SelectionDAGBuilder.cpp revision 9126c0d42a5176e5865171713fae4a62e3c69912
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/GCStrategy.h"
36#include "llvm/CodeGen/GCMetadata.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineJumpTableInfo.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73/// getCopyFromParts - Create a value that contains the specified legal parts
74/// combined into the value they represent.  If the parts combine to a type
75/// larger then ValueVT then AssertOp can be used to specify whether the extra
76/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
77/// (ISD::AssertSext).
78static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
79                                const SDValue *Parts,
80                                unsigned NumParts, EVT PartVT, EVT ValueVT,
81                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
82  assert(NumParts > 0 && "No parts to assemble!");
83  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
84  SDValue Val = Parts[0];
85
86  if (NumParts > 1) {
87    // Assemble the value from multiple parts.
88    if (!ValueVT.isVector() && ValueVT.isInteger()) {
89      unsigned PartBits = PartVT.getSizeInBits();
90      unsigned ValueBits = ValueVT.getSizeInBits();
91
92      // Assemble the power of 2 part.
93      unsigned RoundParts = NumParts & (NumParts - 1) ?
94        1 << Log2_32(NumParts) : NumParts;
95      unsigned RoundBits = PartBits * RoundParts;
96      EVT RoundVT = RoundBits == ValueBits ?
97        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
98      SDValue Lo, Hi;
99
100      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
101
102      if (RoundParts > 2) {
103        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
104                              PartVT, HalfVT);
105        Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
106                              RoundParts / 2, PartVT, HalfVT);
107      } else {
108        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
109        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
110      }
111
112      if (TLI.isBigEndian())
113        std::swap(Lo, Hi);
114
115      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
116
117      if (RoundParts < NumParts) {
118        // Assemble the trailing non-power-of-2 part.
119        unsigned OddParts = NumParts - RoundParts;
120        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
121        Hi = getCopyFromParts(DAG, dl,
122                              Parts + RoundParts, OddParts, PartVT, OddVT);
123
124        // Combine the round and odd parts.
125        Lo = Val;
126        if (TLI.isBigEndian())
127          std::swap(Lo, Hi);
128        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
129        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
130        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
131                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
132                                         TLI.getPointerTy()));
133        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
134        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
135      }
136    } else if (ValueVT.isVector()) {
137      // Handle a multi-element vector.
138      EVT IntermediateVT, RegisterVT;
139      unsigned NumIntermediates;
140      unsigned NumRegs =
141        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
142                                   NumIntermediates, RegisterVT);
143      assert(NumRegs == NumParts
144             && "Part count doesn't match vector breakdown!");
145      NumParts = NumRegs; // Silence a compiler warning.
146      assert(RegisterVT == PartVT
147             && "Part type doesn't match vector breakdown!");
148      assert(RegisterVT == Parts[0].getValueType() &&
149             "Part type doesn't match part!");
150
151      // Assemble the parts into intermediate operands.
152      SmallVector<SDValue, 8> Ops(NumIntermediates);
153      if (NumIntermediates == NumParts) {
154        // If the register was not expanded, truncate or copy the value,
155        // as appropriate.
156        for (unsigned i = 0; i != NumParts; ++i)
157          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
158                                    PartVT, IntermediateVT);
159      } else if (NumParts > 0) {
160        // If the intermediate type was expanded, build the intermediate
161        // operands from the parts.
162        assert(NumParts % NumIntermediates == 0 &&
163               "Must expand into a divisible number of parts!");
164        unsigned Factor = NumParts / NumIntermediates;
165        for (unsigned i = 0; i != NumIntermediates; ++i)
166          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
167                                    PartVT, IntermediateVT);
168      }
169
170      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
171      // intermediate operands.
172      Val = DAG.getNode(IntermediateVT.isVector() ?
173                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
174                        ValueVT, &Ops[0], NumIntermediates);
175    } else if (PartVT.isFloatingPoint()) {
176      // FP split into multiple FP parts (for ppcf128)
177      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
178             "Unexpected split");
179      SDValue Lo, Hi;
180      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
181      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
182      if (TLI.isBigEndian())
183        std::swap(Lo, Hi);
184      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
185    } else {
186      // FP split into integer parts (soft fp)
187      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
188             !PartVT.isVector() && "Unexpected split");
189      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
190      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
191    }
192  }
193
194  // There is now one part, held in Val.  Correct it to match ValueVT.
195  PartVT = Val.getValueType();
196
197  if (PartVT == ValueVT)
198    return Val;
199
200  if (PartVT.isVector()) {
201    assert(ValueVT.isVector() && "Unknown vector conversion!");
202    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
203  }
204
205  if (ValueVT.isVector()) {
206    assert(ValueVT.getVectorElementType() == PartVT &&
207           ValueVT.getVectorNumElements() == 1 &&
208           "Only trivial scalar-to-vector conversions should get here!");
209    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
210  }
211
212  if (PartVT.isInteger() &&
213      ValueVT.isInteger()) {
214    if (ValueVT.bitsLT(PartVT)) {
215      // For a truncate, see if we have any information to
216      // indicate whether the truncated bits will always be
217      // zero or sign-extension.
218      if (AssertOp != ISD::DELETED_NODE)
219        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
220                          DAG.getValueType(ValueVT));
221      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
222    } else {
223      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
224    }
225  }
226
227  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
228    if (ValueVT.bitsLT(Val.getValueType())) {
229      // FP_ROUND's are always exact here.
230      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
231                         DAG.getIntPtrConstant(1));
232    }
233
234    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
235  }
236
237  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
238    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
239
240  llvm_unreachable("Unknown mismatch!");
241  return SDValue();
242}
243
244/// getCopyToParts - Create a series of nodes that contain the specified value
245/// split into legal parts.  If the parts contain more bits than Val, then, for
246/// integers, ExtendKind can be used to specify how to generate the extra bits.
247static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
248                           SDValue Val, SDValue *Parts, unsigned NumParts,
249                           EVT PartVT,
250                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
251  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
252  EVT PtrVT = TLI.getPointerTy();
253  EVT ValueVT = Val.getValueType();
254  unsigned PartBits = PartVT.getSizeInBits();
255  unsigned OrigNumParts = NumParts;
256  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
257
258  if (!NumParts)
259    return;
260
261  if (!ValueVT.isVector()) {
262    if (PartVT == ValueVT) {
263      assert(NumParts == 1 && "No-op copy with multiple parts!");
264      Parts[0] = Val;
265      return;
266    }
267
268    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
269      // If the parts cover more bits than the value has, promote the value.
270      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
271        assert(NumParts == 1 && "Do not know what to promote to!");
272        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
273      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
274        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
275        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
276      } else {
277        llvm_unreachable("Unknown mismatch!");
278      }
279    } else if (PartBits == ValueVT.getSizeInBits()) {
280      // Different types of the same size.
281      assert(NumParts == 1 && PartVT != ValueVT);
282      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
283    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
284      // If the parts cover less bits than value has, truncate the value.
285      if (PartVT.isInteger() && ValueVT.isInteger()) {
286        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
287        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
288      } else {
289        llvm_unreachable("Unknown mismatch!");
290      }
291    }
292
293    // The value may have changed - recompute ValueVT.
294    ValueVT = Val.getValueType();
295    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
296           "Failed to tile the value with PartVT!");
297
298    if (NumParts == 1) {
299      assert(PartVT == ValueVT && "Type conversion failed!");
300      Parts[0] = Val;
301      return;
302    }
303
304    // Expand the value into multiple parts.
305    if (NumParts & (NumParts - 1)) {
306      // The number of parts is not a power of 2.  Split off and copy the tail.
307      assert(PartVT.isInteger() && ValueVT.isInteger() &&
308             "Do not know what to expand to!");
309      unsigned RoundParts = 1 << Log2_32(NumParts);
310      unsigned RoundBits = RoundParts * PartBits;
311      unsigned OddParts = NumParts - RoundParts;
312      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
313                                   DAG.getConstant(RoundBits,
314                                                   TLI.getPointerTy()));
315      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
316                     OddParts, PartVT);
317
318      if (TLI.isBigEndian())
319        // The odd parts were reversed by getCopyToParts - unreverse them.
320        std::reverse(Parts + RoundParts, Parts + NumParts);
321
322      NumParts = RoundParts;
323      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
324      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
325    }
326
327    // The number of parts is a power of 2.  Repeatedly bisect the value using
328    // EXTRACT_ELEMENT.
329    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
330                           EVT::getIntegerVT(*DAG.getContext(),
331                                             ValueVT.getSizeInBits()),
332                           Val);
333
334    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
335      for (unsigned i = 0; i < NumParts; i += StepSize) {
336        unsigned ThisBits = StepSize * PartBits / 2;
337        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
338        SDValue &Part0 = Parts[i];
339        SDValue &Part1 = Parts[i+StepSize/2];
340
341        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
342                            ThisVT, Part0,
343                            DAG.getConstant(1, PtrVT));
344        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
345                            ThisVT, Part0,
346                            DAG.getConstant(0, PtrVT));
347
348        if (ThisBits == PartBits && ThisVT != PartVT) {
349          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
350                                                PartVT, Part0);
351          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
352                                                PartVT, Part1);
353        }
354      }
355    }
356
357    if (TLI.isBigEndian())
358      std::reverse(Parts, Parts + OrigNumParts);
359
360    return;
361  }
362
363  // Vector ValueVT.
364  if (NumParts == 1) {
365    if (PartVT != ValueVT) {
366      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
367        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
368      } else {
369        assert(ValueVT.getVectorElementType() == PartVT &&
370               ValueVT.getVectorNumElements() == 1 &&
371               "Only trivial vector-to-scalar conversions should get here!");
372        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
373                          PartVT, Val,
374                          DAG.getConstant(0, PtrVT));
375      }
376    }
377
378    Parts[0] = Val;
379    return;
380  }
381
382  // Handle a multi-element vector.
383  EVT IntermediateVT, RegisterVT;
384  unsigned NumIntermediates;
385  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
386                              IntermediateVT, NumIntermediates, RegisterVT);
387  unsigned NumElements = ValueVT.getVectorNumElements();
388
389  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390  NumParts = NumRegs; // Silence a compiler warning.
391  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392
393  // Split the vector into intermediate operands.
394  SmallVector<SDValue, 8> Ops(NumIntermediates);
395  for (unsigned i = 0; i != NumIntermediates; ++i) {
396    if (IntermediateVT.isVector())
397      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
398                           IntermediateVT, Val,
399                           DAG.getConstant(i * (NumElements / NumIntermediates),
400                                           PtrVT));
401    else
402      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
403                           IntermediateVT, Val,
404                           DAG.getConstant(i, PtrVT));
405  }
406
407  // Split the intermediate operands into legal parts.
408  if (NumParts == NumIntermediates) {
409    // If the register was not expanded, promote or copy the value,
410    // as appropriate.
411    for (unsigned i = 0; i != NumParts; ++i)
412      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
413  } else if (NumParts > 0) {
414    // If the intermediate type was expanded, split each the value into
415    // legal parts.
416    assert(NumParts % NumIntermediates == 0 &&
417           "Must expand into a divisible number of parts!");
418    unsigned Factor = NumParts / NumIntermediates;
419    for (unsigned i = 0; i != NumIntermediates; ++i)
420      getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
421  }
422}
423
424namespace {
425  /// RegsForValue - This struct represents the registers (physical or virtual)
426  /// that a particular set of values is assigned, and the type information
427  /// about the value. The most common situation is to represent one value at a
428  /// time, but struct or array values are handled element-wise as multiple
429  /// values.  The splitting of aggregates is performed recursively, so that we
430  /// never have aggregate-typed registers. The values at this point do not
431  /// necessarily have legal types, so each value may require one or more
432  /// registers of some legal type.
433  ///
434  struct RegsForValue {
435    /// ValueVTs - The value types of the values, which may not be legal, and
436    /// may need be promoted or synthesized from one or more registers.
437    ///
438    SmallVector<EVT, 4> ValueVTs;
439
440    /// RegVTs - The value types of the registers. This is the same size as
441    /// ValueVTs and it records, for each value, what the type of the assigned
442    /// register or registers are. (Individual values are never synthesized
443    /// from more than one type of register.)
444    ///
445    /// With virtual registers, the contents of RegVTs is redundant with TLI's
446    /// getRegisterType member function, however when with physical registers
447    /// it is necessary to have a separate record of the types.
448    ///
449    SmallVector<EVT, 4> RegVTs;
450
451    /// Regs - This list holds the registers assigned to the values.
452    /// Each legal or promoted value requires one register, and each
453    /// expanded value requires multiple registers.
454    ///
455    SmallVector<unsigned, 4> Regs;
456
457    RegsForValue() {}
458
459    RegsForValue(const SmallVector<unsigned, 4> &regs,
460                 EVT regvt, EVT valuevt)
461      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
462
463    RegsForValue(const SmallVector<unsigned, 4> &regs,
464                 const SmallVector<EVT, 4> &regvts,
465                 const SmallVector<EVT, 4> &valuevts)
466      : ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
467
468    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
469                 unsigned Reg, const Type *Ty) {
470      ComputeValueVTs(tli, Ty, ValueVTs);
471
472      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
473        EVT ValueVT = ValueVTs[Value];
474        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
475        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
476        for (unsigned i = 0; i != NumRegs; ++i)
477          Regs.push_back(Reg + i);
478        RegVTs.push_back(RegisterVT);
479        Reg += NumRegs;
480      }
481    }
482
483    /// areValueTypesLegal - Return true if types of all the values are legal.
484    bool areValueTypesLegal(const TargetLowering &TLI) {
485      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
486        EVT RegisterVT = RegVTs[Value];
487        if (!TLI.isTypeLegal(RegisterVT))
488          return false;
489      }
490      return true;
491    }
492
493    /// append - Add the specified values to this one.
494    void append(const RegsForValue &RHS) {
495      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
496      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
497      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
498    }
499
500    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
501    /// this value and returns the result as a ValueVTs value.  This uses
502    /// Chain/Flag as the input and updates them for the output Chain/Flag.
503    /// If the Flag pointer is NULL, no flag is used.
504    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
505                            DebugLoc dl,
506                            SDValue &Chain, SDValue *Flag) const;
507
508    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
509    /// specified value into the registers specified by this object.  This uses
510    /// Chain/Flag as the input and updates them for the output Chain/Flag.
511    /// If the Flag pointer is NULL, no flag is used.
512    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
513                       SDValue &Chain, SDValue *Flag) const;
514
515    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
516    /// operand list.  This adds the code marker, matching input operand index
517    /// (if applicable), and includes the number of values added into it.
518    void AddInlineAsmOperands(unsigned Kind,
519                              bool HasMatching, unsigned MatchingIdx,
520                              SelectionDAG &DAG,
521                              std::vector<SDValue> &Ops) const;
522  };
523}
524
525/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
526/// this value and returns the result as a ValueVT value.  This uses
527/// Chain/Flag as the input and updates them for the output Chain/Flag.
528/// If the Flag pointer is NULL, no flag is used.
529SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
530                                      FunctionLoweringInfo &FuncInfo,
531                                      DebugLoc dl,
532                                      SDValue &Chain, SDValue *Flag) const {
533  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
534
535  // Assemble the legal parts into the final values.
536  SmallVector<SDValue, 4> Values(ValueVTs.size());
537  SmallVector<SDValue, 8> Parts;
538  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
539    // Copy the legal parts from the registers.
540    EVT ValueVT = ValueVTs[Value];
541    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
542    EVT RegisterVT = RegVTs[Value];
543
544    Parts.resize(NumRegs);
545    for (unsigned i = 0; i != NumRegs; ++i) {
546      SDValue P;
547      if (Flag == 0) {
548        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
549      } else {
550        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
551        *Flag = P.getValue(2);
552      }
553
554      Chain = P.getValue(1);
555
556      // If the source register was virtual and if we know something about it,
557      // add an assert node.
558      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
559          RegisterVT.isInteger() && !RegisterVT.isVector()) {
560        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
561        if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
562          const FunctionLoweringInfo::LiveOutInfo &LOI =
563            FuncInfo.LiveOutRegInfo[SlotNo];
564
565          unsigned RegSize = RegisterVT.getSizeInBits();
566          unsigned NumSignBits = LOI.NumSignBits;
567          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
568
569          // FIXME: We capture more information than the dag can represent.  For
570          // now, just use the tightest assertzext/assertsext possible.
571          bool isSExt = true;
572          EVT FromVT(MVT::Other);
573          if (NumSignBits == RegSize)
574            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
575          else if (NumZeroBits >= RegSize-1)
576            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
577          else if (NumSignBits > RegSize-8)
578            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
579          else if (NumZeroBits >= RegSize-8)
580            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
581          else if (NumSignBits > RegSize-16)
582            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
583          else if (NumZeroBits >= RegSize-16)
584            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
585          else if (NumSignBits > RegSize-32)
586            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
587          else if (NumZeroBits >= RegSize-32)
588            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
589
590          if (FromVT != MVT::Other)
591            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
592                            RegisterVT, P, DAG.getValueType(FromVT));
593        }
594      }
595
596      Parts[i] = P;
597    }
598
599    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
600                                     NumRegs, RegisterVT, ValueVT);
601    Part += NumRegs;
602    Parts.clear();
603  }
604
605  return DAG.getNode(ISD::MERGE_VALUES, dl,
606                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
607                     &Values[0], ValueVTs.size());
608}
609
610/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
611/// specified value into the registers specified by this object.  This uses
612/// Chain/Flag as the input and updates them for the output Chain/Flag.
613/// If the Flag pointer is NULL, no flag is used.
614void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
615                                 SDValue &Chain, SDValue *Flag) const {
616  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
617
618  // Get the list of the values's legal parts.
619  unsigned NumRegs = Regs.size();
620  SmallVector<SDValue, 8> Parts(NumRegs);
621  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
622    EVT ValueVT = ValueVTs[Value];
623    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
624    EVT RegisterVT = RegVTs[Value];
625
626    getCopyToParts(DAG, dl,
627                   Val.getValue(Val.getResNo() + Value),
628                   &Parts[Part], NumParts, RegisterVT);
629    Part += NumParts;
630  }
631
632  // Copy the parts into the registers.
633  SmallVector<SDValue, 8> Chains(NumRegs);
634  for (unsigned i = 0; i != NumRegs; ++i) {
635    SDValue Part;
636    if (Flag == 0) {
637      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
638    } else {
639      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
640      *Flag = Part.getValue(1);
641    }
642
643    Chains[i] = Part.getValue(0);
644  }
645
646  if (NumRegs == 1 || Flag)
647    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
648    // flagged to it. That is the CopyToReg nodes and the user are considered
649    // a single scheduling unit. If we create a TokenFactor and return it as
650    // chain, then the TokenFactor is both a predecessor (operand) of the
651    // user as well as a successor (the TF operands are flagged to the user).
652    // c1, f1 = CopyToReg
653    // c2, f2 = CopyToReg
654    // c3     = TokenFactor c1, c2
655    // ...
656    //        = op c3, ..., f2
657    Chain = Chains[NumRegs-1];
658  else
659    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
660}
661
662/// AddInlineAsmOperands - Add this value to the specified inlineasm node
663/// operand list.  This adds the code marker and includes the number of
664/// values added into it.
665void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
666                                        unsigned MatchingIdx,
667                                        SelectionDAG &DAG,
668                                        std::vector<SDValue> &Ops) const {
669  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
670
671  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
672  if (HasMatching)
673    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
674  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
675  Ops.push_back(Res);
676
677  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
678    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
679    EVT RegisterVT = RegVTs[Value];
680    for (unsigned i = 0; i != NumRegs; ++i) {
681      assert(Reg < Regs.size() && "Mismatch in # registers expected");
682      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
683    }
684  }
685}
686
687void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
688  AA = &aa;
689  GFI = gfi;
690  TD = DAG.getTarget().getTargetData();
691}
692
693/// clear - Clear out the current SelectionDAG and the associated
694/// state and prepare this SelectionDAGBuilder object to be used
695/// for a new block. This doesn't clear out information about
696/// additional blocks that are needed to complete switch lowering
697/// or PHI node updating; that information is cleared out as it is
698/// consumed.
699void SelectionDAGBuilder::clear() {
700  NodeMap.clear();
701  UnusedArgNodeMap.clear();
702  PendingLoads.clear();
703  PendingExports.clear();
704  CurDebugLoc = DebugLoc();
705  HasTailCall = false;
706}
707
708/// getRoot - Return the current virtual root of the Selection DAG,
709/// flushing any PendingLoad items. This must be done before emitting
710/// a store or any other node that may need to be ordered after any
711/// prior load instructions.
712///
713SDValue SelectionDAGBuilder::getRoot() {
714  if (PendingLoads.empty())
715    return DAG.getRoot();
716
717  if (PendingLoads.size() == 1) {
718    SDValue Root = PendingLoads[0];
719    DAG.setRoot(Root);
720    PendingLoads.clear();
721    return Root;
722  }
723
724  // Otherwise, we have to make a token factor node.
725  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
726                               &PendingLoads[0], PendingLoads.size());
727  PendingLoads.clear();
728  DAG.setRoot(Root);
729  return Root;
730}
731
732/// getControlRoot - Similar to getRoot, but instead of flushing all the
733/// PendingLoad items, flush all the PendingExports items. It is necessary
734/// to do this before emitting a terminator instruction.
735///
736SDValue SelectionDAGBuilder::getControlRoot() {
737  SDValue Root = DAG.getRoot();
738
739  if (PendingExports.empty())
740    return Root;
741
742  // Turn all of the CopyToReg chains into one factored node.
743  if (Root.getOpcode() != ISD::EntryToken) {
744    unsigned i = 0, e = PendingExports.size();
745    for (; i != e; ++i) {
746      assert(PendingExports[i].getNode()->getNumOperands() > 1);
747      if (PendingExports[i].getNode()->getOperand(0) == Root)
748        break;  // Don't add the root if we already indirectly depend on it.
749    }
750
751    if (i == e)
752      PendingExports.push_back(Root);
753  }
754
755  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
756                     &PendingExports[0],
757                     PendingExports.size());
758  PendingExports.clear();
759  DAG.setRoot(Root);
760  return Root;
761}
762
763void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
764  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
765  DAG.AssignOrdering(Node, SDNodeOrder);
766
767  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
768    AssignOrderingToNode(Node->getOperand(I).getNode());
769}
770
771void SelectionDAGBuilder::visit(const Instruction &I) {
772  // Set up outgoing PHI node register values before emitting the terminator.
773  if (isa<TerminatorInst>(&I))
774    HandlePHINodesInSuccessorBlocks(I.getParent());
775
776  CurDebugLoc = I.getDebugLoc();
777
778  visit(I.getOpcode(), I);
779
780  if (!isa<TerminatorInst>(&I) && !HasTailCall)
781    CopyToExportRegsIfNeeded(&I);
782
783  CurDebugLoc = DebugLoc();
784}
785
786void SelectionDAGBuilder::visitPHI(const PHINode &) {
787  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
788}
789
790void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
791  // Note: this doesn't use InstVisitor, because it has to work with
792  // ConstantExpr's in addition to instructions.
793  switch (Opcode) {
794  default: llvm_unreachable("Unknown instruction type encountered!");
795    // Build the switch statement using the Instruction.def file.
796#define HANDLE_INST(NUM, OPCODE, CLASS) \
797    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
798#include "llvm/Instruction.def"
799  }
800
801  // Assign the ordering to the freshly created DAG nodes.
802  if (NodeMap.count(&I)) {
803    ++SDNodeOrder;
804    AssignOrderingToNode(getValue(&I).getNode());
805  }
806}
807
808SDValue SelectionDAGBuilder::getValue(const Value *V) {
809  SDValue &N = NodeMap[V];
810  if (N.getNode()) return N;
811
812  if (const Constant *C = dyn_cast<Constant>(V)) {
813    EVT VT = TLI.getValueType(V->getType(), true);
814
815    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
816      return N = DAG.getConstant(*CI, VT);
817
818    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
819      return N = DAG.getGlobalAddress(GV, VT);
820
821    if (isa<ConstantPointerNull>(C))
822      return N = DAG.getConstant(0, TLI.getPointerTy());
823
824    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
825      return N = DAG.getConstantFP(*CFP, VT);
826
827    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
828      return N = DAG.getUNDEF(VT);
829
830    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
831      visit(CE->getOpcode(), *CE);
832      SDValue N1 = NodeMap[V];
833      assert(N1.getNode() && "visit didn't populate the NodeMap!");
834      return N1;
835    }
836
837    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
838      SmallVector<SDValue, 4> Constants;
839      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
840           OI != OE; ++OI) {
841        SDNode *Val = getValue(*OI).getNode();
842        // If the operand is an empty aggregate, there are no values.
