SelectionDAGBuilder.cpp revision c8f34de5d615b858319f33d4e19c24622d971416
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert(PartVT.isInteger() && ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360    }
361  } else if (PartBits == ValueVT.getSizeInBits()) {
362    // Different types of the same size.
363    assert(NumParts == 1 && PartVT != ValueVT);
364    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366    // If the parts cover less bits than value has, truncate the value.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Unknown mismatch!");
369    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371  }
372
373  // The value may have changed - recompute ValueVT.
374  ValueVT = Val.getValueType();
375  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376         "Failed to tile the value with PartVT!");
377
378  if (NumParts == 1) {
379    assert(PartVT == ValueVT && "Type conversion failed!");
380    Parts[0] = Val;
381    return;
382  }
383
384  // Expand the value into multiple parts.
385  if (NumParts & (NumParts - 1)) {
386    // The number of parts is not a power of 2.  Split off and copy the tail.
387    assert(PartVT.isInteger() && ValueVT.isInteger() &&
388           "Do not know what to expand to!");
389    unsigned RoundParts = 1 << Log2_32(NumParts);
390    unsigned RoundBits = RoundParts * PartBits;
391    unsigned OddParts = NumParts - RoundParts;
392    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                 DAG.getIntPtrConstant(RoundBits));
394    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396    if (TLI.isBigEndian())
397      // The odd parts were reversed by getCopyToParts - unreverse them.
398      std::reverse(Parts + RoundParts, Parts + NumParts);
399
400    NumParts = RoundParts;
401    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403  }
404
405  // The number of parts is a power of 2.  Repeatedly bisect the value using
406  // EXTRACT_ELEMENT.
407  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                         EVT::getIntegerVT(*DAG.getContext(),
409                                           ValueVT.getSizeInBits()),
410                         Val);
411
412  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413    for (unsigned i = 0; i < NumParts; i += StepSize) {
414      unsigned ThisBits = StepSize * PartBits / 2;
415      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416      SDValue &Part0 = Parts[i];
417      SDValue &Part1 = Parts[i+StepSize/2];
418
419      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                          ThisVT, Part0, DAG.getIntPtrConstant(1));
421      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                          ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424      if (ThisBits == PartBits && ThisVT != PartVT) {
425        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427      }
428    }
429  }
430
431  if (TLI.isBigEndian())
432    std::reverse(Parts, Parts + OrigNumParts);
433}
434
435
436/// getCopyToPartsVector - Create a series of nodes that contain the specified
437/// value split into legal parts.
438static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                 SDValue Val, SDValue *Parts, unsigned NumParts,
440                                 EVT PartVT) {
441  EVT ValueVT = Val.getValueType();
442  assert(ValueVT.isVector() && "Not a vector");
443  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445  if (NumParts == 1) {
446    if (PartVT == ValueVT) {
447      // Nothing to do.
448    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449      // Bitconvert vector->vector case.
450      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451    } else if (PartVT.isVector() &&
452               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454      EVT ElementVT = PartVT.getVectorElementType();
455      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456      // undef elements.
457      SmallVector<SDValue, 16> Ops;
458      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462      for (unsigned i = ValueVT.getVectorNumElements(),
463           e = PartVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getUNDEF(ElementVT));
465
466      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468      // FIXME: Use CONCAT for 2x -> 4x.
469
470      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472    } else if (PartVT.isVector() &&
473               PartVT.getVectorElementType().bitsGE(
474                 ValueVT.getVectorElementType()) &&
475               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477      // Promoted vector extract
478      bool Smaller = PartVT.bitsLE(ValueVT);
479      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                        DL, PartVT, Val);
481    } else{
482      // Vector -> scalar conversion.
483      assert(ValueVT.getVectorNumElements() == 1 &&
484             "Only trivial vector-to-scalar conversions should get here!");
485      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                        PartVT, Val, DAG.getIntPtrConstant(0));
487
488      bool Smaller = ValueVT.bitsLE(PartVT);
489      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                         DL, PartVT, Val);
491    }
492
493    Parts[0] = Val;
494    return;
495  }
496
497  // Handle a multi-element vector.
498  EVT IntermediateVT, RegisterVT;
499  unsigned NumIntermediates;
500  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                IntermediateVT,
502                                                NumIntermediates, RegisterVT);
503  unsigned NumElements = ValueVT.getVectorNumElements();
504
505  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506  NumParts = NumRegs; // Silence a compiler warning.
507  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509  // Split the vector into intermediate operands.
510  SmallVector<SDValue, 8> Ops(NumIntermediates);
511  for (unsigned i = 0; i != NumIntermediates; ++i) {
512    if (IntermediateVT.isVector())
513      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                           IntermediateVT, Val,
515                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516    else
517      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
519  }
520
521  // Split the intermediate operands into legal parts.
522  if (NumParts == NumIntermediates) {
523    // If the register was not expanded, promote or copy the value,
524    // as appropriate.
525    for (unsigned i = 0; i != NumParts; ++i)
526      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527  } else if (NumParts > 0) {
528    // If the intermediate type was expanded, split each the value into
529    // legal parts.
530    assert(NumParts % NumIntermediates == 0 &&
531           "Must expand into a divisible number of parts!");
532    unsigned Factor = NumParts / NumIntermediates;
533    for (unsigned i = 0; i != NumIntermediates; ++i)
534      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535  }
536}
537
538
539
540
541namespace {
542  /// RegsForValue - This struct represents the registers (physical or virtual)
543  /// that a particular set of values is assigned, and the type information
544  /// about the value. The most common situation is to represent one value at a
545  /// time, but struct or array values are handled element-wise as multiple
546  /// values.  The splitting of aggregates is performed recursively, so that we
547  /// never have aggregate-typed registers. The values at this point do not
548  /// necessarily have legal types, so each value may require one or more
549  /// registers of some legal type.
550  ///
551  struct RegsForValue {
552    /// ValueVTs - The value types of the values, which may not be legal, and
553    /// may need be promoted or synthesized from one or more registers.
554    ///
555    SmallVector<EVT, 4> ValueVTs;
556
557    /// RegVTs - The value types of the registers. This is the same size as
558    /// ValueVTs and it records, for each value, what the type of the assigned
559    /// register or registers are. (Individual values are never synthesized
560    /// from more than one type of register.)
561    ///
562    /// With virtual registers, the contents of RegVTs is redundant with TLI's
563    /// getRegisterType member function, however when with physical registers
564    /// it is necessary to have a separate record of the types.
565    ///
566    SmallVector<EVT, 4> RegVTs;
567
568    /// Regs - This list holds the registers assigned to the values.
569    /// Each legal or promoted value requires one register, and each
570    /// expanded value requires multiple registers.
571    ///
572    SmallVector<unsigned, 4> Regs;
573
574    RegsForValue() {}
575
576    RegsForValue(const SmallVector<unsigned, 4> &regs,
577                 EVT regvt, EVT valuevt)
578      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
580    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                 unsigned Reg, Type *Ty) {
582      ComputeValueVTs(tli, Ty, ValueVTs);
583
584      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585        EVT ValueVT = ValueVTs[Value];
586        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588        for (unsigned i = 0; i != NumRegs; ++i)
589          Regs.push_back(Reg + i);
590        RegVTs.push_back(RegisterVT);
591        Reg += NumRegs;
592      }
593    }
594
595    /// areValueTypesLegal - Return true if types of all the values are legal.
596    bool areValueTypesLegal(const TargetLowering &TLI) {
597      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598        EVT RegisterVT = RegVTs[Value];
599        if (!TLI.isTypeLegal(RegisterVT))
600          return false;
601      }
602      return true;
603    }
604
605    /// append - Add the specified values to this one.
606    void append(const RegsForValue &RHS) {
607      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610    }
611
612    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613    /// this value and returns the result as a ValueVTs value.  This uses
614    /// Chain/Flag as the input and updates them for the output Chain/Flag.
615    /// If the Flag pointer is NULL, no flag is used.
616    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                            DebugLoc dl,
618                            SDValue &Chain, SDValue *Flag) const;
619
620    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621    /// specified value into the registers specified by this object.  This uses
622    /// Chain/Flag as the input and updates them for the output Chain/Flag.
623    /// If the Flag pointer is NULL, no flag is used.
624    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                       SDValue &Chain, SDValue *Flag) const;
626
627    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628    /// operand list.  This adds the code marker, matching input operand index
629    /// (if applicable), and includes the number of values added into it.
630    void AddInlineAsmOperands(unsigned Kind,
631                              bool HasMatching, unsigned MatchingIdx,
632                              SelectionDAG &DAG,
633                              std::vector<SDValue> &Ops) const;
634  };
635}
636
637/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638/// this value and returns the result as a ValueVT value.  This uses
639/// Chain/Flag as the input and updates them for the output Chain/Flag.
640/// If the Flag pointer is NULL, no flag is used.
641SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                      FunctionLoweringInfo &FuncInfo,
643                                      DebugLoc dl,
644                                      SDValue &Chain, SDValue *Flag) const {
645  // A Value with type {} or [0 x %t] needs no registers.
646  if (ValueVTs.empty())
647    return SDValue();
648
649  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651  // Assemble the legal parts into the final values.
652  SmallVector<SDValue, 4> Values(ValueVTs.size());
653  SmallVector<SDValue, 8> Parts;
654  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655    // Copy the legal parts from the registers.
656    EVT ValueVT = ValueVTs[Value];
657    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658    EVT RegisterVT = RegVTs[Value];
659
660    Parts.resize(NumRegs);
661    for (unsigned i = 0; i != NumRegs; ++i) {
662      SDValue P;
663      if (Flag == 0) {
664        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665      } else {
666        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667        *Flag = P.getValue(2);
668      }
669
670      Chain = P.getValue(1);
671      Parts[i] = P;
672
673      // If the source register was virtual and if we know something about it,
674      // add an assert node.
675      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676          !RegisterVT.isInteger() || RegisterVT.isVector())
677        continue;
678
679      const FunctionLoweringInfo::LiveOutInfo *LOI =
680        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681      if (!LOI)
682        continue;
683
684      unsigned RegSize = RegisterVT.getSizeInBits();
685      unsigned NumSignBits = LOI->NumSignBits;
686      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688      // FIXME: We capture more information than the dag can represent.  For
689      // now, just use the tightest assertzext/assertsext possible.
690      bool isSExt = true;
691      EVT FromVT(MVT::Other);
692      if (NumSignBits == RegSize)
693        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694      else if (NumZeroBits >= RegSize-1)
695        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696      else if (NumSignBits > RegSize-8)
697        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698      else if (NumZeroBits >= RegSize-8)
699        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700      else if (NumSignBits > RegSize-16)
701        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702      else if (NumZeroBits >= RegSize-16)
703        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704      else if (NumSignBits > RegSize-32)
705        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706      else if (NumZeroBits >= RegSize-32)
707        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708      else
709        continue;
710
711      // Add an assertion node.
712      assert(FromVT != MVT::Other);
713      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                             RegisterVT, P, DAG.getValueType(FromVT));
715    }
716
717    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                     NumRegs, RegisterVT, ValueVT);
719    Part += NumRegs;
720    Parts.clear();
721  }
722
723  return DAG.getNode(ISD::MERGE_VALUES, dl,
724                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                     &Values[0], ValueVTs.size());
726}
727
728/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729/// specified value into the registers specified by this object.  This uses
730/// Chain/Flag as the input and updates them for the output Chain/Flag.
731/// If the Flag pointer is NULL, no flag is used.
732void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                 SDValue &Chain, SDValue *Flag) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  // Get the list of the values's legal parts.
737  unsigned NumRegs = Regs.size();
738  SmallVector<SDValue, 8> Parts(NumRegs);
739  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740    EVT ValueVT = ValueVTs[Value];
741    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742    EVT RegisterVT = RegVTs[Value];
743
744    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                   &Parts[Part], NumParts, RegisterVT);
746    Part += NumParts;
747  }
748
749  // Copy the parts into the registers.
750  SmallVector<SDValue, 8> Chains(NumRegs);
751  for (unsigned i = 0; i != NumRegs; ++i) {
752    SDValue Part;
753    if (Flag == 0) {
754      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755    } else {
756      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757      *Flag = Part.getValue(1);
758    }
759
760    Chains[i] = Part.getValue(0);
761  }
762
763  if (NumRegs == 1 || Flag)
764    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765    // flagged to it. That is the CopyToReg nodes and the user are considered
766    // a single scheduling unit. If we create a TokenFactor and return it as
767    // chain, then the TokenFactor is both a predecessor (operand) of the
768    // user as well as a successor (the TF operands are flagged to the user).
769    // c1, f1 = CopyToReg
770    // c2, f2 = CopyToReg
771    // c3     = TokenFactor c1, c2
772    // ...
773    //        = op c3, ..., f2
774    Chain = Chains[NumRegs-1];
775  else
776    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777}
778
779/// AddInlineAsmOperands - Add this value to the specified inlineasm node
780/// operand list.  This adds the code marker and includes the number of
781/// values added into it.
782void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                        unsigned MatchingIdx,
784                                        SelectionDAG &DAG,
785                                        std::vector<SDValue> &Ops) const {
786  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789  if (HasMatching)
790    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792  Ops.push_back(Res);
793
794  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796    EVT RegisterVT = RegVTs[Value];
797    for (unsigned i = 0; i != NumRegs; ++i) {
798      assert(Reg < Regs.size() && "Mismatch in # registers expected");
799      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800    }
801  }
802}
803
804void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805  AA = &aa;
806  GFI = gfi;
807  TD = DAG.getTarget().getTargetData();
808}
809
810/// clear - Clear out the current SelectionDAG and the associated
811/// state and prepare this SelectionDAGBuilder object to be used
812/// for a new block. This doesn't clear out information about
813/// additional blocks that are needed to complete switch lowering
814/// or PHI node updating; that information is cleared out as it is
815/// consumed.
816void SelectionDAGBuilder::clear() {
817  NodeMap.clear();
818  UnusedArgNodeMap.clear();
819  PendingLoads.clear();
820  PendingExports.clear();
821  CurDebugLoc = DebugLoc();
822  HasTailCall = false;
823}
824
825/// clearDanglingDebugInfo - Clear the dangling debug information
826/// map. This function is seperated from the clear so that debug
827/// information that is dangling in a basic block can be properly
828/// resolved in a different basic block. This allows the
829/// SelectionDAG to resolve dangling debug information attached
830/// to PHI nodes.
831void SelectionDAGBuilder::clearDanglingDebugInfo() {
832  DanglingDebugInfoMap.clear();
833}
834
835/// getRoot - Return the current virtual root of the Selection DAG,
836/// flushing any PendingLoad items. This must be done before emitting
837/// a store or any other node that may need to be ordered after any
838/// prior load instructions.
839///
840SDValue SelectionDAGBuilder::getRoot() {
841  if (PendingLoads.empty())
842    return DAG.getRoot();
843
844  if (PendingLoads.size() == 1) {
845    SDValue Root = PendingLoads[0];
846    DAG.setRoot(Root);
847    PendingLoads.clear();
848    return Root;
849  }
850
851  // Otherwise, we have to make a token factor node.
852  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853                               &PendingLoads[0], PendingLoads.size());
854  PendingLoads.clear();
855  DAG.setRoot(Root);
856  return Root;
857}
858
859/// getControlRoot - Similar to getRoot, but instead of flushing all the
860/// PendingLoad items, flush all the PendingExports items. It is necessary
861/// to do this before emitting a terminator instruction.
862///
863SDValue SelectionDAGBuilder::getControlRoot() {
864  SDValue Root = DAG.getRoot();
865
866  if (PendingExports.empty())
867    return Root;
868
869  // Turn all of the CopyToReg chains into one factored node.
870  if (Root.getOpcode() != ISD::EntryToken) {
871    unsigned i = 0, e = PendingExports.size();
872    for (; i != e; ++i) {
873      assert(PendingExports[i].getNode()->getNumOperands() > 1);
874      if (PendingExports[i].getNode()->getOperand(0) == Root)
875        break;  // Don't add the root if we already indirectly depend on it.
876    }
877
878    if (i == e)
879      PendingExports.push_back(Root);
880  }
881
882  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883                     &PendingExports[0],
884                     PendingExports.size());
885  PendingExports.clear();
886  DAG.setRoot(Root);
887  return Root;
888}
889
890void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892  DAG.AssignOrdering(Node, SDNodeOrder);
893
894  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895    AssignOrderingToNode(Node->getOperand(I).getNode());
896}
897
898void SelectionDAGBuilder::visit(const Instruction &I) {
899  // Set up outgoing PHI node register values before emitting the terminator.
900  if (isa<TerminatorInst>(&I))
901    HandlePHINodesInSuccessorBlocks(I.getParent());
902
903  CurDebugLoc = I.getDebugLoc();
904
905  visit(I.getOpcode(), I);
906
907  if (!isa<TerminatorInst>(&I) && !HasTailCall)
908    CopyToExportRegsIfNeeded(&I);
909
910  CurDebugLoc = DebugLoc();
911}
912
913void SelectionDAGBuilder::visitPHI(const PHINode &) {
914  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915}
916
917void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918  // Note: this doesn't use InstVisitor, because it has to work with
919  // ConstantExpr's in addition to instructions.
920  switch (Opcode) {
921  default: llvm_unreachable("Unknown instruction type encountered!");
922    // Build the switch statement using the Instruction.def file.
923#define HANDLE_INST(NUM, OPCODE, CLASS) \
924    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925#include "llvm/Instruction.def"
926  }
927
928  // Assign the ordering to the freshly created DAG nodes.
929  if (NodeMap.count(&I)) {
930    ++SDNodeOrder;
931    AssignOrderingToNode(getValue(&I).getNode());
932  }
933}
934
935// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936// generate the debug data structures now that we've seen its definition.
937void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938                                                   SDValue Val) {
939  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940  if (DDI.getDI()) {
941    const DbgValueInst *DI = DDI.getDI();
942    DebugLoc dl = DDI.getdl();
943    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944    MDNode *Variable = DI->getVariable();
945    uint64_t Offset = DI->getOffset();
946    SDDbgValue *SDV;
947    if (Val.getNode()) {
948      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949        SDV = DAG.getDbgValue(Variable, Val.getNode(),
950                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951        DAG.AddDbgValue(SDV, Val.getNode(), false);
952      }
953    } else
954      DEBUG(dbgs() << "Dropping debug info for " << DI);
955    DanglingDebugInfoMap[V] = DanglingDebugInfo();
956  }
957}
958
959// getValue - Return an SDValue for the given Value.
960SDValue SelectionDAGBuilder::getValue(const Value *V) {
961  // If we already have an SDValue for this value, use it. It's important
962  // to do this first, so that we don't create a CopyFromReg if we already
963  // have a regular SDValue.
964  SDValue &N = NodeMap[V];
965  if (N.getNode()) return N;
966
967  // If there's a virtual register allocated and initialized for this
968  // value, use it.
969  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970  if (It != FuncInfo.ValueMap.end()) {
971    unsigned InReg = It->second;
972    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973    SDValue Chain = DAG.getEntryNode();
974    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975    resolveDanglingDebugInfo(V, N);
976    return N;
977  }
978
979  // Otherwise create a new SDValue and remember it.
980  SDValue Val = getValueImpl(V);
981  NodeMap[V] = Val;
982  resolveDanglingDebugInfo(V, Val);
983  return Val;
984}
985
986/// getNonRegisterValue - Return an SDValue for the given Value, but
987/// don't look in FuncInfo.ValueMap for a virtual register.
988SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989  // If we already have an SDValue for this value, use it.
990  SDValue &N = NodeMap[V];
991  if (N.getNode()) return N;
992
993  // Otherwise create a new SDValue and remember it.
994  SDValue Val = getValueImpl(V);
995  NodeMap[V] = Val;
996  resolveDanglingDebugInfo(V, Val);
997  return Val;
998}
999
1000/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001/// Create an SDValue for the given value.
1002SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003  if (const Constant *C = dyn_cast<Constant>(V)) {
1004    EVT VT = TLI.getValueType(V->getType(), true);
1005
1006    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007      return DAG.getConstant(*CI, VT);
1008
1009    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011
1012    if (isa<ConstantPointerNull>(C))
1013      return DAG.getConstant(0, TLI.getPointerTy());
1014
1015    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016      return DAG.getConstantFP(*CFP, VT);
1017
1018    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019      return DAG.getUNDEF(VT);
1020
1021    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022      visit(CE->getOpcode(), *CE);
1023      SDValue N1 = NodeMap[V];
1024      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025      return N1;
1026    }
1027
1028    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029      SmallVector<SDValue, 4> Constants;
1030      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031           OI != OE; ++OI) {
1032        SDNode *Val = getValue(*OI).getNode();
1033        // If the operand is an empty aggregate, there are no values.
1034        if (!Val) continue;
1035        // Add each leaf value from the operand to the Constants list
1036        // to form a flattened list of all the values.
1037        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038          Constants.push_back(SDValue(Val, i));
1039      }
1040
1041      return DAG.getMergeValues(&Constants[0], Constants.size(),
1042                                getCurDebugLoc());
1043    }
1044
1045    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047             "Unknown struct or array constant!");
1048
1049      SmallVector<EVT, 4> ValueVTs;
1050      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051      unsigned NumElts = ValueVTs.size();
1052      if (NumElts == 0)
1053        return SDValue(); // empty struct
1054      SmallVector<SDValue, 4> Constants(NumElts);
1055      for (unsigned i = 0; i != NumElts; ++i) {
1056        EVT EltVT = ValueVTs[i];
1057        if (isa<UndefValue>(C))
1058          Constants[i] = DAG.getUNDEF(EltVT);
1059        else if (EltVT.isFloatingPoint())
1060          Constants[i] = DAG.getConstantFP(0, EltVT);
1061        else
1062          Constants[i] = DAG.getConstant(0, EltVT);
1063      }
1064
1065      return DAG.getMergeValues(&Constants[0], NumElts,
1066                                getCurDebugLoc());
1067    }
1068
1069    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070      return DAG.getBlockAddress(BA, VT);
1071
1072    VectorType *VecTy = cast<VectorType>(V->getType());
1073    unsigned NumElements = VecTy->getNumElements();
1074
1075    // Now that we know the number and type of the elements, get that number of
1076    // elements into the Ops array based on what kind of constant it is.
1077    SmallVector<SDValue, 16> Ops;
1078    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079      for (unsigned i = 0; i != NumElements; ++i)
1080        Ops.push_back(getValue(CP->getOperand(i)));
1081    } else {
1082      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084
1085      SDValue Op;
1086      if (EltVT.isFloatingPoint())
1087        Op = DAG.getConstantFP(0, EltVT);
1088      else
1089        Op = DAG.getConstant(0, EltVT);
1090      Ops.assign(NumElements, Op);
1091    }
1092
1093    // Create a BUILD_VECTOR node.
1094    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095                                    VT, &Ops[0], Ops.size());
1096  }
1097
1098  // If this is a static alloca, generate it as the frameindex instead of
1099  // computation.
1100  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101    DenseMap<const AllocaInst*, int>::iterator SI =
1102      FuncInfo.StaticAllocaMap.find(AI);
1103    if (SI != FuncInfo.StaticAllocaMap.end())
1104      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105  }
1106
1107  // If this is an instruction which fast-isel has deferred, select it now.
1108  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111    SDValue Chain = DAG.getEntryNode();
1112    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113  }
1114
1115  llvm_unreachable("Can't get register for value!");
1116  return SDValue();
1117}
1118
1119void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120  SDValue Chain = getControlRoot();
1121  SmallVector<ISD::OutputArg, 8> Outs;
1122  SmallVector<SDValue, 8> OutVals;
1123
1124  if (!FuncInfo.CanLowerReturn) {
1125    unsigned DemoteReg = FuncInfo.DemoteRegister;
1126    const Function *F = I.getParent()->getParent();
1127
1128    // Emit a store of the return value through the virtual register.
1129    // Leave Outs empty so that LowerReturn won't try to load return
1130    // registers the usual way.
1131    SmallVector<EVT, 1> PtrValueVTs;
1132    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133                    PtrValueVTs);
1134
1135    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136    SDValue RetOp = getValue(I.getOperand(0));
1137
1138    SmallVector<EVT, 4> ValueVTs;
1139    SmallVector<uint64_t, 4> Offsets;
1140    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141    unsigned NumValues = ValueVTs.size();
1142
1143    SmallVector<SDValue, 4> Chains(NumValues);
1144    for (unsigned i = 0; i != NumValues; ++i) {
1145      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146                                RetPtr.getValueType(), RetPtr,
1147                                DAG.getIntPtrConstant(Offsets[i]));
1148      Chains[i] =
1149        DAG.getStore(Chain, getCurDebugLoc(),
1150                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151                     // FIXME: better loc info would be nice.
