SelectionDAGBuilder.cpp revision e9ba5dd236f48708a00bd3bb0519148f943cc897
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/CodeGen/Analysis.h"
33#include "llvm/CodeGen/FastISel.h"
34#include "llvm/CodeGen/FunctionLoweringInfo.h"
35#include "llvm/CodeGen/GCStrategy.h"
36#include "llvm/CodeGen/GCMetadata.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineJumpTableInfo.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
74                                      const SDValue *Parts, unsigned NumParts,
75                                      EVT PartVT, EVT ValueVT);
76
77/// getCopyFromParts - Create a value that contains the specified legal parts
78/// combined into the value they represent.  If the parts combine to a type
79/// larger then ValueVT then AssertOp can be used to specify whether the extra
80/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
81/// (ISD::AssertSext).
82static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
83                                const SDValue *Parts,
84                                unsigned NumParts, EVT PartVT, EVT ValueVT,
85                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
86  if (ValueVT.isVector())
87    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
88
89  assert(NumParts > 0 && "No parts to assemble!");
90  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
91  SDValue Val = Parts[0];
92
93  if (NumParts > 1) {
94    // Assemble the value from multiple parts.
95    if (ValueVT.isInteger()) {
96      unsigned PartBits = PartVT.getSizeInBits();
97      unsigned ValueBits = ValueVT.getSizeInBits();
98
99      // Assemble the power of 2 part.
100      unsigned RoundParts = NumParts & (NumParts - 1) ?
101        1 << Log2_32(NumParts) : NumParts;
102      unsigned RoundBits = PartBits * RoundParts;
103      EVT RoundVT = RoundBits == ValueBits ?
104        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
105      SDValue Lo, Hi;
106
107      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
108
109      if (RoundParts > 2) {
110        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
111                              PartVT, HalfVT);
112        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
113                              RoundParts / 2, PartVT, HalfVT);
114      } else {
115        Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]);
116        Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]);
117      }
118
119      if (TLI.isBigEndian())
120        std::swap(Lo, Hi);
121
122      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
123
124      if (RoundParts < NumParts) {
125        // Assemble the trailing non-power-of-2 part.
126        unsigned OddParts = NumParts - RoundParts;
127        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
128        Hi = getCopyFromParts(DAG, DL,
129                              Parts + RoundParts, OddParts, PartVT, OddVT);
130
131        // Combine the round and odd parts.
132        Lo = Val;
133        if (TLI.isBigEndian())
134          std::swap(Lo, Hi);
135        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
136        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
137        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
138                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
139                                         TLI.getPointerTy()));
140        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
141        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
142      }
143    } else if (PartVT.isFloatingPoint()) {
144      // FP split into multiple FP parts (for ppcf128)
145      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
146             "Unexpected split");
147      SDValue Lo, Hi;
148      Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]);
149      Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]);
150      if (TLI.isBigEndian())
151        std::swap(Lo, Hi);
152      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
153    } else {
154      // FP split into integer parts (soft fp)
155      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
156             !PartVT.isVector() && "Unexpected split");
157      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
158      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
159    }
160  }
161
162  // There is now one part, held in Val.  Correct it to match ValueVT.
163  PartVT = Val.getValueType();
164
165  if (PartVT == ValueVT)
166    return Val;
167
168  if (PartVT.isInteger() && ValueVT.isInteger()) {
169    if (ValueVT.bitsLT(PartVT)) {
170      // For a truncate, see if we have any information to
171      // indicate whether the truncated bits will always be
172      // zero or sign-extension.
173      if (AssertOp != ISD::DELETED_NODE)
174        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
175                          DAG.getValueType(ValueVT));
176      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
177    }
178    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
179  }
180
181  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
182    // FP_ROUND's are always exact here.
183    if (ValueVT.bitsLT(Val.getValueType()))
184      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
185                         DAG.getIntPtrConstant(1));
186
187    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
188  }
189
190  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
191    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
192
193  llvm_unreachable("Unknown mismatch!");
194  return SDValue();
195}
196
197/// getCopyFromParts - Create a value that contains the specified legal parts
198/// combined into the value they represent.  If the parts combine to a type
199/// larger then ValueVT then AssertOp can be used to specify whether the extra
200/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
201/// (ISD::AssertSext).
202static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
203                                      const SDValue *Parts, unsigned NumParts,
204                                      EVT PartVT, EVT ValueVT) {
205  assert(ValueVT.isVector() && "Not a vector value");
206  assert(NumParts > 0 && "No parts to assemble!");
207  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
208  SDValue Val = Parts[0];
209
210  // Handle a multi-element vector.
211  if (NumParts > 1) {
212    EVT IntermediateVT, RegisterVT;
213    unsigned NumIntermediates;
214    unsigned NumRegs =
215    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
216                               NumIntermediates, RegisterVT);
217    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
218    NumParts = NumRegs; // Silence a compiler warning.
219    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
220    assert(RegisterVT == Parts[0].getValueType() &&
221           "Part type doesn't match part!");
222
223    // Assemble the parts into intermediate operands.
224    SmallVector<SDValue, 8> Ops(NumIntermediates);
225    if (NumIntermediates == NumParts) {
226      // If the register was not expanded, truncate or copy the value,
227      // as appropriate.
228      for (unsigned i = 0; i != NumParts; ++i)
229        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
230                                  PartVT, IntermediateVT);
231    } else if (NumParts > 0) {
232      // If the intermediate type was expanded, build the intermediate
233      // operands from the parts.
234      assert(NumParts % NumIntermediates == 0 &&
235             "Must expand into a divisible number of parts!");
236      unsigned Factor = NumParts / NumIntermediates;
237      for (unsigned i = 0; i != NumIntermediates; ++i)
238        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
239                                  PartVT, IntermediateVT);
240    }
241
242    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
243    // intermediate operands.
244    Val = DAG.getNode(IntermediateVT.isVector() ?
245                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
246                      ValueVT, &Ops[0], NumIntermediates);
247  }
248
249  // There is now one part, held in Val.  Correct it to match ValueVT.
250  PartVT = Val.getValueType();
251
252  if (PartVT == ValueVT)
253    return Val;
254
255  if (PartVT.isVector()) {
256    // If the element type of the source/dest vectors are the same, but the
257    // parts vector has more elements than the value vector, then we have a
258    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
259    // elements we want.
260    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
261      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
262             "Cannot narrow, it would be a lossy transformation");
263      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
264                         DAG.getIntPtrConstant(0));
265    }
266
267    // Vector/Vector bitcast.
268    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
269  }
270
271  assert(ValueVT.getVectorElementType() == PartVT &&
272         ValueVT.getVectorNumElements() == 1 &&
273         "Only trivial scalar-to-vector conversions should get here!");
274  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
275}
276
277
278
279
280static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
281                                 SDValue Val, SDValue *Parts, unsigned NumParts,
282                                 EVT PartVT);
283
284/// getCopyToParts - Create a series of nodes that contain the specified value
285/// split into legal parts.  If the parts contain more bits than Val, then, for
286/// integers, ExtendKind can be used to specify how to generate the extra bits.
287static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
288                           SDValue Val, SDValue *Parts, unsigned NumParts,
289                           EVT PartVT,
290                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
291  EVT ValueVT = Val.getValueType();
292
293  // Handle the vector case separately.
294  if (ValueVT.isVector())
295    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
296
297  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
298  unsigned PartBits = PartVT.getSizeInBits();
299  unsigned OrigNumParts = NumParts;
300  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
301
302  if (NumParts == 0)
303    return;
304
305  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
306  if (PartVT == ValueVT) {
307    assert(NumParts == 1 && "No-op copy with multiple parts!");
308    Parts[0] = Val;
309    return;
310  }
311
312  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
313    // If the parts cover more bits than the value has, promote the value.
314    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
315      assert(NumParts == 1 && "Do not know what to promote to!");
316      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
317    } else {
318      assert(PartVT.isInteger() && ValueVT.isInteger() &&
319             "Unknown mismatch!");
320      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
321      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
322    }
323  } else if (PartBits == ValueVT.getSizeInBits()) {
324    // Different types of the same size.
325    assert(NumParts == 1 && PartVT != ValueVT);
326    Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
327  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
328    // If the parts cover less bits than value has, truncate the value.
329    assert(PartVT.isInteger() && ValueVT.isInteger() &&
330           "Unknown mismatch!");
331    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
332    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
333  }
334
335  // The value may have changed - recompute ValueVT.
336  ValueVT = Val.getValueType();
337  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
338         "Failed to tile the value with PartVT!");
339
340  if (NumParts == 1) {
341    assert(PartVT == ValueVT && "Type conversion failed!");
342    Parts[0] = Val;
343    return;
344  }
345
346  // Expand the value into multiple parts.
347  if (NumParts & (NumParts - 1)) {
348    // The number of parts is not a power of 2.  Split off and copy the tail.
349    assert(PartVT.isInteger() && ValueVT.isInteger() &&
350           "Do not know what to expand to!");
351    unsigned RoundParts = 1 << Log2_32(NumParts);
352    unsigned RoundBits = RoundParts * PartBits;
353    unsigned OddParts = NumParts - RoundParts;
354    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
355                                 DAG.getIntPtrConstant(RoundBits));
356    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
357
358    if (TLI.isBigEndian())
359      // The odd parts were reversed by getCopyToParts - unreverse them.
360      std::reverse(Parts + RoundParts, Parts + NumParts);
361
362    NumParts = RoundParts;
363    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
364    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
365  }
366
367  // The number of parts is a power of 2.  Repeatedly bisect the value using
368  // EXTRACT_ELEMENT.
369  Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL,
370                         EVT::getIntegerVT(*DAG.getContext(),
371                                           ValueVT.getSizeInBits()),
372                         Val);
373
374  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
375    for (unsigned i = 0; i < NumParts; i += StepSize) {
376      unsigned ThisBits = StepSize * PartBits / 2;
377      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
378      SDValue &Part0 = Parts[i];
379      SDValue &Part1 = Parts[i+StepSize/2];
380
381      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
382                          ThisVT, Part0, DAG.getIntPtrConstant(1));
383      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
384                          ThisVT, Part0, DAG.getIntPtrConstant(0));
385
386      if (ThisBits == PartBits && ThisVT != PartVT) {
387        Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0);
388        Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1);
389      }
390    }
391  }
392
393  if (TLI.isBigEndian())
394    std::reverse(Parts, Parts + OrigNumParts);
395}
396
397
398/// getCopyToPartsVector - Create a series of nodes that contain the specified
399/// value split into legal parts.
400static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
401                                 SDValue Val, SDValue *Parts, unsigned NumParts,
402                                 EVT PartVT) {
403  EVT ValueVT = Val.getValueType();
404  assert(ValueVT.isVector() && "Not a vector");
405  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
406
407  if (NumParts == 1) {
408    if (PartVT == ValueVT) {
409      // Nothing to do.
410    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
411      // Bitconvert vector->vector case.
412      Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
413    } else if (PartVT.isVector() &&
414               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
415               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
416      EVT ElementVT = PartVT.getVectorElementType();
417      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
418      // undef elements.
419      SmallVector<SDValue, 16> Ops;
420      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
421        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
422                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
423
424      for (unsigned i = ValueVT.getVectorNumElements(),
425           e = PartVT.getVectorNumElements(); i != e; ++i)
426        Ops.push_back(DAG.getUNDEF(ElementVT));
427
428      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
429
430      // FIXME: Use CONCAT for 2x -> 4x.
431
432      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
433      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
434    } else {
435      // Vector -> scalar conversion.
436      assert(ValueVT.getVectorElementType() == PartVT &&
437             ValueVT.getVectorNumElements() == 1 &&
438             "Only trivial vector-to-scalar conversions should get here!");
439      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
440                        PartVT, Val, DAG.getIntPtrConstant(0));
441    }
442
443    Parts[0] = Val;
444    return;
445  }
446
447  // Handle a multi-element vector.
448  EVT IntermediateVT, RegisterVT;
449  unsigned NumIntermediates;
450  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
451                                                IntermediateVT,
452                                                NumIntermediates, RegisterVT);
453  unsigned NumElements = ValueVT.getVectorNumElements();
454
455  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
456  NumParts = NumRegs; // Silence a compiler warning.
457  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
458
459  // Split the vector into intermediate operands.
460  SmallVector<SDValue, 8> Ops(NumIntermediates);
461  for (unsigned i = 0; i != NumIntermediates; ++i) {
462    if (IntermediateVT.isVector())
463      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
464                           IntermediateVT, Val,
465                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
466    else
467      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
468                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
469  }
470
471  // Split the intermediate operands into legal parts.
472  if (NumParts == NumIntermediates) {
473    // If the register was not expanded, promote or copy the value,
474    // as appropriate.
475    for (unsigned i = 0; i != NumParts; ++i)
476      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
477  } else if (NumParts > 0) {
478    // If the intermediate type was expanded, split each the value into
479    // legal parts.
480    assert(NumParts % NumIntermediates == 0 &&
481           "Must expand into a divisible number of parts!");
482    unsigned Factor = NumParts / NumIntermediates;
483    for (unsigned i = 0; i != NumIntermediates; ++i)
484      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
485  }
486}
487
488
489
490
491namespace {
492  /// RegsForValue - This struct represents the registers (physical or virtual)
493  /// that a particular set of values is assigned, and the type information
494  /// about the value. The most common situation is to represent one value at a
495  /// time, but struct or array values are handled element-wise as multiple
496  /// values.  The splitting of aggregates is performed recursively, so that we
497  /// never have aggregate-typed registers. The values at this point do not
498  /// necessarily have legal types, so each value may require one or more
499  /// registers of some legal type.
500  ///
501  struct RegsForValue {
502    /// ValueVTs - The value types of the values, which may not be legal, and
503    /// may need be promoted or synthesized from one or more registers.
504    ///
505    SmallVector<EVT, 4> ValueVTs;
506
507    /// RegVTs - The value types of the registers. This is the same size as
508    /// ValueVTs and it records, for each value, what the type of the assigned
509    /// register or registers are. (Individual values are never synthesized
510    /// from more than one type of register.)
511    ///
512    /// With virtual registers, the contents of RegVTs is redundant with TLI's
513    /// getRegisterType member function, however when with physical registers
514    /// it is necessary to have a separate record of the types.
515    ///
516    SmallVector<EVT, 4> RegVTs;
517
518    /// Regs - This list holds the registers assigned to the values.
519    /// Each legal or promoted value requires one register, and each
520    /// expanded value requires multiple registers.
521    ///
522    SmallVector<unsigned, 4> Regs;
523
524    RegsForValue() {}
525
526    RegsForValue(const SmallVector<unsigned, 4> &regs,
527                 EVT regvt, EVT valuevt)
528      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
529
530    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
531                 unsigned Reg, const Type *Ty) {
532      ComputeValueVTs(tli, Ty, ValueVTs);
533
534      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
535        EVT ValueVT = ValueVTs[Value];
536        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
537        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
538        for (unsigned i = 0; i != NumRegs; ++i)
539          Regs.push_back(Reg + i);
540        RegVTs.push_back(RegisterVT);
541        Reg += NumRegs;
542      }
543    }
544
545    /// areValueTypesLegal - Return true if types of all the values are legal.