843        if (!Val) continue;
844        // Add each leaf value from the operand to the Constants list
845        // to form a flattened list of all the values.
846        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
847          Constants.push_back(SDValue(Val, i));
848      }
849
850      return DAG.getMergeValues(&Constants[0], Constants.size(),
851                                getCurDebugLoc());
852    }
853
854    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
855      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
856             "Unknown struct or array constant!");
857
858      SmallVector<EVT, 4> ValueVTs;
859      ComputeValueVTs(TLI, C->getType(), ValueVTs);
860      unsigned NumElts = ValueVTs.size();
861      if (NumElts == 0)
862        return SDValue(); // empty struct
863      SmallVector<SDValue, 4> Constants(NumElts);
864      for (unsigned i = 0; i != NumElts; ++i) {
865        EVT EltVT = ValueVTs[i];
866        if (isa<UndefValue>(C))
867          Constants[i] = DAG.getUNDEF(EltVT);
868        else if (EltVT.isFloatingPoint())
869          Constants[i] = DAG.getConstantFP(0, EltVT);
870        else
871          Constants[i] = DAG.getConstant(0, EltVT);
872      }
873
874      return DAG.getMergeValues(&Constants[0], NumElts,
875                                getCurDebugLoc());
876    }
877
878    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
879      return DAG.getBlockAddress(BA, VT);
880
881    const VectorType *VecTy = cast<VectorType>(V->getType());
882    unsigned NumElements = VecTy->getNumElements();
883
884    // Now that we know the number and type of the elements, get that number of
885    // elements into the Ops array based on what kind of constant it is.
886    SmallVector<SDValue, 16> Ops;
887    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
888      for (unsigned i = 0; i != NumElements; ++i)
889        Ops.push_back(getValue(CP->getOperand(i)));
890    } else {
891      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
892      EVT EltVT = TLI.getValueType(VecTy->getElementType());
893
894      SDValue Op;
895      if (EltVT.isFloatingPoint())
896        Op = DAG.getConstantFP(0, EltVT);
897      else
898        Op = DAG.getConstant(0, EltVT);
899      Ops.assign(NumElements, Op);
900    }
901
902    // Create a BUILD_VECTOR node.
903    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
904                                    VT, &Ops[0], Ops.size());
905  }
906
907  // If this is a static alloca, generate it as the frameindex instead of
908  // computation.
909  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
910    DenseMap<const AllocaInst*, int>::iterator SI =
911      FuncInfo.StaticAllocaMap.find(AI);
912    if (SI != FuncInfo.StaticAllocaMap.end())
913      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
914  }
915
916  unsigned InReg = FuncInfo.ValueMap[V];
917  assert(InReg && "Value not in map!");
918
919  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
920  SDValue Chain = DAG.getEntryNode();
921  return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
922}
923
924/// Get the EVTs and ArgFlags collections that represent the legalized return
925/// type of the given function.  This does not require a DAG or a return value,
926/// and is suitable for use before any DAGs for the function are constructed.
927static void getReturnInfo(const Type* ReturnType,
928                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
929                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
930                   const TargetLowering &TLI,
931                   SmallVectorImpl<uint64_t> *Offsets = 0) {
932  SmallVector<EVT, 4> ValueVTs;
933  ComputeValueVTs(TLI, ReturnType, ValueVTs);
934  unsigned NumValues = ValueVTs.size();
935  if (NumValues == 0) return;
936  unsigned Offset = 0;
937
938  for (unsigned j = 0, f = NumValues; j != f; ++j) {
939    EVT VT = ValueVTs[j];
940    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
941
942    if (attr & Attribute::SExt)
943      ExtendKind = ISD::SIGN_EXTEND;
944    else if (attr & Attribute::ZExt)
945      ExtendKind = ISD::ZERO_EXTEND;
946
947    // FIXME: C calling convention requires the return type to be promoted to
948    // at least 32-bit. But this is not necessary for non-C calling
949    // conventions. The frontend should mark functions whose return values
950    // require promoting with signext or zeroext attributes.
951    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
952      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
953      if (VT.bitsLT(MinVT))
954        VT = MinVT;
955    }
956
957    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
958    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
959    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
960                        PartVT.getTypeForEVT(ReturnType->getContext()));
961
962    // 'inreg' on function refers to return value
963    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
964    if (attr & Attribute::InReg)
965      Flags.setInReg();
966
967    // Propagate extension type if any
968    if (attr & Attribute::SExt)
969      Flags.setSExt();
970    else if (attr & Attribute::ZExt)
971      Flags.setZExt();
972
973    for (unsigned i = 0; i < NumParts; ++i) {
974      OutVTs.push_back(PartVT);
975      OutFlags.push_back(Flags);
976      if (Offsets)
977      {
978        Offsets->push_back(Offset);
979        Offset += PartSize;
980      }
981    }
982  }
983}
984
985void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
986  SDValue Chain = getControlRoot();
987  SmallVector<ISD::OutputArg, 8> Outs;
988
989  if (!FuncInfo.CanLowerReturn) {
990    unsigned DemoteReg = FuncInfo.DemoteRegister;
991    const Function *F = I.getParent()->getParent();
992
993    // Emit a store of the return value through the virtual register.
994    // Leave Outs empty so that LowerReturn won't try to load return
995    // registers the usual way.
996    SmallVector<EVT, 1> PtrValueVTs;
997    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
998                    PtrValueVTs);
999
1000    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1001    SDValue RetOp = getValue(I.getOperand(0));
1002
1003    SmallVector<EVT, 4> ValueVTs;
1004    SmallVector<uint64_t, 4> Offsets;
1005    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1006    unsigned NumValues = ValueVTs.size();
1007
1008    SmallVector<SDValue, 4> Chains(NumValues);
1009    EVT PtrVT = PtrValueVTs[0];
1010    for (unsigned i = 0; i != NumValues; ++i) {
1011      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
1012                                DAG.getConstant(Offsets[i], PtrVT));
1013      Chains[i] =
1014        DAG.getStore(Chain, getCurDebugLoc(),
1015                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1016                     Add, NULL, Offsets[i], false, false, 0);
1017    }
1018
1019    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1020                        MVT::Other, &Chains[0], NumValues);
1021  } else if (I.getNumOperands() != 0) {
1022    SmallVector<EVT, 4> ValueVTs;
1023    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1024    unsigned NumValues = ValueVTs.size();
1025    if (NumValues) {
1026      SDValue RetOp = getValue(I.getOperand(0));
1027      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1028        EVT VT = ValueVTs[j];
1029
1030        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1031
1032        const Function *F = I.getParent()->getParent();
1033        if (F->paramHasAttr(0, Attribute::SExt))
1034          ExtendKind = ISD::SIGN_EXTEND;
1035        else if (F->paramHasAttr(0, Attribute::ZExt))
1036          ExtendKind = ISD::ZERO_EXTEND;
1037
1038        // FIXME: C calling convention requires the return type to be promoted
1039        // to at least 32-bit. But this is not necessary for non-C calling
1040        // conventions. The frontend should mark functions whose return values
1041        // require promoting with signext or zeroext attributes.
1042        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1043          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1044          if (VT.bitsLT(MinVT))
1045            VT = MinVT;
1046        }
1047
1048        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1049        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1050        SmallVector<SDValue, 4> Parts(NumParts);
1051        getCopyToParts(DAG, getCurDebugLoc(),
1052                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1053                       &Parts[0], NumParts, PartVT, ExtendKind);
1054
1055        // 'inreg' on function refers to return value
1056        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1057        if (F->paramHasAttr(0, Attribute::InReg))
1058          Flags.setInReg();
1059
1060        // Propagate extension type if any
1061        if (F->paramHasAttr(0, Attribute::SExt))
1062          Flags.setSExt();
1063        else if (F->paramHasAttr(0, Attribute::ZExt))
1064          Flags.setZExt();
1065
1066        for (unsigned i = 0; i < NumParts; ++i)
1067          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
1068      }
1069    }
1070  }
1071
1072  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1073  CallingConv::ID CallConv =
1074    DAG.getMachineFunction().getFunction()->getCallingConv();
1075  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1076                          Outs, getCurDebugLoc(), DAG);
1077
1078  // Verify that the target's LowerReturn behaved as expected.
1079  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1080         "LowerReturn didn't return a valid chain!");
1081
1082  // Update the DAG with the new chain value resulting from return lowering.
1083  DAG.setRoot(Chain);
1084}
1085
1086/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1087/// created for it, emit nodes to copy the value into the virtual
1088/// registers.
1089void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1090  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1091  if (VMI != FuncInfo.ValueMap.end()) {
1092    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1093    CopyValueToVirtualRegister(V, VMI->second);
1094  }
1095}
1096
1097/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1098/// the current basic block, add it to ValueMap now so that we'll get a
1099/// CopyTo/FromReg.
1100void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1101  // No need to export constants.
1102  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1103
1104  // Already exported?
1105  if (FuncInfo.isExportedInst(V)) return;
1106
1107  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1108  CopyValueToVirtualRegister(V, Reg);
1109}
1110
1111bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1112                                                     const BasicBlock *FromBB) {
1113  // The operands of the setcc have to be in this block.  We don't know
1114  // how to export them from some other block.
1115  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1116    // Can export from current BB.
1117    if (VI->getParent() == FromBB)
1118      return true;
1119
1120    // Is already exported, noop.
1121    return FuncInfo.isExportedInst(V);
1122  }
1123
1124  // If this is an argument, we can export it if the BB is the entry block or
1125  // if it is already exported.
1126  if (isa<Argument>(V)) {
1127    if (FromBB == &FromBB->getParent()->getEntryBlock())
1128      return true;
1129
1130    // Otherwise, can only export this if it is already exported.
1131    return FuncInfo.isExportedInst(V);
1132  }
1133
1134  // Otherwise, constants can always be exported.
1135  return true;
1136}
1137
1138static bool InBlock(const Value *V, const BasicBlock *BB) {
1139  if (const Instruction *I = dyn_cast<Instruction>(V))
1140    return I->getParent() == BB;
1141  return true;
1142}
1143
1144/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1145/// This function emits a branch and is used at the leaves of an OR or an
1146/// AND operator tree.
1147///
1148void
1149SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1150                                                  MachineBasicBlock *TBB,
1151                                                  MachineBasicBlock *FBB,
1152                                                  MachineBasicBlock *CurBB,
1153                                                  MachineBasicBlock *SwitchBB) {
1154  const BasicBlock *BB = CurBB->getBasicBlock();
1155
1156  // If the leaf of the tree is a comparison, merge the condition into
1157  // the caseblock.
1158  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1159    // The operands of the cmp have to be in this block.  We don't know
1160    // how to export them from some other block.  If this is the first block
1161    // of the sequence, no exporting is needed.
1162    if (CurBB == SwitchBB ||
1163        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1164         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1165      ISD::CondCode Condition;
1166      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1167        Condition = getICmpCondCode(IC->getPredicate());
1168      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1169        Condition = getFCmpCondCode(FC->getPredicate());
1170      } else {
1171        Condition = ISD::SETEQ; // silence warning.
1172        llvm_unreachable("Unknown compare instruction");
1173      }
1174
1175      CaseBlock CB(Condition, BOp->getOperand(0),
1176                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1177      SwitchCases.push_back(CB);
1178      return;
1179    }
1180  }
1181
1182  // Create a CaseBlock record representing this branch.
1183  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1184               NULL, TBB, FBB, CurBB);
1185  SwitchCases.push_back(CB);
1186}
1187
1188/// FindMergedConditions - If Cond is an expression like
1189void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1190                                               MachineBasicBlock *TBB,
1191                                               MachineBasicBlock *FBB,
1192                                               MachineBasicBlock *CurBB,
1193                                               MachineBasicBlock *SwitchBB,
1194                                               unsigned Opc) {
1195  // If this node is not part of the or/and tree, emit it as a branch.
1196  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1197  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1198      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1199      BOp->getParent() != CurBB->getBasicBlock() ||
1200      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1201      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1202    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1203    return;
1204  }
1205
1206  //  Create TmpBB after CurBB.
1207  MachineFunction::iterator BBI = CurBB;
1208  MachineFunction &MF = DAG.getMachineFunction();
1209  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1210  CurBB->getParent()->insert(++BBI, TmpBB);
1211
1212  if (Opc == Instruction::Or) {
1213    // Codegen X | Y as:
1214    //   jmp_if_X TBB
1215    //   jmp TmpBB
1216    // TmpBB:
1217    //   jmp_if_Y TBB
1218    //   jmp FBB
1219    //
1220
1221    // Emit the LHS condition.
1222    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1223
1224    // Emit the RHS condition into TmpBB.
1225    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1226  } else {
1227    assert(Opc == Instruction::And && "Unknown merge op!");
1228    // Codegen X & Y as:
1229    //   jmp_if_X TmpBB
1230    //   jmp FBB
1231    // TmpBB:
1232    //   jmp_if_Y TBB
1233    //   jmp FBB
1234    //
1235    //  This requires creation of TmpBB after CurBB.
1236
1237    // Emit the LHS condition.
1238    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1239
1240    // Emit the RHS condition into TmpBB.
1241    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1242  }
1243}
1244
1245/// If the set of cases should be emitted as a series of branches, return true.
1246/// If we should emit this as a bunch of and/or'd together conditions, return
1247/// false.
1248bool
1249SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1250  if (Cases.size() != 2) return true;
1251
1252  // If this is two comparisons of the same values or'd or and'd together, they
1253  // will get folded into a single comparison, so don't emit two blocks.
1254  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1255       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1256      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1257       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1258    return false;
1259  }
1260
1261  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1262  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1263  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1264      Cases[0].CC == Cases[1].CC &&
1265      isa<Constant>(Cases[0].CmpRHS) &&
1266      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1267    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1268      return false;
1269    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1270      return false;
1271  }
1272
1273  return true;
1274}
1275
1276void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1277  MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()];
1278
1279  // Update machine-CFG edges.
1280  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1281
1282  // Figure out which block is immediately after the current one.
1283  MachineBasicBlock *NextBlock = 0;
1284  MachineFunction::iterator BBI = BrMBB;
1285  if (++BBI != FuncInfo.MF->end())
1286    NextBlock = BBI;
1287
1288  if (I.isUnconditional()) {
1289    // Update machine-CFG edges.
1290    BrMBB->addSuccessor(Succ0MBB);
1291
1292    // If this is not a fall-through branch, emit the branch.
1293    if (Succ0MBB != NextBlock)
1294      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1295                              MVT::Other, getControlRoot(),
1296                              DAG.getBasicBlock(Succ0MBB)));
1297
1298    return;
1299  }
1300
1301  // If this condition is one of the special cases we handle, do special stuff
1302  // now.
1303  const Value *CondVal = I.getCondition();
1304  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1305
1306  // If this is a series of conditions that are or'd or and'd together, emit
1307  // this as a sequence of branches instead of setcc's with and/or operations.
1308  // For example, instead of something like:
1309  //     cmp A, B
1310  //     C = seteq
1311  //     cmp D, E
1312  //     F = setle
1313  //     or C, F
1314  //     jnz foo
1315  // Emit:
1316  //     cmp A, B
1317  //     je foo
1318  //     cmp D, E
1319  //     jle foo
1320  //
1321  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1322    if (BOp->hasOneUse() &&
1323        (BOp->getOpcode() == Instruction::And ||
1324         BOp->getOpcode() == Instruction::Or)) {
1325      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1326                           BOp->getOpcode());
1327      // If the compares in later blocks need to use values not currently
1328      // exported from this block, export them now.  This block should always
1329      // be the first entry.
1330      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1331
1332      // Allow some cases to be rejected.
1333      if (ShouldEmitAsBranches(SwitchCases)) {
1334        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1335          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1336          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1337        }
1338
1339        // Emit the branch for this block.
1340        visitSwitchCase(SwitchCases[0], BrMBB);
1341        SwitchCases.erase(SwitchCases.begin());
1342        return;
1343      }
1344
1345      // Okay, we decided not to do this, remove any inserted MBB's and clear
1346      // SwitchCases.
1347      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1348        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1349
1350      SwitchCases.clear();
1351    }
1352  }
1353
1354  // Create a CaseBlock record representing this branch.
1355  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1356               NULL, Succ0MBB, Succ1MBB, BrMBB);
1357
1358  // Use visitSwitchCase to actually insert the fast branch sequence for this
1359  // cond branch.
1360  visitSwitchCase(CB, BrMBB);
1361}
1362
1363/// visitSwitchCase - Emits the necessary code to represent a single node in
1364/// the binary search tree resulting from lowering a switch instruction.
1365void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1366                                          MachineBasicBlock *SwitchBB) {
1367  SDValue Cond;
1368  SDValue CondLHS = getValue(CB.CmpLHS);
1369  DebugLoc dl = getCurDebugLoc();
1370
1371  // Build the setcc now.
1372  if (CB.CmpMHS == NULL) {
1373    // Fold "(X == true)" to X and "(X == false)" to !X to
1374    // handle common cases produced by branch lowering.
1375    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1376        CB.CC == ISD::SETEQ)
1377      Cond = CondLHS;
1378    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1379             CB.CC == ISD::SETEQ) {
1380      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1381      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1382    } else
1383      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1384  } else {
1385    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1386
1387    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1388    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1389
1390    SDValue CmpOp = getValue(CB.CmpMHS);
1391    EVT VT = CmpOp.getValueType();
1392
1393    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1394      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1395                          ISD::SETLE);
1396    } else {
1397      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1398                                VT, CmpOp, DAG.getConstant(Low, VT));
1399      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1400                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1401    }
1402  }
1403
1404  // Update successor info
1405  SwitchBB->addSuccessor(CB.TrueBB);
1406  SwitchBB->addSuccessor(CB.FalseBB);
1407
1408  // Set NextBlock to be the MBB immediately after the current one, if any.
1409  // This is used to avoid emitting unnecessary branches to the next block.
1410  MachineBasicBlock *NextBlock = 0;
1411  MachineFunction::iterator BBI = SwitchBB;
1412  if (++BBI != FuncInfo.MF->end())
1413    NextBlock = BBI;
1414
1415  // If the lhs block is the next block, invert the condition so that we can
1416  // fall through to the lhs instead of the rhs block.
1417  if (CB.TrueBB == NextBlock) {
1418    std::swap(CB.TrueBB, CB.FalseBB);
1419    SDValue True = DAG.getConstant(1, Cond.getValueType());
1420    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1421  }
1422
1423  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1424                               MVT::Other, getControlRoot(), Cond,
1425                               DAG.getBasicBlock(CB.TrueBB));
1426
1427  // If the branch was constant folded, fix up the CFG.
1428  if (BrCond.getOpcode() == ISD::BR) {
1429    SwitchBB->removeSuccessor(CB.FalseBB);
1430  } else {
1431    // Otherwise, go ahead and insert the false branch.
1432    if (BrCond == getControlRoot())
1433      SwitchBB->removeSuccessor(CB.TrueBB);
1434
1435    if (CB.FalseBB != NextBlock)
1436      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1437                           DAG.getBasicBlock(CB.FalseBB));
1438  }
1439
1440  DAG.setRoot(BrCond);
1441}
1442
1443/// visitJumpTable - Emit JumpTable node in the current MBB
1444void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1445  // Emit the code for the jump table
1446  assert(JT.Reg != -1U && "Should lower JT Header first!");
1447  EVT PTy = TLI.getPointerTy();
1448  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1449                                     JT.Reg, PTy);
1450  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1451  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1452                                    MVT::Other, Index.getValue(1),
1453                                    Table, Index);
1454  DAG.setRoot(BrJumpTable);
1455}
1456
1457/// visitJumpTableHeader - This function emits necessary code to produce index
1458/// in the JumpTable from switch case.
1459void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1460                                               JumpTableHeader &JTH,
1461                                               MachineBasicBlock *SwitchBB) {
1462  // Subtract the lowest switch case value from the value being switched on and
1463  // conditional branch to default mbb if the result is greater than the
1464  // difference between smallest and largest cases.
1465  SDValue SwitchOp = getValue(JTH.SValue);
1466  EVT VT = SwitchOp.getValueType();
1467  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1468                            DAG.getConstant(JTH.First, VT));
1469
1470  // The SDNode we just created, which holds the value being switched on minus
1471  // the smallest case value, needs to be copied to a virtual register so it
1472  // can be used as an index into the jump table in a subsequent basic block.
1473  // This value may be smaller or larger than the target's pointer type, and
1474  // therefore require extension or truncating.
1475  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1476
1477  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1478  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1479                                    JumpTableReg, SwitchOp);
1480  JT.Reg = JumpTableReg;
1481
1482  // Emit the range check for the jump table, and branch to the default block
1483  // for the switch statement if the value being switched on exceeds the largest
1484  // case in the switch.
1485  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1486                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1487                             DAG.getConstant(JTH.Last-JTH.First,VT),
1488                             ISD::SETUGT);
1489
1490  // Set NextBlock to be the MBB immediately after the current one, if any.
1491  // This is used to avoid emitting unnecessary branches to the next block.
1492  MachineBasicBlock *NextBlock = 0;
1493  MachineFunction::iterator BBI = SwitchBB;
1494
1495  if (++BBI != FuncInfo.MF->end())
1496    NextBlock = BBI;
1497
1498  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1499                               MVT::Other, CopyTo, CMP,
1500                               DAG.getBasicBlock(JT.Default));
1501
1502  if (JT.MBB != NextBlock)
1503    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1504                         DAG.getBasicBlock(JT.MBB));
1505
1506  DAG.setRoot(BrCond);
1507}
1508
1509/// visitBitTestHeader - This function emits necessary code to produce value
1510/// suitable for "bit tests"
1511void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1512                                             MachineBasicBlock *SwitchBB) {
1513  // Subtract the minimum value
1514  SDValue SwitchOp = getValue(B.SValue);
1515  EVT VT = SwitchOp.getValueType();
1516  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1517                            DAG.getConstant(B.First, VT));
1518
1519  // Check range
1520  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1521                                  TLI.getSetCCResultType(Sub.getValueType()),
1522                                  Sub, DAG.getConstant(B.Range, VT),
1523                                  ISD::SETUGT);
1524
1525  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1526                                       TLI.getPointerTy());
1527
1528  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1529  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1530                                    B.Reg, ShiftOp);
1531
1532  // Set NextBlock to be the MBB immediately after the current one, if any.
1533  // This is used to avoid emitting unnecessary branches to the next block.
1534  MachineBasicBlock *NextBlock = 0;
1535  MachineFunction::iterator BBI = SwitchBB;
1536  if (++BBI != FuncInfo.MF->end())
1537    NextBlock = BBI;
1538
1539  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1540
1541  SwitchBB->addSuccessor(B.Default);
1542  SwitchBB->addSuccessor(MBB);
1543
1544  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1545                                MVT::Other, CopyTo, RangeCmp,
1546                                DAG.getBasicBlock(B.Default));
1547
1548  if (MBB != NextBlock)
1549    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1550                          DAG.getBasicBlock(MBB));
1551
1552  DAG.setRoot(BrRange);
1553}
1554
1555/// visitBitTestCase - this function produces one "bit test"
1556void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1557                                           unsigned Reg,
1558                                           BitTestCase &B,
1559                                           MachineBasicBlock *SwitchBB) {
1560  // Make desired shift
1561  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1562                                       TLI.getPointerTy());
1563  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1564                                  TLI.getPointerTy(),
1565                                  DAG.getConstant(1, TLI.getPointerTy()),
1566                                  ShiftOp);
1567
1568  // Emit bit tests and jumps
1569  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1570                              TLI.getPointerTy(), SwitchVal,
1571                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
1572  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1573                                TLI.getSetCCResultType(AndOp.getValueType()),
1574                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1575                                ISD::SETNE);
1576
1577  SwitchBB->addSuccessor(B.TargetBB);
1578  SwitchBB->addSuccessor(NextMBB);
1579
1580  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1581                              MVT::Other, getControlRoot(),
1582                              AndCmp, DAG.getBasicBlock(B.TargetBB));
1583
1584  // Set NextBlock to be the MBB immediately after the current one, if any.