1152                     Add, MachinePointerInfo(), false, false, 0);
1153    }
1154
1155    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156                        MVT::Other, &Chains[0], NumValues);
1157  } else if (I.getNumOperands() != 0) {
1158    SmallVector<EVT, 4> ValueVTs;
1159    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160    unsigned NumValues = ValueVTs.size();
1161    if (NumValues) {
1162      SDValue RetOp = getValue(I.getOperand(0));
1163      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164        EVT VT = ValueVTs[j];
1165
1166        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167
1168        const Function *F = I.getParent()->getParent();
1169        if (F->paramHasAttr(0, Attribute::SExt))
1170          ExtendKind = ISD::SIGN_EXTEND;
1171        else if (F->paramHasAttr(0, Attribute::ZExt))
1172          ExtendKind = ISD::ZERO_EXTEND;
1173
1174        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176
1177        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179        SmallVector<SDValue, 4> Parts(NumParts);
1180        getCopyToParts(DAG, getCurDebugLoc(),
1181                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182                       &Parts[0], NumParts, PartVT, ExtendKind);
1183
1184        // 'inreg' on function refers to return value
1185        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186        if (F->paramHasAttr(0, Attribute::InReg))
1187          Flags.setInReg();
1188
1189        // Propagate extension type if any
1190        if (ExtendKind == ISD::SIGN_EXTEND)
1191          Flags.setSExt();
1192        else if (ExtendKind == ISD::ZERO_EXTEND)
1193          Flags.setZExt();
1194
1195        for (unsigned i = 0; i < NumParts; ++i) {
1196          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197                                        /*isfixed=*/true));
1198          OutVals.push_back(Parts[i]);
1199        }
1200      }
1201    }
1202  }
1203
1204  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205  CallingConv::ID CallConv =
1206    DAG.getMachineFunction().getFunction()->getCallingConv();
1207  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208                          Outs, OutVals, getCurDebugLoc(), DAG);
1209
1210  // Verify that the target's LowerReturn behaved as expected.
1211  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212         "LowerReturn didn't return a valid chain!");
1213
1214  // Update the DAG with the new chain value resulting from return lowering.
1215  DAG.setRoot(Chain);
1216}
1217
1218/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219/// created for it, emit nodes to copy the value into the virtual
1220/// registers.
1221void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222  // Skip empty types
1223  if (V->getType()->isEmptyTy())
1224    return;
1225
1226  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227  if (VMI != FuncInfo.ValueMap.end()) {
1228    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229    CopyValueToVirtualRegister(V, VMI->second);
1230  }
1231}
1232
1233/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234/// the current basic block, add it to ValueMap now so that we'll get a
1235/// CopyTo/FromReg.
1236void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237  // No need to export constants.
1238  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239
1240  // Already exported?
1241  if (FuncInfo.isExportedInst(V)) return;
1242
1243  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244  CopyValueToVirtualRegister(V, Reg);
1245}
1246
1247bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248                                                     const BasicBlock *FromBB) {
1249  // The operands of the setcc have to be in this block.  We don't know
1250  // how to export them from some other block.
1251  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252    // Can export from current BB.
1253    if (VI->getParent() == FromBB)
1254      return true;
1255
1256    // Is already exported, noop.
1257    return FuncInfo.isExportedInst(V);
1258  }
1259
1260  // If this is an argument, we can export it if the BB is the entry block or
1261  // if it is already exported.
1262  if (isa<Argument>(V)) {
1263    if (FromBB == &FromBB->getParent()->getEntryBlock())
1264      return true;
1265
1266    // Otherwise, can only export this if it is already exported.
1267    return FuncInfo.isExportedInst(V);
1268  }
1269
1270  // Otherwise, constants can always be exported.
1271  return true;
1272}
1273
1274/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276                                            MachineBasicBlock *Dst) {
1277  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278  if (!BPI)
1279    return 0;
1280  const BasicBlock *SrcBB = Src->getBasicBlock();
1281  const BasicBlock *DstBB = Dst->getBasicBlock();
1282  return BPI->getEdgeWeight(SrcBB, DstBB);
1283}
1284
1285void SelectionDAGBuilder::
1286addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1287                       uint32_t Weight /* = 0 */) {
1288  if (!Weight)
1289    Weight = getEdgeWeight(Src, Dst);
1290  Src->addSuccessor(Dst, Weight);
1291}
1292
1293
1294static bool InBlock(const Value *V, const BasicBlock *BB) {
1295  if (const Instruction *I = dyn_cast<Instruction>(V))
1296    return I->getParent() == BB;
1297  return true;
1298}
1299
1300/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1301/// This function emits a branch and is used at the leaves of an OR or an
1302/// AND operator tree.
1303///
1304void
1305SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1306                                                  MachineBasicBlock *TBB,
1307                                                  MachineBasicBlock *FBB,
1308                                                  MachineBasicBlock *CurBB,
1309                                                  MachineBasicBlock *SwitchBB) {
1310  const BasicBlock *BB = CurBB->getBasicBlock();
1311
1312  // If the leaf of the tree is a comparison, merge the condition into
1313  // the caseblock.
1314  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1315    // The operands of the cmp have to be in this block.  We don't know
1316    // how to export them from some other block.  If this is the first block
1317    // of the sequence, no exporting is needed.
1318    if (CurBB == SwitchBB ||
1319        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1320         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1321      ISD::CondCode Condition;
1322      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1323        Condition = getICmpCondCode(IC->getPredicate());
1324      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1325        Condition = getFCmpCondCode(FC->getPredicate());
1326      } else {
1327        Condition = ISD::SETEQ; // silence warning.
1328        llvm_unreachable("Unknown compare instruction");
1329      }
1330
1331      CaseBlock CB(Condition, BOp->getOperand(0),
1332                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1333      SwitchCases.push_back(CB);
1334      return;
1335    }
1336  }
1337
1338  // Create a CaseBlock record representing this branch.
1339  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1340               NULL, TBB, FBB, CurBB);
1341  SwitchCases.push_back(CB);
1342}
1343
1344/// FindMergedConditions - If Cond is an expression like
1345void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1346                                               MachineBasicBlock *TBB,
1347                                               MachineBasicBlock *FBB,
1348                                               MachineBasicBlock *CurBB,
1349                                               MachineBasicBlock *SwitchBB,
1350                                               unsigned Opc) {
1351  // If this node is not part of the or/and tree, emit it as a branch.
1352  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1353  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1354      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1355      BOp->getParent() != CurBB->getBasicBlock() ||
1356      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1357      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1358    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1359    return;
1360  }
1361
1362  //  Create TmpBB after CurBB.
1363  MachineFunction::iterator BBI = CurBB;
1364  MachineFunction &MF = DAG.getMachineFunction();
1365  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1366  CurBB->getParent()->insert(++BBI, TmpBB);
1367
1368  if (Opc == Instruction::Or) {
1369    // Codegen X | Y as:
1370    //   jmp_if_X TBB
1371    //   jmp TmpBB
1372    // TmpBB:
1373    //   jmp_if_Y TBB
1374    //   jmp FBB
1375    //
1376
1377    // Emit the LHS condition.
1378    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1379
1380    // Emit the RHS condition into TmpBB.
1381    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1382  } else {
1383    assert(Opc == Instruction::And && "Unknown merge op!");
1384    // Codegen X & Y as:
1385    //   jmp_if_X TmpBB
1386    //   jmp FBB
1387    // TmpBB:
1388    //   jmp_if_Y TBB
1389    //   jmp FBB
1390    //
1391    //  This requires creation of TmpBB after CurBB.
1392
1393    // Emit the LHS condition.
1394    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1395
1396    // Emit the RHS condition into TmpBB.
1397    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1398  }
1399}
1400
1401/// If the set of cases should be emitted as a series of branches, return true.
1402/// If we should emit this as a bunch of and/or'd together conditions, return
1403/// false.
1404bool
1405SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1406  if (Cases.size() != 2) return true;
1407
1408  // If this is two comparisons of the same values or'd or and'd together, they
1409  // will get folded into a single comparison, so don't emit two blocks.
1410  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1411       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1412      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1413       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1414    return false;
1415  }
1416
1417  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1418  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1419  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1420      Cases[0].CC == Cases[1].CC &&
1421      isa<Constant>(Cases[0].CmpRHS) &&
1422      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1423    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1424      return false;
1425    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1426      return false;
1427  }
1428
1429  return true;
1430}
1431
1432void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1433  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1434
1435  // Update machine-CFG edges.
1436  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1437
1438  // Figure out which block is immediately after the current one.
1439  MachineBasicBlock *NextBlock = 0;
1440  MachineFunction::iterator BBI = BrMBB;
1441  if (++BBI != FuncInfo.MF->end())
1442    NextBlock = BBI;
1443
1444  if (I.isUnconditional()) {
1445    // Update machine-CFG edges.
1446    BrMBB->addSuccessor(Succ0MBB);
1447
1448    // If this is not a fall-through branch, emit the branch.
1449    if (Succ0MBB != NextBlock)
1450      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1451                              MVT::Other, getControlRoot(),
1452                              DAG.getBasicBlock(Succ0MBB)));
1453
1454    return;
1455  }
1456
1457  // If this condition is one of the special cases we handle, do special stuff
1458  // now.
1459  const Value *CondVal = I.getCondition();
1460  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1461
1462  // If this is a series of conditions that are or'd or and'd together, emit
1463  // this as a sequence of branches instead of setcc's with and/or operations.
1464  // As long as jumps are not expensive, this should improve performance.
1465  // For example, instead of something like:
1466  //     cmp A, B
1467  //     C = seteq
1468  //     cmp D, E
1469  //     F = setle
1470  //     or C, F
1471  //     jnz foo
1472  // Emit:
1473  //     cmp A, B
1474  //     je foo
1475  //     cmp D, E
1476  //     jle foo
1477  //
1478  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1479    if (!TLI.isJumpExpensive() &&
1480        BOp->hasOneUse() &&
1481        (BOp->getOpcode() == Instruction::And ||
1482         BOp->getOpcode() == Instruction::Or)) {
1483      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1484                           BOp->getOpcode());
1485      // If the compares in later blocks need to use values not currently
1486      // exported from this block, export them now.  This block should always
1487      // be the first entry.
1488      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1489
1490      // Allow some cases to be rejected.
1491      if (ShouldEmitAsBranches(SwitchCases)) {
1492        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1493          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1494          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1495        }
1496
1497        // Emit the branch for this block.
1498        visitSwitchCase(SwitchCases[0], BrMBB);
1499        SwitchCases.erase(SwitchCases.begin());
1500        return;
1501      }
1502
1503      // Okay, we decided not to do this, remove any inserted MBB's and clear
1504      // SwitchCases.
1505      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1506        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1507
1508      SwitchCases.clear();
1509    }
1510  }
1511
1512  // Create a CaseBlock record representing this branch.
1513  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1514               NULL, Succ0MBB, Succ1MBB, BrMBB);
1515
1516  // Use visitSwitchCase to actually insert the fast branch sequence for this
1517  // cond branch.
1518  visitSwitchCase(CB, BrMBB);
1519}
1520
1521/// visitSwitchCase - Emits the necessary code to represent a single node in
1522/// the binary search tree resulting from lowering a switch instruction.
1523void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1524                                          MachineBasicBlock *SwitchBB) {
1525  SDValue Cond;
1526  SDValue CondLHS = getValue(CB.CmpLHS);
1527  DebugLoc dl = getCurDebugLoc();
1528
1529  // Build the setcc now.
1530  if (CB.CmpMHS == NULL) {
1531    // Fold "(X == true)" to X and "(X == false)" to !X to
1532    // handle common cases produced by branch lowering.
1533    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1534        CB.CC == ISD::SETEQ)
1535      Cond = CondLHS;
1536    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1537             CB.CC == ISD::SETEQ) {
1538      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1539      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1540    } else
1541      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1542  } else {
1543    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1544
1545    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1546    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1547
1548    SDValue CmpOp = getValue(CB.CmpMHS);
1549    EVT VT = CmpOp.getValueType();
1550
1551    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1552      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1553                          ISD::SETLE);
1554    } else {
1555      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1556                                VT, CmpOp, DAG.getConstant(Low, VT));
1557      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1558                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1559    }
1560  }
1561
1562  // Update successor info
1563  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1564  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1565
1566  // Set NextBlock to be the MBB immediately after the current one, if any.
1567  // This is used to avoid emitting unnecessary branches to the next block.
1568  MachineBasicBlock *NextBlock = 0;
1569  MachineFunction::iterator BBI = SwitchBB;
1570  if (++BBI != FuncInfo.MF->end())
1571    NextBlock = BBI;
1572
1573  // If the lhs block is the next block, invert the condition so that we can
1574  // fall through to the lhs instead of the rhs block.
1575  if (CB.TrueBB == NextBlock) {
1576    std::swap(CB.TrueBB, CB.FalseBB);
1577    SDValue True = DAG.getConstant(1, Cond.getValueType());
1578    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1579  }
1580
1581  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1582                               MVT::Other, getControlRoot(), Cond,
1583                               DAG.getBasicBlock(CB.TrueBB));
1584
1585  // Insert the false branch. Do this even if it's a fall through branch,
1586  // this makes it easier to do DAG optimizations which require inverting
1587  // the branch condition.
1588  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1589                       DAG.getBasicBlock(CB.FalseBB));
1590
1591  DAG.setRoot(BrCond);
1592}
1593
1594/// visitJumpTable - Emit JumpTable node in the current MBB
1595void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1596  // Emit the code for the jump table
1597  assert(JT.Reg != -1U && "Should lower JT Header first!");
1598  EVT PTy = TLI.getPointerTy();
1599  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1600                                     JT.Reg, PTy);
1601  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1602  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1603                                    MVT::Other, Index.getValue(1),
1604                                    Table, Index);
1605  DAG.setRoot(BrJumpTable);
1606}
1607
1608/// visitJumpTableHeader - This function emits necessary code to produce index
1609/// in the JumpTable from switch case.
1610void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1611                                               JumpTableHeader &JTH,
1612                                               MachineBasicBlock *SwitchBB) {
1613  // Subtract the lowest switch case value from the value being switched on and
1614  // conditional branch to default mbb if the result is greater than the
1615  // difference between smallest and largest cases.
1616  SDValue SwitchOp = getValue(JTH.SValue);
1617  EVT VT = SwitchOp.getValueType();
1618  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1619                            DAG.getConstant(JTH.First, VT));
1620
1621  // The SDNode we just created, which holds the value being switched on minus
1622  // the smallest case value, needs to be copied to a virtual register so it
1623  // can be used as an index into the jump table in a subsequent basic block.
1624  // This value may be smaller or larger than the target's pointer type, and
1625  // therefore require extension or truncating.
1626  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1627
1628  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1629  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1630                                    JumpTableReg, SwitchOp);
1631  JT.Reg = JumpTableReg;
1632
1633  // Emit the range check for the jump table, and branch to the default block
1634  // for the switch statement if the value being switched on exceeds the largest
1635  // case in the switch.
1636  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1637                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1638                             DAG.getConstant(JTH.Last-JTH.First,VT),
1639                             ISD::SETUGT);
1640
1641  // Set NextBlock to be the MBB immediately after the current one, if any.
1642  // This is used to avoid emitting unnecessary branches to the next block.
1643  MachineBasicBlock *NextBlock = 0;
1644  MachineFunction::iterator BBI = SwitchBB;
1645
1646  if (++BBI != FuncInfo.MF->end())
1647    NextBlock = BBI;
1648
1649  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1650                               MVT::Other, CopyTo, CMP,
1651                               DAG.getBasicBlock(JT.Default));
1652
1653  if (JT.MBB != NextBlock)
1654    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1655                         DAG.getBasicBlock(JT.MBB));
1656
1657  DAG.setRoot(BrCond);
1658}
1659
1660/// visitBitTestHeader - This function emits necessary code to produce value
1661/// suitable for "bit tests"
1662void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1663                                             MachineBasicBlock *SwitchBB) {
1664  // Subtract the minimum value
1665  SDValue SwitchOp = getValue(B.SValue);
1666  EVT VT = SwitchOp.getValueType();
1667  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1668                            DAG.getConstant(B.First, VT));
1669
1670  // Check range
1671  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1672                                  TLI.getSetCCResultType(Sub.getValueType()),
1673                                  Sub, DAG.getConstant(B.Range, VT),
1674                                  ISD::SETUGT);
1675
1676  // Determine the type of the test operands.
1677  bool UsePtrType = false;
1678  if (!TLI.isTypeLegal(VT))
1679    UsePtrType = true;
1680  else {
1681    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1682      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1683        // Switch table case range are encoded into series of masks.
1684        // Just use pointer type, it's guaranteed to fit.
1685        UsePtrType = true;
1686        break;
1687      }
1688  }
1689  if (UsePtrType) {
1690    VT = TLI.getPointerTy();
1691    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1692  }
1693
1694  B.RegVT = VT;
1695  B.Reg = FuncInfo.CreateReg(VT);
1696  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1697                                    B.Reg, Sub);
1698
1699  // Set NextBlock to be the MBB immediately after the current one, if any.
1700  // This is used to avoid emitting unnecessary branches to the next block.
1701  MachineBasicBlock *NextBlock = 0;
1702  MachineFunction::iterator BBI = SwitchBB;
1703  if (++BBI != FuncInfo.MF->end())
1704    NextBlock = BBI;
1705
1706  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1707
1708  addSuccessorWithWeight(SwitchBB, B.Default);
1709  addSuccessorWithWeight(SwitchBB, MBB);
1710
1711  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1712                                MVT::Other, CopyTo, RangeCmp,
1713                                DAG.getBasicBlock(B.Default));
1714
1715  if (MBB != NextBlock)
1716    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1717                          DAG.getBasicBlock(MBB));
1718
1719  DAG.setRoot(BrRange);
1720}
1721
1722/// visitBitTestCase - this function produces one "bit test"
1723void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1724                                           MachineBasicBlock* NextMBB,
1725                                           unsigned Reg,
1726                                           BitTestCase &B,
1727                                           MachineBasicBlock *SwitchBB) {
1728  EVT VT = BB.RegVT;
1729  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1730                                       Reg, VT);
1731  SDValue Cmp;
1732  unsigned PopCount = CountPopulation_64(B.Mask);
1733  if (PopCount == 1) {
1734    // Testing for a single bit; just compare the shift count with what it
1735    // would need to be to shift a 1 bit in that position.
1736    Cmp = DAG.getSetCC(getCurDebugLoc(),
1737                       TLI.getSetCCResultType(VT),
1738                       ShiftOp,
1739                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1740                       ISD::SETEQ);
1741  } else if (PopCount == BB.Range) {
1742    // There is only one zero bit in the range, test for it directly.
1743    Cmp = DAG.getSetCC(getCurDebugLoc(),
1744                       TLI.getSetCCResultType(VT),
1745                       ShiftOp,
1746                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1747                       ISD::SETNE);
1748  } else {
1749    // Make desired shift
1750    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1751                                    DAG.getConstant(1, VT), ShiftOp);
1752
1753    // Emit bit tests and jumps
1754    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1755                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1756    Cmp = DAG.getSetCC(getCurDebugLoc(),
1757                       TLI.getSetCCResultType(VT),
1758                       AndOp, DAG.getConstant(0, VT),
1759                       ISD::SETNE);
1760  }
1761
1762  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1763  addSuccessorWithWeight(SwitchBB, NextMBB);
1764
1765  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1766                              MVT::Other, getControlRoot(),
1767                              Cmp, DAG.getBasicBlock(B.TargetBB));
1768
1769  // Set NextBlock to be the MBB immediately after the current one, if any.
1770  // This is used to avoid emitting unnecessary branches to the next block.
1771  MachineBasicBlock *NextBlock = 0;
1772  MachineFunction::iterator BBI = SwitchBB;
1773  if (++BBI != FuncInfo.MF->end())
1774    NextBlock = BBI;
1775
1776  if (NextMBB != NextBlock)
1777    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1778                        DAG.getBasicBlock(NextMBB));
1779
1780  DAG.setRoot(BrAnd);
1781}
1782
1783void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1784  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1785
1786  // Retrieve successors.
1787  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1788  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1789
1790  const Value *Callee(I.getCalledValue());
1791  if (isa<InlineAsm>(Callee))
1792    visitInlineAsm(&I);
1793  else
1794    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1795
1796  // If the value of the invoke is used outside of its defining block, make it
1797  // available as a virtual register.
1798  CopyToExportRegsIfNeeded(&I);
1799
1800  // Update successor info
1801  InvokeMBB->addSuccessor(Return);
1802  InvokeMBB->addSuccessor(LandingPad);
1803
1804  // Drop into normal successor.
1805  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1806                          MVT::Other, getControlRoot(),
1807                          DAG.getBasicBlock(Return)));
1808}
1809
1810void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1811}
1812
1813void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1814  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1815}
1816
1817void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1818  // FIXME: Handle this
1819  assert(FuncInfo.MBB->isLandingPad() &&
1820         "Call to landingpad not in landing pad!");
1821
1822  MachineBasicBlock *MBB = FuncInfo.MBB;
1823  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1824  AddLandingPadInfo(LP, MMI, MBB);
1825
1826  SmallVector<EVT, 2> ValueVTs;
1827  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1828
1829  // Insert the EXCEPTIONADDR instruction.
1830  assert(FuncInfo.MBB->isLandingPad() &&
1831         "Call to eh.exception not in landing pad!");
1832  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1833  SDValue Ops[2];
1834  Ops[0] = DAG.getRoot();
1835  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1836  SDValue Chain = Op1.getValue(1);
1837
1838  // Insert the EHSELECTION instruction.
1839  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1840  Ops[0] = Op1;
1841  Ops[1] = Chain;
1842  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1843  Chain = Op2.getValue(1);
1844  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1845
1846  Ops[0] = Op1;
1847  Ops[1] = Op2;
1848  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1849                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1850                            &Ops[0], 2);
1851
1852  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1853  setValue(&LP, RetPair.first);
1854  DAG.setRoot(RetPair.second);
1855}
1856
1857/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1858/// small case ranges).
1859bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1860                                                 CaseRecVector& WorkList,
1861                                                 const Value* SV,
1862                                                 MachineBasicBlock *Default,
1863                                                 MachineBasicBlock *SwitchBB) {
1864  Case& BackCase  = *(CR.Range.second-1);
1865
1866  // Size is the number of Cases represented by this range.
1867  size_t Size = CR.Range.second - CR.Range.first;
1868  if (Size > 3)
1869    return false;
1870
1871  // Get the MachineFunction which holds the current MBB.  This is used when
1872  // inserting any additional MBBs necessary to represent the switch.
1873  MachineFunction *CurMF = FuncInfo.MF;
1874
1875  // Figure out which block is immediately after the current one.
1876  MachineBasicBlock *NextBlock = 0;
1877  MachineFunction::iterator BBI = CR.CaseBB;
1878
1879  if (++BBI != FuncInfo.MF->end())
1880    NextBlock = BBI;
1881
1882  // If any two of the cases has the same destination, and if one value
1883  // is the same as the other, but has one bit unset that the other has set,
1884  // use bit manipulation to do two compares at once.  For example:
1885  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1886  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1887  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1888  if (Size == 2 && CR.CaseBB == SwitchBB) {
1889    Case &Small = *CR.Range.first;
1890    Case &Big = *(CR.Range.second-1);
1891
1892    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1893      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1894      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1895
1896      // Check that there is only one bit different.
1897      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1898          (SmallValue | BigValue) == BigValue) {
1899        // Isolate the common bit.
1900        APInt CommonBit = BigValue & ~SmallValue;
1901        assert((SmallValue | CommonBit) == BigValue &&
1902               CommonBit.countPopulation() == 1 && "Not a common bit?");
1903
1904        SDValue CondLHS = getValue(SV);
1905        EVT VT = CondLHS.getValueType();
1906        DebugLoc DL = getCurDebugLoc();
1907
1908        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1909                                 DAG.getConstant(CommonBit, VT));
1910        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1911                                    Or, DAG.getConstant(BigValue, VT),
1912                                    ISD::SETEQ);
1913
1914        // Update successor info.
1915        addSuccessorWithWeight(SwitchBB, Small.BB);
1916        addSuccessorWithWeight(SwitchBB, Default);
1917
1918        // Insert the true branch.
1919        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1920                                     getControlRoot(), Cond,
1921                                     DAG.getBasicBlock(Small.BB));
1922
1923        // Insert the false branch.
1924        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1925                             DAG.getBasicBlock(Default));
1926
1927        DAG.setRoot(BrCond);
1928        return true;
1929      }
1930    }
1931  }
1932
1933  // Rearrange the case blocks so that the last one falls through if possible.
1934  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1935    // The last case block won't fall through into 'NextBlock' if we emit the
1936    // branches in this order.  See if rearranging a case value would help.
1937    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1938      if (I->BB == NextBlock) {
1939        std::swap(*I, BackCase);
1940        break;
1941      }
1942    }
1943  }
1944
1945  // Create a CaseBlock record representing a conditional branch to
1946  // the Case's target mbb if the value being switched on SV is equal
1947  // to C.
1948  MachineBasicBlock *CurBlock = CR.CaseBB;
1949  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1950    MachineBasicBlock *FallThrough;
1951    if (I != E-1) {
1952      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1953      CurMF->insert(BBI, FallThrough);
1954
1955      // Put SV in a virtual register to make it available from the new blocks.
1956      ExportFromCurrentBlock(SV);
1957    } else {
1958      // If the last case doesn't match, go to the default block.