546    bool areValueTypesLegal(const TargetLowering &TLI) {
547      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
548        EVT RegisterVT = RegVTs[Value];
549        if (!TLI.isTypeLegal(RegisterVT))
550          return false;
551      }
552      return true;
553    }
554
555    /// append - Add the specified values to this one.
556    void append(const RegsForValue &RHS) {
557      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
558      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
559      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
560    }
561
562    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
563    /// this value and returns the result as a ValueVTs value.  This uses
564    /// Chain/Flag as the input and updates them for the output Chain/Flag.
565    /// If the Flag pointer is NULL, no flag is used.
566    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
567                            DebugLoc dl,
568                            SDValue &Chain, SDValue *Flag) const;
569
570    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
571    /// specified value into the registers specified by this object.  This uses
572    /// Chain/Flag as the input and updates them for the output Chain/Flag.
573    /// If the Flag pointer is NULL, no flag is used.
574    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
575                       SDValue &Chain, SDValue *Flag) const;
576
577    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
578    /// operand list.  This adds the code marker, matching input operand index
579    /// (if applicable), and includes the number of values added into it.
580    void AddInlineAsmOperands(unsigned Kind,
581                              bool HasMatching, unsigned MatchingIdx,
582                              SelectionDAG &DAG,
583                              std::vector<SDValue> &Ops) const;
584  };
585}
586
587/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
588/// this value and returns the result as a ValueVT value.  This uses
589/// Chain/Flag as the input and updates them for the output Chain/Flag.
590/// If the Flag pointer is NULL, no flag is used.
591SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
592                                      FunctionLoweringInfo &FuncInfo,
593                                      DebugLoc dl,
594                                      SDValue &Chain, SDValue *Flag) const {
595  // A Value with type {} or [0 x %t] needs no registers.
596  if (ValueVTs.empty())
597    return SDValue();
598
599  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
600
601  // Assemble the legal parts into the final values.
602  SmallVector<SDValue, 4> Values(ValueVTs.size());
603  SmallVector<SDValue, 8> Parts;
604  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
605    // Copy the legal parts from the registers.
606    EVT ValueVT = ValueVTs[Value];
607    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
608    EVT RegisterVT = RegVTs[Value];
609
610    Parts.resize(NumRegs);
611    for (unsigned i = 0; i != NumRegs; ++i) {
612      SDValue P;
613      if (Flag == 0) {
614        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
615      } else {
616        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
617        *Flag = P.getValue(2);
618      }
619
620      Chain = P.getValue(1);
621
622      // If the source register was virtual and if we know something about it,
623      // add an assert node.
624      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
625          RegisterVT.isInteger() && !RegisterVT.isVector()) {
626        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
627        if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
628          const FunctionLoweringInfo::LiveOutInfo &LOI =
629            FuncInfo.LiveOutRegInfo[SlotNo];
630
631          unsigned RegSize = RegisterVT.getSizeInBits();
632          unsigned NumSignBits = LOI.NumSignBits;
633          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
634
635          // FIXME: We capture more information than the dag can represent.  For
636          // now, just use the tightest assertzext/assertsext possible.
637          bool isSExt = true;
638          EVT FromVT(MVT::Other);
639          if (NumSignBits == RegSize)
640            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
641          else if (NumZeroBits >= RegSize-1)
642            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
643          else if (NumSignBits > RegSize-8)
644            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
645          else if (NumZeroBits >= RegSize-8)
646            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
647          else if (NumSignBits > RegSize-16)
648            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
649          else if (NumZeroBits >= RegSize-16)
650            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
651          else if (NumSignBits > RegSize-32)
652            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
653          else if (NumZeroBits >= RegSize-32)
654            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
655
656          if (FromVT != MVT::Other)
657            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
658                            RegisterVT, P, DAG.getValueType(FromVT));
659        }
660      }
661
662      Parts[i] = P;
663    }
664
665    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
666                                     NumRegs, RegisterVT, ValueVT);
667    Part += NumRegs;
668    Parts.clear();
669  }
670
671  return DAG.getNode(ISD::MERGE_VALUES, dl,
672                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
673                     &Values[0], ValueVTs.size());
674}
675
676/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
677/// specified value into the registers specified by this object.  This uses
678/// Chain/Flag as the input and updates them for the output Chain/Flag.
679/// If the Flag pointer is NULL, no flag is used.
680void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
681                                 SDValue &Chain, SDValue *Flag) const {
682  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
683
684  // Get the list of the values's legal parts.
685  unsigned NumRegs = Regs.size();
686  SmallVector<SDValue, 8> Parts(NumRegs);
687  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
688    EVT ValueVT = ValueVTs[Value];
689    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690    EVT RegisterVT = RegVTs[Value];
691
692    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
693                   &Parts[Part], NumParts, RegisterVT);
694    Part += NumParts;
695  }
696
697  // Copy the parts into the registers.
698  SmallVector<SDValue, 8> Chains(NumRegs);
699  for (unsigned i = 0; i != NumRegs; ++i) {
700    SDValue Part;
701    if (Flag == 0) {
702      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
703    } else {
704      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
705      *Flag = Part.getValue(1);
706    }
707
708    Chains[i] = Part.getValue(0);
709  }
710
711  if (NumRegs == 1 || Flag)
712    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
713    // flagged to it. That is the CopyToReg nodes and the user are considered
714    // a single scheduling unit. If we create a TokenFactor and return it as
715    // chain, then the TokenFactor is both a predecessor (operand) of the
716    // user as well as a successor (the TF operands are flagged to the user).
717    // c1, f1 = CopyToReg
718    // c2, f2 = CopyToReg
719    // c3     = TokenFactor c1, c2
720    // ...
721    //        = op c3, ..., f2
722    Chain = Chains[NumRegs-1];
723  else
724    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
725}
726
727/// AddInlineAsmOperands - Add this value to the specified inlineasm node
728/// operand list.  This adds the code marker and includes the number of
729/// values added into it.
730void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
731                                        unsigned MatchingIdx,
732                                        SelectionDAG &DAG,
733                                        std::vector<SDValue> &Ops) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
737  if (HasMatching)
738    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
739  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
740  Ops.push_back(Res);
741
742  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
743    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
744    EVT RegisterVT = RegVTs[Value];
745    for (unsigned i = 0; i != NumRegs; ++i) {
746      assert(Reg < Regs.size() && "Mismatch in # registers expected");
747      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
748    }
749  }
750}
751
752void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
753  AA = &aa;
754  GFI = gfi;
755  TD = DAG.getTarget().getTargetData();
756}
757
758/// clear - Clear out the current SelectionDAG and the associated
759/// state and prepare this SelectionDAGBuilder object to be used
760/// for a new block. This doesn't clear out information about
761/// additional blocks that are needed to complete switch lowering
762/// or PHI node updating; that information is cleared out as it is
763/// consumed.
764void SelectionDAGBuilder::clear() {
765  NodeMap.clear();
766  UnusedArgNodeMap.clear();
767  PendingLoads.clear();
768  PendingExports.clear();
769  DanglingDebugInfoMap.clear();
770  CurDebugLoc = DebugLoc();
771  HasTailCall = false;
772}
773
774/// getRoot - Return the current virtual root of the Selection DAG,
775/// flushing any PendingLoad items. This must be done before emitting
776/// a store or any other node that may need to be ordered after any
777/// prior load instructions.
778///
779SDValue SelectionDAGBuilder::getRoot() {
780  if (PendingLoads.empty())
781    return DAG.getRoot();
782
783  if (PendingLoads.size() == 1) {
784    SDValue Root = PendingLoads[0];
785    DAG.setRoot(Root);
786    PendingLoads.clear();
787    return Root;
788  }
789
790  // Otherwise, we have to make a token factor node.
791  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
792                               &PendingLoads[0], PendingLoads.size());
793  PendingLoads.clear();
794  DAG.setRoot(Root);
795  return Root;
796}
797
798/// getControlRoot - Similar to getRoot, but instead of flushing all the
799/// PendingLoad items, flush all the PendingExports items. It is necessary
800/// to do this before emitting a terminator instruction.
801///
802SDValue SelectionDAGBuilder::getControlRoot() {
803  SDValue Root = DAG.getRoot();
804
805  if (PendingExports.empty())
806    return Root;
807
808  // Turn all of the CopyToReg chains into one factored node.
809  if (Root.getOpcode() != ISD::EntryToken) {
810    unsigned i = 0, e = PendingExports.size();
811    for (; i != e; ++i) {
812      assert(PendingExports[i].getNode()->getNumOperands() > 1);
813      if (PendingExports[i].getNode()->getOperand(0) == Root)
814        break;  // Don't add the root if we already indirectly depend on it.
815    }
816
817    if (i == e)
818      PendingExports.push_back(Root);
819  }
820
821  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
822                     &PendingExports[0],
823                     PendingExports.size());
824  PendingExports.clear();
825  DAG.setRoot(Root);
826  return Root;
827}
828
829void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
830  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
831  DAG.AssignOrdering(Node, SDNodeOrder);
832
833  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
834    AssignOrderingToNode(Node->getOperand(I).getNode());
835}
836
837void SelectionDAGBuilder::visit(const Instruction &I) {
838  // Set up outgoing PHI node register values before emitting the terminator.
839  if (isa<TerminatorInst>(&I))
840    HandlePHINodesInSuccessorBlocks(I.getParent());
841
842  CurDebugLoc = I.getDebugLoc();
843
844  visit(I.getOpcode(), I);
845
846  if (!isa<TerminatorInst>(&I) && !HasTailCall)
847    CopyToExportRegsIfNeeded(&I);
848
849  CurDebugLoc = DebugLoc();
850}
851
852void SelectionDAGBuilder::visitPHI(const PHINode &) {
853  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
854}
855
856void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
857  // Note: this doesn't use InstVisitor, because it has to work with
858  // ConstantExpr's in addition to instructions.
859  switch (Opcode) {
860  default: llvm_unreachable("Unknown instruction type encountered!");
861    // Build the switch statement using the Instruction.def file.
862#define HANDLE_INST(NUM, OPCODE, CLASS) \
863    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
864#include "llvm/Instruction.def"
865  }
866
867  // Assign the ordering to the freshly created DAG nodes.
868  if (NodeMap.count(&I)) {
869    ++SDNodeOrder;
870    AssignOrderingToNode(getValue(&I).getNode());
871  }
872}
873
874// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
875// generate the debug data structures now that we've seen its definition.
876void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
877                                                   SDValue Val) {
878  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
879  if (DDI.getDI()) {
880    const DbgValueInst *DI = DDI.getDI();
881    DebugLoc dl = DDI.getdl();
882    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
883    MDNode *Variable = DI->getVariable();
884    uint64_t Offset = DI->getOffset();
885    SDDbgValue *SDV;
886    if (Val.getNode()) {
887      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
888        SDV = DAG.getDbgValue(Variable, Val.getNode(),
889                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
890        DAG.AddDbgValue(SDV, Val.getNode(), false);
891      }
892    } else {
893      SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
894                            Offset, dl, SDNodeOrder);
895      DAG.AddDbgValue(SDV, 0, false);
896    }
897    DanglingDebugInfoMap[V] = DanglingDebugInfo();
898  }
899}
900
901// getValue - Return an SDValue for the given Value.
902SDValue SelectionDAGBuilder::getValue(const Value *V) {
903  // If we already have an SDValue for this value, use it. It's important
904  // to do this first, so that we don't create a CopyFromReg if we already
905  // have a regular SDValue.
906  SDValue &N = NodeMap[V];
907  if (N.getNode()) return N;
908
909  // If there's a virtual register allocated and initialized for this
910  // value, use it.
911  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
912  if (It != FuncInfo.ValueMap.end()) {
913    unsigned InReg = It->second;
914    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
915    SDValue Chain = DAG.getEntryNode();
916    return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
917  }
918
919  // Otherwise create a new SDValue and remember it.
920  SDValue Val = getValueImpl(V);
921  NodeMap[V] = Val;
922  resolveDanglingDebugInfo(V, Val);
923  return Val;
924}
925
926/// getNonRegisterValue - Return an SDValue for the given Value, but
927/// don't look in FuncInfo.ValueMap for a virtual register.
928SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
929  // If we already have an SDValue for this value, use it.
930  SDValue &N = NodeMap[V];
931  if (N.getNode()) return N;
932
933  // Otherwise create a new SDValue and remember it.
934  SDValue Val = getValueImpl(V);
935  NodeMap[V] = Val;
936  resolveDanglingDebugInfo(V, Val);
937  return Val;
938}
939
940/// getValueImpl - Helper function for getValue and getNonRegisterValue.
941/// Create an SDValue for the given value.
942SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
943  if (const Constant *C = dyn_cast<Constant>(V)) {
944    EVT VT = TLI.getValueType(V->getType(), true);
945
946    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
947      return DAG.getConstant(*CI, VT);
948
949    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
950      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
951
952    if (isa<ConstantPointerNull>(C))
953      return DAG.getConstant(0, TLI.getPointerTy());
954
955    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
956      return DAG.getConstantFP(*CFP, VT);
957
958    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
959      return DAG.getUNDEF(VT);
960
961    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
962      visit(CE->getOpcode(), *CE);
963      SDValue N1 = NodeMap[V];
964      assert(N1.getNode() && "visit didn't populate the NodeMap!");
965      return N1;
966    }
967
968    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
969      SmallVector<SDValue, 4> Constants;
970      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
971           OI != OE; ++OI) {
972        SDNode *Val = getValue(*OI).getNode();
973        // If the operand is an empty aggregate, there are no values.
974        if (!Val) continue;
975        // Add each leaf value from the operand to the Constants list
976        // to form a flattened list of all the values.
977        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
978          Constants.push_back(SDValue(Val, i));
979      }
980
981      return DAG.getMergeValues(&Constants[0], Constants.size(),
982                                getCurDebugLoc());
983    }
984
985    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
986      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
987             "Unknown struct or array constant!");
988
989      SmallVector<EVT, 4> ValueVTs;
990      ComputeValueVTs(TLI, C->getType(), ValueVTs);
991      unsigned NumElts = ValueVTs.size();
992      if (NumElts == 0)
993        return SDValue(); // empty struct
994      SmallVector<SDValue, 4> Constants(NumElts);
995      for (unsigned i = 0; i != NumElts; ++i) {
996        EVT EltVT = ValueVTs[i];
997        if (isa<UndefValue>(C))
998          Constants[i] = DAG.getUNDEF(EltVT);
999        else if (EltVT.isFloatingPoint())
1000          Constants[i] = DAG.getConstantFP(0, EltVT);
1001        else
1002          Constants[i] = DAG.getConstant(0, EltVT);
1003      }
1004
1005      return DAG.getMergeValues(&Constants[0], NumElts,
1006                                getCurDebugLoc());
1007    }
1008
1009    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1010      return DAG.getBlockAddress(BA, VT);
1011
1012    const VectorType *VecTy = cast<VectorType>(V->getType());
1013    unsigned NumElements = VecTy->getNumElements();
1014
1015    // Now that we know the number and type of the elements, get that number of
1016    // elements into the Ops array based on what kind of constant it is.