1585  // This is used to avoid emitting unnecessary branches to the next block.
1586  MachineBasicBlock *NextBlock = 0;
1587  MachineFunction::iterator BBI = SwitchBB;
1588  if (++BBI != FuncInfo.MF->end())
1589    NextBlock = BBI;
1590
1591  if (NextMBB != NextBlock)
1592    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1593                        DAG.getBasicBlock(NextMBB));
1594
1595  DAG.setRoot(BrAnd);
1596}
1597
1598void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1599  MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()];
1600
1601  // Retrieve successors.
1602  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1603  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1604
1605  const Value *Callee(I.getCalledValue());
1606  if (isa<InlineAsm>(Callee))
1607    visitInlineAsm(&I);
1608  else
1609    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1610
1611  // If the value of the invoke is used outside of its defining block, make it
1612  // available as a virtual register.
1613  CopyToExportRegsIfNeeded(&I);
1614
1615  // Update successor info
1616  InvokeMBB->addSuccessor(Return);
1617  InvokeMBB->addSuccessor(LandingPad);
1618
1619  // Drop into normal successor.
1620  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1621                          MVT::Other, getControlRoot(),
1622                          DAG.getBasicBlock(Return)));
1623}
1624
1625void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1626}
1627
1628/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1629/// small case ranges).
1630bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1631                                                 CaseRecVector& WorkList,
1632                                                 const Value* SV,
1633                                                 MachineBasicBlock *Default,
1634                                                 MachineBasicBlock *SwitchBB) {
1635  Case& BackCase  = *(CR.Range.second-1);
1636
1637  // Size is the number of Cases represented by this range.
1638  size_t Size = CR.Range.second - CR.Range.first;
1639  if (Size > 3)
1640    return false;
1641
1642  // Get the MachineFunction which holds the current MBB.  This is used when
1643  // inserting any additional MBBs necessary to represent the switch.
1644  MachineFunction *CurMF = FuncInfo.MF;
1645
1646  // Figure out which block is immediately after the current one.
1647  MachineBasicBlock *NextBlock = 0;
1648  MachineFunction::iterator BBI = CR.CaseBB;
1649
1650  if (++BBI != FuncInfo.MF->end())
1651    NextBlock = BBI;
1652
1653  // TODO: If any two of the cases has the same destination, and if one value
1654  // is the same as the other, but has one bit unset that the other has set,
1655  // use bit manipulation to do two compares at once.  For example:
1656  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1657
1658  // Rearrange the case blocks so that the last one falls through if possible.
1659  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1660    // The last case block won't fall through into 'NextBlock' if we emit the
1661    // branches in this order.  See if rearranging a case value would help.
1662    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1663      if (I->BB == NextBlock) {
1664        std::swap(*I, BackCase);
1665        break;
1666      }
1667    }
1668  }
1669
1670  // Create a CaseBlock record representing a conditional branch to
1671  // the Case's target mbb if the value being switched on SV is equal
1672  // to C.
1673  MachineBasicBlock *CurBlock = CR.CaseBB;
1674  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1675    MachineBasicBlock *FallThrough;
1676    if (I != E-1) {
1677      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1678      CurMF->insert(BBI, FallThrough);
1679
1680      // Put SV in a virtual register to make it available from the new blocks.
1681      ExportFromCurrentBlock(SV);
1682    } else {
1683      // If the last case doesn't match, go to the default block.
1684      FallThrough = Default;
1685    }
1686
1687    const Value *RHS, *LHS, *MHS;
1688    ISD::CondCode CC;
1689    if (I->High == I->Low) {
1690      // This is just small small case range :) containing exactly 1 case
1691      CC = ISD::SETEQ;
1692      LHS = SV; RHS = I->High; MHS = NULL;
1693    } else {
1694      CC = ISD::SETLE;
1695      LHS = I->Low; MHS = SV; RHS = I->High;
1696    }
1697    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1698
1699    // If emitting the first comparison, just call visitSwitchCase to emit the
1700    // code into the current block.  Otherwise, push the CaseBlock onto the
1701    // vector to be later processed by SDISel, and insert the node's MBB
1702    // before the next MBB.
1703    if (CurBlock == SwitchBB)
1704      visitSwitchCase(CB, SwitchBB);
1705    else
1706      SwitchCases.push_back(CB);
1707
1708    CurBlock = FallThrough;
1709  }
1710
1711  return true;
1712}
1713
1714static inline bool areJTsAllowed(const TargetLowering &TLI) {
1715  return !DisableJumpTables &&
1716          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1717           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1718}
1719
1720static APInt ComputeRange(const APInt &First, const APInt &Last) {
1721  APInt LastExt(Last), FirstExt(First);
1722  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1723  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1724  return (LastExt - FirstExt + 1ULL);
1725}
1726
1727/// handleJTSwitchCase - Emit jumptable for current switch case range
1728bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1729                                             CaseRecVector& WorkList,
1730                                             const Value* SV,
1731                                             MachineBasicBlock* Default,
1732                                             MachineBasicBlock *SwitchBB) {
1733  Case& FrontCase = *CR.Range.first;
1734  Case& BackCase  = *(CR.Range.second-1);
1735
1736  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1737  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1738
1739  APInt TSize(First.getBitWidth(), 0);
1740  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1741       I!=E; ++I)
1742    TSize += I->size();
1743
1744  if (!areJTsAllowed(TLI) || TSize.ult(4))
1745    return false;
1746
1747  APInt Range = ComputeRange(First, Last);
1748  double Density = TSize.roundToDouble() / Range.roundToDouble();
1749  if (Density < 0.4)
1750    return false;
1751
1752  DEBUG(dbgs() << "Lowering jump table\n"
1753               << "First entry: " << First << ". Last entry: " << Last << '\n'
1754               << "Range: " << Range
1755               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1756
1757  // Get the MachineFunction which holds the current MBB.  This is used when
1758  // inserting any additional MBBs necessary to represent the switch.
1759  MachineFunction *CurMF = FuncInfo.MF;
1760
1761  // Figure out which block is immediately after the current one.
1762  MachineFunction::iterator BBI = CR.CaseBB;
1763  ++BBI;
1764
1765  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1766
1767  // Create a new basic block to hold the code for loading the address
1768  // of the jump table, and jumping to it.  Update successor information;
1769  // we will either branch to the default case for the switch, or the jump
1770  // table.
1771  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1772  CurMF->insert(BBI, JumpTableBB);
1773  CR.CaseBB->addSuccessor(Default);
1774  CR.CaseBB->addSuccessor(JumpTableBB);
1775
1776  // Build a vector of destination BBs, corresponding to each target
1777  // of the jump table. If the value of the jump table slot corresponds to
1778  // a case statement, push the case's BB onto the vector, otherwise, push
1779  // the default BB.
1780  std::vector<MachineBasicBlock*> DestBBs;
1781  APInt TEI = First;
1782  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1783    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1784    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1785
1786    if (Low.sle(TEI) && TEI.sle(High)) {
1787      DestBBs.push_back(I->BB);
1788      if (TEI==High)
1789        ++I;
1790    } else {
1791      DestBBs.push_back(Default);
1792    }
1793  }
1794
1795  // Update successor info. Add one edge to each unique successor.
1796  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1797  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1798         E = DestBBs.end(); I != E; ++I) {
1799    if (!SuccsHandled[(*I)->getNumber()]) {
1800      SuccsHandled[(*I)->getNumber()] = true;
1801      JumpTableBB->addSuccessor(*I);
1802    }
1803  }
1804
1805  // Create a jump table index for this jump table.
1806  unsigned JTEncoding = TLI.getJumpTableEncoding();
1807  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1808                       ->createJumpTableIndex(DestBBs);
1809
1810  // Set the jump table information so that we can codegen it as a second
1811  // MachineBasicBlock
1812  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1813  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1814  if (CR.CaseBB == SwitchBB)
1815    visitJumpTableHeader(JT, JTH, SwitchBB);
1816
1817  JTCases.push_back(JumpTableBlock(JTH, JT));
1818
1819  return true;
1820}
1821
1822/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1823/// 2 subtrees.
1824bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1825                                                  CaseRecVector& WorkList,
1826                                                  const Value* SV,
1827                                                  MachineBasicBlock *Default,
1828                                                  MachineBasicBlock *SwitchBB) {
1829  // Get the MachineFunction which holds the current MBB.  This is used when
1830  // inserting any additional MBBs necessary to represent the switch.
1831  MachineFunction *CurMF = FuncInfo.MF;
1832
1833  // Figure out which block is immediately after the current one.
1834  MachineFunction::iterator BBI = CR.CaseBB;
1835  ++BBI;
1836
1837  Case& FrontCase = *CR.Range.first;
1838  Case& BackCase  = *(CR.Range.second-1);
1839  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1840
1841  // Size is the number of Cases represented by this range.
1842  unsigned Size = CR.Range.second - CR.Range.first;
1843
1844  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1845  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1846  double FMetric = 0;
1847  CaseItr Pivot = CR.Range.first + Size/2;
1848
1849  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1850  // (heuristically) allow us to emit JumpTable's later.
1851  APInt TSize(First.getBitWidth(), 0);
1852  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1853       I!=E; ++I)
1854    TSize += I->size();
1855
1856  APInt LSize = FrontCase.size();
1857  APInt RSize = TSize-LSize;
1858  DEBUG(dbgs() << "Selecting best pivot: \n"
1859               << "First: " << First << ", Last: " << Last <<'\n'
1860               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1861  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1862       J!=E; ++I, ++J) {
1863    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1864    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1865    APInt Range = ComputeRange(LEnd, RBegin);
1866    assert((Range - 2ULL).isNonNegative() &&
1867           "Invalid case distance");
1868    double LDensity = (double)LSize.roundToDouble() /
1869                           (LEnd - First + 1ULL).roundToDouble();
1870    double RDensity = (double)RSize.roundToDouble() /
1871                           (Last - RBegin + 1ULL).roundToDouble();
1872    double Metric = Range.logBase2()*(LDensity+RDensity);
1873    // Should always split in some non-trivial place
1874    DEBUG(dbgs() <<"=>Step\n"
1875                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1876                 << "LDensity: " << LDensity
1877                 << ", RDensity: " << RDensity << '\n'
1878                 << "Metric: " << Metric << '\n');
1879    if (FMetric < Metric) {
1880      Pivot = J;
1881      FMetric = Metric;
1882      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1883    }
1884
1885    LSize += J->size();
1886    RSize -= J->size();
1887  }
1888  if (areJTsAllowed(TLI)) {
1889    // If our case is dense we *really* should handle it earlier!
1890    assert((FMetric > 0) && "Should handle dense range earlier!");
1891  } else {
1892    Pivot = CR.Range.first + Size/2;
1893  }
1894
1895  CaseRange LHSR(CR.Range.first, Pivot);
1896  CaseRange RHSR(Pivot, CR.Range.second);
1897  Constant *C = Pivot->Low;
1898  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1899
1900  // We know that we branch to the LHS if the Value being switched on is
1901  // less than the Pivot value, C.  We use this to optimize our binary
1902  // tree a bit, by recognizing that if SV is greater than or equal to the
1903  // LHS's Case Value, and that Case Value is exactly one less than the
1904  // Pivot's Value, then we can branch directly to the LHS's Target,
1905  // rather than creating a leaf node for it.
1906  if ((LHSR.second - LHSR.first) == 1 &&
1907      LHSR.first->High == CR.GE &&
1908      cast<ConstantInt>(C)->getValue() ==
1909      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1910    TrueBB = LHSR.first->BB;
1911  } else {
1912    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1913    CurMF->insert(BBI, TrueBB);
1914    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1915
1916    // Put SV in a virtual register to make it available from the new blocks.
1917    ExportFromCurrentBlock(SV);
1918  }
1919
1920  // Similar to the optimization above, if the Value being switched on is
1921  // known to be less than the Constant CR.LT, and the current Case Value
1922  // is CR.LT - 1, then we can branch directly to the target block for
1923  // the current Case Value, rather than emitting a RHS leaf node for it.
1924  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1925      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1926      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1927    FalseBB = RHSR.first->BB;
1928  } else {
1929    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1930    CurMF->insert(BBI, FalseBB);
1931    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1932
1933    // Put SV in a virtual register to make it available from the new blocks.
1934    ExportFromCurrentBlock(SV);
1935  }
1936
1937  // Create a CaseBlock record representing a conditional branch to
1938  // the LHS node if the value being switched on SV is less than C.
1939  // Otherwise, branch to LHS.
1940  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1941
1942  if (CR.CaseBB == SwitchBB)
1943    visitSwitchCase(CB, SwitchBB);
1944  else
1945    SwitchCases.push_back(CB);
1946
1947  return true;
1948}
1949
1950/// handleBitTestsSwitchCase - if current case range has few destination and
1951/// range span less, than machine word bitwidth, encode case range into series
1952/// of masks and emit bit tests with these masks.
1953bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1954                                                   CaseRecVector& WorkList,
1955                                                   const Value* SV,
1956                                                   MachineBasicBlock* Default,
1957                                                   MachineBasicBlock *SwitchBB){
1958  EVT PTy = TLI.getPointerTy();
1959  unsigned IntPtrBits = PTy.getSizeInBits();
1960
1961  Case& FrontCase = *CR.Range.first;
1962  Case& BackCase  = *(CR.Range.second-1);
1963
1964  // Get the MachineFunction which holds the current MBB.  This is used when
1965  // inserting any additional MBBs necessary to represent the switch.
1966  MachineFunction *CurMF = FuncInfo.MF;
1967
1968  // If target does not have legal shift left, do not emit bit tests at all.
1969  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1970    return false;
1971
1972  size_t numCmps = 0;
1973  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1974       I!=E; ++I) {
1975    // Single case counts one, case range - two.
1976    numCmps += (I->Low == I->High ? 1 : 2);
1977  }
1978
1979  // Count unique destinations
1980  SmallSet<MachineBasicBlock*, 4> Dests;
1981  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1982    Dests.insert(I->BB);
1983    if (Dests.size() > 3)
1984      // Don't bother the code below, if there are too much unique destinations
1985      return false;
1986  }
1987  DEBUG(dbgs() << "Total number of unique destinations: "
1988        << Dests.size() << '\n'
1989        << "Total number of comparisons: " << numCmps << '\n');
1990
1991  // Compute span of values.
1992  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1993  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1994  APInt cmpRange = maxValue - minValue;
1995
1996  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1997               << "Low bound: " << minValue << '\n'
1998               << "High bound: " << maxValue << '\n');
1999
2000  if (cmpRange.uge(IntPtrBits) ||
2001      (!(Dests.size() == 1 && numCmps >= 3) &&
2002       !(Dests.size() == 2 && numCmps >= 5) &&
2003       !(Dests.size() >= 3 && numCmps >= 6)))
2004    return false;
2005
2006  DEBUG(dbgs() << "Emitting bit tests\n");
2007  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2008
2009  // Optimize the case where all the case values fit in a
2010  // word without having to subtract minValue. In this case,
2011  // we can optimize away the subtraction.
2012  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2013    cmpRange = maxValue;
2014  } else {
2015    lowBound = minValue;
2016  }
2017
2018  CaseBitsVector CasesBits;
2019  unsigned i, count = 0;
2020
2021  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2022    MachineBasicBlock* Dest = I->BB;
2023    for (i = 0; i < count; ++i)
2024      if (Dest == CasesBits[i].BB)
2025        break;
2026
2027    if (i == count) {
2028      assert((count < 3) && "Too much destinations to test!");
2029      CasesBits.push_back(CaseBits(0, Dest, 0));
2030      count++;
2031    }
2032
2033    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2034    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2035
2036    uint64_t lo = (lowValue - lowBound).getZExtValue();
2037    uint64_t hi = (highValue - lowBound).getZExtValue();
2038
2039    for (uint64_t j = lo; j <= hi; j++) {
2040      CasesBits[i].Mask |=  1ULL << j;
2041      CasesBits[i].Bits++;
2042    }
2043
2044  }
2045  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2046
2047  BitTestInfo BTC;
2048
2049  // Figure out which block is immediately after the current one.
2050  MachineFunction::iterator BBI = CR.CaseBB;
2051  ++BBI;
2052
2053  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2054
2055  DEBUG(dbgs() << "Cases:\n");
2056  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2057    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2058                 << ", Bits: " << CasesBits[i].Bits
2059                 << ", BB: " << CasesBits[i].BB << '\n');
2060
2061    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2062    CurMF->insert(BBI, CaseBB);
2063    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2064                              CaseBB,
2065                              CasesBits[i].BB));
2066
2067    // Put SV in a virtual register to make it available from the new blocks.
2068    ExportFromCurrentBlock(SV);
2069  }
2070
2071  BitTestBlock BTB(lowBound, cmpRange, SV,
2072                   -1U, (CR.CaseBB == SwitchBB),
2073                   CR.CaseBB, Default, BTC);
2074
2075  if (CR.CaseBB == SwitchBB)
2076    visitBitTestHeader(BTB, SwitchBB);
2077
2078  BitTestCases.push_back(BTB);
2079
2080  return true;
2081}
2082
2083/// Clusterify - Transform simple list of Cases into list of CaseRange's
2084size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2085                                       const SwitchInst& SI) {
2086  size_t numCmps = 0;
2087
2088  // Start with "simple" cases
2089  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2090    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2091    Cases.push_back(Case(SI.getSuccessorValue(i),
2092                         SI.getSuccessorValue(i),
2093                         SMBB));
2094  }
2095  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2096
2097  // Merge case into clusters
2098  if (Cases.size() >= 2)
2099    // Must recompute end() each iteration because it may be
2100    // invalidated by erase if we hold on to it
2101    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2102      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2103      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2104      MachineBasicBlock* nextBB = J->BB;
2105      MachineBasicBlock* currentBB = I->BB;
2106
2107      // If the two neighboring cases go to the same destination, merge them
2108      // into a single case.
2109      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2110        I->High = J->High;
2111        J = Cases.erase(J);
2112      } else {
2113        I = J++;
2114      }
2115    }
2116
2117  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2118    if (I->Low != I->High)
2119      // A range counts double, since it requires two compares.
2120      ++numCmps;
2121  }
2122
2123  return numCmps;
2124}
2125
2126void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2127  MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()];
2128
2129  // Figure out which block is immediately after the current one.
2130  MachineBasicBlock *NextBlock = 0;
2131  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2132
2133  // If there is only the default destination, branch to it if it is not the
2134  // next basic block.  Otherwise, just fall through.
2135  if (SI.getNumOperands() == 2) {
2136    // Update machine-CFG edges.
2137
2138    // If this is not a fall-through branch, emit the branch.
2139    SwitchMBB->addSuccessor(Default);
2140    if (Default != NextBlock)
2141      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2142                              MVT::Other, getControlRoot(),
2143                              DAG.getBasicBlock(Default)));
2144
2145    return;
2146  }
2147
2148  // If there are any non-default case statements, create a vector of Cases
2149  // representing each one, and sort the vector so that we can efficiently
2150  // create a binary search tree from them.
2151  CaseVector Cases;
2152  size_t numCmps = Clusterify(Cases, SI);
2153  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2154               << ". Total compares: " << numCmps << '\n');
2155  numCmps = 0;
2156
2157  // Get the Value to be switched on and default basic blocks, which will be
2158  // inserted into CaseBlock records, representing basic blocks in the binary
2159  // search tree.
2160  const Value *SV = SI.getOperand(0);
2161
2162  // Push the initial CaseRec onto the worklist
2163  CaseRecVector WorkList;
2164  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2165                             CaseRange(Cases.begin(),Cases.end())));
2166
2167  while (!WorkList.empty()) {
2168    // Grab a record representing a case range to process off the worklist
2169    CaseRec CR = WorkList.back();
2170    WorkList.pop_back();
2171
2172    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2173      continue;
2174
2175    // If the range has few cases (two or less) emit a series of specific
2176    // tests.
2177    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2178      continue;
2179
2180    // If the switch has more than 5 blocks, and at least 40% dense, and the
2181    // target supports indirect branches, then emit a jump table rather than
2182    // lowering the switch to a binary tree of conditional branches.
2183    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2184      continue;
2185
2186    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2187    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2188    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2189  }
2190}
2191
2192void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2193  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()];
2194
2195  // Update machine-CFG edges with unique successors.
2196  SmallVector<BasicBlock*, 32> succs;
2197  succs.reserve(I.getNumSuccessors());
2198  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2199    succs.push_back(I.getSuccessor(i));
2200  array_pod_sort(succs.begin(), succs.end());
2201  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2202  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2203    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2204
2205  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2206                          MVT::Other, getControlRoot(),
2207                          getValue(I.getAddress())));
2208}
2209
2210void SelectionDAGBuilder::visitFSub(const User &I) {
2211  // -0.0 - X --> fneg
2212  const Type *Ty = I.getType();
2213  if (Ty->isVectorTy()) {
2214    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2215      const VectorType *DestTy = cast<VectorType>(I.getType());
2216      const Type *ElTy = DestTy->getElementType();
2217      unsigned VL = DestTy->getNumElements();
2218      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2219      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2220      if (CV == CNZ) {
2221        SDValue Op2 = getValue(I.getOperand(1));
2222        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2223                                 Op2.getValueType(), Op2));
2224        return;
2225      }
2226    }
2227  }
2228
2229  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2230    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2231      SDValue Op2 = getValue(I.getOperand(1));
2232      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2233                               Op2.getValueType(), Op2));
2234      return;
2235    }
2236
2237  visitBinary(I, ISD::FSUB);
2238}
2239
2240void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2241  SDValue Op1 = getValue(I.getOperand(0));
2242  SDValue Op2 = getValue(I.getOperand(1));
2243  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2244                           Op1.getValueType(), Op1, Op2));
2245}
2246
2247void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2248  SDValue Op1 = getValue(I.getOperand(0));
2249  SDValue Op2 = getValue(I.getOperand(1));
2250  if (!I.getType()->isVectorTy() &&
2251      Op2.getValueType() != TLI.getShiftAmountTy()) {
2252    // If the operand is smaller than the shift count type, promote it.
2253    EVT PTy = TLI.getPointerTy();
2254    EVT STy = TLI.getShiftAmountTy();
2255    if (STy.bitsGT(Op2.getValueType()))
2256      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2257                        TLI.getShiftAmountTy(), Op2);
2258    // If the operand is larger than the shift count type but the shift
2259    // count type has enough bits to represent any shift value, truncate
2260    // it now. This is a common case and it exposes the truncate to
2261    // optimization early.
2262    else if (STy.getSizeInBits() >=
2263             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2264      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2265                        TLI.getShiftAmountTy(), Op2);
2266    // Otherwise we'll need to temporarily settle for some other
2267    // convenient type; type legalization will make adjustments as
2268    // needed.
