4452
4453    // The vector shift intrinsics with scalars uses 32b shift amounts but
4454    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4455    // to be zero.
4456    // We must do this early because v2i32 is not a legal type.
4457    DebugLoc dl = getCurDebugLoc();
4458    SDValue ShOps[2];
4459    ShOps[0] = ShAmt;
4460    ShOps[1] = DAG.getConstant(0, MVT::i32);
4461    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4462    EVT DestVT = TLI.getValueType(I.getType());
4463    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4464    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4465                       DAG.getConstant(NewIntrinsic, MVT::i32),
4466                       getValue(I.getArgOperand(0)), ShAmt);
4467    setValue(&I, Res);
4468    return 0;
4469  }
4470  case Intrinsic::convertff:
4471  case Intrinsic::convertfsi:
4472  case Intrinsic::convertfui:
4473  case Intrinsic::convertsif:
4474  case Intrinsic::convertuif:
4475  case Intrinsic::convertss:
4476  case Intrinsic::convertsu:
4477  case Intrinsic::convertus:
4478  case Intrinsic::convertuu: {
4479    ISD::CvtCode Code = ISD::CVT_INVALID;
4480    switch (Intrinsic) {
4481    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4482    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4483    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4484    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4485    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4486    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4487    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4488    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4489    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4490    }
4491    EVT DestVT = TLI.getValueType(I.getType());
4492    const Value *Op1 = I.getArgOperand(0);
4493    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4494                               DAG.getValueType(DestVT),
4495                               DAG.getValueType(getValue(Op1).getValueType()),
4496                               getValue(I.getArgOperand(1)),
4497                               getValue(I.getArgOperand(2)),
4498                               Code);
4499    setValue(&I, Res);
4500    return 0;
4501  }
4502  case Intrinsic::sqrt:
4503    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4504                             getValue(I.getArgOperand(0)).getValueType(),
4505                             getValue(I.getArgOperand(0))));
4506    return 0;
4507  case Intrinsic::powi:
4508    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4509                            getValue(I.getArgOperand(1)), DAG));
4510    return 0;
4511  case Intrinsic::sin:
4512    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4513                             getValue(I.getArgOperand(0)).getValueType(),
4514                             getValue(I.getArgOperand(0))));
4515    return 0;
4516  case Intrinsic::cos:
4517    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4518                             getValue(I.getArgOperand(0)).getValueType(),
4519                             getValue(I.getArgOperand(0))));
4520    return 0;
4521  case Intrinsic::log:
4522    visitLog(I);
4523    return 0;
4524  case Intrinsic::log2:
4525    visitLog2(I);
4526    return 0;
4527  case Intrinsic::log10:
4528    visitLog10(I);
4529    return 0;
4530  case Intrinsic::exp:
4531    visitExp(I);
4532    return 0;
4533  case Intrinsic::exp2:
4534    visitExp2(I);
4535    return 0;
4536  case Intrinsic::pow:
4537    visitPow(I);
4538    return 0;
4539  case Intrinsic::convert_to_fp16:
4540    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4541                             MVT::i16, getValue(I.getArgOperand(0))));
4542    return 0;
4543  case Intrinsic::convert_from_fp16:
4544    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4545                             MVT::f32, getValue(I.getArgOperand(0))));
4546    return 0;
4547  case Intrinsic::pcmarker: {
4548    SDValue Tmp = getValue(I.getArgOperand(0));
4549    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4550    return 0;
4551  }
4552  case Intrinsic::readcyclecounter: {
4553    SDValue Op = getRoot();
4554    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4555                      DAG.getVTList(MVT::i64, MVT::Other),
4556                      &Op, 1);
4557    setValue(&I, Res);
4558    DAG.setRoot(Res.getValue(1));
4559    return 0;
4560  }
4561  case Intrinsic::bswap:
4562    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4563                             getValue(I.getArgOperand(0)).getValueType(),
4564                             getValue(I.getArgOperand(0))));
4565    return 0;
4566  case Intrinsic::cttz: {
4567    SDValue Arg = getValue(I.getArgOperand(0));
4568    EVT Ty = Arg.getValueType();
4569    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4570    return 0;
4571  }
4572  case Intrinsic::ctlz: {
4573    SDValue Arg = getValue(I.getArgOperand(0));
4574    EVT Ty = Arg.getValueType();
4575    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4576    return 0;
4577  }
4578  case Intrinsic::ctpop: {
4579    SDValue Arg = getValue(I.getArgOperand(0));
4580    EVT Ty = Arg.getValueType();
4581    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4582    return 0;
4583  }
4584  case Intrinsic::stacksave: {
4585    SDValue Op = getRoot();
4586    Res = DAG.getNode(ISD::STACKSAVE, dl,
4587                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4588    setValue(&I, Res);
4589    DAG.setRoot(Res.getValue(1));
4590    return 0;
4591  }
4592  case Intrinsic::stackrestore: {
4593    Res = getValue(I.getArgOperand(0));
4594    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4595    return 0;
4596  }
4597  case Intrinsic::stackprotector: {
4598    // Emit code into the DAG to store the stack guard onto the stack.
4599    MachineFunction &MF = DAG.getMachineFunction();
4600    MachineFrameInfo *MFI = MF.getFrameInfo();
4601    EVT PtrTy = TLI.getPointerTy();
4602
4603    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4604    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4605
4606    int FI = FuncInfo.StaticAllocaMap[Slot];
4607    MFI->setStackProtectorIndex(FI);
4608
4609    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4610
4611    // Store the stack protector onto the stack.
4612    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4613                       MachinePointerInfo::getFixedStack(FI),
4614                       true, false, 0);
4615    setValue(&I, Res);
4616    DAG.setRoot(Res);
4617    return 0;
4618  }
4619  case Intrinsic::objectsize: {
4620    // If we don't know by now, we're never going to know.
4621    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4622
4623    assert(CI && "Non-constant type in __builtin_object_size?");
4624
4625    SDValue Arg = getValue(I.getCalledValue());
4626    EVT Ty = Arg.getValueType();
4627
4628    if (CI->isZero())
4629      Res = DAG.getConstant(-1ULL, Ty);
4630    else
4631      Res = DAG.getConstant(0, Ty);
4632
4633    setValue(&I, Res);
4634    return 0;
4635  }
4636  case Intrinsic::var_annotation:
4637    // Discard annotate attributes
4638    return 0;
4639
4640  case Intrinsic::init_trampoline: {
4641    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4642
4643    SDValue Ops[6];
4644    Ops[0] = getRoot();
4645    Ops[1] = getValue(I.getArgOperand(0));
4646    Ops[2] = getValue(I.getArgOperand(1));
4647    Ops[3] = getValue(I.getArgOperand(2));
4648    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4649    Ops[5] = DAG.getSrcValue(F);
4650
4651    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4652                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4653                      Ops, 6);
4654
4655    setValue(&I, Res);
4656    DAG.setRoot(Res.getValue(1));
4657    return 0;
4658  }
4659  case Intrinsic::gcroot:
4660    if (GFI) {
4661      const Value *Alloca = I.getArgOperand(0);
4662      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4663
4664      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4665      GFI->addStackRoot(FI->getIndex(), TypeMap);
4666    }
4667    return 0;
4668  case Intrinsic::gcread:
4669  case Intrinsic::gcwrite:
4670    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4671    return 0;
4672  case Intrinsic::flt_rounds:
4673    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4674    return 0;
4675  case Intrinsic::trap:
4676    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4677    return 0;
4678  case Intrinsic::uadd_with_overflow:
4679    return implVisitAluOverflow(I, ISD::UADDO);
4680  case Intrinsic::sadd_with_overflow:
4681    return implVisitAluOverflow(I, ISD::SADDO);
4682  case Intrinsic::usub_with_overflow:
4683    return implVisitAluOverflow(I, ISD::USUBO);
4684  case Intrinsic::ssub_with_overflow:
4685    return implVisitAluOverflow(I, ISD::SSUBO);
4686  case Intrinsic::umul_with_overflow:
4687    return implVisitAluOverflow(I, ISD::UMULO);
4688  case Intrinsic::smul_with_overflow:
4689    return implVisitAluOverflow(I, ISD::SMULO);
4690
4691  case Intrinsic::prefetch: {
4692    SDValue Ops[4];
4693    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4694    Ops[0] = getRoot();
4695    Ops[1] = getValue(I.getArgOperand(0));
4696    Ops[2] = getValue(I.getArgOperand(1));
4697    Ops[3] = getValue(I.getArgOperand(2));
4698    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4699                                        DAG.getVTList(MVT::Other),
4700                                        &Ops[0], 4,
4701                                        EVT::getIntegerVT(*Context, 8),
4702                                        MachinePointerInfo(I.getArgOperand(0)),
4703                                        0, /* align */
4704                                        false, /* volatile */
4705                                        rw==0, /* read */
4706                                        rw==1)); /* write */
4707    return 0;
4708  }
4709  case Intrinsic::memory_barrier: {
4710    SDValue Ops[6];
4711    Ops[0] = getRoot();
4712    for (int x = 1; x < 6; ++x)
4713      Ops[x] = getValue(I.getArgOperand(x - 1));
4714
4715    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4716    return 0;
4717  }
4718  case Intrinsic::atomic_cmp_swap: {
4719    SDValue Root = getRoot();
4720    SDValue L =
4721      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4722                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4723                    Root,
4724                    getValue(I.getArgOperand(0)),
4725                    getValue(I.getArgOperand(1)),
4726                    getValue(I.getArgOperand(2)),
4727                    MachinePointerInfo(I.getArgOperand(0)));
4728    setValue(&I, L);
4729    DAG.setRoot(L.getValue(1));
4730    return 0;
4731  }
4732  case Intrinsic::atomic_load_add:
4733    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4734  case Intrinsic::atomic_load_sub:
4735    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4736  case Intrinsic::atomic_load_or:
4737    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4738  case Intrinsic::atomic_load_xor:
4739    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4740  case Intrinsic::atomic_load_and:
4741    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4742  case Intrinsic::atomic_load_nand:
4743    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4744  case Intrinsic::atomic_load_max:
4745    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4746  case Intrinsic::atomic_load_min:
4747    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4748  case Intrinsic::atomic_load_umin:
4749    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4750  case Intrinsic::atomic_load_umax:
4751    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4752  case Intrinsic::atomic_swap:
4753    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4754
4755  case Intrinsic::invariant_start:
4756  case Intrinsic::lifetime_start:
4757    // Discard region information.