1017    SmallVector<SDValue, 16> Ops;
1018    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1019      for (unsigned i = 0; i != NumElements; ++i)
1020        Ops.push_back(getValue(CP->getOperand(i)));
1021    } else {
1022      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1023      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1024
1025      SDValue Op;
1026      if (EltVT.isFloatingPoint())
1027        Op = DAG.getConstantFP(0, EltVT);
1028      else
1029        Op = DAG.getConstant(0, EltVT);
1030      Ops.assign(NumElements, Op);
1031    }
1032
1033    // Create a BUILD_VECTOR node.
1034    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1035                                    VT, &Ops[0], Ops.size());
1036  }
1037
1038  // If this is a static alloca, generate it as the frameindex instead of
1039  // computation.
1040  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1041    DenseMap<const AllocaInst*, int>::iterator SI =
1042      FuncInfo.StaticAllocaMap.find(AI);
1043    if (SI != FuncInfo.StaticAllocaMap.end())
1044      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1045  }
1046
1047  // If this is an instruction which fast-isel has deferred, select it now.
1048  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1049    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1050    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1051    SDValue Chain = DAG.getEntryNode();
1052    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1053  }
1054
1055  llvm_unreachable("Can't get register for value!");
1056  return SDValue();
1057}
1058
1059void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1060  SDValue Chain = getControlRoot();
1061  SmallVector<ISD::OutputArg, 8> Outs;
1062  SmallVector<SDValue, 8> OutVals;
1063
1064  if (!FuncInfo.CanLowerReturn) {
1065    unsigned DemoteReg = FuncInfo.DemoteRegister;
1066    const Function *F = I.getParent()->getParent();
1067
1068    // Emit a store of the return value through the virtual register.
1069    // Leave Outs empty so that LowerReturn won't try to load return
1070    // registers the usual way.
1071    SmallVector<EVT, 1> PtrValueVTs;
1072    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1073                    PtrValueVTs);
1074
1075    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1076    SDValue RetOp = getValue(I.getOperand(0));
1077
1078    SmallVector<EVT, 4> ValueVTs;
1079    SmallVector<uint64_t, 4> Offsets;
1080    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1081    unsigned NumValues = ValueVTs.size();
1082
1083    SmallVector<SDValue, 4> Chains(NumValues);
1084    for (unsigned i = 0; i != NumValues; ++i) {
1085      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1086                                RetPtr.getValueType(), RetPtr,
1087                                DAG.getIntPtrConstant(Offsets[i]));
1088      Chains[i] =
1089        DAG.getStore(Chain, getCurDebugLoc(),
1090                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1091                     Add, NULL, Offsets[i], false, false, 0);
1092    }
1093
1094    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1095                        MVT::Other, &Chains[0], NumValues);
1096  } else if (I.getNumOperands() != 0) {
1097    SmallVector<EVT, 4> ValueVTs;
1098    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1099    unsigned NumValues = ValueVTs.size();
1100    if (NumValues) {
1101      SDValue RetOp = getValue(I.getOperand(0));
1102      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1103        EVT VT = ValueVTs[j];
1104
1105        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1106
1107        const Function *F = I.getParent()->getParent();
1108        if (F->paramHasAttr(0, Attribute::SExt))
1109          ExtendKind = ISD::SIGN_EXTEND;
1110        else if (F->paramHasAttr(0, Attribute::ZExt))
1111          ExtendKind = ISD::ZERO_EXTEND;
1112
1113        // FIXME: C calling convention requires the return type to be promoted
1114        // to at least 32-bit. But this is not necessary for non-C calling
1115        // conventions. The frontend should mark functions whose return values
1116        // require promoting with signext or zeroext attributes.
1117        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1118          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1119          if (VT.bitsLT(MinVT))
1120            VT = MinVT;
1121        }
1122
1123        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1124        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1125        SmallVector<SDValue, 4> Parts(NumParts);
1126        getCopyToParts(DAG, getCurDebugLoc(),
1127                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1128                       &Parts[0], NumParts, PartVT, ExtendKind);
1129
1130        // 'inreg' on function refers to return value
1131        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1132        if (F->paramHasAttr(0, Attribute::InReg))
1133          Flags.setInReg();
1134
1135        // Propagate extension type if any
1136        if (F->paramHasAttr(0, Attribute::SExt))
1137          Flags.setSExt();
1138        else if (F->paramHasAttr(0, Attribute::ZExt))
1139          Flags.setZExt();
1140
1141        for (unsigned i = 0; i < NumParts; ++i) {
1142          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1143                                        /*isfixed=*/true));
1144          OutVals.push_back(Parts[i]);
1145        }
1146      }
1147    }
1148  }
1149
1150  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1151  CallingConv::ID CallConv =
1152    DAG.getMachineFunction().getFunction()->getCallingConv();
1153  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1154                          Outs, OutVals, getCurDebugLoc(), DAG);
1155
1156  // Verify that the target's LowerReturn behaved as expected.
1157  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1158         "LowerReturn didn't return a valid chain!");
1159
1160  // Update the DAG with the new chain value resulting from return lowering.
1161  DAG.setRoot(Chain);
1162}
1163
1164/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1165/// created for it, emit nodes to copy the value into the virtual
1166/// registers.
1167void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1168  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1169  if (VMI != FuncInfo.ValueMap.end()) {
1170    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1171    CopyValueToVirtualRegister(V, VMI->second);
1172  }
1173}
1174
1175/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1176/// the current basic block, add it to ValueMap now so that we'll get a
1177/// CopyTo/FromReg.
1178void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1179  // No need to export constants.
1180  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1181
1182  // Already exported?
1183  if (FuncInfo.isExportedInst(V)) return;
1184
1185  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1186  CopyValueToVirtualRegister(V, Reg);
1187}
1188
1189bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1190                                                     const BasicBlock *FromBB) {
1191  // The operands of the setcc have to be in this block.  We don't know
1192  // how to export them from some other block.
1193  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1194    // Can export from current BB.
1195    if (VI->getParent() == FromBB)
1196      return true;
1197
1198    // Is already exported, noop.
1199    return FuncInfo.isExportedInst(V);
1200  }
1201
1202  // If this is an argument, we can export it if the BB is the entry block or
1203  // if it is already exported.
1204  if (isa<Argument>(V)) {
1205    if (FromBB == &FromBB->getParent()->getEntryBlock())
1206      return true;
1207
1208    // Otherwise, can only export this if it is already exported.
1209    return FuncInfo.isExportedInst(V);
1210  }
1211
1212  // Otherwise, constants can always be exported.
1213  return true;
1214}
1215
1216static bool InBlock(const Value *V, const BasicBlock *BB) {
1217  if (const Instruction *I = dyn_cast<Instruction>(V))
1218    return I->getParent() == BB;
1219  return true;
1220}
1221
1222/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1223/// This function emits a branch and is used at the leaves of an OR or an
1224/// AND operator tree.
1225///
1226void
1227SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1228                                                  MachineBasicBlock *TBB,
1229                                                  MachineBasicBlock *FBB,
1230                                                  MachineBasicBlock *CurBB,
1231                                                  MachineBasicBlock *SwitchBB) {
1232  const BasicBlock *BB = CurBB->getBasicBlock();
1233
1234  // If the leaf of the tree is a comparison, merge the condition into
1235  // the caseblock.
1236  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1237    // The operands of the cmp have to be in this block.  We don't know
1238    // how to export them from some other block.  If this is the first block
1239    // of the sequence, no exporting is needed.
1240    if (CurBB == SwitchBB ||
1241        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1242         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1243      ISD::CondCode Condition;
1244      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1245        Condition = getICmpCondCode(IC->getPredicate());
1246      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1247        Condition = getFCmpCondCode(FC->getPredicate());
1248      } else {
1249        Condition = ISD::SETEQ; // silence warning.
1250        llvm_unreachable("Unknown compare instruction");
1251      }
1252
1253      CaseBlock CB(Condition, BOp->getOperand(0),
1254                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1255      SwitchCases.push_back(CB);
1256      return;
1257    }
1258  }
1259
1260  // Create a CaseBlock record representing this branch.
1261  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1262               NULL, TBB, FBB, CurBB);
1263  SwitchCases.push_back(CB);
1264}
1265
1266/// FindMergedConditions - If Cond is an expression like
1267void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1268                                               MachineBasicBlock *TBB,
1269                                               MachineBasicBlock *FBB,
1270                                               MachineBasicBlock *CurBB,
1271                                               MachineBasicBlock *SwitchBB,
1272                                               unsigned Opc) {
1273  // If this node is not part of the or/and tree, emit it as a branch.
1274  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1275  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1276      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1277      BOp->getParent() != CurBB->getBasicBlock() ||
1278      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1279      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1280    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1281    return;
1282  }
1283
1284  //  Create TmpBB after CurBB.
1285  MachineFunction::iterator BBI = CurBB;
1286  MachineFunction &MF = DAG.getMachineFunction();
1287  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1288  CurBB->getParent()->insert(++BBI, TmpBB);
1289
1290  if (Opc == Instruction::Or) {
1291    // Codegen X | Y as:
1292    //   jmp_if_X TBB
1293    //   jmp TmpBB
1294    // TmpBB:
1295    //   jmp_if_Y TBB
1296    //   jmp FBB
1297    //
1298
1299    // Emit the LHS condition.
1300    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1301
1302    // Emit the RHS condition into TmpBB.
1303    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1304  } else {
1305    assert(Opc == Instruction::And && "Unknown merge op!");
1306    // Codegen X & Y as:
1307    //   jmp_if_X TmpBB
1308    //   jmp FBB
1309    // TmpBB:
1310    //   jmp_if_Y TBB
1311    //   jmp FBB
1312    //
1313    //  This requires creation of TmpBB after CurBB.
1314
1315    // Emit the LHS condition.
1316    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1317
1318    // Emit the RHS condition into TmpBB.
1319    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1320  }
1321}
1322
1323/// If the set of cases should be emitted as a series of branches, return true.
1324/// If we should emit this as a bunch of and/or'd together conditions, return
1325/// false.
1326bool
1327SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1328  if (Cases.size() != 2) return true;
1329
1330  // If this is two comparisons of the same values or'd or and'd together, they
1331  // will get folded into a single comparison, so don't emit two blocks.
1332  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1333       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1334      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1335       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1336    return false;
1337  }
1338
1339  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1340  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1341  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1342      Cases[0].CC == Cases[1].CC &&
1343      isa<Constant>(Cases[0].CmpRHS) &&
1344      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1345    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1346      return false;
1347    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1348      return false;
1349  }
1350
1351  return true;
1352}
1353
1354void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1355  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1356
1357  // Update machine-CFG edges.
1358  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1359
1360  // Figure out which block is immediately after the current one.
1361  MachineBasicBlock *NextBlock = 0;
1362  MachineFunction::iterator BBI = BrMBB;
1363  if (++BBI != FuncInfo.MF->end())
1364    NextBlock = BBI;
1365
1366  if (I.isUnconditional()) {
1367    // Update machine-CFG edges.
1368    BrMBB->addSuccessor(Succ0MBB);
1369
1370    // If this is not a fall-through branch, emit the branch.
1371    if (Succ0MBB != NextBlock)
1372      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1373                              MVT::Other, getControlRoot(),
1374                              DAG.getBasicBlock(Succ0MBB)));
1375
1376    return;
1377  }
1378
1379  // If this condition is one of the special cases we handle, do special stuff
1380  // now.
1381  const Value *CondVal = I.getCondition();
1382  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1383
1384  // If this is a series of conditions that are or'd or and'd together, emit
1385  // this as a sequence of branches instead of setcc's with and/or operations.
1386  // For example, instead of something like:
1387  //     cmp A, B
1388  //     C = seteq
1389  //     cmp D, E
1390  //     F = setle
1391  //     or C, F
1392  //     jnz foo
1393  // Emit:
1394  //     cmp A, B
1395  //     je foo
1396  //     cmp D, E
1397  //     jle foo
1398  //
1399  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1400    if (BOp->hasOneUse() &&
1401        (BOp->getOpcode() == Instruction::And ||
1402         BOp->getOpcode() == Instruction::Or)) {
1403      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1404                           BOp->getOpcode());
1405      // If the compares in later blocks need to use values not currently
1406      // exported from this block, export them now.  This block should always
1407      // be the first entry.
1408      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1409
1410      // Allow some cases to be rejected.
1411      if (ShouldEmitAsBranches(SwitchCases)) {
1412        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1413          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1414          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1415        }
1416
1417        // Emit the branch for this block.
1418        visitSwitchCase(SwitchCases[0], BrMBB);
1419        SwitchCases.erase(SwitchCases.begin());
1420        return;
1421      }
1422
1423      // Okay, we decided not to do this, remove any inserted MBB's and clear
1424      // SwitchCases.
1425      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1426        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1427
1428      SwitchCases.clear();
1429    }
1430  }
1431
1432  // Create a CaseBlock record representing this branch.
1433  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1434               NULL, Succ0MBB, Succ1MBB, BrMBB);
1435
1436  // Use visitSwitchCase to actually insert the fast branch sequence for this
1437  // cond branch.
1438  visitSwitchCase(CB, BrMBB);
1439}
1440
1441/// visitSwitchCase - Emits the necessary code to represent a single node in
1442/// the binary search tree resulting from lowering a switch instruction.
1443void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1444                                          MachineBasicBlock *SwitchBB) {
1445  SDValue Cond;
1446  SDValue CondLHS = getValue(CB.CmpLHS);
1447  DebugLoc dl = getCurDebugLoc();
1448
1449  // Build the setcc now.
1450  if (CB.CmpMHS == NULL) {
1451    // Fold "(X == true)" to X and "(X == false)" to !X to
1452    // handle common cases produced by branch lowering.
1453    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1454        CB.CC == ISD::SETEQ)
1455      Cond = CondLHS;
1456    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1457             CB.CC == ISD::SETEQ) {
1458      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1459      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1460    } else
1461      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1462  } else {
1463    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1464
1465    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1466    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1467
1468    SDValue CmpOp = getValue(CB.CmpMHS);
1469    EVT VT = CmpOp.getValueType();
1470
1471    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1472      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1473                          ISD::SETLE);
1474    } else {
1475      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1476                                VT, CmpOp, DAG.getConstant(Low, VT));
1477      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1478                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1479    }
1480  }
1481
1482  // Update successor info
1483  SwitchBB->addSuccessor(CB.TrueBB);
1484  SwitchBB->addSuccessor(CB.FalseBB);
1485
1486  // Set NextBlock to be the MBB immediately after the current one, if any.
1487  // This is used to avoid emitting unnecessary branches to the next block.