2269    else if (PTy.bitsLT(Op2.getValueType()))
2270      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2271                        TLI.getPointerTy(), Op2);
2272    else if (PTy.bitsGT(Op2.getValueType()))
2273      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2274                        TLI.getPointerTy(), Op2);
2275  }
2276
2277  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2278                           Op1.getValueType(), Op1, Op2));
2279}
2280
2281void SelectionDAGBuilder::visitICmp(const User &I) {
2282  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2283  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2284    predicate = IC->getPredicate();
2285  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2286    predicate = ICmpInst::Predicate(IC->getPredicate());
2287  SDValue Op1 = getValue(I.getOperand(0));
2288  SDValue Op2 = getValue(I.getOperand(1));
2289  ISD::CondCode Opcode = getICmpCondCode(predicate);
2290
2291  EVT DestVT = TLI.getValueType(I.getType());
2292  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2293}
2294
2295void SelectionDAGBuilder::visitFCmp(const User &I) {
2296  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2297  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2298    predicate = FC->getPredicate();
2299  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2300    predicate = FCmpInst::Predicate(FC->getPredicate());
2301  SDValue Op1 = getValue(I.getOperand(0));
2302  SDValue Op2 = getValue(I.getOperand(1));
2303  ISD::CondCode Condition = getFCmpCondCode(predicate);
2304  EVT DestVT = TLI.getValueType(I.getType());
2305  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2306}
2307
2308void SelectionDAGBuilder::visitSelect(const User &I) {
2309  SmallVector<EVT, 4> ValueVTs;
2310  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2311  unsigned NumValues = ValueVTs.size();
2312  if (NumValues == 0) return;
2313
2314  SmallVector<SDValue, 4> Values(NumValues);
2315  SDValue Cond     = getValue(I.getOperand(0));
2316  SDValue TrueVal  = getValue(I.getOperand(1));
2317  SDValue FalseVal = getValue(I.getOperand(2));
2318
2319  for (unsigned i = 0; i != NumValues; ++i)
2320    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2321                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2322                            Cond,
2323                            SDValue(TrueVal.getNode(),
2324                                    TrueVal.getResNo() + i),
2325                            SDValue(FalseVal.getNode(),
2326                                    FalseVal.getResNo() + i));
2327
2328  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2329                           DAG.getVTList(&ValueVTs[0], NumValues),
2330                           &Values[0], NumValues));
2331}
2332
2333void SelectionDAGBuilder::visitTrunc(const User &I) {
2334  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2335  SDValue N = getValue(I.getOperand(0));
2336  EVT DestVT = TLI.getValueType(I.getType());
2337  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2338}
2339
2340void SelectionDAGBuilder::visitZExt(const User &I) {
2341  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2342  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2343  SDValue N = getValue(I.getOperand(0));
2344  EVT DestVT = TLI.getValueType(I.getType());
2345  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2346}
2347
2348void SelectionDAGBuilder::visitSExt(const User &I) {
2349  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2350  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2351  SDValue N = getValue(I.getOperand(0));
2352  EVT DestVT = TLI.getValueType(I.getType());
2353  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2354}
2355
2356void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2357  // FPTrunc is never a no-op cast, no need to check
2358  SDValue N = getValue(I.getOperand(0));
2359  EVT DestVT = TLI.getValueType(I.getType());
2360  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2361                           DestVT, N, DAG.getIntPtrConstant(0)));
2362}
2363
2364void SelectionDAGBuilder::visitFPExt(const User &I){
2365  // FPTrunc is never a no-op cast, no need to check
2366  SDValue N = getValue(I.getOperand(0));
2367  EVT DestVT = TLI.getValueType(I.getType());
2368  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2369}
2370
2371void SelectionDAGBuilder::visitFPToUI(const User &I) {
2372  // FPToUI is never a no-op cast, no need to check
2373  SDValue N = getValue(I.getOperand(0));
2374  EVT DestVT = TLI.getValueType(I.getType());
2375  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2376}
2377
2378void SelectionDAGBuilder::visitFPToSI(const User &I) {
2379  // FPToSI is never a no-op cast, no need to check
2380  SDValue N = getValue(I.getOperand(0));
2381  EVT DestVT = TLI.getValueType(I.getType());
2382  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2383}
2384
2385void SelectionDAGBuilder::visitUIToFP(const User &I) {
2386  // UIToFP is never a no-op cast, no need to check
2387  SDValue N = getValue(I.getOperand(0));
2388  EVT DestVT = TLI.getValueType(I.getType());
2389  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2390}
2391
2392void SelectionDAGBuilder::visitSIToFP(const User &I){
2393  // SIToFP is never a no-op cast, no need to check
2394  SDValue N = getValue(I.getOperand(0));
2395  EVT DestVT = TLI.getValueType(I.getType());
2396  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2397}
2398
2399void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2400  // What to do depends on the size of the integer and the size of the pointer.
2401  // We can either truncate, zero extend, or no-op, accordingly.
2402  SDValue N = getValue(I.getOperand(0));
2403  EVT SrcVT = N.getValueType();
2404  EVT DestVT = TLI.getValueType(I.getType());
2405  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2406}
2407
2408void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2409  // What to do depends on the size of the integer and the size of the pointer.
2410  // We can either truncate, zero extend, or no-op, accordingly.
2411  SDValue N = getValue(I.getOperand(0));
2412  EVT SrcVT = N.getValueType();
2413  EVT DestVT = TLI.getValueType(I.getType());
2414  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2415}
2416
2417void SelectionDAGBuilder::visitBitCast(const User &I) {
2418  SDValue N = getValue(I.getOperand(0));
2419  EVT DestVT = TLI.getValueType(I.getType());
2420
2421  // BitCast assures us that source and destination are the same size so this is
2422  // either a BIT_CONVERT or a no-op.
2423  if (DestVT != N.getValueType())
2424    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2425                             DestVT, N)); // convert types.
2426  else
2427    setValue(&I, N);            // noop cast.
2428}
2429
2430void SelectionDAGBuilder::visitInsertElement(const User &I) {
2431  SDValue InVec = getValue(I.getOperand(0));
2432  SDValue InVal = getValue(I.getOperand(1));
2433  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2434                              TLI.getPointerTy(),
2435                              getValue(I.getOperand(2)));
2436  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2437                           TLI.getValueType(I.getType()),
2438                           InVec, InVal, InIdx));
2439}
2440
2441void SelectionDAGBuilder::visitExtractElement(const User &I) {
2442  SDValue InVec = getValue(I.getOperand(0));
2443  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2444                              TLI.getPointerTy(),
2445                              getValue(I.getOperand(1)));
2446  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2447                           TLI.getValueType(I.getType()), InVec, InIdx));
2448}
2449
2450// Utility for visitShuffleVector - Returns true if the mask is mask starting
2451// from SIndx and increasing to the element length (undefs are allowed).
2452static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2453  unsigned MaskNumElts = Mask.size();
2454  for (unsigned i = 0; i != MaskNumElts; ++i)
2455    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2456      return false;
2457  return true;
2458}
2459
2460void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2461  SmallVector<int, 8> Mask;
2462  SDValue Src1 = getValue(I.getOperand(0));
2463  SDValue Src2 = getValue(I.getOperand(1));
2464
2465  // Convert the ConstantVector mask operand into an array of ints, with -1
2466  // representing undef values.
2467  SmallVector<Constant*, 8> MaskElts;
2468  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2469  unsigned MaskNumElts = MaskElts.size();
2470  for (unsigned i = 0; i != MaskNumElts; ++i) {
2471    if (isa<UndefValue>(MaskElts[i]))
2472      Mask.push_back(-1);
2473    else
2474      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2475  }
2476
2477  EVT VT = TLI.getValueType(I.getType());
2478  EVT SrcVT = Src1.getValueType();
2479  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2480
2481  if (SrcNumElts == MaskNumElts) {
2482    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2483                                      &Mask[0]));
2484    return;
2485  }
2486
2487  // Normalize the shuffle vector since mask and vector length don't match.
2488  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2489    // Mask is longer than the source vectors and is a multiple of the source
2490    // vectors.  We can use concatenate vector to make the mask and vectors
2491    // lengths match.
2492    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2493      // The shuffle is concatenating two vectors together.
2494      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2495                               VT, Src1, Src2));
2496      return;
2497    }
2498
2499    // Pad both vectors with undefs to make them the same length as the mask.
2500    unsigned NumConcat = MaskNumElts / SrcNumElts;
2501    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2502    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2503    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2504
2505    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2506    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2507    MOps1[0] = Src1;
2508    MOps2[0] = Src2;
2509
2510    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2511                                                  getCurDebugLoc(), VT,
2512                                                  &MOps1[0], NumConcat);
2513    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2514                                                  getCurDebugLoc(), VT,
2515                                                  &MOps2[0], NumConcat);
2516
2517    // Readjust mask for new input vector length.
2518    SmallVector<int, 8> MappedOps;
2519    for (unsigned i = 0; i != MaskNumElts; ++i) {
2520      int Idx = Mask[i];
2521      if (Idx < (int)SrcNumElts)
2522        MappedOps.push_back(Idx);
2523      else
2524        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2525    }
2526
2527    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2528                                      &MappedOps[0]));
2529    return;
2530  }
2531
2532  if (SrcNumElts > MaskNumElts) {
2533    // Analyze the access pattern of the vector to see if we can extract
2534    // two subvectors and do the shuffle. The analysis is done by calculating
2535    // the range of elements the mask access on both vectors.
2536    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2537    int MaxRange[2] = {-1, -1};
2538
2539    for (unsigned i = 0; i != MaskNumElts; ++i) {
2540      int Idx = Mask[i];
2541      int Input = 0;
2542      if (Idx < 0)
2543        continue;
2544
2545      if (Idx >= (int)SrcNumElts) {
2546        Input = 1;
2547        Idx -= SrcNumElts;
2548      }
2549      if (Idx > MaxRange[Input])
2550        MaxRange[Input] = Idx;
2551      if (Idx < MinRange[Input])
2552        MinRange[Input] = Idx;
2553    }
2554
2555    // Check if the access is smaller than the vector size and can we find
2556    // a reasonable extract index.
2557    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2558                                 // Extract.
2559    int StartIdx[2];  // StartIdx to extract from
2560    for (int Input=0; Input < 2; ++Input) {
2561      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2562        RangeUse[Input] = 0; // Unused
2563        StartIdx[Input] = 0;
2564      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2565        // Fits within range but we should see if we can find a good
2566        // start index that is a multiple of the mask length.
2567        if (MaxRange[Input] < (int)MaskNumElts) {
2568          RangeUse[Input] = 1; // Extract from beginning of the vector
2569          StartIdx[Input] = 0;
2570        } else {
2571          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2572          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2573              StartIdx[Input] + MaskNumElts < SrcNumElts)
2574            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2575        }
2576      }
2577    }
2578
2579    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2580      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2581      return;
2582    }
2583    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2584      // Extract appropriate subvector and generate a vector shuffle
2585      for (int Input=0; Input < 2; ++Input) {
2586        SDValue &Src = Input == 0 ? Src1 : Src2;
2587        if (RangeUse[Input] == 0)
2588          Src = DAG.getUNDEF(VT);
2589        else
2590          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2591                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2592      }
2593
2594      // Calculate new mask.
2595      SmallVector<int, 8> MappedOps;
2596      for (unsigned i = 0; i != MaskNumElts; ++i) {
2597        int Idx = Mask[i];
2598        if (Idx < 0)
2599          MappedOps.push_back(Idx);
2600        else if (Idx < (int)SrcNumElts)
2601          MappedOps.push_back(Idx - StartIdx[0]);
2602        else
2603          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2604      }
2605
2606      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2607                                        &MappedOps[0]));
2608      return;
2609    }
2610  }
2611
2612  // We can't use either concat vectors or extract subvectors so fall back to
2613  // replacing the shuffle with extract and build vector.
2614  // to insert and build vector.
2615  EVT EltVT = VT.getVectorElementType();
2616  EVT PtrVT = TLI.getPointerTy();
2617  SmallVector<SDValue,8> Ops;
2618  for (unsigned i = 0; i != MaskNumElts; ++i) {
2619    if (Mask[i] < 0) {
2620      Ops.push_back(DAG.getUNDEF(EltVT));
2621    } else {
2622      int Idx = Mask[i];
2623      SDValue Res;
2624
2625      if (Idx < (int)SrcNumElts)
2626        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2627                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2628      else
2629        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2630                          EltVT, Src2,
2631                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2632
2633      Ops.push_back(Res);
2634    }
2635  }
2636
2637  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2638                           VT, &Ops[0], Ops.size()));
2639}
2640
2641void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2642  const Value *Op0 = I.getOperand(0);
2643  const Value *Op1 = I.getOperand(1);
2644  const Type *AggTy = I.getType();
2645  const Type *ValTy = Op1->getType();
2646  bool IntoUndef = isa<UndefValue>(Op0);
2647  bool FromUndef = isa<UndefValue>(Op1);
2648
2649  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2650                                            I.idx_begin(), I.idx_end());
2651
2652  SmallVector<EVT, 4> AggValueVTs;
2653  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2654  SmallVector<EVT, 4> ValValueVTs;
2655  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2656
2657  unsigned NumAggValues = AggValueVTs.size();
2658  unsigned NumValValues = ValValueVTs.size();
2659  SmallVector<SDValue, 4> Values(NumAggValues);
2660
2661  SDValue Agg = getValue(Op0);
2662  SDValue Val = getValue(Op1);
2663  unsigned i = 0;
2664  // Copy the beginning value(s) from the original aggregate.
2665  for (; i != LinearIndex; ++i)
2666    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2667                SDValue(Agg.getNode(), Agg.getResNo() + i);
2668  // Copy values from the inserted value(s).
2669  for (; i != LinearIndex + NumValValues; ++i)
2670    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2671                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2672  // Copy remaining value(s) from the original aggregate.
2673  for (; i != NumAggValues; ++i)
2674    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2675                SDValue(Agg.getNode(), Agg.getResNo() + i);
2676
2677  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2678                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2679                           &Values[0], NumAggValues));
2680}
2681
2682void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2683  const Value *Op0 = I.getOperand(0);
2684  const Type *AggTy = Op0->getType();
2685  const Type *ValTy = I.getType();
2686  bool OutOfUndef = isa<UndefValue>(Op0);
2687
2688  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2689                                            I.idx_begin(), I.idx_end());
2690
2691  SmallVector<EVT, 4> ValValueVTs;
2692  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2693
2694  unsigned NumValValues = ValValueVTs.size();
2695  SmallVector<SDValue, 4> Values(NumValValues);
2696
2697  SDValue Agg = getValue(Op0);
2698  // Copy out the selected value(s).
2699  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2700    Values[i - LinearIndex] =
2701      OutOfUndef ?
2702        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2703        SDValue(Agg.getNode(), Agg.getResNo() + i);
2704
2705  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2706                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2707                           &Values[0], NumValValues));
2708}
2709
2710void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2711  SDValue N = getValue(I.getOperand(0));
2712  const Type *Ty = I.getOperand(0)->getType();
2713
2714  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2715       OI != E; ++OI) {
2716    const Value *Idx = *OI;
2717    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2718      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2719      if (Field) {
2720        // N = N + Offset
2721        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2722        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2723                        DAG.getIntPtrConstant(Offset));
2724      }
2725
2726      Ty = StTy->getElementType(Field);
2727    } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2728      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2729
2730      // Offset canonically 0 for unions, but type changes
2731      Ty = UnTy->getElementType(Field);
2732    } else {
2733      Ty = cast<SequentialType>(Ty)->getElementType();
2734
2735      // If this is a constant subscript, handle it quickly.
2736      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2737        if (CI->getZExtValue() == 0) continue;
2738        uint64_t Offs =
2739            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2740        SDValue OffsVal;
2741        EVT PTy = TLI.getPointerTy();
2742        unsigned PtrBits = PTy.getSizeInBits();
2743        if (PtrBits < 64)
2744          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2745                                TLI.getPointerTy(),
2746                                DAG.getConstant(Offs, MVT::i64));
2747        else
2748          OffsVal = DAG.getIntPtrConstant(Offs);
2749
2750        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2751                        OffsVal);
2752        continue;
2753      }
2754
2755      // N = N + Idx * ElementSize;
2756      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2757                                TD->getTypeAllocSize(Ty));
2758      SDValue IdxN = getValue(Idx);
2759
2760      // If the index is smaller or larger than intptr_t, truncate or extend
2761      // it.
2762      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2763
2764      // If this is a multiply by a power of two, turn it into a shl
2765      // immediately.  This is a very common case.
2766      if (ElementSize != 1) {
2767        if (ElementSize.isPowerOf2()) {
2768          unsigned Amt = ElementSize.logBase2();
2769          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2770                             N.getValueType(), IdxN,
2771                             DAG.getConstant(Amt, TLI.getPointerTy()));
2772        } else {
2773          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2774          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2775                             N.getValueType(), IdxN, Scale);
2776        }
2777      }
2778
2779      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2780                      N.getValueType(), N, IdxN);
2781    }
2782  }
2783
2784  setValue(&I, N);
2785}
2786
2787void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2788  // If this is a fixed sized alloca in the entry block of the function,
2789  // allocate it statically on the stack.
2790  if (FuncInfo.StaticAllocaMap.count(&I))
2791    return;   // getValue will auto-populate this.
2792
2793  const Type *Ty = I.getAllocatedType();
2794  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2795  unsigned Align =
2796    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2797             I.getAlignment());
2798
2799  SDValue AllocSize = getValue(I.getArraySize());
2800
2801  EVT IntPtr = TLI.getPointerTy();
2802  if (AllocSize.getValueType() != IntPtr)
2803    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2804
2805  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2806                          AllocSize,
2807                          DAG.getConstant(TySize, IntPtr));
2808
2809  // Handle alignment.  If the requested alignment is less than or equal to
2810  // the stack alignment, ignore it.  If the size is greater than or equal to
2811  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2812  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2813  if (Align <= StackAlign)
2814    Align = 0;
2815
2816  // Round the size of the allocation up to the stack alignment size
2817  // by add SA-1 to the size.
2818  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2819                          AllocSize.getValueType(), AllocSize,
2820                          DAG.getIntPtrConstant(StackAlign-1));
2821
2822  // Mask out the low bits for alignment purposes.
2823  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2824                          AllocSize.getValueType(), AllocSize,
2825                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2826
2827  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2828  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2829  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2830                            VTs, Ops, 3);
2831  setValue(&I, DSA);
2832  DAG.setRoot(DSA.getValue(1));
2833
2834  // Inform the Frame Information that we have just allocated a variable-sized
2835  // object.
2836  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2837}
2838
2839void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2840  const Value *SV = I.getOperand(0);
2841  SDValue Ptr = getValue(SV);
2842
2843  const Type *Ty = I.getType();
2844
2845  bool isVolatile = I.isVolatile();
2846  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2847  unsigned Alignment = I.getAlignment();
2848
2849  SmallVector<EVT, 4> ValueVTs;
2850  SmallVector<uint64_t, 4> Offsets;
2851  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2852  unsigned NumValues = ValueVTs.size();
2853  if (NumValues == 0)
2854    return;
2855
2856  SDValue Root;
2857  bool ConstantMemory = false;
2858  if (I.isVolatile())
2859    // Serialize volatile loads with other side effects.
2860    Root = getRoot();
2861  else if (AA->pointsToConstantMemory(SV)) {
2862    // Do not serialize (non-volatile) loads of constant memory with anything.
2863    Root = DAG.getEntryNode();
2864    ConstantMemory = true;
2865  } else {
2866    // Do not serialize non-volatile loads against each other.
2867    Root = DAG.getRoot();
2868  }
2869
2870  SmallVector<SDValue, 4> Values(NumValues);
2871  SmallVector<SDValue, 4> Chains(NumValues);
2872  EVT PtrVT = Ptr.getValueType();
2873  for (unsigned i = 0; i != NumValues; ++i) {
2874    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2875                            PtrVT, Ptr,
2876                            DAG.getConstant(Offsets[i], PtrVT));
2877    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2878                            A, SV, Offsets[i], isVolatile,
2879                            isNonTemporal, Alignment);
2880
2881    Values[i] = L;
2882    Chains[i] = L.getValue(1);
2883  }
2884
2885  if (!ConstantMemory) {
2886    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2887                                MVT::Other, &Chains[0], NumValues);
2888    if (isVolatile)
2889      DAG.setRoot(Chain);
2890    else
2891      PendingLoads.push_back(Chain);
2892  }
2893
2894  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2895                           DAG.getVTList(&ValueVTs[0], NumValues),
2896                           &Values[0], NumValues));
2897}
2898
2899void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2900  const Value *SrcV = I.getOperand(0);
2901  const Value *PtrV = I.getOperand(1);
2902
2903  SmallVector<EVT, 4> ValueVTs;
2904  SmallVector<uint64_t, 4> Offsets;
2905  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2906  unsigned NumValues = ValueVTs.size();
2907  if (NumValues == 0)
2908    return;
2909
2910  // Get the lowered operands. Note that we do this after
2911  // checking if NumResults is zero, because with zero results
2912  // the operands won't have values in the map.
2913  SDValue Src = getValue(SrcV);
2914  SDValue Ptr = getValue(PtrV);
2915
2916  SDValue Root = getRoot();
2917  SmallVector<SDValue, 4> Chains(NumValues);
2918  EVT PtrVT = Ptr.getValueType();
2919  bool isVolatile = I.isVolatile();
2920  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2921  unsigned Alignment = I.getAlignment();
2922
2923  for (unsigned i = 0; i != NumValues; ++i) {
2924    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2925                              DAG.getConstant(Offsets[i], PtrVT));
2926    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2927                             SDValue(Src.getNode(), Src.getResNo() + i),
2928                             Add, PtrV, Offsets[i], isVolatile,
2929                             isNonTemporal, Alignment);
2930  }
2931
2932  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2933                          MVT::Other, &Chains[0], NumValues));
2934}
2935
2936/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2937/// node.
2938void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
2939                                               unsigned Intrinsic) {
2940  bool HasChain = !I.doesNotAccessMemory();
2941  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2942
2943  // Build the operand list.
2944  SmallVector<SDValue, 8> Ops;
2945  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2946    if (OnlyLoad) {
2947      // We don't need to serialize loads against other loads.
2948      Ops.push_back(DAG.getRoot());
2949    } else {
2950      Ops.push_back(getRoot());
2951    }
2952  }
2953
2954  // Info is set by getTgtMemInstrinsic
2955  TargetLowering::IntrinsicInfo Info;
2956  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2957
2958  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2959  if (!IsTgtIntrinsic)
2960    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2961
2962  // Add all operands of the call to the operand list.
2963  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2964    SDValue Op = getValue(I.getOperand(i));
2965    assert(TLI.isTypeLegal(Op.getValueType()) &&
2966           "Intrinsic uses a non-legal type?");
2967    Ops.push_back(Op);
2968  }
2969
2970  SmallVector<EVT, 4> ValueVTs;
2971  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2972#ifndef NDEBUG
2973  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2974    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2975           "Intrinsic uses a non-legal type?");
2976  }
2977#endif // NDEBUG
2978
2979  if (HasChain)
2980    ValueVTs.push_back(MVT::Other);
2981
2982  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2983
2984  // Create the node.
2985  SDValue Result;
2986  if (IsTgtIntrinsic) {
2987    // This is target intrinsic that touches memory
2988    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2989                                     VTs, &Ops[0], Ops.size(),
2990                                     Info.memVT, Info.ptrVal, Info.offset,
2991                                     Info.align, Info.vol,
2992                                     Info.readMem, Info.writeMem);
2993  } else if (!HasChain) {
2994    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2995                         VTs, &Ops[0], Ops.size());
2996  } else if (!I.getType()->isVoidTy()) {
2997    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2998                         VTs, &Ops[0], Ops.size());
2999  } else {
3000    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3001                         VTs, &Ops[0], Ops.size());
3002  }
3003
3004  if (HasChain) {
3005    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3006    if (OnlyLoad)
3007      PendingLoads.push_back(Chain);
3008    else
3009      DAG.setRoot(Chain);
3010  }
3011
3012  if (!I.getType()->isVoidTy()) {
3013    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3014      EVT VT = TLI.getValueType(PTy);
3015      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3016    }
3017
3018    setValue(&I, Result);
3019  }
3020}
3021
3022/// GetSignificand - Get the significand and build it into a floating-point
3023/// number with exponent of 1:
3024///
3025///   Op = (Op & 0x007fffff) | 0x3f800000;
3026///
3027/// where Op is the hexidecimal representation of floating point value.
3028static SDValue
3029GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3030  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3031                           DAG.getConstant(0x007fffff, MVT::i32));
3032  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3033                           DAG.getConstant(0x3f800000, MVT::i32));
3034  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3035}
3036
3037/// GetExponent - Get the exponent:
3038///
3039///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3040///
3041/// where Op is the hexidecimal representation of floating point value.
3042static SDValue
3043GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3044            DebugLoc dl) {
3045  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3046                           DAG.getConstant(0x7f800000, MVT::i32));
3047  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3048                           DAG.getConstant(23, TLI.getPointerTy()));
3049  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3050                           DAG.getConstant(127, MVT::i32));
3051  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3052}
3053
3054/// getF32Constant - Get 32-bit floating point constant.
3055static SDValue
3056getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3057  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3058}
3059
3060/// Inlined utility function to implement binary input atomic intrinsics for
3061/// visitIntrinsicCall: I is a call instruction
3062///                     Op is the associated NodeType for I
3063const char *
3064SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3065                                           ISD::NodeType Op) {
3066  SDValue Root = getRoot();
3067  SDValue L =
3068    DAG.getAtomic(Op, getCurDebugLoc(),
3069                  getValue(I.getOperand(2)).getValueType().getSimpleVT(),
3070                  Root,
3071                  getValue(I.getOperand(1)),
3072                  getValue(I.getOperand(2)),
3073                  I.getOperand(1));
3074  setValue(&I, L);
3075  DAG.setRoot(L.getValue(1));
3076  return 0;
3077}
3078
3079// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3080const char *
3081SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3082  SDValue Op1 = getValue(I.getOperand(1));
3083  SDValue Op2 = getValue(I.getOperand(2));
3084
3085  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3086  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3087  return 0;
3088}
3089
3090/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3091/// limited-precision mode.