4758    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4759    return 0;
4760  case Intrinsic::invariant_end:
4761  case Intrinsic::lifetime_end:
4762    // Discard region information.
4763    return 0;
4764  }
4765}
4766
4767void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4768                                      bool isTailCall,
4769                                      MachineBasicBlock *LandingPad) {
4770  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4771  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4772  const Type *RetTy = FTy->getReturnType();
4773  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4774  MCSymbol *BeginLabel = 0;
4775
4776  TargetLowering::ArgListTy Args;
4777  TargetLowering::ArgListEntry Entry;
4778  Args.reserve(CS.arg_size());
4779
4780  // Check whether the function can return without sret-demotion.
4781  SmallVector<ISD::OutputArg, 4> Outs;
4782  SmallVector<uint64_t, 4> Offsets;
4783  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4784                Outs, TLI, &Offsets);
4785
4786  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4787                        FTy->isVarArg(), Outs, FTy->getContext());
4788
4789  SDValue DemoteStackSlot;
4790  int DemoteStackIdx = -100;
4791
4792  if (!CanLowerReturn) {
4793    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4794                      FTy->getReturnType());
4795    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4796                      FTy->getReturnType());
4797    MachineFunction &MF = DAG.getMachineFunction();
4798    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4799    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4800
4801    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4802    Entry.Node = DemoteStackSlot;
4803    Entry.Ty = StackSlotPtrType;
4804    Entry.isSExt = false;
4805    Entry.isZExt = false;
4806    Entry.isInReg = false;
4807    Entry.isSRet = true;
4808    Entry.isNest = false;
4809    Entry.isByVal = false;
4810    Entry.Alignment = Align;
4811    Args.push_back(Entry);
4812    RetTy = Type::getVoidTy(FTy->getContext());
4813  }
4814
4815  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4816       i != e; ++i) {
4817    SDValue ArgNode = getValue(*i);
4818    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4819
4820    unsigned attrInd = i - CS.arg_begin() + 1;
4821    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4822    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4823    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4824    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4825    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4826    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4827    Entry.Alignment = CS.getParamAlignment(attrInd);
4828    Args.push_back(Entry);
4829  }
4830
4831  if (LandingPad) {
4832    // Insert a label before the invoke call to mark the try range.  This can be
4833    // used to detect deletion of the invoke via the MachineModuleInfo.
4834    BeginLabel = MMI.getContext().CreateTempSymbol();
4835
4836    // For SjLj, keep track of which landing pads go with which invokes
4837    // so as to maintain the ordering of pads in the LSDA.
4838    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4839    if (CallSiteIndex) {
4840      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4841      // Now that the call site is handled, stop tracking it.
4842      MMI.setCurrentCallSite(0);
4843    }
4844
4845    // Both PendingLoads and PendingExports must be flushed here;
4846    // this call might not return.
4847    (void)getRoot();
4848    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4849  }
4850
4851  // Check if target-independent constraints permit a tail call here.
4852  // Target-dependent constraints are checked within TLI.LowerCallTo.
4853  if (isTailCall &&
4854      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4855    isTailCall = false;
4856
4857  // If there's a possibility that fast-isel has already selected some amount
4858  // of the current basic block, don't emit a tail call.
4859  if (isTailCall && EnableFastISel)
4860    isTailCall = false;
4861
4862  std::pair<SDValue,SDValue> Result =
4863    TLI.LowerCallTo(getRoot(), RetTy,
4864                    CS.paramHasAttr(0, Attribute::SExt),
4865                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4866                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4867                    CS.getCallingConv(),
4868                    isTailCall,
4869                    !CS.getInstruction()->use_empty(),
4870                    Callee, Args, DAG, getCurDebugLoc());
4871  assert((isTailCall || Result.second.getNode()) &&
4872         "Non-null chain expected with non-tail call!");
4873  assert((Result.second.getNode() || !Result.first.getNode()) &&
4874         "Null value expected with tail call!");
4875  if (Result.first.getNode()) {
4876    setValue(CS.getInstruction(), Result.first);
4877  } else if (!CanLowerReturn && Result.second.getNode()) {
4878    // The instruction result is the result of loading from the
4879    // hidden sret parameter.
4880    SmallVector<EVT, 1> PVTs;
4881    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4882
4883    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4884    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4885    EVT PtrVT = PVTs[0];
4886    unsigned NumValues = Outs.size();
4887    SmallVector<SDValue, 4> Values(NumValues);
4888    SmallVector<SDValue, 4> Chains(NumValues);
4889
4890    for (unsigned i = 0; i < NumValues; ++i) {
4891      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4892                                DemoteStackSlot,
4893                                DAG.getConstant(Offsets[i], PtrVT));
4894      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4895                              Add,
4896                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4897                              false, false, 1);
4898      Values[i] = L;
4899      Chains[i] = L.getValue(1);
4900    }
4901
4902    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4903                                MVT::Other, &Chains[0], NumValues);
4904    PendingLoads.push_back(Chain);
4905
4906    // Collect the legal value parts into potentially illegal values
4907    // that correspond to the original function's return values.
4908    SmallVector<EVT, 4> RetTys;
4909    RetTy = FTy->getReturnType();
4910    ComputeValueVTs(TLI, RetTy, RetTys);
4911    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4912    SmallVector<SDValue, 4> ReturnValues;
4913    unsigned CurReg = 0;
4914    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4915      EVT VT = RetTys[I];
4916      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4917      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4918
4919      SDValue ReturnValue =
4920        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4921                         RegisterVT, VT, AssertOp);
4922      ReturnValues.push_back(ReturnValue);
4923      CurReg += NumRegs;
4924    }
4925
4926    setValue(CS.getInstruction(),
4927             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4928                         DAG.getVTList(&RetTys[0], RetTys.size()),
4929                         &ReturnValues[0], ReturnValues.size()));
4930  }
4931
4932  // As a special case, a null chain means that a tail call has been emitted and
4933  // the DAG root is already updated.