1488  MachineBasicBlock *NextBlock = 0;
1489  MachineFunction::iterator BBI = SwitchBB;
1490  if (++BBI != FuncInfo.MF->end())
1491    NextBlock = BBI;
1492
1493  // If the lhs block is the next block, invert the condition so that we can
1494  // fall through to the lhs instead of the rhs block.
1495  if (CB.TrueBB == NextBlock) {
1496    std::swap(CB.TrueBB, CB.FalseBB);
1497    SDValue True = DAG.getConstant(1, Cond.getValueType());
1498    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1499  }
1500
1501  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1502                               MVT::Other, getControlRoot(), Cond,
1503                               DAG.getBasicBlock(CB.TrueBB));
1504
1505  // Insert the false branch.
1506  if (CB.FalseBB != NextBlock)
1507    BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1508                         DAG.getBasicBlock(CB.FalseBB));
1509
1510  DAG.setRoot(BrCond);
1511}
1512
1513/// visitJumpTable - Emit JumpTable node in the current MBB
1514void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1515  // Emit the code for the jump table
1516  assert(JT.Reg != -1U && "Should lower JT Header first!");
1517  EVT PTy = TLI.getPointerTy();
1518  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1519                                     JT.Reg, PTy);
1520  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1521  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1522                                    MVT::Other, Index.getValue(1),
1523                                    Table, Index);
1524  DAG.setRoot(BrJumpTable);
1525}
1526
1527/// visitJumpTableHeader - This function emits necessary code to produce index
1528/// in the JumpTable from switch case.
1529void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1530                                               JumpTableHeader &JTH,
1531                                               MachineBasicBlock *SwitchBB) {
1532  // Subtract the lowest switch case value from the value being switched on and
1533  // conditional branch to default mbb if the result is greater than the
1534  // difference between smallest and largest cases.
1535  SDValue SwitchOp = getValue(JTH.SValue);
1536  EVT VT = SwitchOp.getValueType();
1537  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1538                            DAG.getConstant(JTH.First, VT));
1539
1540  // The SDNode we just created, which holds the value being switched on minus
1541  // the smallest case value, needs to be copied to a virtual register so it
1542  // can be used as an index into the jump table in a subsequent basic block.
1543  // This value may be smaller or larger than the target's pointer type, and
1544  // therefore require extension or truncating.
1545  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1546
1547  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1548  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1549                                    JumpTableReg, SwitchOp);
1550  JT.Reg = JumpTableReg;
1551
1552  // Emit the range check for the jump table, and branch to the default block
1553  // for the switch statement if the value being switched on exceeds the largest
1554  // case in the switch.
1555  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1556                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1557                             DAG.getConstant(JTH.Last-JTH.First,VT),
1558                             ISD::SETUGT);
1559
1560  // Set NextBlock to be the MBB immediately after the current one, if any.
1561  // This is used to avoid emitting unnecessary branches to the next block.
1562  MachineBasicBlock *NextBlock = 0;
1563  MachineFunction::iterator BBI = SwitchBB;
1564
1565  if (++BBI != FuncInfo.MF->end())
1566    NextBlock = BBI;
1567
1568  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1569                               MVT::Other, CopyTo, CMP,
1570                               DAG.getBasicBlock(JT.Default));
1571
1572  if (JT.MBB != NextBlock)
1573    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1574                         DAG.getBasicBlock(JT.MBB));
1575
1576  DAG.setRoot(BrCond);
1577}
1578
1579/// visitBitTestHeader - This function emits necessary code to produce value
1580/// suitable for "bit tests"
1581void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1582                                             MachineBasicBlock *SwitchBB) {
1583  // Subtract the minimum value
1584  SDValue SwitchOp = getValue(B.SValue);
1585  EVT VT = SwitchOp.getValueType();
1586  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1587                            DAG.getConstant(B.First, VT));
1588
1589  // Check range
1590  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1591                                  TLI.getSetCCResultType(Sub.getValueType()),
1592                                  Sub, DAG.getConstant(B.Range, VT),
1593                                  ISD::SETUGT);
1594
1595  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1596                                       TLI.getPointerTy());
1597
1598  B.Reg = FuncInfo.CreateReg(TLI.getPointerTy());
1599  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1600                                    B.Reg, ShiftOp);
1601
1602  // Set NextBlock to be the MBB immediately after the current one, if any.
1603  // This is used to avoid emitting unnecessary branches to the next block.
1604  MachineBasicBlock *NextBlock = 0;
1605  MachineFunction::iterator BBI = SwitchBB;
1606  if (++BBI != FuncInfo.MF->end())
1607    NextBlock = BBI;
1608
1609  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1610
1611  SwitchBB->addSuccessor(B.Default);
1612  SwitchBB->addSuccessor(MBB);
1613
1614  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1615                                MVT::Other, CopyTo, RangeCmp,
1616                                DAG.getBasicBlock(B.Default));
1617
1618  if (MBB != NextBlock)
1619    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1620                          DAG.getBasicBlock(MBB));
1621
1622  DAG.setRoot(BrRange);
1623}
1624
1625/// visitBitTestCase - this function produces one "bit test"
1626void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1627                                           unsigned Reg,
1628                                           BitTestCase &B,
1629                                           MachineBasicBlock *SwitchBB) {
1630  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1631                                       TLI.getPointerTy());
1632  SDValue Cmp;
1633  if (CountPopulation_64(B.Mask) == 1) {
1634    // Testing for a single bit; just compare the shift count with what it
1635    // would need to be to shift a 1 bit in that position.
1636    Cmp = DAG.getSetCC(getCurDebugLoc(),
1637                       TLI.getSetCCResultType(ShiftOp.getValueType()),
1638                       ShiftOp,
1639                       DAG.getConstant(CountTrailingZeros_64(B.Mask),
1640                                       TLI.getPointerTy()),
1641                       ISD::SETEQ);
1642  } else {
1643    // Make desired shift
1644    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1645                                    TLI.getPointerTy(),
1646                                    DAG.getConstant(1, TLI.getPointerTy()),
1647                                    ShiftOp);
1648
1649    // Emit bit tests and jumps
1650    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1651                                TLI.getPointerTy(), SwitchVal,
1652                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1653    Cmp = DAG.getSetCC(getCurDebugLoc(),
1654                       TLI.getSetCCResultType(AndOp.getValueType()),
1655                       AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1656                       ISD::SETNE);
1657  }
1658
1659  SwitchBB->addSuccessor(B.TargetBB);
1660  SwitchBB->addSuccessor(NextMBB);
1661
1662  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1663                              MVT::Other, getControlRoot(),
1664                              Cmp, DAG.getBasicBlock(B.TargetBB));
1665
1666  // Set NextBlock to be the MBB immediately after the current one, if any.
1667  // This is used to avoid emitting unnecessary branches to the next block.
1668  MachineBasicBlock *NextBlock = 0;
1669  MachineFunction::iterator BBI = SwitchBB;
1670  if (++BBI != FuncInfo.MF->end())
1671    NextBlock = BBI;
1672
1673  if (NextMBB != NextBlock)
1674    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1675                        DAG.getBasicBlock(NextMBB));
1676
1677  DAG.setRoot(BrAnd);
1678}
1679
1680void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1681  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1682
1683  // Retrieve successors.
1684  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1685  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1686
1687  const Value *Callee(I.getCalledValue());
1688  if (isa<InlineAsm>(Callee))
1689    visitInlineAsm(&I);
1690  else
1691    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1692
1693  // If the value of the invoke is used outside of its defining block, make it
1694  // available as a virtual register.
1695  CopyToExportRegsIfNeeded(&I);
1696
1697  // Update successor info
1698  InvokeMBB->addSuccessor(Return);
1699  InvokeMBB->addSuccessor(LandingPad);
1700
1701  // Drop into normal successor.
1702  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1703                          MVT::Other, getControlRoot(),
1704                          DAG.getBasicBlock(Return)));
1705}
1706
1707void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1708}
1709
1710/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1711/// small case ranges).
1712bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1713                                                 CaseRecVector& WorkList,
1714                                                 const Value* SV,
1715                                                 MachineBasicBlock *Default,
1716                                                 MachineBasicBlock *SwitchBB) {
1717  Case& BackCase  = *(CR.Range.second-1);
1718
1719  // Size is the number of Cases represented by this range.
1720  size_t Size = CR.Range.second - CR.Range.first;
1721  if (Size > 3)
1722    return false;
1723
1724  // Get the MachineFunction which holds the current MBB.  This is used when
1725  // inserting any additional MBBs necessary to represent the switch.
1726  MachineFunction *CurMF = FuncInfo.MF;
1727
1728  // Figure out which block is immediately after the current one.
1729  MachineBasicBlock *NextBlock = 0;
1730  MachineFunction::iterator BBI = CR.CaseBB;
1731
1732  if (++BBI != FuncInfo.MF->end())
1733    NextBlock = BBI;
1734
1735  // TODO: If any two of the cases has the same destination, and if one value
1736  // is the same as the other, but has one bit unset that the other has set,
1737  // use bit manipulation to do two compares at once.  For example:
1738  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1739
1740  // Rearrange the case blocks so that the last one falls through if possible.
1741  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1742    // The last case block won't fall through into 'NextBlock' if we emit the
1743    // branches in this order.  See if rearranging a case value would help.
1744    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1745      if (I->BB == NextBlock) {
1746        std::swap(*I, BackCase);
1747        break;
1748      }
1749    }
1750  }
1751
1752  // Create a CaseBlock record representing a conditional branch to
1753  // the Case's target mbb if the value being switched on SV is equal
1754  // to C.
1755  MachineBasicBlock *CurBlock = CR.CaseBB;
1756  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1757    MachineBasicBlock *FallThrough;
1758    if (I != E-1) {
1759      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1760      CurMF->insert(BBI, FallThrough);
1761
1762      // Put SV in a virtual register to make it available from the new blocks.
1763      ExportFromCurrentBlock(SV);
1764    } else {
1765      // If the last case doesn't match, go to the default block.
1766      FallThrough = Default;
1767    }
1768
1769    const Value *RHS, *LHS, *MHS;
1770    ISD::CondCode CC;
1771    if (I->High == I->Low) {
1772      // This is just small small case range :) containing exactly 1 case
1773      CC = ISD::SETEQ;
1774      LHS = SV; RHS = I->High; MHS = NULL;
1775    } else {
1776      CC = ISD::SETLE;
1777      LHS = I->Low; MHS = SV; RHS = I->High;
1778    }
1779    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1780
1781    // If emitting the first comparison, just call visitSwitchCase to emit the
1782    // code into the current block.  Otherwise, push the CaseBlock onto the
1783    // vector to be later processed by SDISel, and insert the node's MBB
1784    // before the next MBB.
1785    if (CurBlock == SwitchBB)
1786      visitSwitchCase(CB, SwitchBB);
1787    else
1788      SwitchCases.push_back(CB);
1789
1790    CurBlock = FallThrough;
1791  }
1792
1793  return true;
1794}
1795
1796static inline bool areJTsAllowed(const TargetLowering &TLI) {
1797  return !DisableJumpTables &&
1798          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1799           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1800}
1801
1802static APInt ComputeRange(const APInt &First, const APInt &Last) {
1803  APInt LastExt(Last), FirstExt(First);
1804  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1805  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1806  return (LastExt - FirstExt + 1ULL);
1807}
1808
1809/// handleJTSwitchCase - Emit jumptable for current switch case range
1810bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1811                                             CaseRecVector& WorkList,
1812                                             const Value* SV,
1813                                             MachineBasicBlock* Default,
1814                                             MachineBasicBlock *SwitchBB) {
1815  Case& FrontCase = *CR.Range.first;
1816  Case& BackCase  = *(CR.Range.second-1);
1817
1818  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1819  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1820
1821  APInt TSize(First.getBitWidth(), 0);
1822  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1823       I!=E; ++I)
1824    TSize += I->size();
1825
1826  if (!areJTsAllowed(TLI) || TSize.ult(4))
1827    return false;
1828
1829  APInt Range = ComputeRange(First, Last);
1830  double Density = TSize.roundToDouble() / Range.roundToDouble();
1831  if (Density < 0.4)
1832    return false;
1833
1834  DEBUG(dbgs() << "Lowering jump table\n"
1835               << "First entry: " << First << ". Last entry: " << Last << '\n'
1836               << "Range: " << Range
1837               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1838
1839  // Get the MachineFunction which holds the current MBB.  This is used when
1840  // inserting any additional MBBs necessary to represent the switch.
1841  MachineFunction *CurMF = FuncInfo.MF;
1842
1843  // Figure out which block is immediately after the current one.
1844  MachineFunction::iterator BBI = CR.CaseBB;
1845  ++BBI;
1846
1847  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1848
1849  // Create a new basic block to hold the code for loading the address
1850  // of the jump table, and jumping to it.  Update successor information;
1851  // we will either branch to the default case for the switch, or the jump
1852  // table.
1853  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1854  CurMF->insert(BBI, JumpTableBB);
1855  CR.CaseBB->addSuccessor(Default);
1856  CR.CaseBB->addSuccessor(JumpTableBB);
1857
1858  // Build a vector of destination BBs, corresponding to each target
1859  // of the jump table. If the value of the jump table slot corresponds to
1860  // a case statement, push the case's BB onto the vector, otherwise, push
1861  // the default BB.
1862  std::vector<MachineBasicBlock*> DestBBs;
1863  APInt TEI = First;
1864  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1865    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1866    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1867
1868    if (Low.sle(TEI) && TEI.sle(High)) {
1869      DestBBs.push_back(I->BB);
1870      if (TEI==High)
1871        ++I;
1872    } else {
1873      DestBBs.push_back(Default);
1874    }
1875  }
1876
1877  // Update successor info. Add one edge to each unique successor.
1878  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1879  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1880         E = DestBBs.end(); I != E; ++I) {
1881    if (!SuccsHandled[(*I)->getNumber()]) {
1882      SuccsHandled[(*I)->getNumber()] = true;
1883      JumpTableBB->addSuccessor(*I);
1884    }
1885  }
1886
1887  // Create a jump table index for this jump table.
1888  unsigned JTEncoding = TLI.getJumpTableEncoding();
1889  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1890                       ->createJumpTableIndex(DestBBs);
1891
1892  // Set the jump table information so that we can codegen it as a second
1893  // MachineBasicBlock
1894  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1895  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1896  if (CR.CaseBB == SwitchBB)
1897    visitJumpTableHeader(JT, JTH, SwitchBB);
1898
1899  JTCases.push_back(JumpTableBlock(JTH, JT));
1900
1901  return true;
1902}
1903
1904/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1905/// 2 subtrees.
1906bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1907                                                  CaseRecVector& WorkList,
1908                                                  const Value* SV,
1909                                                  MachineBasicBlock *Default,
1910                                                  MachineBasicBlock *SwitchBB) {
1911  // Get the MachineFunction which holds the current MBB.  This is used when
1912  // inserting any additional MBBs necessary to represent the switch.