3092void
3093SelectionDAGBuilder::visitExp(const CallInst &I) {
3094  SDValue result;
3095  DebugLoc dl = getCurDebugLoc();
3096
3097  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3098      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3099    SDValue Op = getValue(I.getOperand(1));
3100
3101    // Put the exponent in the right bit position for later addition to the
3102    // final result:
3103    //
3104    //   #define LOG2OFe 1.4426950f
3105    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3106    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3107                             getF32Constant(DAG, 0x3fb8aa3b));
3108    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3109
3110    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3111    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3112    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3113
3114    //   IntegerPartOfX <<= 23;
3115    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3116                                 DAG.getConstant(23, TLI.getPointerTy()));
3117
3118    if (LimitFloatPrecision <= 6) {
3119      // For floating-point precision of 6:
3120      //
3121      //   TwoToFractionalPartOfX =
3122      //     0.997535578f +
3123      //       (0.735607626f + 0.252464424f * x) * x;
3124      //
3125      // error 0.0144103317, which is 6 bits
3126      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3127                               getF32Constant(DAG, 0x3e814304));
3128      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3129                               getF32Constant(DAG, 0x3f3c50c8));
3130      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3131      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3132                               getF32Constant(DAG, 0x3f7f5e7e));
3133      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3134
3135      // Add the exponent into the result in integer domain.
3136      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3137                               TwoToFracPartOfX, IntegerPartOfX);
3138
3139      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3140    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3141      // For floating-point precision of 12:
3142      //
3143      //   TwoToFractionalPartOfX =
3144      //     0.999892986f +
3145      //       (0.696457318f +
3146      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3147      //
3148      // 0.000107046256 error, which is 13 to 14 bits
3149      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3150                               getF32Constant(DAG, 0x3da235e3));
3151      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3152                               getF32Constant(DAG, 0x3e65b8f3));
3153      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3154      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3155                               getF32Constant(DAG, 0x3f324b07));
3156      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3157      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3158                               getF32Constant(DAG, 0x3f7ff8fd));
3159      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3160
3161      // Add the exponent into the result in integer domain.
3162      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3163                               TwoToFracPartOfX, IntegerPartOfX);
3164
3165      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3166    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3167      // For floating-point precision of 18:
3168      //
3169      //   TwoToFractionalPartOfX =
3170      //     0.999999982f +
3171      //       (0.693148872f +
3172      //         (0.240227044f +
3173      //           (0.554906021e-1f +
3174      //             (0.961591928e-2f +
3175      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3176      //
3177      // error 2.47208000*10^(-7), which is better than 18 bits
3178      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3179                               getF32Constant(DAG, 0x3924b03e));
3180      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3181                               getF32Constant(DAG, 0x3ab24b87));
3182      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3183      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3184                               getF32Constant(DAG, 0x3c1d8c17));
3185      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3186      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3187                               getF32Constant(DAG, 0x3d634a1d));
3188      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3189      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3190                               getF32Constant(DAG, 0x3e75fe14));
3191      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3192      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3193                                getF32Constant(DAG, 0x3f317234));
3194      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3195      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3196                                getF32Constant(DAG, 0x3f800000));
3197      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3198                                             MVT::i32, t13);
3199
3200      // Add the exponent into the result in integer domain.
3201      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3202                                TwoToFracPartOfX, IntegerPartOfX);
3203
3204      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3205    }
3206  } else {
3207    // No special expansion.
3208    result = DAG.getNode(ISD::FEXP, dl,
3209                         getValue(I.getOperand(1)).getValueType(),
3210                         getValue(I.getOperand(1)));
3211  }
3212
3213  setValue(&I, result);
3214}
3215
3216/// visitLog - Lower a log intrinsic. Handles the special sequences for
3217/// limited-precision mode.
3218void
3219SelectionDAGBuilder::visitLog(const CallInst &I) {
3220  SDValue result;
3221  DebugLoc dl = getCurDebugLoc();
3222
3223  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3224      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3225    SDValue Op = getValue(I.getOperand(1));
3226    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3227
3228    // Scale the exponent by log(2) [0.69314718f].
3229    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3230    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3231                                        getF32Constant(DAG, 0x3f317218));
3232
3233    // Get the significand and build it into a floating-point number with
3234    // exponent of 1.
3235    SDValue X = GetSignificand(DAG, Op1, dl);
3236
3237    if (LimitFloatPrecision <= 6) {
3238      // For floating-point precision of 6:
3239      //
3240      //   LogofMantissa =
3241      //     -1.1609546f +
3242      //       (1.4034025f - 0.23903021f * x) * x;
3243      //
3244      // error 0.0034276066, which is better than 8 bits
3245      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3246                               getF32Constant(DAG, 0xbe74c456));
3247      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3248                               getF32Constant(DAG, 0x3fb3a2b1));
3249      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3250      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3251                                          getF32Constant(DAG, 0x3f949a29));
3252
3253      result = DAG.getNode(ISD::FADD, dl,
3254                           MVT::f32, LogOfExponent, LogOfMantissa);
3255    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3256      // For floating-point precision of 12:
3257      //
3258      //   LogOfMantissa =
3259      //     -1.7417939f +
3260      //       (2.8212026f +
3261      //         (-1.4699568f +
3262      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3263      //
3264      // error 0.000061011436, which is 14 bits
3265      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3266                               getF32Constant(DAG, 0xbd67b6d6));
3267      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3268                               getF32Constant(DAG, 0x3ee4f4b8));
3269      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3270      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3271                               getF32Constant(DAG, 0x3fbc278b));
3272      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3273      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3274                               getF32Constant(DAG, 0x40348e95));
3275      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3276      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3277                                          getF32Constant(DAG, 0x3fdef31a));
3278
3279      result = DAG.getNode(ISD::FADD, dl,
3280                           MVT::f32, LogOfExponent, LogOfMantissa);
3281    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3282      // For floating-point precision of 18:
3283      //
3284      //   LogOfMantissa =
3285      //     -2.1072184f +
3286      //       (4.2372794f +
3287      //         (-3.7029485f +
3288      //           (2.2781945f +
3289      //             (-0.87823314f +
3290      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3291      //
3292      // error 0.0000023660568, which is better than 18 bits
3293      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3294                               getF32Constant(DAG, 0xbc91e5ac));
3295      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3296                               getF32Constant(DAG, 0x3e4350aa));
3297      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3298      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3299                               getF32Constant(DAG, 0x3f60d3e3));
3300      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3301      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3302                               getF32Constant(DAG, 0x4011cdf0));
3303      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3304      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3305                               getF32Constant(DAG, 0x406cfd1c));
3306      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3307      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3308                               getF32Constant(DAG, 0x408797cb));
3309      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3310      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3311                                          getF32Constant(DAG, 0x4006dcab));
3312
3313      result = DAG.getNode(ISD::FADD, dl,
3314                           MVT::f32, LogOfExponent, LogOfMantissa);
3315    }
3316  } else {
3317    // No special expansion.
3318    result = DAG.getNode(ISD::FLOG, dl,
3319                         getValue(I.getOperand(1)).getValueType(),
3320                         getValue(I.getOperand(1)));
3321  }
3322
3323  setValue(&I, result);
3324}
3325
3326/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3327/// limited-precision mode.
3328void
3329SelectionDAGBuilder::visitLog2(const CallInst &I) {
3330  SDValue result;
3331  DebugLoc dl = getCurDebugLoc();
3332
3333  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3334      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3335    SDValue Op = getValue(I.getOperand(1));
3336    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3337
3338    // Get the exponent.
3339    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3340
3341    // Get the significand and build it into a floating-point number with
3342    // exponent of 1.
3343    SDValue X = GetSignificand(DAG, Op1, dl);
3344
3345    // Different possible minimax approximations of significand in
3346    // floating-point for various degrees of accuracy over [1,2].
3347    if (LimitFloatPrecision <= 6) {
3348      // For floating-point precision of 6:
3349      //
3350      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3351      //
3352      // error 0.0049451742, which is more than 7 bits
3353      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3354                               getF32Constant(DAG, 0xbeb08fe0));
3355      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3356                               getF32Constant(DAG, 0x40019463));
3357      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3358      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3359                                           getF32Constant(DAG, 0x3fd6633d));
3360
3361      result = DAG.getNode(ISD::FADD, dl,
3362                           MVT::f32, LogOfExponent, Log2ofMantissa);
3363    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3364      // For floating-point precision of 12:
3365      //
3366      //   Log2ofMantissa =
3367      //     -2.51285454f +
3368      //       (4.07009056f +
3369      //         (-2.12067489f +
3370      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3371      //
3372      // error 0.0000876136000, which is better than 13 bits
3373      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3374                               getF32Constant(DAG, 0xbda7262e));
3375      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3376                               getF32Constant(DAG, 0x3f25280b));
3377      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3378      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3379                               getF32Constant(DAG, 0x4007b923));
3380      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3381      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3382                               getF32Constant(DAG, 0x40823e2f));
3383      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3384      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3385                                           getF32Constant(DAG, 0x4020d29c));
3386
3387      result = DAG.getNode(ISD::FADD, dl,
3388                           MVT::f32, LogOfExponent, Log2ofMantissa);
3389    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3390      // For floating-point precision of 18:
3391      //
3392      //   Log2ofMantissa =
3393      //     -3.0400495f +
3394      //       (6.1129976f +
3395      //         (-5.3420409f +
3396      //           (3.2865683f +
3397      //             (-1.2669343f +
3398      //               (0.27515199f -
3399      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3400      //
3401      // error 0.0000018516, which is better than 18 bits
3402      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3403                               getF32Constant(DAG, 0xbcd2769e));
3404      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3405                               getF32Constant(DAG, 0x3e8ce0b9));
3406      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3407      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3408                               getF32Constant(DAG, 0x3fa22ae7));
3409      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3410      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3411                               getF32Constant(DAG, 0x40525723));
3412      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3413      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3414                               getF32Constant(DAG, 0x40aaf200));
3415      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3416      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3417                               getF32Constant(DAG, 0x40c39dad));
3418      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3419      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3420                                           getF32Constant(DAG, 0x4042902c));
3421
3422      result = DAG.getNode(ISD::FADD, dl,
3423                           MVT::f32, LogOfExponent, Log2ofMantissa);
3424    }
3425  } else {
3426    // No special expansion.
3427    result = DAG.getNode(ISD::FLOG2, dl,
3428                         getValue(I.getOperand(1)).getValueType(),
3429                         getValue(I.getOperand(1)));
3430  }
3431
3432  setValue(&I, result);
3433}
3434
3435/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3436/// limited-precision mode.
3437void
3438SelectionDAGBuilder::visitLog10(const CallInst &I) {
3439  SDValue result;
3440  DebugLoc dl = getCurDebugLoc();
3441
3442  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3443      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3444    SDValue Op = getValue(I.getOperand(1));
3445    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3446
3447    // Scale the exponent by log10(2) [0.30102999f].
3448    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3449    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3450                                        getF32Constant(DAG, 0x3e9a209a));
3451
3452    // Get the significand and build it into a floating-point number with
3453    // exponent of 1.
3454    SDValue X = GetSignificand(DAG, Op1, dl);
3455
3456    if (LimitFloatPrecision <= 6) {
3457      // For floating-point precision of 6:
3458      //
3459      //   Log10ofMantissa =
3460      //     -0.50419619f +
3461      //       (0.60948995f - 0.10380950f * x) * x;
3462      //
3463      // error 0.0014886165, which is 6 bits
3464      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3465                               getF32Constant(DAG, 0xbdd49a13));
3466      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3467                               getF32Constant(DAG, 0x3f1c0789));
3468      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3469      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3470                                            getF32Constant(DAG, 0x3f011300));
3471
3472      result = DAG.getNode(ISD::FADD, dl,
3473                           MVT::f32, LogOfExponent, Log10ofMantissa);
3474    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3475      // For floating-point precision of 12:
3476      //
3477      //   Log10ofMantissa =
3478      //     -0.64831180f +
3479      //       (0.91751397f +
3480      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3481      //
3482      // error 0.00019228036, which is better than 12 bits
3483      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3484                               getF32Constant(DAG, 0x3d431f31));
3485      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3486                               getF32Constant(DAG, 0x3ea21fb2));
3487      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3488      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3489                               getF32Constant(DAG, 0x3f6ae232));
3490      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3491      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3492                                            getF32Constant(DAG, 0x3f25f7c3));
3493
3494      result = DAG.getNode(ISD::FADD, dl,
3495                           MVT::f32, LogOfExponent, Log10ofMantissa);
3496    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3497      // For floating-point precision of 18:
3498      //
3499      //   Log10ofMantissa =
3500      //     -0.84299375f +
3501      //       (1.5327582f +
3502      //         (-1.0688956f +
3503      //           (0.49102474f +
3504      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3505      //
3506      // error 0.0000037995730, which is better than 18 bits
3507      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3508                               getF32Constant(DAG, 0x3c5d51ce));
3509      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3510                               getF32Constant(DAG, 0x3e00685a));
3511      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3512      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3513                               getF32Constant(DAG, 0x3efb6798));
3514      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3515      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3516                               getF32Constant(DAG, 0x3f88d192));
3517      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3518      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3519                               getF32Constant(DAG, 0x3fc4316c));
3520      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3521      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3522                                            getF32Constant(DAG, 0x3f57ce70));
3523
3524      result = DAG.getNode(ISD::FADD, dl,
3525                           MVT::f32, LogOfExponent, Log10ofMantissa);
3526    }
3527  } else {
3528    // No special expansion.
3529    result = DAG.getNode(ISD::FLOG10, dl,
3530                         getValue(I.getOperand(1)).getValueType(),
3531                         getValue(I.getOperand(1)));
3532  }
3533
3534  setValue(&I, result);
3535}
3536
3537/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3538/// limited-precision mode.
3539void
3540SelectionDAGBuilder::visitExp2(const CallInst &I) {
3541  SDValue result;
3542  DebugLoc dl = getCurDebugLoc();
3543
3544  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3545      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3546    SDValue Op = getValue(I.getOperand(1));
3547
3548    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3549
3550    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3551    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3552    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3553
3554    //   IntegerPartOfX <<= 23;
3555    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3556                                 DAG.getConstant(23, TLI.getPointerTy()));
3557
3558    if (LimitFloatPrecision <= 6) {
3559      // For floating-point precision of 6:
3560      //
3561      //   TwoToFractionalPartOfX =
3562      //     0.997535578f +
3563      //       (0.735607626f + 0.252464424f * x) * x;
3564      //
3565      // error 0.0144103317, which is 6 bits
3566      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3567                               getF32Constant(DAG, 0x3e814304));
3568      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3569                               getF32Constant(DAG, 0x3f3c50c8));
3570      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3571      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3572                               getF32Constant(DAG, 0x3f7f5e7e));
3573      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3574      SDValue TwoToFractionalPartOfX =
3575        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3576
3577      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3578                           MVT::f32, TwoToFractionalPartOfX);
3579    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3580      // For floating-point precision of 12:
3581      //
3582      //   TwoToFractionalPartOfX =
3583      //     0.999892986f +
3584      //       (0.696457318f +
3585      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3586      //
3587      // error 0.000107046256, which is 13 to 14 bits
3588      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3589                               getF32Constant(DAG, 0x3da235e3));
3590      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3591                               getF32Constant(DAG, 0x3e65b8f3));
3592      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3593      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3594                               getF32Constant(DAG, 0x3f324b07));
3595      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3596      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3597                               getF32Constant(DAG, 0x3f7ff8fd));
3598      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3599      SDValue TwoToFractionalPartOfX =
3600        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3601
3602      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3603                           MVT::f32, TwoToFractionalPartOfX);
3604    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3605      // For floating-point precision of 18:
3606      //
3607      //   TwoToFractionalPartOfX =
3608      //     0.999999982f +
3609      //       (0.693148872f +
3610      //         (0.240227044f +
3611      //           (0.554906021e-1f +
3612      //             (0.961591928e-2f +
3613      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3614      // error 2.47208000*10^(-7), which is better than 18 bits
3615      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3616                               getF32Constant(DAG, 0x3924b03e));
3617      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3618                               getF32Constant(DAG, 0x3ab24b87));
3619      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3620      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3621                               getF32Constant(DAG, 0x3c1d8c17));
3622      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3623      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3624                               getF32Constant(DAG, 0x3d634a1d));
3625      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3626      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3627                               getF32Constant(DAG, 0x3e75fe14));
3628      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3629      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3630                                getF32Constant(DAG, 0x3f317234));
3631      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3632      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3633                                getF32Constant(DAG, 0x3f800000));
3634      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3635      SDValue TwoToFractionalPartOfX =
3636        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3637
3638      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3639                           MVT::f32, TwoToFractionalPartOfX);
3640    }
3641  } else {
3642    // No special expansion.
3643    result = DAG.getNode(ISD::FEXP2, dl,
3644                         getValue(I.getOperand(1)).getValueType(),
3645                         getValue(I.getOperand(1)));
3646  }
3647
3648  setValue(&I, result);
3649}
3650
3651/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3652/// limited-precision mode with x == 10.0f.
3653void
3654SelectionDAGBuilder::visitPow(const CallInst &I) {
3655  SDValue result;
3656  const Value *Val = I.getOperand(1);
3657  DebugLoc dl = getCurDebugLoc();
3658  bool IsExp10 = false;
3659
3660  if (getValue(Val).getValueType() == MVT::f32 &&
3661      getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3662      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3663    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3664      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3665        APFloat Ten(10.0f);
3666        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3667      }
3668    }
3669  }
3670
3671  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3672    SDValue Op = getValue(I.getOperand(2));
3673
3674    // Put the exponent in the right bit position for later addition to the
3675    // final result:
3676    //
3677    //   #define LOG2OF10 3.3219281f
3678    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3679    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3680                             getF32Constant(DAG, 0x40549a78));
3681    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3682
3683    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3684    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3685    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3686
3687    //   IntegerPartOfX <<= 23;
3688    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3689                                 DAG.getConstant(23, TLI.getPointerTy()));
3690
3691    if (LimitFloatPrecision <= 6) {
3692      // For floating-point precision of 6:
3693      //
3694      //   twoToFractionalPartOfX =
3695      //     0.997535578f +
3696      //       (0.735607626f + 0.252464424f * x) * x;
3697      //
3698      // error 0.0144103317, which is 6 bits
3699      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3700                               getF32Constant(DAG, 0x3e814304));
3701      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3702                               getF32Constant(DAG, 0x3f3c50c8));
3703      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3704      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3705                               getF32Constant(DAG, 0x3f7f5e7e));
3706      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3707      SDValue TwoToFractionalPartOfX =
3708        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3709
3710      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3711                           MVT::f32, TwoToFractionalPartOfX);
3712    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3713      // For floating-point precision of 12:
3714      //
3715      //   TwoToFractionalPartOfX =
3716      //     0.999892986f +
3717      //       (0.696457318f +
3718      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3719      //
3720      // error 0.000107046256, which is 13 to 14 bits
3721      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3722                               getF32Constant(DAG, 0x3da235e3));
3723      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3724                               getF32Constant(DAG, 0x3e65b8f3));
3725      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3726      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3727                               getF32Constant(DAG, 0x3f324b07));
3728      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3729      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3730                               getF32Constant(DAG, 0x3f7ff8fd));
3731      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3732      SDValue TwoToFractionalPartOfX =
3733        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3734
3735      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3736                           MVT::f32, TwoToFractionalPartOfX);
3737    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3738      // For floating-point precision of 18:
3739      //
3740      //   TwoToFractionalPartOfX =
3741      //     0.999999982f +
3742      //       (0.693148872f +
3743      //         (0.240227044f +
3744      //           (0.554906021e-1f +
3745      //             (0.961591928e-2f +
3746      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3747      // error 2.47208000*10^(-7), which is better than 18 bits
3748      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3749                               getF32Constant(DAG, 0x3924b03e));
3750      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3751                               getF32Constant(DAG, 0x3ab24b87));
3752      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3753      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3754                               getF32Constant(DAG, 0x3c1d8c17));
3755      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3756      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3757                               getF32Constant(DAG, 0x3d634a1d));
3758      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3759      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3760                               getF32Constant(DAG, 0x3e75fe14));
3761      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3762      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3763                                getF32Constant(DAG, 0x3f317234));
3764      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3765      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3766                                getF32Constant(DAG, 0x3f800000));
3767      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3768      SDValue TwoToFractionalPartOfX =
3769        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3770
3771      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3772                           MVT::f32, TwoToFractionalPartOfX);
3773    }
3774  } else {
3775    // No special expansion.
3776    result = DAG.getNode(ISD::FPOW, dl,
3777                         getValue(I.getOperand(1)).getValueType(),
3778                         getValue(I.getOperand(1)),
3779                         getValue(I.getOperand(2)));
3780  }
3781
3782  setValue(&I, result);
3783}
3784
3785
3786/// ExpandPowI - Expand a llvm.powi intrinsic.
3787static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3788                          SelectionDAG &DAG) {
3789  // If RHS is a constant, we can expand this out to a multiplication tree,
3790  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3791  // optimizing for size, we only want to do this if the expansion would produce
3792  // a small number of multiplies, otherwise we do the full expansion.
3793  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3794    // Get the exponent as a positive value.
3795    unsigned Val = RHSC->getSExtValue();
3796    if ((int)Val < 0) Val = -Val;
3797
3798    // powi(x, 0) -> 1.0
3799    if (Val == 0)
3800      return DAG.getConstantFP(1.0, LHS.getValueType());
3801
3802    const Function *F = DAG.getMachineFunction().getFunction();
3803    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3804        // If optimizing for size, don't insert too many multiplies.  This
3805        // inserts up to 5 multiplies.
3806        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3807      // We use the simple binary decomposition method to generate the multiply
3808      // sequence.  There are more optimal ways to do this (for example,
3809      // powi(x,15) generates one more multiply than it should), but this has
3810      // the benefit of being both really simple and much better than a libcall.
3811      SDValue Res;  // Logically starts equal to 1.0
3812      SDValue CurSquare = LHS;
3813      while (Val) {
3814        if (Val & 1) {
3815          if (Res.getNode())
3816            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3817          else
3818            Res = CurSquare;  // 1.0*CurSquare.
3819        }
3820
3821        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3822                                CurSquare, CurSquare);
3823        Val >>= 1;
3824      }
3825
3826      // If the original was negative, invert the result, producing 1/(x*x*x).
3827      if (RHSC->getSExtValue() < 0)
3828        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3829                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3830      return Res;
3831    }
3832  }
3833
3834  // Otherwise, expand to a libcall.
3835  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3836}
3837
3838/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3839/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3840/// At the end of instruction selection, they will be inserted to the entry BB.
3841bool
3842SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI,
3843                                              const Value *V, MDNode *Variable,
3844                                              uint64_t Offset,
3845                                              const SDValue &N) {
3846  if (!isa<Argument>(V))
3847    return false;
3848
3849  MachineFunction &MF = DAG.getMachineFunction();
3850  // Ignore inlined function arguments here.
3851  DIVariable DV(Variable);
3852  if (DV.isInlinedFnArgument(MF.getFunction()))
3853    return false;
3854
3855  MachineBasicBlock *MBB = FuncInfo.MBBMap[DI.getParent()];
3856  if (MBB != &MF.front())
3857    return false;
3858
3859  unsigned Reg = 0;
3860  if (N.getOpcode() == ISD::CopyFromReg) {
3861    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3862    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3863      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3864      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3865      if (PR)
3866        Reg = PR;
3867    }
3868  }
3869
3870  if (!Reg) {
3871    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3872    if (VMI == FuncInfo.ValueMap.end())
3873      return false;
3874    Reg = VMI->second;
3875  }
3876
3877  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3878  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3879                                    TII->get(TargetOpcode::DBG_VALUE))
3880    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3881  FuncInfo.ArgDbgValues.push_back(&*MIB);
3882  return true;
3883}
3884
3885// VisualStudio defines setjmp as _setjmp
3886#if defined(_MSC_VER) && defined(setjmp)
3887#define setjmp_undefined_for_visual_studio
3888#undef setjmp
3889#endif
3890
3891/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3892/// we want to emit this as a call to a named external function, return the name
3893/// otherwise lower it and return null.
