SelectionDAGBuilder.cpp revision dd0fb018a7cd2214c7bc5c6c767f626f99b47ba9
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/DebugInfo.h"
36#include "llvm/IR/CallingConv.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GlobalVariable.h"
42#include "llvm/IR/InlineAsm.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/Intrinsics.h"
46#include "llvm/IR/LLVMContext.h"
47#include "llvm/IR/Module.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/IntegersSubsetMapping.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetFrameLowering.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetIntrinsicInfo.h"
57#include "llvm/Target/TargetLibraryInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetOptions.h"
60#include <algorithm>
61using namespace llvm;
62
63/// LimitFloatPrecision - Generate low-precision inline sequences for
64/// some float libcalls (6, 8 or 12 bits).
65static unsigned LimitFloatPrecision;
66
67static cl::opt<unsigned, true>
68LimitFPPrecision("limit-float-precision",
69                 cl::desc("Generate low-precision inline sequences "
70                          "for some float libcalls"),
71                 cl::location(LimitFloatPrecision),
72                 cl::init(0));
73
74// Limit the width of DAG chains. This is important in general to prevent
75// prevent DAG-based analysis from blowing up. For example, alias analysis and
76// load clustering may not complete in reasonable time. It is difficult to
77// recognize and avoid this situation within each individual analysis, and
78// future analyses are likely to have the same behavior. Limiting DAG width is
79// the safe approach, and will be especially important with global DAGs.
80//
81// MaxParallelChains default is arbitrarily high to avoid affecting
82// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
83// sequence over this should have been converted to llvm.memcpy by the
84// frontend. It easy to induce this behavior with .ll code such as:
85// %buffer = alloca [4096 x i8]
86// %data = load [4096 x i8]* %argPtr
87// store [4096 x i8] %data, [4096 x i8]* %buffer
88static const unsigned MaxParallelChains = 64;
89
90static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
91                                      const SDValue *Parts, unsigned NumParts,
92                                      MVT PartVT, EVT ValueVT, const Value *V);
93
94/// getCopyFromParts - Create a value that contains the specified legal parts
95/// combined into the value they represent.  If the parts combine to a type
96/// larger then ValueVT then AssertOp can be used to specify whether the extra
97/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
98/// (ISD::AssertSext).
99static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
100                                const SDValue *Parts,
101                                unsigned NumParts, MVT PartVT, EVT ValueVT,
102                                const Value *V,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
106                                  PartVT, ValueVT, V);
107
108  assert(NumParts > 0 && "No parts to assemble!");
109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
110  SDValue Val = Parts[0];
111
112  if (NumParts > 1) {
113    // Assemble the value from multiple parts.
114    if (ValueVT.isInteger()) {
115      unsigned PartBits = PartVT.getSizeInBits();
116      unsigned ValueBits = ValueVT.getSizeInBits();
117
118      // Assemble the power of 2 part.
119      unsigned RoundParts = NumParts & (NumParts - 1) ?
120        1 << Log2_32(NumParts) : NumParts;
121      unsigned RoundBits = PartBits * RoundParts;
122      EVT RoundVT = RoundBits == ValueBits ?
123        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
124      SDValue Lo, Hi;
125
126      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
127
128      if (RoundParts > 2) {
129        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
130                              PartVT, HalfVT, V);
131        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
132                              RoundParts / 2, PartVT, HalfVT, V);
133      } else {
134        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
135        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
136      }
137
138      if (TLI.isBigEndian())
139        std::swap(Lo, Hi);
140
141      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
142
143      if (RoundParts < NumParts) {
144        // Assemble the trailing non-power-of-2 part.
145        unsigned OddParts = NumParts - RoundParts;
146        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
147        Hi = getCopyFromParts(DAG, DL,
148                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
149
150        // Combine the round and odd parts.
151        Lo = Val;
152        if (TLI.isBigEndian())
153          std::swap(Lo, Hi);
154        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
155        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
156        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
157                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
158                                         TLI.getPointerTy()));
159        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
160        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
161      }
162    } else if (PartVT.isFloatingPoint()) {
163      // FP split into multiple FP parts (for ppcf128)
164      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
165             "Unexpected split");
166      SDValue Lo, Hi;
167      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
168      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
169      if (TLI.isBigEndian())
170        std::swap(Lo, Hi);
171      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
172    } else {
173      // FP split into integer parts (soft fp)
174      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
175             !PartVT.isVector() && "Unexpected split");
176      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
177      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
178    }
179  }
180
181  // There is now one part, held in Val.  Correct it to match ValueVT.
182  EVT PartEVT = Val.getValueType();
183
184  if (PartEVT == ValueVT)
185    return Val;
186
187  if (PartEVT.isInteger() && ValueVT.isInteger()) {
188    if (ValueVT.bitsLT(PartEVT)) {
189      // For a truncate, see if we have any information to
190      // indicate whether the truncated bits will always be
191      // zero or sign-extension.
192      if (AssertOp != ISD::DELETED_NODE)
193        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
194                          DAG.getValueType(ValueVT));
195      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
196    }
197    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
198  }
199
200  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
201    // FP_ROUND's are always exact here.
202    if (ValueVT.bitsLT(Val.getValueType()))
203      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
204                         DAG.getTargetConstant(1, TLI.getPointerTy()));
205
206    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
207  }
208
209  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
210    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
211
212  llvm_unreachable("Unknown mismatch!");
213}
214
215/// getCopyFromPartsVector - Create a value that contains the specified legal
216/// parts combined into the value they represent.  If the parts combine to a
217/// type larger then ValueVT then AssertOp can be used to specify whether the
218/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
219/// ValueVT (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      MVT PartVT, EVT ValueVT, const Value *V) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT;
231    MVT RegisterVT;
232    unsigned NumIntermediates;
233    unsigned NumRegs =
234    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
235                               NumIntermediates, RegisterVT);
236    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
237    NumParts = NumRegs; // Silence a compiler warning.
238    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
239    assert(RegisterVT == Parts[0].getSimpleValueType() &&
240           "Part type doesn't match part!");
241
242    // Assemble the parts into intermediate operands.
243    SmallVector<SDValue, 8> Ops(NumIntermediates);
244    if (NumIntermediates == NumParts) {
245      // If the register was not expanded, truncate or copy the value,
246      // as appropriate.
247      for (unsigned i = 0; i != NumParts; ++i)
248        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
249                                  PartVT, IntermediateVT, V);
250    } else if (NumParts > 0) {
251      // If the intermediate type was expanded, build the intermediate
252      // operands from the parts.
253      assert(NumParts % NumIntermediates == 0 &&
254             "Must expand into a divisible number of parts!");
255      unsigned Factor = NumParts / NumIntermediates;
256      for (unsigned i = 0; i != NumIntermediates; ++i)
257        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
258                                  PartVT, IntermediateVT, V);
259    }
260
261    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
262    // intermediate operands.
263    Val = DAG.getNode(IntermediateVT.isVector() ?
264                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
265                      ValueVT, &Ops[0], NumIntermediates);
266  }
267
268  // There is now one part, held in Val.  Correct it to match ValueVT.
269  EVT PartEVT = Val.getValueType();
270
271  if (PartEVT == ValueVT)
272    return Val;
273
274  if (PartEVT.isVector()) {
275    // If the element type of the source/dest vectors are the same, but the
276    // parts vector has more elements than the value vector, then we have a
277    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
278    // elements we want.
279    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
280      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
281             "Cannot narrow, it would be a lossy transformation");
282      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
283                         DAG.getIntPtrConstant(0));
284    }
285
286    // Vector/Vector bitcast.
287    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
288      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
289
290    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
291      "Cannot handle this kind of promotion");
292    // Promoted vector extract
293    bool Smaller = ValueVT.bitsLE(PartEVT);
294    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
295                       DL, ValueVT, Val);
296
297  }
298
299  // Trivial bitcast if the types are the same size and the destination
300  // vector type is legal.
301  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
302      TLI.isTypeLegal(ValueVT))
303    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
304
305  // Handle cases such as i8 -> <1 x i1>
306  if (ValueVT.getVectorNumElements() != 1) {
307    LLVMContext &Ctx = *DAG.getContext();
308    Twine ErrMsg("non-trivial scalar-to-vector conversion");
309    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
310      if (const CallInst *CI = dyn_cast<CallInst>(I))
311        if (isa<InlineAsm>(CI->getCalledValue()))
312          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
313      Ctx.emitError(I, ErrMsg);
314    } else {
315      Ctx.emitError(ErrMsg);
316    }
317    return DAG.getUNDEF(ValueVT);
318  }
319
320  if (ValueVT.getVectorNumElements() == 1 &&
321      ValueVT.getVectorElementType() != PartEVT) {
322    bool Smaller = ValueVT.bitsLE(PartEVT);
323    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
324                       DL, ValueVT.getScalarType(), Val);
325  }
326
327  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
328}
329
330static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
331                                 SDValue Val, SDValue *Parts, unsigned NumParts,
332                                 MVT PartVT, const Value *V);
333
334/// getCopyToParts - Create a series of nodes that contain the specified value
335/// split into legal parts.  If the parts contain more bits than Val, then, for
336/// integers, ExtendKind can be used to specify how to generate the extra bits.
337static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
338                           SDValue Val, SDValue *Parts, unsigned NumParts,
339                           MVT PartVT, const Value *V,
340                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
341  EVT ValueVT = Val.getValueType();
342
343  // Handle the vector case separately.
344  if (ValueVT.isVector())
345    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
346
347  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348  unsigned PartBits = PartVT.getSizeInBits();
349  unsigned OrigNumParts = NumParts;
350  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
351
352  if (NumParts == 0)
353    return;
354
355  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
356  EVT PartEVT = PartVT;
357  if (PartEVT == ValueVT) {
358    assert(NumParts == 1 && "No-op copy with multiple parts!");
359    Parts[0] = Val;
360    return;
361  }
362
363  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
364    // If the parts cover more bits than the value has, promote the value.
365    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
366      assert(NumParts == 1 && "Do not know what to promote to!");
367      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
368    } else {
369      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
370             ValueVT.isInteger() &&
371             "Unknown mismatch!");
372      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
373      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
374      if (PartVT == MVT::x86mmx)
375        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
376    }
377  } else if (PartBits == ValueVT.getSizeInBits()) {
378    // Different types of the same size.
379    assert(NumParts == 1 && PartEVT != ValueVT);
380    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
381  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
382    // If the parts cover less bits than value has, truncate the value.
383    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
384           ValueVT.isInteger() &&
385           "Unknown mismatch!");
386    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
387    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
388    if (PartVT == MVT::x86mmx)
389      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390  }
391
392  // The value may have changed - recompute ValueVT.
393  ValueVT = Val.getValueType();
394  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
395         "Failed to tile the value with PartVT!");
396
397  if (NumParts == 1) {
398    if (PartEVT != ValueVT) {
399      LLVMContext &Ctx = *DAG.getContext();
400      Twine ErrMsg("scalar-to-vector conversion failed");
401      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
402        if (const CallInst *CI = dyn_cast<CallInst>(I))
403          if (isa<InlineAsm>(CI->getCalledValue()))
404            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
405        Ctx.emitError(I, ErrMsg);
406      } else {
407        Ctx.emitError(ErrMsg);
408      }
409    }
410
411    Parts[0] = Val;
412    return;
413  }
414
415  // Expand the value into multiple parts.
416  if (NumParts & (NumParts - 1)) {
417    // The number of parts is not a power of 2.  Split off and copy the tail.
418    assert(PartVT.isInteger() && ValueVT.isInteger() &&
419           "Do not know what to expand to!");
420    unsigned RoundParts = 1 << Log2_32(NumParts);
421    unsigned RoundBits = RoundParts * PartBits;
422    unsigned OddParts = NumParts - RoundParts;
423    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
424                                 DAG.getIntPtrConstant(RoundBits));
425    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
426
427    if (TLI.isBigEndian())
428      // The odd parts were reversed by getCopyToParts - unreverse them.
429      std::reverse(Parts + RoundParts, Parts + NumParts);
430
431    NumParts = RoundParts;
432    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
433    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
434  }
435
436  // The number of parts is a power of 2.  Repeatedly bisect the value using
437  // EXTRACT_ELEMENT.
438  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
439                         EVT::getIntegerVT(*DAG.getContext(),
440                                           ValueVT.getSizeInBits()),
441                         Val);
442
443  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
444    for (unsigned i = 0; i < NumParts; i += StepSize) {
445      unsigned ThisBits = StepSize * PartBits / 2;
446      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
447      SDValue &Part0 = Parts[i];
448      SDValue &Part1 = Parts[i+StepSize/2];
449
450      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451                          ThisVT, Part0, DAG.getIntPtrConstant(1));
452      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453                          ThisVT, Part0, DAG.getIntPtrConstant(0));
454
455      if (ThisBits == PartBits && ThisVT != PartVT) {
456        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
457        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
458      }
459    }
460  }
461
462  if (TLI.isBigEndian())
463    std::reverse(Parts, Parts + OrigNumParts);
464}
465
466
467/// getCopyToPartsVector - Create a series of nodes that contain the specified
468/// value split into legal parts.
469static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
470                                 SDValue Val, SDValue *Parts, unsigned NumParts,
471                                 MVT PartVT, const Value *V) {
472  EVT ValueVT = Val.getValueType();
473  assert(ValueVT.isVector() && "Not a vector");
474  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475
476  if (NumParts == 1) {
477    EVT PartEVT = PartVT;
478    if (PartEVT == ValueVT) {
479      // Nothing to do.
480    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
481      // Bitconvert vector->vector case.
482      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
483    } else if (PartVT.isVector() &&
484               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
485               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
486      EVT ElementVT = PartVT.getVectorElementType();
487      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
488      // undef elements.
489      SmallVector<SDValue, 16> Ops;
490      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
491        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
493
494      for (unsigned i = ValueVT.getVectorNumElements(),
495           e = PartVT.getVectorNumElements(); i != e; ++i)
496        Ops.push_back(DAG.getUNDEF(ElementVT));
497
498      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
499
500      // FIXME: Use CONCAT for 2x -> 4x.
501
502      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
503      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
504    } else if (PartVT.isVector() &&
505               PartEVT.getVectorElementType().bitsGE(
506                 ValueVT.getVectorElementType()) &&
507               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
508
509      // Promoted vector extract
510      bool Smaller = PartEVT.bitsLE(ValueVT);
511      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
512                        DL, PartVT, Val);
513    } else{
514      // Vector -> scalar conversion.
515      assert(ValueVT.getVectorNumElements() == 1 &&
516             "Only trivial vector-to-scalar conversions should get here!");
517      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                        PartVT, Val, DAG.getIntPtrConstant(0));
519
520      bool Smaller = ValueVT.bitsLE(PartVT);
521      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
522                         DL, PartVT, Val);
523    }
524
525    Parts[0] = Val;
526    return;
527  }
528
529  // Handle a multi-element vector.
530  EVT IntermediateVT;
531  MVT RegisterVT;
532  unsigned NumIntermediates;
533  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
534                                                IntermediateVT,
535                                                NumIntermediates, RegisterVT);
536  unsigned NumElements = ValueVT.getVectorNumElements();
537
538  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
539  NumParts = NumRegs; // Silence a compiler warning.
540  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
541
542  // Split the vector into intermediate operands.
543  SmallVector<SDValue, 8> Ops(NumIntermediates);
544  for (unsigned i = 0; i != NumIntermediates; ++i) {
545    if (IntermediateVT.isVector())
546      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
547                           IntermediateVT, Val,
548                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
549    else
550      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
551                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
552  }
553
554  // Split the intermediate operands into legal parts.
555  if (NumParts == NumIntermediates) {
556    // If the register was not expanded, promote or copy the value,
557    // as appropriate.
558    for (unsigned i = 0; i != NumParts; ++i)
559      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
560  } else if (NumParts > 0) {
561    // If the intermediate type was expanded, split each the value into
562    // legal parts.
563    assert(NumParts % NumIntermediates == 0 &&
564           "Must expand into a divisible number of parts!");
565    unsigned Factor = NumParts / NumIntermediates;
566    for (unsigned i = 0; i != NumIntermediates; ++i)
567      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
568  }
569}
570
571namespace {
572  /// RegsForValue - This struct represents the registers (physical or virtual)
573  /// that a particular set of values is assigned, and the type information
574  /// about the value. The most common situation is to represent one value at a
575  /// time, but struct or array values are handled element-wise as multiple
576  /// values.  The splitting of aggregates is performed recursively, so that we
577  /// never have aggregate-typed registers. The values at this point do not
578  /// necessarily have legal types, so each value may require one or more
579  /// registers of some legal type.
580  ///
581  struct RegsForValue {
582    /// ValueVTs - The value types of the values, which may not be legal, and
583    /// may need be promoted or synthesized from one or more registers.
584    ///
585    SmallVector<EVT, 4> ValueVTs;
586
587    /// RegVTs - The value types of the registers. This is the same size as
588    /// ValueVTs and it records, for each value, what the type of the assigned
589    /// register or registers are. (Individual values are never synthesized
590    /// from more than one type of register.)
591    ///
592    /// With virtual registers, the contents of RegVTs is redundant with TLI's
593    /// getRegisterType member function, however when with physical registers
594    /// it is necessary to have a separate record of the types.
595    ///
596    SmallVector<MVT, 4> RegVTs;
597
598    /// Regs - This list holds the registers assigned to the values.
599    /// Each legal or promoted value requires one register, and each
600    /// expanded value requires multiple registers.
601    ///
602    SmallVector<unsigned, 4> Regs;
603
604    RegsForValue() {}
605
606    RegsForValue(const SmallVector<unsigned, 4> &regs,
607                 MVT regvt, EVT valuevt)
608      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
609
610    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
611                 unsigned Reg, Type *Ty) {
612      ComputeValueVTs(tli, Ty, ValueVTs);
613
614      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
615        EVT ValueVT = ValueVTs[Value];
616        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
617        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
618        for (unsigned i = 0; i != NumRegs; ++i)
619          Regs.push_back(Reg + i);
620        RegVTs.push_back(RegisterVT);
621        Reg += NumRegs;
622      }
623    }
624
625    /// areValueTypesLegal - Return true if types of all the values are legal.
626    bool areValueTypesLegal(const TargetLowering &TLI) {
627      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
628        MVT RegisterVT = RegVTs[Value];
629        if (!TLI.isTypeLegal(RegisterVT))
630          return false;
631      }
632      return true;
633    }
634
635    /// append - Add the specified values to this one.
636    void append(const RegsForValue &RHS) {
637      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
638      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
639      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
640    }
641
642    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
643    /// this value and returns the result as a ValueVTs value.  This uses
644    /// Chain/Flag as the input and updates them for the output Chain/Flag.
645    /// If the Flag pointer is NULL, no flag is used.
646    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
647                            SDLoc dl,
648                            SDValue &Chain, SDValue *Flag,
649                            const Value *V = 0) const;
650
651    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
652    /// specified value into the registers specified by this object.  This uses
653    /// Chain/Flag as the input and updates them for the output Chain/Flag.
654    /// If the Flag pointer is NULL, no flag is used.
655    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
656                       SDValue &Chain, SDValue *Flag, const Value *V) const;
657
658    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
659    /// operand list.  This adds the code marker, matching input operand index
660    /// (if applicable), and includes the number of values added into it.
661    void AddInlineAsmOperands(unsigned Kind,
662                              bool HasMatching, unsigned MatchingIdx,
663                              SelectionDAG &DAG,
664                              std::vector<SDValue> &Ops) const;
665  };
666}
667
668/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
669/// this value and returns the result as a ValueVT value.  This uses
670/// Chain/Flag as the input and updates them for the output Chain/Flag.
671/// If the Flag pointer is NULL, no flag is used.
672SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
673                                      FunctionLoweringInfo &FuncInfo,
674                                      SDLoc dl,
675                                      SDValue &Chain, SDValue *Flag,
676                                      const Value *V) const {
677  // A Value with type {} or [0 x %t] needs no registers.
678  if (ValueVTs.empty())
679    return SDValue();
680
681  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
682
683  // Assemble the legal parts into the final values.
684  SmallVector<SDValue, 4> Values(ValueVTs.size());
685  SmallVector<SDValue, 8> Parts;
686  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
687    // Copy the legal parts from the registers.
688    EVT ValueVT = ValueVTs[Value];
689    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690    MVT RegisterVT = RegVTs[Value];
691
692    Parts.resize(NumRegs);
693    for (unsigned i = 0; i != NumRegs; ++i) {
694      SDValue P;
695      if (Flag == 0) {
696        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
697      } else {
698        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
699        *Flag = P.getValue(2);
700      }
701
702      Chain = P.getValue(1);
703      Parts[i] = P;
704
705      // If the source register was virtual and if we know something about it,
706      // add an assert node.
707      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
708          !RegisterVT.isInteger() || RegisterVT.isVector())
709        continue;
710
711      const FunctionLoweringInfo::LiveOutInfo *LOI =
712        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
713      if (!LOI)
714        continue;
715
716      unsigned RegSize = RegisterVT.getSizeInBits();
717      unsigned NumSignBits = LOI->NumSignBits;
718      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
719
720      // FIXME: We capture more information than the dag can represent.  For
721      // now, just use the tightest assertzext/assertsext possible.
722      bool isSExt = true;
723      EVT FromVT(MVT::Other);
724      if (NumSignBits == RegSize)
725        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
726      else if (NumZeroBits >= RegSize-1)
727        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
728      else if (NumSignBits > RegSize-8)
729        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
730      else if (NumZeroBits >= RegSize-8)
731        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
732      else if (NumSignBits > RegSize-16)
733        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
734      else if (NumZeroBits >= RegSize-16)
735        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
736      else if (NumSignBits > RegSize-32)
737        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
738      else if (NumZeroBits >= RegSize-32)
739        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
740      else
741        continue;
742
743      // Add an assertion node.
744      assert(FromVT != MVT::Other);
745      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
746                             RegisterVT, P, DAG.getValueType(FromVT));
747    }
748
749    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
750                                     NumRegs, RegisterVT, ValueVT, V);
751    Part += NumRegs;
752    Parts.clear();
753  }
754
755  return DAG.getNode(ISD::MERGE_VALUES, dl,
756                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
757                     &Values[0], ValueVTs.size());
758}
759
760/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
761/// specified value into the registers specified by this object.  This uses
762/// Chain/Flag as the input and updates them for the output Chain/Flag.
763/// If the Flag pointer is NULL, no flag is used.
764void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
765                                 SDValue &Chain, SDValue *Flag,
766                                 const Value *V) const {
767  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
768
769  // Get the list of the values's legal parts.
770  unsigned NumRegs = Regs.size();
771  SmallVector<SDValue, 8> Parts(NumRegs);
772  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
773    EVT ValueVT = ValueVTs[Value];
774    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
775    MVT RegisterVT = RegVTs[Value];
776    ISD::NodeType ExtendKind =
777      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
778
779    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
780                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
781    Part += NumParts;
782  }
783
784  // Copy the parts into the registers.
785  SmallVector<SDValue, 8> Chains(NumRegs);
786  for (unsigned i = 0; i != NumRegs; ++i) {
787    SDValue Part;
788    if (Flag == 0) {
789      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
790    } else {
791      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
792      *Flag = Part.getValue(1);
793    }
794
795    Chains[i] = Part.getValue(0);
796  }
797
798  if (NumRegs == 1 || Flag)
799    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
800    // flagged to it. That is the CopyToReg nodes and the user are considered
801    // a single scheduling unit. If we create a TokenFactor and return it as
802    // chain, then the TokenFactor is both a predecessor (operand) of the
803    // user as well as a successor (the TF operands are flagged to the user).
804    // c1, f1 = CopyToReg
805    // c2, f2 = CopyToReg
806    // c3     = TokenFactor c1, c2
807    // ...
808    //        = op c3, ..., f2
809    Chain = Chains[NumRegs-1];
810  else
811    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
812}
813
814/// AddInlineAsmOperands - Add this value to the specified inlineasm node
815/// operand list.  This adds the code marker and includes the number of
816/// values added into it.
817void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
818                                        unsigned MatchingIdx,
819                                        SelectionDAG &DAG,
820                                        std::vector<SDValue> &Ops) const {
821  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
822
823  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
824  if (HasMatching)
825    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
826  else if (!Regs.empty() &&
827           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
828    // Put the register class of the virtual registers in the flag word.  That
829    // way, later passes can recompute register class constraints for inline
830    // assembly as well as normal instructions.
831    // Don't do this for tied operands that can use the regclass information
832    // from the def.
833    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
834    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
835    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
836  }
837
838  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
839  Ops.push_back(Res);
840
841  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
842    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
843    MVT RegisterVT = RegVTs[Value];
844    for (unsigned i = 0; i != NumRegs; ++i) {
845      assert(Reg < Regs.size() && "Mismatch in # registers expected");
846      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
847    }
848  }
849}
850
851void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
852                               const TargetLibraryInfo *li) {
853  AA = &aa;
854  GFI = gfi;
855  LibInfo = li;
856  TD = DAG.getTarget().getDataLayout();
857  Context = DAG.getContext();
858  LPadToCallSiteMap.clear();
859}
860
861/// clear - Clear out the current SelectionDAG and the associated
862/// state and prepare this SelectionDAGBuilder object to be used
863/// for a new block. This doesn't clear out information about
864/// additional blocks that are needed to complete switch lowering
865/// or PHI node updating; that information is cleared out as it is
866/// consumed.
867void SelectionDAGBuilder::clear() {
868  NodeMap.clear();
869  UnusedArgNodeMap.clear();
870  PendingLoads.clear();
871  PendingExports.clear();
872  CurInst = NULL;
873  HasTailCall = false;
874}
875
876/// clearDanglingDebugInfo - Clear the dangling debug information
877/// map. This function is separated from the clear so that debug
878/// information that is dangling in a basic block can be properly
879/// resolved in a different basic block. This allows the
880/// SelectionDAG to resolve dangling debug information attached
881/// to PHI nodes.
882void SelectionDAGBuilder::clearDanglingDebugInfo() {
883  DanglingDebugInfoMap.clear();
884}
885
886/// getRoot - Return the current virtual root of the Selection DAG,
887/// flushing any PendingLoad items. This must be done before emitting
888/// a store or any other node that may need to be ordered after any
889/// prior load instructions.
890///
891SDValue SelectionDAGBuilder::getRoot() {
892  if (PendingLoads.empty())
893    return DAG.getRoot();
894
895  if (PendingLoads.size() == 1) {
896    SDValue Root = PendingLoads[0];
897    DAG.setRoot(Root);
898    PendingLoads.clear();
899    return Root;
900  }
901
902  // Otherwise, we have to make a token factor node.
903  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
904                               &PendingLoads[0], PendingLoads.size());
905  PendingLoads.clear();
906  DAG.setRoot(Root);
907  return Root;
908}
909
910/// getControlRoot - Similar to getRoot, but instead of flushing all the
911/// PendingLoad items, flush all the PendingExports items. It is necessary
912/// to do this before emitting a terminator instruction.