1913  MachineFunction *CurMF = FuncInfo.MF;
1914
1915  // Figure out which block is immediately after the current one.
1916  MachineFunction::iterator BBI = CR.CaseBB;
1917  ++BBI;
1918
1919  Case& FrontCase = *CR.Range.first;
1920  Case& BackCase  = *(CR.Range.second-1);
1921  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1922
1923  // Size is the number of Cases represented by this range.
1924  unsigned Size = CR.Range.second - CR.Range.first;
1925
1926  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1927  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1928  double FMetric = 0;
1929  CaseItr Pivot = CR.Range.first + Size/2;
1930
1931  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1932  // (heuristically) allow us to emit JumpTable's later.
1933  APInt TSize(First.getBitWidth(), 0);
1934  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1935       I!=E; ++I)
1936    TSize += I->size();
1937
1938  APInt LSize = FrontCase.size();
1939  APInt RSize = TSize-LSize;
1940  DEBUG(dbgs() << "Selecting best pivot: \n"
1941               << "First: " << First << ", Last: " << Last <<'\n'
1942               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1943  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1944       J!=E; ++I, ++J) {
1945    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1946    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1947    APInt Range = ComputeRange(LEnd, RBegin);
1948    assert((Range - 2ULL).isNonNegative() &&
1949           "Invalid case distance");
1950    double LDensity = (double)LSize.roundToDouble() /
1951                           (LEnd - First + 1ULL).roundToDouble();
1952    double RDensity = (double)RSize.roundToDouble() /
1953                           (Last - RBegin + 1ULL).roundToDouble();
1954    double Metric = Range.logBase2()*(LDensity+RDensity);
1955    // Should always split in some non-trivial place
1956    DEBUG(dbgs() <<"=>Step\n"
1957                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1958                 << "LDensity: " << LDensity
1959                 << ", RDensity: " << RDensity << '\n'
1960                 << "Metric: " << Metric << '\n');
1961    if (FMetric < Metric) {
1962      Pivot = J;
1963      FMetric = Metric;
1964      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1965    }
1966
1967    LSize += J->size();
1968    RSize -= J->size();
1969  }
1970  if (areJTsAllowed(TLI)) {
1971    // If our case is dense we *really* should handle it earlier!
1972    assert((FMetric > 0) && "Should handle dense range earlier!");
1973  } else {
1974    Pivot = CR.Range.first + Size/2;
1975  }
1976
1977  CaseRange LHSR(CR.Range.first, Pivot);
1978  CaseRange RHSR(Pivot, CR.Range.second);
1979  Constant *C = Pivot->Low;
1980  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1981
1982  // We know that we branch to the LHS if the Value being switched on is
1983  // less than the Pivot value, C.  We use this to optimize our binary
1984  // tree a bit, by recognizing that if SV is greater than or equal to the
1985  // LHS's Case Value, and that Case Value is exactly one less than the
1986  // Pivot's Value, then we can branch directly to the LHS's Target,
1987  // rather than creating a leaf node for it.
1988  if ((LHSR.second - LHSR.first) == 1 &&
1989      LHSR.first->High == CR.GE &&
1990      cast<ConstantInt>(C)->getValue() ==
1991      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1992    TrueBB = LHSR.first->BB;
1993  } else {
1994    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1995    CurMF->insert(BBI, TrueBB);
1996    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1997
1998    // Put SV in a virtual register to make it available from the new blocks.
1999    ExportFromCurrentBlock(SV);
2000  }
2001
2002  // Similar to the optimization above, if the Value being switched on is
2003  // known to be less than the Constant CR.LT, and the current Case Value
2004  // is CR.LT - 1, then we can branch directly to the target block for
2005  // the current Case Value, rather than emitting a RHS leaf node for it.
2006  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2007      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2008      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2009    FalseBB = RHSR.first->BB;
2010  } else {
2011    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2012    CurMF->insert(BBI, FalseBB);
2013    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2014
2015    // Put SV in a virtual register to make it available from the new blocks.
2016    ExportFromCurrentBlock(SV);
2017  }
2018
2019  // Create a CaseBlock record representing a conditional branch to
2020  // the LHS node if the value being switched on SV is less than C.
2021  // Otherwise, branch to LHS.
2022  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2023
2024  if (CR.CaseBB == SwitchBB)
2025    visitSwitchCase(CB, SwitchBB);
2026  else
2027    SwitchCases.push_back(CB);
2028
2029  return true;
2030}
2031
2032/// handleBitTestsSwitchCase - if current case range has few destination and
2033/// range span less, than machine word bitwidth, encode case range into series
2034/// of masks and emit bit tests with these masks.
2035bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2036                                                   CaseRecVector& WorkList,
2037                                                   const Value* SV,
2038                                                   MachineBasicBlock* Default,
2039                                                   MachineBasicBlock *SwitchBB){
2040  EVT PTy = TLI.getPointerTy();
2041  unsigned IntPtrBits = PTy.getSizeInBits();
2042
2043  Case& FrontCase = *CR.Range.first;
2044  Case& BackCase  = *(CR.Range.second-1);
2045
2046  // Get the MachineFunction which holds the current MBB.  This is used when
2047  // inserting any additional MBBs necessary to represent the switch.
2048  MachineFunction *CurMF = FuncInfo.MF;
2049
2050  // If target does not have legal shift left, do not emit bit tests at all.
2051  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2052    return false;
2053
2054  size_t numCmps = 0;
2055  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2056       I!=E; ++I) {
2057    // Single case counts one, case range - two.
2058    numCmps += (I->Low == I->High ? 1 : 2);
2059  }
2060
2061  // Count unique destinations
2062  SmallSet<MachineBasicBlock*, 4> Dests;
2063  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2064    Dests.insert(I->BB);
2065    if (Dests.size() > 3)
2066      // Don't bother the code below, if there are too much unique destinations
2067      return false;
2068  }
2069  DEBUG(dbgs() << "Total number of unique destinations: "
2070        << Dests.size() << '\n'
2071        << "Total number of comparisons: " << numCmps << '\n');
2072
2073  // Compute span of values.
2074  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2075  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2076  APInt cmpRange = maxValue - minValue;
2077
2078  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2079               << "Low bound: " << minValue << '\n'
2080               << "High bound: " << maxValue << '\n');
2081
2082  if (cmpRange.uge(IntPtrBits) ||
2083      (!(Dests.size() == 1 && numCmps >= 3) &&
2084       !(Dests.size() == 2 && numCmps >= 5) &&
2085       !(Dests.size() >= 3 && numCmps >= 6)))
2086    return false;
2087
2088  DEBUG(dbgs() << "Emitting bit tests\n");
2089  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2090
2091  // Optimize the case where all the case values fit in a
2092  // word without having to subtract minValue. In this case,
2093  // we can optimize away the subtraction.
2094  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2095    cmpRange = maxValue;
2096  } else {
2097    lowBound = minValue;
2098  }
2099
2100  CaseBitsVector CasesBits;
2101  unsigned i, count = 0;
2102
2103  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2104    MachineBasicBlock* Dest = I->BB;
2105    for (i = 0; i < count; ++i)
2106      if (Dest == CasesBits[i].BB)
2107        break;
2108
2109    if (i == count) {
2110      assert((count < 3) && "Too much destinations to test!");
2111      CasesBits.push_back(CaseBits(0, Dest, 0));
2112      count++;
2113    }
2114
2115    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2116    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2117
2118    uint64_t lo = (lowValue - lowBound).getZExtValue();
2119    uint64_t hi = (highValue - lowBound).getZExtValue();
2120
2121    for (uint64_t j = lo; j <= hi; j++) {
2122      CasesBits[i].Mask |=  1ULL << j;
2123      CasesBits[i].Bits++;
2124    }
2125
2126  }
2127  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2128
2129  BitTestInfo BTC;
2130
2131  // Figure out which block is immediately after the current one.
2132  MachineFunction::iterator BBI = CR.CaseBB;
2133  ++BBI;
2134
2135  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2136
2137  DEBUG(dbgs() << "Cases:\n");
2138  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2139    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2140                 << ", Bits: " << CasesBits[i].Bits
2141                 << ", BB: " << CasesBits[i].BB << '\n');
2142
2143    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2144    CurMF->insert(BBI, CaseBB);
2145    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2146                              CaseBB,
2147                              CasesBits[i].BB));
2148
2149    // Put SV in a virtual register to make it available from the new blocks.
2150    ExportFromCurrentBlock(SV);
2151  }
2152
2153  BitTestBlock BTB(lowBound, cmpRange, SV,
2154                   -1U, (CR.CaseBB == SwitchBB),
2155                   CR.CaseBB, Default, BTC);
2156
2157  if (CR.CaseBB == SwitchBB)
2158    visitBitTestHeader(BTB, SwitchBB);
2159
2160  BitTestCases.push_back(BTB);
2161
2162  return true;
2163}
2164
2165/// Clusterify - Transform simple list of Cases into list of CaseRange's
2166size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2167                                       const SwitchInst& SI) {
2168  size_t numCmps = 0;
2169
2170  // Start with "simple" cases
2171  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2172    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2173    Cases.push_back(Case(SI.getSuccessorValue(i),
2174                         SI.getSuccessorValue(i),
2175                         SMBB));
2176  }
2177  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2178
2179  // Merge case into clusters
2180  if (Cases.size() >= 2)
2181    // Must recompute end() each iteration because it may be
2182    // invalidated by erase if we hold on to it
2183    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2184      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2185      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2186      MachineBasicBlock* nextBB = J->BB;
2187      MachineBasicBlock* currentBB = I->BB;
2188
2189      // If the two neighboring cases go to the same destination, merge them
2190      // into a single case.
2191      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2192        I->High = J->High;
2193        J = Cases.erase(J);
2194      } else {
2195        I = J++;
2196      }
2197    }
2198
2199  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2200    if (I->Low != I->High)
2201      // A range counts double, since it requires two compares.
2202      ++numCmps;
2203  }
2204
2205  return numCmps;
2206}
2207
2208void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2209  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2210
2211  // Figure out which block is immediately after the current one.
2212  MachineBasicBlock *NextBlock = 0;
2213  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2214
2215  // If there is only the default destination, branch to it if it is not the
2216  // next basic block.  Otherwise, just fall through.
2217  if (SI.getNumOperands() == 2) {
2218    // Update machine-CFG edges.
2219
2220    // If this is not a fall-through branch, emit the branch.
2221    SwitchMBB->addSuccessor(Default);
2222    if (Default != NextBlock)
2223      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2224                              MVT::Other, getControlRoot(),
2225                              DAG.getBasicBlock(Default)));
2226
2227    return;
2228  }
2229
2230  // If there are any non-default case statements, create a vector of Cases
2231  // representing each one, and sort the vector so that we can efficiently
2232  // create a binary search tree from them.
2233  CaseVector Cases;
2234  size_t numCmps = Clusterify(Cases, SI);
2235  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2236               << ". Total compares: " << numCmps << '\n');
2237  numCmps = 0;
2238
2239  // Get the Value to be switched on and default basic blocks, which will be
2240  // inserted into CaseBlock records, representing basic blocks in the binary
2241  // search tree.
2242  const Value *SV = SI.getOperand(0);
2243
2244  // Push the initial CaseRec onto the worklist
2245  CaseRecVector WorkList;
2246  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2247                             CaseRange(Cases.begin(),Cases.end())));
2248
2249  while (!WorkList.empty()) {
2250    // Grab a record representing a case range to process off the worklist
2251    CaseRec CR = WorkList.back();
2252    WorkList.pop_back();
2253
2254    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2255      continue;
2256
2257    // If the range has few cases (two or less) emit a series of specific
2258    // tests.
2259    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2260      continue;
2261
2262    // If the switch has more than 5 blocks, and at least 40% dense, and the
2263    // target supports indirect branches, then emit a jump table rather than
2264    // lowering the switch to a binary tree of conditional branches.
2265    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2266      continue;
2267
2268    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2269    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2270    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2271  }
2272}
2273
2274void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2275  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2276
2277  // Update machine-CFG edges with unique successors.
2278  SmallVector<BasicBlock*, 32> succs;
2279  succs.reserve(I.getNumSuccessors());
2280  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2281    succs.push_back(I.getSuccessor(i));
2282  array_pod_sort(succs.begin(), succs.end());
2283  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2284  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2285    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2286
2287  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2288                          MVT::Other, getControlRoot(),
2289                          getValue(I.getAddress())));
2290}
2291
2292void SelectionDAGBuilder::visitFSub(const User &I) {
2293  // -0.0 - X --> fneg
2294  const Type *Ty = I.getType();
2295  if (Ty->isVectorTy()) {
2296    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2297      const VectorType *DestTy = cast<VectorType>(I.getType());
2298      const Type *ElTy = DestTy->getElementType();
2299      unsigned VL = DestTy->getNumElements();
2300      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2301      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2302      if (CV == CNZ) {
2303        SDValue Op2 = getValue(I.getOperand(1));
2304        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2305                                 Op2.getValueType(), Op2));
2306        return;
2307      }
2308    }
2309  }
2310
2311  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2312    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2313      SDValue Op2 = getValue(I.getOperand(1));
2314      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2315                               Op2.getValueType(), Op2));
2316      return;
2317    }
2318
2319  visitBinary(I, ISD::FSUB);
2320}
2321
2322void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2323  SDValue Op1 = getValue(I.getOperand(0));
2324  SDValue Op2 = getValue(I.getOperand(1));
2325  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2326                           Op1.getValueType(), Op1, Op2));
2327}
2328
2329void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2330  SDValue Op1 = getValue(I.getOperand(0));
2331  SDValue Op2 = getValue(I.getOperand(1));
2332  if (!I.getType()->isVectorTy() &&
2333      Op2.getValueType() != TLI.getShiftAmountTy()) {
2334    // If the operand is smaller than the shift count type, promote it.
2335    EVT PTy = TLI.getPointerTy();
2336    EVT STy = TLI.getShiftAmountTy();
2337    if (STy.bitsGT(Op2.getValueType()))
2338      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2339                        TLI.getShiftAmountTy(), Op2);
2340    // If the operand is larger than the shift count type but the shift
2341    // count type has enough bits to represent any shift value, truncate
2342    // it now. This is a common case and it exposes the truncate to
2343    // optimization early.
2344    else if (STy.getSizeInBits() >=
2345             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2346      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2347                        TLI.getShiftAmountTy(), Op2);
2348    // Otherwise we'll need to temporarily settle for some other
2349    // convenient type; type legalization will make adjustments as
2350    // needed.