1959      FallThrough = Default;
1960    }
1961
1962    const Value *RHS, *LHS, *MHS;
1963    ISD::CondCode CC;
1964    if (I->High == I->Low) {
1965      // This is just small small case range :) containing exactly 1 case
1966      CC = ISD::SETEQ;
1967      LHS = SV; RHS = I->High; MHS = NULL;
1968    } else {
1969      CC = ISD::SETLE;
1970      LHS = I->Low; MHS = SV; RHS = I->High;
1971    }
1972
1973    uint32_t ExtraWeight = I->ExtraWeight;
1974    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1975                 /* me */ CurBlock,
1976                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1977
1978    // If emitting the first comparison, just call visitSwitchCase to emit the
1979    // code into the current block.  Otherwise, push the CaseBlock onto the
1980    // vector to be later processed by SDISel, and insert the node's MBB
1981    // before the next MBB.
1982    if (CurBlock == SwitchBB)
1983      visitSwitchCase(CB, SwitchBB);
1984    else
1985      SwitchCases.push_back(CB);
1986
1987    CurBlock = FallThrough;
1988  }
1989
1990  return true;
1991}
1992
1993static inline bool areJTsAllowed(const TargetLowering &TLI) {
1994  return !DisableJumpTables &&
1995          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1996           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1997}
1998
1999static APInt ComputeRange(const APInt &First, const APInt &Last) {
2000  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2001  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2002  return (LastExt - FirstExt + 1ULL);
2003}
2004
2005/// handleJTSwitchCase - Emit jumptable for current switch case range
2006bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
2007                                             CaseRecVector& WorkList,
2008                                             const Value* SV,
2009                                             MachineBasicBlock* Default,
2010                                             MachineBasicBlock *SwitchBB) {
2011  Case& FrontCase = *CR.Range.first;
2012  Case& BackCase  = *(CR.Range.second-1);
2013
2014  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2015  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2016
2017  APInt TSize(First.getBitWidth(), 0);
2018  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2019       I!=E; ++I)
2020    TSize += I->size();
2021
2022  if (!areJTsAllowed(TLI) || TSize.ult(4))
2023    return false;
2024
2025  APInt Range = ComputeRange(First, Last);
2026  double Density = TSize.roundToDouble() / Range.roundToDouble();
2027  if (Density < 0.4)
2028    return false;
2029
2030  DEBUG(dbgs() << "Lowering jump table\n"
2031               << "First entry: " << First << ". Last entry: " << Last << '\n'
2032               << "Range: " << Range
2033               << ". Size: " << TSize << ". Density: " << Density << "\n\n");
2034
2035  // Get the MachineFunction which holds the current MBB.  This is used when
2036  // inserting any additional MBBs necessary to represent the switch.
2037  MachineFunction *CurMF = FuncInfo.MF;
2038
2039  // Figure out which block is immediately after the current one.
2040  MachineFunction::iterator BBI = CR.CaseBB;
2041  ++BBI;
2042
2043  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2044
2045  // Create a new basic block to hold the code for loading the address
2046  // of the jump table, and jumping to it.  Update successor information;
2047  // we will either branch to the default case for the switch, or the jump
2048  // table.
2049  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2050  CurMF->insert(BBI, JumpTableBB);
2051
2052  addSuccessorWithWeight(CR.CaseBB, Default);
2053  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2054
2055  // Build a vector of destination BBs, corresponding to each target
2056  // of the jump table. If the value of the jump table slot corresponds to
2057  // a case statement, push the case's BB onto the vector, otherwise, push
2058  // the default BB.
2059  std::vector<MachineBasicBlock*> DestBBs;
2060  APInt TEI = First;
2061  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2062    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2063    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2064
2065    if (Low.sle(TEI) && TEI.sle(High)) {
2066      DestBBs.push_back(I->BB);
2067      if (TEI==High)
2068        ++I;
2069    } else {
2070      DestBBs.push_back(Default);
2071    }
2072  }
2073
2074  // Update successor info. Add one edge to each unique successor.
2075  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2076  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2077         E = DestBBs.end(); I != E; ++I) {
2078    if (!SuccsHandled[(*I)->getNumber()]) {
2079      SuccsHandled[(*I)->getNumber()] = true;
2080      addSuccessorWithWeight(JumpTableBB, *I);
2081    }
2082  }
2083
2084  // Create a jump table index for this jump table.
2085  unsigned JTEncoding = TLI.getJumpTableEncoding();
2086  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2087                       ->createJumpTableIndex(DestBBs);
2088
2089  // Set the jump table information so that we can codegen it as a second
2090  // MachineBasicBlock
2091  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2092  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2093  if (CR.CaseBB == SwitchBB)
2094    visitJumpTableHeader(JT, JTH, SwitchBB);
2095
2096  JTCases.push_back(JumpTableBlock(JTH, JT));
2097
2098  return true;
2099}
2100
2101/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2102/// 2 subtrees.
2103bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2104                                                  CaseRecVector& WorkList,
2105                                                  const Value* SV,
2106                                                  MachineBasicBlock *Default,
2107                                                  MachineBasicBlock *SwitchBB) {
2108  // Get the MachineFunction which holds the current MBB.  This is used when
2109  // inserting any additional MBBs necessary to represent the switch.
2110  MachineFunction *CurMF = FuncInfo.MF;
2111
2112  // Figure out which block is immediately after the current one.
2113  MachineFunction::iterator BBI = CR.CaseBB;
2114  ++BBI;
2115
2116  Case& FrontCase = *CR.Range.first;
2117  Case& BackCase  = *(CR.Range.second-1);
2118  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2119
2120  // Size is the number of Cases represented by this range.
2121  unsigned Size = CR.Range.second - CR.Range.first;
2122
2123  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2124  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2125  double FMetric = 0;
2126  CaseItr Pivot = CR.Range.first + Size/2;
2127
2128  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2129  // (heuristically) allow us to emit JumpTable's later.
2130  APInt TSize(First.getBitWidth(), 0);
2131  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2132       I!=E; ++I)
2133    TSize += I->size();
2134
2135  APInt LSize = FrontCase.size();
2136  APInt RSize = TSize-LSize;
2137  DEBUG(dbgs() << "Selecting best pivot: \n"
2138               << "First: " << First << ", Last: " << Last <<'\n'
2139               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2140  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2141       J!=E; ++I, ++J) {
2142    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2143    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2144    APInt Range = ComputeRange(LEnd, RBegin);
2145    assert((Range - 2ULL).isNonNegative() &&
2146           "Invalid case distance");
2147    // Use volatile double here to avoid excess precision issues on some hosts,
2148    // e.g. that use 80-bit X87 registers.
2149    volatile double LDensity =
2150       (double)LSize.roundToDouble() /
2151                           (LEnd - First + 1ULL).roundToDouble();
2152    volatile double RDensity =
2153      (double)RSize.roundToDouble() /
2154                           (Last - RBegin + 1ULL).roundToDouble();
2155    double Metric = Range.logBase2()*(LDensity+RDensity);
2156    // Should always split in some non-trivial place
2157    DEBUG(dbgs() <<"=>Step\n"
2158                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2159                 << "LDensity: " << LDensity
2160                 << ", RDensity: " << RDensity << '\n'
2161                 << "Metric: " << Metric << '\n');
2162    if (FMetric < Metric) {
2163      Pivot = J;
2164      FMetric = Metric;
2165      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2166    }
2167
2168    LSize += J->size();
2169    RSize -= J->size();
2170  }
2171  if (areJTsAllowed(TLI)) {
2172    // If our case is dense we *really* should handle it earlier!
2173    assert((FMetric > 0) && "Should handle dense range earlier!");
2174  } else {
2175    Pivot = CR.Range.first + Size/2;
2176  }
2177
2178  CaseRange LHSR(CR.Range.first, Pivot);
2179  CaseRange RHSR(Pivot, CR.Range.second);
2180  Constant *C = Pivot->Low;
2181  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2182
2183  // We know that we branch to the LHS if the Value being switched on is
2184  // less than the Pivot value, C.  We use this to optimize our binary
2185  // tree a bit, by recognizing that if SV is greater than or equal to the
2186  // LHS's Case Value, and that Case Value is exactly one less than the
2187  // Pivot's Value, then we can branch directly to the LHS's Target,
2188  // rather than creating a leaf node for it.
2189  if ((LHSR.second - LHSR.first) == 1 &&
2190      LHSR.first->High == CR.GE &&
2191      cast<ConstantInt>(C)->getValue() ==
2192      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2193    TrueBB = LHSR.first->BB;
2194  } else {
2195    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2196    CurMF->insert(BBI, TrueBB);
2197    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2198
2199    // Put SV in a virtual register to make it available from the new blocks.
2200    ExportFromCurrentBlock(SV);
2201  }
2202
2203  // Similar to the optimization above, if the Value being switched on is
2204  // known to be less than the Constant CR.LT, and the current Case Value
2205  // is CR.LT - 1, then we can branch directly to the target block for
2206  // the current Case Value, rather than emitting a RHS leaf node for it.
2207  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2208      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2209      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2210    FalseBB = RHSR.first->BB;
2211  } else {
2212    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2213    CurMF->insert(BBI, FalseBB);
2214    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2215
2216    // Put SV in a virtual register to make it available from the new blocks.
2217    ExportFromCurrentBlock(SV);
2218  }
2219
2220  // Create a CaseBlock record representing a conditional branch to
2221  // the LHS node if the value being switched on SV is less than C.
2222  // Otherwise, branch to LHS.
2223  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2224
2225  if (CR.CaseBB == SwitchBB)
2226    visitSwitchCase(CB, SwitchBB);
2227  else
2228    SwitchCases.push_back(CB);
2229
2230  return true;
2231}
2232
2233/// handleBitTestsSwitchCase - if current case range has few destination and
2234/// range span less, than machine word bitwidth, encode case range into series
2235/// of masks and emit bit tests with these masks.
2236bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2237                                                   CaseRecVector& WorkList,
2238                                                   const Value* SV,
2239                                                   MachineBasicBlock* Default,
2240                                                   MachineBasicBlock *SwitchBB){
2241  EVT PTy = TLI.getPointerTy();
2242  unsigned IntPtrBits = PTy.getSizeInBits();
2243
2244  Case& FrontCase = *CR.Range.first;
2245  Case& BackCase  = *(CR.Range.second-1);
2246
2247  // Get the MachineFunction which holds the current MBB.  This is used when
2248  // inserting any additional MBBs necessary to represent the switch.
2249  MachineFunction *CurMF = FuncInfo.MF;
2250
2251  // If target does not have legal shift left, do not emit bit tests at all.
2252  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2253    return false;
2254
2255  size_t numCmps = 0;
2256  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2257       I!=E; ++I) {
2258    // Single case counts one, case range - two.
2259    numCmps += (I->Low == I->High ? 1 : 2);
2260  }
2261
2262  // Count unique destinations
2263  SmallSet<MachineBasicBlock*, 4> Dests;
2264  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2265    Dests.insert(I->BB);
2266    if (Dests.size() > 3)
2267      // Don't bother the code below, if there are too much unique destinations
2268      return false;
2269  }
2270  DEBUG(dbgs() << "Total number of unique destinations: "
2271        << Dests.size() << '\n'
2272        << "Total number of comparisons: " << numCmps << '\n');
2273
2274  // Compute span of values.
2275  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2276  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2277  APInt cmpRange = maxValue - minValue;
2278
2279  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2280               << "Low bound: " << minValue << '\n'
2281               << "High bound: " << maxValue << '\n');
2282
2283  if (cmpRange.uge(IntPtrBits) ||
2284      (!(Dests.size() == 1 && numCmps >= 3) &&
2285       !(Dests.size() == 2 && numCmps >= 5) &&
2286       !(Dests.size() >= 3 && numCmps >= 6)))
2287    return false;
2288
2289  DEBUG(dbgs() << "Emitting bit tests\n");
2290  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2291
2292  // Optimize the case where all the case values fit in a
2293  // word without having to subtract minValue. In this case,
2294  // we can optimize away the subtraction.
2295  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2296    cmpRange = maxValue;
2297  } else {
2298    lowBound = minValue;
2299  }
2300
2301  CaseBitsVector CasesBits;
2302  unsigned i, count = 0;
2303
2304  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2305    MachineBasicBlock* Dest = I->BB;
2306    for (i = 0; i < count; ++i)
2307      if (Dest == CasesBits[i].BB)
2308        break;
2309
2310    if (i == count) {
2311      assert((count < 3) && "Too much destinations to test!");
2312      CasesBits.push_back(CaseBits(0, Dest, 0));
2313      count++;
2314    }
2315
2316    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2317    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2318
2319    uint64_t lo = (lowValue - lowBound).getZExtValue();
2320    uint64_t hi = (highValue - lowBound).getZExtValue();
2321
2322    for (uint64_t j = lo; j <= hi; j++) {
2323      CasesBits[i].Mask |=  1ULL << j;
2324      CasesBits[i].Bits++;
2325    }
2326
2327  }
2328  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2329
2330  BitTestInfo BTC;
2331
2332  // Figure out which block is immediately after the current one.
2333  MachineFunction::iterator BBI = CR.CaseBB;
2334  ++BBI;
2335
2336  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2337
2338  DEBUG(dbgs() << "Cases:\n");
2339  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2340    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2341                 << ", Bits: " << CasesBits[i].Bits
2342                 << ", BB: " << CasesBits[i].BB << '\n');
2343
2344    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2345    CurMF->insert(BBI, CaseBB);
2346    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2347                              CaseBB,
2348                              CasesBits[i].BB));
2349
2350    // Put SV in a virtual register to make it available from the new blocks.
2351    ExportFromCurrentBlock(SV);
2352  }
2353
2354  BitTestBlock BTB(lowBound, cmpRange, SV,
2355                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2356                   CR.CaseBB, Default, BTC);
2357
2358  if (CR.CaseBB == SwitchBB)
2359    visitBitTestHeader(BTB, SwitchBB);
2360
2361  BitTestCases.push_back(BTB);
2362
2363  return true;
2364}
2365
2366/// Clusterify - Transform simple list of Cases into list of CaseRange's
2367size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2368                                       const SwitchInst& SI) {
2369  size_t numCmps = 0;
2370
2371  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2372  // Start with "simple" cases
2373  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2374    BasicBlock *SuccBB = SI.getSuccessor(i);
2375    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2376
2377    uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2378
2379    Cases.push_back(Case(SI.getSuccessorValue(i),
2380                         SI.getSuccessorValue(i),
2381                         SMBB, ExtraWeight));
2382  }
2383  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2384
2385  // Merge case into clusters
2386  if (Cases.size() >= 2)
2387    // Must recompute end() each iteration because it may be
2388    // invalidated by erase if we hold on to it
2389    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2390         J != Cases.end(); ) {
2391      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2392      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2393      MachineBasicBlock* nextBB = J->BB;
2394      MachineBasicBlock* currentBB = I->BB;
2395
2396      // If the two neighboring cases go to the same destination, merge them
2397      // into a single case.
2398      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2399        I->High = J->High;
2400        J = Cases.erase(J);
2401
2402        if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2403          uint32_t CurWeight = currentBB->getBasicBlock() ?
2404            BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2405          uint32_t NextWeight = nextBB->getBasicBlock() ?
2406            BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2407
2408          BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2409                             CurWeight + NextWeight);
2410        }
2411      } else {
2412        I = J++;
2413      }
2414    }
2415
2416  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2417    if (I->Low != I->High)
2418      // A range counts double, since it requires two compares.
2419      ++numCmps;
2420  }
2421
2422  return numCmps;
2423}
2424
2425void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2426                                           MachineBasicBlock *Last) {
2427  // Update JTCases.
2428  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2429    if (JTCases[i].first.HeaderBB == First)
2430      JTCases[i].first.HeaderBB = Last;
2431
2432  // Update BitTestCases.
2433  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2434    if (BitTestCases[i].Parent == First)
2435      BitTestCases[i].Parent = Last;
2436}
2437
2438void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2439  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2440
2441  // Figure out which block is immediately after the current one.
2442  MachineBasicBlock *NextBlock = 0;
2443  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2444
2445  // If there is only the default destination, branch to it if it is not the
2446  // next basic block.  Otherwise, just fall through.
2447  if (SI.getNumOperands() == 2) {
2448    // Update machine-CFG edges.
2449
2450    // If this is not a fall-through branch, emit the branch.
2451    SwitchMBB->addSuccessor(Default);
2452    if (Default != NextBlock)
2453      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2454                              MVT::Other, getControlRoot(),
2455                              DAG.getBasicBlock(Default)));
2456
2457    return;
2458  }
2459
2460  // If there are any non-default case statements, create a vector of Cases
2461  // representing each one, and sort the vector so that we can efficiently
2462  // create a binary search tree from them.
2463  CaseVector Cases;
2464  size_t numCmps = Clusterify(Cases, SI);
2465  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2466               << ". Total compares: " << numCmps << '\n');
2467  numCmps = 0;
2468
2469  // Get the Value to be switched on and default basic blocks, which will be
2470  // inserted into CaseBlock records, representing basic blocks in the binary
2471  // search tree.
2472  const Value *SV = SI.getOperand(0);
2473
2474  // Push the initial CaseRec onto the worklist
2475  CaseRecVector WorkList;
2476  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2477                             CaseRange(Cases.begin(),Cases.end())));
2478
2479  while (!WorkList.empty()) {
2480    // Grab a record representing a case range to process off the worklist
2481    CaseRec CR = WorkList.back();
2482    WorkList.pop_back();
2483
2484    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2485      continue;
2486
2487    // If the range has few cases (two or less) emit a series of specific
2488    // tests.
2489    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2490      continue;
2491
2492    // If the switch has more than 5 blocks, and at least 40% dense, and the
2493    // target supports indirect branches, then emit a jump table rather than
2494    // lowering the switch to a binary tree of conditional branches.
2495    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2496      continue;
2497
2498    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2499    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2500    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2501  }
2502}
2503
2504void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2505  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2506
2507  // Update machine-CFG edges with unique successors.
2508  SmallVector<BasicBlock*, 32> succs;
2509  succs.reserve(I.getNumSuccessors());
2510  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2511    succs.push_back(I.getSuccessor(i));
2512  array_pod_sort(succs.begin(), succs.end());
2513  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2514  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2515    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2516    addSuccessorWithWeight(IndirectBrMBB, Succ);
2517  }
2518
2519  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2520                          MVT::Other, getControlRoot(),
2521                          getValue(I.getAddress())));
2522}
2523
2524void SelectionDAGBuilder::visitFSub(const User &I) {
2525  // -0.0 - X --> fneg
2526  Type *Ty = I.getType();
2527  if (isa<Constant>(I.getOperand(0)) &&
2528      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2529    SDValue Op2 = getValue(I.getOperand(1));
2530    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2531                             Op2.getValueType(), Op2));
2532    return;
2533  }
2534
2535  visitBinary(I, ISD::FSUB);
2536}
2537
2538void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2539  SDValue Op1 = getValue(I.getOperand(0));
2540  SDValue Op2 = getValue(I.getOperand(1));
2541  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2542                           Op1.getValueType(), Op1, Op2));
2543}
2544
2545void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2546  SDValue Op1 = getValue(I.getOperand(0));
2547  SDValue Op2 = getValue(I.getOperand(1));
2548
2549  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2550
2551  // Coerce the shift amount to the right type if we can.
2552  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2553    unsigned ShiftSize = ShiftTy.getSizeInBits();
2554    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2555    DebugLoc DL = getCurDebugLoc();
2556
2557    // If the operand is smaller than the shift count type, promote it.
2558    if (ShiftSize > Op2Size)
2559      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2560
2561    // If the operand is larger than the shift count type but the shift
2562    // count type has enough bits to represent any shift value, truncate
2563    // it now. This is a common case and it exposes the truncate to
2564    // optimization early.
2565    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2566      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2567    // Otherwise we'll need to temporarily settle for some other convenient
2568    // type.  Type legalization will make adjustments once the shiftee is split.
2569    else
2570      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2571  }
2572
2573  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2574                           Op1.getValueType(), Op1, Op2));
2575}
2576
2577void SelectionDAGBuilder::visitSDiv(const User &I) {
2578  SDValue Op1 = getValue(I.getOperand(0));
2579  SDValue Op2 = getValue(I.getOperand(1));
2580
2581  // Turn exact SDivs into multiplications.
2582  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2583  // exact bit.
2584  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2585      !isa<ConstantSDNode>(Op1) &&
2586      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2587    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2588  else
2589    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2590                             Op1, Op2));
2591}
2592
2593void SelectionDAGBuilder::visitICmp(const User &I) {
2594  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2595  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2596    predicate = IC->getPredicate();
2597  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2598    predicate = ICmpInst::Predicate(IC->getPredicate());
2599  SDValue Op1 = getValue(I.getOperand(0));
2600  SDValue Op2 = getValue(I.getOperand(1));
2601  ISD::CondCode Opcode = getICmpCondCode(predicate);
2602
2603  EVT DestVT = TLI.getValueType(I.getType());
2604  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2605}
2606
2607void SelectionDAGBuilder::visitFCmp(const User &I) {
2608  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2609  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2610    predicate = FC->getPredicate();
2611  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2612    predicate = FCmpInst::Predicate(FC->getPredicate());
2613  SDValue Op1 = getValue(I.getOperand(0));
2614  SDValue Op2 = getValue(I.getOperand(1));
2615  ISD::CondCode Condition = getFCmpCondCode(predicate);
2616  EVT DestVT = TLI.getValueType(I.getType());
2617  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2618}
2619
2620void SelectionDAGBuilder::visitSelect(const User &I) {
2621  SmallVector<EVT, 4> ValueVTs;
2622  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2623  unsigned NumValues = ValueVTs.size();
2624  if (NumValues == 0) return;
2625
2626  SmallVector<SDValue, 4> Values(NumValues);
2627  SDValue Cond     = getValue(I.getOperand(0));
2628  SDValue TrueVal  = getValue(I.getOperand(1));
2629  SDValue FalseVal = getValue(I.getOperand(2));
2630
2631  for (unsigned i = 0; i != NumValues; ++i)
2632    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2633                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2634                            Cond,
2635                            SDValue(TrueVal.getNode(),
2636                                    TrueVal.getResNo() + i),
2637                            SDValue(FalseVal.getNode(),
2638                                    FalseVal.getResNo() + i));
2639
2640  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2641                           DAG.getVTList(&ValueVTs[0], NumValues),
2642                           &Values[0], NumValues));
2643}
2644
2645void SelectionDAGBuilder::visitTrunc(const User &I) {
2646  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2647  SDValue N = getValue(I.getOperand(0));
2648  EVT DestVT = TLI.getValueType(I.getType());
2649  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2650}
2651
2652void SelectionDAGBuilder::visitZExt(const User &I) {
2653  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2654  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2655  SDValue N = getValue(I.getOperand(0));
2656  EVT DestVT = TLI.getValueType(I.getType());
2657  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2658}
2659
2660void SelectionDAGBuilder::visitSExt(const User &I) {
2661  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2662  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2663  SDValue N = getValue(I.getOperand(0));
2664  EVT DestVT = TLI.getValueType(I.getType());
2665  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2666}
2667
2668void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2669  // FPTrunc is never a no-op cast, no need to check
2670  SDValue N = getValue(I.getOperand(0));
2671  EVT DestVT = TLI.getValueType(I.getType());
2672  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2673                           DestVT, N, DAG.getIntPtrConstant(0)));
2674}
2675
2676void SelectionDAGBuilder::visitFPExt(const User &I){
2677  // FPTrunc is never a no-op cast, no need to check
2678  SDValue N = getValue(I.getOperand(0));
2679  EVT DestVT = TLI.getValueType(I.getType());
2680  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2681}
2682
2683void SelectionDAGBuilder::visitFPToUI(const User &I) {
2684  // FPToUI is never a no-op cast, no need to check
2685  SDValue N = getValue(I.getOperand(0));
2686  EVT DestVT = TLI.getValueType(I.getType());
2687  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2688}
2689
2690void SelectionDAGBuilder::visitFPToSI(const User &I) {
2691  // FPToSI is never a no-op cast, no need to check
2692  SDValue N = getValue(I.getOperand(0));
2693  EVT DestVT = TLI.getValueType(I.getType());
2694  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2695}
2696
2697void SelectionDAGBuilder::visitUIToFP(const User &I) {
2698  // UIToFP is never a no-op cast, no need to check
2699  SDValue N = getValue(I.getOperand(0));
2700  EVT DestVT = TLI.getValueType(I.getType());
2701  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2702}
2703
2704void SelectionDAGBuilder::visitSIToFP(const User &I){
2705  // SIToFP is never a no-op cast, no need to check
2706  SDValue N = getValue(I.getOperand(0));
2707  EVT DestVT = TLI.getValueType(I.getType());
2708  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2709}
2710
2711void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2712  // What to do depends on the size of the integer and the size of the pointer.
2713  // We can either truncate, zero extend, or no-op, accordingly.
2714  SDValue N = getValue(I.getOperand(0));
2715  EVT DestVT = TLI.getValueType(I.getType());
2716  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2717}
2718
2719void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2720  // What to do depends on the size of the integer and the size of the pointer.
2721  // We can either truncate, zero extend, or no-op, accordingly.