4934  if (!Result.second.getNode()) {
4935    HasTailCall = true;
4936    ++SDNodeOrder;
4937    AssignOrderingToNode(DAG.getRoot().getNode());
4938  } else {
4939    DAG.setRoot(Result.second);
4940    ++SDNodeOrder;
4941    AssignOrderingToNode(Result.second.getNode());
4942  }
4943
4944  if (LandingPad) {
4945    // Insert a label at the end of the invoke call to mark the try range.  This
4946    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4947    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4948    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4949
4950    // Inform MachineModuleInfo of range.
4951    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4952  }
4953}
4954
4955/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4956/// value is equal or not-equal to zero.
4957static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4958  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4959       UI != E; ++UI) {
4960    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4961      if (IC->isEquality())
4962        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4963          if (C->isNullValue())
4964            continue;
4965    // Unknown instruction.
4966    return false;
4967  }
4968  return true;
4969}
4970
4971static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4972                             const Type *LoadTy,
4973                             SelectionDAGBuilder &Builder) {
4974
4975  // Check to see if this load can be trivially constant folded, e.g. if the
4976  // input is from a string literal.
4977  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4978    // Cast pointer to the type we really want to load.
4979    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4980                                         PointerType::getUnqual(LoadTy));
4981
4982    if (const Constant *LoadCst =
4983          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4984                                       Builder.TD))
4985      return Builder.getValue(LoadCst);
4986  }
4987
4988  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4989  // still constant memory, the input chain can be the entry node.
4990  SDValue Root;
4991  bool ConstantMemory = false;
4992
4993  // Do not serialize (non-volatile) loads of constant memory with anything.
4994  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4995    Root = Builder.DAG.getEntryNode();
4996    ConstantMemory = true;
4997  } else {
4998    // Do not serialize non-volatile loads against each other.
4999    Root = Builder.DAG.getRoot();
5000  }
5001
5002  SDValue Ptr = Builder.getValue(PtrVal);
5003  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5004                                        Ptr, MachinePointerInfo(PtrVal),
5005                                        false /*volatile*/,
5006                                        false /*nontemporal*/, 1 /* align=1 */);
5007
5008  if (!ConstantMemory)
5009    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5010  return LoadVal;
5011}
5012
5013
5014/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5015/// If so, return true and lower it, otherwise return false and it will be
5016/// lowered like a normal call.
5017bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5018  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5019  if (I.getNumArgOperands() != 3)
5020    return false;
5021
5022  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5023  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5024      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5025      !I.getType()->isIntegerTy())
5026    return false;
5027
5028  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5029
5030  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5031  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5032  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5033    bool ActuallyDoIt = true;
5034    MVT LoadVT;
5035    const Type *LoadTy;
5036    switch (Size->getZExtValue()) {
5037    default:
5038      LoadVT = MVT::Other;
5039      LoadTy = 0;
5040      ActuallyDoIt = false;
5041      break;
5042    case 2:
5043      LoadVT = MVT::i16;
5044      LoadTy = Type::getInt16Ty(Size->getContext());
5045      break;
5046    case 4:
5047      LoadVT = MVT::i32;
5048      LoadTy = Type::getInt32Ty(Size->getContext());
5049      break;
5050    case 8:
5051      LoadVT = MVT::i64;
5052      LoadTy = Type::getInt64Ty(Size->getContext());
5053      break;
5054        /*
5055    case 16:
5056      LoadVT = MVT::v4i32;
5057      LoadTy = Type::getInt32Ty(Size->getContext());
5058      LoadTy = VectorType::get(LoadTy, 4);
5059      break;
5060         */
5061    }
5062
5063    // This turns into unaligned loads.  We only do this if the target natively
5064    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5065    // we'll only produce a small number of byte loads.
5066
5067    // Require that we can find a legal MVT, and only do this if the target
5068    // supports unaligned loads of that type.  Expanding into byte loads would
5069    // bloat the code.
5070    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5071      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5072      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5073      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5074        ActuallyDoIt = false;
5075    }
5076
5077    if (ActuallyDoIt) {
5078      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5079      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5080
5081      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5082                                 ISD::SETNE);
5083      EVT CallVT = TLI.getValueType(I.getType(), true);
5084      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5085      return true;
5086    }
5087  }
5088
5089
5090  return false;
5091}
5092
5093
5094void SelectionDAGBuilder::visitCall(const CallInst &I) {
5095  // Handle inline assembly differently.
5096  if (isa<InlineAsm>(I.getCalledValue())) {
5097    visitInlineAsm(&I);
5098    return;
5099  }
5100
5101  // See if any floating point values are being passed to this function. This is
5102  // used to emit an undefined reference to fltused on Windows.
5103  const FunctionType *FT =
5104    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5105  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5106  if (FT->isVarArg() &&
5107      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5108    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5109      const Type* T = I.getArgOperand(i)->getType();
5110      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5111           i != e; ++i) {
5112        if (!i->isFloatingPointTy()) continue;
5113        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5114        break;
5115      }
5116    }
5117  }
5118
5119  const char *RenameFn = 0;
5120  if (Function *F = I.getCalledFunction()) {
5121    if (F->isDeclaration()) {
5122      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5123        if (unsigned IID = II->getIntrinsicID(F)) {
5124          RenameFn = visitIntrinsicCall(I, IID);
5125          if (!RenameFn)
5126            return;
5127        }
5128      }
5129      if (unsigned IID = F->getIntrinsicID()) {
5130        RenameFn = visitIntrinsicCall(I, IID);
5131        if (!RenameFn)
5132          return;
5133      }
5134    }
5135
5136    // Check for well-known libc/libm calls.  If the function is internal, it
5137    // can't be a library call.
5138    if (!F->hasLocalLinkage() && F->hasName()) {
5139      StringRef Name = F->getName();
5140      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5141        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5142            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5143            I.getType() == I.getArgOperand(0)->getType() &&
5144            I.getType() == I.getArgOperand(1)->getType()) {
5145          SDValue LHS = getValue(I.getArgOperand(0));
5146          SDValue RHS = getValue(I.getArgOperand(1));
5147          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5148                                   LHS.getValueType(), LHS, RHS));
5149          return;
5150        }
5151      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5152        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5153            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5154            I.getType() == I.getArgOperand(0)->getType()) {
5155          SDValue Tmp = getValue(I.getArgOperand(0));
5156          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5157                                   Tmp.getValueType(), Tmp));
5158          return;
5159        }
5160      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5161        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5162            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5163            I.getType() == I.getArgOperand(0)->getType() &&
5164            I.onlyReadsMemory()) {
5165          SDValue Tmp = getValue(I.getArgOperand(0));
5166          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5167                                   Tmp.getValueType(), Tmp));
5168          return;
5169        }
5170      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5171        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5172            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5173            I.getType() == I.getArgOperand(0)->getType() &&
5174            I.onlyReadsMemory()) {
5175          SDValue Tmp = getValue(I.getArgOperand(0));
5176          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5177                                   Tmp.getValueType(), Tmp));
5178          return;
5179        }
5180      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5181        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5182            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5183            I.getType() == I.getArgOperand(0)->getType() &&
5184            I.onlyReadsMemory()) {
5185          SDValue Tmp = getValue(I.getArgOperand(0));
5186          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5187                                   Tmp.getValueType(), Tmp));
5188          return;
5189        }
5190      } else if (Name == "memcmp") {
5191        if (visitMemCmpCall(I))
5192          return;
5193      }
5194    }
5195  }
5196
5197  SDValue Callee;
5198  if (!RenameFn)
5199    Callee = getValue(I.getCalledValue());
5200  else
5201    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5202
5203  // Check if we can potentially perform a tail call. More detailed checking is
5204  // be done within LowerCallTo, after more information about the call is known.
5205  LowerCallTo(&I, Callee, I.isTailCall());
5206}
5207
5208namespace {
5209
5210/// AsmOperandInfo - This contains information for each constraint that we are
5211/// lowering.
5212class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5213public:
5214  /// CallOperand - If this is the result output operand or a clobber
5215  /// this is null, otherwise it is the incoming operand to the CallInst.
5216  /// This gets modified as the asm is processed.
5217  SDValue CallOperand;
5218
5219  /// AssignedRegs - If this is a register or register class operand, this
5220  /// contains the set of register corresponding to the operand.
5221  RegsForValue AssignedRegs;
5222
5223  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5224    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5225  }
5226
5227  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5228  /// busy in OutputRegs/InputRegs.