2351    else if (PTy.bitsLT(Op2.getValueType()))
2352      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2353                        TLI.getPointerTy(), Op2);
2354    else if (PTy.bitsGT(Op2.getValueType()))
2355      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2356                        TLI.getPointerTy(), Op2);
2357  }
2358
2359  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2360                           Op1.getValueType(), Op1, Op2));
2361}
2362
2363void SelectionDAGBuilder::visitICmp(const User &I) {
2364  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2365  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2366    predicate = IC->getPredicate();
2367  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2368    predicate = ICmpInst::Predicate(IC->getPredicate());
2369  SDValue Op1 = getValue(I.getOperand(0));
2370  SDValue Op2 = getValue(I.getOperand(1));
2371  ISD::CondCode Opcode = getICmpCondCode(predicate);
2372
2373  EVT DestVT = TLI.getValueType(I.getType());
2374  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2375}
2376
2377void SelectionDAGBuilder::visitFCmp(const User &I) {
2378  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2379  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2380    predicate = FC->getPredicate();
2381  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2382    predicate = FCmpInst::Predicate(FC->getPredicate());
2383  SDValue Op1 = getValue(I.getOperand(0));
2384  SDValue Op2 = getValue(I.getOperand(1));
2385  ISD::CondCode Condition = getFCmpCondCode(predicate);
2386  EVT DestVT = TLI.getValueType(I.getType());
2387  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2388}
2389
2390void SelectionDAGBuilder::visitSelect(const User &I) {
2391  SmallVector<EVT, 4> ValueVTs;
2392  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2393  unsigned NumValues = ValueVTs.size();
2394  if (NumValues == 0) return;
2395
2396  SmallVector<SDValue, 4> Values(NumValues);
2397  SDValue Cond     = getValue(I.getOperand(0));
2398  SDValue TrueVal  = getValue(I.getOperand(1));
2399  SDValue FalseVal = getValue(I.getOperand(2));
2400
2401  for (unsigned i = 0; i != NumValues; ++i)
2402    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2403                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2404                            Cond,
2405                            SDValue(TrueVal.getNode(),
2406                                    TrueVal.getResNo() + i),
2407                            SDValue(FalseVal.getNode(),
2408                                    FalseVal.getResNo() + i));
2409
2410  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2411                           DAG.getVTList(&ValueVTs[0], NumValues),
2412                           &Values[0], NumValues));
2413}
2414
2415void SelectionDAGBuilder::visitTrunc(const User &I) {
2416  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2417  SDValue N = getValue(I.getOperand(0));
2418  EVT DestVT = TLI.getValueType(I.getType());
2419  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2420}
2421
2422void SelectionDAGBuilder::visitZExt(const User &I) {
2423  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2424  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2425  SDValue N = getValue(I.getOperand(0));
2426  EVT DestVT = TLI.getValueType(I.getType());
2427  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2428}
2429
2430void SelectionDAGBuilder::visitSExt(const User &I) {
2431  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2432  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2433  SDValue N = getValue(I.getOperand(0));
2434  EVT DestVT = TLI.getValueType(I.getType());
2435  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2436}
2437
2438void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2439  // FPTrunc is never a no-op cast, no need to check
2440  SDValue N = getValue(I.getOperand(0));
2441  EVT DestVT = TLI.getValueType(I.getType());
2442  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2443                           DestVT, N, DAG.getIntPtrConstant(0)));
2444}
2445
2446void SelectionDAGBuilder::visitFPExt(const User &I){
2447  // FPTrunc is never a no-op cast, no need to check
2448  SDValue N = getValue(I.getOperand(0));
2449  EVT DestVT = TLI.getValueType(I.getType());
2450  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2451}
2452
2453void SelectionDAGBuilder::visitFPToUI(const User &I) {
2454  // FPToUI is never a no-op cast, no need to check
2455  SDValue N = getValue(I.getOperand(0));
2456  EVT DestVT = TLI.getValueType(I.getType());
2457  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2458}
2459
2460void SelectionDAGBuilder::visitFPToSI(const User &I) {
2461  // FPToSI is never a no-op cast, no need to check
2462  SDValue N = getValue(I.getOperand(0));
2463  EVT DestVT = TLI.getValueType(I.getType());
2464  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2465}
2466
2467void SelectionDAGBuilder::visitUIToFP(const User &I) {
2468  // UIToFP is never a no-op cast, no need to check
2469  SDValue N = getValue(I.getOperand(0));
2470  EVT DestVT = TLI.getValueType(I.getType());
2471  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2472}
2473
2474void SelectionDAGBuilder::visitSIToFP(const User &I){
2475  // SIToFP is never a no-op cast, no need to check
2476  SDValue N = getValue(I.getOperand(0));
2477  EVT DestVT = TLI.getValueType(I.getType());
2478  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2479}
2480
2481void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2482  // What to do depends on the size of the integer and the size of the pointer.
2483  // We can either truncate, zero extend, or no-op, accordingly.
2484  SDValue N = getValue(I.getOperand(0));
2485  EVT DestVT = TLI.getValueType(I.getType());
2486  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2487}
2488
2489void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2490  // What to do depends on the size of the integer and the size of the pointer.
2491  // We can either truncate, zero extend, or no-op, accordingly.
2492  SDValue N = getValue(I.getOperand(0));
2493  EVT DestVT = TLI.getValueType(I.getType());
2494  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2495}
2496
2497void SelectionDAGBuilder::visitBitCast(const User &I) {
2498  SDValue N = getValue(I.getOperand(0));
2499  EVT DestVT = TLI.getValueType(I.getType());
2500
2501  // BitCast assures us that source and destination are the same size so this is
2502  // either a BIT_CONVERT or a no-op.
2503  if (DestVT != N.getValueType())
2504    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2505                             DestVT, N)); // convert types.
2506  else
2507    setValue(&I, N);            // noop cast.
2508}
2509
2510void SelectionDAGBuilder::visitInsertElement(const User &I) {
2511  SDValue InVec = getValue(I.getOperand(0));
2512  SDValue InVal = getValue(I.getOperand(1));
2513  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2514                              TLI.getPointerTy(),
2515                              getValue(I.getOperand(2)));
2516  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2517                           TLI.getValueType(I.getType()),
2518                           InVec, InVal, InIdx));
2519}
2520
2521void SelectionDAGBuilder::visitExtractElement(const User &I) {
2522  SDValue InVec = getValue(I.getOperand(0));
2523  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2524                              TLI.getPointerTy(),
2525                              getValue(I.getOperand(1)));
2526  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2527                           TLI.getValueType(I.getType()), InVec, InIdx));
2528}
2529
2530// Utility for visitShuffleVector - Returns true if the mask is mask starting
2531// from SIndx and increasing to the element length (undefs are allowed).
2532static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2533  unsigned MaskNumElts = Mask.size();
2534  for (unsigned i = 0; i != MaskNumElts; ++i)
2535    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2536      return false;
2537  return true;
2538}
2539
2540void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2541  SmallVector<int, 8> Mask;
2542  SDValue Src1 = getValue(I.getOperand(0));
2543  SDValue Src2 = getValue(I.getOperand(1));
2544
2545  // Convert the ConstantVector mask operand into an array of ints, with -1
2546  // representing undef values.
2547  SmallVector<Constant*, 8> MaskElts;
2548  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2549  unsigned MaskNumElts = MaskElts.size();
2550  for (unsigned i = 0; i != MaskNumElts; ++i) {
2551    if (isa<UndefValue>(MaskElts[i]))
2552      Mask.push_back(-1);
2553    else
2554      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2555  }
2556
2557  EVT VT = TLI.getValueType(I.getType());
2558  EVT SrcVT = Src1.getValueType();
2559  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2560
2561  if (SrcNumElts == MaskNumElts) {
2562    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2563                                      &Mask[0]));
2564    return;
2565  }
2566
2567  // Normalize the shuffle vector since mask and vector length don't match.
2568  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2569    // Mask is longer than the source vectors and is a multiple of the source
2570    // vectors.  We can use concatenate vector to make the mask and vectors
2571    // lengths match.
2572    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2573      // The shuffle is concatenating two vectors together.
2574      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2575                               VT, Src1, Src2));
2576      return;
2577    }
2578
2579    // Pad both vectors with undefs to make them the same length as the mask.
2580    unsigned NumConcat = MaskNumElts / SrcNumElts;
2581    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2582    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2583    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2584
2585    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2586    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2587    MOps1[0] = Src1;
2588    MOps2[0] = Src2;
2589
2590    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2591                                                  getCurDebugLoc(), VT,
2592                                                  &MOps1[0], NumConcat);
2593    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2594                                                  getCurDebugLoc(), VT,
2595                                                  &MOps2[0], NumConcat);
2596
2597    // Readjust mask for new input vector length.
2598    SmallVector<int, 8> MappedOps;
2599    for (unsigned i = 0; i != MaskNumElts; ++i) {
2600      int Idx = Mask[i];
2601      if (Idx < (int)SrcNumElts)
2602        MappedOps.push_back(Idx);
2603      else
2604        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2605    }
2606
2607    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2608                                      &MappedOps[0]));
2609    return;
2610  }
2611
2612  if (SrcNumElts > MaskNumElts) {
2613    // Analyze the access pattern of the vector to see if we can extract
2614    // two subvectors and do the shuffle. The analysis is done by calculating
2615    // the range of elements the mask access on both vectors.
2616    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2617    int MaxRange[2] = {-1, -1};
2618
2619    for (unsigned i = 0; i != MaskNumElts; ++i) {
2620      int Idx = Mask[i];
2621      int Input = 0;
2622      if (Idx < 0)
2623        continue;
2624
2625      if (Idx >= (int)SrcNumElts) {
2626        Input = 1;
2627        Idx -= SrcNumElts;
2628      }
2629      if (Idx > MaxRange[Input])
2630        MaxRange[Input] = Idx;
2631      if (Idx < MinRange[Input])
2632        MinRange[Input] = Idx;
2633    }
2634
2635    // Check if the access is smaller than the vector size and can we find
2636    // a reasonable extract index.
2637    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2638                                 // Extract.
2639    int StartIdx[2];  // StartIdx to extract from
2640    for (int Input=0; Input < 2; ++Input) {
2641      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2642        RangeUse[Input] = 0; // Unused
2643        StartIdx[Input] = 0;
2644      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2645        // Fits within range but we should see if we can find a good
2646        // start index that is a multiple of the mask length.
2647        if (MaxRange[Input] < (int)MaskNumElts) {
2648          RangeUse[Input] = 1; // Extract from beginning of the vector
2649          StartIdx[Input] = 0;
2650        } else {
2651          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2652          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2653              StartIdx[Input] + MaskNumElts < SrcNumElts)
2654            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2655        }
2656      }
2657    }
2658
2659    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2660      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2661      return;
2662    }
2663    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2664      // Extract appropriate subvector and generate a vector shuffle
2665      for (int Input=0; Input < 2; ++Input) {
2666        SDValue &Src = Input == 0 ? Src1 : Src2;
2667        if (RangeUse[Input] == 0)
2668          Src = DAG.getUNDEF(VT);
2669        else
2670          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2671                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2672      }
2673
2674      // Calculate new mask.
2675      SmallVector<int, 8> MappedOps;
2676      for (unsigned i = 0; i != MaskNumElts; ++i) {
2677        int Idx = Mask[i];
2678        if (Idx < 0)
2679          MappedOps.push_back(Idx);
2680        else if (Idx < (int)SrcNumElts)
2681          MappedOps.push_back(Idx - StartIdx[0]);
2682        else
2683          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2684      }
2685
2686      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2687                                        &MappedOps[0]));
2688      return;
2689    }
2690  }
2691
2692  // We can't use either concat vectors or extract subvectors so fall back to
2693  // replacing the shuffle with extract and build vector.
2694  // to insert and build vector.
2695  EVT EltVT = VT.getVectorElementType();
2696  EVT PtrVT = TLI.getPointerTy();
2697  SmallVector<SDValue,8> Ops;
2698  for (unsigned i = 0; i != MaskNumElts; ++i) {
2699    if (Mask[i] < 0) {
2700      Ops.push_back(DAG.getUNDEF(EltVT));
2701    } else {
2702      int Idx = Mask[i];
2703      SDValue Res;
2704
2705      if (Idx < (int)SrcNumElts)
2706        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2707                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2708      else
2709        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2710                          EltVT, Src2,
2711                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2712
2713      Ops.push_back(Res);
2714    }
2715  }
2716
2717  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2718                           VT, &Ops[0], Ops.size()));
2719}
2720
2721void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2722  const Value *Op0 = I.getOperand(0);
2723  const Value *Op1 = I.getOperand(1);
2724  const Type *AggTy = I.getType();
2725  const Type *ValTy = Op1->getType();
2726  bool IntoUndef = isa<UndefValue>(Op0);
2727  bool FromUndef = isa<UndefValue>(Op1);
2728
2729  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2730                                            I.idx_begin(), I.idx_end());
2731
2732  SmallVector<EVT, 4> AggValueVTs;
2733  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2734  SmallVector<EVT, 4> ValValueVTs;
2735  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2736
2737  unsigned NumAggValues = AggValueVTs.size();
2738  unsigned NumValValues = ValValueVTs.size();
2739  SmallVector<SDValue, 4> Values(NumAggValues);
2740
2741  SDValue Agg = getValue(Op0);
2742  SDValue Val = getValue(Op1);
2743  unsigned i = 0;
2744  // Copy the beginning value(s) from the original aggregate.
2745  for (; i != LinearIndex; ++i)
2746    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2747                SDValue(Agg.getNode(), Agg.getResNo() + i);
2748  // Copy values from the inserted value(s).
2749  for (; i != LinearIndex + NumValValues; ++i)
2750    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2751                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2752  // Copy remaining value(s) from the original aggregate.
2753  for (; i != NumAggValues; ++i)
2754    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2755                SDValue(Agg.getNode(), Agg.getResNo() + i);
2756
2757  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2758                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2759                           &Values[0], NumAggValues));
2760}
2761
2762void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2763  const Value *Op0 = I.getOperand(0);
2764  const Type *AggTy = Op0->getType();
2765  const Type *ValTy = I.getType();
2766  bool OutOfUndef = isa<UndefValue>(Op0);
2767
2768  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2769                                            I.idx_begin(), I.idx_end());
2770
2771  SmallVector<EVT, 4> ValValueVTs;
2772  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2773
2774  unsigned NumValValues = ValValueVTs.size();
2775  SmallVector<SDValue, 4> Values(NumValValues);
2776
2777  SDValue Agg = getValue(Op0);
2778  // Copy out the selected value(s).
2779  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2780    Values[i - LinearIndex] =
2781      OutOfUndef ?
2782        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2783        SDValue(Agg.getNode(), Agg.getResNo() + i);
2784
2785  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2786                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2787                           &Values[0], NumValValues));
2788}
2789
2790void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2791  SDValue N = getValue(I.getOperand(0));
2792  const Type *Ty = I.getOperand(0)->getType();
2793
2794  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2795       OI != E; ++OI) {
2796    const Value *Idx = *OI;
2797    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2798      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2799      if (Field) {
2800        // N = N + Offset
2801        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2802        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2803                        DAG.getIntPtrConstant(Offset));
2804      }
2805
2806      Ty = StTy->getElementType(Field);
2807    } else {
2808      Ty = cast<SequentialType>(Ty)->getElementType();
2809
2810      // If this is a constant subscript, handle it quickly.