2722  SDValue N = getValue(I.getOperand(0));
2723  EVT DestVT = TLI.getValueType(I.getType());
2724  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2725}
2726
2727void SelectionDAGBuilder::visitBitCast(const User &I) {
2728  SDValue N = getValue(I.getOperand(0));
2729  EVT DestVT = TLI.getValueType(I.getType());
2730
2731  // BitCast assures us that source and destination are the same size so this is
2732  // either a BITCAST or a no-op.
2733  if (DestVT != N.getValueType())
2734    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2735                             DestVT, N)); // convert types.
2736  else
2737    setValue(&I, N);            // noop cast.
2738}
2739
2740void SelectionDAGBuilder::visitInsertElement(const User &I) {
2741  SDValue InVec = getValue(I.getOperand(0));
2742  SDValue InVal = getValue(I.getOperand(1));
2743  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2744                              TLI.getPointerTy(),
2745                              getValue(I.getOperand(2)));
2746  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2747                           TLI.getValueType(I.getType()),
2748                           InVec, InVal, InIdx));
2749}
2750
2751void SelectionDAGBuilder::visitExtractElement(const User &I) {
2752  SDValue InVec = getValue(I.getOperand(0));
2753  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2754                              TLI.getPointerTy(),
2755                              getValue(I.getOperand(1)));
2756  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2757                           TLI.getValueType(I.getType()), InVec, InIdx));
2758}
2759
2760// Utility for visitShuffleVector - Returns true if the mask is mask starting
2761// from SIndx and increasing to the element length (undefs are allowed).
2762static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2763  unsigned MaskNumElts = Mask.size();
2764  for (unsigned i = 0; i != MaskNumElts; ++i)
2765    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2766      return false;
2767  return true;
2768}
2769
2770void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2771  SmallVector<int, 8> Mask;
2772  SDValue Src1 = getValue(I.getOperand(0));
2773  SDValue Src2 = getValue(I.getOperand(1));
2774
2775  // Convert the ConstantVector mask operand into an array of ints, with -1
2776  // representing undef values.
2777  SmallVector<Constant*, 8> MaskElts;
2778  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2779  unsigned MaskNumElts = MaskElts.size();
2780  for (unsigned i = 0; i != MaskNumElts; ++i) {
2781    if (isa<UndefValue>(MaskElts[i]))
2782      Mask.push_back(-1);
2783    else
2784      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2785  }
2786
2787  EVT VT = TLI.getValueType(I.getType());
2788  EVT SrcVT = Src1.getValueType();
2789  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2790
2791  if (SrcNumElts == MaskNumElts) {
2792    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2793                                      &Mask[0]));
2794    return;
2795  }
2796
2797  // Normalize the shuffle vector since mask and vector length don't match.
2798  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2799    // Mask is longer than the source vectors and is a multiple of the source
2800    // vectors.  We can use concatenate vector to make the mask and vectors
2801    // lengths match.
2802    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2803      // The shuffle is concatenating two vectors together.
2804      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2805                               VT, Src1, Src2));
2806      return;
2807    }
2808
2809    // Pad both vectors with undefs to make them the same length as the mask.
2810    unsigned NumConcat = MaskNumElts / SrcNumElts;
2811    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2812    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2813    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2814
2815    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2816    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2817    MOps1[0] = Src1;
2818    MOps2[0] = Src2;
2819
2820    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2821                                                  getCurDebugLoc(), VT,
2822                                                  &MOps1[0], NumConcat);
2823    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2824                                                  getCurDebugLoc(), VT,
2825                                                  &MOps2[0], NumConcat);
2826
2827    // Readjust mask for new input vector length.
2828    SmallVector<int, 8> MappedOps;
2829    for (unsigned i = 0; i != MaskNumElts; ++i) {
2830      int Idx = Mask[i];
2831      if (Idx < (int)SrcNumElts)
2832        MappedOps.push_back(Idx);
2833      else
2834        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2835    }
2836
2837    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2838                                      &MappedOps[0]));
2839    return;
2840  }
2841
2842  if (SrcNumElts > MaskNumElts) {
2843    // Analyze the access pattern of the vector to see if we can extract
2844    // two subvectors and do the shuffle. The analysis is done by calculating
2845    // the range of elements the mask access on both vectors.
2846    int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2847                        static_cast<int>(SrcNumElts+1)};
2848    int MaxRange[2] = {-1, -1};
2849
2850    for (unsigned i = 0; i != MaskNumElts; ++i) {
2851      int Idx = Mask[i];
2852      int Input = 0;
2853      if (Idx < 0)
2854        continue;
2855
2856      if (Idx >= (int)SrcNumElts) {
2857        Input = 1;
2858        Idx -= SrcNumElts;
2859      }
2860      if (Idx > MaxRange[Input])
2861        MaxRange[Input] = Idx;
2862      if (Idx < MinRange[Input])
2863        MinRange[Input] = Idx;
2864    }
2865
2866    // Check if the access is smaller than the vector size and can we find
2867    // a reasonable extract index.
2868    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2869                                 // Extract.
2870    int StartIdx[2];  // StartIdx to extract from
2871    for (int Input=0; Input < 2; ++Input) {
2872      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2873        RangeUse[Input] = 0; // Unused
2874        StartIdx[Input] = 0;
2875      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2876        // Fits within range but we should see if we can find a good
2877        // start index that is a multiple of the mask length.
2878        if (MaxRange[Input] < (int)MaskNumElts) {
2879          RangeUse[Input] = 1; // Extract from beginning of the vector
2880          StartIdx[Input] = 0;
2881        } else {
2882          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2883          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2884              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2885            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2886        }
2887      }
2888    }
2889
2890    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2891      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2892      return;
2893    }
2894    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2895      // Extract appropriate subvector and generate a vector shuffle
2896      for (int Input=0; Input < 2; ++Input) {
2897        SDValue &Src = Input == 0 ? Src1 : Src2;
2898        if (RangeUse[Input] == 0)
2899          Src = DAG.getUNDEF(VT);
2900        else
2901          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2902                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2903      }
2904
2905      // Calculate new mask.
2906      SmallVector<int, 8> MappedOps;
2907      for (unsigned i = 0; i != MaskNumElts; ++i) {
2908        int Idx = Mask[i];
2909        if (Idx < 0)
2910          MappedOps.push_back(Idx);
2911        else if (Idx < (int)SrcNumElts)
2912          MappedOps.push_back(Idx - StartIdx[0]);
2913        else
2914          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2915      }
2916
2917      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2918                                        &MappedOps[0]));
2919      return;
2920    }
2921  }
2922
2923  // We can't use either concat vectors or extract subvectors so fall back to
2924  // replacing the shuffle with extract and build vector.
2925  // to insert and build vector.
2926  EVT EltVT = VT.getVectorElementType();
2927  EVT PtrVT = TLI.getPointerTy();
2928  SmallVector<SDValue,8> Ops;
2929  for (unsigned i = 0; i != MaskNumElts; ++i) {
2930    if (Mask[i] < 0) {
2931      Ops.push_back(DAG.getUNDEF(EltVT));
2932    } else {
2933      int Idx = Mask[i];
2934      SDValue Res;
2935
2936      if (Idx < (int)SrcNumElts)
2937        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2938                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2939      else
2940        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2941                          EltVT, Src2,
2942                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2943
2944      Ops.push_back(Res);
2945    }
2946  }
2947
2948  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2949                           VT, &Ops[0], Ops.size()));
2950}
2951
2952void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2953  const Value *Op0 = I.getOperand(0);
2954  const Value *Op1 = I.getOperand(1);
2955  Type *AggTy = I.getType();
2956  Type *ValTy = Op1->getType();
2957  bool IntoUndef = isa<UndefValue>(Op0);
2958  bool FromUndef = isa<UndefValue>(Op1);
2959
2960  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2961
2962  SmallVector<EVT, 4> AggValueVTs;
2963  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2964  SmallVector<EVT, 4> ValValueVTs;
2965  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2966
2967  unsigned NumAggValues = AggValueVTs.size();
2968  unsigned NumValValues = ValValueVTs.size();
2969  SmallVector<SDValue, 4> Values(NumAggValues);
2970
2971  SDValue Agg = getValue(Op0);
2972  unsigned i = 0;
2973  // Copy the beginning value(s) from the original aggregate.
2974  for (; i != LinearIndex; ++i)
2975    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2976                SDValue(Agg.getNode(), Agg.getResNo() + i);
2977  // Copy values from the inserted value(s).
2978  if (NumValValues) {
2979    SDValue Val = getValue(Op1);
2980    for (; i != LinearIndex + NumValValues; ++i)
2981      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2982                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2983  }
2984  // Copy remaining value(s) from the original aggregate.
2985  for (; i != NumAggValues; ++i)
2986    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2987                SDValue(Agg.getNode(), Agg.getResNo() + i);
2988
2989  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2990                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2991                           &Values[0], NumAggValues));
2992}
2993
2994void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2995  const Value *Op0 = I.getOperand(0);
2996  Type *AggTy = Op0->getType();
2997  Type *ValTy = I.getType();
2998  bool OutOfUndef = isa<UndefValue>(Op0);
2999
3000  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3001
3002  SmallVector<EVT, 4> ValValueVTs;
3003  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3004
3005  unsigned NumValValues = ValValueVTs.size();
3006
3007  // Ignore a extractvalue that produces an empty object
3008  if (!NumValValues) {
3009    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3010    return;
3011  }
3012
3013  SmallVector<SDValue, 4> Values(NumValValues);
3014
3015  SDValue Agg = getValue(Op0);
3016  // Copy out the selected value(s).
3017  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3018    Values[i - LinearIndex] =
3019      OutOfUndef ?
3020        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3021        SDValue(Agg.getNode(), Agg.getResNo() + i);
3022
3023  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3024                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3025                           &Values[0], NumValValues));
3026}
3027
3028void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3029  SDValue N = getValue(I.getOperand(0));
3030  Type *Ty = I.getOperand(0)->getType();
3031
3032  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3033       OI != E; ++OI) {
3034    const Value *Idx = *OI;
3035    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3036      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3037      if (Field) {
3038        // N = N + Offset
3039        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3040        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3041                        DAG.getIntPtrConstant(Offset));
3042      }
3043
3044      Ty = StTy->getElementType(Field);
3045    } else {
3046      Ty = cast<SequentialType>(Ty)->getElementType();
3047
3048      // If this is a constant subscript, handle it quickly.
3049      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3050        if (CI->isZero()) continue;
3051        uint64_t Offs =
3052            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3053        SDValue OffsVal;
3054        EVT PTy = TLI.getPointerTy();
3055        unsigned PtrBits = PTy.getSizeInBits();
3056        if (PtrBits < 64)
3057          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3058                                TLI.getPointerTy(),
3059                                DAG.getConstant(Offs, MVT::i64));
3060        else
3061          OffsVal = DAG.getIntPtrConstant(Offs);
3062
3063        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3064                        OffsVal);
3065        continue;
3066      }
3067
3068      // N = N + Idx * ElementSize;
3069      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3070                                TD->getTypeAllocSize(Ty));
3071      SDValue IdxN = getValue(Idx);
3072
3073      // If the index is smaller or larger than intptr_t, truncate or extend
3074      // it.
3075      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3076
3077      // If this is a multiply by a power of two, turn it into a shl
3078      // immediately.  This is a very common case.
3079      if (ElementSize != 1) {
3080        if (ElementSize.isPowerOf2()) {
3081          unsigned Amt = ElementSize.logBase2();
3082          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3083                             N.getValueType(), IdxN,
3084                             DAG.getConstant(Amt, TLI.getPointerTy()));
3085        } else {
3086          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3087          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3088                             N.getValueType(), IdxN, Scale);
3089        }
3090      }
3091
3092      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3093                      N.getValueType(), N, IdxN);
3094    }
3095  }
3096
3097  setValue(&I, N);
3098}
3099
3100void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3101  // If this is a fixed sized alloca in the entry block of the function,
3102  // allocate it statically on the stack.
3103  if (FuncInfo.StaticAllocaMap.count(&I))
3104    return;   // getValue will auto-populate this.
3105
3106  Type *Ty = I.getAllocatedType();
3107  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3108  unsigned Align =
3109    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3110             I.getAlignment());
3111
3112  SDValue AllocSize = getValue(I.getArraySize());
3113
3114  EVT IntPtr = TLI.getPointerTy();
3115  if (AllocSize.getValueType() != IntPtr)
3116    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3117
3118  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3119                          AllocSize,
3120                          DAG.getConstant(TySize, IntPtr));
3121
3122  // Handle alignment.  If the requested alignment is less than or equal to
3123  // the stack alignment, ignore it.  If the size is greater than or equal to
3124  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3125  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3126  if (Align <= StackAlign)
3127    Align = 0;
3128
3129  // Round the size of the allocation up to the stack alignment size
3130  // by add SA-1 to the size.
3131  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3132                          AllocSize.getValueType(), AllocSize,
3133                          DAG.getIntPtrConstant(StackAlign-1));
3134
3135  // Mask out the low bits for alignment purposes.
3136  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3137                          AllocSize.getValueType(), AllocSize,
3138                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3139
3140  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3141  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3142  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3143                            VTs, Ops, 3);
3144  setValue(&I, DSA);
3145  DAG.setRoot(DSA.getValue(1));
3146
3147  // Inform the Frame Information that we have just allocated a variable-sized
3148  // object.
3149  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3150}
3151
3152void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3153  const Value *SV = I.getOperand(0);
3154  SDValue Ptr = getValue(SV);
3155
3156  Type *Ty = I.getType();
3157
3158  bool isVolatile = I.isVolatile();
3159  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3160  unsigned Alignment = I.getAlignment();
3161  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3162
3163  SmallVector<EVT, 4> ValueVTs;
3164  SmallVector<uint64_t, 4> Offsets;
3165  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3166  unsigned NumValues = ValueVTs.size();
3167  if (NumValues == 0)
3168    return;
3169
3170  SDValue Root;
3171  bool ConstantMemory = false;
3172  if (I.isVolatile() || NumValues > MaxParallelChains)
3173    // Serialize volatile loads with other side effects.
3174    Root = getRoot();
3175  else if (AA->pointsToConstantMemory(
3176             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3177    // Do not serialize (non-volatile) loads of constant memory with anything.
3178    Root = DAG.getEntryNode();
3179    ConstantMemory = true;
3180  } else {
3181    // Do not serialize non-volatile loads against each other.
3182    Root = DAG.getRoot();
3183  }
3184
3185  SmallVector<SDValue, 4> Values(NumValues);
3186  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3187                                          NumValues));
3188  EVT PtrVT = Ptr.getValueType();
3189  unsigned ChainI = 0;
3190  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3191    // Serializing loads here may result in excessive register pressure, and
3192    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3193    // could recover a bit by hoisting nodes upward in the chain by recognizing
3194    // they are side-effect free or do not alias. The optimizer should really
3195    // avoid this case by converting large object/array copies to llvm.memcpy
3196    // (MaxParallelChains should always remain as failsafe).
3197    if (ChainI == MaxParallelChains) {
3198      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3199      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3200                                  MVT::Other, &Chains[0], ChainI);
3201      Root = Chain;
3202      ChainI = 0;
3203    }
3204    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3205                            PtrVT, Ptr,
3206                            DAG.getConstant(Offsets[i], PtrVT));
3207    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3208                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3209                            isNonTemporal, Alignment, TBAAInfo);
3210
3211    Values[i] = L;
3212    Chains[ChainI] = L.getValue(1);
3213  }
3214
3215  if (!ConstantMemory) {
3216    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3217                                MVT::Other, &Chains[0], ChainI);
3218    if (isVolatile)
3219      DAG.setRoot(Chain);
3220    else
3221      PendingLoads.push_back(Chain);
3222  }
3223
3224  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3225                           DAG.getVTList(&ValueVTs[0], NumValues),
3226                           &Values[0], NumValues));
3227}
3228
3229void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3230  const Value *SrcV = I.getOperand(0);
3231  const Value *PtrV = I.getOperand(1);
3232
3233  SmallVector<EVT, 4> ValueVTs;
3234  SmallVector<uint64_t, 4> Offsets;
3235  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3236  unsigned NumValues = ValueVTs.size();
3237  if (NumValues == 0)
3238    return;
3239
3240  // Get the lowered operands. Note that we do this after
3241  // checking if NumResults is zero, because with zero results
3242  // the operands won't have values in the map.
3243  SDValue Src = getValue(SrcV);
3244  SDValue Ptr = getValue(PtrV);
3245
3246  SDValue Root = getRoot();
3247  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3248                                          NumValues));
3249  EVT PtrVT = Ptr.getValueType();
3250  bool isVolatile = I.isVolatile();
3251  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3252  unsigned Alignment = I.getAlignment();
3253  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3254
3255  unsigned ChainI = 0;
3256  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3257    // See visitLoad comments.
3258    if (ChainI == MaxParallelChains) {
3259      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3260                                  MVT::Other, &Chains[0], ChainI);
3261      Root = Chain;
3262      ChainI = 0;
3263    }
3264    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3265                              DAG.getConstant(Offsets[i], PtrVT));
3266    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3267                              SDValue(Src.getNode(), Src.getResNo() + i),
3268                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3269                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3270    Chains[ChainI] = St;
3271  }
3272
3273  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3274                                  MVT::Other, &Chains[0], ChainI);
3275  ++SDNodeOrder;
3276  AssignOrderingToNode(StoreNode.getNode());
3277  DAG.setRoot(StoreNode);
3278}
3279
3280void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3281  SDValue Root = getRoot();
3282  SDValue L =
3283    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
3284                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3285                  Root,
3286                  getValue(I.getPointerOperand()),
3287                  getValue(I.getCompareOperand()),
3288                  getValue(I.getNewValOperand()),
3289                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3290                  I.getOrdering(), I.getSynchScope());
3291  setValue(&I, L);
3292  DAG.setRoot(L.getValue(1));
3293}
3294
3295void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3296  ISD::NodeType NT;
3297  switch (I.getOperation()) {
3298  default: llvm_unreachable("Unknown atomicrmw operation"); return;
3299  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3300  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3301  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3302  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3303  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3304  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3305  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3306  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3307  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3308  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3309  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3310  }
3311  SDValue L =
3312    DAG.getAtomic(NT, getCurDebugLoc(),
3313                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3314                  getRoot(),
3315                  getValue(I.getPointerOperand()),
3316                  getValue(I.getValOperand()),
3317                  I.getPointerOperand(), 0 /* Alignment */,
3318                  I.getOrdering(), I.getSynchScope());
3319  setValue(&I, L);
3320  DAG.setRoot(L.getValue(1));
3321}
3322
3323void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3324  DebugLoc dl = getCurDebugLoc();
3325  SDValue Ops[3];
3326  Ops[0] = getRoot();
3327  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3328  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3329  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3330}
3331
3332/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3333/// node.
3334void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3335                                               unsigned Intrinsic) {
3336  bool HasChain = !I.doesNotAccessMemory();
3337  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3338
3339  // Build the operand list.
3340  SmallVector<SDValue, 8> Ops;
3341  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3342    if (OnlyLoad) {
3343      // We don't need to serialize loads against other loads.
3344      Ops.push_back(DAG.getRoot());
3345    } else {
3346      Ops.push_back(getRoot());
3347    }
3348  }
3349
3350  // Info is set by getTgtMemInstrinsic
3351  TargetLowering::IntrinsicInfo Info;
3352  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3353
3354  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3355  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3356      Info.opc == ISD::INTRINSIC_W_CHAIN)
3357    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3358
3359  // Add all operands of the call to the operand list.
3360  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3361    SDValue Op = getValue(I.getArgOperand(i));
3362    assert(TLI.isTypeLegal(Op.getValueType()) &&
3363           "Intrinsic uses a non-legal type?");
3364    Ops.push_back(Op);
3365  }
3366
3367  SmallVector<EVT, 4> ValueVTs;
3368  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3369#ifndef NDEBUG
3370  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3371    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3372           "Intrinsic uses a non-legal type?");
3373  }
3374#endif // NDEBUG
3375
3376  if (HasChain)
3377    ValueVTs.push_back(MVT::Other);
3378
3379  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3380
3381  // Create the node.
3382  SDValue Result;
3383  if (IsTgtIntrinsic) {
3384    // This is target intrinsic that touches memory
3385    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3386                                     VTs, &Ops[0], Ops.size(),
3387                                     Info.memVT,
3388                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3389                                     Info.align, Info.vol,
3390                                     Info.readMem, Info.writeMem);
3391  } else if (!HasChain) {
3392    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3393                         VTs, &Ops[0], Ops.size());
3394  } else if (!I.getType()->isVoidTy()) {
3395    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3396                         VTs, &Ops[0], Ops.size());
3397  } else {
3398    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3399                         VTs, &Ops[0], Ops.size());
3400  }
3401
3402  if (HasChain) {
3403    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3404    if (OnlyLoad)
3405      PendingLoads.push_back(Chain);
3406    else
3407      DAG.setRoot(Chain);
3408  }
3409
3410  if (!I.getType()->isVoidTy()) {
3411    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3412      EVT VT = TLI.getValueType(PTy);
3413      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3414    }
3415
3416    setValue(&I, Result);
3417  }
3418}
3419
3420/// GetSignificand - Get the significand and build it into a floating-point
3421/// number with exponent of 1:
3422///
3423///   Op = (Op & 0x007fffff) | 0x3f800000;
3424///
3425/// where Op is the hexidecimal representation of floating point value.
3426static SDValue
3427GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3428  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3429                           DAG.getConstant(0x007fffff, MVT::i32));
3430  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3431                           DAG.getConstant(0x3f800000, MVT::i32));
3432  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3433}
3434
3435/// GetExponent - Get the exponent:
3436///
3437///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3438///
3439/// where Op is the hexidecimal representation of floating point value.
3440static SDValue
3441GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3442            DebugLoc dl) {
3443  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3444                           DAG.getConstant(0x7f800000, MVT::i32));
3445  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3446                           DAG.getConstant(23, TLI.getPointerTy()));
3447  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3448                           DAG.getConstant(127, MVT::i32));
3449  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3450}
3451
3452/// getF32Constant - Get 32-bit floating point constant.
3453static SDValue
3454getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3455  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3456}
3457
3458/// Inlined utility function to implement binary input atomic intrinsics for
3459/// visitIntrinsicCall: I is a call instruction
3460///                     Op is the associated NodeType for I
3461const char *
3462SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3463                                           ISD::NodeType Op) {
3464  SDValue Root = getRoot();
3465  SDValue L =
3466    DAG.getAtomic(Op, getCurDebugLoc(),
3467                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3468                  Root,
3469                  getValue(I.getArgOperand(0)),
3470                  getValue(I.getArgOperand(1)),
3471                  I.getArgOperand(0), 0 /* Alignment */,
3472                  Monotonic, CrossThread);
3473  setValue(&I, L);
3474  DAG.setRoot(L.getValue(1));
3475  return 0;
3476}
3477
3478// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3479const char *
3480SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3481  SDValue Op1 = getValue(I.getArgOperand(0));
3482  SDValue Op2 = getValue(I.getArgOperand(1));
3483
3484  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3485  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3486  return 0;
3487}
3488
3489/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3490/// limited-precision mode.
3491void
3492SelectionDAGBuilder::visitExp(const CallInst &I) {
3493  SDValue result;
3494  DebugLoc dl = getCurDebugLoc();
3495
3496  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3497      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3498    SDValue Op = getValue(I.getArgOperand(0));
3499
3500    // Put the exponent in the right bit position for later addition to the
3501    // final result:
3502    //
3503    //   #define LOG2OFe 1.4426950f
3504    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3505    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3506                             getF32Constant(DAG, 0x3fb8aa3b));
3507    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3508
3509    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3510    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3511    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3512
3513    //   IntegerPartOfX <<= 23;
3514    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3515                                 DAG.getConstant(23, TLI.getPointerTy()));
3516
3517    if (LimitFloatPrecision <= 6) {
3518      // For floating-point precision of 6:
3519      //
3520      //   TwoToFractionalPartOfX =
3521      //     0.997535578f +
3522      //       (0.735607626f + 0.252464424f * x) * x;
3523      //
3524      // error 0.0144103317, which is 6 bits
3525      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3526                               getF32Constant(DAG, 0x3e814304));
3527      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3528                               getF32Constant(DAG, 0x3f3c50c8));
3529      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3530      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3531                               getF32Constant(DAG, 0x3f7f5e7e));
3532      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3533
3534      // Add the exponent into the result in integer domain.
3535      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3536                               TwoToFracPartOfX, IntegerPartOfX);
3537
3538      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3539    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3540      // For floating-point precision of 12:
3541      //
3542      //   TwoToFractionalPartOfX =
3543      //     0.999892986f +
3544      //       (0.696457318f +
3545      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3546      //
3547      // 0.000107046256 error, which is 13 to 14 bits
3548      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3549                               getF32Constant(DAG, 0x3da235e3));
3550      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3551                               getF32Constant(DAG, 0x3e65b8f3));
3552      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3553      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3554                               getF32Constant(DAG, 0x3f324b07));
3555      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3556      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3557                               getF32Constant(DAG, 0x3f7ff8fd));
3558      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3559
3560      // Add the exponent into the result in integer domain.