5229  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5230                         std::set<unsigned> &OutputRegs,
5231                         std::set<unsigned> &InputRegs,
5232                         const TargetRegisterInfo &TRI) const {
5233    if (isOutReg) {
5234      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5235        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5236    }
5237    if (isInReg) {
5238      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5239        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5240    }
5241  }
5242
5243  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5244  /// corresponds to.  If there is no Value* for this operand, it returns
5245  /// MVT::Other.
5246  EVT getCallOperandValEVT(LLVMContext &Context,
5247                           const TargetLowering &TLI,
5248                           const TargetData *TD) const {
5249    if (CallOperandVal == 0) return MVT::Other;
5250
5251    if (isa<BasicBlock>(CallOperandVal))
5252      return TLI.getPointerTy();
5253
5254    const llvm::Type *OpTy = CallOperandVal->getType();
5255
5256    // If this is an indirect operand, the operand is a pointer to the
5257    // accessed type.
5258    if (isIndirect) {
5259      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5260      if (!PtrTy)
5261        report_fatal_error("Indirect operand for inline asm not a pointer!");
5262      OpTy = PtrTy->getElementType();
5263    }
5264
5265    // If OpTy is not a single value, it may be a struct/union that we
5266    // can tile with integers.
5267    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5268      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5269      switch (BitSize) {
5270      default: break;
5271      case 1:
5272      case 8:
5273      case 16:
5274      case 32:
5275      case 64:
5276      case 128:
5277        OpTy = IntegerType::get(Context, BitSize);
5278        break;
5279      }
5280    }
5281
5282    return TLI.getValueType(OpTy, true);
5283  }
5284
5285private:
5286  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5287  /// specified set.
5288  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5289                                const TargetRegisterInfo &TRI) {
5290    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5291    Regs.insert(Reg);
5292    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5293      for (; *Aliases; ++Aliases)
5294        Regs.insert(*Aliases);
5295  }
5296};
5297
5298typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5299
5300} // end anonymous namespace
5301
5302/// isAllocatableRegister - If the specified register is safe to allocate,
5303/// i.e. it isn't a stack pointer or some other special register, return the
5304/// register class for the register.  Otherwise, return null.
5305static const TargetRegisterClass *
5306isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5307                      const TargetLowering &TLI,
5308                      const TargetRegisterInfo *TRI) {
5309  EVT FoundVT = MVT::Other;
5310  const TargetRegisterClass *FoundRC = 0;
5311  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5312       E = TRI->regclass_end(); RCI != E; ++RCI) {
5313    EVT ThisVT = MVT::Other;
5314
5315    const TargetRegisterClass *RC = *RCI;
5316    // If none of the value types for this register class are valid, we
5317    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5318    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5319         I != E; ++I) {
5320      if (TLI.isTypeLegal(*I)) {
5321        // If we have already found this register in a different register class,
5322        // choose the one with the largest VT specified.  For example, on
5323        // PowerPC, we favor f64 register classes over f32.
5324        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5325          ThisVT = *I;
5326          break;
5327        }
5328      }
5329    }
5330
5331    if (ThisVT == MVT::Other) continue;
5332
5333    // NOTE: This isn't ideal.  In particular, this might allocate the
5334    // frame pointer in functions that need it (due to them not being taken
5335    // out of allocation, because a variable sized allocation hasn't been seen
5336    // yet).  This is a slight code pessimization, but should still work.
5337    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5338         E = RC->allocation_order_end(MF); I != E; ++I)
5339      if (*I == Reg) {
5340        // We found a matching register class.  Keep looking at others in case
5341        // we find one with larger registers that this physreg is also in.
5342        FoundRC = RC;
5343        FoundVT = ThisVT;
5344        break;
5345      }
5346  }
5347  return FoundRC;
5348}
5349
5350/// GetRegistersForValue - Assign registers (virtual or physical) for the
5351/// specified operand.  We prefer to assign virtual registers, to allow the
5352/// register allocator to handle the assignment process.  However, if the asm
5353/// uses features that we can't model on machineinstrs, we have SDISel do the
5354/// allocation.  This produces generally horrible, but correct, code.
5355///
5356///   OpInfo describes the operand.
5357///   Input and OutputRegs are the set of already allocated physical registers.
5358///
5359static void GetRegistersForValue(SelectionDAG &DAG,
5360                                 const TargetLowering &TLI,
5361                                 DebugLoc DL,
5362                                 SDISelAsmOperandInfo &OpInfo,
5363                                 std::set<unsigned> &OutputRegs,
5364                                 std::set<unsigned> &InputRegs) {
5365  LLVMContext &Context = *DAG.getContext();
5366
5367  // Compute whether this value requires an input register, an output register,
5368  // or both.
5369  bool isOutReg = false;
5370  bool isInReg = false;
5371  switch (OpInfo.Type) {
5372  case InlineAsm::isOutput:
5373    isOutReg = true;
5374
5375    // If there is an input constraint that matches this, we need to reserve
5376    // the input register so no other inputs allocate to it.
5377    isInReg = OpInfo.hasMatchingInput();
5378    break;
5379  case InlineAsm::isInput:
5380    isInReg = true;
5381    isOutReg = false;
5382    break;
5383  case InlineAsm::isClobber:
5384    isOutReg = true;
5385    isInReg = true;
5386    break;
5387  }
5388
5389
5390  MachineFunction &MF = DAG.getMachineFunction();
5391  SmallVector<unsigned, 4> Regs;
5392
5393  // If this is a constraint for a single physreg, or a constraint for a
5394  // register class, find it.
5395  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5396    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5397                                     OpInfo.ConstraintVT);
5398
5399  unsigned NumRegs = 1;
5400  if (OpInfo.ConstraintVT != MVT::Other) {
5401    // If this is a FP input in an integer register (or visa versa) insert a bit
5402    // cast of the input value.  More generally, handle any case where the input
5403    // value disagrees with the register class we plan to stick this in.
5404    if (OpInfo.Type == InlineAsm::isInput &&
5405        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5406      // Try to convert to the first EVT that the reg class contains.  If the
5407      // types are identical size, use a bitcast to convert (e.g. two differing
5408      // vector types).
5409      EVT RegVT = *PhysReg.second->vt_begin();
5410      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5411        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5412                                         RegVT, OpInfo.CallOperand);
5413        OpInfo.ConstraintVT = RegVT;
5414      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5415        // If the input is a FP value and we want it in FP registers, do a
5416        // bitcast to the corresponding integer type.  This turns an f64 value
5417        // into i64, which can be passed with two i32 values on a 32-bit
5418        // machine.
5419        RegVT = EVT::getIntegerVT(Context,
5420                                  OpInfo.ConstraintVT.getSizeInBits());
5421        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5422                                         RegVT, OpInfo.CallOperand);
5423        OpInfo.ConstraintVT = RegVT;
5424      }
5425    }
5426
5427    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5428  }
5429
5430  EVT RegVT;
5431  EVT ValueVT = OpInfo.ConstraintVT;
5432
5433  // If this is a constraint for a specific physical register, like {r17},
5434  // assign it now.
5435  if (unsigned AssignedReg = PhysReg.first) {
5436    const TargetRegisterClass *RC = PhysReg.second;
5437    if (OpInfo.ConstraintVT == MVT::Other)
5438      ValueVT = *RC->vt_begin();
5439
5440    // Get the actual register value type.  This is important, because the user
5441    // may have asked for (e.g.) the AX register in i32 type.  We need to
5442    // remember that AX is actually i16 to get the right extension.
5443    RegVT = *RC->vt_begin();
5444
5445    // This is a explicit reference to a physical register.
5446    Regs.push_back(AssignedReg);
5447
5448    // If this is an expanded reference, add the rest of the regs to Regs.
5449    if (NumRegs != 1) {
5450      TargetRegisterClass::iterator I = RC->begin();
5451      for (; *I != AssignedReg; ++I)
5452        assert(I != RC->end() && "Didn't find reg!");
5453
5454      // Already added the first reg.
5455      --NumRegs; ++I;
5456      for (; NumRegs; --NumRegs, ++I) {
5457        assert(I != RC->end() && "Ran out of registers to allocate!");
5458        Regs.push_back(*I);
5459      }
5460    }
5461
5462    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5463    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5464    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5465    return;
5466  }
5467
5468  // Otherwise, if this was a reference to an LLVM register class, create vregs
5469  // for this reference.