2811      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2812        if (CI->isZero()) continue;
2813        uint64_t Offs =
2814            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2815        SDValue OffsVal;
2816        EVT PTy = TLI.getPointerTy();
2817        unsigned PtrBits = PTy.getSizeInBits();
2818        if (PtrBits < 64)
2819          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2820                                TLI.getPointerTy(),
2821                                DAG.getConstant(Offs, MVT::i64));
2822        else
2823          OffsVal = DAG.getIntPtrConstant(Offs);
2824
2825        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2826                        OffsVal);
2827        continue;
2828      }
2829
2830      // N = N + Idx * ElementSize;
2831      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2832                                TD->getTypeAllocSize(Ty));
2833      SDValue IdxN = getValue(Idx);
2834
2835      // If the index is smaller or larger than intptr_t, truncate or extend
2836      // it.
2837      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2838
2839      // If this is a multiply by a power of two, turn it into a shl
2840      // immediately.  This is a very common case.
2841      if (ElementSize != 1) {
2842        if (ElementSize.isPowerOf2()) {
2843          unsigned Amt = ElementSize.logBase2();
2844          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2845                             N.getValueType(), IdxN,
2846                             DAG.getConstant(Amt, TLI.getPointerTy()));
2847        } else {
2848          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2849          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2850                             N.getValueType(), IdxN, Scale);
2851        }
2852      }
2853
2854      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2855                      N.getValueType(), N, IdxN);
2856    }
2857  }
2858
2859  setValue(&I, N);
2860}
2861
2862void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2863  // If this is a fixed sized alloca in the entry block of the function,
2864  // allocate it statically on the stack.
2865  if (FuncInfo.StaticAllocaMap.count(&I))
2866    return;   // getValue will auto-populate this.
2867
2868  const Type *Ty = I.getAllocatedType();
2869  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2870  unsigned Align =
2871    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2872             I.getAlignment());
2873
2874  SDValue AllocSize = getValue(I.getArraySize());
2875
2876  EVT IntPtr = TLI.getPointerTy();
2877  if (AllocSize.getValueType() != IntPtr)
2878    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2879
2880  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2881                          AllocSize,
2882                          DAG.getConstant(TySize, IntPtr));
2883
2884  // Handle alignment.  If the requested alignment is less than or equal to
2885  // the stack alignment, ignore it.  If the size is greater than or equal to
2886  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2887  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2888  if (Align <= StackAlign)
2889    Align = 0;
2890
2891  // Round the size of the allocation up to the stack alignment size
2892  // by add SA-1 to the size.
2893  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2894                          AllocSize.getValueType(), AllocSize,
2895                          DAG.getIntPtrConstant(StackAlign-1));
2896
2897  // Mask out the low bits for alignment purposes.
2898  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2899                          AllocSize.getValueType(), AllocSize,
2900                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2901
2902  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2903  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2904  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2905                            VTs, Ops, 3);
2906  setValue(&I, DSA);
2907  DAG.setRoot(DSA.getValue(1));
2908
2909  // Inform the Frame Information that we have just allocated a variable-sized
2910  // object.
2911  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
2912}
2913
2914void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2915  const Value *SV = I.getOperand(0);
2916  SDValue Ptr = getValue(SV);
2917
2918  const Type *Ty = I.getType();
2919
2920  bool isVolatile = I.isVolatile();
2921  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2922  unsigned Alignment = I.getAlignment();
2923
2924  SmallVector<EVT, 4> ValueVTs;
2925  SmallVector<uint64_t, 4> Offsets;
2926  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2927  unsigned NumValues = ValueVTs.size();
2928  if (NumValues == 0)
2929    return;
2930
2931  SDValue Root;
2932  bool ConstantMemory = false;
2933  if (I.isVolatile())
2934    // Serialize volatile loads with other side effects.
2935    Root = getRoot();
2936  else if (AA->pointsToConstantMemory(SV)) {
2937    // Do not serialize (non-volatile) loads of constant memory with anything.
2938    Root = DAG.getEntryNode();
2939    ConstantMemory = true;
2940  } else {
2941    // Do not serialize non-volatile loads against each other.
2942    Root = DAG.getRoot();
2943  }
2944
2945  SmallVector<SDValue, 4> Values(NumValues);
2946  SmallVector<SDValue, 4> Chains(NumValues);
2947  EVT PtrVT = Ptr.getValueType();
2948  for (unsigned i = 0; i != NumValues; ++i) {
2949    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2950                            PtrVT, Ptr,
2951                            DAG.getConstant(Offsets[i], PtrVT));
2952    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2953                            A, SV, Offsets[i], isVolatile,
2954                            isNonTemporal, Alignment);
2955
2956    Values[i] = L;
2957    Chains[i] = L.getValue(1);
2958  }
2959
2960  if (!ConstantMemory) {
2961    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2962                                MVT::Other, &Chains[0], NumValues);
2963    if (isVolatile)
2964      DAG.setRoot(Chain);
2965    else
2966      PendingLoads.push_back(Chain);
2967  }
2968
2969  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2970                           DAG.getVTList(&ValueVTs[0], NumValues),
2971                           &Values[0], NumValues));
2972}
2973
2974void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2975  const Value *SrcV = I.getOperand(0);
2976  const Value *PtrV = I.getOperand(1);
2977
2978  SmallVector<EVT, 4> ValueVTs;
2979  SmallVector<uint64_t, 4> Offsets;
2980  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2981  unsigned NumValues = ValueVTs.size();
2982  if (NumValues == 0)
2983    return;
2984
2985  // Get the lowered operands. Note that we do this after
2986  // checking if NumResults is zero, because with zero results
2987  // the operands won't have values in the map.
2988  SDValue Src = getValue(SrcV);
2989  SDValue Ptr = getValue(PtrV);
2990
2991  SDValue Root = getRoot();
2992  SmallVector<SDValue, 4> Chains(NumValues);
2993  EVT PtrVT = Ptr.getValueType();
2994  bool isVolatile = I.isVolatile();
2995  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2996  unsigned Alignment = I.getAlignment();
2997
2998  for (unsigned i = 0; i != NumValues; ++i) {
2999    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3000                              DAG.getConstant(Offsets[i], PtrVT));
3001    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
3002                             SDValue(Src.getNode(), Src.getResNo() + i),
3003                             Add, PtrV, Offsets[i], isVolatile,
3004                             isNonTemporal, Alignment);
3005  }
3006
3007  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3008                          MVT::Other, &Chains[0], NumValues));
3009}
3010
3011/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3012/// node.
3013void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3014                                               unsigned Intrinsic) {
3015  bool HasChain = !I.doesNotAccessMemory();
3016  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3017
3018  // Build the operand list.
3019  SmallVector<SDValue, 8> Ops;
3020  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3021    if (OnlyLoad) {
3022      // We don't need to serialize loads against other loads.
3023      Ops.push_back(DAG.getRoot());
3024    } else {
3025      Ops.push_back(getRoot());
3026    }
3027  }
3028
3029  // Info is set by getTgtMemInstrinsic
3030  TargetLowering::IntrinsicInfo Info;
3031  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3032
3033  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3034  if (!IsTgtIntrinsic)
3035    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3036
3037  // Add all operands of the call to the operand list.
3038  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3039    SDValue Op = getValue(I.getArgOperand(i));
3040    assert(TLI.isTypeLegal(Op.getValueType()) &&
3041           "Intrinsic uses a non-legal type?");
3042    Ops.push_back(Op);
3043  }
3044
3045  SmallVector<EVT, 4> ValueVTs;
3046  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3047#ifndef NDEBUG
3048  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3049    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3050           "Intrinsic uses a non-legal type?");
3051  }
3052#endif // NDEBUG
3053
3054  if (HasChain)
3055    ValueVTs.push_back(MVT::Other);
3056
3057  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3058
3059  // Create the node.
3060  SDValue Result;
3061  if (IsTgtIntrinsic) {
3062    // This is target intrinsic that touches memory
3063    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3064                                     VTs, &Ops[0], Ops.size(),
3065                                     Info.memVT,
3066                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3067                                     Info.align, Info.vol,
3068                                     Info.readMem, Info.writeMem);
3069  } else if (!HasChain) {
3070    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3071                         VTs, &Ops[0], Ops.size());
3072  } else if (!I.getType()->isVoidTy()) {
3073    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3074                         VTs, &Ops[0], Ops.size());
3075  } else {
3076    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3077                         VTs, &Ops[0], Ops.size());
3078  }
3079
3080  if (HasChain) {
3081    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3082    if (OnlyLoad)
3083      PendingLoads.push_back(Chain);
3084    else
3085      DAG.setRoot(Chain);
3086  }
3087
3088  if (!I.getType()->isVoidTy()) {
3089    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3090      EVT VT = TLI.getValueType(PTy);
3091      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3092    }
3093
3094    setValue(&I, Result);
3095  }
3096}
3097
3098/// GetSignificand - Get the significand and build it into a floating-point
3099/// number with exponent of 1:
3100///
3101///   Op = (Op & 0x007fffff) | 0x3f800000;
3102///
3103/// where Op is the hexidecimal representation of floating point value.
3104static SDValue
3105GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3106  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3107                           DAG.getConstant(0x007fffff, MVT::i32));
3108  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3109                           DAG.getConstant(0x3f800000, MVT::i32));
3110  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3111}
3112
3113/// GetExponent - Get the exponent:
3114///
3115///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3116///
3117/// where Op is the hexidecimal representation of floating point value.
3118static SDValue
3119GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3120            DebugLoc dl) {
3121  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3122                           DAG.getConstant(0x7f800000, MVT::i32));
3123  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3124                           DAG.getConstant(23, TLI.getPointerTy()));
3125  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3126                           DAG.getConstant(127, MVT::i32));
3127  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3128}
3129
3130/// getF32Constant - Get 32-bit floating point constant.
3131static SDValue
3132getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3133  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3134}
3135
3136/// Inlined utility function to implement binary input atomic intrinsics for
3137/// visitIntrinsicCall: I is a call instruction
3138///                     Op is the associated NodeType for I
3139const char *
3140SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3141                                           ISD::NodeType Op) {
3142  SDValue Root = getRoot();
3143  SDValue L =
3144    DAG.getAtomic(Op, getCurDebugLoc(),
3145                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3146                  Root,
3147                  getValue(I.getArgOperand(0)),
3148                  getValue(I.getArgOperand(1)),
3149                  I.getArgOperand(0));
3150  setValue(&I, L);
3151  DAG.setRoot(L.getValue(1));
3152  return 0;
3153}
3154
3155// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3156const char *
3157SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3158  SDValue Op1 = getValue(I.getArgOperand(0));
3159  SDValue Op2 = getValue(I.getArgOperand(1));
3160
3161  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3162  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3163  return 0;
3164}
3165
3166/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3167/// limited-precision mode.
3168void
3169SelectionDAGBuilder::visitExp(const CallInst &I) {
3170  SDValue result;
3171  DebugLoc dl = getCurDebugLoc();
3172
3173  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3174      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3175    SDValue Op = getValue(I.getArgOperand(0));
3176
3177    // Put the exponent in the right bit position for later addition to the
3178    // final result:
3179    //
3180    //   #define LOG2OFe 1.4426950f
3181    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3182    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3183                             getF32Constant(DAG, 0x3fb8aa3b));
3184    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3185
3186    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3187    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3188    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3189
3190    //   IntegerPartOfX <<= 23;
3191    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3192                                 DAG.getConstant(23, TLI.getPointerTy()));
3193
3194    if (LimitFloatPrecision <= 6) {
3195      // For floating-point precision of 6:
3196      //
3197      //   TwoToFractionalPartOfX =
3198      //     0.997535578f +
3199      //       (0.735607626f + 0.252464424f * x) * x;
3200      //
3201      // error 0.0144103317, which is 6 bits
3202      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3203                               getF32Constant(DAG, 0x3e814304));
3204      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3205                               getF32Constant(DAG, 0x3f3c50c8));
3206      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3207      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3208                               getF32Constant(DAG, 0x3f7f5e7e));
3209      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3210
3211      // Add the exponent into the result in integer domain.
3212      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3213                               TwoToFracPartOfX, IntegerPartOfX);
3214
3215      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3216    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3217      // For floating-point precision of 12:
3218      //
3219      //   TwoToFractionalPartOfX =
3220      //     0.999892986f +
3221      //       (0.696457318f +
3222      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3223      //
3224      // 0.000107046256 error, which is 13 to 14 bits
3225      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3226                               getF32Constant(DAG, 0x3da235e3));
3227      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3228                               getF32Constant(DAG, 0x3e65b8f3));
3229      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3230      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3231                               getF32Constant(DAG, 0x3f324b07));
3232      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3233      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3234                               getF32Constant(DAG, 0x3f7ff8fd));
3235      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3236
3237      // Add the exponent into the result in integer domain.
3238      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3239                               TwoToFracPartOfX, IntegerPartOfX);
3240
3241      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3242    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3243      // For floating-point precision of 18:
3244      //
3245      //   TwoToFractionalPartOfX =
3246      //     0.999999982f +
3247      //       (0.693148872f +
3248      //         (0.240227044f +
3249      //           (0.554906021e-1f +
3250      //             (0.961591928e-2f +
3251      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3252      //
3253      // error 2.47208000*10^(-7), which is better than 18 bits
3254      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3255                               getF32Constant(DAG, 0x3924b03e));
3256      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3257                               getF32Constant(DAG, 0x3ab24b87));
3258      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3259      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3260                               getF32Constant(DAG, 0x3c1d8c17));
3261      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3262      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3263                               getF32Constant(DAG, 0x3d634a1d));
3264      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3265      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3266                               getF32Constant(DAG, 0x3e75fe14));
3267      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3268      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3269                                getF32Constant(DAG, 0x3f317234));
3270      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3271      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3272                                getF32Constant(DAG, 0x3f800000));
3273      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3274                                             MVT::i32, t13);
3275
3276      // Add the exponent into the result in integer domain.
3277      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3278                                TwoToFracPartOfX, IntegerPartOfX);
3279
3280      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3281    }
3282  } else {
3283    // No special expansion.
3284    result = DAG.getNode(ISD::FEXP, dl,
3285                         getValue(I.getArgOperand(0)).getValueType(),
3286                         getValue(I.getArgOperand(0)));
3287  }
3288
3289  setValue(&I, result);
3290}
3291
3292/// visitLog - Lower a log intrinsic. Handles the special sequences for
3293/// limited-precision mode.
3294void
3295SelectionDAGBuilder::visitLog(const CallInst &I) {
3296  SDValue result;
3297  DebugLoc dl = getCurDebugLoc();
3298
3299  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3300      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3301    SDValue Op = getValue(I.getArgOperand(0));
3302    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3303
3304    // Scale the exponent by log(2) [0.69314718f].
3305    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3306    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3307                                        getF32Constant(DAG, 0x3f317218));
3308
3309    // Get the significand and build it into a floating-point number with
3310    // exponent of 1.