913///
914SDValue SelectionDAGBuilder::getControlRoot() {
915  SDValue Root = DAG.getRoot();
916
917  if (PendingExports.empty())
918    return Root;
919
920  // Turn all of the CopyToReg chains into one factored node.
921  if (Root.getOpcode() != ISD::EntryToken) {
922    unsigned i = 0, e = PendingExports.size();
923    for (; i != e; ++i) {
924      assert(PendingExports[i].getNode()->getNumOperands() > 1);
925      if (PendingExports[i].getNode()->getOperand(0) == Root)
926        break;  // Don't add the root if we already indirectly depend on it.
927    }
928
929    if (i == e)
930      PendingExports.push_back(Root);
931  }
932
933  Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
934                     &PendingExports[0],
935                     PendingExports.size());
936  PendingExports.clear();
937  DAG.setRoot(Root);
938  return Root;
939}
940
941void SelectionDAGBuilder::visit(const Instruction &I) {
942  // Set up outgoing PHI node register values before emitting the terminator.
943  if (isa<TerminatorInst>(&I))
944    HandlePHINodesInSuccessorBlocks(I.getParent());
945
946  ++SDNodeOrder;
947
948  CurInst = &I;
949
950  visit(I.getOpcode(), I);
951
952  if (!isa<TerminatorInst>(&I) && !HasTailCall)
953    CopyToExportRegsIfNeeded(&I);
954
955  CurInst = NULL;
956}
957
958void SelectionDAGBuilder::visitPHI(const PHINode &) {
959  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
960}
961
962void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
963  // Note: this doesn't use InstVisitor, because it has to work with
964  // ConstantExpr's in addition to instructions.
965  switch (Opcode) {
966  default: llvm_unreachable("Unknown instruction type encountered!");
967    // Build the switch statement using the Instruction.def file.
968#define HANDLE_INST(NUM, OPCODE, CLASS) \
969    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
970#include "llvm/IR/Instruction.def"
971  }
972}
973
974// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
975// generate the debug data structures now that we've seen its definition.
976void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
977                                                   SDValue Val) {
978  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
979  if (DDI.getDI()) {
980    const DbgValueInst *DI = DDI.getDI();
981    DebugLoc dl = DDI.getdl();
982    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
983    MDNode *Variable = DI->getVariable();
984    uint64_t Offset = DI->getOffset();
985    SDDbgValue *SDV;
986    if (Val.getNode()) {
987      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
988        SDV = DAG.getDbgValue(Variable, Val.getNode(),
989                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
990        DAG.AddDbgValue(SDV, Val.getNode(), false);
991      }
992    } else
993      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
994    DanglingDebugInfoMap[V] = DanglingDebugInfo();
995  }
996}
997
998/// getValue - Return an SDValue for the given Value.
999SDValue SelectionDAGBuilder::getValue(const Value *V) {
1000  // If we already have an SDValue for this value, use it. It's important
1001  // to do this first, so that we don't create a CopyFromReg if we already
1002  // have a regular SDValue.
1003  SDValue &N = NodeMap[V];
1004  if (N.getNode()) return N;
1005
1006  // If there's a virtual register allocated and initialized for this
1007  // value, use it.
1008  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1009  if (It != FuncInfo.ValueMap.end()) {
1010    unsigned InReg = It->second;
1011    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
1012    SDValue Chain = DAG.getEntryNode();
1013    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1014    resolveDanglingDebugInfo(V, N);
1015    return N;
1016  }
1017
1018  // Otherwise create a new SDValue and remember it.
1019  SDValue Val = getValueImpl(V);
1020  NodeMap[V] = Val;
1021  resolveDanglingDebugInfo(V, Val);
1022  return Val;
1023}
1024
1025/// getNonRegisterValue - Return an SDValue for the given Value, but
1026/// don't look in FuncInfo.ValueMap for a virtual register.
1027SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1028  // If we already have an SDValue for this value, use it.
1029  SDValue &N = NodeMap[V];
1030  if (N.getNode()) return N;
1031
1032  // Otherwise create a new SDValue and remember it.
1033  SDValue Val = getValueImpl(V);
1034  NodeMap[V] = Val;
1035  resolveDanglingDebugInfo(V, Val);
1036  return Val;
1037}
1038
1039/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1040/// Create an SDValue for the given value.
1041SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1042  if (const Constant *C = dyn_cast<Constant>(V)) {
1043    EVT VT = TLI.getValueType(V->getType(), true);
1044
1045    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1046      return DAG.getConstant(*CI, VT);
1047
1048    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1049      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1050
1051    if (isa<ConstantPointerNull>(C))
1052      return DAG.getConstant(0, TLI.getPointerTy());
1053
1054    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1055      return DAG.getConstantFP(*CFP, VT);
1056
1057    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1058      return DAG.getUNDEF(VT);
1059
1060    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1061      visit(CE->getOpcode(), *CE);
1062      SDValue N1 = NodeMap[V];
1063      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1064      return N1;
1065    }
1066
1067    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1068      SmallVector<SDValue, 4> Constants;
1069      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1070           OI != OE; ++OI) {
1071        SDNode *Val = getValue(*OI).getNode();
1072        // If the operand is an empty aggregate, there are no values.
1073        if (!Val) continue;
1074        // Add each leaf value from the operand to the Constants list
1075        // to form a flattened list of all the values.
1076        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1077          Constants.push_back(SDValue(Val, i));
1078      }
1079
1080      return DAG.getMergeValues(&Constants[0], Constants.size(),
1081                                getCurSDLoc());
1082    }
1083
1084    if (const ConstantDataSequential *CDS =
1085          dyn_cast<ConstantDataSequential>(C)) {
1086      SmallVector<SDValue, 4> Ops;
1087      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1088        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1089        // Add each leaf value from the operand to the Constants list
1090        // to form a flattened list of all the values.
1091        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1092          Ops.push_back(SDValue(Val, i));
1093      }
1094
1095      if (isa<ArrayType>(CDS->getType()))
1096        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
1097      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1098                                      VT, &Ops[0], Ops.size());
1099    }
1100
1101    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1102      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1103             "Unknown struct or array constant!");
1104
1105      SmallVector<EVT, 4> ValueVTs;
1106      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1107      unsigned NumElts = ValueVTs.size();
1108      if (NumElts == 0)
1109        return SDValue(); // empty struct
1110      SmallVector<SDValue, 4> Constants(NumElts);
1111      for (unsigned i = 0; i != NumElts; ++i) {
1112        EVT EltVT = ValueVTs[i];
1113        if (isa<UndefValue>(C))
1114          Constants[i] = DAG.getUNDEF(EltVT);
1115        else if (EltVT.isFloatingPoint())
1116          Constants[i] = DAG.getConstantFP(0, EltVT);
1117        else
1118          Constants[i] = DAG.getConstant(0, EltVT);
1119      }
1120
1121      return DAG.getMergeValues(&Constants[0], NumElts,
1122                                getCurSDLoc());
1123    }
1124
1125    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1126      return DAG.getBlockAddress(BA, VT);
1127
1128    VectorType *VecTy = cast<VectorType>(V->getType());
1129    unsigned NumElements = VecTy->getNumElements();
1130
1131    // Now that we know the number and type of the elements, get that number of
1132    // elements into the Ops array based on what kind of constant it is.
1133    SmallVector<SDValue, 16> Ops;
1134    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1135      for (unsigned i = 0; i != NumElements; ++i)
1136        Ops.push_back(getValue(CV->getOperand(i)));
1137    } else {
1138      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1139      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1140
1141      SDValue Op;
1142      if (EltVT.isFloatingPoint())
1143        Op = DAG.getConstantFP(0, EltVT);
1144      else
1145        Op = DAG.getConstant(0, EltVT);
1146      Ops.assign(NumElements, Op);
1147    }
1148
1149    // Create a BUILD_VECTOR node.
1150    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1151                                    VT, &Ops[0], Ops.size());
1152  }
1153
1154  // If this is a static alloca, generate it as the frameindex instead of
1155  // computation.
1156  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1157    DenseMap<const AllocaInst*, int>::iterator SI =
1158      FuncInfo.StaticAllocaMap.find(AI);
1159    if (SI != FuncInfo.StaticAllocaMap.end())
1160      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1161  }
1162
1163  // If this is an instruction which fast-isel has deferred, select it now.
1164  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1165    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1166    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1167    SDValue Chain = DAG.getEntryNode();
1168    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1169  }
1170
1171  llvm_unreachable("Can't get register for value!");
1172}
1173
1174void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1175  SDValue Chain = getControlRoot();
1176  SmallVector<ISD::OutputArg, 8> Outs;
1177  SmallVector<SDValue, 8> OutVals;
1178
1179  if (!FuncInfo.CanLowerReturn) {
1180    unsigned DemoteReg = FuncInfo.DemoteRegister;
1181    const Function *F = I.getParent()->getParent();
1182
1183    // Emit a store of the return value through the virtual register.
1184    // Leave Outs empty so that LowerReturn won't try to load return
1185    // registers the usual way.
1186    SmallVector<EVT, 1> PtrValueVTs;
1187    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1188                    PtrValueVTs);
1189
1190    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1191    SDValue RetOp = getValue(I.getOperand(0));
1192
1193    SmallVector<EVT, 4> ValueVTs;
1194    SmallVector<uint64_t, 4> Offsets;
1195    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1196    unsigned NumValues = ValueVTs.size();
1197
1198    SmallVector<SDValue, 4> Chains(NumValues);
1199    for (unsigned i = 0; i != NumValues; ++i) {
1200      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1201                                RetPtr.getValueType(), RetPtr,
1202                                DAG.getIntPtrConstant(Offsets[i]));
1203      Chains[i] =
1204        DAG.getStore(Chain, getCurSDLoc(),
1205                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1206                     // FIXME: better loc info would be nice.
1207                     Add, MachinePointerInfo(), false, false, 0);
1208    }
1209
1210    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1211                        MVT::Other, &Chains[0], NumValues);
1212  } else if (I.getNumOperands() != 0) {
1213    SmallVector<EVT, 4> ValueVTs;
1214    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1215    unsigned NumValues = ValueVTs.size();
1216    if (NumValues) {
1217      SDValue RetOp = getValue(I.getOperand(0));
1218      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1219        EVT VT = ValueVTs[j];
1220
1221        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1222
1223        const Function *F = I.getParent()->getParent();
1224        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1225                                            Attribute::SExt))
1226          ExtendKind = ISD::SIGN_EXTEND;
1227        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1228                                                 Attribute::ZExt))
1229          ExtendKind = ISD::ZERO_EXTEND;
1230
1231        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1232          VT = TLI.getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1233
1234        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1235        MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1236        SmallVector<SDValue, 4> Parts(NumParts);
1237        getCopyToParts(DAG, getCurSDLoc(),
1238                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1239                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1240
1241        // 'inreg' on function refers to return value
1242        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1243        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1244                                            Attribute::InReg))
1245          Flags.setInReg();
1246
1247        // Propagate extension type if any
1248        if (ExtendKind == ISD::SIGN_EXTEND)
1249          Flags.setSExt();
1250        else if (ExtendKind == ISD::ZERO_EXTEND)
1251          Flags.setZExt();
1252
1253        for (unsigned i = 0; i < NumParts; ++i) {
1254          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1255                                        /*isfixed=*/true, 0, 0));
1256          OutVals.push_back(Parts[i]);
1257        }
1258      }
1259    }
1260  }
1261
1262  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1263  CallingConv::ID CallConv =
1264    DAG.getMachineFunction().getFunction()->getCallingConv();
1265  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1266                          Outs, OutVals, getCurSDLoc(), DAG);
1267
1268  // Verify that the target's LowerReturn behaved as expected.
1269  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1270         "LowerReturn didn't return a valid chain!");
1271
1272  // Update the DAG with the new chain value resulting from return lowering.
1273  DAG.setRoot(Chain);
1274}
1275
1276/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1277/// created for it, emit nodes to copy the value into the virtual
1278/// registers.
1279void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1280  // Skip empty types
1281  if (V->getType()->isEmptyTy())
1282    return;
1283
1284  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1285  if (VMI != FuncInfo.ValueMap.end()) {
1286    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1287    CopyValueToVirtualRegister(V, VMI->second);
1288  }
1289}
1290
1291/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1292/// the current basic block, add it to ValueMap now so that we'll get a
1293/// CopyTo/FromReg.
1294void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1295  // No need to export constants.
1296  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1297
1298  // Already exported?
1299  if (FuncInfo.isExportedInst(V)) return;
1300
1301  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1302  CopyValueToVirtualRegister(V, Reg);
1303}
1304
1305bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1306                                                     const BasicBlock *FromBB) {
1307  // The operands of the setcc have to be in this block.  We don't know
1308  // how to export them from some other block.
1309  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1310    // Can export from current BB.
1311    if (VI->getParent() == FromBB)
1312      return true;
1313
1314    // Is already exported, noop.
1315    return FuncInfo.isExportedInst(V);
1316  }
1317
1318  // If this is an argument, we can export it if the BB is the entry block or
1319  // if it is already exported.
1320  if (isa<Argument>(V)) {
1321    if (FromBB == &FromBB->getParent()->getEntryBlock())
1322      return true;
1323
1324    // Otherwise, can only export this if it is already exported.
1325    return FuncInfo.isExportedInst(V);
1326  }
1327
1328  // Otherwise, constants can always be exported.
1329  return true;
1330}
1331
1332/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1333uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1334                                            const MachineBasicBlock *Dst) const {
1335  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1336  if (!BPI)
1337    return 0;
1338  const BasicBlock *SrcBB = Src->getBasicBlock();
1339  const BasicBlock *DstBB = Dst->getBasicBlock();
1340  return BPI->getEdgeWeight(SrcBB, DstBB);
1341}
1342
1343void SelectionDAGBuilder::
1344addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1345                       uint32_t Weight /* = 0 */) {
1346  if (!Weight)
1347    Weight = getEdgeWeight(Src, Dst);
1348  Src->addSuccessor(Dst, Weight);
1349}
1350
1351
1352static bool InBlock(const Value *V, const BasicBlock *BB) {
1353  if (const Instruction *I = dyn_cast<Instruction>(V))
1354    return I->getParent() == BB;
1355  return true;
1356}
1357
1358/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1359/// This function emits a branch and is used at the leaves of an OR or an
1360/// AND operator tree.
1361///
1362void
1363SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1364                                                  MachineBasicBlock *TBB,
1365                                                  MachineBasicBlock *FBB,
1366                                                  MachineBasicBlock *CurBB,
1367                                                  MachineBasicBlock *SwitchBB) {
1368  const BasicBlock *BB = CurBB->getBasicBlock();
1369
1370  // If the leaf of the tree is a comparison, merge the condition into
1371  // the caseblock.
1372  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1373    // The operands of the cmp have to be in this block.  We don't know
1374    // how to export them from some other block.  If this is the first block
1375    // of the sequence, no exporting is needed.
1376    if (CurBB == SwitchBB ||
1377        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1378         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1379      ISD::CondCode Condition;
1380      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1381        Condition = getICmpCondCode(IC->getPredicate());
1382      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1383        Condition = getFCmpCondCode(FC->getPredicate());
1384        if (TM.Options.NoNaNsFPMath)
1385          Condition = getFCmpCodeWithoutNaN(Condition);
1386      } else {
1387        Condition = ISD::SETEQ; // silence warning.
1388        llvm_unreachable("Unknown compare instruction");
1389      }
1390
1391      CaseBlock CB(Condition, BOp->getOperand(0),
1392                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1393      SwitchCases.push_back(CB);
1394      return;
1395    }
1396  }
1397
1398  // Create a CaseBlock record representing this branch.
1399  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1400               NULL, TBB, FBB, CurBB);
1401  SwitchCases.push_back(CB);
1402}
1403
1404/// FindMergedConditions - If Cond is an expression like
1405void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1406                                               MachineBasicBlock *TBB,
1407                                               MachineBasicBlock *FBB,
1408                                               MachineBasicBlock *CurBB,
1409                                               MachineBasicBlock *SwitchBB,
1410                                               unsigned Opc) {
1411  // If this node is not part of the or/and tree, emit it as a branch.
1412  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1413  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1414      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1415      BOp->getParent() != CurBB->getBasicBlock() ||
1416      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1417      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1418    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1419    return;
1420  }
1421
1422  //  Create TmpBB after CurBB.
1423  MachineFunction::iterator BBI = CurBB;
1424  MachineFunction &MF = DAG.getMachineFunction();
1425  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1426  CurBB->getParent()->insert(++BBI, TmpBB);
1427
1428  if (Opc == Instruction::Or) {
1429    // Codegen X | Y as:
1430    //   jmp_if_X TBB
1431    //   jmp TmpBB
1432    // TmpBB:
1433    //   jmp_if_Y TBB
1434    //   jmp FBB
1435    //
1436
1437    // Emit the LHS condition.
1438    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1439
1440    // Emit the RHS condition into TmpBB.
1441    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1442  } else {
1443    assert(Opc == Instruction::And && "Unknown merge op!");
1444    // Codegen X & Y as:
1445    //   jmp_if_X TmpBB
1446    //   jmp FBB
1447    // TmpBB:
1448    //   jmp_if_Y TBB
1449    //   jmp FBB
1450    //
1451    //  This requires creation of TmpBB after CurBB.
1452
1453    // Emit the LHS condition.
1454    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1455
1456    // Emit the RHS condition into TmpBB.
1457    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1458  }
1459}
1460
1461/// If the set of cases should be emitted as a series of branches, return true.
1462/// If we should emit this as a bunch of and/or'd together conditions, return
1463/// false.
1464bool
1465SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1466  if (Cases.size() != 2) return true;
1467
1468  // If this is two comparisons of the same values or'd or and'd together, they
1469  // will get folded into a single comparison, so don't emit two blocks.
1470  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1471       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1472      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1473       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1474    return false;
1475  }
1476
1477  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1478  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1479  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1480      Cases[0].CC == Cases[1].CC &&
1481      isa<Constant>(Cases[0].CmpRHS) &&
1482      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1483    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1484      return false;
1485    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1486      return false;
1487  }
1488
1489  return true;
1490}
1491
1492void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1493  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1494
1495  // Update machine-CFG edges.
1496  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1497
1498  // Figure out which block is immediately after the current one.
1499  MachineBasicBlock *NextBlock = 0;
1500  MachineFunction::iterator BBI = BrMBB;
1501  if (++BBI != FuncInfo.MF->end())
1502    NextBlock = BBI;
1503
1504  if (I.isUnconditional()) {
1505    // Update machine-CFG edges.
1506    BrMBB->addSuccessor(Succ0MBB);
1507
1508    // If this is not a fall-through branch, emit the branch.
1509    if (Succ0MBB != NextBlock)
1510      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1511                              MVT::Other, getControlRoot(),
1512                              DAG.getBasicBlock(Succ0MBB)));
1513
1514    return;
1515  }
1516
1517  // If this condition is one of the special cases we handle, do special stuff
1518  // now.
1519  const Value *CondVal = I.getCondition();
1520  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1521
1522  // If this is a series of conditions that are or'd or and'd together, emit
1523  // this as a sequence of branches instead of setcc's with and/or operations.
1524  // As long as jumps are not expensive, this should improve performance.
1525  // For example, instead of something like:
1526  //     cmp A, B
1527  //     C = seteq
1528  //     cmp D, E
1529  //     F = setle
1530  //     or C, F
1531  //     jnz foo
1532  // Emit:
1533  //     cmp A, B
1534  //     je foo
1535  //     cmp D, E
1536  //     jle foo
1537  //
1538  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1539    if (!TLI.isJumpExpensive() &&
1540        BOp->hasOneUse() &&
1541        (BOp->getOpcode() == Instruction::And ||
1542         BOp->getOpcode() == Instruction::Or)) {
1543      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1544                           BOp->getOpcode());
1545      // If the compares in later blocks need to use values not currently
1546      // exported from this block, export them now.  This block should always
1547      // be the first entry.
1548      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1549
1550      // Allow some cases to be rejected.
1551      if (ShouldEmitAsBranches(SwitchCases)) {
1552        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1553          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1554          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1555        }
1556
1557        // Emit the branch for this block.
1558        visitSwitchCase(SwitchCases[0], BrMBB);
1559        SwitchCases.erase(SwitchCases.begin());
1560        return;
1561      }
1562
1563      // Okay, we decided not to do this, remove any inserted MBB's and clear
1564      // SwitchCases.
1565      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1566        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1567
1568      SwitchCases.clear();
1569    }
1570  }
1571
1572  // Create a CaseBlock record representing this branch.
1573  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1574               NULL, Succ0MBB, Succ1MBB, BrMBB);
1575
1576  // Use visitSwitchCase to actually insert the fast branch sequence for this
1577  // cond branch.
1578  visitSwitchCase(CB, BrMBB);
1579}
1580
1581/// visitSwitchCase - Emits the necessary code to represent a single node in
1582/// the binary search tree resulting from lowering a switch instruction.
1583void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1584                                          MachineBasicBlock *SwitchBB) {
1585  SDValue Cond;
1586  SDValue CondLHS = getValue(CB.CmpLHS);
1587  SDLoc dl = getCurSDLoc();
1588
1589  // Build the setcc now.
1590  if (CB.CmpMHS == NULL) {
1591    // Fold "(X == true)" to X and "(X == false)" to !X to
1592    // handle common cases produced by branch lowering.
1593    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1594        CB.CC == ISD::SETEQ)
1595      Cond = CondLHS;
1596    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1597             CB.CC == ISD::SETEQ) {
1598      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1599      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1600    } else
1601      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1602  } else {
1603    assert(CB.CC == ISD::SETCC_INVALID &&
1604           "Condition is undefined for to-the-range belonging check.");
1605
1606    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1607    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1608
1609    SDValue CmpOp = getValue(CB.CmpMHS);
1610    EVT VT = CmpOp.getValueType();
1611
1612    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1613      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1614                          ISD::SETULE);
1615    } else {
1616      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1617                                VT, CmpOp, DAG.getConstant(Low, VT));
1618      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1619                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1620    }
1621  }
1622
1623  // Update successor info
1624  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1625  // TrueBB and FalseBB are always different unless the incoming IR is
1626  // degenerate. This only happens when running llc on weird IR.
1627  if (CB.TrueBB != CB.FalseBB)
1628    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1629
1630  // Set NextBlock to be the MBB immediately after the current one, if any.
1631  // This is used to avoid emitting unnecessary branches to the next block.
1632  MachineBasicBlock *NextBlock = 0;
1633  MachineFunction::iterator BBI = SwitchBB;
1634  if (++BBI != FuncInfo.MF->end())
1635    NextBlock = BBI;
1636
1637  // If the lhs block is the next block, invert the condition so that we can
1638  // fall through to the lhs instead of the rhs block.
1639  if (CB.TrueBB == NextBlock) {
1640    std::swap(CB.TrueBB, CB.FalseBB);
1641    SDValue True = DAG.getConstant(1, Cond.getValueType());
1642    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1643  }
1644
1645  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1646                               MVT::Other, getControlRoot(), Cond,
1647                               DAG.getBasicBlock(CB.TrueBB));
1648
1649  // Insert the false branch. Do this even if it's a fall through branch,
1650  // this makes it easier to do DAG optimizations which require inverting
1651  // the branch condition.
1652  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1653                       DAG.getBasicBlock(CB.FalseBB));
1654
1655  DAG.setRoot(BrCond);
1656}
1657
1658/// visitJumpTable - Emit JumpTable node in the current MBB
1659void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1660  // Emit the code for the jump table
1661  assert(JT.Reg != -1U && "Should lower JT Header first!");
1662  EVT PTy = TLI.getPointerTy();
1663  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1664                                     JT.Reg, PTy);
1665  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1666  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1667                                    MVT::Other, Index.getValue(1),
1668                                    Table, Index);
1669  DAG.setRoot(BrJumpTable);
1670}
1671
1672/// visitJumpTableHeader - This function emits necessary code to produce index
1673/// in the JumpTable from switch case.
1674void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1675                                               JumpTableHeader &JTH,
1676                                               MachineBasicBlock *SwitchBB) {
1677  // Subtract the lowest switch case value from the value being switched on and
1678  // conditional branch to default mbb if the result is greater than the
1679  // difference between smallest and largest cases.
1680  SDValue SwitchOp = getValue(JTH.SValue);
1681  EVT VT = SwitchOp.getValueType();
1682  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1683                            DAG.getConstant(JTH.First, VT));
1684
1685  // The SDNode we just created, which holds the value being switched on minus
1686  // the smallest case value, needs to be copied to a virtual register so it
1687  // can be used as an index into the jump table in a subsequent basic block.
1688  // This value may be smaller or larger than the target's pointer type, and
1689  // therefore require extension or truncating.
1690  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy());
1691
1692  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1693  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1694                                    JumpTableReg, SwitchOp);
1695  JT.Reg = JumpTableReg;
1696
1697  // Emit the range check for the jump table, and branch to the default block
1698  // for the switch statement if the value being switched on exceeds the largest
1699  // case in the switch.
1700  SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1701                             TLI.getSetCCResultType(*DAG.getContext(),
1702                                                    Sub.getValueType()),
1703                             Sub,
1704                             DAG.getConstant(JTH.Last - JTH.First,VT),
1705                             ISD::SETUGT);
1706
1707  // Set NextBlock to be the MBB immediately after the current one, if any.
1708  // This is used to avoid emitting unnecessary branches to the next block.
1709  MachineBasicBlock *NextBlock = 0;
1710  MachineFunction::iterator BBI = SwitchBB;
1711
1712  if (++BBI != FuncInfo.MF->end())
1713    NextBlock = BBI;
1714
1715  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1716                               MVT::Other, CopyTo, CMP,
1717                               DAG.getBasicBlock(JT.Default));
1718
1719  if (JT.MBB != NextBlock)
1720    BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1721                         DAG.getBasicBlock(JT.MBB));
1722
1723  DAG.setRoot(BrCond);
1724}
1725
1726/// visitBitTestHeader - This function emits necessary code to produce value
1727/// suitable for "bit tests"
1728void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1729                                             MachineBasicBlock *SwitchBB) {
1730  // Subtract the minimum value
1731  SDValue SwitchOp = getValue(B.SValue);
1732  EVT VT = SwitchOp.getValueType();
1733  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1734                            DAG.getConstant(B.First, VT));
1735
1736  // Check range
1737  SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1738                                  TLI.getSetCCResultType(*DAG.getContext(),
1739                                                         Sub.getValueType()),
1740                                  Sub, DAG.getConstant(B.Range, VT),
1741                                  ISD::SETUGT);
1742
1743  // Determine the type of the test operands.
1744  bool UsePtrType = false;
1745  if (!TLI.isTypeLegal(VT))
1746    UsePtrType = true;
1747  else {
1748    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1749      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1750        // Switch table case range are encoded into series of masks.
1751        // Just use pointer type, it's guaranteed to fit.
1752        UsePtrType = true;
1753        break;
1754      }
1755  }
1756  if (UsePtrType) {
1757    VT = TLI.getPointerTy();
1758    Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1759  }
1760
1761  B.RegVT = VT.getSimpleVT();
1762  B.Reg = FuncInfo.CreateReg(B.RegVT);
1763  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1764                                    B.Reg, Sub);
1765
1766  // Set NextBlock to be the MBB immediately after the current one, if any.