3561      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3562                               TwoToFracPartOfX, IntegerPartOfX);
3563
3564      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3565    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3566      // For floating-point precision of 18:
3567      //
3568      //   TwoToFractionalPartOfX =
3569      //     0.999999982f +
3570      //       (0.693148872f +
3571      //         (0.240227044f +
3572      //           (0.554906021e-1f +
3573      //             (0.961591928e-2f +
3574      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3575      //
3576      // error 2.47208000*10^(-7), which is better than 18 bits
3577      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3578                               getF32Constant(DAG, 0x3924b03e));
3579      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3580                               getF32Constant(DAG, 0x3ab24b87));
3581      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3582      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3583                               getF32Constant(DAG, 0x3c1d8c17));
3584      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3585      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3586                               getF32Constant(DAG, 0x3d634a1d));
3587      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3588      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3589                               getF32Constant(DAG, 0x3e75fe14));
3590      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3591      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3592                                getF32Constant(DAG, 0x3f317234));
3593      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3594      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3595                                getF32Constant(DAG, 0x3f800000));
3596      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3597                                             MVT::i32, t13);
3598
3599      // Add the exponent into the result in integer domain.
3600      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3601                                TwoToFracPartOfX, IntegerPartOfX);
3602
3603      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3604    }
3605  } else {
3606    // No special expansion.
3607    result = DAG.getNode(ISD::FEXP, dl,
3608                         getValue(I.getArgOperand(0)).getValueType(),
3609                         getValue(I.getArgOperand(0)));
3610  }
3611
3612  setValue(&I, result);
3613}
3614
3615/// visitLog - Lower a log intrinsic. Handles the special sequences for
3616/// limited-precision mode.
3617void
3618SelectionDAGBuilder::visitLog(const CallInst &I) {
3619  SDValue result;
3620  DebugLoc dl = getCurDebugLoc();
3621
3622  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3623      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3624    SDValue Op = getValue(I.getArgOperand(0));
3625    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3626
3627    // Scale the exponent by log(2) [0.69314718f].
3628    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3629    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3630                                        getF32Constant(DAG, 0x3f317218));
3631
3632    // Get the significand and build it into a floating-point number with
3633    // exponent of 1.
3634    SDValue X = GetSignificand(DAG, Op1, dl);
3635
3636    if (LimitFloatPrecision <= 6) {
3637      // For floating-point precision of 6:
3638      //
3639      //   LogofMantissa =
3640      //     -1.1609546f +
3641      //       (1.4034025f - 0.23903021f * x) * x;
3642      //
3643      // error 0.0034276066, which is better than 8 bits
3644      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3645                               getF32Constant(DAG, 0xbe74c456));
3646      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3647                               getF32Constant(DAG, 0x3fb3a2b1));
3648      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3649      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3650                                          getF32Constant(DAG, 0x3f949a29));
3651
3652      result = DAG.getNode(ISD::FADD, dl,
3653                           MVT::f32, LogOfExponent, LogOfMantissa);
3654    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3655      // For floating-point precision of 12:
3656      //
3657      //   LogOfMantissa =
3658      //     -1.7417939f +
3659      //       (2.8212026f +
3660      //         (-1.4699568f +
3661      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3662      //
3663      // error 0.000061011436, which is 14 bits
3664      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3665                               getF32Constant(DAG, 0xbd67b6d6));
3666      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3667                               getF32Constant(DAG, 0x3ee4f4b8));
3668      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3669      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3670                               getF32Constant(DAG, 0x3fbc278b));
3671      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3672      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3673                               getF32Constant(DAG, 0x40348e95));
3674      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3675      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3676                                          getF32Constant(DAG, 0x3fdef31a));
3677
3678      result = DAG.getNode(ISD::FADD, dl,
3679                           MVT::f32, LogOfExponent, LogOfMantissa);
3680    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3681      // For floating-point precision of 18:
3682      //
3683      //   LogOfMantissa =
3684      //     -2.1072184f +
3685      //       (4.2372794f +
3686      //         (-3.7029485f +
3687      //           (2.2781945f +
3688      //             (-0.87823314f +
3689      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3690      //
3691      // error 0.0000023660568, which is better than 18 bits
3692      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3693                               getF32Constant(DAG, 0xbc91e5ac));
3694      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3695                               getF32Constant(DAG, 0x3e4350aa));
3696      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3697      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3698                               getF32Constant(DAG, 0x3f60d3e3));
3699      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3700      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3701                               getF32Constant(DAG, 0x4011cdf0));
3702      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3703      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3704                               getF32Constant(DAG, 0x406cfd1c));
3705      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3706      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3707                               getF32Constant(DAG, 0x408797cb));
3708      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3709      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3710                                          getF32Constant(DAG, 0x4006dcab));
3711
3712      result = DAG.getNode(ISD::FADD, dl,
3713                           MVT::f32, LogOfExponent, LogOfMantissa);
3714    }
3715  } else {
3716    // No special expansion.
3717    result = DAG.getNode(ISD::FLOG, dl,
3718                         getValue(I.getArgOperand(0)).getValueType(),
3719                         getValue(I.getArgOperand(0)));
3720  }
3721
3722  setValue(&I, result);
3723}
3724
3725/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3726/// limited-precision mode.
3727void
3728SelectionDAGBuilder::visitLog2(const CallInst &I) {
3729  SDValue result;
3730  DebugLoc dl = getCurDebugLoc();
3731
3732  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3733      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3734    SDValue Op = getValue(I.getArgOperand(0));
3735    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3736
3737    // Get the exponent.
3738    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3739
3740    // Get the significand and build it into a floating-point number with
3741    // exponent of 1.
3742    SDValue X = GetSignificand(DAG, Op1, dl);
3743
3744    // Different possible minimax approximations of significand in
3745    // floating-point for various degrees of accuracy over [1,2].
3746    if (LimitFloatPrecision <= 6) {
3747      // For floating-point precision of 6:
3748      //
3749      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3750      //
3751      // error 0.0049451742, which is more than 7 bits
3752      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3753                               getF32Constant(DAG, 0xbeb08fe0));
3754      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3755                               getF32Constant(DAG, 0x40019463));
3756      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3757      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3758                                           getF32Constant(DAG, 0x3fd6633d));
3759
3760      result = DAG.getNode(ISD::FADD, dl,
3761                           MVT::f32, LogOfExponent, Log2ofMantissa);
3762    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3763      // For floating-point precision of 12:
3764      //
3765      //   Log2ofMantissa =
3766      //     -2.51285454f +
3767      //       (4.07009056f +
3768      //         (-2.12067489f +
3769      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3770      //
3771      // error 0.0000876136000, which is better than 13 bits
3772      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3773                               getF32Constant(DAG, 0xbda7262e));
3774      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3775                               getF32Constant(DAG, 0x3f25280b));
3776      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3777      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3778                               getF32Constant(DAG, 0x4007b923));
3779      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3780      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3781                               getF32Constant(DAG, 0x40823e2f));
3782      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3783      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3784                                           getF32Constant(DAG, 0x4020d29c));
3785
3786      result = DAG.getNode(ISD::FADD, dl,
3787                           MVT::f32, LogOfExponent, Log2ofMantissa);
3788    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3789      // For floating-point precision of 18:
3790      //
3791      //   Log2ofMantissa =
3792      //     -3.0400495f +
3793      //       (6.1129976f +
3794      //         (-5.3420409f +
3795      //           (3.2865683f +
3796      //             (-1.2669343f +
3797      //               (0.27515199f -
3798      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3799      //
3800      // error 0.0000018516, which is better than 18 bits
3801      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3802                               getF32Constant(DAG, 0xbcd2769e));
3803      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3804                               getF32Constant(DAG, 0x3e8ce0b9));
3805      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3806      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3807                               getF32Constant(DAG, 0x3fa22ae7));
3808      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3809      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3810                               getF32Constant(DAG, 0x40525723));
3811      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3812      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3813                               getF32Constant(DAG, 0x40aaf200));
3814      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3815      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3816                               getF32Constant(DAG, 0x40c39dad));
3817      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3818      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3819                                           getF32Constant(DAG, 0x4042902c));
3820
3821      result = DAG.getNode(ISD::FADD, dl,
3822                           MVT::f32, LogOfExponent, Log2ofMantissa);
3823    }
3824  } else {
3825    // No special expansion.
3826    result = DAG.getNode(ISD::FLOG2, dl,
3827                         getValue(I.getArgOperand(0)).getValueType(),
3828                         getValue(I.getArgOperand(0)));
3829  }
3830
3831  setValue(&I, result);
3832}
3833
3834/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3835/// limited-precision mode.
3836void
3837SelectionDAGBuilder::visitLog10(const CallInst &I) {
3838  SDValue result;
3839  DebugLoc dl = getCurDebugLoc();
3840
3841  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3842      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3843    SDValue Op = getValue(I.getArgOperand(0));
3844    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3845
3846    // Scale the exponent by log10(2) [0.30102999f].
3847    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3848    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3849                                        getF32Constant(DAG, 0x3e9a209a));
3850
3851    // Get the significand and build it into a floating-point number with
3852    // exponent of 1.
3853    SDValue X = GetSignificand(DAG, Op1, dl);
3854
3855    if (LimitFloatPrecision <= 6) {
3856      // For floating-point precision of 6:
3857      //
3858      //   Log10ofMantissa =
3859      //     -0.50419619f +
3860      //       (0.60948995f - 0.10380950f * x) * x;
3861      //
3862      // error 0.0014886165, which is 6 bits
3863      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3864                               getF32Constant(DAG, 0xbdd49a13));
3865      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3866                               getF32Constant(DAG, 0x3f1c0789));
3867      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3868      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3869                                            getF32Constant(DAG, 0x3f011300));
3870
3871      result = DAG.getNode(ISD::FADD, dl,
3872                           MVT::f32, LogOfExponent, Log10ofMantissa);
3873    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3874      // For floating-point precision of 12:
3875      //
3876      //   Log10ofMantissa =
3877      //     -0.64831180f +
3878      //       (0.91751397f +
3879      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3880      //
3881      // error 0.00019228036, which is better than 12 bits
3882      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3883                               getF32Constant(DAG, 0x3d431f31));
3884      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3885                               getF32Constant(DAG, 0x3ea21fb2));
3886      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3887      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3888                               getF32Constant(DAG, 0x3f6ae232));
3889      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3890      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3891                                            getF32Constant(DAG, 0x3f25f7c3));
3892
3893      result = DAG.getNode(ISD::FADD, dl,
3894                           MVT::f32, LogOfExponent, Log10ofMantissa);
3895    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3896      // For floating-point precision of 18:
3897      //
3898      //   Log10ofMantissa =
3899      //     -0.84299375f +
3900      //       (1.5327582f +
3901      //         (-1.0688956f +
3902      //           (0.49102474f +
3903      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3904      //
3905      // error 0.0000037995730, which is better than 18 bits
3906      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3907                               getF32Constant(DAG, 0x3c5d51ce));
3908      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3909                               getF32Constant(DAG, 0x3e00685a));
3910      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3911      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3912                               getF32Constant(DAG, 0x3efb6798));
3913      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3914      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3915                               getF32Constant(DAG, 0x3f88d192));
3916      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3917      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3918                               getF32Constant(DAG, 0x3fc4316c));
3919      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3920      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3921                                            getF32Constant(DAG, 0x3f57ce70));
3922
3923      result = DAG.getNode(ISD::FADD, dl,
3924                           MVT::f32, LogOfExponent, Log10ofMantissa);
3925    }
3926  } else {
3927    // No special expansion.
3928    result = DAG.getNode(ISD::FLOG10, dl,
3929                         getValue(I.getArgOperand(0)).getValueType(),
3930                         getValue(I.getArgOperand(0)));
3931  }
3932
3933  setValue(&I, result);
3934}
3935
3936/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3937/// limited-precision mode.
3938void
3939SelectionDAGBuilder::visitExp2(const CallInst &I) {
3940  SDValue result;
3941  DebugLoc dl = getCurDebugLoc();
3942
3943  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3944      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3945    SDValue Op = getValue(I.getArgOperand(0));
3946
3947    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3948
3949    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3950    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3951    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3952
3953    //   IntegerPartOfX <<= 23;
3954    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3955                                 DAG.getConstant(23, TLI.getPointerTy()));
3956
3957    if (LimitFloatPrecision <= 6) {
3958      // For floating-point precision of 6:
3959      //
3960      //   TwoToFractionalPartOfX =
3961      //     0.997535578f +
3962      //       (0.735607626f + 0.252464424f * x) * x;
3963      //
3964      // error 0.0144103317, which is 6 bits
3965      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3966                               getF32Constant(DAG, 0x3e814304));
3967      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3968                               getF32Constant(DAG, 0x3f3c50c8));
3969      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3970      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3971                               getF32Constant(DAG, 0x3f7f5e7e));
3972      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3973      SDValue TwoToFractionalPartOfX =
3974        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3975
3976      result = DAG.getNode(ISD::BITCAST, dl,
3977                           MVT::f32, TwoToFractionalPartOfX);
3978    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3979      // For floating-point precision of 12:
3980      //
3981      //   TwoToFractionalPartOfX =
3982      //     0.999892986f +
3983      //       (0.696457318f +
3984      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3985      //
3986      // error 0.000107046256, which is 13 to 14 bits
3987      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3988                               getF32Constant(DAG, 0x3da235e3));
3989      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3990                               getF32Constant(DAG, 0x3e65b8f3));
3991      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3992      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3993                               getF32Constant(DAG, 0x3f324b07));
3994      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3995      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3996                               getF32Constant(DAG, 0x3f7ff8fd));
3997      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3998      SDValue TwoToFractionalPartOfX =
3999        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4000
4001      result = DAG.getNode(ISD::BITCAST, dl,
4002                           MVT::f32, TwoToFractionalPartOfX);
4003    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4004      // For floating-point precision of 18:
4005      //
4006      //   TwoToFractionalPartOfX =
4007      //     0.999999982f +
4008      //       (0.693148872f +
4009      //         (0.240227044f +
4010      //           (0.554906021e-1f +
4011      //             (0.961591928e-2f +
4012      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4013      // error 2.47208000*10^(-7), which is better than 18 bits
4014      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4015                               getF32Constant(DAG, 0x3924b03e));
4016      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4017                               getF32Constant(DAG, 0x3ab24b87));
4018      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4019      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4020                               getF32Constant(DAG, 0x3c1d8c17));
4021      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4022      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4023                               getF32Constant(DAG, 0x3d634a1d));
4024      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4025      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4026                               getF32Constant(DAG, 0x3e75fe14));
4027      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4028      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4029                                getF32Constant(DAG, 0x3f317234));
4030      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4031      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4032                                getF32Constant(DAG, 0x3f800000));
4033      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4034      SDValue TwoToFractionalPartOfX =
4035        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4036
4037      result = DAG.getNode(ISD::BITCAST, dl,
4038                           MVT::f32, TwoToFractionalPartOfX);
4039    }
4040  } else {
4041    // No special expansion.
4042    result = DAG.getNode(ISD::FEXP2, dl,
4043                         getValue(I.getArgOperand(0)).getValueType(),
4044                         getValue(I.getArgOperand(0)));
4045  }
4046
4047  setValue(&I, result);
4048}
4049
4050/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4051/// limited-precision mode with x == 10.0f.
4052void
4053SelectionDAGBuilder::visitPow(const CallInst &I) {
4054  SDValue result;
4055  const Value *Val = I.getArgOperand(0);
4056  DebugLoc dl = getCurDebugLoc();
4057  bool IsExp10 = false;
4058
4059  if (getValue(Val).getValueType() == MVT::f32 &&
4060      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4061      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4062    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4063      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4064        APFloat Ten(10.0f);
4065        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4066      }
4067    }
4068  }
4069
4070  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4071    SDValue Op = getValue(I.getArgOperand(1));
4072
4073    // Put the exponent in the right bit position for later addition to the
4074    // final result:
4075    //
4076    //   #define LOG2OF10 3.3219281f
4077    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4078    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4079                             getF32Constant(DAG, 0x40549a78));
4080    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4081
4082    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4083    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4084    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4085
4086    //   IntegerPartOfX <<= 23;
4087    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4088                                 DAG.getConstant(23, TLI.getPointerTy()));
4089
4090    if (LimitFloatPrecision <= 6) {
4091      // For floating-point precision of 6:
4092      //
4093      //   twoToFractionalPartOfX =
4094      //     0.997535578f +
4095      //       (0.735607626f + 0.252464424f * x) * x;
4096      //
4097      // error 0.0144103317, which is 6 bits
4098      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4099                               getF32Constant(DAG, 0x3e814304));
4100      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4101                               getF32Constant(DAG, 0x3f3c50c8));
4102      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4103      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4104                               getF32Constant(DAG, 0x3f7f5e7e));
4105      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4106      SDValue TwoToFractionalPartOfX =
4107        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4108
4109      result = DAG.getNode(ISD::BITCAST, dl,
4110                           MVT::f32, TwoToFractionalPartOfX);
4111    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4112      // For floating-point precision of 12:
4113      //
4114      //   TwoToFractionalPartOfX =
4115      //     0.999892986f +
4116      //       (0.696457318f +
4117      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4118      //
4119      // error 0.000107046256, which is 13 to 14 bits
4120      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4121                               getF32Constant(DAG, 0x3da235e3));
4122      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4123                               getF32Constant(DAG, 0x3e65b8f3));
4124      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4125      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4126                               getF32Constant(DAG, 0x3f324b07));
4127      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4128      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4129                               getF32Constant(DAG, 0x3f7ff8fd));
4130      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4131      SDValue TwoToFractionalPartOfX =
4132        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4133
4134      result = DAG.getNode(ISD::BITCAST, dl,
4135                           MVT::f32, TwoToFractionalPartOfX);
4136    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4137      // For floating-point precision of 18:
4138      //
4139      //   TwoToFractionalPartOfX =
4140      //     0.999999982f +
4141      //       (0.693148872f +
4142      //         (0.240227044f +
4143      //           (0.554906021e-1f +
4144      //             (0.961591928e-2f +
4145      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4146      // error 2.47208000*10^(-7), which is better than 18 bits
4147      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4148                               getF32Constant(DAG, 0x3924b03e));
4149      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4150                               getF32Constant(DAG, 0x3ab24b87));
4151      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4152      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4153                               getF32Constant(DAG, 0x3c1d8c17));
4154      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4155      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4156                               getF32Constant(DAG, 0x3d634a1d));
4157      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4158      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4159                               getF32Constant(DAG, 0x3e75fe14));
4160      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4161      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4162                                getF32Constant(DAG, 0x3f317234));
4163      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4164      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4165                                getF32Constant(DAG, 0x3f800000));
4166      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4167      SDValue TwoToFractionalPartOfX =
4168        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4169
4170      result = DAG.getNode(ISD::BITCAST, dl,
4171                           MVT::f32, TwoToFractionalPartOfX);
4172    }
4173  } else {
4174    // No special expansion.
4175    result = DAG.getNode(ISD::FPOW, dl,
4176                         getValue(I.getArgOperand(0)).getValueType(),
4177                         getValue(I.getArgOperand(0)),
4178                         getValue(I.getArgOperand(1)));
4179  }
4180
4181  setValue(&I, result);
4182}
4183
4184
4185/// ExpandPowI - Expand a llvm.powi intrinsic.
4186static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4187                          SelectionDAG &DAG) {
4188  // If RHS is a constant, we can expand this out to a multiplication tree,
4189  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4190  // optimizing for size, we only want to do this if the expansion would produce
4191  // a small number of multiplies, otherwise we do the full expansion.
4192  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4193    // Get the exponent as a positive value.
4194    unsigned Val = RHSC->getSExtValue();
4195    if ((int)Val < 0) Val = -Val;
4196
4197    // powi(x, 0) -> 1.0
4198    if (Val == 0)
4199      return DAG.getConstantFP(1.0, LHS.getValueType());
4200
4201    const Function *F = DAG.getMachineFunction().getFunction();
4202    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4203        // If optimizing for size, don't insert too many multiplies.  This
4204        // inserts up to 5 multiplies.
4205        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4206      // We use the simple binary decomposition method to generate the multiply
4207      // sequence.  There are more optimal ways to do this (for example,
4208      // powi(x,15) generates one more multiply than it should), but this has
4209      // the benefit of being both really simple and much better than a libcall.
4210      SDValue Res;  // Logically starts equal to 1.0
4211      SDValue CurSquare = LHS;
4212      while (Val) {
4213        if (Val & 1) {
4214          if (Res.getNode())
4215            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4216          else
4217            Res = CurSquare;  // 1.0*CurSquare.
4218        }
4219
4220        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4221                                CurSquare, CurSquare);
4222        Val >>= 1;
4223      }
4224
4225      // If the original was negative, invert the result, producing 1/(x*x*x).
4226      if (RHSC->getSExtValue() < 0)
4227        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4228                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4229      return Res;
4230    }
4231  }
4232
4233  // Otherwise, expand to a libcall.
4234  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4235}
4236
4237// getTruncatedArgReg - Find underlying register used for an truncated
4238// argument.
4239static unsigned getTruncatedArgReg(const SDValue &N) {
4240  if (N.getOpcode() != ISD::TRUNCATE)
4241    return 0;
4242
4243  const SDValue &Ext = N.getOperand(0);
4244  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4245    const SDValue &CFR = Ext.getOperand(0);
4246    if (CFR.getOpcode() == ISD::CopyFromReg)
4247      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4248    else
4249      if (CFR.getOpcode() == ISD::TRUNCATE)
4250        return getTruncatedArgReg(CFR);
4251  }
4252  return 0;
4253}
4254
4255/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4256/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4257/// At the end of instruction selection, they will be inserted to the entry BB.
4258bool
4259SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4260                                              int64_t Offset,
4261                                              const SDValue &N) {
4262  const Argument *Arg = dyn_cast<Argument>(V);
4263  if (!Arg)
4264    return false;
4265
4266  MachineFunction &MF = DAG.getMachineFunction();
4267  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4268  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4269
4270  // Ignore inlined function arguments here.
4271  DIVariable DV(Variable);
4272  if (DV.isInlinedFnArgument(MF.getFunction()))
4273    return false;
4274
4275  unsigned Reg = 0;
4276  if (Arg->hasByValAttr()) {
4277    // Byval arguments' frame index is recorded during argument lowering.
4278    // Use this info directly.
4279    Reg = TRI->getFrameRegister(MF);
4280    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4281    // If byval argument ofset is not recorded then ignore this.
4282    if (!Offset)
4283      Reg = 0;
4284  }
4285
4286  if (N.getNode()) {
4287    if (N.getOpcode() == ISD::CopyFromReg)
4288      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4289    else
4290      Reg = getTruncatedArgReg(N);
4291    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4292      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4293      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4294      if (PR)
4295        Reg = PR;
4296    }
4297  }
4298
4299  if (!Reg) {
4300    // Check if ValueMap has reg number.
4301    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4302    if (VMI != FuncInfo.ValueMap.end())
4303      Reg = VMI->second;
4304  }
4305
4306  if (!Reg && N.getNode()) {
4307    // Check if frame index is available.
4308    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4309      if (FrameIndexSDNode *FINode =
4310          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4311        Reg = TRI->getFrameRegister(MF);
4312        Offset = FINode->getIndex();
4313      }
4314  }
4315
4316  if (!Reg)
4317    return false;
4318
4319  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4320                                    TII->get(TargetOpcode::DBG_VALUE))
4321    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4322  FuncInfo.ArgDbgValues.push_back(&*MIB);
4323  return true;
4324}
4325
4326// VisualStudio defines setjmp as _setjmp
4327#if defined(_MSC_VER) && defined(setjmp) && \
4328                         !defined(setjmp_undefined_for_msvc)
4329#  pragma push_macro("setjmp")
4330#  undef setjmp
4331#  define setjmp_undefined_for_msvc
4332#endif
4333
4334/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4335/// we want to emit this as a call to a named external function, return the name
4336/// otherwise lower it and return null.
4337const char *
4338SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4339  DebugLoc dl = getCurDebugLoc();
4340  SDValue Res;
4341
4342  switch (Intrinsic) {
4343  default:
4344    // By default, turn this into a target intrinsic node.
4345    visitTargetIntrinsic(I, Intrinsic);
4346    return 0;
4347  case Intrinsic::vastart:  visitVAStart(I); return 0;
4348  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4349  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4350  case Intrinsic::returnaddress:
4351    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4352                             getValue(I.getArgOperand(0))));
4353    return 0;
4354  case Intrinsic::frameaddress:
4355    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4356                             getValue(I.getArgOperand(0))));
4357    return 0;
4358  case Intrinsic::setjmp:
4359    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4360  case Intrinsic::longjmp:
4361    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4362  case Intrinsic::memcpy: {
4363    // Assert for address < 256 since we support only user defined address
4364    // spaces.
4365    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4366           < 256 &&
4367           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4368           < 256 &&
4369           "Unknown address space");
4370    SDValue Op1 = getValue(I.getArgOperand(0));
4371    SDValue Op2 = getValue(I.getArgOperand(1));
4372    SDValue Op3 = getValue(I.getArgOperand(2));
4373    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4374    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4375    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4376                              MachinePointerInfo(I.getArgOperand(0)),
4377                              MachinePointerInfo(I.getArgOperand(1))));
4378    return 0;
4379  }
4380  case Intrinsic::memset: {
4381    // Assert for address < 256 since we support only user defined address
4382    // spaces.