3894const char *
3895SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3896  DebugLoc dl = getCurDebugLoc();
3897  SDValue Res;
3898
3899  switch (Intrinsic) {
3900  default:
3901    // By default, turn this into a target intrinsic node.
3902    visitTargetIntrinsic(I, Intrinsic);
3903    return 0;
3904  case Intrinsic::vastart:  visitVAStart(I); return 0;
3905  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3906  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3907  case Intrinsic::returnaddress:
3908    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3909                             getValue(I.getOperand(1))));
3910    return 0;
3911  case Intrinsic::frameaddress:
3912    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3913                             getValue(I.getOperand(1))));
3914    return 0;
3915  case Intrinsic::setjmp:
3916    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3917  case Intrinsic::longjmp:
3918    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3919  case Intrinsic::memcpy: {
3920    // Assert for address < 256 since we support only user defined address
3921    // spaces.
3922    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3923           < 256 &&
3924           cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3925           < 256 &&
3926           "Unknown address space");
3927    SDValue Op1 = getValue(I.getOperand(1));
3928    SDValue Op2 = getValue(I.getOperand(2));
3929    SDValue Op3 = getValue(I.getOperand(3));
3930    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3931    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3932    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3933                              I.getOperand(1), 0, I.getOperand(2), 0));
3934    return 0;
3935  }
3936  case Intrinsic::memset: {
3937    // Assert for address < 256 since we support only user defined address
3938    // spaces.
3939    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3940           < 256 &&
3941           "Unknown address space");
3942    SDValue Op1 = getValue(I.getOperand(1));
3943    SDValue Op2 = getValue(I.getOperand(2));
3944    SDValue Op3 = getValue(I.getOperand(3));
3945    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3946    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3947    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3948                              I.getOperand(1), 0));
3949    return 0;
3950  }
3951  case Intrinsic::memmove: {
3952    // Assert for address < 256 since we support only user defined address
3953    // spaces.
3954    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3955           < 256 &&
3956           cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3957           < 256 &&
3958           "Unknown address space");
3959    SDValue Op1 = getValue(I.getOperand(1));
3960    SDValue Op2 = getValue(I.getOperand(2));
3961    SDValue Op3 = getValue(I.getOperand(3));
3962    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3963    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3964
3965    // If the source and destination are known to not be aliases, we can
3966    // lower memmove as memcpy.
3967    uint64_t Size = -1ULL;
3968    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3969      Size = C->getZExtValue();
3970    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3971        AliasAnalysis::NoAlias) {
3972      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3973                                false, I.getOperand(1), 0, I.getOperand(2), 0));
3974      return 0;
3975    }
3976
3977    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3978                               I.getOperand(1), 0, I.getOperand(2), 0));
3979    return 0;
3980  }
3981  case Intrinsic::dbg_declare: {
3982    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3983    if (!DIVariable(DI.getVariable()).Verify())
3984      return 0;
3985
3986    MDNode *Variable = DI.getVariable();
3987    // Parameters are handled specially.
3988    bool isParameter =
3989      DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
3990    const Value *Address = DI.getAddress();
3991    if (!Address)
3992      return 0;
3993    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3994      Address = BCI->getOperand(0);
3995    const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3996    if (AI) {
3997      // Don't handle byval arguments or VLAs, for example.
3998      // Non-byval arguments are handled here (they refer to the stack temporary
3999      // alloca at this point).
4000      DenseMap<const AllocaInst*, int>::iterator SI =
4001        FuncInfo.StaticAllocaMap.find(AI);
4002      if (SI == FuncInfo.StaticAllocaMap.end())
4003        return 0; // VLAs.
4004      int FI = SI->second;
4005
4006      MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4007      if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4008        MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4009    }
4010
4011    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4012    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4013    // absolute, but not relative, values are different depending on whether
4014    // debug info exists.
4015    ++SDNodeOrder;
4016    SDValue &N = NodeMap[Address];
4017    SDDbgValue *SDV;
4018    if (N.getNode()) {
4019      if (isParameter && !AI) {
4020        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4021        if (FINode)
4022          // Byval parameter.  We have a frame index at this point.
4023          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4024                                0, dl, SDNodeOrder);
4025        else
4026          // Can't do anything with other non-AI cases yet.  This might be a
4027          // parameter of a callee function that got inlined, for example.
4028          return 0;
4029      } else if (AI)
4030        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4031                              0, dl, SDNodeOrder);
4032      else
4033        // Can't do anything with other non-AI cases yet.
4034        return 0;
4035      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4036    } else {
4037      // This isn't useful, but it shows what we're missing.
4038      SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4039                            0, dl, SDNodeOrder);
4040      DAG.AddDbgValue(SDV, 0, isParameter);
4041    }
4042    return 0;
4043  }
4044  case Intrinsic::dbg_value: {
4045    const DbgValueInst &DI = cast<DbgValueInst>(I);
4046    if (!DIVariable(DI.getVariable()).Verify())
4047      return 0;
4048
4049    MDNode *Variable = DI.getVariable();
4050    uint64_t Offset = DI.getOffset();
4051    const Value *V = DI.getValue();
4052    if (!V)
4053      return 0;
4054
4055    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4056    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4057    // absolute, but not relative, values are different depending on whether
4058    // debug info exists.
4059    ++SDNodeOrder;
4060    SDDbgValue *SDV;
4061    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4062      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4063      DAG.AddDbgValue(SDV, 0, false);
4064    } else {
4065      bool createUndef = false;
4066      // FIXME : Why not use getValue() directly ?
4067      SDValue N = NodeMap[V];
4068      if (!N.getNode() && isa<Argument>(V))
4069        // Check unused arguments map.
4070        N = UnusedArgNodeMap[V];
4071      if (N.getNode()) {
4072        if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4073          SDV = DAG.getDbgValue(Variable, N.getNode(),
4074                                N.getResNo(), Offset, dl, SDNodeOrder);
4075          DAG.AddDbgValue(SDV, N.getNode(), false);
4076        }
4077      } else if (isa<PHINode>(V) && !V->use_empty()) {
4078        SDValue N = getValue(V);
4079        if (N.getNode()) {
4080          if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4081            SDV = DAG.getDbgValue(Variable, N.getNode(),
4082                                  N.getResNo(), Offset, dl, SDNodeOrder);
4083            DAG.AddDbgValue(SDV, N.getNode(), false);
4084          }
4085        } else
4086          createUndef = true;
4087      } else
4088        createUndef = true;
4089      if (createUndef) {
4090        // We may expand this to cover more cases.  One case where we have no
4091        // data available is an unreferenced parameter; we need this fallback.
4092        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4093                              Offset, dl, SDNodeOrder);
4094        DAG.AddDbgValue(SDV, 0, false);
4095      }
4096    }
4097
4098    // Build a debug info table entry.
4099    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4100      V = BCI->getOperand(0);
4101    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4102    // Don't handle byval struct arguments or VLAs, for example.
4103    if (!AI)
4104      return 0;
4105    DenseMap<const AllocaInst*, int>::iterator SI =
4106      FuncInfo.StaticAllocaMap.find(AI);
4107    if (SI == FuncInfo.StaticAllocaMap.end())
4108      return 0; // VLAs.
4109    int FI = SI->second;
4110
4111    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4112    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4113      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4114    return 0;
4115  }
4116  case Intrinsic::eh_exception: {
4117    // Insert the EXCEPTIONADDR instruction.
4118    assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() &&
4119           "Call to eh.exception not in landing pad!");
4120    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4121    SDValue Ops[1];
4122    Ops[0] = DAG.getRoot();
4123    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4124    setValue(&I, Op);
4125    DAG.setRoot(Op.getValue(1));
4126    return 0;
4127  }
4128
4129  case Intrinsic::eh_selector: {
4130    MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()];
4131    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4132    if (CallMBB->isLandingPad())
4133      AddCatchInfo(I, &MMI, CallMBB);
4134    else {
4135#ifndef NDEBUG
4136      FuncInfo.CatchInfoLost.insert(&I);
4137#endif
4138      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4139      unsigned Reg = TLI.getExceptionSelectorRegister();
4140      if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg);
4141    }
4142
4143    // Insert the EHSELECTION instruction.
4144    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4145    SDValue Ops[2];
4146    Ops[0] = getValue(I.getOperand(1));
4147    Ops[1] = getRoot();
4148    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4149    DAG.setRoot(Op.getValue(1));
4150    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4151    return 0;
4152  }
4153
4154  case Intrinsic::eh_typeid_for: {
4155    // Find the type id for the given typeinfo.
4156    GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
4157    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4158    Res = DAG.getConstant(TypeID, MVT::i32);
4159    setValue(&I, Res);
4160    return 0;
4161  }
4162
4163  case Intrinsic::eh_return_i32:
4164  case Intrinsic::eh_return_i64:
4165    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4166    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4167                            MVT::Other,
4168                            getControlRoot(),
4169                            getValue(I.getOperand(1)),
4170                            getValue(I.getOperand(2))));
4171    return 0;
4172  case Intrinsic::eh_unwind_init:
4173    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4174    return 0;
4175  case Intrinsic::eh_dwarf_cfa: {
4176    EVT VT = getValue(I.getOperand(1)).getValueType();
4177    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
4178                                        TLI.getPointerTy());
4179    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4180                                 TLI.getPointerTy(),
4181                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4182                                             TLI.getPointerTy()),
4183                                 CfaArg);
4184    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4185                             TLI.getPointerTy(),
4186                             DAG.getConstant(0, TLI.getPointerTy()));
4187    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4188                             FA, Offset));
4189    return 0;
4190  }
4191  case Intrinsic::eh_sjlj_callsite: {
4192    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4193    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
4194    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4195    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4196
4197    MMI.setCurrentCallSite(CI->getZExtValue());
4198    return 0;
4199  }
4200  case Intrinsic::eh_sjlj_setjmp: {
4201    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4202                             getValue(I.getOperand(1))));
4203    return 0;
4204  }
4205  case Intrinsic::eh_sjlj_longjmp: {
4206    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4207                            getRoot(),
4208                            getValue(I.getOperand(1))));
4209    return 0;
4210  }
4211
4212  case Intrinsic::convertff:
4213  case Intrinsic::convertfsi:
4214  case Intrinsic::convertfui:
4215  case Intrinsic::convertsif:
4216  case Intrinsic::convertuif:
4217  case Intrinsic::convertss:
4218  case Intrinsic::convertsu:
4219  case Intrinsic::convertus:
4220  case Intrinsic::convertuu: {
4221    ISD::CvtCode Code = ISD::CVT_INVALID;
4222    switch (Intrinsic) {
4223    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4224    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4225    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4226    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4227    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4228    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4229    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4230    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4231    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4232    }
4233    EVT DestVT = TLI.getValueType(I.getType());
4234    const Value *Op1 = I.getOperand(1);
4235    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4236                               DAG.getValueType(DestVT),
4237                               DAG.getValueType(getValue(Op1).getValueType()),
4238                               getValue(I.getOperand(2)),
4239                               getValue(I.getOperand(3)),
4240                               Code);
4241    setValue(&I, Res);
4242    return 0;
4243  }
4244  case Intrinsic::sqrt:
4245    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4246                             getValue(I.getOperand(1)).getValueType(),
4247                             getValue(I.getOperand(1))));
4248    return 0;
4249  case Intrinsic::powi:
4250    setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
4251                            getValue(I.getOperand(2)), DAG));
4252    return 0;
4253  case Intrinsic::sin:
4254    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4255                             getValue(I.getOperand(1)).getValueType(),
4256                             getValue(I.getOperand(1))));
4257    return 0;
4258  case Intrinsic::cos:
4259    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4260                             getValue(I.getOperand(1)).getValueType(),
4261                             getValue(I.getOperand(1))));
4262    return 0;
4263  case Intrinsic::log:
4264    visitLog(I);
4265    return 0;
4266  case Intrinsic::log2:
4267    visitLog2(I);
4268    return 0;
4269  case Intrinsic::log10:
4270    visitLog10(I);
4271    return 0;
4272  case Intrinsic::exp:
4273    visitExp(I);
4274    return 0;
4275  case Intrinsic::exp2:
4276    visitExp2(I);
4277    return 0;
4278  case Intrinsic::pow:
4279    visitPow(I);
4280    return 0;
4281  case Intrinsic::convert_to_fp16:
4282    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4283                             MVT::i16, getValue(I.getOperand(1))));
4284    return 0;
4285  case Intrinsic::convert_from_fp16:
4286    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4287                             MVT::f32, getValue(I.getOperand(1))));
4288    return 0;
4289  case Intrinsic::pcmarker: {
4290    SDValue Tmp = getValue(I.getOperand(1));
4291    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4292    return 0;
4293  }
4294  case Intrinsic::readcyclecounter: {
4295    SDValue Op = getRoot();
4296    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4297                      DAG.getVTList(MVT::i64, MVT::Other),
4298                      &Op, 1);
4299    setValue(&I, Res);
4300    DAG.setRoot(Res.getValue(1));
4301    return 0;
4302  }
4303  case Intrinsic::bswap:
4304    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4305                             getValue(I.getOperand(1)).getValueType(),
4306                             getValue(I.getOperand(1))));
4307    return 0;
4308  case Intrinsic::cttz: {
4309    SDValue Arg = getValue(I.getOperand(1));
4310    EVT Ty = Arg.getValueType();
4311    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4312    return 0;
4313  }
4314  case Intrinsic::ctlz: {
4315    SDValue Arg = getValue(I.getOperand(1));
4316    EVT Ty = Arg.getValueType();
4317    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4318    return 0;
4319  }
4320  case Intrinsic::ctpop: {
4321    SDValue Arg = getValue(I.getOperand(1));
4322    EVT Ty = Arg.getValueType();
4323    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4324    return 0;
4325  }
4326  case Intrinsic::stacksave: {
4327    SDValue Op = getRoot();
4328    Res = DAG.getNode(ISD::STACKSAVE, dl,
4329                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4330    setValue(&I, Res);
4331    DAG.setRoot(Res.getValue(1));
4332    return 0;
4333  }
4334  case Intrinsic::stackrestore: {
4335    Res = getValue(I.getOperand(1));
4336    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4337    return 0;
4338  }
4339  case Intrinsic::stackprotector: {
4340    // Emit code into the DAG to store the stack guard onto the stack.
4341    MachineFunction &MF = DAG.getMachineFunction();
4342    MachineFrameInfo *MFI = MF.getFrameInfo();
4343    EVT PtrTy = TLI.getPointerTy();
4344
4345    SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4346    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4347
4348    int FI = FuncInfo.StaticAllocaMap[Slot];
4349    MFI->setStackProtectorIndex(FI);
4350
4351    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4352
4353    // Store the stack protector onto the stack.
4354    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4355                       PseudoSourceValue::getFixedStack(FI),
4356                       0, true, false, 0);
4357    setValue(&I, Res);
4358    DAG.setRoot(Res);
4359    return 0;
4360  }
4361  case Intrinsic::objectsize: {
4362    // If we don't know by now, we're never going to know.
4363    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4364
4365    assert(CI && "Non-constant type in __builtin_object_size?");
4366
4367    SDValue Arg = getValue(I.getOperand(0));
4368    EVT Ty = Arg.getValueType();
4369
4370    if (CI->getZExtValue() == 0)
4371      Res = DAG.getConstant(-1ULL, Ty);
4372    else
4373      Res = DAG.getConstant(0, Ty);
4374
4375    setValue(&I, Res);
4376    return 0;
4377  }
4378  case Intrinsic::var_annotation:
4379    // Discard annotate attributes
4380    return 0;
4381
4382  case Intrinsic::init_trampoline: {
4383    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4384
4385    SDValue Ops[6];
4386    Ops[0] = getRoot();
4387    Ops[1] = getValue(I.getOperand(1));
4388    Ops[2] = getValue(I.getOperand(2));
4389    Ops[3] = getValue(I.getOperand(3));
4390    Ops[4] = DAG.getSrcValue(I.getOperand(1));
4391    Ops[5] = DAG.getSrcValue(F);
4392
4393    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4394                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4395                      Ops, 6);
4396
4397    setValue(&I, Res);
4398    DAG.setRoot(Res.getValue(1));
4399    return 0;
4400  }
4401  case Intrinsic::gcroot:
4402    if (GFI) {
4403      const Value *Alloca = I.getOperand(1);
4404      const Constant *TypeMap = cast<Constant>(I.getOperand(2));
4405
4406      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4407      GFI->addStackRoot(FI->getIndex(), TypeMap);
4408    }
4409    return 0;
4410  case Intrinsic::gcread:
4411  case Intrinsic::gcwrite:
4412    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4413    return 0;
4414  case Intrinsic::flt_rounds:
4415    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4416    return 0;
4417  case Intrinsic::trap:
4418    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4419    return 0;
4420  case Intrinsic::uadd_with_overflow:
4421    return implVisitAluOverflow(I, ISD::UADDO);
4422  case Intrinsic::sadd_with_overflow:
4423    return implVisitAluOverflow(I, ISD::SADDO);
4424  case Intrinsic::usub_with_overflow:
4425    return implVisitAluOverflow(I, ISD::USUBO);
4426  case Intrinsic::ssub_with_overflow:
4427    return implVisitAluOverflow(I, ISD::SSUBO);
4428  case Intrinsic::umul_with_overflow:
4429    return implVisitAluOverflow(I, ISD::UMULO);
4430  case Intrinsic::smul_with_overflow:
4431    return implVisitAluOverflow(I, ISD::SMULO);
4432
4433  case Intrinsic::prefetch: {
4434    SDValue Ops[4];
4435    Ops[0] = getRoot();
4436    Ops[1] = getValue(I.getOperand(1));
4437    Ops[2] = getValue(I.getOperand(2));
4438    Ops[3] = getValue(I.getOperand(3));
4439    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4440    return 0;
4441  }
4442
4443  case Intrinsic::memory_barrier: {
4444    SDValue Ops[6];
4445    Ops[0] = getRoot();
4446    for (int x = 1; x < 6; ++x)
4447      Ops[x] = getValue(I.getOperand(x));
4448
4449    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4450    return 0;
4451  }
4452  case Intrinsic::atomic_cmp_swap: {
4453    SDValue Root = getRoot();
4454    SDValue L =
4455      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4456                    getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4457                    Root,
4458                    getValue(I.getOperand(1)),
4459                    getValue(I.getOperand(2)),
4460                    getValue(I.getOperand(3)),
4461                    I.getOperand(1));
4462    setValue(&I, L);
4463    DAG.setRoot(L.getValue(1));
4464    return 0;
4465  }
4466  case Intrinsic::atomic_load_add:
4467    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4468  case Intrinsic::atomic_load_sub:
4469    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4470  case Intrinsic::atomic_load_or:
4471    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4472  case Intrinsic::atomic_load_xor:
4473    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4474  case Intrinsic::atomic_load_and:
4475    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4476  case Intrinsic::atomic_load_nand:
4477    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4478  case Intrinsic::atomic_load_max:
4479    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4480  case Intrinsic::atomic_load_min:
4481    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4482  case Intrinsic::atomic_load_umin:
4483    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4484  case Intrinsic::atomic_load_umax:
4485    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4486  case Intrinsic::atomic_swap:
4487    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4488
4489  case Intrinsic::invariant_start:
4490  case Intrinsic::lifetime_start:
4491    // Discard region information.
4492    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4493    return 0;
4494  case Intrinsic::invariant_end:
4495  case Intrinsic::lifetime_end:
4496    // Discard region information.
4497    return 0;
4498  }
4499}
4500
4501void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4502                                      bool isTailCall,
4503                                      MachineBasicBlock *LandingPad) {
4504  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4505  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4506  const Type *RetTy = FTy->getReturnType();
4507  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4508  MCSymbol *BeginLabel = 0;
4509
4510  TargetLowering::ArgListTy Args;
4511  TargetLowering::ArgListEntry Entry;
4512  Args.reserve(CS.arg_size());
4513
4514  // Check whether the function can return without sret-demotion.
4515  SmallVector<EVT, 4> OutVTs;
4516  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4517  SmallVector<uint64_t, 4> Offsets;
4518  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4519                OutVTs, OutsFlags, TLI, &Offsets);
4520
4521  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4522                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4523
4524  SDValue DemoteStackSlot;
4525
4526  if (!CanLowerReturn) {
4527    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4528                      FTy->getReturnType());
4529    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4530                      FTy->getReturnType());
4531    MachineFunction &MF = DAG.getMachineFunction();
4532    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4533    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4534
4535    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4536    Entry.Node = DemoteStackSlot;
4537    Entry.Ty = StackSlotPtrType;
4538    Entry.isSExt = false;
4539    Entry.isZExt = false;
4540    Entry.isInReg = false;
4541    Entry.isSRet = true;
4542    Entry.isNest = false;
4543    Entry.isByVal = false;
4544    Entry.Alignment = Align;
4545    Args.push_back(Entry);
4546    RetTy = Type::getVoidTy(FTy->getContext());
4547  }
4548
4549  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4550       i != e; ++i) {
4551    SDValue ArgNode = getValue(*i);
4552    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4553
4554    unsigned attrInd = i - CS.arg_begin() + 1;
4555    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4556    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4557    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4558    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4559    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4560    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4561    Entry.Alignment = CS.getParamAlignment(attrInd);
4562    Args.push_back(Entry);
4563  }
4564
4565  if (LandingPad) {
4566    // Insert a label before the invoke call to mark the try range.  This can be
4567    // used to detect deletion of the invoke via the MachineModuleInfo.
4568    BeginLabel = MMI.getContext().CreateTempSymbol();
4569
4570    // For SjLj, keep track of which landing pads go with which invokes
4571    // so as to maintain the ordering of pads in the LSDA.
4572    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4573    if (CallSiteIndex) {
4574      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4575      // Now that the call site is handled, stop tracking it.
4576      MMI.setCurrentCallSite(0);
4577    }
4578
4579    // Both PendingLoads and PendingExports must be flushed here;
4580    // this call might not return.
4581    (void)getRoot();
4582    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4583  }
4584
4585  // Check if target-independent constraints permit a tail call here.
4586  // Target-dependent constraints are checked within TLI.LowerCallTo.
4587  if (isTailCall &&
4588      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4589    isTailCall = false;
4590
4591  std::pair<SDValue,SDValue> Result =
4592    TLI.LowerCallTo(getRoot(), RetTy,
4593                    CS.paramHasAttr(0, Attribute::SExt),
4594                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4595                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4596                    CS.getCallingConv(),
4597                    isTailCall,
4598                    !CS.getInstruction()->use_empty(),
4599                    Callee, Args, DAG, getCurDebugLoc());
4600  assert((isTailCall || Result.second.getNode()) &&
4601         "Non-null chain expected with non-tail call!");
4602  assert((Result.second.getNode() || !Result.first.getNode()) &&
4603         "Null value expected with tail call!");
4604  if (Result.first.getNode()) {
4605    setValue(CS.getInstruction(), Result.first);
4606  } else if (!CanLowerReturn && Result.second.getNode()) {
4607    // The instruction result is the result of loading from the
4608    // hidden sret parameter.
4609    SmallVector<EVT, 1> PVTs;
4610    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4611
4612    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4613    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4614    EVT PtrVT = PVTs[0];
4615    unsigned NumValues = OutVTs.size();
4616    SmallVector<SDValue, 4> Values(NumValues);
4617    SmallVector<SDValue, 4> Chains(NumValues);
4618
4619    for (unsigned i = 0; i < NumValues; ++i) {
4620      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4621                                DemoteStackSlot,
4622                                DAG.getConstant(Offsets[i], PtrVT));
4623      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4624                              Add, NULL, Offsets[i], false, false, 1);
4625      Values[i] = L;
4626      Chains[i] = L.getValue(1);
4627    }
4628
4629    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4630                                MVT::Other, &Chains[0], NumValues);
4631    PendingLoads.push_back(Chain);
4632
4633    // Collect the legal value parts into potentially illegal values
4634    // that correspond to the original function's return values.