1767  // This is used to avoid emitting unnecessary branches to the next block.
1768  MachineBasicBlock *NextBlock = 0;
1769  MachineFunction::iterator BBI = SwitchBB;
1770  if (++BBI != FuncInfo.MF->end())
1771    NextBlock = BBI;
1772
1773  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1774
1775  addSuccessorWithWeight(SwitchBB, B.Default);
1776  addSuccessorWithWeight(SwitchBB, MBB);
1777
1778  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1779                                MVT::Other, CopyTo, RangeCmp,
1780                                DAG.getBasicBlock(B.Default));
1781
1782  if (MBB != NextBlock)
1783    BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1784                          DAG.getBasicBlock(MBB));
1785
1786  DAG.setRoot(BrRange);
1787}
1788
1789/// visitBitTestCase - this function produces one "bit test"
1790void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1791                                           MachineBasicBlock* NextMBB,
1792                                           uint32_t BranchWeightToNext,
1793                                           unsigned Reg,
1794                                           BitTestCase &B,
1795                                           MachineBasicBlock *SwitchBB) {
1796  MVT VT = BB.RegVT;
1797  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1798                                       Reg, VT);
1799  SDValue Cmp;
1800  unsigned PopCount = CountPopulation_64(B.Mask);
1801  if (PopCount == 1) {
1802    // Testing for a single bit; just compare the shift count with what it
1803    // would need to be to shift a 1 bit in that position.
1804    Cmp = DAG.getSetCC(getCurSDLoc(),
1805                       TLI.getSetCCResultType(*DAG.getContext(), VT),
1806                       ShiftOp,
1807                       DAG.getConstant(countTrailingZeros(B.Mask), VT),
1808                       ISD::SETEQ);
1809  } else if (PopCount == BB.Range) {
1810    // There is only one zero bit in the range, test for it directly.
1811    Cmp = DAG.getSetCC(getCurSDLoc(),
1812                       TLI.getSetCCResultType(*DAG.getContext(), VT),
1813                       ShiftOp,
1814                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1815                       ISD::SETNE);
1816  } else {
1817    // Make desired shift
1818    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1819                                    DAG.getConstant(1, VT), ShiftOp);
1820
1821    // Emit bit tests and jumps
1822    SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1823                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1824    Cmp = DAG.getSetCC(getCurSDLoc(),
1825                       TLI.getSetCCResultType(*DAG.getContext(), VT),
1826                       AndOp, DAG.getConstant(0, VT),
1827                       ISD::SETNE);
1828  }
1829
1830  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1831  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1832  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1833  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1834
1835  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1836                              MVT::Other, getControlRoot(),
1837                              Cmp, DAG.getBasicBlock(B.TargetBB));
1838
1839  // Set NextBlock to be the MBB immediately after the current one, if any.
1840  // This is used to avoid emitting unnecessary branches to the next block.
1841  MachineBasicBlock *NextBlock = 0;
1842  MachineFunction::iterator BBI = SwitchBB;
1843  if (++BBI != FuncInfo.MF->end())
1844    NextBlock = BBI;
1845
1846  if (NextMBB != NextBlock)
1847    BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1848                        DAG.getBasicBlock(NextMBB));
1849
1850  DAG.setRoot(BrAnd);
1851}
1852
1853void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1854  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1855
1856  // Retrieve successors.
1857  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1858  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1859
1860  const Value *Callee(I.getCalledValue());
1861  const Function *Fn = dyn_cast<Function>(Callee);
1862  if (isa<InlineAsm>(Callee))
1863    visitInlineAsm(&I);
1864  else if (Fn && Fn->isIntrinsic()) {
1865    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1866    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1867  } else
1868    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1869
1870  // If the value of the invoke is used outside of its defining block, make it
1871  // available as a virtual register.
1872  CopyToExportRegsIfNeeded(&I);
1873
1874  // Update successor info
1875  addSuccessorWithWeight(InvokeMBB, Return);
1876  addSuccessorWithWeight(InvokeMBB, LandingPad);
1877
1878  // Drop into normal successor.
1879  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1880                          MVT::Other, getControlRoot(),
1881                          DAG.getBasicBlock(Return)));
1882}
1883
1884void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1885  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1886}
1887
1888void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1889  assert(FuncInfo.MBB->isLandingPad() &&
1890         "Call to landingpad not in landing pad!");
1891
1892  MachineBasicBlock *MBB = FuncInfo.MBB;
1893  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1894  AddLandingPadInfo(LP, MMI, MBB);
1895
1896  // If there aren't registers to copy the values into (e.g., during SjLj
1897  // exceptions), then don't bother to create these DAG nodes.
1898  if (TLI.getExceptionPointerRegister() == 0 &&
1899      TLI.getExceptionSelectorRegister() == 0)
1900    return;
1901
1902  SmallVector<EVT, 2> ValueVTs;
1903  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1904
1905  // Insert the EXCEPTIONADDR instruction.
1906  assert(FuncInfo.MBB->isLandingPad() &&
1907         "Call to eh.exception not in landing pad!");
1908  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1909  SDValue Ops[2];
1910  Ops[0] = DAG.getRoot();
1911  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurSDLoc(), VTs, Ops, 1);
1912  SDValue Chain = Op1.getValue(1);
1913
1914  // Insert the EHSELECTION instruction.
1915  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1916  Ops[0] = Op1;
1917  Ops[1] = Chain;
1918  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurSDLoc(), VTs, Ops, 2);
1919  Chain = Op2.getValue(1);
1920  Op2 = DAG.getSExtOrTrunc(Op2, getCurSDLoc(), MVT::i32);
1921
1922  Ops[0] = Op1;
1923  Ops[1] = Op2;
1924  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
1925                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1926                            &Ops[0], 2);
1927
1928  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1929  setValue(&LP, RetPair.first);
1930  DAG.setRoot(RetPair.second);
1931}
1932
1933/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1934/// small case ranges).
1935bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1936                                                 CaseRecVector& WorkList,
1937                                                 const Value* SV,
1938                                                 MachineBasicBlock *Default,
1939                                                 MachineBasicBlock *SwitchBB) {
1940  // Size is the number of Cases represented by this range.
1941  size_t Size = CR.Range.second - CR.Range.first;
1942  if (Size > 3)
1943    return false;
1944
1945  // Get the MachineFunction which holds the current MBB.  This is used when
1946  // inserting any additional MBBs necessary to represent the switch.
1947  MachineFunction *CurMF = FuncInfo.MF;
1948
1949  // Figure out which block is immediately after the current one.
1950  MachineBasicBlock *NextBlock = 0;
1951  MachineFunction::iterator BBI = CR.CaseBB;
1952
1953  if (++BBI != FuncInfo.MF->end())
1954    NextBlock = BBI;
1955
1956  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1957  // If any two of the cases has the same destination, and if one value
1958  // is the same as the other, but has one bit unset that the other has set,
1959  // use bit manipulation to do two compares at once.  For example:
1960  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1961  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1962  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1963  if (Size == 2 && CR.CaseBB == SwitchBB) {
1964    Case &Small = *CR.Range.first;
1965    Case &Big = *(CR.Range.second-1);
1966
1967    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1968      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1969      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1970
1971      // Check that there is only one bit different.
1972      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1973          (SmallValue | BigValue) == BigValue) {
1974        // Isolate the common bit.
1975        APInt CommonBit = BigValue & ~SmallValue;
1976        assert((SmallValue | CommonBit) == BigValue &&
1977               CommonBit.countPopulation() == 1 && "Not a common bit?");
1978
1979        SDValue CondLHS = getValue(SV);
1980        EVT VT = CondLHS.getValueType();
1981        SDLoc DL = getCurSDLoc();
1982
1983        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1984                                 DAG.getConstant(CommonBit, VT));
1985        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1986                                    Or, DAG.getConstant(BigValue, VT),
1987                                    ISD::SETEQ);
1988
1989        // Update successor info.
1990        // Both Small and Big will jump to Small.BB, so we sum up the weights.
1991        addSuccessorWithWeight(SwitchBB, Small.BB,
1992                               Small.ExtraWeight + Big.ExtraWeight);
1993        addSuccessorWithWeight(SwitchBB, Default,
1994          // The default destination is the first successor in IR.
1995          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
1996
1997        // Insert the true branch.
1998        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1999                                     getControlRoot(), Cond,
2000                                     DAG.getBasicBlock(Small.BB));
2001
2002        // Insert the false branch.
2003        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2004                             DAG.getBasicBlock(Default));
2005
2006        DAG.setRoot(BrCond);
2007        return true;
2008      }
2009    }
2010  }
2011
2012  // Order cases by weight so the most likely case will be checked first.
2013  uint32_t UnhandledWeights = 0;
2014  if (BPI) {
2015    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2016      uint32_t IWeight = I->ExtraWeight;
2017      UnhandledWeights += IWeight;
2018      for (CaseItr J = CR.Range.first; J < I; ++J) {
2019        uint32_t JWeight = J->ExtraWeight;
2020        if (IWeight > JWeight)
2021          std::swap(*I, *J);
2022      }
2023    }
2024  }
2025  // Rearrange the case blocks so that the last one falls through if possible.
2026  Case &BackCase = *(CR.Range.second-1);
2027  if (Size > 1 &&
2028      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2029    // The last case block won't fall through into 'NextBlock' if we emit the
2030    // branches in this order.  See if rearranging a case value would help.
2031    // We start at the bottom as it's the case with the least weight.
2032    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2033      if (I->BB == NextBlock) {
2034        std::swap(*I, BackCase);
2035        break;
2036      }
2037    }
2038  }
2039
2040  // Create a CaseBlock record representing a conditional branch to
2041  // the Case's target mbb if the value being switched on SV is equal
2042  // to C.
2043  MachineBasicBlock *CurBlock = CR.CaseBB;
2044  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2045    MachineBasicBlock *FallThrough;
2046    if (I != E-1) {
2047      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2048      CurMF->insert(BBI, FallThrough);
2049
2050      // Put SV in a virtual register to make it available from the new blocks.
2051      ExportFromCurrentBlock(SV);
2052    } else {
2053      // If the last case doesn't match, go to the default block.
2054      FallThrough = Default;
2055    }
2056
2057    const Value *RHS, *LHS, *MHS;
2058    ISD::CondCode CC;
2059    if (I->High == I->Low) {
2060      // This is just small small case range :) containing exactly 1 case
2061      CC = ISD::SETEQ;
2062      LHS = SV; RHS = I->High; MHS = NULL;
2063    } else {
2064      CC = ISD::SETCC_INVALID;
2065      LHS = I->Low; MHS = SV; RHS = I->High;
2066    }
2067
2068    // The false weight should be sum of all un-handled cases.
2069    UnhandledWeights -= I->ExtraWeight;
2070    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2071                 /* me */ CurBlock,
2072                 /* trueweight */ I->ExtraWeight,
2073                 /* falseweight */ UnhandledWeights);
2074
2075    // If emitting the first comparison, just call visitSwitchCase to emit the
2076    // code into the current block.  Otherwise, push the CaseBlock onto the
2077    // vector to be later processed by SDISel, and insert the node's MBB
2078    // before the next MBB.
2079    if (CurBlock == SwitchBB)
2080      visitSwitchCase(CB, SwitchBB);
2081    else
2082      SwitchCases.push_back(CB);
2083
2084    CurBlock = FallThrough;
2085  }
2086
2087  return true;
2088}
2089
2090static inline bool areJTsAllowed(const TargetLowering &TLI) {
2091  return TLI.supportJumpTables() &&
2092          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2093           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2094}
2095
2096static APInt ComputeRange(const APInt &First, const APInt &Last) {
2097  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2098  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2099  return (LastExt - FirstExt + 1ULL);
2100}
2101
2102/// handleJTSwitchCase - Emit jumptable for current switch case range
2103bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2104                                             CaseRecVector &WorkList,
2105                                             const Value *SV,
2106                                             MachineBasicBlock *Default,
2107                                             MachineBasicBlock *SwitchBB) {
2108  Case& FrontCase = *CR.Range.first;
2109  Case& BackCase  = *(CR.Range.second-1);
2110
2111  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2112  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2113
2114  APInt TSize(First.getBitWidth(), 0);
2115  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2116    TSize += I->size();
2117
2118  if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2119    return false;
2120
2121  APInt Range = ComputeRange(First, Last);
2122  // The density is TSize / Range. Require at least 40%.
2123  // It should not be possible for IntTSize to saturate for sane code, but make
2124  // sure we handle Range saturation correctly.
2125  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2126  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2127  if (IntTSize * 10 < IntRange * 4)
2128    return false;
2129
2130  DEBUG(dbgs() << "Lowering jump table\n"
2131               << "First entry: " << First << ". Last entry: " << Last << '\n'
2132               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2133
2134  // Get the MachineFunction which holds the current MBB.  This is used when
2135  // inserting any additional MBBs necessary to represent the switch.
2136  MachineFunction *CurMF = FuncInfo.MF;
2137
2138  // Figure out which block is immediately after the current one.
2139  MachineFunction::iterator BBI = CR.CaseBB;
2140  ++BBI;
2141
2142  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2143
2144  // Create a new basic block to hold the code for loading the address
2145  // of the jump table, and jumping to it.  Update successor information;
2146  // we will either branch to the default case for the switch, or the jump
2147  // table.
2148  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2149  CurMF->insert(BBI, JumpTableBB);
2150
2151  addSuccessorWithWeight(CR.CaseBB, Default);
2152  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2153
2154  // Build a vector of destination BBs, corresponding to each target
2155  // of the jump table. If the value of the jump table slot corresponds to
2156  // a case statement, push the case's BB onto the vector, otherwise, push
2157  // the default BB.
2158  std::vector<MachineBasicBlock*> DestBBs;
2159  APInt TEI = First;
2160  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2161    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2162    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2163
2164    if (Low.ule(TEI) && TEI.ule(High)) {
2165      DestBBs.push_back(I->BB);
2166      if (TEI==High)
2167        ++I;
2168    } else {
2169      DestBBs.push_back(Default);
2170    }
2171  }
2172
2173  // Calculate weight for each unique destination in CR.
2174  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2175  if (FuncInfo.BPI)
2176    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2177      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2178          DestWeights.find(I->BB);
2179      if (Itr != DestWeights.end())
2180        Itr->second += I->ExtraWeight;
2181      else
2182        DestWeights[I->BB] = I->ExtraWeight;
2183    }
2184
2185  // Update successor info. Add one edge to each unique successor.
2186  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2187  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2188         E = DestBBs.end(); I != E; ++I) {
2189    if (!SuccsHandled[(*I)->getNumber()]) {
2190      SuccsHandled[(*I)->getNumber()] = true;
2191      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2192          DestWeights.find(*I);
2193      addSuccessorWithWeight(JumpTableBB, *I,
2194                             Itr != DestWeights.end() ? Itr->second : 0);
2195    }
2196  }
2197
2198  // Create a jump table index for this jump table.
2199  unsigned JTEncoding = TLI.getJumpTableEncoding();
2200  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2201                       ->createJumpTableIndex(DestBBs);
2202
2203  // Set the jump table information so that we can codegen it as a second
2204  // MachineBasicBlock
2205  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2206  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2207  if (CR.CaseBB == SwitchBB)
2208    visitJumpTableHeader(JT, JTH, SwitchBB);
2209
2210  JTCases.push_back(JumpTableBlock(JTH, JT));
2211  return true;
2212}
2213
2214/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2215/// 2 subtrees.
2216bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2217                                                  CaseRecVector& WorkList,
2218                                                  const Value* SV,
2219                                                  MachineBasicBlock *Default,
2220                                                  MachineBasicBlock *SwitchBB) {
2221  // Get the MachineFunction which holds the current MBB.  This is used when
2222  // inserting any additional MBBs necessary to represent the switch.
2223  MachineFunction *CurMF = FuncInfo.MF;
2224
2225  // Figure out which block is immediately after the current one.
2226  MachineFunction::iterator BBI = CR.CaseBB;
2227  ++BBI;
2228
2229  Case& FrontCase = *CR.Range.first;
2230  Case& BackCase  = *(CR.Range.second-1);
2231  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2232
2233  // Size is the number of Cases represented by this range.
2234  unsigned Size = CR.Range.second - CR.Range.first;
2235
2236  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2237  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2238  double FMetric = 0;
2239  CaseItr Pivot = CR.Range.first + Size/2;
2240
2241  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2242  // (heuristically) allow us to emit JumpTable's later.
2243  APInt TSize(First.getBitWidth(), 0);
2244  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2245       I!=E; ++I)
2246    TSize += I->size();
2247
2248  APInt LSize = FrontCase.size();
2249  APInt RSize = TSize-LSize;
2250  DEBUG(dbgs() << "Selecting best pivot: \n"
2251               << "First: " << First << ", Last: " << Last <<'\n'
2252               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2253  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2254       J!=E; ++I, ++J) {
2255    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2256    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2257    APInt Range = ComputeRange(LEnd, RBegin);
2258    assert((Range - 2ULL).isNonNegative() &&
2259           "Invalid case distance");
2260    // Use volatile double here to avoid excess precision issues on some hosts,
2261    // e.g. that use 80-bit X87 registers.
2262    volatile double LDensity =
2263       (double)LSize.roundToDouble() /
2264                           (LEnd - First + 1ULL).roundToDouble();
2265    volatile double RDensity =
2266      (double)RSize.roundToDouble() /
2267                           (Last - RBegin + 1ULL).roundToDouble();
2268    double Metric = Range.logBase2()*(LDensity+RDensity);
2269    // Should always split in some non-trivial place
2270    DEBUG(dbgs() <<"=>Step\n"
2271                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2272                 << "LDensity: " << LDensity
2273                 << ", RDensity: " << RDensity << '\n'
2274                 << "Metric: " << Metric << '\n');
2275    if (FMetric < Metric) {
2276      Pivot = J;
2277      FMetric = Metric;
2278      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2279    }
2280
2281    LSize += J->size();
2282    RSize -= J->size();
2283  }
2284  if (areJTsAllowed(TLI)) {
2285    // If our case is dense we *really* should handle it earlier!
2286    assert((FMetric > 0) && "Should handle dense range earlier!");
2287  } else {
2288    Pivot = CR.Range.first + Size/2;
2289  }
2290
2291  CaseRange LHSR(CR.Range.first, Pivot);
2292  CaseRange RHSR(Pivot, CR.Range.second);
2293  const Constant *C = Pivot->Low;
2294  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2295
2296  // We know that we branch to the LHS if the Value being switched on is
2297  // less than the Pivot value, C.  We use this to optimize our binary
2298  // tree a bit, by recognizing that if SV is greater than or equal to the
2299  // LHS's Case Value, and that Case Value is exactly one less than the
2300  // Pivot's Value, then we can branch directly to the LHS's Target,
2301  // rather than creating a leaf node for it.
2302  if ((LHSR.second - LHSR.first) == 1 &&
2303      LHSR.first->High == CR.GE &&
2304      cast<ConstantInt>(C)->getValue() ==
2305      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2306    TrueBB = LHSR.first->BB;
2307  } else {
2308    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2309    CurMF->insert(BBI, TrueBB);
2310    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2311
2312    // Put SV in a virtual register to make it available from the new blocks.
2313    ExportFromCurrentBlock(SV);
2314  }
2315
2316  // Similar to the optimization above, if the Value being switched on is
2317  // known to be less than the Constant CR.LT, and the current Case Value
2318  // is CR.LT - 1, then we can branch directly to the target block for
2319  // the current Case Value, rather than emitting a RHS leaf node for it.
2320  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2321      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2322      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2323    FalseBB = RHSR.first->BB;
2324  } else {
2325    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2326    CurMF->insert(BBI, FalseBB);
2327    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2328
2329    // Put SV in a virtual register to make it available from the new blocks.
2330    ExportFromCurrentBlock(SV);
2331  }
2332
2333  // Create a CaseBlock record representing a conditional branch to
2334  // the LHS node if the value being switched on SV is less than C.
2335  // Otherwise, branch to LHS.
2336  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2337
2338  if (CR.CaseBB == SwitchBB)
2339    visitSwitchCase(CB, SwitchBB);
2340  else
2341    SwitchCases.push_back(CB);
2342
2343  return true;
2344}
2345
2346/// handleBitTestsSwitchCase - if current case range has few destination and
2347/// range span less, than machine word bitwidth, encode case range into series
2348/// of masks and emit bit tests with these masks.
2349bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2350                                                   CaseRecVector& WorkList,
2351                                                   const Value* SV,
2352                                                   MachineBasicBlock* Default,
2353                                                   MachineBasicBlock *SwitchBB){
2354  EVT PTy = TLI.getPointerTy();
2355  unsigned IntPtrBits = PTy.getSizeInBits();
2356
2357  Case& FrontCase = *CR.Range.first;
2358  Case& BackCase  = *(CR.Range.second-1);
2359
2360  // Get the MachineFunction which holds the current MBB.  This is used when
2361  // inserting any additional MBBs necessary to represent the switch.
2362  MachineFunction *CurMF = FuncInfo.MF;
2363
2364  // If target does not have legal shift left, do not emit bit tests at all.
2365  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2366    return false;
2367
2368  size_t numCmps = 0;
2369  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2370       I!=E; ++I) {
2371    // Single case counts one, case range - two.
2372    numCmps += (I->Low == I->High ? 1 : 2);
2373  }
2374
2375  // Count unique destinations
2376  SmallSet<MachineBasicBlock*, 4> Dests;
2377  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2378    Dests.insert(I->BB);
2379    if (Dests.size() > 3)
2380      // Don't bother the code below, if there are too much unique destinations
2381      return false;
2382  }
2383  DEBUG(dbgs() << "Total number of unique destinations: "
2384        << Dests.size() << '\n'
2385        << "Total number of comparisons: " << numCmps << '\n');
2386
2387  // Compute span of values.
2388  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2389  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2390  APInt cmpRange = maxValue - minValue;
2391
2392  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2393               << "Low bound: " << minValue << '\n'
2394               << "High bound: " << maxValue << '\n');
2395
2396  if (cmpRange.uge(IntPtrBits) ||
2397      (!(Dests.size() == 1 && numCmps >= 3) &&
2398       !(Dests.size() == 2 && numCmps >= 5) &&
2399       !(Dests.size() >= 3 && numCmps >= 6)))
2400    return false;
2401
2402  DEBUG(dbgs() << "Emitting bit tests\n");
2403  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2404
2405  // Optimize the case where all the case values fit in a
2406  // word without having to subtract minValue. In this case,
2407  // we can optimize away the subtraction.
2408  if (maxValue.ult(IntPtrBits)) {
2409    cmpRange = maxValue;
2410  } else {
2411    lowBound = minValue;
2412  }
2413
2414  CaseBitsVector CasesBits;
2415  unsigned i, count = 0;
2416
2417  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2418    MachineBasicBlock* Dest = I->BB;
2419    for (i = 0; i < count; ++i)
2420      if (Dest == CasesBits[i].BB)
2421        break;
2422
2423    if (i == count) {
2424      assert((count < 3) && "Too much destinations to test!");
2425      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2426      count++;
2427    }
2428
2429    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2430    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2431
2432    uint64_t lo = (lowValue - lowBound).getZExtValue();
2433    uint64_t hi = (highValue - lowBound).getZExtValue();
2434    CasesBits[i].ExtraWeight += I->ExtraWeight;
2435
2436    for (uint64_t j = lo; j <= hi; j++) {
2437      CasesBits[i].Mask |=  1ULL << j;
2438      CasesBits[i].Bits++;
2439    }
2440
2441  }
2442  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2443
2444  BitTestInfo BTC;
2445
2446  // Figure out which block is immediately after the current one.
2447  MachineFunction::iterator BBI = CR.CaseBB;
2448  ++BBI;
2449
2450  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2451
2452  DEBUG(dbgs() << "Cases:\n");
2453  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2454    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2455                 << ", Bits: " << CasesBits[i].Bits
2456                 << ", BB: " << CasesBits[i].BB << '\n');
2457
2458    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2459    CurMF->insert(BBI, CaseBB);
2460    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2461                              CaseBB,
2462                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2463
2464    // Put SV in a virtual register to make it available from the new blocks.
2465    ExportFromCurrentBlock(SV);
2466  }
2467
2468  BitTestBlock BTB(lowBound, cmpRange, SV,
2469                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2470                   CR.CaseBB, Default, BTC);
2471
2472  if (CR.CaseBB == SwitchBB)
2473    visitBitTestHeader(BTB, SwitchBB);
2474
2475  BitTestCases.push_back(BTB);
2476
2477  return true;
2478}
2479
2480/// Clusterify - Transform simple list of Cases into list of CaseRange's
2481size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2482                                       const SwitchInst& SI) {
2483
2484  /// Use a shorter form of declaration, and also
2485  /// show the we want to use CRSBuilder as Clusterifier.
2486  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2487
2488  Clusterifier TheClusterifier;
2489
2490  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2491  // Start with "simple" cases
2492  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2493       i != e; ++i) {
2494    const BasicBlock *SuccBB = i.getCaseSuccessor();
2495    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2496
2497    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2498        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2499  }
2500
2501  TheClusterifier.optimize();
2502
2503  size_t numCmps = 0;
2504  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2505       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2506    Clusterifier::Cluster &C = *i;
2507    // Update edge weight for the cluster.
2508    unsigned W = C.first.Weight;
2509
2510    // FIXME: Currently work with ConstantInt based numbers.
2511    // Changing it to APInt based is a pretty heavy for this commit.
2512    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2513                         C.first.getHigh().toConstantInt(), C.second, W));
2514
2515    if (C.first.getLow() != C.first.getHigh())
2516    // A range counts double, since it requires two compares.
2517    ++numCmps;
2518  }
2519
2520  return numCmps;
2521}
2522
2523void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2524                                           MachineBasicBlock *Last) {
2525  // Update JTCases.
2526  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2527    if (JTCases[i].first.HeaderBB == First)
2528      JTCases[i].first.HeaderBB = Last;
2529
2530  // Update BitTestCases.
2531  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2532    if (BitTestCases[i].Parent == First)
2533      BitTestCases[i].Parent = Last;
2534}
2535
2536void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2537  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2538
2539  // Figure out which block is immediately after the current one.
2540  MachineBasicBlock *NextBlock = 0;
2541  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2542
2543  // If there is only the default destination, branch to it if it is not the
2544  // next basic block.  Otherwise, just fall through.
2545  if (!SI.getNumCases()) {
2546    // Update machine-CFG edges.
2547
2548    // If this is not a fall-through branch, emit the branch.
2549    SwitchMBB->addSuccessor(Default);
2550    if (Default != NextBlock)
2551      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2552                              MVT::Other, getControlRoot(),
2553                              DAG.getBasicBlock(Default)));
2554
2555    return;
2556  }
2557
2558  // If there are any non-default case statements, create a vector of Cases
2559  // representing each one, and sort the vector so that we can efficiently
2560  // create a binary search tree from them.