4383    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4384           < 256 &&
4385           "Unknown address space");
4386    SDValue Op1 = getValue(I.getArgOperand(0));
4387    SDValue Op2 = getValue(I.getArgOperand(1));
4388    SDValue Op3 = getValue(I.getArgOperand(2));
4389    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4390    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4391    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4392                              MachinePointerInfo(I.getArgOperand(0))));
4393    return 0;
4394  }
4395  case Intrinsic::memmove: {
4396    // Assert for address < 256 since we support only user defined address
4397    // spaces.
4398    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4399           < 256 &&
4400           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4401           < 256 &&
4402           "Unknown address space");
4403    SDValue Op1 = getValue(I.getArgOperand(0));
4404    SDValue Op2 = getValue(I.getArgOperand(1));
4405    SDValue Op3 = getValue(I.getArgOperand(2));
4406    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4407    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4408    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4409                               MachinePointerInfo(I.getArgOperand(0)),
4410                               MachinePointerInfo(I.getArgOperand(1))));
4411    return 0;
4412  }
4413  case Intrinsic::dbg_declare: {
4414    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4415    MDNode *Variable = DI.getVariable();
4416    const Value *Address = DI.getAddress();
4417    if (!Address || !DIVariable(DI.getVariable()).Verify())
4418      return 0;
4419
4420    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4421    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4422    // absolute, but not relative, values are different depending on whether
4423    // debug info exists.
4424    ++SDNodeOrder;
4425
4426    // Check if address has undef value.
4427    if (isa<UndefValue>(Address) ||
4428        (Address->use_empty() && !isa<Argument>(Address))) {
4429      DEBUG(dbgs() << "Dropping debug info for " << DI);
4430      return 0;
4431    }
4432
4433    SDValue &N = NodeMap[Address];
4434    if (!N.getNode() && isa<Argument>(Address))
4435      // Check unused arguments map.
4436      N = UnusedArgNodeMap[Address];
4437    SDDbgValue *SDV;
4438    if (N.getNode()) {
4439      // Parameters are handled specially.
4440      bool isParameter =
4441        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4442      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4443        Address = BCI->getOperand(0);
4444      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4445
4446      if (isParameter && !AI) {
4447        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4448        if (FINode)
4449          // Byval parameter.  We have a frame index at this point.
4450          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4451                                0, dl, SDNodeOrder);
4452        else {
4453          // Address is an argument, so try to emit its dbg value using
4454          // virtual register info from the FuncInfo.ValueMap.
4455          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4456          return 0;
4457        }
4458      } else if (AI)
4459        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4460                              0, dl, SDNodeOrder);
4461      else {
4462        // Can't do anything with other non-AI cases yet.
4463        DEBUG(dbgs() << "Dropping debug info for " << DI);
4464        return 0;
4465      }
4466      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4467    } else {
4468      // If Address is an argument then try to emit its dbg value using
4469      // virtual register info from the FuncInfo.ValueMap.
4470      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4471        // If variable is pinned by a alloca in dominating bb then
4472        // use StaticAllocaMap.
4473        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4474          if (AI->getParent() != DI.getParent()) {
4475            DenseMap<const AllocaInst*, int>::iterator SI =
4476              FuncInfo.StaticAllocaMap.find(AI);
4477            if (SI != FuncInfo.StaticAllocaMap.end()) {
4478              SDV = DAG.getDbgValue(Variable, SI->second,
4479                                    0, dl, SDNodeOrder);
4480              DAG.AddDbgValue(SDV, 0, false);
4481              return 0;
4482            }
4483          }
4484        }
4485        DEBUG(dbgs() << "Dropping debug info for " << DI);
4486      }
4487    }
4488    return 0;
4489  }
4490  case Intrinsic::dbg_value: {
4491    const DbgValueInst &DI = cast<DbgValueInst>(I);
4492    if (!DIVariable(DI.getVariable()).Verify())
4493      return 0;
4494
4495    MDNode *Variable = DI.getVariable();
4496    uint64_t Offset = DI.getOffset();
4497    const Value *V = DI.getValue();
4498    if (!V)
4499      return 0;
4500
4501    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4502    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4503    // absolute, but not relative, values are different depending on whether
4504    // debug info exists.
4505    ++SDNodeOrder;
4506    SDDbgValue *SDV;
4507    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4508      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4509      DAG.AddDbgValue(SDV, 0, false);
4510    } else {
4511      // Do not use getValue() in here; we don't want to generate code at
4512      // this point if it hasn't been done yet.
4513      SDValue N = NodeMap[V];
4514      if (!N.getNode() && isa<Argument>(V))
4515        // Check unused arguments map.
4516        N = UnusedArgNodeMap[V];
4517      if (N.getNode()) {
4518        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4519          SDV = DAG.getDbgValue(Variable, N.getNode(),
4520                                N.getResNo(), Offset, dl, SDNodeOrder);
4521          DAG.AddDbgValue(SDV, N.getNode(), false);
4522        }
4523      } else if (!V->use_empty() ) {
4524        // Do not call getValue(V) yet, as we don't want to generate code.
4525        // Remember it for later.
4526        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4527        DanglingDebugInfoMap[V] = DDI;
4528      } else {
4529        // We may expand this to cover more cases.  One case where we have no
4530        // data available is an unreferenced parameter.
4531        DEBUG(dbgs() << "Dropping debug info for " << DI);
4532      }
4533    }
4534
4535    // Build a debug info table entry.
4536    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4537      V = BCI->getOperand(0);
4538    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4539    // Don't handle byval struct arguments or VLAs, for example.
4540    if (!AI)
4541      return 0;
4542    DenseMap<const AllocaInst*, int>::iterator SI =
4543      FuncInfo.StaticAllocaMap.find(AI);
4544    if (SI == FuncInfo.StaticAllocaMap.end())
4545      return 0; // VLAs.
4546    int FI = SI->second;
4547
4548    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4549    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4550      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4551    return 0;
4552  }
4553  case Intrinsic::eh_exception: {
4554    // Insert the EXCEPTIONADDR instruction.
4555    assert(FuncInfo.MBB->isLandingPad() &&
4556           "Call to eh.exception not in landing pad!");
4557    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4558    SDValue Ops[1];
4559    Ops[0] = DAG.getRoot();
4560    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4561    setValue(&I, Op);
4562    DAG.setRoot(Op.getValue(1));
4563    return 0;
4564  }
4565
4566  case Intrinsic::eh_selector: {
4567    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4568    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4569    if (CallMBB->isLandingPad())
4570      AddCatchInfo(I, &MMI, CallMBB);
4571    else {
4572#ifndef NDEBUG
4573      FuncInfo.CatchInfoLost.insert(&I);
4574#endif
4575      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4576      unsigned Reg = TLI.getExceptionSelectorRegister();
4577      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4578    }
4579
4580    // Insert the EHSELECTION instruction.
4581    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4582    SDValue Ops[2];
4583    Ops[0] = getValue(I.getArgOperand(0));
4584    Ops[1] = getRoot();
4585    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4586    DAG.setRoot(Op.getValue(1));
4587    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4588    return 0;
4589  }
4590
4591  case Intrinsic::eh_typeid_for: {
4592    // Find the type id for the given typeinfo.
4593    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4594    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4595    Res = DAG.getConstant(TypeID, MVT::i32);
4596    setValue(&I, Res);
4597    return 0;
4598  }
4599
4600  case Intrinsic::eh_return_i32:
4601  case Intrinsic::eh_return_i64:
4602    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4603    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4604                            MVT::Other,
4605                            getControlRoot(),
4606                            getValue(I.getArgOperand(0)),
4607                            getValue(I.getArgOperand(1))));
4608    return 0;
4609  case Intrinsic::eh_unwind_init:
4610    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4611    return 0;
4612  case Intrinsic::eh_dwarf_cfa: {
4613    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4614                                        TLI.getPointerTy());
4615    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4616                                 TLI.getPointerTy(),
4617                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4618                                             TLI.getPointerTy()),
4619                                 CfaArg);
4620    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4621                             TLI.getPointerTy(),
4622                             DAG.getConstant(0, TLI.getPointerTy()));
4623    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4624                             FA, Offset));
4625    return 0;
4626  }
4627  case Intrinsic::eh_sjlj_callsite: {
4628    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4629    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4630    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4631    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4632
4633    MMI.setCurrentCallSite(CI->getZExtValue());
4634    return 0;
4635  }
4636  case Intrinsic::eh_sjlj_setjmp: {
4637    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4638                             getValue(I.getArgOperand(0))));
4639    return 0;
4640  }
4641  case Intrinsic::eh_sjlj_longjmp: {
4642    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4643                            getRoot(), getValue(I.getArgOperand(0))));
4644    return 0;
4645  }
4646  case Intrinsic::eh_sjlj_dispatch_setup: {
4647    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4648                            getRoot(), getValue(I.getArgOperand(0))));
4649    return 0;
4650  }
4651
4652  case Intrinsic::x86_mmx_pslli_w:
4653  case Intrinsic::x86_mmx_pslli_d:
4654  case Intrinsic::x86_mmx_pslli_q:
4655  case Intrinsic::x86_mmx_psrli_w:
4656  case Intrinsic::x86_mmx_psrli_d:
4657  case Intrinsic::x86_mmx_psrli_q:
4658  case Intrinsic::x86_mmx_psrai_w:
4659  case Intrinsic::x86_mmx_psrai_d: {
4660    SDValue ShAmt = getValue(I.getArgOperand(1));
4661    if (isa<ConstantSDNode>(ShAmt)) {
4662      visitTargetIntrinsic(I, Intrinsic);
4663      return 0;
4664    }
4665    unsigned NewIntrinsic = 0;
4666    EVT ShAmtVT = MVT::v2i32;
4667    switch (Intrinsic) {
4668    case Intrinsic::x86_mmx_pslli_w:
4669      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4670      break;
4671    case Intrinsic::x86_mmx_pslli_d:
4672      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4673      break;
4674    case Intrinsic::x86_mmx_pslli_q:
4675      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4676      break;
4677    case Intrinsic::x86_mmx_psrli_w:
4678      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4679      break;
4680    case Intrinsic::x86_mmx_psrli_d:
4681      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4682      break;
4683    case Intrinsic::x86_mmx_psrli_q:
4684      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4685      break;
4686    case Intrinsic::x86_mmx_psrai_w:
4687      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4688      break;
4689    case Intrinsic::x86_mmx_psrai_d:
4690      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4691      break;
4692    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4693    }
4694
4695    // The vector shift intrinsics with scalars uses 32b shift amounts but
4696    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4697    // to be zero.
4698    // We must do this early because v2i32 is not a legal type.
4699    DebugLoc dl = getCurDebugLoc();
4700    SDValue ShOps[2];
4701    ShOps[0] = ShAmt;
4702    ShOps[1] = DAG.getConstant(0, MVT::i32);
4703    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4704    EVT DestVT = TLI.getValueType(I.getType());
4705    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4706    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4707                       DAG.getConstant(NewIntrinsic, MVT::i32),
4708                       getValue(I.getArgOperand(0)), ShAmt);
4709    setValue(&I, Res);
4710    return 0;
4711  }
4712  case Intrinsic::convertff:
4713  case Intrinsic::convertfsi:
4714  case Intrinsic::convertfui:
4715  case Intrinsic::convertsif:
4716  case Intrinsic::convertuif:
4717  case Intrinsic::convertss:
4718  case Intrinsic::convertsu:
4719  case Intrinsic::convertus:
4720  case Intrinsic::convertuu: {
4721    ISD::CvtCode Code = ISD::CVT_INVALID;
4722    switch (Intrinsic) {
4723    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4724    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4725    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4726    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4727    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4728    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4729    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4730    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4731    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4732    }
4733    EVT DestVT = TLI.getValueType(I.getType());
4734    const Value *Op1 = I.getArgOperand(0);
4735    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4736                               DAG.getValueType(DestVT),
4737                               DAG.getValueType(getValue(Op1).getValueType()),
4738                               getValue(I.getArgOperand(1)),
4739                               getValue(I.getArgOperand(2)),
4740                               Code);
4741    setValue(&I, Res);
4742    return 0;
4743  }
4744  case Intrinsic::sqrt:
4745    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4746                             getValue(I.getArgOperand(0)).getValueType(),
4747                             getValue(I.getArgOperand(0))));
4748    return 0;
4749  case Intrinsic::powi:
4750    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4751                            getValue(I.getArgOperand(1)), DAG));
4752    return 0;
4753  case Intrinsic::sin:
4754    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4755                             getValue(I.getArgOperand(0)).getValueType(),
4756                             getValue(I.getArgOperand(0))));
4757    return 0;
4758  case Intrinsic::cos:
4759    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4760                             getValue(I.getArgOperand(0)).getValueType(),
4761                             getValue(I.getArgOperand(0))));
4762    return 0;
4763  case Intrinsic::log:
4764    visitLog(I);
4765    return 0;
4766  case Intrinsic::log2:
4767    visitLog2(I);
4768    return 0;
4769  case Intrinsic::log10:
4770    visitLog10(I);
4771    return 0;
4772  case Intrinsic::exp:
4773    visitExp(I);
4774    return 0;
4775  case Intrinsic::exp2:
4776    visitExp2(I);
4777    return 0;
4778  case Intrinsic::pow:
4779    visitPow(I);
4780    return 0;
4781  case Intrinsic::fma:
4782    setValue(&I, DAG.getNode(ISD::FMA, dl,
4783                             getValue(I.getArgOperand(0)).getValueType(),
4784                             getValue(I.getArgOperand(0)),
4785                             getValue(I.getArgOperand(1)),
4786                             getValue(I.getArgOperand(2))));
4787    return 0;
4788  case Intrinsic::convert_to_fp16:
4789    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4790                             MVT::i16, getValue(I.getArgOperand(0))));
4791    return 0;
4792  case Intrinsic::convert_from_fp16:
4793    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4794                             MVT::f32, getValue(I.getArgOperand(0))));
4795    return 0;
4796  case Intrinsic::pcmarker: {
4797    SDValue Tmp = getValue(I.getArgOperand(0));
4798    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4799    return 0;
4800  }
4801  case Intrinsic::readcyclecounter: {
4802    SDValue Op = getRoot();
4803    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4804                      DAG.getVTList(MVT::i64, MVT::Other),
4805                      &Op, 1);
4806    setValue(&I, Res);
4807    DAG.setRoot(Res.getValue(1));
4808    return 0;
4809  }
4810  case Intrinsic::bswap:
4811    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4812                             getValue(I.getArgOperand(0)).getValueType(),
4813                             getValue(I.getArgOperand(0))));
4814    return 0;
4815  case Intrinsic::cttz: {
4816    SDValue Arg = getValue(I.getArgOperand(0));
4817    EVT Ty = Arg.getValueType();
4818    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4819    return 0;
4820  }
4821  case Intrinsic::ctlz: {
4822    SDValue Arg = getValue(I.getArgOperand(0));
4823    EVT Ty = Arg.getValueType();
4824    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4825    return 0;
4826  }
4827  case Intrinsic::ctpop: {
4828    SDValue Arg = getValue(I.getArgOperand(0));
4829    EVT Ty = Arg.getValueType();
4830    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4831    return 0;
4832  }
4833  case Intrinsic::stacksave: {
4834    SDValue Op = getRoot();
4835    Res = DAG.getNode(ISD::STACKSAVE, dl,
4836                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4837    setValue(&I, Res);
4838    DAG.setRoot(Res.getValue(1));
4839    return 0;
4840  }
4841  case Intrinsic::stackrestore: {
4842    Res = getValue(I.getArgOperand(0));
4843    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4844    return 0;
4845  }
4846  case Intrinsic::stackprotector: {
4847    // Emit code into the DAG to store the stack guard onto the stack.
4848    MachineFunction &MF = DAG.getMachineFunction();
4849    MachineFrameInfo *MFI = MF.getFrameInfo();
4850    EVT PtrTy = TLI.getPointerTy();
4851
4852    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4853    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4854
4855    int FI = FuncInfo.StaticAllocaMap[Slot];
4856    MFI->setStackProtectorIndex(FI);
4857
4858    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4859
4860    // Store the stack protector onto the stack.
4861    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4862                       MachinePointerInfo::getFixedStack(FI),
4863                       true, false, 0);
4864    setValue(&I, Res);
4865    DAG.setRoot(Res);
4866    return 0;
4867  }
4868  case Intrinsic::objectsize: {
4869    // If we don't know by now, we're never going to know.
4870    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4871
4872    assert(CI && "Non-constant type in __builtin_object_size?");
4873
4874    SDValue Arg = getValue(I.getCalledValue());
4875    EVT Ty = Arg.getValueType();
4876
4877    if (CI->isZero())
4878      Res = DAG.getConstant(-1ULL, Ty);
4879    else
4880      Res = DAG.getConstant(0, Ty);
4881
4882    setValue(&I, Res);
4883    return 0;
4884  }
4885  case Intrinsic::var_annotation:
4886    // Discard annotate attributes
4887    return 0;
4888
4889  case Intrinsic::init_trampoline: {
4890    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4891
4892    SDValue Ops[6];
4893    Ops[0] = getRoot();
4894    Ops[1] = getValue(I.getArgOperand(0));
4895    Ops[2] = getValue(I.getArgOperand(1));
4896    Ops[3] = getValue(I.getArgOperand(2));
4897    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4898    Ops[5] = DAG.getSrcValue(F);
4899
4900    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4901                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4902                      Ops, 6);
4903
4904    setValue(&I, Res);
4905    DAG.setRoot(Res.getValue(1));
4906    return 0;
4907  }
4908  case Intrinsic::gcroot:
4909    if (GFI) {
4910      const Value *Alloca = I.getArgOperand(0);
4911      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4912
4913      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4914      GFI->addStackRoot(FI->getIndex(), TypeMap);
4915    }
4916    return 0;
4917  case Intrinsic::gcread:
4918  case Intrinsic::gcwrite:
4919    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4920    return 0;
4921  case Intrinsic::flt_rounds:
4922    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4923    return 0;
4924
4925  case Intrinsic::expect: {
4926    // Just replace __builtin_expect(exp, c) with EXP.
4927    setValue(&I, getValue(I.getArgOperand(0)));
4928    return 0;
4929  }
4930
4931  case Intrinsic::trap: {
4932    StringRef TrapFuncName = getTrapFunctionName();
4933    if (TrapFuncName.empty()) {
4934      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4935      return 0;
4936    }
4937    TargetLowering::ArgListTy Args;
4938    std::pair<SDValue, SDValue> Result =
4939      TLI.LowerCallTo(getRoot(), I.getType(),
4940                 false, false, false, false, 0, CallingConv::C,
4941                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4942                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4943                 Args, DAG, getCurDebugLoc());
4944    DAG.setRoot(Result.second);
4945    return 0;
4946  }
4947  case Intrinsic::uadd_with_overflow:
4948    return implVisitAluOverflow(I, ISD::UADDO);
4949  case Intrinsic::sadd_with_overflow:
4950    return implVisitAluOverflow(I, ISD::SADDO);
4951  case Intrinsic::usub_with_overflow:
4952    return implVisitAluOverflow(I, ISD::USUBO);
4953  case Intrinsic::ssub_with_overflow:
4954    return implVisitAluOverflow(I, ISD::SSUBO);
4955  case Intrinsic::umul_with_overflow:
4956    return implVisitAluOverflow(I, ISD::UMULO);
4957  case Intrinsic::smul_with_overflow:
4958    return implVisitAluOverflow(I, ISD::SMULO);
4959
4960  case Intrinsic::prefetch: {
4961    SDValue Ops[5];
4962    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4963    Ops[0] = getRoot();
4964    Ops[1] = getValue(I.getArgOperand(0));
4965    Ops[2] = getValue(I.getArgOperand(1));
4966    Ops[3] = getValue(I.getArgOperand(2));
4967    Ops[4] = getValue(I.getArgOperand(3));
4968    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4969                                        DAG.getVTList(MVT::Other),
4970                                        &Ops[0], 5,
4971                                        EVT::getIntegerVT(*Context, 8),
4972                                        MachinePointerInfo(I.getArgOperand(0)),
4973                                        0, /* align */
4974                                        false, /* volatile */
4975                                        rw==0, /* read */
4976                                        rw==1)); /* write */
4977    return 0;
4978  }
4979  case Intrinsic::memory_barrier: {
4980    SDValue Ops[6];
4981    Ops[0] = getRoot();
4982    for (int x = 1; x < 6; ++x)
4983      Ops[x] = getValue(I.getArgOperand(x - 1));
4984
4985    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4986    return 0;
4987  }
4988  case Intrinsic::atomic_cmp_swap: {
4989    SDValue Root = getRoot();
4990    SDValue L =
4991      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4992                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4993                    Root,
4994                    getValue(I.getArgOperand(0)),
4995                    getValue(I.getArgOperand(1)),
4996                    getValue(I.getArgOperand(2)),
4997                    MachinePointerInfo(I.getArgOperand(0)), 0 /* Alignment */,
4998                    Monotonic, CrossThread);
4999    setValue(&I, L);
5000    DAG.setRoot(L.getValue(1));
5001    return 0;
5002  }
5003  case Intrinsic::atomic_load_add:
5004    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
5005  case Intrinsic::atomic_load_sub:
5006    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
5007  case Intrinsic::atomic_load_or:
5008    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
5009  case Intrinsic::atomic_load_xor:
5010    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
5011  case Intrinsic::atomic_load_and:
5012    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
5013  case Intrinsic::atomic_load_nand:
5014    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
5015  case Intrinsic::atomic_load_max:
5016    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
5017  case Intrinsic::atomic_load_min:
5018    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
5019  case Intrinsic::atomic_load_umin:
5020    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
5021  case Intrinsic::atomic_load_umax:
5022    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
5023  case Intrinsic::atomic_swap:
5024    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
5025
5026  case Intrinsic::invariant_start:
5027  case Intrinsic::lifetime_start:
5028    // Discard region information.
5029    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5030    return 0;
5031  case Intrinsic::invariant_end:
5032  case Intrinsic::lifetime_end:
5033    // Discard region information.
5034    return 0;
5035  }
5036}
5037
5038void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5039                                      bool isTailCall,
5040                                      MachineBasicBlock *LandingPad) {
5041  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5042  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5043  Type *RetTy = FTy->getReturnType();
5044  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5045  MCSymbol *BeginLabel = 0;
5046
5047  TargetLowering::ArgListTy Args;
5048  TargetLowering::ArgListEntry Entry;
5049  Args.reserve(CS.arg_size());
5050
5051  // Check whether the function can return without sret-demotion.
5052  SmallVector<ISD::OutputArg, 4> Outs;
5053  SmallVector<uint64_t, 4> Offsets;
5054  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5055                Outs, TLI, &Offsets);
5056
5057  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5058					   DAG.getMachineFunction(),
5059					   FTy->isVarArg(), Outs,
5060					   FTy->getContext());
5061
5062  SDValue DemoteStackSlot;
5063  int DemoteStackIdx = -100;
5064
5065  if (!CanLowerReturn) {
5066    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5067                      FTy->getReturnType());
5068    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5069                      FTy->getReturnType());
5070    MachineFunction &MF = DAG.getMachineFunction();
5071    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5072    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5073
5074    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5075    Entry.Node = DemoteStackSlot;
5076    Entry.Ty = StackSlotPtrType;
5077    Entry.isSExt = false;
5078    Entry.isZExt = false;
5079    Entry.isInReg = false;
5080    Entry.isSRet = true;
5081    Entry.isNest = false;
5082    Entry.isByVal = false;
5083    Entry.Alignment = Align;
5084    Args.push_back(Entry);
5085    RetTy = Type::getVoidTy(FTy->getContext());
5086  }
5087
5088  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5089       i != e; ++i) {
5090    const Value *V = *i;
5091
5092    // Skip empty types
5093    if (V->getType()->isEmptyTy())
5094      continue;
5095
5096    SDValue ArgNode = getValue(V);
5097    Entry.Node = ArgNode; Entry.Ty = V->getType();
5098
5099    unsigned attrInd = i - CS.arg_begin() + 1;
5100    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5101    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5102    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5103    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5104    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5105    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5106    Entry.Alignment = CS.getParamAlignment(attrInd);
5107    Args.push_back(Entry);
5108  }
5109
5110  if (LandingPad) {
5111    // Insert a label before the invoke call to mark the try range.  This can be
5112    // used to detect deletion of the invoke via the MachineModuleInfo.
5113    BeginLabel = MMI.getContext().CreateTempSymbol();
5114
5115    // For SjLj, keep track of which landing pads go with which invokes
5116    // so as to maintain the ordering of pads in the LSDA.
5117    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5118    if (CallSiteIndex) {
5119      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5120      // Now that the call site is handled, stop tracking it.
5121      MMI.setCurrentCallSite(0);
5122    }
5123
5124    // Both PendingLoads and PendingExports must be flushed here;
5125    // this call might not return.
5126    (void)getRoot();
5127    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5128  }
5129
5130  // Check if target-independent constraints permit a tail call here.
5131  // Target-dependent constraints are checked within TLI.LowerCallTo.