5470  if (const TargetRegisterClass *RC = PhysReg.second) {
5471    RegVT = *RC->vt_begin();
5472    if (OpInfo.ConstraintVT == MVT::Other)
5473      ValueVT = RegVT;
5474
5475    // Create the appropriate number of virtual registers.
5476    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5477    for (; NumRegs; --NumRegs)
5478      Regs.push_back(RegInfo.createVirtualRegister(RC));
5479
5480    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5481    return;
5482  }
5483
5484  // This is a reference to a register class that doesn't directly correspond
5485  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5486  // registers from the class.
5487  std::vector<unsigned> RegClassRegs
5488    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5489                                            OpInfo.ConstraintVT);
5490
5491  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5492  unsigned NumAllocated = 0;
5493  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5494    unsigned Reg = RegClassRegs[i];
5495    // See if this register is available.
5496    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5497        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5498      // Make sure we find consecutive registers.
5499      NumAllocated = 0;
5500      continue;
5501    }
5502
5503    // Check to see if this register is allocatable (i.e. don't give out the
5504    // stack pointer).
5505    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5506    if (!RC) {        // Couldn't allocate this register.
5507      // Reset NumAllocated to make sure we return consecutive registers.
5508      NumAllocated = 0;
5509      continue;
5510    }
5511
5512    // Okay, this register is good, we can use it.
5513    ++NumAllocated;
5514
5515    // If we allocated enough consecutive registers, succeed.
5516    if (NumAllocated == NumRegs) {
5517      unsigned RegStart = (i-NumAllocated)+1;
5518      unsigned RegEnd   = i+1;
5519      // Mark all of the allocated registers used.
5520      for (unsigned i = RegStart; i != RegEnd; ++i)
5521        Regs.push_back(RegClassRegs[i]);
5522
5523      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5524                                         OpInfo.ConstraintVT);
5525      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5526      return;
5527    }
5528  }
5529
5530  // Otherwise, we couldn't allocate enough registers for this.
5531}
5532
5533/// visitInlineAsm - Handle a call to an InlineAsm object.
5534///
5535void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5536  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5537
5538  /// ConstraintOperands - Information about all of the constraints.
5539  SDISelAsmOperandInfoVector ConstraintOperands;
5540
5541  std::set<unsigned> OutputRegs, InputRegs;
5542
5543  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(CS);
5544  bool hasMemory = false;
5545
5546  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5547  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5548  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5549    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5550    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5551
5552    EVT OpVT = MVT::Other;
5553
5554    // Compute the value type for each operand.
5555    switch (OpInfo.Type) {
5556    case InlineAsm::isOutput:
5557      // Indirect outputs just consume an argument.
5558      if (OpInfo.isIndirect) {
5559        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5560        break;
5561      }
5562
5563      // The return value of the call is this value.  As such, there is no
5564      // corresponding argument.
5565      assert(!CS.getType()->isVoidTy() &&
5566             "Bad inline asm!");
5567      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5568        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5569      } else {
5570        assert(ResNo == 0 && "Asm only has one result!");
5571        OpVT = TLI.getValueType(CS.getType());
5572      }
5573      ++ResNo;
5574      break;
5575    case InlineAsm::isInput:
5576      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5577      break;
5578    case InlineAsm::isClobber:
5579      // Nothing to do.
5580      break;
5581    }
5582
5583    // If this is an input or an indirect output, process the call argument.
5584    // BasicBlocks are labels, currently appearing only in asm's.
5585    if (OpInfo.CallOperandVal) {
5586      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5587        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5588      } else {
5589        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5590      }
5591
5592      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5593    }
5594
5595    OpInfo.ConstraintVT = OpVT;
5596
5597    // Indirect operand accesses access memory.
5598    if (OpInfo.isIndirect)
5599      hasMemory = true;
5600    else {
5601      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5602        TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
5603        if (CType == TargetLowering::C_Memory) {
5604          hasMemory = true;
5605          break;
5606        }
5607      }
5608    }
5609  }
5610
5611  SDValue Chain, Flag;
5612
5613  // We won't need to flush pending loads if this asm doesn't touch
5614  // memory and is nonvolatile.
5615  if (hasMemory || IA->hasSideEffects())
5616    Chain = getRoot();
5617  else
5618    Chain = DAG.getRoot();
5619
5620  // Second pass over the constraints: compute which constraint option to use
5621  // and assign registers to constraints that want a specific physreg.
5622  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5623    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5624
5625    // If this is an output operand with a matching input operand, look up the
5626    // matching input. If their types mismatch, e.g. one is an integer, the
5627    // other is floating point, or their sizes are different, flag it as an
5628    // error.
5629    if (OpInfo.hasMatchingInput()) {
5630      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5631
5632      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5633        if ((OpInfo.ConstraintVT.isInteger() !=
5634             Input.ConstraintVT.isInteger()) ||
5635            (OpInfo.ConstraintVT.getSizeInBits() !=
5636             Input.ConstraintVT.getSizeInBits())) {
5637          report_fatal_error("Unsupported asm: input constraint"
5638                             " with a matching output constraint of"
5639                             " incompatible type!");
5640        }
5641        Input.ConstraintVT = OpInfo.ConstraintVT;
5642      }
5643    }
5644
5645    // Compute the constraint code and ConstraintType to use.
5646    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5647
5648    // If this is a memory input, and if the operand is not indirect, do what we
5649    // need to to provide an address for the memory input.
5650    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5651        !OpInfo.isIndirect) {
5652      assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
5653             "Can only indirectify direct input operands!");
5654
5655      // Memory operands really want the address of the value.  If we don't have
5656      // an indirect input, put it in the constpool if we can, otherwise spill
5657      // it to a stack slot.
5658
5659      // If the operand is a float, integer, or vector constant, spill to a
5660      // constant pool entry to get its address.
5661      const Value *OpVal = OpInfo.CallOperandVal;
5662      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5663          isa<ConstantVector>(OpVal)) {
5664        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5665                                                 TLI.getPointerTy());
5666      } else {
5667        // Otherwise, create a stack slot and emit a store to it before the
5668        // asm.
5669        const Type *Ty = OpVal->getType();
5670        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5671        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5672        MachineFunction &MF = DAG.getMachineFunction();
5673        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5674        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5675        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5676                             OpInfo.CallOperand, StackSlot,
5677                             MachinePointerInfo::getFixedStack(SSFI),
5678                             false, false, 0);
5679        OpInfo.CallOperand = StackSlot;
5680      }
5681
5682      // There is no longer a Value* corresponding to this operand.
5683      OpInfo.CallOperandVal = 0;
5684
5685      // It is now an indirect operand.
5686      OpInfo.isIndirect = true;
5687    }
5688
5689    // If this constraint is for a specific register, allocate it before
5690    // anything else.
5691    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5692      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5693                           InputRegs);
5694  }
5695
5696  // Second pass - Loop over all of the operands, assigning virtual or physregs
5697  // to register class operands.
5698  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5699    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5700
5701    // C_Register operands have already been allocated, Other/Memory don't need
5702    // to be.
5703    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5704      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5705                           InputRegs);
5706  }
5707
5708  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5709  std::vector<SDValue> AsmNodeOperands;
5710  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5711  AsmNodeOperands.push_back(
5712          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5713                                      TLI.getPointerTy()));
5714
5715  // If we have a !srcloc metadata node associated with it, we want to attach
5716  // this to the ultimately generated inline asm machineinstr.  To do this, we
5717  // pass in the third operand as this (potentially null) inline asm MDNode.
5718  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5719  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5720
5721  // Remember the HasSideEffect and AlignStack bits as operand 3.
5722  unsigned ExtraInfo = 0;
5723  if (IA->hasSideEffects())
5724    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5725  if (IA->isAlignStack())
5726    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5727  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5728                                                  TLI.getPointerTy()));
5729
5730  // Loop over all of the inputs, copying the operand values into the
5731  // appropriate registers and processing the output regs.
5732  RegsForValue RetValRegs;
5733
5734  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5735  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5736
5737  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5738    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5739
5740    switch (OpInfo.Type) {
5741    case InlineAsm::isOutput: {
5742      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5743          OpInfo.ConstraintType != TargetLowering::C_Register) {
5744        // Memory output, or 'other' output (e.g. 'X' constraint).