2561  CaseVector Cases;
2562  size_t numCmps = Clusterify(Cases, SI);
2563  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2564               << ". Total compares: " << numCmps << '\n');
2565  (void)numCmps;
2566
2567  // Get the Value to be switched on and default basic blocks, which will be
2568  // inserted into CaseBlock records, representing basic blocks in the binary
2569  // search tree.
2570  const Value *SV = SI.getCondition();
2571
2572  // Push the initial CaseRec onto the worklist
2573  CaseRecVector WorkList;
2574  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2575                             CaseRange(Cases.begin(),Cases.end())));
2576
2577  while (!WorkList.empty()) {
2578    // Grab a record representing a case range to process off the worklist
2579    CaseRec CR = WorkList.back();
2580    WorkList.pop_back();
2581
2582    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2583      continue;
2584
2585    // If the range has few cases (two or less) emit a series of specific
2586    // tests.
2587    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2588      continue;
2589
2590    // If the switch has more than N blocks, and is at least 40% dense, and the
2591    // target supports indirect branches, then emit a jump table rather than
2592    // lowering the switch to a binary tree of conditional branches.
2593    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2594    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2595      continue;
2596
2597    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2598    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2599    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2600  }
2601}
2602
2603void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2604  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2605
2606  // Update machine-CFG edges with unique successors.
2607  SmallSet<BasicBlock*, 32> Done;
2608  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2609    BasicBlock *BB = I.getSuccessor(i);
2610    bool Inserted = Done.insert(BB);
2611    if (!Inserted)
2612        continue;
2613
2614    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2615    addSuccessorWithWeight(IndirectBrMBB, Succ);
2616  }
2617
2618  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2619                          MVT::Other, getControlRoot(),
2620                          getValue(I.getAddress())));
2621}
2622
2623void SelectionDAGBuilder::visitFSub(const User &I) {
2624  // -0.0 - X --> fneg
2625  Type *Ty = I.getType();
2626  if (isa<Constant>(I.getOperand(0)) &&
2627      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2628    SDValue Op2 = getValue(I.getOperand(1));
2629    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2630                             Op2.getValueType(), Op2));
2631    return;
2632  }
2633
2634  visitBinary(I, ISD::FSUB);
2635}
2636
2637void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2638  SDValue Op1 = getValue(I.getOperand(0));
2639  SDValue Op2 = getValue(I.getOperand(1));
2640  setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2641                           Op1.getValueType(), Op1, Op2));
2642}
2643
2644void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2645  SDValue Op1 = getValue(I.getOperand(0));
2646  SDValue Op2 = getValue(I.getOperand(1));
2647
2648  EVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2649
2650  // Coerce the shift amount to the right type if we can.
2651  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2652    unsigned ShiftSize = ShiftTy.getSizeInBits();
2653    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2654    SDLoc DL = getCurSDLoc();
2655
2656    // If the operand is smaller than the shift count type, promote it.
2657    if (ShiftSize > Op2Size)
2658      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2659
2660    // If the operand is larger than the shift count type but the shift
2661    // count type has enough bits to represent any shift value, truncate
2662    // it now. This is a common case and it exposes the truncate to
2663    // optimization early.
2664    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2665      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2666    // Otherwise we'll need to temporarily settle for some other convenient
2667    // type.  Type legalization will make adjustments once the shiftee is split.
2668    else
2669      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2670  }
2671
2672  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2673                           Op1.getValueType(), Op1, Op2));
2674}
2675
2676void SelectionDAGBuilder::visitSDiv(const User &I) {
2677  SDValue Op1 = getValue(I.getOperand(0));
2678  SDValue Op2 = getValue(I.getOperand(1));
2679
2680  // Turn exact SDivs into multiplications.
2681  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2682  // exact bit.
2683  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2684      !isa<ConstantSDNode>(Op1) &&
2685      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2686    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG));
2687  else
2688    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2689                             Op1, Op2));
2690}
2691
2692void SelectionDAGBuilder::visitICmp(const User &I) {
2693  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2694  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2695    predicate = IC->getPredicate();
2696  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2697    predicate = ICmpInst::Predicate(IC->getPredicate());
2698  SDValue Op1 = getValue(I.getOperand(0));
2699  SDValue Op2 = getValue(I.getOperand(1));
2700  ISD::CondCode Opcode = getICmpCondCode(predicate);
2701
2702  EVT DestVT = TLI.getValueType(I.getType());
2703  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2704}
2705
2706void SelectionDAGBuilder::visitFCmp(const User &I) {
2707  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2708  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2709    predicate = FC->getPredicate();
2710  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2711    predicate = FCmpInst::Predicate(FC->getPredicate());
2712  SDValue Op1 = getValue(I.getOperand(0));
2713  SDValue Op2 = getValue(I.getOperand(1));
2714  ISD::CondCode Condition = getFCmpCondCode(predicate);
2715  if (TM.Options.NoNaNsFPMath)
2716    Condition = getFCmpCodeWithoutNaN(Condition);
2717  EVT DestVT = TLI.getValueType(I.getType());
2718  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2719}
2720
2721void SelectionDAGBuilder::visitSelect(const User &I) {
2722  SmallVector<EVT, 4> ValueVTs;
2723  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2724  unsigned NumValues = ValueVTs.size();
2725  if (NumValues == 0) return;
2726
2727  SmallVector<SDValue, 4> Values(NumValues);
2728  SDValue Cond     = getValue(I.getOperand(0));
2729  SDValue TrueVal  = getValue(I.getOperand(1));
2730  SDValue FalseVal = getValue(I.getOperand(2));
2731  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2732    ISD::VSELECT : ISD::SELECT;
2733
2734  for (unsigned i = 0; i != NumValues; ++i)
2735    Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2736                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2737                            Cond,
2738                            SDValue(TrueVal.getNode(),
2739                                    TrueVal.getResNo() + i),
2740                            SDValue(FalseVal.getNode(),
2741                                    FalseVal.getResNo() + i));
2742
2743  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2744                           DAG.getVTList(&ValueVTs[0], NumValues),
2745                           &Values[0], NumValues));
2746}
2747
2748void SelectionDAGBuilder::visitTrunc(const User &I) {
2749  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2750  SDValue N = getValue(I.getOperand(0));
2751  EVT DestVT = TLI.getValueType(I.getType());
2752  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2753}
2754
2755void SelectionDAGBuilder::visitZExt(const User &I) {
2756  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2757  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2758  SDValue N = getValue(I.getOperand(0));
2759  EVT DestVT = TLI.getValueType(I.getType());
2760  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2761}
2762
2763void SelectionDAGBuilder::visitSExt(const User &I) {
2764  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2765  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2766  SDValue N = getValue(I.getOperand(0));
2767  EVT DestVT = TLI.getValueType(I.getType());
2768  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2769}
2770
2771void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2772  // FPTrunc is never a no-op cast, no need to check
2773  SDValue N = getValue(I.getOperand(0));
2774  EVT DestVT = TLI.getValueType(I.getType());
2775  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2776                           DestVT, N,
2777                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2778}
2779
2780void SelectionDAGBuilder::visitFPExt(const User &I){
2781  // FPExt is never a no-op cast, no need to check
2782  SDValue N = getValue(I.getOperand(0));
2783  EVT DestVT = TLI.getValueType(I.getType());
2784  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2785}
2786
2787void SelectionDAGBuilder::visitFPToUI(const User &I) {
2788  // FPToUI is never a no-op cast, no need to check
2789  SDValue N = getValue(I.getOperand(0));
2790  EVT DestVT = TLI.getValueType(I.getType());
2791  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2792}
2793
2794void SelectionDAGBuilder::visitFPToSI(const User &I) {
2795  // FPToSI is never a no-op cast, no need to check
2796  SDValue N = getValue(I.getOperand(0));
2797  EVT DestVT = TLI.getValueType(I.getType());
2798  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2799}
2800
2801void SelectionDAGBuilder::visitUIToFP(const User &I) {
2802  // UIToFP is never a no-op cast, no need to check
2803  SDValue N = getValue(I.getOperand(0));
2804  EVT DestVT = TLI.getValueType(I.getType());
2805  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2806}
2807
2808void SelectionDAGBuilder::visitSIToFP(const User &I){
2809  // SIToFP is never a no-op cast, no need to check
2810  SDValue N = getValue(I.getOperand(0));
2811  EVT DestVT = TLI.getValueType(I.getType());
2812  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2813}
2814
2815void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2816  // What to do depends on the size of the integer and the size of the pointer.
2817  // We can either truncate, zero extend, or no-op, accordingly.
2818  SDValue N = getValue(I.getOperand(0));
2819  EVT DestVT = TLI.getValueType(I.getType());
2820  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2821}
2822
2823void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2824  // What to do depends on the size of the integer and the size of the pointer.
2825  // We can either truncate, zero extend, or no-op, accordingly.
2826  SDValue N = getValue(I.getOperand(0));
2827  EVT DestVT = TLI.getValueType(I.getType());
2828  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2829}
2830
2831void SelectionDAGBuilder::visitBitCast(const User &I) {
2832  SDValue N = getValue(I.getOperand(0));
2833  EVT DestVT = TLI.getValueType(I.getType());
2834
2835  // BitCast assures us that source and destination are the same size so this is
2836  // either a BITCAST or a no-op.
2837  if (DestVT != N.getValueType())
2838    setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2839                             DestVT, N)); // convert types.
2840  else
2841    setValue(&I, N);            // noop cast.
2842}
2843
2844void SelectionDAGBuilder::visitInsertElement(const User &I) {
2845  SDValue InVec = getValue(I.getOperand(0));
2846  SDValue InVal = getValue(I.getOperand(1));
2847  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(),
2848                              TLI.getPointerTy(),
2849                              getValue(I.getOperand(2)));
2850  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2851                           TLI.getValueType(I.getType()),
2852                           InVec, InVal, InIdx));
2853}
2854
2855void SelectionDAGBuilder::visitExtractElement(const User &I) {
2856  SDValue InVec = getValue(I.getOperand(0));
2857  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(),
2858                              TLI.getPointerTy(),
2859                              getValue(I.getOperand(1)));
2860  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2861                           TLI.getValueType(I.getType()), InVec, InIdx));
2862}
2863
2864// Utility for visitShuffleVector - Return true if every element in Mask,
2865// beginning from position Pos and ending in Pos+Size, falls within the
2866// specified sequential range [L, L+Pos). or is undef.
2867static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2868                                unsigned Pos, unsigned Size, int Low) {
2869  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2870    if (Mask[i] >= 0 && Mask[i] != Low)
2871      return false;
2872  return true;
2873}
2874
2875void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2876  SDValue Src1 = getValue(I.getOperand(0));
2877  SDValue Src2 = getValue(I.getOperand(1));
2878
2879  SmallVector<int, 8> Mask;
2880  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2881  unsigned MaskNumElts = Mask.size();
2882
2883  EVT VT = TLI.getValueType(I.getType());
2884  EVT SrcVT = Src1.getValueType();
2885  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2886
2887  if (SrcNumElts == MaskNumElts) {
2888    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2889                                      &Mask[0]));
2890    return;
2891  }
2892
2893  // Normalize the shuffle vector since mask and vector length don't match.
2894  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2895    // Mask is longer than the source vectors and is a multiple of the source
2896    // vectors.  We can use concatenate vector to make the mask and vectors
2897    // lengths match.
2898    if (SrcNumElts*2 == MaskNumElts) {
2899      // First check for Src1 in low and Src2 in high
2900      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2901          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2902        // The shuffle is concatenating two vectors together.
2903        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2904                                 VT, Src1, Src2));
2905        return;
2906      }
2907      // Then check for Src2 in low and Src1 in high
2908      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2909          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2910        // The shuffle is concatenating two vectors together.
2911        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2912                                 VT, Src2, Src1));
2913        return;
2914      }
2915    }
2916
2917    // Pad both vectors with undefs to make them the same length as the mask.
2918    unsigned NumConcat = MaskNumElts / SrcNumElts;
2919    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2920    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2921    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2922
2923    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2924    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2925    MOps1[0] = Src1;
2926    MOps2[0] = Src2;
2927
2928    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2929                                                  getCurSDLoc(), VT,
2930                                                  &MOps1[0], NumConcat);
2931    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2932                                                  getCurSDLoc(), VT,
2933                                                  &MOps2[0], NumConcat);
2934
2935    // Readjust mask for new input vector length.
2936    SmallVector<int, 8> MappedOps;
2937    for (unsigned i = 0; i != MaskNumElts; ++i) {
2938      int Idx = Mask[i];
2939      if (Idx >= (int)SrcNumElts)
2940        Idx -= SrcNumElts - MaskNumElts;
2941      MappedOps.push_back(Idx);
2942    }
2943
2944    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2945                                      &MappedOps[0]));
2946    return;
2947  }
2948
2949  if (SrcNumElts > MaskNumElts) {
2950    // Analyze the access pattern of the vector to see if we can extract
2951    // two subvectors and do the shuffle. The analysis is done by calculating
2952    // the range of elements the mask access on both vectors.
2953    int MinRange[2] = { static_cast<int>(SrcNumElts),
2954                        static_cast<int>(SrcNumElts)};
2955    int MaxRange[2] = {-1, -1};
2956
2957    for (unsigned i = 0; i != MaskNumElts; ++i) {
2958      int Idx = Mask[i];
2959      unsigned Input = 0;
2960      if (Idx < 0)
2961        continue;
2962
2963      if (Idx >= (int)SrcNumElts) {
2964        Input = 1;
2965        Idx -= SrcNumElts;
2966      }
2967      if (Idx > MaxRange[Input])
2968        MaxRange[Input] = Idx;
2969      if (Idx < MinRange[Input])
2970        MinRange[Input] = Idx;
2971    }
2972
2973    // Check if the access is smaller than the vector size and can we find
2974    // a reasonable extract index.
2975    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2976                                   // Extract.
2977    int StartIdx[2];  // StartIdx to extract from
2978    for (unsigned Input = 0; Input < 2; ++Input) {
2979      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2980        RangeUse[Input] = 0; // Unused
2981        StartIdx[Input] = 0;
2982        continue;
2983      }
2984
2985      // Find a good start index that is a multiple of the mask length. Then
2986      // see if the rest of the elements are in range.
2987      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2988      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2989          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2990        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2991    }
2992
2993    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2994      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2995      return;
2996    }
2997    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2998      // Extract appropriate subvector and generate a vector shuffle
2999      for (unsigned Input = 0; Input < 2; ++Input) {
3000        SDValue &Src = Input == 0 ? Src1 : Src2;
3001        if (RangeUse[Input] == 0)
3002          Src = DAG.getUNDEF(VT);
3003        else
3004          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3005                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
3006      }
3007
3008      // Calculate new mask.
3009      SmallVector<int, 8> MappedOps;
3010      for (unsigned i = 0; i != MaskNumElts; ++i) {
3011        int Idx = Mask[i];
3012        if (Idx >= 0) {
3013          if (Idx < (int)SrcNumElts)
3014            Idx -= StartIdx[0];
3015          else
3016            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3017        }
3018        MappedOps.push_back(Idx);
3019      }
3020
3021      setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3022                                        &MappedOps[0]));
3023      return;
3024    }
3025  }
3026
3027  // We can't use either concat vectors or extract subvectors so fall back to
3028  // replacing the shuffle with extract and build vector.
3029  // to insert and build vector.
3030  EVT EltVT = VT.getVectorElementType();
3031  EVT PtrVT = TLI.getPointerTy();
3032  SmallVector<SDValue,8> Ops;
3033  for (unsigned i = 0; i != MaskNumElts; ++i) {
3034    int Idx = Mask[i];
3035    SDValue Res;
3036
3037    if (Idx < 0) {
3038      Res = DAG.getUNDEF(EltVT);
3039    } else {
3040      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3041      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3042
3043      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3044                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3045    }
3046
3047    Ops.push_back(Res);
3048  }
3049
3050  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
3051                           VT, &Ops[0], Ops.size()));
3052}
3053
3054void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3055  const Value *Op0 = I.getOperand(0);
3056  const Value *Op1 = I.getOperand(1);
3057  Type *AggTy = I.getType();
3058  Type *ValTy = Op1->getType();
3059  bool IntoUndef = isa<UndefValue>(Op0);
3060  bool FromUndef = isa<UndefValue>(Op1);
3061
3062  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3063
3064  SmallVector<EVT, 4> AggValueVTs;
3065  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3066  SmallVector<EVT, 4> ValValueVTs;
3067  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3068
3069  unsigned NumAggValues = AggValueVTs.size();
3070  unsigned NumValValues = ValValueVTs.size();
3071  SmallVector<SDValue, 4> Values(NumAggValues);
3072
3073  SDValue Agg = getValue(Op0);
3074  unsigned i = 0;
3075  // Copy the beginning value(s) from the original aggregate.
3076  for (; i != LinearIndex; ++i)
3077    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3078                SDValue(Agg.getNode(), Agg.getResNo() + i);
3079  // Copy values from the inserted value(s).
3080  if (NumValValues) {
3081    SDValue Val = getValue(Op1);
3082    for (; i != LinearIndex + NumValValues; ++i)
3083      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3084                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3085  }
3086  // Copy remaining value(s) from the original aggregate.
3087  for (; i != NumAggValues; ++i)
3088    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3089                SDValue(Agg.getNode(), Agg.getResNo() + i);
3090
3091  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3092                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3093                           &Values[0], NumAggValues));
3094}
3095
3096void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3097  const Value *Op0 = I.getOperand(0);
3098  Type *AggTy = Op0->getType();
3099  Type *ValTy = I.getType();
3100  bool OutOfUndef = isa<UndefValue>(Op0);
3101
3102  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3103
3104  SmallVector<EVT, 4> ValValueVTs;
3105  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3106
3107  unsigned NumValValues = ValValueVTs.size();
3108
3109  // Ignore a extractvalue that produces an empty object
3110  if (!NumValValues) {
3111    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3112    return;
3113  }
3114
3115  SmallVector<SDValue, 4> Values(NumValValues);
3116
3117  SDValue Agg = getValue(Op0);
3118  // Copy out the selected value(s).
3119  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3120    Values[i - LinearIndex] =
3121      OutOfUndef ?
3122        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3123        SDValue(Agg.getNode(), Agg.getResNo() + i);
3124
3125  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3126                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3127                           &Values[0], NumValValues));
3128}
3129
3130void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3131  SDValue N = getValue(I.getOperand(0));
3132  // Note that the pointer operand may be a vector of pointers. Take the scalar
3133  // element which holds a pointer.
3134  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3135
3136  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3137       OI != E; ++OI) {
3138    const Value *Idx = *OI;
3139    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3140      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3141      if (Field) {
3142        // N = N + Offset
3143        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3144        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3145                        DAG.getConstant(Offset, N.getValueType()));
3146      }
3147
3148      Ty = StTy->getElementType(Field);
3149    } else {
3150      Ty = cast<SequentialType>(Ty)->getElementType();
3151
3152      // If this is a constant subscript, handle it quickly.
3153      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3154        if (CI->isZero()) continue;
3155        uint64_t Offs =
3156            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3157        SDValue OffsVal;
3158        EVT PTy = TLI.getPointerTy();
3159        unsigned PtrBits = PTy.getSizeInBits();
3160        if (PtrBits < 64)
3161          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(),
3162                                TLI.getPointerTy(),
3163                                DAG.getConstant(Offs, MVT::i64));
3164        else
3165          OffsVal = DAG.getIntPtrConstant(Offs);
3166
3167        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3168                        OffsVal);
3169        continue;
3170      }
3171
3172      // N = N + Idx * ElementSize;
3173      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3174                                TD->getTypeAllocSize(Ty));
3175      SDValue IdxN = getValue(Idx);
3176
3177      // If the index is smaller or larger than intptr_t, truncate or extend
3178      // it.
3179      IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3180
3181      // If this is a multiply by a power of two, turn it into a shl
3182      // immediately.  This is a very common case.
3183      if (ElementSize != 1) {
3184        if (ElementSize.isPowerOf2()) {
3185          unsigned Amt = ElementSize.logBase2();
3186          IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3187                             N.getValueType(), IdxN,
3188                             DAG.getConstant(Amt, IdxN.getValueType()));
3189        } else {
3190          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3191          IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3192                             N.getValueType(), IdxN, Scale);
3193        }
3194      }
3195
3196      N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3197                      N.getValueType(), N, IdxN);
3198    }
3199  }
3200
3201  setValue(&I, N);
3202}
3203
3204void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3205  // If this is a fixed sized alloca in the entry block of the function,
3206  // allocate it statically on the stack.
3207  if (FuncInfo.StaticAllocaMap.count(&I))
3208    return;   // getValue will auto-populate this.
3209
3210  Type *Ty = I.getAllocatedType();
3211  uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3212  unsigned Align =
3213    std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3214             I.getAlignment());
3215
3216  SDValue AllocSize = getValue(I.getArraySize());
3217
3218  EVT IntPtr = TLI.getPointerTy();
3219  if (AllocSize.getValueType() != IntPtr)
3220    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3221
3222  AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3223                          AllocSize,
3224                          DAG.getConstant(TySize, IntPtr));
3225
3226  // Handle alignment.  If the requested alignment is less than or equal to
3227  // the stack alignment, ignore it.  If the size is greater than or equal to
3228  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3229  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3230  if (Align <= StackAlign)
3231    Align = 0;
3232
3233  // Round the size of the allocation up to the stack alignment size
3234  // by add SA-1 to the size.
3235  AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3236                          AllocSize.getValueType(), AllocSize,
3237                          DAG.getIntPtrConstant(StackAlign-1));
3238
3239  // Mask out the low bits for alignment purposes.
3240  AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3241                          AllocSize.getValueType(), AllocSize,
3242                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3243
3244  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3245  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3246  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
3247                            VTs, Ops, 3);
3248  setValue(&I, DSA);
3249  DAG.setRoot(DSA.getValue(1));
3250
3251  // Inform the Frame Information that we have just allocated a variable-sized
3252  // object.
3253  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3254}
3255
3256void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3257  if (I.isAtomic())
3258    return visitAtomicLoad(I);
3259
3260  const Value *SV = I.getOperand(0);
3261  SDValue Ptr = getValue(SV);
3262
3263  Type *Ty = I.getType();
3264
3265  bool isVolatile = I.isVolatile();
3266  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3267  bool isInvariant = I.getMetadata("invariant.load") != 0;
3268  unsigned Alignment = I.getAlignment();
3269  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3270  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3271
3272  SmallVector<EVT, 4> ValueVTs;
3273  SmallVector<uint64_t, 4> Offsets;
3274  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3275  unsigned NumValues = ValueVTs.size();
3276  if (NumValues == 0)
3277    return;
3278
3279  SDValue Root;
3280  bool ConstantMemory = false;
3281  if (I.isVolatile() || NumValues > MaxParallelChains)
3282    // Serialize volatile loads with other side effects.
3283    Root = getRoot();
3284  else if (AA->pointsToConstantMemory(
3285             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3286    // Do not serialize (non-volatile) loads of constant memory with anything.
3287    Root = DAG.getEntryNode();
3288    ConstantMemory = true;
3289  } else {
3290    // Do not serialize non-volatile loads against each other.
3291    Root = DAG.getRoot();
3292  }
3293
3294  SmallVector<SDValue, 4> Values(NumValues);
3295  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3296                                          NumValues));
3297  EVT PtrVT = Ptr.getValueType();
3298  unsigned ChainI = 0;
3299  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3300    // Serializing loads here may result in excessive register pressure, and
3301    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3302    // could recover a bit by hoisting nodes upward in the chain by recognizing
3303    // they are side-effect free or do not alias. The optimizer should really
3304    // avoid this case by converting large object/array copies to llvm.memcpy
3305    // (MaxParallelChains should always remain as failsafe).
3306    if (ChainI == MaxParallelChains) {
3307      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3308      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3309                                  MVT::Other, &Chains[0], ChainI);
3310      Root = Chain;
3311      ChainI = 0;
3312    }
3313    SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3314                            PtrVT, Ptr,
3315                            DAG.getConstant(Offsets[i], PtrVT));
3316    SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3317                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3318                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3319                            Ranges);
3320
3321    Values[i] = L;
3322    Chains[ChainI] = L.getValue(1);
3323  }
3324
3325  if (!ConstantMemory) {
3326    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3327                                MVT::Other, &Chains[0], ChainI);
3328    if (isVolatile)
3329      DAG.setRoot(Chain);
3330    else
3331      PendingLoads.push_back(Chain);
3332  }
3333
3334  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3335                           DAG.getVTList(&ValueVTs[0], NumValues),
3336                           &Values[0], NumValues));
3337}
3338
3339void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3340  if (I.isAtomic())
3341    return visitAtomicStore(I);
3342
3343  const Value *SrcV = I.getOperand(0);
3344  const Value *PtrV = I.getOperand(1);
3345
3346  SmallVector<EVT, 4> ValueVTs;
3347  SmallVector<uint64_t, 4> Offsets;
3348  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3349  unsigned NumValues = ValueVTs.size();
3350  if (NumValues == 0)
3351    return;
3352
3353  // Get the lowered operands. Note that we do this after
3354  // checking if NumResults is zero, because with zero results
3355  // the operands won't have values in the map.
3356  SDValue Src = getValue(SrcV);
3357  SDValue Ptr = getValue(PtrV);
3358
3359  SDValue Root = getRoot();
3360  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3361                                          NumValues));
3362  EVT PtrVT = Ptr.getValueType();
3363  bool isVolatile = I.isVolatile();
3364  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3365  unsigned Alignment = I.getAlignment();
3366  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3367
3368  unsigned ChainI = 0;
3369  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3370    // See visitLoad comments.