5132  if (isTailCall &&
5133      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5134    isTailCall = false;
5135
5136  // If there's a possibility that fast-isel has already selected some amount
5137  // of the current basic block, don't emit a tail call.
5138  if (isTailCall && EnableFastISel)
5139    isTailCall = false;
5140
5141  std::pair<SDValue,SDValue> Result =
5142    TLI.LowerCallTo(getRoot(), RetTy,
5143                    CS.paramHasAttr(0, Attribute::SExt),
5144                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5145                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5146                    CS.getCallingConv(),
5147                    isTailCall,
5148                    !CS.getInstruction()->use_empty(),
5149                    Callee, Args, DAG, getCurDebugLoc());
5150  assert((isTailCall || Result.second.getNode()) &&
5151         "Non-null chain expected with non-tail call!");
5152  assert((Result.second.getNode() || !Result.first.getNode()) &&
5153         "Null value expected with tail call!");
5154  if (Result.first.getNode()) {
5155    setValue(CS.getInstruction(), Result.first);
5156  } else if (!CanLowerReturn && Result.second.getNode()) {
5157    // The instruction result is the result of loading from the
5158    // hidden sret parameter.
5159    SmallVector<EVT, 1> PVTs;
5160    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5161
5162    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5163    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5164    EVT PtrVT = PVTs[0];
5165    unsigned NumValues = Outs.size();
5166    SmallVector<SDValue, 4> Values(NumValues);
5167    SmallVector<SDValue, 4> Chains(NumValues);
5168
5169    for (unsigned i = 0; i < NumValues; ++i) {
5170      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5171                                DemoteStackSlot,
5172                                DAG.getConstant(Offsets[i], PtrVT));
5173      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5174                              Add,
5175                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5176                              false, false, 1);
5177      Values[i] = L;
5178      Chains[i] = L.getValue(1);
5179    }
5180
5181    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5182                                MVT::Other, &Chains[0], NumValues);
5183    PendingLoads.push_back(Chain);
5184
5185    // Collect the legal value parts into potentially illegal values
5186    // that correspond to the original function's return values.
5187    SmallVector<EVT, 4> RetTys;
5188    RetTy = FTy->getReturnType();
5189    ComputeValueVTs(TLI, RetTy, RetTys);
5190    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5191    SmallVector<SDValue, 4> ReturnValues;
5192    unsigned CurReg = 0;
5193    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5194      EVT VT = RetTys[I];
5195      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5196      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5197
5198      SDValue ReturnValue =
5199        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5200                         RegisterVT, VT, AssertOp);
5201      ReturnValues.push_back(ReturnValue);
5202      CurReg += NumRegs;
5203    }
5204
5205    setValue(CS.getInstruction(),
5206             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5207                         DAG.getVTList(&RetTys[0], RetTys.size()),
5208                         &ReturnValues[0], ReturnValues.size()));
5209  }
5210
5211  // Assign order to nodes here. If the call does not produce a result, it won't
5212  // be mapped to a SDNode and visit() will not assign it an order number.
5213  if (!Result.second.getNode()) {
5214    // As a special case, a null chain means that a tail call has been emitted and
5215    // the DAG root is already updated.
5216    HasTailCall = true;
5217    ++SDNodeOrder;
5218    AssignOrderingToNode(DAG.getRoot().getNode());
5219  } else {
5220    DAG.setRoot(Result.second);
5221    ++SDNodeOrder;
5222    AssignOrderingToNode(Result.second.getNode());
5223  }
5224
5225  if (LandingPad) {
5226    // Insert a label at the end of the invoke call to mark the try range.  This
5227    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5228    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5229    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5230
5231    // Inform MachineModuleInfo of range.
5232    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5233  }
5234}
5235
5236/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5237/// value is equal or not-equal to zero.
5238static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5239  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5240       UI != E; ++UI) {
5241    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5242      if (IC->isEquality())
5243        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5244          if (C->isNullValue())
5245            continue;
5246    // Unknown instruction.
5247    return false;
5248  }
5249  return true;
5250}
5251
5252static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5253                             Type *LoadTy,
5254                             SelectionDAGBuilder &Builder) {
5255
5256  // Check to see if this load can be trivially constant folded, e.g. if the
5257  // input is from a string literal.
5258  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5259    // Cast pointer to the type we really want to load.
5260    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5261                                         PointerType::getUnqual(LoadTy));
5262
5263    if (const Constant *LoadCst =
5264          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5265                                       Builder.TD))
5266      return Builder.getValue(LoadCst);
5267  }
5268
5269  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5270  // still constant memory, the input chain can be the entry node.
5271  SDValue Root;
5272  bool ConstantMemory = false;
5273
5274  // Do not serialize (non-volatile) loads of constant memory with anything.
5275  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5276    Root = Builder.DAG.getEntryNode();
5277    ConstantMemory = true;
5278  } else {
5279    // Do not serialize non-volatile loads against each other.
5280    Root = Builder.DAG.getRoot();
5281  }
5282
5283  SDValue Ptr = Builder.getValue(PtrVal);
5284  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5285                                        Ptr, MachinePointerInfo(PtrVal),
5286                                        false /*volatile*/,
5287                                        false /*nontemporal*/, 1 /* align=1 */);
5288
5289  if (!ConstantMemory)
5290    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5291  return LoadVal;
5292}
5293
5294
5295/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5296/// If so, return true and lower it, otherwise return false and it will be
5297/// lowered like a normal call.
5298bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5299  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5300  if (I.getNumArgOperands() != 3)
5301    return false;
5302
5303  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5304  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5305      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5306      !I.getType()->isIntegerTy())
5307    return false;
5308
5309  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5310
5311  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5312  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5313  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5314    bool ActuallyDoIt = true;
5315    MVT LoadVT;
5316    Type *LoadTy;
5317    switch (Size->getZExtValue()) {
5318    default:
5319      LoadVT = MVT::Other;
5320      LoadTy = 0;
5321      ActuallyDoIt = false;
5322      break;
5323    case 2:
5324      LoadVT = MVT::i16;
5325      LoadTy = Type::getInt16Ty(Size->getContext());
5326      break;
5327    case 4:
5328      LoadVT = MVT::i32;
5329      LoadTy = Type::getInt32Ty(Size->getContext());
5330      break;
5331    case 8:
5332      LoadVT = MVT::i64;
5333      LoadTy = Type::getInt64Ty(Size->getContext());
5334      break;
5335        /*
5336    case 16:
5337      LoadVT = MVT::v4i32;
5338      LoadTy = Type::getInt32Ty(Size->getContext());
5339      LoadTy = VectorType::get(LoadTy, 4);
5340      break;
5341         */
5342    }
5343
5344    // This turns into unaligned loads.  We only do this if the target natively
5345    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5346    // we'll only produce a small number of byte loads.
5347
5348    // Require that we can find a legal MVT, and only do this if the target
5349    // supports unaligned loads of that type.  Expanding into byte loads would
5350    // bloat the code.
5351    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5352      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5353      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5354      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5355        ActuallyDoIt = false;
5356    }
5357
5358    if (ActuallyDoIt) {
5359      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5360      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5361
5362      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5363                                 ISD::SETNE);
5364      EVT CallVT = TLI.getValueType(I.getType(), true);
5365      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5366      return true;
5367    }
5368  }
5369
5370
5371  return false;
5372}
5373
5374
5375void SelectionDAGBuilder::visitCall(const CallInst &I) {
5376  // Handle inline assembly differently.
5377  if (isa<InlineAsm>(I.getCalledValue())) {
5378    visitInlineAsm(&I);
5379    return;
5380  }
5381
5382  // See if any floating point values are being passed to this function. This is
5383  // used to emit an undefined reference to fltused on Windows.
5384  FunctionType *FT =
5385    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5386  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5387  if (FT->isVarArg() &&
5388      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5389    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5390      Type* T = I.getArgOperand(i)->getType();
5391      for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5392           i != e; ++i) {
5393        if (!i->isFloatingPointTy()) continue;
5394        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5395        break;
5396      }
5397    }
5398  }
5399
5400  const char *RenameFn = 0;
5401  if (Function *F = I.getCalledFunction()) {
5402    if (F->isDeclaration()) {
5403      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5404        if (unsigned IID = II->getIntrinsicID(F)) {
5405          RenameFn = visitIntrinsicCall(I, IID);
5406          if (!RenameFn)
5407            return;
5408        }
5409      }
5410      if (unsigned IID = F->getIntrinsicID()) {
5411        RenameFn = visitIntrinsicCall(I, IID);
5412        if (!RenameFn)
5413          return;
5414      }
5415    }
5416
5417    // Check for well-known libc/libm calls.  If the function is internal, it
5418    // can't be a library call.
5419    if (!F->hasLocalLinkage() && F->hasName()) {
5420      StringRef Name = F->getName();
5421      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5422        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5423            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5424            I.getType() == I.getArgOperand(0)->getType() &&
5425            I.getType() == I.getArgOperand(1)->getType()) {
5426          SDValue LHS = getValue(I.getArgOperand(0));
5427          SDValue RHS = getValue(I.getArgOperand(1));
5428          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5429                                   LHS.getValueType(), LHS, RHS));
5430          return;
5431        }
5432      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5433        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5434            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5435            I.getType() == I.getArgOperand(0)->getType()) {
5436          SDValue Tmp = getValue(I.getArgOperand(0));
5437          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5438                                   Tmp.getValueType(), Tmp));
5439          return;
5440        }
5441      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5442        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5443            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5444            I.getType() == I.getArgOperand(0)->getType() &&
5445            I.onlyReadsMemory()) {
5446          SDValue Tmp = getValue(I.getArgOperand(0));
5447          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5448                                   Tmp.getValueType(), Tmp));
5449          return;
5450        }
5451      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5452        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5453            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5454            I.getType() == I.getArgOperand(0)->getType() &&
5455            I.onlyReadsMemory()) {
5456          SDValue Tmp = getValue(I.getArgOperand(0));
5457          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5458                                   Tmp.getValueType(), Tmp));
5459          return;
5460        }
5461      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5462        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5463            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5464            I.getType() == I.getArgOperand(0)->getType() &&
5465            I.onlyReadsMemory()) {
5466          SDValue Tmp = getValue(I.getArgOperand(0));
5467          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5468                                   Tmp.getValueType(), Tmp));
5469          return;
5470        }
5471      } else if (Name == "memcmp") {
5472        if (visitMemCmpCall(I))
5473          return;
5474      }
5475    }
5476  }
5477
5478  SDValue Callee;
5479  if (!RenameFn)
5480    Callee = getValue(I.getCalledValue());
5481  else
5482    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5483
5484  // Check if we can potentially perform a tail call. More detailed checking is
5485  // be done within LowerCallTo, after more information about the call is known.
5486  LowerCallTo(&I, Callee, I.isTailCall());
5487}
5488
5489namespace {
5490
5491/// AsmOperandInfo - This contains information for each constraint that we are
5492/// lowering.
5493class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5494public:
5495  /// CallOperand - If this is the result output operand or a clobber
5496  /// this is null, otherwise it is the incoming operand to the CallInst.
5497  /// This gets modified as the asm is processed.
5498  SDValue CallOperand;
5499
5500  /// AssignedRegs - If this is a register or register class operand, this
5501  /// contains the set of register corresponding to the operand.
5502  RegsForValue AssignedRegs;
5503
5504  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5505    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5506  }
5507
5508  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5509  /// busy in OutputRegs/InputRegs.
5510  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5511                         std::set<unsigned> &OutputRegs,
5512                         std::set<unsigned> &InputRegs,
5513                         const TargetRegisterInfo &TRI) const {
5514    if (isOutReg) {
5515      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5516        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5517    }
5518    if (isInReg) {
5519      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5520        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5521    }
5522  }
5523
5524  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5525  /// corresponds to.  If there is no Value* for this operand, it returns
5526  /// MVT::Other.
5527  EVT getCallOperandValEVT(LLVMContext &Context,
5528                           const TargetLowering &TLI,
5529                           const TargetData *TD) const {
5530    if (CallOperandVal == 0) return MVT::Other;
5531
5532    if (isa<BasicBlock>(CallOperandVal))
5533      return TLI.getPointerTy();
5534
5535    llvm::Type *OpTy = CallOperandVal->getType();
5536
5537    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5538    // If this is an indirect operand, the operand is a pointer to the
5539    // accessed type.
5540    if (isIndirect) {
5541      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5542      if (!PtrTy)
5543        report_fatal_error("Indirect operand for inline asm not a pointer!");
5544      OpTy = PtrTy->getElementType();
5545    }
5546
5547    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5548    if (StructType *STy = dyn_cast<StructType>(OpTy))
5549      if (STy->getNumElements() == 1)
5550        OpTy = STy->getElementType(0);
5551
5552    // If OpTy is not a single value, it may be a struct/union that we
5553    // can tile with integers.
5554    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5555      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5556      switch (BitSize) {
5557      default: break;
5558      case 1:
5559      case 8:
5560      case 16:
5561      case 32:
5562      case 64:
5563      case 128:
5564        OpTy = IntegerType::get(Context, BitSize);
5565        break;
5566      }
5567    }
5568
5569    return TLI.getValueType(OpTy, true);
5570  }
5571
5572private:
5573  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5574  /// specified set.
5575  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5576                                const TargetRegisterInfo &TRI) {
5577    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5578    Regs.insert(Reg);
5579    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5580      for (; *Aliases; ++Aliases)
5581        Regs.insert(*Aliases);
5582  }
5583};
5584
5585typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5586
5587} // end anonymous namespace
5588
5589/// GetRegistersForValue - Assign registers (virtual or physical) for the
5590/// specified operand.  We prefer to assign virtual registers, to allow the
5591/// register allocator to handle the assignment process.  However, if the asm
5592/// uses features that we can't model on machineinstrs, we have SDISel do the
5593/// allocation.  This produces generally horrible, but correct, code.
5594///
5595///   OpInfo describes the operand.
5596///   Input and OutputRegs are the set of already allocated physical registers.
5597///
5598static void GetRegistersForValue(SelectionDAG &DAG,
5599                                 const TargetLowering &TLI,
5600                                 DebugLoc DL,
5601                                 SDISelAsmOperandInfo &OpInfo,
5602                                 std::set<unsigned> &OutputRegs,
5603                                 std::set<unsigned> &InputRegs) {
5604  LLVMContext &Context = *DAG.getContext();
5605
5606  // Compute whether this value requires an input register, an output register,
5607  // or both.
5608  bool isOutReg = false;
5609  bool isInReg = false;
5610  switch (OpInfo.Type) {
5611  case InlineAsm::isOutput:
5612    isOutReg = true;
5613
5614    // If there is an input constraint that matches this, we need to reserve
5615    // the input register so no other inputs allocate to it.
5616    isInReg = OpInfo.hasMatchingInput();
5617    break;
5618  case InlineAsm::isInput:
5619    isInReg = true;
5620    isOutReg = false;
5621    break;
5622  case InlineAsm::isClobber:
5623    isOutReg = true;
5624    isInReg = true;
5625    break;
5626  }
5627
5628
5629  MachineFunction &MF = DAG.getMachineFunction();
5630  SmallVector<unsigned, 4> Regs;
5631
5632  // If this is a constraint for a single physreg, or a constraint for a
5633  // register class, find it.
5634  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5635    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5636                                     OpInfo.ConstraintVT);
5637
5638  unsigned NumRegs = 1;
5639  if (OpInfo.ConstraintVT != MVT::Other) {
5640    // If this is a FP input in an integer register (or visa versa) insert a bit
5641    // cast of the input value.  More generally, handle any case where the input
5642    // value disagrees with the register class we plan to stick this in.
5643    if (OpInfo.Type == InlineAsm::isInput &&
5644        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5645      // Try to convert to the first EVT that the reg class contains.  If the
5646      // types are identical size, use a bitcast to convert (e.g. two differing
5647      // vector types).
5648      EVT RegVT = *PhysReg.second->vt_begin();
5649      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5650        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5651                                         RegVT, OpInfo.CallOperand);
5652        OpInfo.ConstraintVT = RegVT;
5653      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5654        // If the input is a FP value and we want it in FP registers, do a
5655        // bitcast to the corresponding integer type.  This turns an f64 value
5656        // into i64, which can be passed with two i32 values on a 32-bit
5657        // machine.
5658        RegVT = EVT::getIntegerVT(Context,
5659                                  OpInfo.ConstraintVT.getSizeInBits());
5660        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5661                                         RegVT, OpInfo.CallOperand);
5662        OpInfo.ConstraintVT = RegVT;
5663      }
5664    }
5665
5666    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5667  }
5668
5669  EVT RegVT;
5670  EVT ValueVT = OpInfo.ConstraintVT;
5671
5672  // If this is a constraint for a specific physical register, like {r17},
5673  // assign it now.
5674  if (unsigned AssignedReg = PhysReg.first) {
5675    const TargetRegisterClass *RC = PhysReg.second;
5676    if (OpInfo.ConstraintVT == MVT::Other)
5677      ValueVT = *RC->vt_begin();
5678
5679    // Get the actual register value type.  This is important, because the user
5680    // may have asked for (e.g.) the AX register in i32 type.  We need to
5681    // remember that AX is actually i16 to get the right extension.
5682    RegVT = *RC->vt_begin();
5683
5684    // This is a explicit reference to a physical register.
5685    Regs.push_back(AssignedReg);
5686
5687    // If this is an expanded reference, add the rest of the regs to Regs.
5688    if (NumRegs != 1) {
5689      TargetRegisterClass::iterator I = RC->begin();
5690      for (; *I != AssignedReg; ++I)
5691        assert(I != RC->end() && "Didn't find reg!");
5692
5693      // Already added the first reg.
5694      --NumRegs; ++I;
5695      for (; NumRegs; --NumRegs, ++I) {
5696        assert(I != RC->end() && "Ran out of registers to allocate!");
5697        Regs.push_back(*I);
5698      }
5699    }
5700
5701    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5702    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5703    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5704    return;
5705  }
5706
5707  // Otherwise, if this was a reference to an LLVM register class, create vregs
5708  // for this reference.
5709  if (const TargetRegisterClass *RC = PhysReg.second) {
5710    RegVT = *RC->vt_begin();
5711    if (OpInfo.ConstraintVT == MVT::Other)
5712      ValueVT = RegVT;
5713
5714    // Create the appropriate number of virtual registers.
5715    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5716    for (; NumRegs; --NumRegs)
5717      Regs.push_back(RegInfo.createVirtualRegister(RC));
5718
5719    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5720    return;
5721  }
5722
5723  // Otherwise, we couldn't allocate enough registers for this.
5724}
5725
5726/// visitInlineAsm - Handle a call to an InlineAsm object.
5727///
5728void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5729  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5730
5731  /// ConstraintOperands - Information about all of the constraints.
5732  SDISelAsmOperandInfoVector ConstraintOperands;
5733
5734  std::set<unsigned> OutputRegs, InputRegs;
5735
5736  TargetLowering::AsmOperandInfoVector
5737    TargetConstraints = TLI.ParseConstraints(CS);
5738
5739  bool hasMemory = false;
5740
5741  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5742  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5743  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5744    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5745    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5746
5747    EVT OpVT = MVT::Other;
5748
5749    // Compute the value type for each operand.
5750    switch (OpInfo.Type) {
5751    case InlineAsm::isOutput:
5752      // Indirect outputs just consume an argument.
5753      if (OpInfo.isIndirect) {
5754        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5755        break;
5756      }
5757
5758      // The return value of the call is this value.  As such, there is no
5759      // corresponding argument.
5760      assert(!CS.getType()->isVoidTy() &&
5761             "Bad inline asm!");
5762      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5763        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5764      } else {
5765        assert(ResNo == 0 && "Asm only has one result!");
5766        OpVT = TLI.getValueType(CS.getType());
5767      }
5768      ++ResNo;
5769      break;
5770    case InlineAsm::isInput:
5771      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5772      break;
5773    case InlineAsm::isClobber:
5774      // Nothing to do.
5775      break;
5776    }
5777
5778    // If this is an input or an indirect output, process the call argument.
5779    // BasicBlocks are labels, currently appearing only in asm's.
5780    if (OpInfo.CallOperandVal) {
5781      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5782        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5783      } else {
5784        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5785      }
5786
5787      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5788    }
5789
5790    OpInfo.ConstraintVT = OpVT;
5791
5792    // Indirect operand accesses access memory.
5793    if (OpInfo.isIndirect)
5794      hasMemory = true;
5795    else {
5796      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5797        TargetLowering::ConstraintType
5798          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5799        if (CType == TargetLowering::C_Memory) {
5800          hasMemory = true;
5801          break;
5802        }
5803      }
5804    }
5805  }
5806
5807  SDValue Chain, Flag;
5808
5809  // We won't need to flush pending loads if this asm doesn't touch
5810  // memory and is nonvolatile.
5811  if (hasMemory || IA->hasSideEffects())
5812    Chain = getRoot();
5813  else
5814    Chain = DAG.getRoot();
5815
5816  // Second pass over the constraints: compute which constraint option to use
5817  // and assign registers to constraints that want a specific physreg.
5818  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5819    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5820
5821    // If this is an output operand with a matching input operand, look up the
5822    // matching input. If their types mismatch, e.g. one is an integer, the
5823    // other is floating point, or their sizes are different, flag it as an
5824    // error.
5825    if (OpInfo.hasMatchingInput()) {
5826      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5827
5828      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5829	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5830	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
5831	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5832	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
5833        if ((OpInfo.ConstraintVT.isInteger() !=
5834             Input.ConstraintVT.isInteger()) ||
5835            (MatchRC.second != InputRC.second)) {
5836          report_fatal_error("Unsupported asm: input constraint"
5837                             " with a matching output constraint of"
5838                             " incompatible type!");
5839        }
5840        Input.ConstraintVT = OpInfo.ConstraintVT;
5841      }
5842    }
5843
5844    // Compute the constraint code and ConstraintType to use.
5845    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5846
5847    // If this is a memory input, and if the operand is not indirect, do what we
5848    // need to to provide an address for the memory input.
5849    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5850        !OpInfo.isIndirect) {
5851      assert((OpInfo.isMultipleAlternative ||
5852              (OpInfo.Type == InlineAsm::isInput)) &&
5853             "Can only indirectify direct input operands!");
5854
5855      // Memory operands really want the address of the value.  If we don't have
5856      // an indirect input, put it in the constpool if we can, otherwise spill
5857      // it to a stack slot.
5858      // TODO: This isn't quite right. We need to handle these according to
5859      // the addressing mode that the constraint wants. Also, this may take
5860      // an additional register for the computation and we don't want that
5861      // either.
5862
5863      // If the operand is a float, integer, or vector constant, spill to a
5864      // constant pool entry to get its address.
5865      const Value *OpVal = OpInfo.CallOperandVal;
5866      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5867          isa<ConstantVector>(OpVal)) {
5868        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5869                                                 TLI.getPointerTy());
5870      } else {
5871        // Otherwise, create a stack slot and emit a store to it before the
5872        // asm.
5873        Type *Ty = OpVal->getType();
5874        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5875        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5876        MachineFunction &MF = DAG.getMachineFunction();
5877        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5878        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5879        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5880                             OpInfo.CallOperand, StackSlot,
5881                             MachinePointerInfo::getFixedStack(SSFI),
5882                             false, false, 0);
5883        OpInfo.CallOperand = StackSlot;
5884      }
5885
5886      // There is no longer a Value* corresponding to this operand.
5887      OpInfo.CallOperandVal = 0;
5888
5889      // It is now an indirect operand.
5890      OpInfo.isIndirect = true;
5891    }
5892
5893    // If this constraint is for a specific register, allocate it before
5894    // anything else.
5895    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5896      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5897                           InputRegs);
5898  }
5899
5900  // Second pass - Loop over all of the operands, assigning virtual or physregs
5901  // to register class operands.
5902  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5903    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5904
5905    // C_Register operands have already been allocated, Other/Memory don't need
5906    // to be.
5907    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5908      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5909                           InputRegs);
5910  }
5911
5912  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5913  std::vector<SDValue> AsmNodeOperands;
5914  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5915  AsmNodeOperands.push_back(
5916          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5917                                      TLI.getPointerTy()));
5918
5919  // If we have a !srcloc metadata node associated with it, we want to attach
5920  // this to the ultimately generated inline asm machineinstr.  To do this, we
5921  // pass in the third operand as this (potentially null) inline asm MDNode.
5922  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5923  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5924
5925  // Remember the HasSideEffect and AlignStack bits as operand 3.
5926  unsigned ExtraInfo = 0;
5927  if (IA->hasSideEffects())
5928    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5929  if (IA->isAlignStack())
5930    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5931  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5932                                                  TLI.getPointerTy()));
5933
5934  // Loop over all of the inputs, copying the operand values into the
5935  // appropriate registers and processing the output regs.
5936  RegsForValue RetValRegs;
5937
5938  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5939  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5940
5941  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5942    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5943
5944    switch (OpInfo.Type) {
5945    case InlineAsm::isOutput: {
5946      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5947          OpInfo.ConstraintType != TargetLowering::C_Register) {
5948        // Memory output, or 'other' output (e.g. 'X' constraint).
5949        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5950
5951        // Add information to the INLINEASM node to know about this output.