5745        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5746
5747        // Add information to the INLINEASM node to know about this output.
5748        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5749        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5750                                                        TLI.getPointerTy()));
5751        AsmNodeOperands.push_back(OpInfo.CallOperand);
5752        break;
5753      }
5754
5755      // Otherwise, this is a register or register class output.
5756
5757      // Copy the output from the appropriate register.  Find a register that
5758      // we can use.
5759      if (OpInfo.AssignedRegs.Regs.empty())
5760        report_fatal_error("Couldn't allocate output reg for constraint '" +
5761                           Twine(OpInfo.ConstraintCode) + "'!");
5762
5763      // If this is an indirect operand, store through the pointer after the
5764      // asm.
5765      if (OpInfo.isIndirect) {
5766        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5767                                                      OpInfo.CallOperandVal));
5768      } else {
5769        // This is the result value of the call.
5770        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5771        // Concatenate this output onto the outputs list.
5772        RetValRegs.append(OpInfo.AssignedRegs);
5773      }
5774
5775      // Add information to the INLINEASM node to know that this register is
5776      // set.
5777      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5778                                           InlineAsm::Kind_RegDefEarlyClobber :
5779                                               InlineAsm::Kind_RegDef,
5780                                               false,
5781                                               0,
5782                                               DAG,
5783                                               AsmNodeOperands);
5784      break;
5785    }
5786    case InlineAsm::isInput: {
5787      SDValue InOperandVal = OpInfo.CallOperand;
5788
5789      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5790        // If this is required to match an output register we have already set,
5791        // just use its register.
5792        unsigned OperandNo = OpInfo.getMatchedOperand();
5793
5794        // Scan until we find the definition we already emitted of this operand.
5795        // When we find it, create a RegsForValue operand.
5796        unsigned CurOp = InlineAsm::Op_FirstOperand;
5797        for (; OperandNo; --OperandNo) {
5798          // Advance to the next operand.
5799          unsigned OpFlag =
5800            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5801          assert((InlineAsm::isRegDefKind(OpFlag) ||
5802                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5803                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5804          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5805        }
5806
5807        unsigned OpFlag =
5808          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5809        if (InlineAsm::isRegDefKind(OpFlag) ||
5810            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5811          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5812          if (OpInfo.isIndirect) {
5813            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5814            LLVMContext &Ctx = *DAG.getContext();
5815            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5816                          " don't know how to handle tied "
5817                          "indirect register inputs");
5818          }
5819
5820          RegsForValue MatchedRegs;
5821          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5822          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5823          MatchedRegs.RegVTs.push_back(RegVT);
5824          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5825          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5826               i != e; ++i)
5827            MatchedRegs.Regs.push_back
5828              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5829
5830          // Use the produced MatchedRegs object to
5831          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5832                                    Chain, &Flag);
5833          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5834                                           true, OpInfo.getMatchedOperand(),
5835                                           DAG, AsmNodeOperands);
5836          break;
5837        }
5838
5839        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5840        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5841               "Unexpected number of operands");
5842        // Add information to the INLINEASM node to know about this input.
5843        // See InlineAsm.h isUseOperandTiedToDef.
5844        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5845                                                    OpInfo.getMatchedOperand());
5846        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5847                                                        TLI.getPointerTy()));
5848        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5849        break;
5850      }
5851
5852      // Treat indirect 'X' constraint as memory.
5853      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5854          OpInfo.isIndirect)
5855        OpInfo.ConstraintType = TargetLowering::C_Memory;
5856
5857      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5858        std::vector<SDValue> Ops;
5859        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5860                                         Ops, DAG);
5861        if (Ops.empty())
5862          report_fatal_error("Invalid operand for inline asm constraint '" +
5863                             Twine(OpInfo.ConstraintCode) + "'!");
5864
5865        // Add information to the INLINEASM node to know about this input.
5866        unsigned ResOpType =
5867          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5868        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5869                                                        TLI.getPointerTy()));
5870        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5871        break;
5872      }
5873
5874      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5875        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5876        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5877               "Memory operands expect pointer values");
5878
5879        // Add information to the INLINEASM node to know about this input.
5880        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5881        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5882                                                        TLI.getPointerTy()));
5883        AsmNodeOperands.push_back(InOperandVal);
5884        break;
5885      }
5886
5887      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5888              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5889             "Unknown constraint type!");
5890      assert(!OpInfo.isIndirect &&
5891             "Don't know how to handle indirect register inputs yet!");
5892
5893      // Copy the input into the appropriate registers.
5894      if (OpInfo.AssignedRegs.Regs.empty() ||
5895          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5896        report_fatal_error("Couldn't allocate input reg for constraint '" +
5897                           Twine(OpInfo.ConstraintCode) + "'!");
5898
5899      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5900                                        Chain, &Flag);
5901
5902      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5903                                               DAG, AsmNodeOperands);
5904      break;
5905    }
5906    case InlineAsm::isClobber: {
5907      // Add the clobbered value to the operand list, so that the register
5908      // allocator is aware that the physreg got clobbered.
5909      if (!OpInfo.AssignedRegs.Regs.empty())
5910        OpInfo.AssignedRegs.AddInlineAsmOperands(
5911                                            InlineAsm::Kind_RegDefEarlyClobber,
5912                                                 false, 0, DAG,
5913                                                 AsmNodeOperands);
5914      break;
5915    }
5916    }
5917  }
5918
5919  // Finish up input operands.  Set the input chain and add the flag last.
5920  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5921  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5922
5923  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5924                      DAG.getVTList(MVT::Other, MVT::Glue),
5925                      &AsmNodeOperands[0], AsmNodeOperands.size());
5926  Flag = Chain.getValue(1);
5927
5928  // If this asm returns a register value, copy the result from that register
5929  // and set it as the value of the call.
5930  if (!RetValRegs.Regs.empty()) {
5931    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5932                                             Chain, &Flag);
5933
5934    // FIXME: Why don't we do this for inline asms with MRVs?
5935    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5936      EVT ResultType = TLI.getValueType(CS.getType());
5937
5938      // If any of the results of the inline asm is a vector, it may have the
5939      // wrong width/num elts.  This can happen for register classes that can
5940      // contain multiple different value types.  The preg or vreg allocated may
5941      // not have the same VT as was expected.  Convert it to the right type
5942      // with bit_convert.
5943      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5944        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5945                          ResultType, Val);
5946
5947      } else if (ResultType != Val.getValueType() &&
5948                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5949        // If a result value was tied to an input value, the computed result may
5950        // have a wider width than the expected result.  Extract the relevant
5951        // portion.
5952        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5953      }
5954
5955      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5956    }
5957
5958    setValue(CS.getInstruction(), Val);
5959    // Don't need to use this as a chain in this case.
5960    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5961      return;
5962  }
5963
5964  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5965
5966  // Process indirect outputs, first output all of the flagged copies out of
5967  // physregs.
5968  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5969    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5970    const Value *Ptr = IndirectStoresToEmit[i].second;
5971    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5972                                             Chain, &Flag);
5973    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5974  }
5975
5976  // Emit the non-flagged stores from the physregs.
5977  SmallVector<SDValue, 8> OutChains;
5978  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5979    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5980                               StoresToEmit[i].first,
5981                               getValue(StoresToEmit[i].second),
5982                               MachinePointerInfo(StoresToEmit[i].second),
5983                               false, false, 0);
5984    OutChains.push_back(Val);
5985  }
5986
5987  if (!OutChains.empty())
5988    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5989                        &OutChains[0], OutChains.size());
5990
5991  DAG.setRoot(Chain);
5992}
5993
5994void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5995  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5996                          MVT::Other, getRoot(),
5997                          getValue(I.getArgOperand(0)),
5998                          DAG.getSrcValue(I.getArgOperand(0))));
5999}
6000
6001void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6002  const TargetData &TD = *TLI.getTargetData();
6003  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6004                           getRoot(), getValue(I.getOperand(0)),
6005                           DAG.getSrcValue(I.getOperand(0)),
6006                           TD.getABITypeAlignment(I.getType()));
6007  setValue(&I, V);
6008  DAG.setRoot(V.getValue(1));
6009}
6010
6011void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6012  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6013                          MVT::Other, getRoot(),
6014                          getValue(I.getArgOperand(0)),
6015                          DAG.getSrcValue(I.getArgOperand(0))));
6016}
6017
6018void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6019  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6020                          MVT::Other, getRoot(),
6021                          getValue(I.getArgOperand(0)),
6022                          getValue(I.getArgOperand(1)),
6023                          DAG.getSrcValue(I.getArgOperand(0)),
6024                          DAG.getSrcValue(I.getArgOperand(1))));
6025}
6026
6027/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6028/// implementation, which just calls LowerCall.