4635    SmallVector<EVT, 4> RetTys;
4636    RetTy = FTy->getReturnType();
4637    ComputeValueVTs(TLI, RetTy, RetTys);
4638    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4639    SmallVector<SDValue, 4> ReturnValues;
4640    unsigned CurReg = 0;
4641    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4642      EVT VT = RetTys[I];
4643      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4644      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4645
4646      SDValue ReturnValue =
4647        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4648                         RegisterVT, VT, AssertOp);
4649      ReturnValues.push_back(ReturnValue);
4650      CurReg += NumRegs;
4651    }
4652
4653    setValue(CS.getInstruction(),
4654             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4655                         DAG.getVTList(&RetTys[0], RetTys.size()),
4656                         &ReturnValues[0], ReturnValues.size()));
4657
4658  }
4659
4660  // As a special case, a null chain means that a tail call has been emitted and
4661  // the DAG root is already updated.
4662  if (Result.second.getNode())
4663    DAG.setRoot(Result.second);
4664  else
4665    HasTailCall = true;
4666
4667  if (LandingPad) {
4668    // Insert a label at the end of the invoke call to mark the try range.  This
4669    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4670    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4671    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4672
4673    // Inform MachineModuleInfo of range.
4674    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4675  }
4676}
4677
4678/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4679/// value is equal or not-equal to zero.
4680static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4681  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4682       UI != E; ++UI) {
4683    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4684      if (IC->isEquality())
4685        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4686          if (C->isNullValue())
4687            continue;
4688    // Unknown instruction.
4689    return false;
4690  }
4691  return true;
4692}
4693
4694static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4695                             const Type *LoadTy,
4696                             SelectionDAGBuilder &Builder) {
4697
4698  // Check to see if this load can be trivially constant folded, e.g. if the
4699  // input is from a string literal.
4700  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4701    // Cast pointer to the type we really want to load.
4702    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4703                                         PointerType::getUnqual(LoadTy));
4704
4705    if (const Constant *LoadCst =
4706          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4707                                       Builder.TD))
4708      return Builder.getValue(LoadCst);
4709  }
4710
4711  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4712  // still constant memory, the input chain can be the entry node.
4713  SDValue Root;
4714  bool ConstantMemory = false;
4715
4716  // Do not serialize (non-volatile) loads of constant memory with anything.
4717  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4718    Root = Builder.DAG.getEntryNode();
4719    ConstantMemory = true;
4720  } else {
4721    // Do not serialize non-volatile loads against each other.
4722    Root = Builder.DAG.getRoot();
4723  }
4724
4725  SDValue Ptr = Builder.getValue(PtrVal);
4726  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4727                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4728                                        false /*volatile*/,
4729                                        false /*nontemporal*/, 1 /* align=1 */);
4730
4731  if (!ConstantMemory)
4732    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4733  return LoadVal;
4734}
4735
4736
4737/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4738/// If so, return true and lower it, otherwise return false and it will be
4739/// lowered like a normal call.
4740bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4741  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4742  if (I.getNumOperands() != 4)
4743    return false;
4744
4745  const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4746  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4747      !I.getOperand(3)->getType()->isIntegerTy() ||
4748      !I.getType()->isIntegerTy())
4749    return false;
4750
4751  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4752
4753  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4754  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4755  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4756    bool ActuallyDoIt = true;
4757    MVT LoadVT;
4758    const Type *LoadTy;
4759    switch (Size->getZExtValue()) {
4760    default:
4761      LoadVT = MVT::Other;
4762      LoadTy = 0;
4763      ActuallyDoIt = false;
4764      break;
4765    case 2:
4766      LoadVT = MVT::i16;
4767      LoadTy = Type::getInt16Ty(Size->getContext());
4768      break;
4769    case 4:
4770      LoadVT = MVT::i32;
4771      LoadTy = Type::getInt32Ty(Size->getContext());
4772      break;
4773    case 8:
4774      LoadVT = MVT::i64;
4775      LoadTy = Type::getInt64Ty(Size->getContext());
4776      break;
4777        /*
4778    case 16:
4779      LoadVT = MVT::v4i32;
4780      LoadTy = Type::getInt32Ty(Size->getContext());
4781      LoadTy = VectorType::get(LoadTy, 4);
4782      break;
4783         */
4784    }
4785
4786    // This turns into unaligned loads.  We only do this if the target natively
4787    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4788    // we'll only produce a small number of byte loads.
4789
4790    // Require that we can find a legal MVT, and only do this if the target
4791    // supports unaligned loads of that type.  Expanding into byte loads would
4792    // bloat the code.
4793    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4794      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4795      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4796      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4797        ActuallyDoIt = false;
4798    }
4799
4800    if (ActuallyDoIt) {
4801      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4802      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4803
4804      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4805                                 ISD::SETNE);
4806      EVT CallVT = TLI.getValueType(I.getType(), true);
4807      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4808      return true;
4809    }
4810  }
4811
4812
4813  return false;
4814}
4815
4816
4817void SelectionDAGBuilder::visitCall(const CallInst &I) {
4818  const char *RenameFn = 0;
4819  if (Function *F = I.getCalledFunction()) {
4820    if (F->isDeclaration()) {
4821      const TargetIntrinsicInfo *II = TM.getIntrinsicInfo();
4822      if (II) {
4823        if (unsigned IID = II->getIntrinsicID(F)) {
4824          RenameFn = visitIntrinsicCall(I, IID);
4825          if (!RenameFn)
4826            return;
4827        }
4828      }
4829      if (unsigned IID = F->getIntrinsicID()) {
4830        RenameFn = visitIntrinsicCall(I, IID);
4831        if (!RenameFn)
4832          return;
4833      }
4834    }
4835
4836    // Check for well-known libc/libm calls.  If the function is internal, it
4837    // can't be a library call.
4838    if (!F->hasLocalLinkage() && F->hasName()) {
4839      StringRef Name = F->getName();
4840      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4841        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4842            I.getOperand(1)->getType()->isFloatingPointTy() &&
4843            I.getType() == I.getOperand(1)->getType() &&
4844            I.getType() == I.getOperand(2)->getType()) {
4845          SDValue LHS = getValue(I.getOperand(1));
4846          SDValue RHS = getValue(I.getOperand(2));
4847          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4848                                   LHS.getValueType(), LHS, RHS));
4849          return;
4850        }
4851      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4852        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4853            I.getOperand(1)->getType()->isFloatingPointTy() &&
4854            I.getType() == I.getOperand(1)->getType()) {
4855          SDValue Tmp = getValue(I.getOperand(1));
4856          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4857                                   Tmp.getValueType(), Tmp));
4858          return;
4859        }
4860      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4861        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4862            I.getOperand(1)->getType()->isFloatingPointTy() &&
4863            I.getType() == I.getOperand(1)->getType() &&
4864            I.onlyReadsMemory()) {
4865          SDValue Tmp = getValue(I.getOperand(1));
4866          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4867                                   Tmp.getValueType(), Tmp));
4868          return;
4869        }
4870      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4871        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4872            I.getOperand(1)->getType()->isFloatingPointTy() &&
4873            I.getType() == I.getOperand(1)->getType() &&
4874            I.onlyReadsMemory()) {
4875          SDValue Tmp = getValue(I.getOperand(1));
4876          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4877                                   Tmp.getValueType(), Tmp));
4878          return;
4879        }
4880      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4881        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4882            I.getOperand(1)->getType()->isFloatingPointTy() &&
4883            I.getType() == I.getOperand(1)->getType() &&
4884            I.onlyReadsMemory()) {
4885          SDValue Tmp = getValue(I.getOperand(1));
4886          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4887                                   Tmp.getValueType(), Tmp));
4888          return;
4889        }
4890      } else if (Name == "memcmp") {
4891        if (visitMemCmpCall(I))
4892          return;
4893      }
4894    }
4895  } else if (isa<InlineAsm>(I.getOperand(0))) {
4896    visitInlineAsm(&I);
4897    return;
4898  }
4899
4900  SDValue Callee;
4901  if (!RenameFn)
4902    Callee = getValue(I.getOperand(0));
4903  else
4904    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4905
4906  // Check if we can potentially perform a tail call. More detailed checking is
4907  // be done within LowerCallTo, after more information about the call is known.
4908  LowerCallTo(&I, Callee, I.isTailCall());
4909}
4910
4911namespace llvm {
4912
4913/// AsmOperandInfo - This contains information for each constraint that we are
4914/// lowering.
4915class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
4916    public TargetLowering::AsmOperandInfo {
4917public:
4918  /// CallOperand - If this is the result output operand or a clobber
4919  /// this is null, otherwise it is the incoming operand to the CallInst.
4920  /// This gets modified as the asm is processed.
4921  SDValue CallOperand;
4922
4923  /// AssignedRegs - If this is a register or register class operand, this
4924  /// contains the set of register corresponding to the operand.
4925  RegsForValue AssignedRegs;
4926
4927  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4928    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4929  }
4930
4931  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4932  /// busy in OutputRegs/InputRegs.
4933  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4934                         std::set<unsigned> &OutputRegs,
4935                         std::set<unsigned> &InputRegs,
4936                         const TargetRegisterInfo &TRI) const {
4937    if (isOutReg) {
4938      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4939        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4940    }
4941    if (isInReg) {
4942      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4943        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4944    }
4945  }
4946
4947  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4948  /// corresponds to.  If there is no Value* for this operand, it returns
4949  /// MVT::Other.
4950  EVT getCallOperandValEVT(LLVMContext &Context,
4951                           const TargetLowering &TLI,
4952                           const TargetData *TD) const {
4953    if (CallOperandVal == 0) return MVT::Other;
4954
4955    if (isa<BasicBlock>(CallOperandVal))
4956      return TLI.getPointerTy();
4957
4958    const llvm::Type *OpTy = CallOperandVal->getType();
4959
4960    // If this is an indirect operand, the operand is a pointer to the
4961    // accessed type.
4962    if (isIndirect) {
4963      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4964      if (!PtrTy)
4965        report_fatal_error("Indirect operand for inline asm not a pointer!");
4966      OpTy = PtrTy->getElementType();
4967    }
4968
4969    // If OpTy is not a single value, it may be a struct/union that we
4970    // can tile with integers.
4971    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4972      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4973      switch (BitSize) {
4974      default: break;
4975      case 1:
4976      case 8:
4977      case 16:
4978      case 32:
4979      case 64:
4980      case 128:
4981        OpTy = IntegerType::get(Context, BitSize);
4982        break;
4983      }
4984    }
4985
4986    return TLI.getValueType(OpTy, true);
4987  }
4988
4989private:
4990  /// MarkRegAndAliases - Mark the specified register and all aliases in the
4991  /// specified set.
4992  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4993                                const TargetRegisterInfo &TRI) {
4994    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4995    Regs.insert(Reg);
4996    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4997      for (; *Aliases; ++Aliases)
4998        Regs.insert(*Aliases);
4999  }
5000};
5001
5002} // end llvm namespace.
5003
5004/// isAllocatableRegister - If the specified register is safe to allocate,
5005/// i.e. it isn't a stack pointer or some other special register, return the
5006/// register class for the register.  Otherwise, return null.
5007static const TargetRegisterClass *
5008isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5009                      const TargetLowering &TLI,
5010                      const TargetRegisterInfo *TRI) {
5011  EVT FoundVT = MVT::Other;
5012  const TargetRegisterClass *FoundRC = 0;
5013  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5014       E = TRI->regclass_end(); RCI != E; ++RCI) {
5015    EVT ThisVT = MVT::Other;
5016
5017    const TargetRegisterClass *RC = *RCI;
5018    // If none of the value types for this register class are valid, we
5019    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5020    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5021         I != E; ++I) {
5022      if (TLI.isTypeLegal(*I)) {
5023        // If we have already found this register in a different register class,
5024        // choose the one with the largest VT specified.  For example, on
5025        // PowerPC, we favor f64 register classes over f32.
5026        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5027          ThisVT = *I;
5028          break;
5029        }
5030      }
5031    }
5032
5033    if (ThisVT == MVT::Other) continue;
5034
5035    // NOTE: This isn't ideal.  In particular, this might allocate the
5036    // frame pointer in functions that need it (due to them not being taken
5037    // out of allocation, because a variable sized allocation hasn't been seen
5038    // yet).  This is a slight code pessimization, but should still work.
5039    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5040         E = RC->allocation_order_end(MF); I != E; ++I)
5041      if (*I == Reg) {
5042        // We found a matching register class.  Keep looking at others in case
5043        // we find one with larger registers that this physreg is also in.
5044        FoundRC = RC;
5045        FoundVT = ThisVT;
5046        break;
5047      }
5048  }
5049  return FoundRC;
5050}
5051
5052/// GetRegistersForValue - Assign registers (virtual or physical) for the
5053/// specified operand.  We prefer to assign virtual registers, to allow the
5054/// register allocator to handle the assignment process.  However, if the asm
5055/// uses features that we can't model on machineinstrs, we have SDISel do the
5056/// allocation.  This produces generally horrible, but correct, code.
5057///
5058///   OpInfo describes the operand.
5059///   Input and OutputRegs are the set of already allocated physical registers.
5060///
5061void SelectionDAGBuilder::
5062GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5063                     std::set<unsigned> &OutputRegs,
5064                     std::set<unsigned> &InputRegs) {
5065  LLVMContext &Context = FuncInfo.Fn->getContext();
5066
5067  // Compute whether this value requires an input register, an output register,
5068  // or both.
5069  bool isOutReg = false;
5070  bool isInReg = false;
5071  switch (OpInfo.Type) {
5072  case InlineAsm::isOutput:
5073    isOutReg = true;
5074
5075    // If there is an input constraint that matches this, we need to reserve
5076    // the input register so no other inputs allocate to it.
5077    isInReg = OpInfo.hasMatchingInput();
5078    break;
5079  case InlineAsm::isInput:
5080    isInReg = true;
5081    isOutReg = false;
5082    break;
5083  case InlineAsm::isClobber:
5084    isOutReg = true;
5085    isInReg = true;
5086    break;
5087  }
5088
5089
5090  MachineFunction &MF = DAG.getMachineFunction();
5091  SmallVector<unsigned, 4> Regs;
5092
5093  // If this is a constraint for a single physreg, or a constraint for a
5094  // register class, find it.
5095  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5096    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5097                                     OpInfo.ConstraintVT);
5098
5099  unsigned NumRegs = 1;
5100  if (OpInfo.ConstraintVT != MVT::Other) {
5101    // If this is a FP input in an integer register (or visa versa) insert a bit
5102    // cast of the input value.  More generally, handle any case where the input
5103    // value disagrees with the register class we plan to stick this in.
5104    if (OpInfo.Type == InlineAsm::isInput &&
5105        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5106      // Try to convert to the first EVT that the reg class contains.  If the
5107      // types are identical size, use a bitcast to convert (e.g. two differing
5108      // vector types).
5109      EVT RegVT = *PhysReg.second->vt_begin();
5110      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5111        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5112                                         RegVT, OpInfo.CallOperand);
5113        OpInfo.ConstraintVT = RegVT;
5114      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5115        // If the input is a FP value and we want it in FP registers, do a
5116        // bitcast to the corresponding integer type.  This turns an f64 value
5117        // into i64, which can be passed with two i32 values on a 32-bit
5118        // machine.
5119        RegVT = EVT::getIntegerVT(Context,
5120                                  OpInfo.ConstraintVT.getSizeInBits());
5121        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5122                                         RegVT, OpInfo.CallOperand);
5123        OpInfo.ConstraintVT = RegVT;
5124      }
5125    }
5126
5127    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5128  }
5129
5130  EVT RegVT;
5131  EVT ValueVT = OpInfo.ConstraintVT;
5132
5133  // If this is a constraint for a specific physical register, like {r17},
5134  // assign it now.
5135  if (unsigned AssignedReg = PhysReg.first) {
5136    const TargetRegisterClass *RC = PhysReg.second;
5137    if (OpInfo.ConstraintVT == MVT::Other)
5138      ValueVT = *RC->vt_begin();
5139
5140    // Get the actual register value type.  This is important, because the user
5141    // may have asked for (e.g.) the AX register in i32 type.  We need to
5142    // remember that AX is actually i16 to get the right extension.
5143    RegVT = *RC->vt_begin();
5144
5145    // This is a explicit reference to a physical register.
5146    Regs.push_back(AssignedReg);
5147
5148    // If this is an expanded reference, add the rest of the regs to Regs.
5149    if (NumRegs != 1) {
5150      TargetRegisterClass::iterator I = RC->begin();
5151      for (; *I != AssignedReg; ++I)
5152        assert(I != RC->end() && "Didn't find reg!");
5153
5154      // Already added the first reg.
5155      --NumRegs; ++I;
5156      for (; NumRegs; --NumRegs, ++I) {
5157        assert(I != RC->end() && "Ran out of registers to allocate!");
5158        Regs.push_back(*I);
5159      }
5160    }
5161
5162    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5163    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5164    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5165    return;
5166  }
5167
5168  // Otherwise, if this was a reference to an LLVM register class, create vregs
5169  // for this reference.
5170  if (const TargetRegisterClass *RC = PhysReg.second) {
5171    RegVT = *RC->vt_begin();
5172    if (OpInfo.ConstraintVT == MVT::Other)
5173      ValueVT = RegVT;
5174
5175    // Create the appropriate number of virtual registers.
5176    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5177    for (; NumRegs; --NumRegs)
5178      Regs.push_back(RegInfo.createVirtualRegister(RC));
5179
5180    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5181    return;
5182  }
5183
5184  // This is a reference to a register class that doesn't directly correspond
5185  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5186  // registers from the class.
5187  std::vector<unsigned> RegClassRegs
5188    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5189                                            OpInfo.ConstraintVT);
5190
5191  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5192  unsigned NumAllocated = 0;
5193  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5194    unsigned Reg = RegClassRegs[i];
5195    // See if this register is available.
5196    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5197        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5198      // Make sure we find consecutive registers.
5199      NumAllocated = 0;
5200      continue;
5201    }
5202
5203    // Check to see if this register is allocatable (i.e. don't give out the
5204    // stack pointer).
5205    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5206    if (!RC) {        // Couldn't allocate this register.
5207      // Reset NumAllocated to make sure we return consecutive registers.
5208      NumAllocated = 0;
5209      continue;
5210    }
5211
5212    // Okay, this register is good, we can use it.
5213    ++NumAllocated;
5214
5215    // If we allocated enough consecutive registers, succeed.
5216    if (NumAllocated == NumRegs) {
5217      unsigned RegStart = (i-NumAllocated)+1;
5218      unsigned RegEnd   = i+1;
5219      // Mark all of the allocated registers used.
5220      for (unsigned i = RegStart; i != RegEnd; ++i)
5221        Regs.push_back(RegClassRegs[i]);
5222
5223      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5224                                         OpInfo.ConstraintVT);
5225      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5226      return;
5227    }
5228  }
5229
5230  // Otherwise, we couldn't allocate enough registers for this.
5231}
5232
5233/// visitInlineAsm - Handle a call to an InlineAsm object.
5234///
5235void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5236  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5237
5238  /// ConstraintOperands - Information about all of the constraints.
5239  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5240
5241  std::set<unsigned> OutputRegs, InputRegs;
5242
5243  // Do a prepass over the constraints, canonicalizing them, and building up the
5244  // ConstraintOperands list.
5245  std::vector<InlineAsm::ConstraintInfo>
5246    ConstraintInfos = IA->ParseConstraints();
5247
5248  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5249
5250  SDValue Chain, Flag;
5251
5252  // We won't need to flush pending loads if this asm doesn't touch
5253  // memory and is nonvolatile.
5254  if (hasMemory || IA->hasSideEffects())
5255    Chain = getRoot();
5256  else
5257    Chain = DAG.getRoot();
5258
5259  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5260  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5261  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5262    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5263    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5264
5265    EVT OpVT = MVT::Other;
5266
5267    // Compute the value type for each operand.
5268    switch (OpInfo.Type) {
5269    case InlineAsm::isOutput:
5270      // Indirect outputs just consume an argument.
5271      if (OpInfo.isIndirect) {
5272        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5273        break;
5274      }
5275
5276      // The return value of the call is this value.  As such, there is no
5277      // corresponding argument.
5278      assert(!CS.getType()->isVoidTy() &&
5279             "Bad inline asm!");
5280      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5281        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5282      } else {
5283        assert(ResNo == 0 && "Asm only has one result!");
5284        OpVT = TLI.getValueType(CS.getType());
5285      }
5286      ++ResNo;
5287      break;
5288    case InlineAsm::isInput:
5289      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5290      break;
5291    case InlineAsm::isClobber:
5292      // Nothing to do.
5293      break;
5294    }
5295
5296    // If this is an input or an indirect output, process the call argument.
5297    // BasicBlocks are labels, currently appearing only in asm's.
5298    if (OpInfo.CallOperandVal) {
5299      // Strip bitcasts, if any.  This mostly comes up for functions.
5300      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5301
5302      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5303        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5304      } else {
5305        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5306      }
5307
5308      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5309    }
5310
5311    OpInfo.ConstraintVT = OpVT;
5312  }
5313
5314  // Second pass over the constraints: compute which constraint option to use
5315  // and assign registers to constraints that want a specific physreg.
5316  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5317    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5318
5319    // If this is an output operand with a matching input operand, look up the
5320    // matching input. If their types mismatch, e.g. one is an integer, the
5321    // other is floating point, or their sizes are different, flag it as an
5322    // error.
5323    if (OpInfo.hasMatchingInput()) {
5324      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5325
5326      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5327        if ((OpInfo.ConstraintVT.isInteger() !=
5328             Input.ConstraintVT.isInteger()) ||
5329            (OpInfo.ConstraintVT.getSizeInBits() !=
5330             Input.ConstraintVT.getSizeInBits())) {
5331          report_fatal_error("Unsupported asm: input constraint"
5332                             " with a matching output constraint of"
5333                             " incompatible type!");
5334        }
5335        Input.ConstraintVT = OpInfo.ConstraintVT;
5336      }
5337    }
5338
5339    // Compute the constraint code and ConstraintType to use.
5340    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5341
5342    // If this is a memory input, and if the operand is not indirect, do what we
5343    // need to to provide an address for the memory input.
5344    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5345        !OpInfo.isIndirect) {
5346      assert(OpInfo.Type == InlineAsm::isInput &&
5347             "Can only indirectify direct input operands!");
5348
5349      // Memory operands really want the address of the value.  If we don't have
5350      // an indirect input, put it in the constpool if we can, otherwise spill
5351      // it to a stack slot.
5352
5353      // If the operand is a float, integer, or vector constant, spill to a
5354      // constant pool entry to get its address.
5355      const Value *OpVal = OpInfo.CallOperandVal;
5356      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5357          isa<ConstantVector>(OpVal)) {
5358        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5359                                                 TLI.getPointerTy());
5360      } else {
5361        // Otherwise, create a stack slot and emit a store to it before the
5362        // asm.
5363        const Type *Ty = OpVal->getType();
5364        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5365        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5366        MachineFunction &MF = DAG.getMachineFunction();
5367        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5368        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5369        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5370                             OpInfo.CallOperand, StackSlot, NULL, 0,
5371                             false, false, 0);
5372        OpInfo.CallOperand = StackSlot;
5373      }
5374
5375      // There is no longer a Value* corresponding to this operand.
5376      OpInfo.CallOperandVal = 0;
5377
5378      // It is now an indirect operand.
5379      OpInfo.isIndirect = true;
5380    }
5381
5382    // If this constraint is for a specific register, allocate it before
5383    // anything else.
5384    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5385      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5386  }
5387
5388  ConstraintInfos.clear();
5389
5390  // Second pass - Loop over all of the operands, assigning virtual or physregs
5391  // to register class operands.
5392  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5393    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5394
5395    // C_Register operands have already been allocated, Other/Memory don't need
5396    // to be.
5397    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5398      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5399  }
5400
5401  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5402  std::vector<SDValue> AsmNodeOperands;
5403  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5404  AsmNodeOperands.push_back(
5405          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5406                                      TLI.getPointerTy()));
5407
5408  // If we have a !srcloc metadata node associated with it, we want to attach
5409  // this to the ultimately generated inline asm machineinstr.  To do this, we
5410  // pass in the third operand as this (potentially null) inline asm MDNode.
5411  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5412  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5413
5414  // Loop over all of the inputs, copying the operand values into the
5415  // appropriate registers and processing the output regs.