5952        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5953        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5954                                                        TLI.getPointerTy()));
5955        AsmNodeOperands.push_back(OpInfo.CallOperand);
5956        break;
5957      }
5958
5959      // Otherwise, this is a register or register class output.
5960
5961      // Copy the output from the appropriate register.  Find a register that
5962      // we can use.
5963      if (OpInfo.AssignedRegs.Regs.empty())
5964        report_fatal_error("Couldn't allocate output reg for constraint '" +
5965                           Twine(OpInfo.ConstraintCode) + "'!");
5966
5967      // If this is an indirect operand, store through the pointer after the
5968      // asm.
5969      if (OpInfo.isIndirect) {
5970        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5971                                                      OpInfo.CallOperandVal));
5972      } else {
5973        // This is the result value of the call.
5974        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5975        // Concatenate this output onto the outputs list.
5976        RetValRegs.append(OpInfo.AssignedRegs);
5977      }
5978
5979      // Add information to the INLINEASM node to know that this register is
5980      // set.
5981      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5982                                           InlineAsm::Kind_RegDefEarlyClobber :
5983                                               InlineAsm::Kind_RegDef,
5984                                               false,
5985                                               0,
5986                                               DAG,
5987                                               AsmNodeOperands);
5988      break;
5989    }
5990    case InlineAsm::isInput: {
5991      SDValue InOperandVal = OpInfo.CallOperand;
5992
5993      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5994        // If this is required to match an output register we have already set,
5995        // just use its register.
5996        unsigned OperandNo = OpInfo.getMatchedOperand();
5997
5998        // Scan until we find the definition we already emitted of this operand.
5999        // When we find it, create a RegsForValue operand.
6000        unsigned CurOp = InlineAsm::Op_FirstOperand;
6001        for (; OperandNo; --OperandNo) {
6002          // Advance to the next operand.
6003          unsigned OpFlag =
6004            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6005          assert((InlineAsm::isRegDefKind(OpFlag) ||
6006                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6007                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6008          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6009        }
6010
6011        unsigned OpFlag =
6012          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6013        if (InlineAsm::isRegDefKind(OpFlag) ||
6014            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6015          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6016          if (OpInfo.isIndirect) {
6017            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6018            LLVMContext &Ctx = *DAG.getContext();
6019            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6020                          " don't know how to handle tied "
6021                          "indirect register inputs");
6022          }
6023
6024          RegsForValue MatchedRegs;
6025          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6026          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6027          MatchedRegs.RegVTs.push_back(RegVT);
6028          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6029          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6030               i != e; ++i)
6031            MatchedRegs.Regs.push_back
6032              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6033
6034          // Use the produced MatchedRegs object to
6035          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6036                                    Chain, &Flag);
6037          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6038                                           true, OpInfo.getMatchedOperand(),
6039                                           DAG, AsmNodeOperands);
6040          break;
6041        }
6042
6043        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6044        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6045               "Unexpected number of operands");
6046        // Add information to the INLINEASM node to know about this input.
6047        // See InlineAsm.h isUseOperandTiedToDef.
6048        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6049                                                    OpInfo.getMatchedOperand());
6050        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6051                                                        TLI.getPointerTy()));
6052        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6053        break;
6054      }
6055
6056      // Treat indirect 'X' constraint as memory.
6057      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6058          OpInfo.isIndirect)
6059        OpInfo.ConstraintType = TargetLowering::C_Memory;
6060
6061      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6062        std::vector<SDValue> Ops;
6063        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6064                                         Ops, DAG);
6065        if (Ops.empty())
6066          report_fatal_error("Invalid operand for inline asm constraint '" +
6067                             Twine(OpInfo.ConstraintCode) + "'!");
6068
6069        // Add information to the INLINEASM node to know about this input.
6070        unsigned ResOpType =
6071          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6072        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6073                                                        TLI.getPointerTy()));
6074        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6075        break;
6076      }
6077
6078      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6079        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6080        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6081               "Memory operands expect pointer values");
6082
6083        // Add information to the INLINEASM node to know about this input.
6084        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6085        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6086                                                        TLI.getPointerTy()));
6087        AsmNodeOperands.push_back(InOperandVal);
6088        break;
6089      }
6090
6091      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6092              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6093             "Unknown constraint type!");
6094      assert(!OpInfo.isIndirect &&
6095             "Don't know how to handle indirect register inputs yet!");
6096
6097      // Copy the input into the appropriate registers.
6098      if (OpInfo.AssignedRegs.Regs.empty())
6099        report_fatal_error("Couldn't allocate input reg for constraint '" +
6100                           Twine(OpInfo.ConstraintCode) + "'!");
6101
6102      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6103                                        Chain, &Flag);
6104
6105      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6106                                               DAG, AsmNodeOperands);
6107      break;
6108    }
6109    case InlineAsm::isClobber: {
6110      // Add the clobbered value to the operand list, so that the register
6111      // allocator is aware that the physreg got clobbered.
6112      if (!OpInfo.AssignedRegs.Regs.empty())
6113        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6114                                                 false, 0, DAG,
6115                                                 AsmNodeOperands);
6116      break;
6117    }
6118    }
6119  }
6120
6121  // Finish up input operands.  Set the input chain and add the flag last.
6122  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6123  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6124
6125  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6126                      DAG.getVTList(MVT::Other, MVT::Glue),
6127                      &AsmNodeOperands[0], AsmNodeOperands.size());
6128  Flag = Chain.getValue(1);
6129
6130  // If this asm returns a register value, copy the result from that register
6131  // and set it as the value of the call.
6132  if (!RetValRegs.Regs.empty()) {
6133    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6134                                             Chain, &Flag);
6135
6136    // FIXME: Why don't we do this for inline asms with MRVs?
6137    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6138      EVT ResultType = TLI.getValueType(CS.getType());
6139
6140      // If any of the results of the inline asm is a vector, it may have the
6141      // wrong width/num elts.  This can happen for register classes that can
6142      // contain multiple different value types.  The preg or vreg allocated may
6143      // not have the same VT as was expected.  Convert it to the right type
6144      // with bit_convert.
6145      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6146        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6147                          ResultType, Val);
6148
6149      } else if (ResultType != Val.getValueType() &&
6150                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6151        // If a result value was tied to an input value, the computed result may
6152        // have a wider width than the expected result.  Extract the relevant
6153        // portion.
6154        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6155      }
6156
6157      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6158    }
6159
6160    setValue(CS.getInstruction(), Val);
6161    // Don't need to use this as a chain in this case.
6162    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6163      return;
6164  }
6165
6166  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6167
6168  // Process indirect outputs, first output all of the flagged copies out of
6169  // physregs.
6170  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6171    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6172    const Value *Ptr = IndirectStoresToEmit[i].second;
6173    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6174                                             Chain, &Flag);
6175    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6176  }
6177
6178  // Emit the non-flagged stores from the physregs.
6179  SmallVector<SDValue, 8> OutChains;
6180  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6181    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6182                               StoresToEmit[i].first,
6183                               getValue(StoresToEmit[i].second),
6184                               MachinePointerInfo(StoresToEmit[i].second),
6185                               false, false, 0);
6186    OutChains.push_back(Val);
6187  }
6188
6189  if (!OutChains.empty())
6190    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6191                        &OutChains[0], OutChains.size());
6192
6193  DAG.setRoot(Chain);
6194}
6195
6196void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6197  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6198                          MVT::Other, getRoot(),
6199                          getValue(I.getArgOperand(0)),
6200                          DAG.getSrcValue(I.getArgOperand(0))));
6201}
6202
6203void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6204  const TargetData &TD = *TLI.getTargetData();
6205  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6206                           getRoot(), getValue(I.getOperand(0)),
6207                           DAG.getSrcValue(I.getOperand(0)),
6208                           TD.getABITypeAlignment(I.getType()));
6209  setValue(&I, V);
6210  DAG.setRoot(V.getValue(1));
6211}
6212
6213void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6214  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6215                          MVT::Other, getRoot(),
6216                          getValue(I.getArgOperand(0)),
6217                          DAG.getSrcValue(I.getArgOperand(0))));
6218}
6219
6220void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6221  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6222                          MVT::Other, getRoot(),
6223                          getValue(I.getArgOperand(0)),
6224                          getValue(I.getArgOperand(1)),
6225                          DAG.getSrcValue(I.getArgOperand(0)),
6226                          DAG.getSrcValue(I.getArgOperand(1))));
6227}
6228
6229/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6230/// implementation, which just calls LowerCall.
6231/// FIXME: When all targets are
6232/// migrated to using LowerCall, this hook should be integrated into SDISel.
6233std::pair<SDValue, SDValue>
6234TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6235                            bool RetSExt, bool RetZExt, bool isVarArg,
6236                            bool isInreg, unsigned NumFixedArgs,
6237                            CallingConv::ID CallConv, bool isTailCall,
6238                            bool isReturnValueUsed,
6239                            SDValue Callee,
6240                            ArgListTy &Args, SelectionDAG &DAG,
6241                            DebugLoc dl) const {
6242  // Handle all of the outgoing arguments.
6243  SmallVector<ISD::OutputArg, 32> Outs;
6244  SmallVector<SDValue, 32> OutVals;
6245  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6246    SmallVector<EVT, 4> ValueVTs;
6247    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6248    for (unsigned Value = 0, NumValues = ValueVTs.size();
6249         Value != NumValues; ++Value) {
6250      EVT VT = ValueVTs[Value];
6251      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6252      SDValue Op = SDValue(Args[i].Node.getNode(),
6253                           Args[i].Node.getResNo() + Value);
6254      ISD::ArgFlagsTy Flags;
6255      unsigned OriginalAlignment =
6256        getTargetData()->getABITypeAlignment(ArgTy);
6257
6258      if (Args[i].isZExt)
6259        Flags.setZExt();
6260      if (Args[i].isSExt)
6261        Flags.setSExt();
6262      if (Args[i].isInReg)
6263        Flags.setInReg();
6264      if (Args[i].isSRet)
6265        Flags.setSRet();
6266      if (Args[i].isByVal) {
6267        Flags.setByVal();
6268        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6269        Type *ElementTy = Ty->getElementType();
6270        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6271        // For ByVal, alignment should come from FE.  BE will guess if this
6272        // info is not there but there are cases it cannot get right.
6273        unsigned FrameAlign;
6274        if (Args[i].Alignment)
6275          FrameAlign = Args[i].Alignment;
6276        else
6277          FrameAlign = getByValTypeAlignment(ElementTy);
6278        Flags.setByValAlign(FrameAlign);
6279      }
6280      if (Args[i].isNest)
6281        Flags.setNest();
6282      Flags.setOrigAlign(OriginalAlignment);
6283
6284      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6285      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6286      SmallVector<SDValue, 4> Parts(NumParts);
6287      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6288
6289      if (Args[i].isSExt)
6290        ExtendKind = ISD::SIGN_EXTEND;
6291      else if (Args[i].isZExt)
6292        ExtendKind = ISD::ZERO_EXTEND;
6293
6294      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6295                     PartVT, ExtendKind);
6296
6297      for (unsigned j = 0; j != NumParts; ++j) {
6298        // if it isn't first piece, alignment must be 1
6299        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6300                               i < NumFixedArgs);
6301        if (NumParts > 1 && j == 0)
6302          MyFlags.Flags.setSplit();
6303        else if (j != 0)
6304          MyFlags.Flags.setOrigAlign(1);
6305
6306        Outs.push_back(MyFlags);
6307        OutVals.push_back(Parts[j]);
6308      }
6309    }
6310  }
6311
6312  // Handle the incoming return values from the call.
6313  SmallVector<ISD::InputArg, 32> Ins;
6314  SmallVector<EVT, 4> RetTys;
6315  ComputeValueVTs(*this, RetTy, RetTys);
6316  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6317    EVT VT = RetTys[I];
6318    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6319    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6320    for (unsigned i = 0; i != NumRegs; ++i) {
6321      ISD::InputArg MyFlags;
6322      MyFlags.VT = RegisterVT.getSimpleVT();
6323      MyFlags.Used = isReturnValueUsed;
6324      if (RetSExt)
6325        MyFlags.Flags.setSExt();
6326      if (RetZExt)
6327        MyFlags.Flags.setZExt();
6328      if (isInreg)
6329        MyFlags.Flags.setInReg();
6330      Ins.push_back(MyFlags);
6331    }
6332  }
6333
6334  SmallVector<SDValue, 4> InVals;
6335  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6336                    Outs, OutVals, Ins, dl, DAG, InVals);
6337
6338  // Verify that the target's LowerCall behaved as expected.
6339  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6340         "LowerCall didn't return a valid chain!");
6341  assert((!isTailCall || InVals.empty()) &&
6342         "LowerCall emitted a return value for a tail call!");
6343  assert((isTailCall || InVals.size() == Ins.size()) &&
6344         "LowerCall didn't emit the correct number of values!");
6345
6346  // For a tail call, the return value is merely live-out and there aren't
6347  // any nodes in the DAG representing it. Return a special value to
6348  // indicate that a tail call has been emitted and no more Instructions
6349  // should be processed in the current block.
6350  if (isTailCall) {
6351    DAG.setRoot(Chain);
6352    return std::make_pair(SDValue(), SDValue());
6353  }
6354
6355  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6356          assert(InVals[i].getNode() &&
6357                 "LowerCall emitted a null value!");
6358          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6359                 "LowerCall emitted a value with the wrong type!");
6360        });
6361
6362  // Collect the legal value parts into potentially illegal values
6363  // that correspond to the original function's return values.
6364  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6365  if (RetSExt)
6366    AssertOp = ISD::AssertSext;
6367  else if (RetZExt)
6368    AssertOp = ISD::AssertZext;
6369  SmallVector<SDValue, 4> ReturnValues;
6370  unsigned CurReg = 0;
6371  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6372    EVT VT = RetTys[I];
6373    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6374    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6375
6376    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6377                                            NumRegs, RegisterVT, VT,
6378                                            AssertOp));
6379    CurReg += NumRegs;
6380  }
6381
6382  // For a function returning void, there is no return value. We can't create
6383  // such a node, so we just return a null return value in that case. In
6384  // that case, nothing will actually look at the value.
6385  if (ReturnValues.empty())
6386    return std::make_pair(SDValue(), Chain);
6387
6388  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6389                            DAG.getVTList(&RetTys[0], RetTys.size()),
6390                            &ReturnValues[0], ReturnValues.size());
6391  return std::make_pair(Res, Chain);
6392}
6393
6394void TargetLowering::LowerOperationWrapper(SDNode *N,
6395                                           SmallVectorImpl<SDValue> &Results,
6396                                           SelectionDAG &DAG) const {
6397  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6398  if (Res.getNode())
6399    Results.push_back(Res);
6400}
6401
6402SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6403  llvm_unreachable("LowerOperation not implemented for this target!");
6404  return SDValue();
6405}
6406
6407void
6408SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6409  SDValue Op = getNonRegisterValue(V);
6410  assert((Op.getOpcode() != ISD::CopyFromReg ||
6411          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6412         "Copy from a reg to the same reg!");
6413  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6414
6415  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6416  SDValue Chain = DAG.getEntryNode();
6417  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6418  PendingExports.push_back(Chain);
6419}
6420
6421#include "llvm/CodeGen/SelectionDAGISel.h"
6422
6423/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6424/// entry block, return true.  This includes arguments used by switches, since
6425/// the switch may expand into multiple basic blocks.
6426static bool isOnlyUsedInEntryBlock(const Argument *A) {
6427  // With FastISel active, we may be splitting blocks, so force creation
6428  // of virtual registers for all non-dead arguments.
6429  if (EnableFastISel)
6430    return A->use_empty();
6431
6432  const BasicBlock *Entry = A->getParent()->begin();
6433  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6434       UI != E; ++UI) {
6435    const User *U = *UI;
6436    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6437      return false;  // Use not in entry block.
6438  }
6439  return true;
6440}
6441
6442void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6443  // If this is the entry block, emit arguments.
6444  const Function &F = *LLVMBB->getParent();
6445  SelectionDAG &DAG = SDB->DAG;
6446  DebugLoc dl = SDB->getCurDebugLoc();
6447  const TargetData *TD = TLI.getTargetData();
6448  SmallVector<ISD::InputArg, 16> Ins;
6449
6450  // Check whether the function can return without sret-demotion.
6451  SmallVector<ISD::OutputArg, 4> Outs;
6452  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6453                Outs, TLI);
6454
6455  if (!FuncInfo->CanLowerReturn) {
6456    // Put in an sret pointer parameter before all the other parameters.
6457    SmallVector<EVT, 1> ValueVTs;
6458    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6459
6460    // NOTE: Assuming that a pointer will never break down to more than one VT
6461    // or one register.
6462    ISD::ArgFlagsTy Flags;
6463    Flags.setSRet();
6464    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6465    ISD::InputArg RetArg(Flags, RegisterVT, true);
6466    Ins.push_back(RetArg);
6467  }
6468
6469  // Set up the incoming argument description vector.
6470  unsigned Idx = 1;
6471  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6472       I != E; ++I, ++Idx) {
6473    SmallVector<EVT, 4> ValueVTs;
6474    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6475    bool isArgValueUsed = !I->use_empty();
6476    for (unsigned Value = 0, NumValues = ValueVTs.size();
6477         Value != NumValues; ++Value) {
6478      EVT VT = ValueVTs[Value];
6479      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6480      ISD::ArgFlagsTy Flags;
6481      unsigned OriginalAlignment =
6482        TD->getABITypeAlignment(ArgTy);
6483
6484      if (F.paramHasAttr(Idx, Attribute::ZExt))
6485        Flags.setZExt();
6486      if (F.paramHasAttr(Idx, Attribute::SExt))
6487        Flags.setSExt();
6488      if (F.paramHasAttr(Idx, Attribute::InReg))
6489        Flags.setInReg();
6490      if (F.paramHasAttr(Idx, Attribute::StructRet))
6491        Flags.setSRet();
6492      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6493        Flags.setByVal();
6494        PointerType *Ty = cast<PointerType>(I->getType());
6495        Type *ElementTy = Ty->getElementType();
6496        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6497        // For ByVal, alignment should be passed from FE.  BE will guess if
6498        // this info is not there but there are cases it cannot get right.
6499        unsigned FrameAlign;
6500        if (F.getParamAlignment(Idx))
6501          FrameAlign = F.getParamAlignment(Idx);
6502        else
6503          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6504        Flags.setByValAlign(FrameAlign);
6505      }
6506      if (F.paramHasAttr(Idx, Attribute::Nest))
6507        Flags.setNest();
6508      Flags.setOrigAlign(OriginalAlignment);
6509
6510      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6511      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6512      for (unsigned i = 0; i != NumRegs; ++i) {
6513        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6514        if (NumRegs > 1 && i == 0)
6515          MyFlags.Flags.setSplit();
6516        // if it isn't first piece, alignment must be 1
6517        else if (i > 0)
6518          MyFlags.Flags.setOrigAlign(1);
6519        Ins.push_back(MyFlags);
6520      }
6521    }
6522  }
6523
6524  // Call the target to set up the argument values.
6525  SmallVector<SDValue, 8> InVals;
6526  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6527                                             F.isVarArg(), Ins,
6528                                             dl, DAG, InVals);
6529
6530  // Verify that the target's LowerFormalArguments behaved as expected.
6531  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6532         "LowerFormalArguments didn't return a valid chain!");
6533  assert(InVals.size() == Ins.size() &&
6534         "LowerFormalArguments didn't emit the correct number of values!");
6535  DEBUG({
6536      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6537        assert(InVals[i].getNode() &&
6538               "LowerFormalArguments emitted a null value!");
6539        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6540               "LowerFormalArguments emitted a value with the wrong type!");
6541      }
6542    });
6543
6544  // Update the DAG with the new chain value resulting from argument lowering.
6545  DAG.setRoot(NewRoot);
6546
6547  // Set up the argument values.
6548  unsigned i = 0;
6549  Idx = 1;
6550  if (!FuncInfo->CanLowerReturn) {
6551    // Create a virtual register for the sret pointer, and put in a copy
6552    // from the sret argument into it.
6553    SmallVector<EVT, 1> ValueVTs;
6554    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6555    EVT VT = ValueVTs[0];
6556    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6557    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6558    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6559                                        RegVT, VT, AssertOp);
6560
6561    MachineFunction& MF = SDB->DAG.getMachineFunction();
6562    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6563    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6564    FuncInfo->DemoteRegister = SRetReg;
6565    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6566                                    SRetReg, ArgValue);
6567    DAG.setRoot(NewRoot);
6568
6569    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6570    // Idx indexes LLVM arguments.  Don't touch it.
6571    ++i;
6572  }
6573
6574  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6575      ++I, ++Idx) {
6576    SmallVector<SDValue, 4> ArgValues;
6577    SmallVector<EVT, 4> ValueVTs;
6578    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6579    unsigned NumValues = ValueVTs.size();
6580
6581    // If this argument is unused then remember its value. It is used to generate
6582    // debugging information.
6583    if (I->use_empty() && NumValues)
6584      SDB->setUnusedArgValue(I, InVals[i]);
6585
6586    for (unsigned Val = 0; Val != NumValues; ++Val) {
6587      EVT VT = ValueVTs[Val];
6588      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6589      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6590
6591      if (!I->use_empty()) {
6592        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6593        if (F.paramHasAttr(Idx, Attribute::SExt))
6594          AssertOp = ISD::AssertSext;
6595        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6596          AssertOp = ISD::AssertZext;
6597
6598        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6599                                             NumParts, PartVT, VT,
6600                                             AssertOp));
6601      }
6602
6603      i += NumParts;
6604    }
6605
6606    // We don't need to do anything else for unused arguments.
6607    if (ArgValues.empty())
6608      continue;
6609
6610    // Note down frame index for byval arguments.
6611    if (I->hasByValAttr())
6612      if (FrameIndexSDNode *FI =
6613          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6614        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6615
6616    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6617                                     SDB->getCurDebugLoc());
6618    SDB->setValue(I, Res);
6619
6620    // If this argument is live outside of the entry block, insert a copy from
6621    // wherever we got it to the vreg that other BB's will reference it as.
6622    if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6623      // If we can, though, try to skip creating an unnecessary vreg.
6624      // FIXME: This isn't very clean... it would be nice to make this more
6625      // general.  It's also subtly incompatible with the hacks FastISel
6626      // uses with vregs.
6627      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6628      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6629        FuncInfo->ValueMap[I] = Reg;
6630        continue;
6631      }
6632    }
6633    if (!isOnlyUsedInEntryBlock(I)) {
6634      FuncInfo->InitializeRegForValue(I);
6635      SDB->CopyToExportRegsIfNeeded(I);
6636    }
6637  }
6638
6639  assert(i == InVals.size() && "Argument register count mismatch!");
6640
6641  // Finally, if the target has anything special to do, allow it to do so.
6642  // FIXME: this should insert code into the DAG!
6643  EmitFunctionEntryCode();
6644}
6645
6646/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6647/// ensure constants are generated when needed.  Remember the virtual registers
6648/// that need to be added to the Machine PHI nodes as input.  We cannot just
6649/// directly add them, because expansion might result in multiple MBB's for one
6650/// BB.  As such, the start of the BB might correspond to a different MBB than
6651/// the end.
6652///
6653void
6654SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6655  const TerminatorInst *TI = LLVMBB->getTerminator();
6656
6657  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6658
6659  // Check successor nodes' PHI nodes that expect a constant to be available
6660  // from this block.
6661  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6662    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6663    if (!isa<PHINode>(SuccBB->begin())) continue;
6664    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6665
6666    // If this terminator has multiple identical successors (common for
6667    // switches), only handle each succ once.
6668    if (!SuccsHandled.insert(SuccMBB)) continue;
6669
6670    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6671
6672    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6673    // nodes and Machine PHI nodes, but the incoming operands have not been
6674    // emitted yet.
6675    for (BasicBlock::const_iterator I = SuccBB->begin();
6676         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6677      // Ignore dead phi's.
6678      if (PN->use_empty()) continue;
6679
6680      // Skip empty types
6681      if (PN->getType()->isEmptyTy())
6682        continue;
6683
6684      unsigned Reg;
6685      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6686
6687      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6688        unsigned &RegOut = ConstantsOut[C];
6689        if (RegOut == 0) {
6690          RegOut = FuncInfo.CreateRegs(C->getType());
6691          CopyValueToVirtualRegister(C, RegOut);
6692        }
6693        Reg = RegOut;
6694      } else {
6695        DenseMap<const Value *, unsigned>::iterator I =
6696          FuncInfo.ValueMap.find(PHIOp);
6697        if (I != FuncInfo.ValueMap.end())
6698          Reg = I->second;
6699        else {
6700          assert(isa<AllocaInst>(PHIOp) &&
6701                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6702                 "Didn't codegen value into a register!??");
6703          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6704          CopyValueToVirtualRegister(PHIOp, Reg);
6705        }
6706      }
6707
6708      // Remember that this register needs to added to the machine PHI node as
6709      // the input for this MBB.
6710      SmallVector<EVT, 4> ValueVTs;
6711      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6712      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6713        EVT VT = ValueVTs[vti];
6714        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6715        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6716          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6717        Reg += NumRegisters;
6718      }
6719    }
6720  }
6721  ConstantsOut.clear();
6722}
6723