3371    if (ChainI == MaxParallelChains) {
3372      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3373                                  MVT::Other, &Chains[0], ChainI);
3374      Root = Chain;
3375      ChainI = 0;
3376    }
3377    SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3378                              DAG.getConstant(Offsets[i], PtrVT));
3379    SDValue St = DAG.getStore(Root, getCurSDLoc(),
3380                              SDValue(Src.getNode(), Src.getResNo() + i),
3381                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3382                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3383    Chains[ChainI] = St;
3384  }
3385
3386  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3387                                  MVT::Other, &Chains[0], ChainI);
3388  DAG.setRoot(StoreNode);
3389}
3390
3391static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3392                                    SynchronizationScope Scope,
3393                                    bool Before, SDLoc dl,
3394                                    SelectionDAG &DAG,
3395                                    const TargetLowering &TLI) {
3396  // Fence, if necessary
3397  if (Before) {
3398    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3399      Order = Release;
3400    else if (Order == Acquire || Order == Monotonic)
3401      return Chain;
3402  } else {
3403    if (Order == AcquireRelease)
3404      Order = Acquire;
3405    else if (Order == Release || Order == Monotonic)
3406      return Chain;
3407  }
3408  SDValue Ops[3];
3409  Ops[0] = Chain;
3410  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3411  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3412  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3413}
3414
3415void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3416  SDLoc dl = getCurSDLoc();
3417  AtomicOrdering Order = I.getOrdering();
3418  SynchronizationScope Scope = I.getSynchScope();
3419
3420  SDValue InChain = getRoot();
3421
3422  if (TLI.getInsertFencesForAtomic())
3423    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3424                                   DAG, TLI);
3425
3426  SDValue L =
3427    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3428                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3429                  InChain,
3430                  getValue(I.getPointerOperand()),
3431                  getValue(I.getCompareOperand()),
3432                  getValue(I.getNewValOperand()),
3433                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3434                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3435                  Scope);
3436
3437  SDValue OutChain = L.getValue(1);
3438
3439  if (TLI.getInsertFencesForAtomic())
3440    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3441                                    DAG, TLI);
3442
3443  setValue(&I, L);
3444  DAG.setRoot(OutChain);
3445}
3446
3447void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3448  SDLoc dl = getCurSDLoc();
3449  ISD::NodeType NT;
3450  switch (I.getOperation()) {
3451  default: llvm_unreachable("Unknown atomicrmw operation");
3452  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3453  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3454  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3455  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3456  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3457  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3458  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3459  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3460  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3461  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3462  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3463  }
3464  AtomicOrdering Order = I.getOrdering();
3465  SynchronizationScope Scope = I.getSynchScope();
3466
3467  SDValue InChain = getRoot();
3468
3469  if (TLI.getInsertFencesForAtomic())
3470    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3471                                   DAG, TLI);
3472
3473  SDValue L =
3474    DAG.getAtomic(NT, dl,
3475                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3476                  InChain,
3477                  getValue(I.getPointerOperand()),
3478                  getValue(I.getValOperand()),
3479                  I.getPointerOperand(), 0 /* Alignment */,
3480                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3481                  Scope);
3482
3483  SDValue OutChain = L.getValue(1);
3484
3485  if (TLI.getInsertFencesForAtomic())
3486    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3487                                    DAG, TLI);
3488
3489  setValue(&I, L);
3490  DAG.setRoot(OutChain);
3491}
3492
3493void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3494  SDLoc dl = getCurSDLoc();
3495  SDValue Ops[3];
3496  Ops[0] = getRoot();
3497  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3498  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3499  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3500}
3501
3502void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3503  SDLoc dl = getCurSDLoc();
3504  AtomicOrdering Order = I.getOrdering();
3505  SynchronizationScope Scope = I.getSynchScope();
3506
3507  SDValue InChain = getRoot();
3508
3509  EVT VT = TLI.getValueType(I.getType());
3510
3511  if (I.getAlignment() < VT.getSizeInBits() / 8)
3512    report_fatal_error("Cannot generate unaligned atomic load");
3513
3514  SDValue L =
3515    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3516                  getValue(I.getPointerOperand()),
3517                  I.getPointerOperand(), I.getAlignment(),
3518                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3519                  Scope);
3520
3521  SDValue OutChain = L.getValue(1);
3522
3523  if (TLI.getInsertFencesForAtomic())
3524    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3525                                    DAG, TLI);
3526
3527  setValue(&I, L);
3528  DAG.setRoot(OutChain);
3529}
3530
3531void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3532  SDLoc dl = getCurSDLoc();
3533
3534  AtomicOrdering Order = I.getOrdering();
3535  SynchronizationScope Scope = I.getSynchScope();
3536
3537  SDValue InChain = getRoot();
3538
3539  EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3540
3541  if (I.getAlignment() < VT.getSizeInBits() / 8)
3542    report_fatal_error("Cannot generate unaligned atomic store");
3543
3544  if (TLI.getInsertFencesForAtomic())
3545    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3546                                   DAG, TLI);
3547
3548  SDValue OutChain =
3549    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3550                  InChain,
3551                  getValue(I.getPointerOperand()),
3552                  getValue(I.getValueOperand()),
3553                  I.getPointerOperand(), I.getAlignment(),
3554                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3555                  Scope);
3556
3557  if (TLI.getInsertFencesForAtomic())
3558    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3559                                    DAG, TLI);
3560
3561  DAG.setRoot(OutChain);
3562}
3563
3564/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3565/// node.
3566void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3567                                               unsigned Intrinsic) {
3568  bool HasChain = !I.doesNotAccessMemory();
3569  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3570
3571  // Build the operand list.
3572  SmallVector<SDValue, 8> Ops;
3573  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3574    if (OnlyLoad) {
3575      // We don't need to serialize loads against other loads.
3576      Ops.push_back(DAG.getRoot());
3577    } else {
3578      Ops.push_back(getRoot());
3579    }
3580  }
3581
3582  // Info is set by getTgtMemInstrinsic
3583  TargetLowering::IntrinsicInfo Info;
3584  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3585
3586  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3587  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3588      Info.opc == ISD::INTRINSIC_W_CHAIN)
3589    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3590
3591  // Add all operands of the call to the operand list.
3592  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3593    SDValue Op = getValue(I.getArgOperand(i));
3594    Ops.push_back(Op);
3595  }
3596
3597  SmallVector<EVT, 4> ValueVTs;
3598  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3599
3600  if (HasChain)
3601    ValueVTs.push_back(MVT::Other);
3602
3603  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3604
3605  // Create the node.
3606  SDValue Result;
3607  if (IsTgtIntrinsic) {
3608    // This is target intrinsic that touches memory
3609    Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3610                                     VTs, &Ops[0], Ops.size(),
3611                                     Info.memVT,
3612                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3613                                     Info.align, Info.vol,
3614                                     Info.readMem, Info.writeMem);
3615  } else if (!HasChain) {
3616    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
3617                         VTs, &Ops[0], Ops.size());
3618  } else if (!I.getType()->isVoidTy()) {
3619    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
3620                         VTs, &Ops[0], Ops.size());
3621  } else {
3622    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
3623                         VTs, &Ops[0], Ops.size());
3624  }
3625
3626  if (HasChain) {
3627    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3628    if (OnlyLoad)
3629      PendingLoads.push_back(Chain);
3630    else
3631      DAG.setRoot(Chain);
3632  }
3633
3634  if (!I.getType()->isVoidTy()) {
3635    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3636      EVT VT = TLI.getValueType(PTy);
3637      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3638    }
3639
3640    setValue(&I, Result);
3641  }
3642}
3643
3644/// GetSignificand - Get the significand and build it into a floating-point
3645/// number with exponent of 1:
3646///
3647///   Op = (Op & 0x007fffff) | 0x3f800000;
3648///
3649/// where Op is the hexadecimal representation of floating point value.
3650static SDValue
3651GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3652  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3653                           DAG.getConstant(0x007fffff, MVT::i32));
3654  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3655                           DAG.getConstant(0x3f800000, MVT::i32));
3656  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3657}
3658
3659/// GetExponent - Get the exponent:
3660///
3661///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3662///
3663/// where Op is the hexadecimal representation of floating point value.
3664static SDValue
3665GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3666            SDLoc dl) {
3667  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3668                           DAG.getConstant(0x7f800000, MVT::i32));
3669  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3670                           DAG.getConstant(23, TLI.getPointerTy()));
3671  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3672                           DAG.getConstant(127, MVT::i32));
3673  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3674}
3675
3676/// getF32Constant - Get 32-bit floating point constant.
3677static SDValue
3678getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3679  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3680                           MVT::f32);
3681}
3682
3683/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3684/// limited-precision mode.
3685static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3686                         const TargetLowering &TLI) {
3687  if (Op.getValueType() == MVT::f32 &&
3688      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3689
3690    // Put the exponent in the right bit position for later addition to the
3691    // final result:
3692    //
3693    //   #define LOG2OFe 1.4426950f
3694    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3695    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3696                             getF32Constant(DAG, 0x3fb8aa3b));
3697    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3698
3699    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3700    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3701    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3702
3703    //   IntegerPartOfX <<= 23;
3704    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3705                                 DAG.getConstant(23, TLI.getPointerTy()));
3706
3707    SDValue TwoToFracPartOfX;
3708    if (LimitFloatPrecision <= 6) {
3709      // For floating-point precision of 6:
3710      //
3711      //   TwoToFractionalPartOfX =
3712      //     0.997535578f +
3713      //       (0.735607626f + 0.252464424f * x) * x;
3714      //
3715      // error 0.0144103317, which is 6 bits
3716      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3717                               getF32Constant(DAG, 0x3e814304));
3718      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3719                               getF32Constant(DAG, 0x3f3c50c8));
3720      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3721      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3722                                     getF32Constant(DAG, 0x3f7f5e7e));
3723    } else if (LimitFloatPrecision <= 12) {
3724      // For floating-point precision of 12:
3725      //
3726      //   TwoToFractionalPartOfX =
3727      //     0.999892986f +
3728      //       (0.696457318f +
3729      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3730      //
3731      // 0.000107046256 error, which is 13 to 14 bits
3732      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3733                               getF32Constant(DAG, 0x3da235e3));
3734      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3735                               getF32Constant(DAG, 0x3e65b8f3));
3736      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3737      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3738                               getF32Constant(DAG, 0x3f324b07));
3739      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3740      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3741                                     getF32Constant(DAG, 0x3f7ff8fd));
3742    } else { // LimitFloatPrecision <= 18
3743      // For floating-point precision of 18:
3744      //
3745      //   TwoToFractionalPartOfX =
3746      //     0.999999982f +
3747      //       (0.693148872f +
3748      //         (0.240227044f +
3749      //           (0.554906021e-1f +
3750      //             (0.961591928e-2f +
3751      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3752      //
3753      // error 2.47208000*10^(-7), which is better than 18 bits
3754      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3755                               getF32Constant(DAG, 0x3924b03e));
3756      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3757                               getF32Constant(DAG, 0x3ab24b87));
3758      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3759      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3760                               getF32Constant(DAG, 0x3c1d8c17));
3761      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3762      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3763                               getF32Constant(DAG, 0x3d634a1d));
3764      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3765      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3766                               getF32Constant(DAG, 0x3e75fe14));
3767      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3768      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3769                                getF32Constant(DAG, 0x3f317234));
3770      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3771      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3772                                     getF32Constant(DAG, 0x3f800000));
3773    }
3774
3775    // Add the exponent into the result in integer domain.
3776    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3777    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3778                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3779                                   t13, IntegerPartOfX));
3780  }
3781
3782  // No special expansion.
3783  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3784}
3785
3786/// expandLog - Lower a log intrinsic. Handles the special sequences for
3787/// limited-precision mode.
3788static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3789                         const TargetLowering &TLI) {
3790  if (Op.getValueType() == MVT::f32 &&
3791      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3792    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3793
3794    // Scale the exponent by log(2) [0.69314718f].
3795    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3796    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3797                                        getF32Constant(DAG, 0x3f317218));
3798
3799    // Get the significand and build it into a floating-point number with
3800    // exponent of 1.
3801    SDValue X = GetSignificand(DAG, Op1, dl);
3802
3803    SDValue LogOfMantissa;
3804    if (LimitFloatPrecision <= 6) {
3805      // For floating-point precision of 6:
3806      //
3807      //   LogofMantissa =
3808      //     -1.1609546f +
3809      //       (1.4034025f - 0.23903021f * x) * x;
3810      //
3811      // error 0.0034276066, which is better than 8 bits
3812      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3813                               getF32Constant(DAG, 0xbe74c456));
3814      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3815                               getF32Constant(DAG, 0x3fb3a2b1));
3816      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3817      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3818                                  getF32Constant(DAG, 0x3f949a29));
3819    } else if (LimitFloatPrecision <= 12) {
3820      // For floating-point precision of 12:
3821      //
3822      //   LogOfMantissa =
3823      //     -1.7417939f +
3824      //       (2.8212026f +
3825      //         (-1.4699568f +
3826      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3827      //
3828      // error 0.000061011436, which is 14 bits
3829      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3830                               getF32Constant(DAG, 0xbd67b6d6));
3831      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3832                               getF32Constant(DAG, 0x3ee4f4b8));
3833      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3834      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3835                               getF32Constant(DAG, 0x3fbc278b));
3836      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3837      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3838                               getF32Constant(DAG, 0x40348e95));
3839      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3840      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3841                                  getF32Constant(DAG, 0x3fdef31a));
3842    } else { // LimitFloatPrecision <= 18
3843      // For floating-point precision of 18:
3844      //
3845      //   LogOfMantissa =
3846      //     -2.1072184f +
3847      //       (4.2372794f +
3848      //         (-3.7029485f +
3849      //           (2.2781945f +
3850      //             (-0.87823314f +
3851      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3852      //
3853      // error 0.0000023660568, which is better than 18 bits
3854      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3855                               getF32Constant(DAG, 0xbc91e5ac));
3856      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3857                               getF32Constant(DAG, 0x3e4350aa));
3858      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3859      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3860                               getF32Constant(DAG, 0x3f60d3e3));
3861      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3862      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3863                               getF32Constant(DAG, 0x4011cdf0));
3864      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3865      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3866                               getF32Constant(DAG, 0x406cfd1c));
3867      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3868      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3869                               getF32Constant(DAG, 0x408797cb));
3870      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3871      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3872                                  getF32Constant(DAG, 0x4006dcab));
3873    }
3874
3875    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3876  }
3877
3878  // No special expansion.
3879  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3880}
3881
3882/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3883/// limited-precision mode.
3884static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3885                          const TargetLowering &TLI) {
3886  if (Op.getValueType() == MVT::f32 &&
3887      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3888    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3889
3890    // Get the exponent.
3891    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3892
3893    // Get the significand and build it into a floating-point number with
3894    // exponent of 1.
3895    SDValue X = GetSignificand(DAG, Op1, dl);
3896
3897    // Different possible minimax approximations of significand in
3898    // floating-point for various degrees of accuracy over [1,2].
3899    SDValue Log2ofMantissa;
3900    if (LimitFloatPrecision <= 6) {
3901      // For floating-point precision of 6:
3902      //
3903      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3904      //
3905      // error 0.0049451742, which is more than 7 bits
3906      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3907                               getF32Constant(DAG, 0xbeb08fe0));
3908      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3909                               getF32Constant(DAG, 0x40019463));
3910      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3911      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3912                                   getF32Constant(DAG, 0x3fd6633d));
3913    } else if (LimitFloatPrecision <= 12) {
3914      // For floating-point precision of 12:
3915      //
3916      //   Log2ofMantissa =
3917      //     -2.51285454f +
3918      //       (4.07009056f +
3919      //         (-2.12067489f +
3920      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3921      //
3922      // error 0.0000876136000, which is better than 13 bits
3923      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3924                               getF32Constant(DAG, 0xbda7262e));
3925      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3926                               getF32Constant(DAG, 0x3f25280b));
3927      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3928      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3929                               getF32Constant(DAG, 0x4007b923));
3930      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3931      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3932                               getF32Constant(DAG, 0x40823e2f));
3933      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3934      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3935                                   getF32Constant(DAG, 0x4020d29c));
3936    } else { // LimitFloatPrecision <= 18
3937      // For floating-point precision of 18:
3938      //
3939      //   Log2ofMantissa =
3940      //     -3.0400495f +
3941      //       (6.1129976f +
3942      //         (-5.3420409f +
3943      //           (3.2865683f +
3944      //             (-1.2669343f +
3945      //               (0.27515199f -
3946      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3947      //
3948      // error 0.0000018516, which is better than 18 bits
3949      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3950                               getF32Constant(DAG, 0xbcd2769e));
3951      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3952                               getF32Constant(DAG, 0x3e8ce0b9));
3953      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3954      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3955                               getF32Constant(DAG, 0x3fa22ae7));
3956      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3957      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3958                               getF32Constant(DAG, 0x40525723));
3959      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3960      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3961                               getF32Constant(DAG, 0x40aaf200));
3962      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3963      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3964                               getF32Constant(DAG, 0x40c39dad));
3965      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3966      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3967                                   getF32Constant(DAG, 0x4042902c));
3968    }
3969
3970    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3971  }
3972
3973  // No special expansion.
3974  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
3975}
3976
3977/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
3978/// limited-precision mode.
3979static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3980                           const TargetLowering &TLI) {
3981  if (Op.getValueType() == MVT::f32 &&
3982      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3983    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3984
3985    // Scale the exponent by log10(2) [0.30102999f].
3986    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3987    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3988                                        getF32Constant(DAG, 0x3e9a209a));
3989
3990    // Get the significand and build it into a floating-point number with
3991    // exponent of 1.
3992    SDValue X = GetSignificand(DAG, Op1, dl);
3993
3994    SDValue Log10ofMantissa;
3995    if (LimitFloatPrecision <= 6) {
3996      // For floating-point precision of 6:
3997      //
3998      //   Log10ofMantissa =
3999      //     -0.50419619f +
4000      //       (0.60948995f - 0.10380950f * x) * x;
4001      //
4002      // error 0.0014886165, which is 6 bits
4003      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4004                               getF32Constant(DAG, 0xbdd49a13));
4005      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4006                               getF32Constant(DAG, 0x3f1c0789));
4007      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4008      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4009                                    getF32Constant(DAG, 0x3f011300));
4010    } else if (LimitFloatPrecision <= 12) {
4011      // For floating-point precision of 12:
4012      //
4013      //   Log10ofMantissa =
4014      //     -0.64831180f +
4015      //       (0.91751397f +
4016      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4017      //
4018      // error 0.00019228036, which is better than 12 bits
4019      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4020                               getF32Constant(DAG, 0x3d431f31));
4021      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4022                               getF32Constant(DAG, 0x3ea21fb2));
4023      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4024      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4025                               getF32Constant(DAG, 0x3f6ae232));
4026      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4027      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4028                                    getF32Constant(DAG, 0x3f25f7c3));
4029    } else { // LimitFloatPrecision <= 18
4030      // For floating-point precision of 18:
4031      //
4032      //   Log10ofMantissa =
4033      //     -0.84299375f +
4034      //       (1.5327582f +
4035      //         (-1.0688956f +
4036      //           (0.49102474f +
4037      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4038      //
4039      // error 0.0000037995730, which is better than 18 bits
4040      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4041                               getF32Constant(DAG, 0x3c5d51ce));
4042      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4043                               getF32Constant(DAG, 0x3e00685a));
4044      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4045      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4046                               getF32Constant(DAG, 0x3efb6798));
4047      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4048      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4049                               getF32Constant(DAG, 0x3f88d192));
4050      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4051      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4052                               getF32Constant(DAG, 0x3fc4316c));
4053      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4054      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4055                                    getF32Constant(DAG, 0x3f57ce70));
4056    }
4057
4058    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4059  }
4060
4061  // No special expansion.
4062  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4063}
4064
4065/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4066/// limited-precision mode.
4067static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4068                          const TargetLowering &TLI) {
4069  if (Op.getValueType() == MVT::f32 &&
4070      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4071    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4072
4073    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4074    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4075    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4076
4077    //   IntegerPartOfX <<= 23;
4078    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4079                                 DAG.getConstant(23, TLI.getPointerTy()));
4080
4081    SDValue TwoToFractionalPartOfX;
4082    if (LimitFloatPrecision <= 6) {
4083      // For floating-point precision of 6:
4084      //
4085      //   TwoToFractionalPartOfX =
4086      //     0.997535578f +
4087      //       (0.735607626f + 0.252464424f * x) * x;
4088      //
4089      // error 0.0144103317, which is 6 bits
4090      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4091                               getF32Constant(DAG, 0x3e814304));
4092      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4093                               getF32Constant(DAG, 0x3f3c50c8));
4094      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4095      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4096                                           getF32Constant(DAG, 0x3f7f5e7e));
4097    } else if (LimitFloatPrecision <= 12) {
4098      // For floating-point precision of 12:
4099      //
4100      //   TwoToFractionalPartOfX =
4101      //     0.999892986f +
4102      //       (0.696457318f +
4103      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4104      //
4105      // error 0.000107046256, which is 13 to 14 bits
4106      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4107                               getF32Constant(DAG, 0x3da235e3));
4108      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4109                               getF32Constant(DAG, 0x3e65b8f3));
4110      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4111      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4112                               getF32Constant(DAG, 0x3f324b07));
4113      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4114      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4115                                           getF32Constant(DAG, 0x3f7ff8fd));
4116    } else { // LimitFloatPrecision <= 18
4117      // For floating-point precision of 18:
4118      //
4119      //   TwoToFractionalPartOfX =
4120      //     0.999999982f +
4121      //       (0.693148872f +
4122      //         (0.240227044f +
4123      //           (0.554906021e-1f +
4124      //             (0.961591928e-2f +
4125      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4126      // error 2.47208000*10^(-7), which is better than 18 bits
4127      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4128                               getF32Constant(DAG, 0x3924b03e));
4129      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4130                               getF32Constant(DAG, 0x3ab24b87));
4131      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4132      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4133                               getF32Constant(DAG, 0x3c1d8c17));
4134      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4135      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4136                               getF32Constant(DAG, 0x3d634a1d));
4137      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4138      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4139                               getF32Constant(DAG, 0x3e75fe14));
4140      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4141      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4142                                getF32Constant(DAG, 0x3f317234));
4143      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4144      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4145                                           getF32Constant(DAG, 0x3f800000));
4146    }
4147
4148    // Add the exponent into the result in integer domain.
4149    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4150                              TwoToFractionalPartOfX);
4151    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4152                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4153                                   t13, IntegerPartOfX));
4154  }
4155
4156  // No special expansion.
4157  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4158}
4159
4160/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4161/// limited-precision mode with x == 10.0f.
4162static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4163                         SelectionDAG &DAG, const TargetLowering &TLI) {
4164  bool IsExp10 = false;
4165  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4166      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4167    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4168      APFloat Ten(10.0f);
4169      IsExp10 = LHSC->isExactlyValue(Ten);
4170    }
4171  }
4172
4173  if (IsExp10) {
4174    // Put the exponent in the right bit position for later addition to the
4175    // final result:
4176    //
4177    //   #define LOG2OF10 3.3219281f
4178    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4179    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4180                             getF32Constant(DAG, 0x40549a78));
4181    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4182
4183    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4184    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4185    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4186
4187    //   IntegerPartOfX <<= 23;
4188    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4189                                 DAG.getConstant(23, TLI.getPointerTy()));
4190
4191    SDValue TwoToFractionalPartOfX;
4192    if (LimitFloatPrecision <= 6) {
4193      // For floating-point precision of 6:
4194      //
4195      //   twoToFractionalPartOfX =
4196      //     0.997535578f +
4197      //       (0.735607626f + 0.252464424f * x) * x;
4198      //
4199      // error 0.0144103317, which is 6 bits
4200      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4201                               getF32Constant(DAG, 0x3e814304));
4202      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4203                               getF32Constant(DAG, 0x3f3c50c8));
4204      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4205      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4206                                           getF32Constant(DAG, 0x3f7f5e7e));
4207    } else if (LimitFloatPrecision <= 12) {
4208      // For floating-point precision of 12:
4209      //
4210      //   TwoToFractionalPartOfX =
4211      //     0.999892986f +
4212      //       (0.696457318f +
4213      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4214      //
4215      // error 0.000107046256, which is 13 to 14 bits
4216      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4217                               getF32Constant(DAG, 0x3da235e3));
4218      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4219                               getF32Constant(DAG, 0x3e65b8f3));
4220      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4221      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4222                               getF32Constant(DAG, 0x3f324b07));
4223      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4224      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4225                                           getF32Constant(DAG, 0x3f7ff8fd));
4226    } else { // LimitFloatPrecision <= 18
4227      // For floating-point precision of 18:
4228      //
4229      //   TwoToFractionalPartOfX =
4230      //     0.999999982f +
4231      //       (0.693148872f +
4232      //         (0.240227044f +
4233      //           (0.554906021e-1f +
4234      //             (0.961591928e-2f +
4235      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4236      // error 2.47208000*10^(-7), which is better than 18 bits
4237      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4238                               getF32Constant(DAG, 0x3924b03e));
4239      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4240                               getF32Constant(DAG, 0x3ab24b87));
4241      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4242      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4243                               getF32Constant(DAG, 0x3c1d8c17));
4244      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4245      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4246                               getF32Constant(DAG, 0x3d634a1d));
4247      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4248      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4249                               getF32Constant(DAG, 0x3e75fe14));
4250      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4251      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4252                                getF32Constant(DAG, 0x3f317234));
4253      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4254      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4255                                           getF32Constant(DAG, 0x3f800000));
4256    }
4257
4258    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4259    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4260                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4261                                   t13, IntegerPartOfX));
4262  }
4263
4264  // No special expansion.
4265  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4266}
4267
4268
4269/// ExpandPowI - Expand a llvm.powi intrinsic.
4270static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4271                          SelectionDAG &DAG) {
4272  // If RHS is a constant, we can expand this out to a multiplication tree,
4273  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4274  // optimizing for size, we only want to do this if the expansion would produce
4275  // a small number of multiplies, otherwise we do the full expansion.
4276  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4277    // Get the exponent as a positive value.
4278    unsigned Val = RHSC->getSExtValue();
4279    if ((int)Val < 0) Val = -Val;
4280
4281    // powi(x, 0) -> 1.0
4282    if (Val == 0)
4283      return DAG.getConstantFP(1.0, LHS.getValueType());
4284
4285    const Function *F = DAG.getMachineFunction().getFunction();
4286    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4287                                         Attribute::OptimizeForSize) ||
4288        // If optimizing for size, don't insert too many multiplies.  This
4289        // inserts up to 5 multiplies.
4290        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4291      // We use the simple binary decomposition method to generate the multiply
4292      // sequence.  There are more optimal ways to do this (for example,
4293      // powi(x,15) generates one more multiply than it should), but this has
4294      // the benefit of being both really simple and much better than a libcall.
4295      SDValue Res;  // Logically starts equal to 1.0
4296      SDValue CurSquare = LHS;
4297      while (Val) {
4298        if (Val & 1) {
4299          if (Res.getNode())
4300            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4301          else
4302            Res = CurSquare;  // 1.0*CurSquare.
4303        }
4304
4305        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4306                                CurSquare, CurSquare);
4307        Val >>= 1;
4308      }
4309
4310      // If the original was negative, invert the result, producing 1/(x*x*x).
4311      if (RHSC->getSExtValue() < 0)
4312        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4313                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4314      return Res;
4315    }
4316  }
4317
4318  // Otherwise, expand to a libcall.
4319  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4320}
4321
4322// getTruncatedArgReg - Find underlying register used for an truncated
4323// argument.
4324static unsigned getTruncatedArgReg(const SDValue &N) {
4325  if (N.getOpcode() != ISD::TRUNCATE)
4326    return 0;
4327
4328  const SDValue &Ext = N.getOperand(0);
4329  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4330    const SDValue &CFR = Ext.getOperand(0);
4331    if (CFR.getOpcode() == ISD::CopyFromReg)
4332      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4333    if (CFR.getOpcode() == ISD::TRUNCATE)
4334      return getTruncatedArgReg(CFR);
4335  }
4336  return 0;
4337}
4338
4339/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4340/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4341/// At the end of instruction selection, they will be inserted to the entry BB.