6029/// FIXME: When all targets are
6030/// migrated to using LowerCall, this hook should be integrated into SDISel.
6031std::pair<SDValue, SDValue>
6032TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6033                            bool RetSExt, bool RetZExt, bool isVarArg,
6034                            bool isInreg, unsigned NumFixedArgs,
6035                            CallingConv::ID CallConv, bool isTailCall,
6036                            bool isReturnValueUsed,
6037                            SDValue Callee,
6038                            ArgListTy &Args, SelectionDAG &DAG,
6039                            DebugLoc dl) const {
6040  // Handle all of the outgoing arguments.
6041  SmallVector<ISD::OutputArg, 32> Outs;
6042  SmallVector<SDValue, 32> OutVals;
6043  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6044    SmallVector<EVT, 4> ValueVTs;
6045    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6046    for (unsigned Value = 0, NumValues = ValueVTs.size();
6047         Value != NumValues; ++Value) {
6048      EVT VT = ValueVTs[Value];
6049      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6050      SDValue Op = SDValue(Args[i].Node.getNode(),
6051                           Args[i].Node.getResNo() + Value);
6052      ISD::ArgFlagsTy Flags;
6053      unsigned OriginalAlignment =
6054        getTargetData()->getABITypeAlignment(ArgTy);
6055
6056      if (Args[i].isZExt)
6057        Flags.setZExt();
6058      if (Args[i].isSExt)
6059        Flags.setSExt();
6060      if (Args[i].isInReg)
6061        Flags.setInReg();
6062      if (Args[i].isSRet)
6063        Flags.setSRet();
6064      if (Args[i].isByVal) {
6065        Flags.setByVal();
6066        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6067        const Type *ElementTy = Ty->getElementType();
6068        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
6069        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
6070        // For ByVal, alignment should come from FE.  BE will guess if this
6071        // info is not there but there are cases it cannot get right.
6072        if (Args[i].Alignment)
6073          FrameAlign = Args[i].Alignment;
6074        Flags.setByValAlign(FrameAlign);
6075        Flags.setByValSize(FrameSize);
6076      }
6077      if (Args[i].isNest)
6078        Flags.setNest();
6079      Flags.setOrigAlign(OriginalAlignment);
6080
6081      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6082      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6083      SmallVector<SDValue, 4> Parts(NumParts);
6084      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6085
6086      if (Args[i].isSExt)
6087        ExtendKind = ISD::SIGN_EXTEND;
6088      else if (Args[i].isZExt)
6089        ExtendKind = ISD::ZERO_EXTEND;
6090
6091      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6092                     PartVT, ExtendKind);
6093
6094      for (unsigned j = 0; j != NumParts; ++j) {
6095        // if it isn't first piece, alignment must be 1
6096        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6097                               i < NumFixedArgs);
6098        if (NumParts > 1 && j == 0)
6099          MyFlags.Flags.setSplit();
6100        else if (j != 0)
6101          MyFlags.Flags.setOrigAlign(1);
6102
6103        Outs.push_back(MyFlags);
6104        OutVals.push_back(Parts[j]);
6105      }
6106    }
6107  }
6108
6109  // Handle the incoming return values from the call.
6110  SmallVector<ISD::InputArg, 32> Ins;
6111  SmallVector<EVT, 4> RetTys;
6112  ComputeValueVTs(*this, RetTy, RetTys);
6113  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6114    EVT VT = RetTys[I];
6115    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6116    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6117    for (unsigned i = 0; i != NumRegs; ++i) {
6118      ISD::InputArg MyFlags;
6119      MyFlags.VT = RegisterVT.getSimpleVT();
6120      MyFlags.Used = isReturnValueUsed;
6121      if (RetSExt)
6122        MyFlags.Flags.setSExt();
6123      if (RetZExt)
6124        MyFlags.Flags.setZExt();
6125      if (isInreg)
6126        MyFlags.Flags.setInReg();
6127      Ins.push_back(MyFlags);
6128    }
6129  }
6130
6131  SmallVector<SDValue, 4> InVals;
6132  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6133                    Outs, OutVals, Ins, dl, DAG, InVals);
6134
6135  // Verify that the target's LowerCall behaved as expected.
6136  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6137         "LowerCall didn't return a valid chain!");
6138  assert((!isTailCall || InVals.empty()) &&
6139         "LowerCall emitted a return value for a tail call!");
6140  assert((isTailCall || InVals.size() == Ins.size()) &&
6141         "LowerCall didn't emit the correct number of values!");
6142
6143  // For a tail call, the return value is merely live-out and there aren't
6144  // any nodes in the DAG representing it. Return a special value to
6145  // indicate that a tail call has been emitted and no more Instructions
6146  // should be processed in the current block.
6147  if (isTailCall) {
6148    DAG.setRoot(Chain);
6149    return std::make_pair(SDValue(), SDValue());
6150  }
6151
6152  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6153          assert(InVals[i].getNode() &&
6154                 "LowerCall emitted a null value!");
6155          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6156                 "LowerCall emitted a value with the wrong type!");
6157        });
6158
6159  // Collect the legal value parts into potentially illegal values
6160  // that correspond to the original function's return values.
6161  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6162  if (RetSExt)
6163    AssertOp = ISD::AssertSext;
6164  else if (RetZExt)
6165    AssertOp = ISD::AssertZext;
6166  SmallVector<SDValue, 4> ReturnValues;
6167  unsigned CurReg = 0;
6168  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6169    EVT VT = RetTys[I];
6170    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6171    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6172
6173    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6174                                            NumRegs, RegisterVT, VT,
6175                                            AssertOp));
6176    CurReg += NumRegs;
6177  }
6178
6179  // For a function returning void, there is no return value. We can't create
6180  // such a node, so we just return a null return value in that case. In
6181  // that case, nothing will actualy look at the value.
6182  if (ReturnValues.empty())
6183    return std::make_pair(SDValue(), Chain);
6184
6185  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6186                            DAG.getVTList(&RetTys[0], RetTys.size()),
6187                            &ReturnValues[0], ReturnValues.size());
6188  return std::make_pair(Res, Chain);
6189}
6190
6191void TargetLowering::LowerOperationWrapper(SDNode *N,
6192                                           SmallVectorImpl<SDValue> &Results,
6193                                           SelectionDAG &DAG) const {
6194  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6195  if (Res.getNode())
6196    Results.push_back(Res);
6197}
6198
6199SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6200  llvm_unreachable("LowerOperation not implemented for this target!");
6201  return SDValue();
6202}
6203
6204void
6205SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6206  SDValue Op = getNonRegisterValue(V);
6207  assert((Op.getOpcode() != ISD::CopyFromReg ||
6208          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6209         "Copy from a reg to the same reg!");
6210  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6211
6212  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6213  SDValue Chain = DAG.getEntryNode();
6214  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6215  PendingExports.push_back(Chain);
6216}
6217
6218#include "llvm/CodeGen/SelectionDAGISel.h"
6219
6220void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6221  // If this is the entry block, emit arguments.
6222  const Function &F = *LLVMBB->getParent();
6223  SelectionDAG &DAG = SDB->DAG;
6224  DebugLoc dl = SDB->getCurDebugLoc();
6225  const TargetData *TD = TLI.getTargetData();
6226  SmallVector<ISD::InputArg, 16> Ins;
6227
6228  // Check whether the function can return without sret-demotion.
6229  SmallVector<ISD::OutputArg, 4> Outs;
6230  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6231                Outs, TLI);
6232
6233  if (!FuncInfo->CanLowerReturn) {
6234    // Put in an sret pointer parameter before all the other parameters.
6235    SmallVector<EVT, 1> ValueVTs;
6236    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6237
6238    // NOTE: Assuming that a pointer will never break down to more than one VT
6239    // or one register.