5416  RegsForValue RetValRegs;
5417
5418  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5419  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5420
5421  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5422    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5423
5424    switch (OpInfo.Type) {
5425    case InlineAsm::isOutput: {
5426      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5427          OpInfo.ConstraintType != TargetLowering::C_Register) {
5428        // Memory output, or 'other' output (e.g. 'X' constraint).
5429        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5430
5431        // Add information to the INLINEASM node to know about this output.
5432        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5433        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5434                                                        TLI.getPointerTy()));
5435        AsmNodeOperands.push_back(OpInfo.CallOperand);
5436        break;
5437      }
5438
5439      // Otherwise, this is a register or register class output.
5440
5441      // Copy the output from the appropriate register.  Find a register that
5442      // we can use.
5443      if (OpInfo.AssignedRegs.Regs.empty())
5444        report_fatal_error("Couldn't allocate output reg for constraint '" +
5445                           Twine(OpInfo.ConstraintCode) + "'!");
5446
5447      // If this is an indirect operand, store through the pointer after the
5448      // asm.
5449      if (OpInfo.isIndirect) {
5450        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5451                                                      OpInfo.CallOperandVal));
5452      } else {
5453        // This is the result value of the call.
5454        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5455        // Concatenate this output onto the outputs list.
5456        RetValRegs.append(OpInfo.AssignedRegs);
5457      }
5458
5459      // Add information to the INLINEASM node to know that this register is
5460      // set.
5461      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5462                                           InlineAsm::Kind_RegDefEarlyClobber :
5463                                               InlineAsm::Kind_RegDef,
5464                                               false,
5465                                               0,
5466                                               DAG,
5467                                               AsmNodeOperands);
5468      break;
5469    }
5470    case InlineAsm::isInput: {
5471      SDValue InOperandVal = OpInfo.CallOperand;
5472
5473      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5474        // If this is required to match an output register we have already set,
5475        // just use its register.
5476        unsigned OperandNo = OpInfo.getMatchedOperand();
5477
5478        // Scan until we find the definition we already emitted of this operand.
5479        // When we find it, create a RegsForValue operand.
5480        unsigned CurOp = InlineAsm::Op_FirstOperand;
5481        for (; OperandNo; --OperandNo) {
5482          // Advance to the next operand.
5483          unsigned OpFlag =
5484            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5485          assert((InlineAsm::isRegDefKind(OpFlag) ||
5486                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5487                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5488          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5489        }
5490
5491        unsigned OpFlag =
5492          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5493        if (InlineAsm::isRegDefKind(OpFlag) ||
5494            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5495          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5496          if (OpInfo.isIndirect) {
5497            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5498            LLVMContext &Ctx = *DAG.getContext();
5499            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5500                          " don't know how to handle tied "
5501                          "indirect register inputs");
5502          }
5503
5504          RegsForValue MatchedRegs;
5505          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5506          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5507          MatchedRegs.RegVTs.push_back(RegVT);
5508          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5509          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5510               i != e; ++i)
5511            MatchedRegs.Regs.push_back
5512              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5513
5514          // Use the produced MatchedRegs object to
5515          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5516                                    Chain, &Flag);
5517          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5518                                           true, OpInfo.getMatchedOperand(),
5519                                           DAG, AsmNodeOperands);
5520          break;
5521        }
5522
5523        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5524        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5525               "Unexpected number of operands");
5526        // Add information to the INLINEASM node to know about this input.
5527        // See InlineAsm.h isUseOperandTiedToDef.
5528        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5529                                                    OpInfo.getMatchedOperand());
5530        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5531                                                        TLI.getPointerTy()));
5532        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5533        break;
5534      }
5535
5536      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5537        assert(!OpInfo.isIndirect &&
5538               "Don't know how to handle indirect other inputs yet!");
5539
5540        std::vector<SDValue> Ops;
5541        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5542                                         hasMemory, Ops, DAG);
5543        if (Ops.empty())
5544          report_fatal_error("Invalid operand for inline asm constraint '" +
5545                             Twine(OpInfo.ConstraintCode) + "'!");
5546
5547        // Add information to the INLINEASM node to know about this input.
5548        unsigned ResOpType =
5549          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5550        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5551                                                        TLI.getPointerTy()));
5552        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5553        break;
5554      }
5555
5556      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5557        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5558        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5559               "Memory operands expect pointer values");
5560
5561        // Add information to the INLINEASM node to know about this input.
5562        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5563        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5564                                                        TLI.getPointerTy()));
5565        AsmNodeOperands.push_back(InOperandVal);
5566        break;
5567      }
5568
5569      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5570              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5571             "Unknown constraint type!");
5572      assert(!OpInfo.isIndirect &&
5573             "Don't know how to handle indirect register inputs yet!");
5574
5575      // Copy the input into the appropriate registers.
5576      if (OpInfo.AssignedRegs.Regs.empty() ||
5577          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5578        report_fatal_error("Couldn't allocate input reg for constraint '" +
5579                           Twine(OpInfo.ConstraintCode) + "'!");
5580
5581      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5582                                        Chain, &Flag);
5583
5584      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5585                                               DAG, AsmNodeOperands);
5586      break;
5587    }
5588    case InlineAsm::isClobber: {
5589      // Add the clobbered value to the operand list, so that the register
5590      // allocator is aware that the physreg got clobbered.
5591      if (!OpInfo.AssignedRegs.Regs.empty())
5592        OpInfo.AssignedRegs.AddInlineAsmOperands(
5593                                            InlineAsm::Kind_RegDefEarlyClobber,
5594                                                 false, 0, DAG,
5595                                                 AsmNodeOperands);
5596      break;
5597    }
5598    }
5599  }
5600
5601  // Finish up input operands.  Set the input chain and add the flag last.
5602  AsmNodeOperands[0] = Chain;
5603  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5604
5605  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5606                      DAG.getVTList(MVT::Other, MVT::Flag),
5607                      &AsmNodeOperands[0], AsmNodeOperands.size());
5608  Flag = Chain.getValue(1);
5609
5610  // If this asm returns a register value, copy the result from that register
5611  // and set it as the value of the call.
5612  if (!RetValRegs.Regs.empty()) {
5613    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5614                                             Chain, &Flag);
5615
5616    // FIXME: Why don't we do this for inline asms with MRVs?
5617    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5618      EVT ResultType = TLI.getValueType(CS.getType());
5619
5620      // If any of the results of the inline asm is a vector, it may have the
5621      // wrong width/num elts.  This can happen for register classes that can
5622      // contain multiple different value types.  The preg or vreg allocated may
5623      // not have the same VT as was expected.  Convert it to the right type
5624      // with bit_convert.
5625      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5626        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5627                          ResultType, Val);
5628
5629      } else if (ResultType != Val.getValueType() &&
5630                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5631        // If a result value was tied to an input value, the computed result may
5632        // have a wider width than the expected result.  Extract the relevant
5633        // portion.
5634        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5635      }
5636
5637      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5638    }
5639
5640    setValue(CS.getInstruction(), Val);
5641    // Don't need to use this as a chain in this case.
5642    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5643      return;
5644  }
5645
5646  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5647
5648  // Process indirect outputs, first output all of the flagged copies out of
5649  // physregs.
5650  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5651    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5652    const Value *Ptr = IndirectStoresToEmit[i].second;
5653    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5654                                             Chain, &Flag);
5655    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5656  }
5657
5658  // Emit the non-flagged stores from the physregs.
5659  SmallVector<SDValue, 8> OutChains;
5660  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5661    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5662                               StoresToEmit[i].first,
5663                               getValue(StoresToEmit[i].second),
5664                               StoresToEmit[i].second, 0,
5665                               false, false, 0);
5666    OutChains.push_back(Val);
5667  }
5668
5669  if (!OutChains.empty())
5670    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5671                        &OutChains[0], OutChains.size());
5672
5673  DAG.setRoot(Chain);
5674}
5675
5676void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5677  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5678                          MVT::Other, getRoot(),
5679                          getValue(I.getOperand(1)),
5680                          DAG.getSrcValue(I.getOperand(1))));
5681}
5682
5683void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5684  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5685                           getRoot(), getValue(I.getOperand(0)),
5686                           DAG.getSrcValue(I.getOperand(0)));
5687  setValue(&I, V);
5688  DAG.setRoot(V.getValue(1));
5689}
5690
5691void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5692  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5693                          MVT::Other, getRoot(),
5694                          getValue(I.getOperand(1)),
5695                          DAG.getSrcValue(I.getOperand(1))));
5696}
5697
5698void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5699  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5700                          MVT::Other, getRoot(),
5701                          getValue(I.getOperand(1)),
5702                          getValue(I.getOperand(2)),
5703                          DAG.getSrcValue(I.getOperand(1)),
5704                          DAG.getSrcValue(I.getOperand(2))));
5705}
5706
5707/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5708/// implementation, which just calls LowerCall.
5709/// FIXME: When all targets are
5710/// migrated to using LowerCall, this hook should be integrated into SDISel.
5711std::pair<SDValue, SDValue>
5712TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5713                            bool RetSExt, bool RetZExt, bool isVarArg,
5714                            bool isInreg, unsigned NumFixedArgs,
5715                            CallingConv::ID CallConv, bool isTailCall,
5716                            bool isReturnValueUsed,
5717                            SDValue Callee,
5718                            ArgListTy &Args, SelectionDAG &DAG,
5719                            DebugLoc dl) const {
5720  // Handle all of the outgoing arguments.
5721  SmallVector<ISD::OutputArg, 32> Outs;
5722  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5723    SmallVector<EVT, 4> ValueVTs;
5724    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5725    for (unsigned Value = 0, NumValues = ValueVTs.size();
5726         Value != NumValues; ++Value) {
5727      EVT VT = ValueVTs[Value];
5728      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5729      SDValue Op = SDValue(Args[i].Node.getNode(),
5730                           Args[i].Node.getResNo() + Value);
5731      ISD::ArgFlagsTy Flags;
5732      unsigned OriginalAlignment =
5733        getTargetData()->getABITypeAlignment(ArgTy);
5734
5735      if (Args[i].isZExt)
5736        Flags.setZExt();
5737      if (Args[i].isSExt)
5738        Flags.setSExt();
5739      if (Args[i].isInReg)
5740        Flags.setInReg();
5741      if (Args[i].isSRet)
5742        Flags.setSRet();
5743      if (Args[i].isByVal) {
5744        Flags.setByVal();
5745        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5746        const Type *ElementTy = Ty->getElementType();
5747        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5748        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5749        // For ByVal, alignment should come from FE.  BE will guess if this
5750        // info is not there but there are cases it cannot get right.
5751        if (Args[i].Alignment)
5752          FrameAlign = Args[i].Alignment;
5753        Flags.setByValAlign(FrameAlign);
5754        Flags.setByValSize(FrameSize);
5755      }
5756      if (Args[i].isNest)
5757        Flags.setNest();
5758      Flags.setOrigAlign(OriginalAlignment);
5759
5760      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5761      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5762      SmallVector<SDValue, 4> Parts(NumParts);
5763      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5764
5765      if (Args[i].isSExt)
5766        ExtendKind = ISD::SIGN_EXTEND;
5767      else if (Args[i].isZExt)
5768        ExtendKind = ISD::ZERO_EXTEND;
5769
5770      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5771                     PartVT, ExtendKind);
5772
5773      for (unsigned j = 0; j != NumParts; ++j) {
5774        // if it isn't first piece, alignment must be 1
5775        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5776        if (NumParts > 1 && j == 0)
5777          MyFlags.Flags.setSplit();
5778        else if (j != 0)
5779          MyFlags.Flags.setOrigAlign(1);
5780
5781        Outs.push_back(MyFlags);
5782      }
5783    }
5784  }
5785
5786  // Handle the incoming return values from the call.
5787  SmallVector<ISD::InputArg, 32> Ins;
5788  SmallVector<EVT, 4> RetTys;
5789  ComputeValueVTs(*this, RetTy, RetTys);
5790  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5791    EVT VT = RetTys[I];
5792    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5793    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5794    for (unsigned i = 0; i != NumRegs; ++i) {
5795      ISD::InputArg MyFlags;
5796      MyFlags.VT = RegisterVT;
5797      MyFlags.Used = isReturnValueUsed;
5798      if (RetSExt)
5799        MyFlags.Flags.setSExt();
5800      if (RetZExt)
5801        MyFlags.Flags.setZExt();
5802      if (isInreg)
5803        MyFlags.Flags.setInReg();
5804      Ins.push_back(MyFlags);
5805    }
5806  }
5807
5808  SmallVector<SDValue, 4> InVals;
5809  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5810                    Outs, Ins, dl, DAG, InVals);
5811
5812  // Verify that the target's LowerCall behaved as expected.
5813  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5814         "LowerCall didn't return a valid chain!");
5815  assert((!isTailCall || InVals.empty()) &&
5816         "LowerCall emitted a return value for a tail call!");
5817  assert((isTailCall || InVals.size() == Ins.size()) &&
5818         "LowerCall didn't emit the correct number of values!");
5819
5820  // For a tail call, the return value is merely live-out and there aren't
5821  // any nodes in the DAG representing it. Return a special value to
5822  // indicate that a tail call has been emitted and no more Instructions
5823  // should be processed in the current block.
5824  if (isTailCall) {
5825    DAG.setRoot(Chain);
5826    return std::make_pair(SDValue(), SDValue());
5827  }
5828
5829  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5830          assert(InVals[i].getNode() &&
5831                 "LowerCall emitted a null value!");
5832          assert(Ins[i].VT == InVals[i].getValueType() &&
5833                 "LowerCall emitted a value with the wrong type!");
5834        });
5835
5836  // Collect the legal value parts into potentially illegal values
5837  // that correspond to the original function's return values.
5838  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5839  if (RetSExt)
5840    AssertOp = ISD::AssertSext;
5841  else if (RetZExt)
5842    AssertOp = ISD::AssertZext;
5843  SmallVector<SDValue, 4> ReturnValues;
5844  unsigned CurReg = 0;
5845  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5846    EVT VT = RetTys[I];
5847    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5848    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5849
5850    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5851                                            NumRegs, RegisterVT, VT,
5852                                            AssertOp));
5853    CurReg += NumRegs;
5854  }
5855
5856  // For a function returning void, there is no return value. We can't create
5857  // such a node, so we just return a null return value in that case. In
5858  // that case, nothing will actualy look at the value.
5859  if (ReturnValues.empty())
5860    return std::make_pair(SDValue(), Chain);
5861
5862  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5863                            DAG.getVTList(&RetTys[0], RetTys.size()),
5864                            &ReturnValues[0], ReturnValues.size());
5865  return std::make_pair(Res, Chain);
5866}
5867
5868void TargetLowering::LowerOperationWrapper(SDNode *N,
5869                                           SmallVectorImpl<SDValue> &Results,
5870                                           SelectionDAG &DAG) const {
5871  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5872  if (Res.getNode())
5873    Results.push_back(Res);
5874}
5875
5876SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5877  llvm_unreachable("LowerOperation not implemented for this target!");
5878  return SDValue();
5879}
5880
5881void
5882SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5883  SDValue Op = getValue(V);
5884  assert((Op.getOpcode() != ISD::CopyFromReg ||
5885          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5886         "Copy from a reg to the same reg!");
5887  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5888
5889  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5890  SDValue Chain = DAG.getEntryNode();
5891  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5892  PendingExports.push_back(Chain);
5893}
5894
5895#include "llvm/CodeGen/SelectionDAGISel.h"
5896
5897void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5898  // If this is the entry block, emit arguments.
5899  const Function &F = *LLVMBB->getParent();
5900  SelectionDAG &DAG = SDB->DAG;
5901  SDValue OldRoot = DAG.getRoot();
5902  DebugLoc dl = SDB->getCurDebugLoc();
5903  const TargetData *TD = TLI.getTargetData();
5904  SmallVector<ISD::InputArg, 16> Ins;
5905
5906  // Check whether the function can return without sret-demotion.
5907  SmallVector<EVT, 4> OutVTs;
5908  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5909  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5910                OutVTs, OutsFlags, TLI);
5911
5912  FuncInfo->CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(),
5913                                                F.isVarArg(),
5914                                                OutVTs, OutsFlags, DAG);
5915  if (!FuncInfo->CanLowerReturn) {
5916    // Put in an sret pointer parameter before all the other parameters.
5917    SmallVector<EVT, 1> ValueVTs;
5918    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5919
5920    // NOTE: Assuming that a pointer will never break down to more than one VT
5921    // or one register.
5922    ISD::ArgFlagsTy Flags;
5923    Flags.setSRet();
5924    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
5925    ISD::InputArg RetArg(Flags, RegisterVT, true);
5926    Ins.push_back(RetArg);
5927  }
5928
5929  // Set up the incoming argument description vector.
5930  unsigned Idx = 1;
5931  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
5932       I != E; ++I, ++Idx) {
5933    SmallVector<EVT, 4> ValueVTs;
5934    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5935    bool isArgValueUsed = !I->use_empty();
5936    for (unsigned Value = 0, NumValues = ValueVTs.size();
5937         Value != NumValues; ++Value) {
5938      EVT VT = ValueVTs[Value];
5939      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5940      ISD::ArgFlagsTy Flags;
5941      unsigned OriginalAlignment =
5942        TD->getABITypeAlignment(ArgTy);
5943
5944      if (F.paramHasAttr(Idx, Attribute::ZExt))
5945        Flags.setZExt();
5946      if (F.paramHasAttr(Idx, Attribute::SExt))
5947        Flags.setSExt();
5948      if (F.paramHasAttr(Idx, Attribute::InReg))
5949        Flags.setInReg();
5950      if (F.paramHasAttr(Idx, Attribute::StructRet))
5951        Flags.setSRet();
5952      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5953        Flags.setByVal();
5954        const PointerType *Ty = cast<PointerType>(I->getType());
5955        const Type *ElementTy = Ty->getElementType();
5956        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5957        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5958        // For ByVal, alignment should be passed from FE.  BE will guess if
5959        // this info is not there but there are cases it cannot get right.
5960        if (F.getParamAlignment(Idx))
5961          FrameAlign = F.getParamAlignment(Idx);
5962        Flags.setByValAlign(FrameAlign);
5963        Flags.setByValSize(FrameSize);
5964      }
5965      if (F.paramHasAttr(Idx, Attribute::Nest))
5966        Flags.setNest();
5967      Flags.setOrigAlign(OriginalAlignment);
5968
5969      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5970      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5971      for (unsigned i = 0; i != NumRegs; ++i) {
5972        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5973        if (NumRegs > 1 && i == 0)
5974          MyFlags.Flags.setSplit();
5975        // if it isn't first piece, alignment must be 1
5976        else if (i > 0)
5977          MyFlags.Flags.setOrigAlign(1);
5978        Ins.push_back(MyFlags);
5979      }
5980    }
5981  }
5982
5983  // Call the target to set up the argument values.
5984  SmallVector<SDValue, 8> InVals;
5985  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5986                                             F.isVarArg(), Ins,
5987                                             dl, DAG, InVals);
5988
5989  // Verify that the target's LowerFormalArguments behaved as expected.
5990  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5991         "LowerFormalArguments didn't return a valid chain!");
5992  assert(InVals.size() == Ins.size() &&
5993         "LowerFormalArguments didn't emit the correct number of values!");
5994  DEBUG({
5995      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5996        assert(InVals[i].getNode() &&
5997               "LowerFormalArguments emitted a null value!");
5998        assert(Ins[i].VT == InVals[i].getValueType() &&
5999               "LowerFormalArguments emitted a value with the wrong type!");
6000      }
6001    });
6002
6003  // Update the DAG with the new chain value resulting from argument lowering.
6004  DAG.setRoot(NewRoot);
6005
6006  // Set up the argument values.
6007  unsigned i = 0;
6008  Idx = 1;
6009  if (!FuncInfo->CanLowerReturn) {
6010    // Create a virtual register for the sret pointer, and put in a copy
6011    // from the sret argument into it.
6012    SmallVector<EVT, 1> ValueVTs;
6013    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6014    EVT VT = ValueVTs[0];
6015    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6016    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6017    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6018                                        RegVT, VT, AssertOp);
6019
6020    MachineFunction& MF = SDB->DAG.getMachineFunction();
6021    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6022    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6023    FuncInfo->DemoteRegister = SRetReg;
6024    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6025                                    SRetReg, ArgValue);
6026    DAG.setRoot(NewRoot);
6027
6028    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6029    // Idx indexes LLVM arguments.  Don't touch it.
6030    ++i;
6031  }
6032
6033  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6034      ++I, ++Idx) {
6035    SmallVector<SDValue, 4> ArgValues;
6036    SmallVector<EVT, 4> ValueVTs;
6037    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6038    unsigned NumValues = ValueVTs.size();
6039
6040    // If this argument is unused then remember its value. It is used to generate
6041    // debugging information.
6042    if (I->use_empty() && NumValues)
6043      SDB->setUnusedArgValue(I, InVals[i]);
6044
6045    for (unsigned Value = 0; Value != NumValues; ++Value) {
6046      EVT VT = ValueVTs[Value];
6047      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6048      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6049
6050      if (!I->use_empty()) {
6051        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6052        if (F.paramHasAttr(Idx, Attribute::SExt))
6053          AssertOp = ISD::AssertSext;
6054        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6055          AssertOp = ISD::AssertZext;
6056
6057        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6058                                             NumParts, PartVT, VT,
6059                                             AssertOp));
6060      }
6061
6062      i += NumParts;
6063    }
6064
6065    if (!I->use_empty()) {
6066      SDValue Res;
6067      if (!ArgValues.empty())
6068        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6069                                 SDB->getCurDebugLoc());
6070      SDB->setValue(I, Res);
6071
6072      // If this argument is live outside of the entry block, insert a copy from
6073      // whereever we got it to the vreg that other BB's will reference it as.
6074      SDB->CopyToExportRegsIfNeeded(I);
6075    }
6076  }
6077
6078  assert(i == InVals.size() && "Argument register count mismatch!");
6079
6080  // Finally, if the target has anything special to do, allow it to do so.
6081  // FIXME: this should insert code into the DAG!
6082  EmitFunctionEntryCode();
6083}
6084
6085/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6086/// ensure constants are generated when needed.  Remember the virtual registers
6087/// that need to be added to the Machine PHI nodes as input.  We cannot just
6088/// directly add them, because expansion might result in multiple MBB's for one
6089/// BB.  As such, the start of the BB might correspond to a different MBB than
6090/// the end.
6091///
6092void
6093SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6094  const TerminatorInst *TI = LLVMBB->getTerminator();
6095
6096  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6097
6098  // Check successor nodes' PHI nodes that expect a constant to be available
6099  // from this block.
6100  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6101    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6102    if (!isa<PHINode>(SuccBB->begin())) continue;
6103    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6104
6105    // If this terminator has multiple identical successors (common for
6106    // switches), only handle each succ once.
6107    if (!SuccsHandled.insert(SuccMBB)) continue;
6108
6109    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6110
6111    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6112    // nodes and Machine PHI nodes, but the incoming operands have not been
6113    // emitted yet.
6114    for (BasicBlock::const_iterator I = SuccBB->begin();
6115         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6116      // Ignore dead phi's.
6117      if (PN->use_empty()) continue;
6118
6119      unsigned Reg;
6120      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6121
6122      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6123        unsigned &RegOut = ConstantsOut[C];
6124        if (RegOut == 0) {
6125          RegOut = FuncInfo.CreateRegForValue(C);
6126          CopyValueToVirtualRegister(C, RegOut);
6127        }
6128        Reg = RegOut;
6129      } else {
6130        Reg = FuncInfo.ValueMap[PHIOp];
6131        if (Reg == 0) {
6132          assert(isa<AllocaInst>(PHIOp) &&
6133                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6134                 "Didn't codegen value into a register!??");
6135          Reg = FuncInfo.CreateRegForValue(PHIOp);
6136          CopyValueToVirtualRegister(PHIOp, Reg);
6137        }
6138      }
6139
6140      // Remember that this register needs to added to the machine PHI node as
6141      // the input for this MBB.
6142      SmallVector<EVT, 4> ValueVTs;
6143      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6144      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6145        EVT VT = ValueVTs[vti];
6146        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6147        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6148          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6149        Reg += NumRegisters;
6150      }
6151    }
6152  }
6153  ConstantsOut.clear();
6154}
6155