4342bool
4343SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4344                                              int64_t Offset,
4345                                              const SDValue &N) {
4346  const Argument *Arg = dyn_cast<Argument>(V);
4347  if (!Arg)
4348    return false;
4349
4350  MachineFunction &MF = DAG.getMachineFunction();
4351  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4352  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4353
4354  // Ignore inlined function arguments here.
4355  DIVariable DV(Variable);
4356  if (DV.isInlinedFnArgument(MF.getFunction()))
4357    return false;
4358
4359  unsigned Reg = 0;
4360  // Some arguments' frame index is recorded during argument lowering.
4361  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4362  if (Offset)
4363    Reg = TRI->getFrameRegister(MF);
4364
4365  if (!Reg && N.getNode()) {
4366    if (N.getOpcode() == ISD::CopyFromReg)
4367      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4368    else
4369      Reg = getTruncatedArgReg(N);
4370    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4371      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4372      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4373      if (PR)
4374        Reg = PR;
4375    }
4376  }
4377
4378  if (!Reg) {
4379    // Check if ValueMap has reg number.
4380    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4381    if (VMI != FuncInfo.ValueMap.end())
4382      Reg = VMI->second;
4383  }
4384
4385  if (!Reg && N.getNode()) {
4386    // Check if frame index is available.
4387    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4388      if (FrameIndexSDNode *FINode =
4389          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4390        Reg = TRI->getFrameRegister(MF);
4391        Offset = FINode->getIndex();
4392      }
4393  }
4394
4395  if (!Reg)
4396    return false;
4397
4398  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4399                                    TII->get(TargetOpcode::DBG_VALUE))
4400    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4401  FuncInfo.ArgDbgValues.push_back(&*MIB);
4402  return true;
4403}
4404
4405// VisualStudio defines setjmp as _setjmp
4406#if defined(_MSC_VER) && defined(setjmp) && \
4407                         !defined(setjmp_undefined_for_msvc)
4408#  pragma push_macro("setjmp")
4409#  undef setjmp
4410#  define setjmp_undefined_for_msvc
4411#endif
4412
4413/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4414/// we want to emit this as a call to a named external function, return the name
4415/// otherwise lower it and return null.
4416const char *
4417SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4418  SDLoc sdl = getCurSDLoc();
4419  DebugLoc dl = getCurDebugLoc();
4420  SDValue Res;
4421
4422  switch (Intrinsic) {
4423  default:
4424    // By default, turn this into a target intrinsic node.
4425    visitTargetIntrinsic(I, Intrinsic);
4426    return 0;
4427  case Intrinsic::vastart:  visitVAStart(I); return 0;
4428  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4429  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4430  case Intrinsic::returnaddress:
4431    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(),
4432                             getValue(I.getArgOperand(0))));
4433    return 0;
4434  case Intrinsic::frameaddress:
4435    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4436                             getValue(I.getArgOperand(0))));
4437    return 0;
4438  case Intrinsic::setjmp:
4439    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4440  case Intrinsic::longjmp:
4441    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4442  case Intrinsic::memcpy: {
4443    // Assert for address < 256 since we support only user defined address
4444    // spaces.
4445    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4446           < 256 &&
4447           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4448           < 256 &&
4449           "Unknown address space");
4450    SDValue Op1 = getValue(I.getArgOperand(0));
4451    SDValue Op2 = getValue(I.getArgOperand(1));
4452    SDValue Op3 = getValue(I.getArgOperand(2));
4453    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4454    if (!Align)
4455      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4456    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4457    DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4458                              MachinePointerInfo(I.getArgOperand(0)),
4459                              MachinePointerInfo(I.getArgOperand(1))));
4460    return 0;
4461  }
4462  case Intrinsic::memset: {
4463    // Assert for address < 256 since we support only user defined address
4464    // spaces.
4465    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4466           < 256 &&
4467           "Unknown address space");
4468    SDValue Op1 = getValue(I.getArgOperand(0));
4469    SDValue Op2 = getValue(I.getArgOperand(1));
4470    SDValue Op3 = getValue(I.getArgOperand(2));
4471    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4472    if (!Align)
4473      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4474    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4475    DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4476                              MachinePointerInfo(I.getArgOperand(0))));
4477    return 0;
4478  }
4479  case Intrinsic::memmove: {
4480    // Assert for address < 256 since we support only user defined address
4481    // spaces.
4482    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4483           < 256 &&
4484           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4485           < 256 &&
4486           "Unknown address space");
4487    SDValue Op1 = getValue(I.getArgOperand(0));
4488    SDValue Op2 = getValue(I.getArgOperand(1));
4489    SDValue Op3 = getValue(I.getArgOperand(2));
4490    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4491    if (!Align)
4492      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4493    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4494    DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4495                               MachinePointerInfo(I.getArgOperand(0)),
4496                               MachinePointerInfo(I.getArgOperand(1))));
4497    return 0;
4498  }
4499  case Intrinsic::dbg_declare: {
4500    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4501    MDNode *Variable = DI.getVariable();
4502    const Value *Address = DI.getAddress();
4503    if (!Address || !DIVariable(Variable).Verify()) {
4504      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4505      return 0;
4506    }
4507
4508    // Check if address has undef value.
4509    if (isa<UndefValue>(Address) ||
4510        (Address->use_empty() && !isa<Argument>(Address))) {
4511      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4512      return 0;
4513    }
4514
4515    SDValue &N = NodeMap[Address];
4516    if (!N.getNode() && isa<Argument>(Address))
4517      // Check unused arguments map.
4518      N = UnusedArgNodeMap[Address];
4519    SDDbgValue *SDV;
4520    if (N.getNode()) {
4521      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4522        Address = BCI->getOperand(0);
4523      // Parameters are handled specially.
4524      bool isParameter =
4525        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4526         isa<Argument>(Address));
4527
4528      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4529
4530      if (isParameter && !AI) {
4531        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4532        if (FINode)
4533          // Byval parameter.  We have a frame index at this point.
4534          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4535                                0, dl, SDNodeOrder);
4536        else {
4537          // Address is an argument, so try to emit its dbg value using
4538          // virtual register info from the FuncInfo.ValueMap.
4539          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4540          return 0;
4541        }
4542      } else if (AI)
4543        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4544                              0, dl, SDNodeOrder);
4545      else {
4546        // Can't do anything with other non-AI cases yet.
4547        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4548        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4549        DEBUG(Address->dump());
4550        return 0;
4551      }
4552      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4553    } else {
4554      // If Address is an argument then try to emit its dbg value using
4555      // virtual register info from the FuncInfo.ValueMap.
4556      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4557        // If variable is pinned by a alloca in dominating bb then
4558        // use StaticAllocaMap.
4559        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4560          if (AI->getParent() != DI.getParent()) {
4561            DenseMap<const AllocaInst*, int>::iterator SI =
4562              FuncInfo.StaticAllocaMap.find(AI);
4563            if (SI != FuncInfo.StaticAllocaMap.end()) {
4564              SDV = DAG.getDbgValue(Variable, SI->second,
4565                                    0, dl, SDNodeOrder);
4566              DAG.AddDbgValue(SDV, 0, false);
4567              return 0;
4568            }
4569          }
4570        }
4571        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4572      }
4573    }
4574    return 0;
4575  }
4576  case Intrinsic::dbg_value: {
4577    const DbgValueInst &DI = cast<DbgValueInst>(I);
4578    if (!DIVariable(DI.getVariable()).Verify())
4579      return 0;
4580
4581    MDNode *Variable = DI.getVariable();
4582    uint64_t Offset = DI.getOffset();
4583    const Value *V = DI.getValue();
4584    if (!V)
4585      return 0;
4586
4587    SDDbgValue *SDV;
4588    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4589      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4590      DAG.AddDbgValue(SDV, 0, false);
4591    } else {
4592      // Do not use getValue() in here; we don't want to generate code at
4593      // this point if it hasn't been done yet.
4594      SDValue N = NodeMap[V];
4595      if (!N.getNode() && isa<Argument>(V))
4596        // Check unused arguments map.
4597        N = UnusedArgNodeMap[V];
4598      if (N.getNode()) {
4599        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4600          SDV = DAG.getDbgValue(Variable, N.getNode(),
4601                                N.getResNo(), Offset, dl, SDNodeOrder);
4602          DAG.AddDbgValue(SDV, N.getNode(), false);
4603        }
4604      } else if (!V->use_empty() ) {
4605        // Do not call getValue(V) yet, as we don't want to generate code.
4606        // Remember it for later.
4607        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4608        DanglingDebugInfoMap[V] = DDI;
4609      } else {
4610        // We may expand this to cover more cases.  One case where we have no
4611        // data available is an unreferenced parameter.
4612        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4613      }
4614    }
4615
4616    // Build a debug info table entry.
4617    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4618      V = BCI->getOperand(0);
4619    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4620    // Don't handle byval struct arguments or VLAs, for example.
4621    if (!AI) {
4622      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4623      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4624      return 0;
4625    }
4626    DenseMap<const AllocaInst*, int>::iterator SI =
4627      FuncInfo.StaticAllocaMap.find(AI);
4628    if (SI == FuncInfo.StaticAllocaMap.end())
4629      return 0; // VLAs.
4630    int FI = SI->second;
4631
4632    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4633    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4634      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4635    return 0;
4636  }
4637
4638  case Intrinsic::eh_typeid_for: {
4639    // Find the type id for the given typeinfo.
4640    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4641    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4642    Res = DAG.getConstant(TypeID, MVT::i32);
4643    setValue(&I, Res);
4644    return 0;
4645  }
4646
4647  case Intrinsic::eh_return_i32:
4648  case Intrinsic::eh_return_i64:
4649    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4650    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4651                            MVT::Other,
4652                            getControlRoot(),
4653                            getValue(I.getArgOperand(0)),
4654                            getValue(I.getArgOperand(1))));
4655    return 0;
4656  case Intrinsic::eh_unwind_init:
4657    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4658    return 0;
4659  case Intrinsic::eh_dwarf_cfa: {
4660    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4661                                        TLI.getPointerTy());
4662    SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4663                                 TLI.getPointerTy(),
4664                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4665                                             TLI.getPointerTy()),
4666                                 CfaArg);
4667    SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4668                             TLI.getPointerTy(),
4669                             DAG.getConstant(0, TLI.getPointerTy()));
4670    setValue(&I, DAG.getNode(ISD::ADD, sdl, TLI.getPointerTy(),
4671                             FA, Offset));
4672    return 0;
4673  }
4674  case Intrinsic::eh_sjlj_callsite: {
4675    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4676    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4677    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4678    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4679
4680    MMI.setCurrentCallSite(CI->getZExtValue());
4681    return 0;
4682  }
4683  case Intrinsic::eh_sjlj_functioncontext: {
4684    // Get and store the index of the function context.
4685    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4686    AllocaInst *FnCtx =
4687      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4688    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4689    MFI->setFunctionContextIndex(FI);
4690    return 0;
4691  }
4692  case Intrinsic::eh_sjlj_setjmp: {
4693    SDValue Ops[2];
4694    Ops[0] = getRoot();
4695    Ops[1] = getValue(I.getArgOperand(0));
4696    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4697                             DAG.getVTList(MVT::i32, MVT::Other),
4698                             Ops, 2);
4699    setValue(&I, Op.getValue(0));
4700    DAG.setRoot(Op.getValue(1));
4701    return 0;
4702  }
4703  case Intrinsic::eh_sjlj_longjmp: {
4704    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4705                            getRoot(), getValue(I.getArgOperand(0))));
4706    return 0;
4707  }
4708
4709  case Intrinsic::x86_mmx_pslli_w:
4710  case Intrinsic::x86_mmx_pslli_d:
4711  case Intrinsic::x86_mmx_pslli_q:
4712  case Intrinsic::x86_mmx_psrli_w:
4713  case Intrinsic::x86_mmx_psrli_d:
4714  case Intrinsic::x86_mmx_psrli_q:
4715  case Intrinsic::x86_mmx_psrai_w:
4716  case Intrinsic::x86_mmx_psrai_d: {
4717    SDValue ShAmt = getValue(I.getArgOperand(1));
4718    if (isa<ConstantSDNode>(ShAmt)) {
4719      visitTargetIntrinsic(I, Intrinsic);
4720      return 0;
4721    }
4722    unsigned NewIntrinsic = 0;
4723    EVT ShAmtVT = MVT::v2i32;
4724    switch (Intrinsic) {
4725    case Intrinsic::x86_mmx_pslli_w:
4726      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4727      break;
4728    case Intrinsic::x86_mmx_pslli_d:
4729      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4730      break;
4731    case Intrinsic::x86_mmx_pslli_q:
4732      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4733      break;
4734    case Intrinsic::x86_mmx_psrli_w:
4735      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4736      break;
4737    case Intrinsic::x86_mmx_psrli_d:
4738      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4739      break;
4740    case Intrinsic::x86_mmx_psrli_q:
4741      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4742      break;
4743    case Intrinsic::x86_mmx_psrai_w:
4744      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4745      break;
4746    case Intrinsic::x86_mmx_psrai_d:
4747      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4748      break;
4749    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4750    }
4751
4752    // The vector shift intrinsics with scalars uses 32b shift amounts but
4753    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4754    // to be zero.
4755    // We must do this early because v2i32 is not a legal type.
4756    SDValue ShOps[2];
4757    ShOps[0] = ShAmt;
4758    ShOps[1] = DAG.getConstant(0, MVT::i32);
4759    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
4760    EVT DestVT = TLI.getValueType(I.getType());
4761    ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4762    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4763                       DAG.getConstant(NewIntrinsic, MVT::i32),
4764                       getValue(I.getArgOperand(0)), ShAmt);
4765    setValue(&I, Res);
4766    return 0;
4767  }
4768  case Intrinsic::x86_avx_vinsertf128_pd_256:
4769  case Intrinsic::x86_avx_vinsertf128_ps_256:
4770  case Intrinsic::x86_avx_vinsertf128_si_256:
4771  case Intrinsic::x86_avx2_vinserti128: {
4772    EVT DestVT = TLI.getValueType(I.getType());
4773    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4774    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4775                   ElVT.getVectorNumElements();
4776    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4777                      getValue(I.getArgOperand(0)),
4778                      getValue(I.getArgOperand(1)),
4779                      DAG.getIntPtrConstant(Idx));
4780    setValue(&I, Res);
4781    return 0;
4782  }
4783  case Intrinsic::x86_avx_vextractf128_pd_256:
4784  case Intrinsic::x86_avx_vextractf128_ps_256:
4785  case Intrinsic::x86_avx_vextractf128_si_256:
4786  case Intrinsic::x86_avx2_vextracti128: {
4787    EVT DestVT = TLI.getValueType(I.getType());
4788    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4789                   DestVT.getVectorNumElements();
4790    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
4791                      getValue(I.getArgOperand(0)),
4792                      DAG.getIntPtrConstant(Idx));
4793    setValue(&I, Res);
4794    return 0;
4795  }
4796  case Intrinsic::convertff:
4797  case Intrinsic::convertfsi:
4798  case Intrinsic::convertfui:
4799  case Intrinsic::convertsif:
4800  case Intrinsic::convertuif:
4801  case Intrinsic::convertss:
4802  case Intrinsic::convertsu:
4803  case Intrinsic::convertus:
4804  case Intrinsic::convertuu: {
4805    ISD::CvtCode Code = ISD::CVT_INVALID;
4806    switch (Intrinsic) {
4807    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4808    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4809    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4810    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4811    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4812    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4813    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4814    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4815    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4816    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4817    }
4818    EVT DestVT = TLI.getValueType(I.getType());
4819    const Value *Op1 = I.getArgOperand(0);
4820    Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4821                               DAG.getValueType(DestVT),
4822                               DAG.getValueType(getValue(Op1).getValueType()),
4823                               getValue(I.getArgOperand(1)),
4824                               getValue(I.getArgOperand(2)),
4825                               Code);
4826    setValue(&I, Res);
4827    return 0;
4828  }
4829  case Intrinsic::powi:
4830    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4831                            getValue(I.getArgOperand(1)), DAG));
4832    return 0;
4833  case Intrinsic::log:
4834    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4835    return 0;
4836  case Intrinsic::log2:
4837    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4838    return 0;
4839  case Intrinsic::log10:
4840    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4841    return 0;
4842  case Intrinsic::exp:
4843    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4844    return 0;
4845  case Intrinsic::exp2:
4846    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4847    return 0;
4848  case Intrinsic::pow:
4849    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4850                           getValue(I.getArgOperand(1)), DAG, TLI));
4851    return 0;
4852  case Intrinsic::sqrt:
4853  case Intrinsic::fabs:
4854  case Intrinsic::sin:
4855  case Intrinsic::cos:
4856  case Intrinsic::floor:
4857  case Intrinsic::ceil:
4858  case Intrinsic::trunc:
4859  case Intrinsic::rint:
4860  case Intrinsic::nearbyint: {
4861    unsigned Opcode;
4862    switch (Intrinsic) {
4863    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4864    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4865    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4866    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4867    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4868    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4869    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4870    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4871    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4872    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4873    }
4874
4875    setValue(&I, DAG.getNode(Opcode, sdl,
4876                             getValue(I.getArgOperand(0)).getValueType(),
4877                             getValue(I.getArgOperand(0))));
4878    return 0;
4879  }
4880  case Intrinsic::fma:
4881    setValue(&I, DAG.getNode(ISD::FMA, sdl,
4882                             getValue(I.getArgOperand(0)).getValueType(),
4883                             getValue(I.getArgOperand(0)),
4884                             getValue(I.getArgOperand(1)),
4885                             getValue(I.getArgOperand(2))));
4886    return 0;
4887  case Intrinsic::fmuladd: {
4888    EVT VT = TLI.getValueType(I.getType());
4889    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4890        TLI.isFMAFasterThanMulAndAdd(VT)){
4891      setValue(&I, DAG.getNode(ISD::FMA, sdl,
4892                               getValue(I.getArgOperand(0)).getValueType(),
4893                               getValue(I.getArgOperand(0)),
4894                               getValue(I.getArgOperand(1)),
4895                               getValue(I.getArgOperand(2))));
4896    } else {
4897      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4898                                getValue(I.getArgOperand(0)).getValueType(),
4899                                getValue(I.getArgOperand(0)),
4900                                getValue(I.getArgOperand(1)));
4901      SDValue Add = DAG.getNode(ISD::FADD, sdl,
4902                                getValue(I.getArgOperand(0)).getValueType(),
4903                                Mul,
4904                                getValue(I.getArgOperand(2)));
4905      setValue(&I, Add);
4906    }
4907    return 0;
4908  }
4909  case Intrinsic::convert_to_fp16:
4910    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
4911                             MVT::i16, getValue(I.getArgOperand(0))));
4912    return 0;
4913  case Intrinsic::convert_from_fp16:
4914    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
4915                             MVT::f32, getValue(I.getArgOperand(0))));
4916    return 0;
4917  case Intrinsic::pcmarker: {
4918    SDValue Tmp = getValue(I.getArgOperand(0));
4919    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4920    return 0;
4921  }
4922  case Intrinsic::readcyclecounter: {
4923    SDValue Op = getRoot();
4924    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4925                      DAG.getVTList(MVT::i64, MVT::Other),
4926                      &Op, 1);
4927    setValue(&I, Res);
4928    DAG.setRoot(Res.getValue(1));
4929    return 0;
4930  }
4931  case Intrinsic::bswap:
4932    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4933                             getValue(I.getArgOperand(0)).getValueType(),
4934                             getValue(I.getArgOperand(0))));
4935    return 0;
4936  case Intrinsic::cttz: {
4937    SDValue Arg = getValue(I.getArgOperand(0));
4938    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4939    EVT Ty = Arg.getValueType();
4940    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4941                             sdl, Ty, Arg));
4942    return 0;
4943  }
4944  case Intrinsic::ctlz: {
4945    SDValue Arg = getValue(I.getArgOperand(0));
4946    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4947    EVT Ty = Arg.getValueType();
4948    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4949                             sdl, Ty, Arg));
4950    return 0;
4951  }
4952  case Intrinsic::ctpop: {
4953    SDValue Arg = getValue(I.getArgOperand(0));
4954    EVT Ty = Arg.getValueType();
4955    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4956    return 0;
4957  }
4958  case Intrinsic::stacksave: {
4959    SDValue Op = getRoot();
4960    Res = DAG.getNode(ISD::STACKSAVE, sdl,
4961                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4962    setValue(&I, Res);
4963    DAG.setRoot(Res.getValue(1));
4964    return 0;
4965  }
4966  case Intrinsic::stackrestore: {
4967    Res = getValue(I.getArgOperand(0));
4968    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
4969    return 0;
4970  }
4971  case Intrinsic::stackprotector: {
4972    // Emit code into the DAG to store the stack guard onto the stack.
4973    MachineFunction &MF = DAG.getMachineFunction();
4974    MachineFrameInfo *MFI = MF.getFrameInfo();
4975    EVT PtrTy = TLI.getPointerTy();
4976
4977    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4978    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4979
4980    int FI = FuncInfo.StaticAllocaMap[Slot];
4981    MFI->setStackProtectorIndex(FI);
4982
4983    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4984
4985    // Store the stack protector onto the stack.
4986    Res = DAG.getStore(getRoot(), sdl, Src, FIN,
4987                       MachinePointerInfo::getFixedStack(FI),
4988                       true, false, 0);
4989    setValue(&I, Res);
4990    DAG.setRoot(Res);
4991    return 0;
4992  }
4993  case Intrinsic::objectsize: {
4994    // If we don't know by now, we're never going to know.
4995    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4996
4997    assert(CI && "Non-constant type in __builtin_object_size?");
4998
4999    SDValue Arg = getValue(I.getCalledValue());
5000    EVT Ty = Arg.getValueType();
5001
5002    if (CI->isZero())
5003      Res = DAG.getConstant(-1ULL, Ty);
5004    else
5005      Res = DAG.getConstant(0, Ty);
5006
5007    setValue(&I, Res);
5008    return 0;
5009  }
5010  case Intrinsic::annotation:
5011  case Intrinsic::ptr_annotation:
5012    // Drop the intrinsic, but forward the value
5013    setValue(&I, getValue(I.getOperand(0)));
5014    return 0;
5015  case Intrinsic::var_annotation:
5016    // Discard annotate attributes
5017    return 0;
5018
5019  case Intrinsic::init_trampoline: {
5020    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5021
5022    SDValue Ops[6];
5023    Ops[0] = getRoot();
5024    Ops[1] = getValue(I.getArgOperand(0));
5025    Ops[2] = getValue(I.getArgOperand(1));
5026    Ops[3] = getValue(I.getArgOperand(2));
5027    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5028    Ops[5] = DAG.getSrcValue(F);
5029
5030    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
5031
5032    DAG.setRoot(Res);
5033    return 0;
5034  }
5035  case Intrinsic::adjust_trampoline: {
5036    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5037                             TLI.getPointerTy(),
5038                             getValue(I.getArgOperand(0))));
5039    return 0;
5040  }
5041  case Intrinsic::gcroot:
5042    if (GFI) {
5043      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5044      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5045
5046      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5047      GFI->addStackRoot(FI->getIndex(), TypeMap);
5048    }
5049    return 0;
5050  case Intrinsic::gcread:
5051  case Intrinsic::gcwrite:
5052    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5053  case Intrinsic::flt_rounds:
5054    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5055    return 0;
5056
5057  case Intrinsic::expect: {
5058    // Just replace __builtin_expect(exp, c) with EXP.
5059    setValue(&I, getValue(I.getArgOperand(0)));
5060    return 0;
5061  }
5062
5063  case Intrinsic::debugtrap:
5064  case Intrinsic::trap: {
5065    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5066    if (TrapFuncName.empty()) {
5067      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5068        ISD::TRAP : ISD::DEBUGTRAP;
5069      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5070      return 0;
5071    }
5072    TargetLowering::ArgListTy Args;
5073    TargetLowering::
5074    CallLoweringInfo CLI(getRoot(), I.getType(),
5075                 false, false, false, false, 0, CallingConv::C,
5076                 /*isTailCall=*/false,
5077                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5078                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5079                 Args, DAG, sdl);
5080    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5081    DAG.setRoot(Result.second);
5082    return 0;
5083  }
5084
5085  case Intrinsic::uadd_with_overflow:
5086  case Intrinsic::sadd_with_overflow:
5087  case Intrinsic::usub_with_overflow:
5088  case Intrinsic::ssub_with_overflow:
5089  case Intrinsic::umul_with_overflow:
5090  case Intrinsic::smul_with_overflow: {
5091    ISD::NodeType Op;
5092    switch (Intrinsic) {
5093    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5094    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5095    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5096    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5097    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5098    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5099    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5100    }
5101    SDValue Op1 = getValue(I.getArgOperand(0));
5102    SDValue Op2 = getValue(I.getArgOperand(1));
5103
5104    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5105    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5106    return 0;
5107  }
5108  case Intrinsic::prefetch: {
5109    SDValue Ops[5];
5110    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5111    Ops[0] = getRoot();
5112    Ops[1] = getValue(I.getArgOperand(0));
5113    Ops[2] = getValue(I.getArgOperand(1));
5114    Ops[3] = getValue(I.getArgOperand(2));
5115    Ops[4] = getValue(I.getArgOperand(3));
5116    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5117                                        DAG.getVTList(MVT::Other),
5118                                        &Ops[0], 5,
5119                                        EVT::getIntegerVT(*Context, 8),
5120                                        MachinePointerInfo(I.getArgOperand(0)),
5121                                        0, /* align */
5122                                        false, /* volatile */
5123                                        rw==0, /* read */
5124                                        rw==1)); /* write */
5125    return 0;
5126  }
5127  case Intrinsic::lifetime_start:
5128  case Intrinsic::lifetime_end: {
5129    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5130    // Stack coloring is not enabled in O0, discard region information.
5131    if (TM.getOptLevel() == CodeGenOpt::None)
5132      return 0;
5133
5134    SmallVector<Value *, 4> Allocas;
5135    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5136
5137    for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
5138         E = Allocas.end(); Object != E; ++Object) {
5139      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5140
5141      // Could not find an Alloca.
5142      if (!LifetimeObject)
5143        continue;
5144
5145      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5146
5147      SDValue Ops[2];
5148      Ops[0] = getRoot();
5149      Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5150      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5151
5152      Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
5153      DAG.setRoot(Res);
5154    }
5155    return 0;
5156  }
5157  case Intrinsic::invariant_start:
5158    // Discard region information.
5159    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5160    return 0;
5161  case Intrinsic::invariant_end:
5162    // Discard region information.
5163    return 0;
5164  case Intrinsic::donothing:
5165    // ignore
5166    return 0;
5167  }
5168}
5169
5170void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5171                                      bool isTailCall,
5172                                      MachineBasicBlock *LandingPad) {
5173  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5174  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5175  Type *RetTy = FTy->getReturnType();
5176  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5177  MCSymbol *BeginLabel = 0;
5178
5179  TargetLowering::ArgListTy Args;
5180  TargetLowering::ArgListEntry Entry;
5181  Args.reserve(CS.arg_size());
5182
5183  // Check whether the function can return without sret-demotion.