6240    ISD::ArgFlagsTy Flags;
6241    Flags.setSRet();
6242    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6243    ISD::InputArg RetArg(Flags, RegisterVT, true);
6244    Ins.push_back(RetArg);
6245  }
6246
6247  // Set up the incoming argument description vector.
6248  unsigned Idx = 1;
6249  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6250       I != E; ++I, ++Idx) {
6251    SmallVector<EVT, 4> ValueVTs;
6252    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6253    bool isArgValueUsed = !I->use_empty();
6254    for (unsigned Value = 0, NumValues = ValueVTs.size();
6255         Value != NumValues; ++Value) {
6256      EVT VT = ValueVTs[Value];
6257      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6258      ISD::ArgFlagsTy Flags;
6259      unsigned OriginalAlignment =
6260        TD->getABITypeAlignment(ArgTy);
6261
6262      if (F.paramHasAttr(Idx, Attribute::ZExt))
6263        Flags.setZExt();
6264      if (F.paramHasAttr(Idx, Attribute::SExt))
6265        Flags.setSExt();
6266      if (F.paramHasAttr(Idx, Attribute::InReg))
6267        Flags.setInReg();
6268      if (F.paramHasAttr(Idx, Attribute::StructRet))
6269        Flags.setSRet();
6270      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6271        Flags.setByVal();
6272        const PointerType *Ty = cast<PointerType>(I->getType());
6273        const Type *ElementTy = Ty->getElementType();
6274        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6275        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6276        // For ByVal, alignment should be passed from FE.  BE will guess if
6277        // this info is not there but there are cases it cannot get right.
6278        if (F.getParamAlignment(Idx))
6279          FrameAlign = F.getParamAlignment(Idx);
6280        Flags.setByValAlign(FrameAlign);
6281        Flags.setByValSize(FrameSize);
6282      }
6283      if (F.paramHasAttr(Idx, Attribute::Nest))
6284        Flags.setNest();
6285      Flags.setOrigAlign(OriginalAlignment);
6286
6287      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6288      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6289      for (unsigned i = 0; i != NumRegs; ++i) {
6290        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6291        if (NumRegs > 1 && i == 0)
6292          MyFlags.Flags.setSplit();
6293        // if it isn't first piece, alignment must be 1
6294        else if (i > 0)
6295          MyFlags.Flags.setOrigAlign(1);
6296        Ins.push_back(MyFlags);
6297      }
6298    }
6299  }
6300
6301  // Call the target to set up the argument values.
6302  SmallVector<SDValue, 8> InVals;
6303  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6304                                             F.isVarArg(), Ins,
6305                                             dl, DAG, InVals);
6306
6307  // Verify that the target's LowerFormalArguments behaved as expected.
6308  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6309         "LowerFormalArguments didn't return a valid chain!");
6310  assert(InVals.size() == Ins.size() &&
6311         "LowerFormalArguments didn't emit the correct number of values!");
6312  DEBUG({
6313      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6314        assert(InVals[i].getNode() &&
6315               "LowerFormalArguments emitted a null value!");
6316        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6317               "LowerFormalArguments emitted a value with the wrong type!");
6318      }
6319    });
6320
6321  // Update the DAG with the new chain value resulting from argument lowering.
6322  DAG.setRoot(NewRoot);
6323
6324  // Set up the argument values.
6325  unsigned i = 0;
6326  Idx = 1;
6327  if (!FuncInfo->CanLowerReturn) {
6328    // Create a virtual register for the sret pointer, and put in a copy
6329    // from the sret argument into it.
6330    SmallVector<EVT, 1> ValueVTs;
6331    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6332    EVT VT = ValueVTs[0];
6333    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6334    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6335    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6336                                        RegVT, VT, AssertOp);
6337
6338    MachineFunction& MF = SDB->DAG.getMachineFunction();
6339    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6340    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6341    FuncInfo->DemoteRegister = SRetReg;
6342    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6343                                    SRetReg, ArgValue);
6344    DAG.setRoot(NewRoot);
6345
6346    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6347    // Idx indexes LLVM arguments.  Don't touch it.
6348    ++i;
6349  }
6350
6351  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6352      ++I, ++Idx) {
6353    SmallVector<SDValue, 4> ArgValues;
6354    SmallVector<EVT, 4> ValueVTs;
6355    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6356    unsigned NumValues = ValueVTs.size();
6357
6358    // If this argument is unused then remember its value. It is used to generate
6359    // debugging information.
6360    if (I->use_empty() && NumValues)
6361      SDB->setUnusedArgValue(I, InVals[i]);
6362
6363    for (unsigned Value = 0; Value != NumValues; ++Value) {
6364      EVT VT = ValueVTs[Value];
6365      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6366      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6367
6368      if (!I->use_empty()) {
6369        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6370        if (F.paramHasAttr(Idx, Attribute::SExt))
6371          AssertOp = ISD::AssertSext;
6372        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6373          AssertOp = ISD::AssertZext;
6374
6375        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6376                                             NumParts, PartVT, VT,
6377                                             AssertOp));
6378      }
6379
6380      i += NumParts;
6381    }
6382
6383    // Note down frame index for byval arguments.
6384    if (I->hasByValAttr() && !ArgValues.empty())
6385      if (FrameIndexSDNode *FI =
6386          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6387        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6388
6389    if (!I->use_empty()) {
6390      SDValue Res;
6391      if (!ArgValues.empty())
6392        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6393                                 SDB->getCurDebugLoc());
6394      SDB->setValue(I, Res);
6395
6396      // If this argument is live outside of the entry block, insert a copy from
6397      // whereever we got it to the vreg that other BB's will reference it as.
6398      SDB->CopyToExportRegsIfNeeded(I);
6399    }
6400  }
6401
6402  assert(i == InVals.size() && "Argument register count mismatch!");
6403
6404  // Finally, if the target has anything special to do, allow it to do so.
6405  // FIXME: this should insert code into the DAG!
6406  EmitFunctionEntryCode();
6407}
6408
6409/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6410/// ensure constants are generated when needed.  Remember the virtual registers
6411/// that need to be added to the Machine PHI nodes as input.  We cannot just
6412/// directly add them, because expansion might result in multiple MBB's for one
6413/// BB.  As such, the start of the BB might correspond to a different MBB than
6414/// the end.
6415///
6416void
6417SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6418  const TerminatorInst *TI = LLVMBB->getTerminator();
6419
6420  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6421
6422  // Check successor nodes' PHI nodes that expect a constant to be available
6423  // from this block.
6424  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6425    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6426    if (!isa<PHINode>(SuccBB->begin())) continue;
6427    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6428
6429    // If this terminator has multiple identical successors (common for
6430    // switches), only handle each succ once.
6431    if (!SuccsHandled.insert(SuccMBB)) continue;
6432
6433    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6434
6435    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6436    // nodes and Machine PHI nodes, but the incoming operands have not been
6437    // emitted yet.
6438    for (BasicBlock::const_iterator I = SuccBB->begin();
6439         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6440      // Ignore dead phi's.
6441      if (PN->use_empty()) continue;
6442
6443      unsigned Reg;
6444      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6445
6446      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6447        unsigned &RegOut = ConstantsOut[C];
6448        if (RegOut == 0) {
6449          RegOut = FuncInfo.CreateRegs(C->getType());
6450          CopyValueToVirtualRegister(C, RegOut);
6451        }
6452        Reg = RegOut;
6453      } else {
6454        DenseMap<const Value *, unsigned>::iterator I =
6455          FuncInfo.ValueMap.find(PHIOp);
6456        if (I != FuncInfo.ValueMap.end())
6457          Reg = I->second;
6458        else {
6459          assert(isa<AllocaInst>(PHIOp) &&
6460                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6461                 "Didn't codegen value into a register!??");
6462          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6463          CopyValueToVirtualRegister(PHIOp, Reg);
6464        }
6465      }
6466
6467      // Remember that this register needs to added to the machine PHI node as
6468      // the input for this MBB.
6469      SmallVector<EVT, 4> ValueVTs;
6470      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6471      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6472        EVT VT = ValueVTs[vti];
6473        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6474        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6475          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6476        Reg += NumRegisters;
6477      }
6478    }
6479  }
6480  ConstantsOut.clear();
6481}
6482