5184  SmallVector<ISD::OutputArg, 4> Outs;
5185  GetReturnInfo(RetTy, CS.getAttributes(), Outs, TLI);
5186
5187  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5188                                           DAG.getMachineFunction(),
5189                                           FTy->isVarArg(), Outs,
5190                                           FTy->getContext());
5191
5192  SDValue DemoteStackSlot;
5193  int DemoteStackIdx = -100;
5194
5195  if (!CanLowerReturn) {
5196    uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(
5197                      FTy->getReturnType());
5198    unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(
5199                      FTy->getReturnType());
5200    MachineFunction &MF = DAG.getMachineFunction();
5201    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5202    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5203
5204    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5205    Entry.Node = DemoteStackSlot;
5206    Entry.Ty = StackSlotPtrType;
5207    Entry.isSExt = false;
5208    Entry.isZExt = false;
5209    Entry.isInReg = false;
5210    Entry.isSRet = true;
5211    Entry.isNest = false;
5212    Entry.isByVal = false;
5213    Entry.isReturned = false;
5214    Entry.Alignment = Align;
5215    Args.push_back(Entry);
5216    RetTy = Type::getVoidTy(FTy->getContext());
5217  }
5218
5219  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5220       i != e; ++i) {
5221    const Value *V = *i;
5222
5223    // Skip empty types
5224    if (V->getType()->isEmptyTy())
5225      continue;
5226
5227    SDValue ArgNode = getValue(V);
5228    Entry.Node = ArgNode; Entry.Ty = V->getType();
5229
5230    unsigned attrInd = i - CS.arg_begin() + 1;
5231    Entry.isSExt     = CS.paramHasAttr(attrInd, Attribute::SExt);
5232    Entry.isZExt     = CS.paramHasAttr(attrInd, Attribute::ZExt);
5233    Entry.isInReg    = CS.paramHasAttr(attrInd, Attribute::InReg);
5234    Entry.isSRet     = CS.paramHasAttr(attrInd, Attribute::StructRet);
5235    Entry.isNest     = CS.paramHasAttr(attrInd, Attribute::Nest);
5236    Entry.isByVal    = CS.paramHasAttr(attrInd, Attribute::ByVal);
5237    Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned);
5238    Entry.Alignment  = CS.getParamAlignment(attrInd);
5239    Args.push_back(Entry);
5240  }
5241
5242  if (LandingPad) {
5243    // Insert a label before the invoke call to mark the try range.  This can be
5244    // used to detect deletion of the invoke via the MachineModuleInfo.
5245    BeginLabel = MMI.getContext().CreateTempSymbol();
5246
5247    // For SjLj, keep track of which landing pads go with which invokes
5248    // so as to maintain the ordering of pads in the LSDA.
5249    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5250    if (CallSiteIndex) {
5251      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5252      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5253
5254      // Now that the call site is handled, stop tracking it.
5255      MMI.setCurrentCallSite(0);
5256    }
5257
5258    // Both PendingLoads and PendingExports must be flushed here;
5259    // this call might not return.
5260    (void)getRoot();
5261    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5262  }
5263
5264  // Check if target-independent constraints permit a tail call here.
5265  // Target-dependent constraints are checked within TLI.LowerCallTo.
5266  if (isTailCall && !isInTailCallPosition(CS, TLI))
5267    isTailCall = false;
5268
5269  TargetLowering::
5270  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5271                       getCurSDLoc(), CS);
5272  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5273  assert((isTailCall || Result.second.getNode()) &&
5274         "Non-null chain expected with non-tail call!");
5275  assert((Result.second.getNode() || !Result.first.getNode()) &&
5276         "Null value expected with tail call!");
5277  if (Result.first.getNode()) {
5278    setValue(CS.getInstruction(), Result.first);
5279  } else if (!CanLowerReturn && Result.second.getNode()) {
5280    // The instruction result is the result of loading from the
5281    // hidden sret parameter.
5282    SmallVector<EVT, 1> PVTs;
5283    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5284
5285    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5286    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5287    EVT PtrVT = PVTs[0];
5288
5289    SmallVector<EVT, 4> RetTys;
5290    SmallVector<uint64_t, 4> Offsets;
5291    RetTy = FTy->getReturnType();
5292    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5293
5294    unsigned NumValues = RetTys.size();
5295    SmallVector<SDValue, 4> Values(NumValues);
5296    SmallVector<SDValue, 4> Chains(NumValues);
5297
5298    for (unsigned i = 0; i < NumValues; ++i) {
5299      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5300                                DemoteStackSlot,
5301                                DAG.getConstant(Offsets[i], PtrVT));
5302      SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5303                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5304                              false, false, false, 1);
5305      Values[i] = L;
5306      Chains[i] = L.getValue(1);
5307    }
5308
5309    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5310                                MVT::Other, &Chains[0], NumValues);
5311    PendingLoads.push_back(Chain);
5312
5313    setValue(CS.getInstruction(),
5314             DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5315                         DAG.getVTList(&RetTys[0], RetTys.size()),
5316                         &Values[0], Values.size()));
5317  }
5318
5319  if (!Result.second.getNode()) {
5320    // As a special case, a null chain means that a tail call has been emitted and
5321    // the DAG root is already updated.
5322    HasTailCall = true;
5323  } else {
5324    DAG.setRoot(Result.second);
5325  }
5326
5327  if (LandingPad) {
5328    // Insert a label at the end of the invoke call to mark the try range.  This
5329    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5330    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5331    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5332
5333    // Inform MachineModuleInfo of range.
5334    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5335  }
5336}
5337
5338/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5339/// value is equal or not-equal to zero.
5340static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5341  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5342       UI != E; ++UI) {
5343    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5344      if (IC->isEquality())
5345        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5346          if (C->isNullValue())
5347            continue;
5348    // Unknown instruction.
5349    return false;
5350  }
5351  return true;
5352}
5353
5354static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5355                             Type *LoadTy,
5356                             SelectionDAGBuilder &Builder) {
5357
5358  // Check to see if this load can be trivially constant folded, e.g. if the
5359  // input is from a string literal.
5360  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5361    // Cast pointer to the type we really want to load.
5362    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5363                                         PointerType::getUnqual(LoadTy));
5364
5365    if (const Constant *LoadCst =
5366          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5367                                       Builder.TD))
5368      return Builder.getValue(LoadCst);
5369  }
5370
5371  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5372  // still constant memory, the input chain can be the entry node.
5373  SDValue Root;
5374  bool ConstantMemory = false;
5375
5376  // Do not serialize (non-volatile) loads of constant memory with anything.
5377  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5378    Root = Builder.DAG.getEntryNode();
5379    ConstantMemory = true;
5380  } else {
5381    // Do not serialize non-volatile loads against each other.
5382    Root = Builder.DAG.getRoot();
5383  }
5384
5385  SDValue Ptr = Builder.getValue(PtrVal);
5386  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5387                                        Ptr, MachinePointerInfo(PtrVal),
5388                                        false /*volatile*/,
5389                                        false /*nontemporal*/,
5390                                        false /*isinvariant*/, 1 /* align=1 */);
5391
5392  if (!ConstantMemory)
5393    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5394  return LoadVal;
5395}
5396
5397
5398/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5399/// If so, return true and lower it, otherwise return false and it will be
5400/// lowered like a normal call.
5401bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5402  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5403  if (I.getNumArgOperands() != 3)
5404    return false;
5405
5406  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5407  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5408      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5409      !I.getType()->isIntegerTy())
5410    return false;
5411
5412  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5413
5414  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5415  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5416  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5417    bool ActuallyDoIt = true;
5418    MVT LoadVT;
5419    Type *LoadTy;
5420    switch (Size->getZExtValue()) {
5421    default:
5422      LoadVT = MVT::Other;
5423      LoadTy = 0;
5424      ActuallyDoIt = false;
5425      break;
5426    case 2:
5427      LoadVT = MVT::i16;
5428      LoadTy = Type::getInt16Ty(Size->getContext());
5429      break;
5430    case 4:
5431      LoadVT = MVT::i32;
5432      LoadTy = Type::getInt32Ty(Size->getContext());
5433      break;
5434    case 8:
5435      LoadVT = MVT::i64;
5436      LoadTy = Type::getInt64Ty(Size->getContext());
5437      break;
5438        /*
5439    case 16:
5440      LoadVT = MVT::v4i32;
5441      LoadTy = Type::getInt32Ty(Size->getContext());
5442      LoadTy = VectorType::get(LoadTy, 4);
5443      break;
5444         */
5445    }
5446
5447    // This turns into unaligned loads.  We only do this if the target natively
5448    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5449    // we'll only produce a small number of byte loads.
5450
5451    // Require that we can find a legal MVT, and only do this if the target
5452    // supports unaligned loads of that type.  Expanding into byte loads would
5453    // bloat the code.
5454    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5455      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5456      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5457      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5458        ActuallyDoIt = false;
5459    }
5460
5461    if (ActuallyDoIt) {
5462      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5463      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5464
5465      SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5466                                 ISD::SETNE);
5467      EVT CallVT = TLI.getValueType(I.getType(), true);
5468      setValue(&I, DAG.getZExtOrTrunc(Res, getCurSDLoc(), CallVT));
5469      return true;
5470    }
5471  }
5472
5473
5474  return false;
5475}
5476
5477/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5478/// operation (as expected), translate it to an SDNode with the specified opcode
5479/// and return true.
5480bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5481                                              unsigned Opcode) {
5482  // Sanity check that it really is a unary floating-point call.
5483  if (I.getNumArgOperands() != 1 ||
5484      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5485      I.getType() != I.getArgOperand(0)->getType() ||
5486      !I.onlyReadsMemory())
5487    return false;
5488
5489  SDValue Tmp = getValue(I.getArgOperand(0));
5490  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5491  return true;
5492}
5493
5494void SelectionDAGBuilder::visitCall(const CallInst &I) {
5495  // Handle inline assembly differently.
5496  if (isa<InlineAsm>(I.getCalledValue())) {
5497    visitInlineAsm(&I);
5498    return;
5499  }
5500
5501  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5502  ComputeUsesVAFloatArgument(I, &MMI);
5503
5504  const char *RenameFn = 0;
5505  if (Function *F = I.getCalledFunction()) {
5506    if (F->isDeclaration()) {
5507      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5508        if (unsigned IID = II->getIntrinsicID(F)) {
5509          RenameFn = visitIntrinsicCall(I, IID);
5510          if (!RenameFn)
5511            return;
5512        }
5513      }
5514      if (unsigned IID = F->getIntrinsicID()) {
5515        RenameFn = visitIntrinsicCall(I, IID);
5516        if (!RenameFn)
5517          return;
5518      }
5519    }
5520
5521    // Check for well-known libc/libm calls.  If the function is internal, it
5522    // can't be a library call.
5523    LibFunc::Func Func;
5524    if (!F->hasLocalLinkage() && F->hasName() &&
5525        LibInfo->getLibFunc(F->getName(), Func) &&
5526        LibInfo->hasOptimizedCodeGen(Func)) {
5527      switch (Func) {
5528      default: break;
5529      case LibFunc::copysign:
5530      case LibFunc::copysignf:
5531      case LibFunc::copysignl:
5532        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5533            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5534            I.getType() == I.getArgOperand(0)->getType() &&
5535            I.getType() == I.getArgOperand(1)->getType() &&
5536            I.onlyReadsMemory()) {
5537          SDValue LHS = getValue(I.getArgOperand(0));
5538          SDValue RHS = getValue(I.getArgOperand(1));
5539          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5540                                   LHS.getValueType(), LHS, RHS));
5541          return;
5542        }
5543        break;
5544      case LibFunc::fabs:
5545      case LibFunc::fabsf:
5546      case LibFunc::fabsl:
5547        if (visitUnaryFloatCall(I, ISD::FABS))
5548          return;
5549        break;
5550      case LibFunc::sin:
5551      case LibFunc::sinf:
5552      case LibFunc::sinl:
5553        if (visitUnaryFloatCall(I, ISD::FSIN))
5554          return;
5555        break;
5556      case LibFunc::cos:
5557      case LibFunc::cosf:
5558      case LibFunc::cosl:
5559        if (visitUnaryFloatCall(I, ISD::FCOS))
5560          return;
5561        break;
5562      case LibFunc::sqrt:
5563      case LibFunc::sqrtf:
5564      case LibFunc::sqrtl:
5565        if (visitUnaryFloatCall(I, ISD::FSQRT))
5566          return;
5567        break;
5568      case LibFunc::floor:
5569      case LibFunc::floorf:
5570      case LibFunc::floorl:
5571        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5572          return;
5573        break;
5574      case LibFunc::nearbyint:
5575      case LibFunc::nearbyintf:
5576      case LibFunc::nearbyintl:
5577        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5578          return;
5579        break;
5580      case LibFunc::ceil:
5581      case LibFunc::ceilf:
5582      case LibFunc::ceill:
5583        if (visitUnaryFloatCall(I, ISD::FCEIL))
5584          return;
5585        break;
5586      case LibFunc::rint:
5587      case LibFunc::rintf:
5588      case LibFunc::rintl:
5589        if (visitUnaryFloatCall(I, ISD::FRINT))
5590          return;
5591        break;
5592      case LibFunc::trunc:
5593      case LibFunc::truncf:
5594      case LibFunc::truncl:
5595        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5596          return;
5597        break;
5598      case LibFunc::log2:
5599      case LibFunc::log2f:
5600      case LibFunc::log2l:
5601        if (visitUnaryFloatCall(I, ISD::FLOG2))
5602          return;
5603        break;
5604      case LibFunc::exp2:
5605      case LibFunc::exp2f:
5606      case LibFunc::exp2l:
5607        if (visitUnaryFloatCall(I, ISD::FEXP2))
5608          return;
5609        break;
5610      case LibFunc::memcmp:
5611        if (visitMemCmpCall(I))
5612          return;
5613        break;
5614      }
5615    }
5616  }
5617
5618  SDValue Callee;
5619  if (!RenameFn)
5620    Callee = getValue(I.getCalledValue());
5621  else
5622    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5623
5624  // Check if we can potentially perform a tail call. More detailed checking is
5625  // be done within LowerCallTo, after more information about the call is known.
5626  LowerCallTo(&I, Callee, I.isTailCall());
5627}
5628
5629namespace {
5630
5631/// AsmOperandInfo - This contains information for each constraint that we are
5632/// lowering.
5633class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5634public:
5635  /// CallOperand - If this is the result output operand or a clobber
5636  /// this is null, otherwise it is the incoming operand to the CallInst.
5637  /// This gets modified as the asm is processed.
5638  SDValue CallOperand;
5639
5640  /// AssignedRegs - If this is a register or register class operand, this
5641  /// contains the set of register corresponding to the operand.
5642  RegsForValue AssignedRegs;
5643
5644  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5645    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5646  }
5647
5648  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5649  /// corresponds to.  If there is no Value* for this operand, it returns
5650  /// MVT::Other.
5651  EVT getCallOperandValEVT(LLVMContext &Context,
5652                           const TargetLowering &TLI,
5653                           const DataLayout *TD) const {
5654    if (CallOperandVal == 0) return MVT::Other;
5655
5656    if (isa<BasicBlock>(CallOperandVal))
5657      return TLI.getPointerTy();
5658
5659    llvm::Type *OpTy = CallOperandVal->getType();
5660
5661    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5662    // If this is an indirect operand, the operand is a pointer to the
5663    // accessed type.
5664    if (isIndirect) {
5665      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5666      if (!PtrTy)
5667        report_fatal_error("Indirect operand for inline asm not a pointer!");
5668      OpTy = PtrTy->getElementType();
5669    }
5670
5671    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5672    if (StructType *STy = dyn_cast<StructType>(OpTy))
5673      if (STy->getNumElements() == 1)
5674        OpTy = STy->getElementType(0);
5675
5676    // If OpTy is not a single value, it may be a struct/union that we
5677    // can tile with integers.
5678    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5679      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5680      switch (BitSize) {
5681      default: break;
5682      case 1:
5683      case 8:
5684      case 16:
5685      case 32:
5686      case 64:
5687      case 128:
5688        OpTy = IntegerType::get(Context, BitSize);
5689        break;
5690      }
5691    }
5692
5693    return TLI.getValueType(OpTy, true);
5694  }
5695};
5696
5697typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5698
5699} // end anonymous namespace
5700
5701/// GetRegistersForValue - Assign registers (virtual or physical) for the
5702/// specified operand.  We prefer to assign virtual registers, to allow the
5703/// register allocator to handle the assignment process.  However, if the asm
5704/// uses features that we can't model on machineinstrs, we have SDISel do the
5705/// allocation.  This produces generally horrible, but correct, code.
5706///
5707///   OpInfo describes the operand.
5708///
5709static void GetRegistersForValue(SelectionDAG &DAG,
5710                                 const TargetLowering &TLI,
5711                                 SDLoc DL,
5712                                 SDISelAsmOperandInfo &OpInfo) {
5713  LLVMContext &Context = *DAG.getContext();
5714
5715  MachineFunction &MF = DAG.getMachineFunction();
5716  SmallVector<unsigned, 4> Regs;
5717
5718  // If this is a constraint for a single physreg, or a constraint for a
5719  // register class, find it.
5720  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5721    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5722                                     OpInfo.ConstraintVT);
5723
5724  unsigned NumRegs = 1;
5725  if (OpInfo.ConstraintVT != MVT::Other) {
5726    // If this is a FP input in an integer register (or visa versa) insert a bit
5727    // cast of the input value.  More generally, handle any case where the input
5728    // value disagrees with the register class we plan to stick this in.
5729    if (OpInfo.Type == InlineAsm::isInput &&
5730        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5731      // Try to convert to the first EVT that the reg class contains.  If the
5732      // types are identical size, use a bitcast to convert (e.g. two differing
5733      // vector types).
5734      MVT RegVT = *PhysReg.second->vt_begin();
5735      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5736        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5737                                         RegVT, OpInfo.CallOperand);
5738        OpInfo.ConstraintVT = RegVT;
5739      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5740        // If the input is a FP value and we want it in FP registers, do a
5741        // bitcast to the corresponding integer type.  This turns an f64 value
5742        // into i64, which can be passed with two i32 values on a 32-bit
5743        // machine.
5744        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5745        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5746                                         RegVT, OpInfo.CallOperand);
5747        OpInfo.ConstraintVT = RegVT;
5748      }
5749    }
5750
5751    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5752  }
5753
5754  MVT RegVT;
5755  EVT ValueVT = OpInfo.ConstraintVT;
5756
5757  // If this is a constraint for a specific physical register, like {r17},
5758  // assign it now.
5759  if (unsigned AssignedReg = PhysReg.first) {
5760    const TargetRegisterClass *RC = PhysReg.second;
5761    if (OpInfo.ConstraintVT == MVT::Other)
5762      ValueVT = *RC->vt_begin();
5763
5764    // Get the actual register value type.  This is important, because the user
5765    // may have asked for (e.g.) the AX register in i32 type.  We need to
5766    // remember that AX is actually i16 to get the right extension.
5767    RegVT = *RC->vt_begin();
5768
5769    // This is a explicit reference to a physical register.
5770    Regs.push_back(AssignedReg);
5771
5772    // If this is an expanded reference, add the rest of the regs to Regs.
5773    if (NumRegs != 1) {
5774      TargetRegisterClass::iterator I = RC->begin();
5775      for (; *I != AssignedReg; ++I)
5776        assert(I != RC->end() && "Didn't find reg!");
5777
5778      // Already added the first reg.
5779      --NumRegs; ++I;
5780      for (; NumRegs; --NumRegs, ++I) {
5781        assert(I != RC->end() && "Ran out of registers to allocate!");
5782        Regs.push_back(*I);
5783      }
5784    }
5785
5786    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5787    return;
5788  }
5789
5790  // Otherwise, if this was a reference to an LLVM register class, create vregs
5791  // for this reference.
5792  if (const TargetRegisterClass *RC = PhysReg.second) {
5793    RegVT = *RC->vt_begin();
5794    if (OpInfo.ConstraintVT == MVT::Other)
5795      ValueVT = RegVT;
5796
5797    // Create the appropriate number of virtual registers.
5798    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5799    for (; NumRegs; --NumRegs)
5800      Regs.push_back(RegInfo.createVirtualRegister(RC));
5801
5802    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5803    return;
5804  }
5805
5806  // Otherwise, we couldn't allocate enough registers for this.
5807}
5808
5809/// visitInlineAsm - Handle a call to an InlineAsm object.
5810///
5811void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5812  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5813
5814  /// ConstraintOperands - Information about all of the constraints.
5815  SDISelAsmOperandInfoVector ConstraintOperands;
5816
5817  TargetLowering::AsmOperandInfoVector
5818    TargetConstraints = TLI.ParseConstraints(CS);
5819
5820  bool hasMemory = false;
5821
5822  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5823  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5824  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5825    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5826    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5827
5828    MVT OpVT = MVT::Other;
5829
5830    // Compute the value type for each operand.
5831    switch (OpInfo.Type) {
5832    case InlineAsm::isOutput:
5833      // Indirect outputs just consume an argument.
5834      if (OpInfo.isIndirect) {
5835        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5836        break;
5837      }
5838
5839      // The return value of the call is this value.  As such, there is no
5840      // corresponding argument.
5841      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5842      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5843        OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
5844      } else {
5845        assert(ResNo == 0 && "Asm only has one result!");
5846        OpVT = TLI.getSimpleValueType(CS.getType());
5847      }
5848      ++ResNo;
5849      break;
5850    case InlineAsm::isInput:
5851      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5852      break;
5853    case InlineAsm::isClobber:
5854      // Nothing to do.
5855      break;
5856    }
5857
5858    // If this is an input or an indirect output, process the call argument.
5859    // BasicBlocks are labels, currently appearing only in asm's.
5860    if (OpInfo.CallOperandVal) {
5861      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5862        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5863      } else {
5864        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5865      }
5866
5867      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD).
5868        getSimpleVT();
5869    }
5870
5871    OpInfo.ConstraintVT = OpVT;
5872
5873    // Indirect operand accesses access memory.
5874    if (OpInfo.isIndirect)
5875      hasMemory = true;
5876    else {
5877      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5878        TargetLowering::ConstraintType
5879          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5880        if (CType == TargetLowering::C_Memory) {
5881          hasMemory = true;
5882          break;
5883        }
5884      }
5885    }
5886  }
5887
5888  SDValue Chain, Flag;
5889
5890  // We won't need to flush pending loads if this asm doesn't touch
5891  // memory and is nonvolatile.
5892  if (hasMemory || IA->hasSideEffects())
5893    Chain = getRoot();
5894  else
5895    Chain = DAG.getRoot();
5896
5897  // Second pass over the constraints: compute which constraint option to use
5898  // and assign registers to constraints that want a specific physreg.
5899  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5900    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5901
5902    // If this is an output operand with a matching input operand, look up the
5903    // matching input. If their types mismatch, e.g. one is an integer, the
5904    // other is floating point, or their sizes are different, flag it as an
5905    // error.
5906    if (OpInfo.hasMatchingInput()) {
5907      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5908
5909      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5910        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5911          TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5912                                           OpInfo.ConstraintVT);
5913        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5914          TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5915                                           Input.ConstraintVT);
5916        if ((OpInfo.ConstraintVT.isInteger() !=
5917             Input.ConstraintVT.isInteger()) ||
5918            (MatchRC.second != InputRC.second)) {
5919          report_fatal_error("Unsupported asm: input constraint"
5920                             " with a matching output constraint of"
5921                             " incompatible type!");
5922        }
5923        Input.ConstraintVT = OpInfo.ConstraintVT;
5924      }
5925    }
5926
5927    // Compute the constraint code and ConstraintType to use.
5928    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5929
5930    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5931        OpInfo.Type == InlineAsm::isClobber)
5932      continue;
5933
5934    // If this is a memory input, and if the operand is not indirect, do what we
5935    // need to to provide an address for the memory input.
5936    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5937        !OpInfo.isIndirect) {
5938      assert((OpInfo.isMultipleAlternative ||
5939              (OpInfo.Type == InlineAsm::isInput)) &&
5940             "Can only indirectify direct input operands!");
5941
5942      // Memory operands really want the address of the value.  If we don't have
5943      // an indirect input, put it in the constpool if we can, otherwise spill
5944      // it to a stack slot.
5945      // TODO: This isn't quite right. We need to handle these according to
5946      // the addressing mode that the constraint wants. Also, this may take
5947      // an additional register for the computation and we don't want that
5948      // either.
5949
5950      // If the operand is a float, integer, or vector constant, spill to a
5951      // constant pool entry to get its address.
5952      const Value *OpVal = OpInfo.CallOperandVal;
5953      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5954          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5955        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5956                                                 TLI.getPointerTy());
5957      } else {
5958        // Otherwise, create a stack slot and emit a store to it before the
5959        // asm.
5960        Type *Ty = OpVal->getType();
5961        uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
5962        unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
5963        MachineFunction &MF = DAG.getMachineFunction();
5964        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5965        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5966        Chain = DAG.getStore(Chain, getCurSDLoc(),
5967                             OpInfo.CallOperand, StackSlot,
5968                             MachinePointerInfo::getFixedStack(SSFI),
5969                             false, false, 0);
5970        OpInfo.CallOperand = StackSlot;
5971      }
5972
5973      // There is no longer a Value* corresponding to this operand.
5974      OpInfo.CallOperandVal = 0;
5975
5976      // It is now an indirect operand.
5977      OpInfo.isIndirect = true;
5978    }
5979
5980    // If this constraint is for a specific register, allocate it before
5981    // anything else.
5982    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5983      GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
5984  }
5985
5986  // Second pass - Loop over all of the operands, assigning virtual or physregs
5987  // to register class operands.
5988  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5989    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5990
5991    // C_Register operands have already been allocated, Other/Memory don't need
5992    // to be.
5993    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5994      GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
5995  }
5996
5997  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5998  std::vector<SDValue> AsmNodeOperands;
5999  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6000  AsmNodeOperands.push_back(
6001          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6002                                      TLI.getPointerTy()));
6003
6004  // If we have a !srcloc metadata node associated with it, we want to attach
6005  // this to the ultimately generated inline asm machineinstr.  To do this, we
6006  // pass in the third operand as this (potentially null) inline asm MDNode.
6007  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6008  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6009
6010  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6011  // bits as operand 3.
6012  unsigned ExtraInfo = 0;
6013  if (IA->hasSideEffects())
6014    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6015  if (IA->isAlignStack())
6016    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6017  // Set the asm dialect.
6018  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6019
6020  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6021  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6022    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6023
6024    // Compute the constraint code and ConstraintType to use.
6025    TLI.ComputeConstraintToUse(OpInfo, SDValue());
6026
6027    // Ideally, we would only check against memory constraints.  However, the
6028    // meaning of an other constraint can be target-specific and we can't easily
6029    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6030    // for other constriants as well.
6031    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6032        OpInfo.ConstraintType == TargetLowering::C_Other) {
6033      if (OpInfo.Type == InlineAsm::isInput)
6034        ExtraInfo |= InlineAsm::Extra_MayLoad;
6035      else if (OpInfo.Type == InlineAsm::isOutput)
6036        ExtraInfo |= InlineAsm::Extra_MayStore;
6037      else if (OpInfo.Type == InlineAsm::isClobber)
6038        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6039    }
6040  }
6041
6042  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6043                                                  TLI.getPointerTy()));
6044
6045  // Loop over all of the inputs, copying the operand values into the
6046  // appropriate registers and processing the output regs.
6047  RegsForValue RetValRegs;
6048
6049  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6050  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6051
6052  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6053    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6054
6055    switch (OpInfo.Type) {
6056    case InlineAsm::isOutput: {
6057      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6058          OpInfo.ConstraintType != TargetLowering::C_Register) {
6059        // Memory output, or 'other' output (e.g. 'X' constraint).
6060        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6061
6062        // Add information to the INLINEASM node to know about this output.
6063        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6064        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6065                                                        TLI.getPointerTy()));
6066        AsmNodeOperands.push_back(OpInfo.CallOperand);
6067        break;
6068      }
6069
6070      // Otherwise, this is a register or register class output.
6071
6072      // Copy the output from the appropriate register.  Find a register that
6073      // we can use.
6074      if (OpInfo.AssignedRegs.Regs.empty()) {
6075        LLVMContext &Ctx = *DAG.getContext();
6076        Ctx.emitError(CS.getInstruction(),
6077                      "couldn't allocate output register for constraint '" +
6078                           Twine(OpInfo.ConstraintCode) + "'");
6079        break;
6080      }
6081
6082      // If this is an indirect operand, store through the pointer after the
6083      // asm.
6084      if (OpInfo.isIndirect) {
6085        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6086                                                      OpInfo.CallOperandVal));
6087      } else {
6088        // This is the result value of the call.
6089        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6090        // Concatenate this output onto the outputs list.
6091        RetValRegs.append(OpInfo.AssignedRegs);
6092      }
6093
6094      // Add information to the INLINEASM node to know that this register is
6095      // set.
6096      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6097                                           InlineAsm::Kind_RegDefEarlyClobber :
6098                                               InlineAsm::Kind_RegDef,
6099                                               false,
6100                                               0,
6101                                               DAG,
6102                                               AsmNodeOperands);
6103      break;
6104    }
6105    case InlineAsm::isInput: {
6106      SDValue InOperandVal = OpInfo.CallOperand;
6107
6108      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6109        // If this is required to match an output register we have already set,
6110        // just use its register.
6111        unsigned OperandNo = OpInfo.getMatchedOperand();
6112
6113        // Scan until we find the definition we already emitted of this operand.
6114        // When we find it, create a RegsForValue operand.
6115        unsigned CurOp = InlineAsm::Op_FirstOperand;
6116        for (; OperandNo; --OperandNo) {
6117          // Advance to the next operand.
6118          unsigned OpFlag =
6119            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6120          assert((InlineAsm::isRegDefKind(OpFlag) ||
6121                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6122                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6123          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6124        }
6125
6126        unsigned OpFlag =
6127          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6128        if (InlineAsm::isRegDefKind(OpFlag) ||
6129            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6130          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6131          if (OpInfo.isIndirect) {
6132            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6133            LLVMContext &Ctx = *DAG.getContext();
6134            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6135                          " don't know how to handle tied "
6136                          "indirect register inputs");
6137            report_fatal_error("Cannot handle indirect register inputs!");
6138          }
6139
6140          RegsForValue MatchedRegs;
6141          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6142          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6143          MatchedRegs.RegVTs.push_back(RegVT);
6144          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6145          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6146               i != e; ++i) {
6147            if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6148              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6149            else {
6150              LLVMContext &Ctx = *DAG.getContext();
6151              Ctx.emitError(CS.getInstruction(), "inline asm error: This value"
6152                            " type register class is not natively supported!");
6153              report_fatal_error("inline asm error: This value type register "
6154                                 "class is not natively supported!");
6155            }
6156          }
6157          // Use the produced MatchedRegs object to
6158          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6159                                    Chain, &Flag, CS.getInstruction());
6160          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6161                                           true, OpInfo.getMatchedOperand(),
6162                                           DAG, AsmNodeOperands);
6163          break;
6164        }
6165
6166        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6167        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6168               "Unexpected number of operands");
6169        // Add information to the INLINEASM node to know about this input.
6170        // See InlineAsm.h isUseOperandTiedToDef.
6171        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6172                                                    OpInfo.getMatchedOperand());
6173        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6174                                                        TLI.getPointerTy()));
6175        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6176        break;
6177      }
6178
6179      // Treat indirect 'X' constraint as memory.
6180      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6181          OpInfo.isIndirect)
6182        OpInfo.ConstraintType = TargetLowering::C_Memory;
6183
6184      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6185        std::vector<SDValue> Ops;
6186        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6187                                         Ops, DAG);
6188        if (Ops.empty()) {
6189          LLVMContext &Ctx = *DAG.getContext();
6190          Ctx.emitError(CS.getInstruction(),
6191                        "invalid operand for inline asm constraint '" +
6192                        Twine(OpInfo.ConstraintCode) + "'");
6193          break;
6194        }
6195
6196        // Add information to the INLINEASM node to know about this input.
6197        unsigned ResOpType =
6198          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6199        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6200                                                        TLI.getPointerTy()));
6201        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6202        break;
6203      }
6204
6205      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6206        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6207        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6208               "Memory operands expect pointer values");
6209
6210        // Add information to the INLINEASM node to know about this input.
6211        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6212        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6213                                                        TLI.getPointerTy()));
6214        AsmNodeOperands.push_back(InOperandVal);
6215        break;
6216      }
6217
6218      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6219              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6220             "Unknown constraint type!");
6221
6222      // TODO: Support this.
6223      if (OpInfo.isIndirect) {
6224        LLVMContext &Ctx = *DAG.getContext();
6225        Ctx.emitError(CS.getInstruction(),
6226                      "Don't know how to handle indirect register inputs yet "
6227                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6228        break;
6229      }
6230
6231      // Copy the input into the appropriate registers.
6232      if (OpInfo.AssignedRegs.Regs.empty()) {
6233        LLVMContext &Ctx = *DAG.getContext();
6234        Ctx.emitError(CS.getInstruction(),
6235                      "couldn't allocate input reg for constraint '" +
6236                           Twine(OpInfo.ConstraintCode) + "'");
6237        break;
6238      }
6239
6240      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6241                                        Chain, &Flag, CS.getInstruction());
6242
6243      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6244                                               DAG, AsmNodeOperands);
6245      break;
6246    }
6247    case InlineAsm::isClobber: {
6248      // Add the clobbered value to the operand list, so that the register
6249      // allocator is aware that the physreg got clobbered.
6250      if (!OpInfo.AssignedRegs.Regs.empty())
6251        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6252                                                 false, 0, DAG,
6253                                                 AsmNodeOperands);
6254      break;
6255    }
6256    }
6257  }
6258
6259  // Finish up input operands.  Set the input chain and add the flag last.
6260  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6261  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6262
6263  Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6264                      DAG.getVTList(MVT::Other, MVT::Glue),
6265                      &AsmNodeOperands[0], AsmNodeOperands.size());
6266  Flag = Chain.getValue(1);
6267
6268  // If this asm returns a register value, copy the result from that register
6269  // and set it as the value of the call.
6270  if (!RetValRegs.Regs.empty()) {
6271    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6272                                             Chain, &Flag, CS.getInstruction());
6273
6274    // FIXME: Why don't we do this for inline asms with MRVs?
6275    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6276      EVT ResultType = TLI.getValueType(CS.getType());
6277
6278      // If any of the results of the inline asm is a vector, it may have the
6279      // wrong width/num elts.  This can happen for register classes that can
6280      // contain multiple different value types.  The preg or vreg allocated may
6281      // not have the same VT as was expected.  Convert it to the right type
6282      // with bit_convert.
6283      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6284        Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6285                          ResultType, Val);
6286
6287      } else if (ResultType != Val.getValueType() &&
6288                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6289        // If a result value was tied to an input value, the computed result may
6290        // have a wider width than the expected result.  Extract the relevant
6291        // portion.
6292        Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6293      }
6294
6295      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6296    }
6297
6298    setValue(CS.getInstruction(), Val);
6299    // Don't need to use this as a chain in this case.
6300    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6301      return;
6302  }
6303
6304  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6305
6306  // Process indirect outputs, first output all of the flagged copies out of
6307  // physregs.
6308  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6309    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6310    const Value *Ptr = IndirectStoresToEmit[i].second;
6311    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6312                                             Chain, &Flag, IA);
6313    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6314  }
6315
6316  // Emit the non-flagged stores from the physregs.
6317  SmallVector<SDValue, 8> OutChains;
6318  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6319    SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6320                               StoresToEmit[i].first,
6321                               getValue(StoresToEmit[i].second),
6322                               MachinePointerInfo(StoresToEmit[i].second),
6323                               false, false, 0);
6324    OutChains.push_back(Val);
6325  }
6326
6327  if (!OutChains.empty())
6328    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
6329                        &OutChains[0], OutChains.size());
6330
6331  DAG.setRoot(Chain);
6332}
6333
6334void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6335  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6336                          MVT::Other, getRoot(),
6337                          getValue(I.getArgOperand(0)),
6338                          DAG.getSrcValue(I.getArgOperand(0))));
6339}
6340
6341void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6342  const DataLayout &TD = *TLI.getDataLayout();
6343  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(),
6344                           getRoot(), getValue(I.getOperand(0)),
6345                           DAG.getSrcValue(I.getOperand(0)),
6346                           TD.getABITypeAlignment(I.getType()));
6347  setValue(&I, V);
6348  DAG.setRoot(V.getValue(1));
6349}
6350
6351void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6352  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6353                          MVT::Other, getRoot(),
6354                          getValue(I.getArgOperand(0)),
6355                          DAG.getSrcValue(I.getArgOperand(0))));
6356}
6357
6358void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6359  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6360                          MVT::Other, getRoot(),
6361                          getValue(I.getArgOperand(0)),
6362                          getValue(I.getArgOperand(1)),
6363                          DAG.getSrcValue(I.getArgOperand(0)),
6364                          DAG.getSrcValue(I.getArgOperand(1))));
6365}
6366
6367/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6368/// implementation, which just calls LowerCall.
6369/// FIXME: When all targets are
6370/// migrated to using LowerCall, this hook should be integrated into SDISel.
6371std::pair<SDValue, SDValue>
6372TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6373  // Handle the incoming return values from the call.
6374  CLI.Ins.clear();
6375  SmallVector<EVT, 4> RetTys;
6376  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6377  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6378    EVT VT = RetTys[I];
6379    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6380    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6381    for (unsigned i = 0; i != NumRegs; ++i) {
6382      ISD::InputArg MyFlags;
6383      MyFlags.VT = RegisterVT;
6384      MyFlags.Used = CLI.IsReturnValueUsed;
6385      if (CLI.RetSExt)
6386        MyFlags.Flags.setSExt();
6387      if (CLI.RetZExt)
6388        MyFlags.Flags.setZExt();
6389      if (CLI.IsInReg)
6390        MyFlags.Flags.setInReg();
6391      CLI.Ins.push_back(MyFlags);
6392    }
6393  }
6394
6395  // Handle all of the outgoing arguments.
6396  CLI.Outs.clear();
6397  CLI.OutVals.clear();
6398  ArgListTy &Args = CLI.Args;
6399  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6400    SmallVector<EVT, 4> ValueVTs;
6401    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6402    for (unsigned Value = 0, NumValues = ValueVTs.size();
6403         Value != NumValues; ++Value) {
6404      EVT VT = ValueVTs[Value];
6405      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6406      SDValue Op = SDValue(Args[i].Node.getNode(),
6407                           Args[i].Node.getResNo() + Value);
6408      ISD::ArgFlagsTy Flags;
6409      unsigned OriginalAlignment =
6410        getDataLayout()->getABITypeAlignment(ArgTy);
6411
6412      if (Args[i].isZExt)
6413        Flags.setZExt();
6414      if (Args[i].isSExt)
6415        Flags.setSExt();
6416      if (Args[i].isInReg)
6417        Flags.setInReg();
6418      if (Args[i].isSRet)
6419        Flags.setSRet();
6420      if (Args[i].isByVal) {
6421        Flags.setByVal();
6422        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6423        Type *ElementTy = Ty->getElementType();
6424        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6425        // For ByVal, alignment should come from FE.  BE will guess if this
6426        // info is not there but there are cases it cannot get right.
6427        unsigned FrameAlign;
6428        if (Args[i].Alignment)
6429          FrameAlign = Args[i].Alignment;
6430        else
6431          FrameAlign = getByValTypeAlignment(ElementTy);
6432        Flags.setByValAlign(FrameAlign);
6433      }
6434      if (Args[i].isNest)
6435        Flags.setNest();
6436      Flags.setOrigAlign(OriginalAlignment);
6437
6438      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6439      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6440      SmallVector<SDValue, 4> Parts(NumParts);
6441      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6442
6443      if (Args[i].isSExt)
6444        ExtendKind = ISD::SIGN_EXTEND;
6445      else if (Args[i].isZExt)
6446        ExtendKind = ISD::ZERO_EXTEND;
6447
6448      // Conservatively only handle 'returned' on non-vectors for now
6449      if (Args[i].isReturned && !Op.getValueType().isVector()) {
6450        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
6451               "unexpected use of 'returned'");
6452        // Before passing 'returned' to the target lowering code, ensure that
6453        // either the register MVT and the actual EVT are the same size or that
6454        // the return value and argument are extended in the same way; in these
6455        // cases it's safe to pass the argument register value unchanged as the
6456        // return register value (although it's at the target's option whether
6457        // to do so)
6458        // TODO: allow code generation to take advantage of partially preserved
6459        // registers rather than clobbering the entire register when the
6460        // parameter extension method is not compatible with the return
6461        // extension method
6462        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
6463            (ExtendKind != ISD::ANY_EXTEND &&
6464             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
6465        Flags.setReturned();
6466      }
6467
6468      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6469                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6470
6471      for (unsigned j = 0; j != NumParts; ++j) {
6472        // if it isn't first piece, alignment must be 1
6473        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6474                               i < CLI.NumFixedArgs,
6475                               i, j*Parts[j].getValueType().getStoreSize());
6476        if (NumParts > 1 && j == 0)
6477          MyFlags.Flags.setSplit();
6478        else if (j != 0)
6479          MyFlags.Flags.setOrigAlign(1);
6480
6481        CLI.Outs.push_back(MyFlags);
6482        CLI.OutVals.push_back(Parts[j]);
6483      }
6484    }
6485  }
6486
6487  SmallVector<SDValue, 4> InVals;
6488  CLI.Chain = LowerCall(CLI, InVals);
6489
6490  // Verify that the target's LowerCall behaved as expected.
6491  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6492         "LowerCall didn't return a valid chain!");
6493  assert((!CLI.IsTailCall || InVals.empty()) &&
6494         "LowerCall emitted a return value for a tail call!");
6495  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6496         "LowerCall didn't emit the correct number of values!");
6497
6498  // For a tail call, the return value is merely live-out and there aren't
6499  // any nodes in the DAG representing it. Return a special value to
6500  // indicate that a tail call has been emitted and no more Instructions
6501  // should be processed in the current block.
6502  if (CLI.IsTailCall) {
6503    CLI.DAG.setRoot(CLI.Chain);
6504    return std::make_pair(SDValue(), SDValue());
6505  }
6506
6507  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6508          assert(InVals[i].getNode() &&
6509                 "LowerCall emitted a null value!");
6510          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6511                 "LowerCall emitted a value with the wrong type!");
6512        });
6513
6514  // Collect the legal value parts into potentially illegal values
6515  // that correspond to the original function's return values.
6516  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6517  if (CLI.RetSExt)
6518    AssertOp = ISD::AssertSext;
6519  else if (CLI.RetZExt)
6520    AssertOp = ISD::AssertZext;
6521  SmallVector<SDValue, 4> ReturnValues;
6522  unsigned CurReg = 0;
6523  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6524    EVT VT = RetTys[I];
6525    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6526    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6527
6528    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6529                                            NumRegs, RegisterVT, VT, NULL,
6530                                            AssertOp));
6531    CurReg += NumRegs;
6532  }
6533
6534  // For a function returning void, there is no return value. We can't create
6535  // such a node, so we just return a null return value in that case. In
6536  // that case, nothing will actually look at the value.
6537  if (ReturnValues.empty())
6538    return std::make_pair(SDValue(), CLI.Chain);
6539
6540  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6541                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6542                            &ReturnValues[0], ReturnValues.size());
6543  return std::make_pair(Res, CLI.Chain);
6544}
6545
6546void TargetLowering::LowerOperationWrapper(SDNode *N,
6547                                           SmallVectorImpl<SDValue> &Results,
6548                                           SelectionDAG &DAG) const {
6549  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6550  if (Res.getNode())
6551    Results.push_back(Res);
6552}
6553
6554SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6555  llvm_unreachable("LowerOperation not implemented for this target!");
6556}
6557
6558void
6559SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6560  SDValue Op = getNonRegisterValue(V);
6561  assert((Op.getOpcode() != ISD::CopyFromReg ||
6562          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6563         "Copy from a reg to the same reg!");
6564  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6565
6566  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6567  SDValue Chain = DAG.getEntryNode();
6568  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
6569  PendingExports.push_back(Chain);
6570}
6571
6572#include "llvm/CodeGen/SelectionDAGISel.h"
6573
6574/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6575/// entry block, return true.  This includes arguments used by switches, since
6576/// the switch may expand into multiple basic blocks.
6577static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6578  // With FastISel active, we may be splitting blocks, so force creation
6579  // of virtual registers for all non-dead arguments.
6580  if (FastISel)
6581    return A->use_empty();
6582
6583  const BasicBlock *Entry = A->getParent()->begin();
6584  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6585       UI != E; ++UI) {
6586    const User *U = *UI;
6587    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6588      return false;  // Use not in entry block.
6589  }
6590  return true;
6591}
6592
6593void SelectionDAGISel::LowerArguments(const Function &F) {
6594  SelectionDAG &DAG = SDB->DAG;
6595  SDLoc dl = SDB->getCurSDLoc();
6596  const DataLayout *TD = TLI.getDataLayout();
6597  SmallVector<ISD::InputArg, 16> Ins;
6598
6599  if (!FuncInfo->CanLowerReturn) {
6600    // Put in an sret pointer parameter before all the other parameters.
6601    SmallVector<EVT, 1> ValueVTs;
6602    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6603
6604    // NOTE: Assuming that a pointer will never break down to more than one VT
6605    // or one register.
6606    ISD::ArgFlagsTy Flags;
6607    Flags.setSRet();
6608    MVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6609    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6610    Ins.push_back(RetArg);
6611  }
6612
6613  // Set up the incoming argument description vector.
6614  unsigned Idx = 1;
6615  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6616       I != E; ++I, ++Idx) {
6617    SmallVector<EVT, 4> ValueVTs;
6618    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6619    bool isArgValueUsed = !I->use_empty();
6620    for (unsigned Value = 0, NumValues = ValueVTs.size();
6621         Value != NumValues; ++Value) {
6622      EVT VT = ValueVTs[Value];
6623      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6624      ISD::ArgFlagsTy Flags;
6625      unsigned OriginalAlignment =
6626        TD->getABITypeAlignment(ArgTy);
6627
6628      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6629        Flags.setZExt();
6630      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6631        Flags.setSExt();
6632      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
6633        Flags.setInReg();
6634      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
6635        Flags.setSRet();
6636      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
6637        Flags.setByVal();
6638        PointerType *Ty = cast<PointerType>(I->getType());
6639        Type *ElementTy = Ty->getElementType();
6640        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6641        // For ByVal, alignment should be passed from FE.  BE will guess if
6642        // this info is not there but there are cases it cannot get right.
6643        unsigned FrameAlign;
6644        if (F.getParamAlignment(Idx))
6645          FrameAlign = F.getParamAlignment(Idx);
6646        else
6647          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6648        Flags.setByValAlign(FrameAlign);
6649      }
6650      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
6651        Flags.setNest();
6652      Flags.setOrigAlign(OriginalAlignment);
6653
6654      MVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6655      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6656      for (unsigned i = 0; i != NumRegs; ++i) {
6657        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6658                              Idx-1, i*RegisterVT.getStoreSize());
6659        if (NumRegs > 1 && i == 0)
6660          MyFlags.Flags.setSplit();
6661        // if it isn't first piece, alignment must be 1
6662        else if (i > 0)
6663          MyFlags.Flags.setOrigAlign(1);
6664        Ins.push_back(MyFlags);
6665      }
6666    }
6667  }
6668
6669  // Call the target to set up the argument values.
6670  SmallVector<SDValue, 8> InVals;
6671  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6672                                             F.isVarArg(), Ins,
6673                                             dl, DAG, InVals);
6674
6675  // Verify that the target's LowerFormalArguments behaved as expected.
6676  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6677         "LowerFormalArguments didn't return a valid chain!");
6678  assert(InVals.size() == Ins.size() &&
6679         "LowerFormalArguments didn't emit the correct number of values!");
6680  DEBUG({
6681      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6682        assert(InVals[i].getNode() &&
6683               "LowerFormalArguments emitted a null value!");
6684        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6685               "LowerFormalArguments emitted a value with the wrong type!");
6686      }
6687    });
6688
6689  // Update the DAG with the new chain value resulting from argument lowering.
6690  DAG.setRoot(NewRoot);
6691
6692  // Set up the argument values.
6693  unsigned i = 0;
6694  Idx = 1;
6695  if (!FuncInfo->CanLowerReturn) {
6696    // Create a virtual register for the sret pointer, and put in a copy
6697    // from the sret argument into it.
6698    SmallVector<EVT, 1> ValueVTs;
6699    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6700    MVT VT = ValueVTs[0].getSimpleVT();
6701    MVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6702    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6703    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6704                                        RegVT, VT, NULL, AssertOp);
6705
6706    MachineFunction& MF = SDB->DAG.getMachineFunction();
6707    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6708    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6709    FuncInfo->DemoteRegister = SRetReg;
6710    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
6711                                    SRetReg, ArgValue);
6712    DAG.setRoot(NewRoot);
6713
6714    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6715    // Idx indexes LLVM arguments.  Don't touch it.
6716    ++i;
6717  }
6718
6719  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6720      ++I, ++Idx) {
6721    SmallVector<SDValue, 4> ArgValues;
6722    SmallVector<EVT, 4> ValueVTs;
6723    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6724    unsigned NumValues = ValueVTs.size();
6725
6726    // If this argument is unused then remember its value. It is used to generate
6727    // debugging information.
6728    if (I->use_empty() && NumValues) {
6729      SDB->setUnusedArgValue(I, InVals[i]);
6730
6731      // Also remember any frame index for use in FastISel.
6732      if (FrameIndexSDNode *FI =
6733          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
6734        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6735    }
6736
6737    for (unsigned Val = 0; Val != NumValues; ++Val) {
6738      EVT VT = ValueVTs[Val];
6739      MVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6740      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6741
6742      if (!I->use_empty()) {
6743        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6744        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6745          AssertOp = ISD::AssertSext;
6746        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6747          AssertOp = ISD::AssertZext;
6748
6749        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6750                                             NumParts, PartVT, VT,
6751                                             NULL, AssertOp));
6752      }
6753
6754      i += NumParts;
6755    }
6756
6757    // We don't need to do anything else for unused arguments.
6758    if (ArgValues.empty())
6759      continue;
6760
6761    // Note down frame index.
6762    if (FrameIndexSDNode *FI =
6763        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6764      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6765
6766    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6767                                     SDB->getCurSDLoc());
6768
6769    SDB->setValue(I, Res);
6770    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6771      if (LoadSDNode *LNode =
6772          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6773        if (FrameIndexSDNode *FI =
6774            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6775        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6776    }
6777
6778    // If this argument is live outside of the entry block, insert a copy from
6779    // wherever we got it to the vreg that other BB's will reference it as.
6780    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6781      // If we can, though, try to skip creating an unnecessary vreg.
6782      // FIXME: This isn't very clean... it would be nice to make this more
6783      // general.  It's also subtly incompatible with the hacks FastISel
6784      // uses with vregs.
6785      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6786      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6787        FuncInfo->ValueMap[I] = Reg;
6788        continue;
6789      }
6790    }
6791    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6792      FuncInfo->InitializeRegForValue(I);
6793      SDB->CopyToExportRegsIfNeeded(I);
6794    }
6795  }
6796
6797  assert(i == InVals.size() && "Argument register count mismatch!");
6798
6799  // Finally, if the target has anything special to do, allow it to do so.
6800  // FIXME: this should insert code into the DAG!
6801  EmitFunctionEntryCode();
6802}
6803
6804/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6805/// ensure constants are generated when needed.  Remember the virtual registers
6806/// that need to be added to the Machine PHI nodes as input.  We cannot just
6807/// directly add them, because expansion might result in multiple MBB's for one
6808/// BB.  As such, the start of the BB might correspond to a different MBB than
6809/// the end.
6810///
6811void
6812SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6813  const TerminatorInst *TI = LLVMBB->getTerminator();
6814
6815  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6816
6817  // Check successor nodes' PHI nodes that expect a constant to be available
6818  // from this block.
6819  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6820    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6821    if (!isa<PHINode>(SuccBB->begin())) continue;
6822    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6823
6824    // If this terminator has multiple identical successors (common for
6825    // switches), only handle each succ once.
6826    if (!SuccsHandled.insert(SuccMBB)) continue;
6827
6828    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6829
6830    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6831    // nodes and Machine PHI nodes, but the incoming operands have not been
6832    // emitted yet.
6833    for (BasicBlock::const_iterator I = SuccBB->begin();
6834         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6835      // Ignore dead phi's.
6836      if (PN->use_empty()) continue;
6837
6838      // Skip empty types
6839      if (PN->getType()->isEmptyTy())
6840        continue;
6841
6842      unsigned Reg;
6843      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6844
6845      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6846        unsigned &RegOut = ConstantsOut[C];
6847        if (RegOut == 0) {
6848          RegOut = FuncInfo.CreateRegs(C->getType());
6849          CopyValueToVirtualRegister(C, RegOut);
6850        }
6851        Reg = RegOut;
6852      } else {
6853        DenseMap<const Value *, unsigned>::iterator I =
6854          FuncInfo.ValueMap.find(PHIOp);
6855        if (I != FuncInfo.ValueMap.end())
6856          Reg = I->second;
6857        else {
6858          assert(isa<AllocaInst>(PHIOp) &&
6859                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6860                 "Didn't codegen value into a register!??");
6861          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6862          CopyValueToVirtualRegister(PHIOp, Reg);
6863        }
6864      }
6865
6866      // Remember that this register needs to added to the machine PHI node as
6867      // the input for this MBB.
6868      SmallVector<EVT, 4> ValueVTs;
6869      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6870      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6871        EVT VT = ValueVTs[vti];
6872        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6873        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6874          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6875        Reg += NumRegisters;
6876      }
6877    }
6878  }
6879  ConstantsOut.clear();
6880}
6881