3311    SDValue X = GetSignificand(DAG, Op1, dl);
3312
3313    if (LimitFloatPrecision <= 6) {
3314      // For floating-point precision of 6:
3315      //
3316      //   LogofMantissa =
3317      //     -1.1609546f +
3318      //       (1.4034025f - 0.23903021f * x) * x;
3319      //
3320      // error 0.0034276066, which is better than 8 bits
3321      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3322                               getF32Constant(DAG, 0xbe74c456));
3323      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3324                               getF32Constant(DAG, 0x3fb3a2b1));
3325      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3326      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3327                                          getF32Constant(DAG, 0x3f949a29));
3328
3329      result = DAG.getNode(ISD::FADD, dl,
3330                           MVT::f32, LogOfExponent, LogOfMantissa);
3331    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3332      // For floating-point precision of 12:
3333      //
3334      //   LogOfMantissa =
3335      //     -1.7417939f +
3336      //       (2.8212026f +
3337      //         (-1.4699568f +
3338      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3339      //
3340      // error 0.000061011436, which is 14 bits
3341      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3342                               getF32Constant(DAG, 0xbd67b6d6));
3343      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3344                               getF32Constant(DAG, 0x3ee4f4b8));
3345      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3346      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3347                               getF32Constant(DAG, 0x3fbc278b));
3348      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3349      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3350                               getF32Constant(DAG, 0x40348e95));
3351      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3352      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3353                                          getF32Constant(DAG, 0x3fdef31a));
3354
3355      result = DAG.getNode(ISD::FADD, dl,
3356                           MVT::f32, LogOfExponent, LogOfMantissa);
3357    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3358      // For floating-point precision of 18:
3359      //
3360      //   LogOfMantissa =
3361      //     -2.1072184f +
3362      //       (4.2372794f +
3363      //         (-3.7029485f +
3364      //           (2.2781945f +
3365      //             (-0.87823314f +
3366      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3367      //
3368      // error 0.0000023660568, which is better than 18 bits
3369      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3370                               getF32Constant(DAG, 0xbc91e5ac));
3371      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3372                               getF32Constant(DAG, 0x3e4350aa));
3373      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3374      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3375                               getF32Constant(DAG, 0x3f60d3e3));
3376      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3377      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3378                               getF32Constant(DAG, 0x4011cdf0));
3379      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3380      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3381                               getF32Constant(DAG, 0x406cfd1c));
3382      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3383      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3384                               getF32Constant(DAG, 0x408797cb));
3385      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3386      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3387                                          getF32Constant(DAG, 0x4006dcab));
3388
3389      result = DAG.getNode(ISD::FADD, dl,
3390                           MVT::f32, LogOfExponent, LogOfMantissa);
3391    }
3392  } else {
3393    // No special expansion.
3394    result = DAG.getNode(ISD::FLOG, dl,
3395                         getValue(I.getArgOperand(0)).getValueType(),
3396                         getValue(I.getArgOperand(0)));
3397  }
3398
3399  setValue(&I, result);
3400}
3401
3402/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3403/// limited-precision mode.
3404void
3405SelectionDAGBuilder::visitLog2(const CallInst &I) {
3406  SDValue result;
3407  DebugLoc dl = getCurDebugLoc();
3408
3409  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3410      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3411    SDValue Op = getValue(I.getArgOperand(0));
3412    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3413
3414    // Get the exponent.
3415    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3416
3417    // Get the significand and build it into a floating-point number with
3418    // exponent of 1.
3419    SDValue X = GetSignificand(DAG, Op1, dl);
3420
3421    // Different possible minimax approximations of significand in
3422    // floating-point for various degrees of accuracy over [1,2].
3423    if (LimitFloatPrecision <= 6) {
3424      // For floating-point precision of 6:
3425      //
3426      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3427      //
3428      // error 0.0049451742, which is more than 7 bits
3429      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3430                               getF32Constant(DAG, 0xbeb08fe0));
3431      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3432                               getF32Constant(DAG, 0x40019463));
3433      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3434      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3435                                           getF32Constant(DAG, 0x3fd6633d));
3436
3437      result = DAG.getNode(ISD::FADD, dl,
3438                           MVT::f32, LogOfExponent, Log2ofMantissa);
3439    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3440      // For floating-point precision of 12:
3441      //
3442      //   Log2ofMantissa =
3443      //     -2.51285454f +
3444      //       (4.07009056f +
3445      //         (-2.12067489f +
3446      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3447      //
3448      // error 0.0000876136000, which is better than 13 bits
3449      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3450                               getF32Constant(DAG, 0xbda7262e));
3451      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3452                               getF32Constant(DAG, 0x3f25280b));
3453      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3454      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3455                               getF32Constant(DAG, 0x4007b923));
3456      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3457      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3458                               getF32Constant(DAG, 0x40823e2f));
3459      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3460      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3461                                           getF32Constant(DAG, 0x4020d29c));
3462
3463      result = DAG.getNode(ISD::FADD, dl,
3464                           MVT::f32, LogOfExponent, Log2ofMantissa);
3465    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3466      // For floating-point precision of 18:
3467      //
3468      //   Log2ofMantissa =
3469      //     -3.0400495f +
3470      //       (6.1129976f +
3471      //         (-5.3420409f +
3472      //           (3.2865683f +
3473      //             (-1.2669343f +
3474      //               (0.27515199f -
3475      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3476      //
3477      // error 0.0000018516, which is better than 18 bits
3478      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3479                               getF32Constant(DAG, 0xbcd2769e));
3480      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3481                               getF32Constant(DAG, 0x3e8ce0b9));
3482      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3483      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3484                               getF32Constant(DAG, 0x3fa22ae7));
3485      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3486      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3487                               getF32Constant(DAG, 0x40525723));
3488      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3489      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3490                               getF32Constant(DAG, 0x40aaf200));
3491      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3492      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3493                               getF32Constant(DAG, 0x40c39dad));
3494      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3495      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3496                                           getF32Constant(DAG, 0x4042902c));
3497
3498      result = DAG.getNode(ISD::FADD, dl,
3499                           MVT::f32, LogOfExponent, Log2ofMantissa);
3500    }
3501  } else {
3502    // No special expansion.
3503    result = DAG.getNode(ISD::FLOG2, dl,
3504                         getValue(I.getArgOperand(0)).getValueType(),
3505                         getValue(I.getArgOperand(0)));
3506  }
3507
3508  setValue(&I, result);
3509}
3510
3511/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3512/// limited-precision mode.
3513void
3514SelectionDAGBuilder::visitLog10(const CallInst &I) {
3515  SDValue result;
3516  DebugLoc dl = getCurDebugLoc();
3517
3518  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3519      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3520    SDValue Op = getValue(I.getArgOperand(0));
3521    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3522
3523    // Scale the exponent by log10(2) [0.30102999f].
3524    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3525    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3526                                        getF32Constant(DAG, 0x3e9a209a));
3527
3528    // Get the significand and build it into a floating-point number with
3529    // exponent of 1.
3530    SDValue X = GetSignificand(DAG, Op1, dl);
3531
3532    if (LimitFloatPrecision <= 6) {
3533      // For floating-point precision of 6:
3534      //
3535      //   Log10ofMantissa =
3536      //     -0.50419619f +
3537      //       (0.60948995f - 0.10380950f * x) * x;
3538      //
3539      // error 0.0014886165, which is 6 bits
3540      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3541                               getF32Constant(DAG, 0xbdd49a13));
3542      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3543                               getF32Constant(DAG, 0x3f1c0789));
3544      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3545      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3546                                            getF32Constant(DAG, 0x3f011300));
3547
3548      result = DAG.getNode(ISD::FADD, dl,
3549                           MVT::f32, LogOfExponent, Log10ofMantissa);
3550    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3551      // For floating-point precision of 12:
3552      //
3553      //   Log10ofMantissa =
3554      //     -0.64831180f +
3555      //       (0.91751397f +
3556      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3557      //
3558      // error 0.00019228036, which is better than 12 bits
3559      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3560                               getF32Constant(DAG, 0x3d431f31));
3561      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3562                               getF32Constant(DAG, 0x3ea21fb2));
3563      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3564      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3565                               getF32Constant(DAG, 0x3f6ae232));
3566      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3567      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3568                                            getF32Constant(DAG, 0x3f25f7c3));
3569
3570      result = DAG.getNode(ISD::FADD, dl,
3571                           MVT::f32, LogOfExponent, Log10ofMantissa);
3572    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3573      // For floating-point precision of 18:
3574      //
3575      //   Log10ofMantissa =
3576      //     -0.84299375f +
3577      //       (1.5327582f +
3578      //         (-1.0688956f +
3579      //           (0.49102474f +
3580      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3581      //
3582      // error 0.0000037995730, which is better than 18 bits
3583      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3584                               getF32Constant(DAG, 0x3c5d51ce));
3585      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3586                               getF32Constant(DAG, 0x3e00685a));
3587      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3588      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3589                               getF32Constant(DAG, 0x3efb6798));
3590      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3591      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3592                               getF32Constant(DAG, 0x3f88d192));
3593      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3594      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3595                               getF32Constant(DAG, 0x3fc4316c));
3596      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3597      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3598                                            getF32Constant(DAG, 0x3f57ce70));
3599
3600      result = DAG.getNode(ISD::FADD, dl,
3601                           MVT::f32, LogOfExponent, Log10ofMantissa);
3602    }
3603  } else {
3604    // No special expansion.
3605    result = DAG.getNode(ISD::FLOG10, dl,
3606                         getValue(I.getArgOperand(0)).getValueType(),
3607                         getValue(I.getArgOperand(0)));
3608  }
3609
3610  setValue(&I, result);
3611}
3612
3613/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3614/// limited-precision mode.
3615void
3616SelectionDAGBuilder::visitExp2(const CallInst &I) {
3617  SDValue result;
3618  DebugLoc dl = getCurDebugLoc();
3619
3620  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3621      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3622    SDValue Op = getValue(I.getArgOperand(0));
3623
3624    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3625
3626    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3627    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3628    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3629
3630    //   IntegerPartOfX <<= 23;
3631    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3632                                 DAG.getConstant(23, TLI.getPointerTy()));
3633
3634    if (LimitFloatPrecision <= 6) {
3635      // For floating-point precision of 6:
3636      //
3637      //   TwoToFractionalPartOfX =
3638      //     0.997535578f +
3639      //       (0.735607626f + 0.252464424f * x) * x;
3640      //
3641      // error 0.0144103317, which is 6 bits
3642      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3643                               getF32Constant(DAG, 0x3e814304));
3644      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3645                               getF32Constant(DAG, 0x3f3c50c8));
3646      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3647      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3648                               getF32Constant(DAG, 0x3f7f5e7e));
3649      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3650      SDValue TwoToFractionalPartOfX =
3651        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3652
3653      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3654                           MVT::f32, TwoToFractionalPartOfX);
3655    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3656      // For floating-point precision of 12:
3657      //
3658      //   TwoToFractionalPartOfX =
3659      //     0.999892986f +
3660      //       (0.696457318f +
3661      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3662      //
3663      // error 0.000107046256, which is 13 to 14 bits
3664      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3665                               getF32Constant(DAG, 0x3da235e3));
3666      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3667                               getF32Constant(DAG, 0x3e65b8f3));
3668      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3669      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3670                               getF32Constant(DAG, 0x3f324b07));
3671      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3672      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3673                               getF32Constant(DAG, 0x3f7ff8fd));
3674      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3675      SDValue TwoToFractionalPartOfX =
3676        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3677
3678      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3679                           MVT::f32, TwoToFractionalPartOfX);
3680    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3681      // For floating-point precision of 18:
3682      //
3683      //   TwoToFractionalPartOfX =
3684      //     0.999999982f +
3685      //       (0.693148872f +
3686      //         (0.240227044f +
3687      //           (0.554906021e-1f +
3688      //             (0.961591928e-2f +
3689      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3690      // error 2.47208000*10^(-7), which is better than 18 bits
3691      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3692                               getF32Constant(DAG, 0x3924b03e));
3693      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3694                               getF32Constant(DAG, 0x3ab24b87));
3695      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3696      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3697                               getF32Constant(DAG, 0x3c1d8c17));
3698      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3699      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3700                               getF32Constant(DAG, 0x3d634a1d));
3701      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3702      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3703                               getF32Constant(DAG, 0x3e75fe14));
3704      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3705      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3706                                getF32Constant(DAG, 0x3f317234));
3707      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3708      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3709                                getF32Constant(DAG, 0x3f800000));
3710      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3711      SDValue TwoToFractionalPartOfX =
3712        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3713
3714      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3715                           MVT::f32, TwoToFractionalPartOfX);
3716    }
3717  } else {
3718    // No special expansion.
3719    result = DAG.getNode(ISD::FEXP2, dl,
3720                         getValue(I.getArgOperand(0)).getValueType(),
3721                         getValue(I.getArgOperand(0)));
3722  }
3723
3724  setValue(&I, result);
3725}
3726
3727/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3728/// limited-precision mode with x == 10.0f.
3729void
3730SelectionDAGBuilder::visitPow(const CallInst &I) {
3731  SDValue result;
3732  const Value *Val = I.getArgOperand(0);
3733  DebugLoc dl = getCurDebugLoc();
3734  bool IsExp10 = false;
3735
3736  if (getValue(Val).getValueType() == MVT::f32 &&
3737      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3738      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3739    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3740      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3741        APFloat Ten(10.0f);
3742        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3743      }
3744    }
3745  }
3746
3747  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3748    SDValue Op = getValue(I.getArgOperand(1));
3749
3750    // Put the exponent in the right bit position for later addition to the
3751    // final result:
3752    //
3753    //   #define LOG2OF10 3.3219281f
3754    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3755    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3756                             getF32Constant(DAG, 0x40549a78));
3757    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3758
3759    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3760    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3761    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3762
3763    //   IntegerPartOfX <<= 23;
3764    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3765                                 DAG.getConstant(23, TLI.getPointerTy()));
3766
3767    if (LimitFloatPrecision <= 6) {
3768      // For floating-point precision of 6:
3769      //
3770      //   twoToFractionalPartOfX =
3771      //     0.997535578f +
3772      //       (0.735607626f + 0.252464424f * x) * x;
3773      //
3774      // error 0.0144103317, which is 6 bits
3775      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3776                               getF32Constant(DAG, 0x3e814304));
3777      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3778                               getF32Constant(DAG, 0x3f3c50c8));
3779      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3780      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3781                               getF32Constant(DAG, 0x3f7f5e7e));
3782      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3783      SDValue TwoToFractionalPartOfX =
3784        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3785
3786      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3787                           MVT::f32, TwoToFractionalPartOfX);
3788    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3789      // For floating-point precision of 12:
3790      //
3791      //   TwoToFractionalPartOfX =
3792      //     0.999892986f +
3793      //       (0.696457318f +
3794      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3795      //
3796      // error 0.000107046256, which is 13 to 14 bits
3797      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3798                               getF32Constant(DAG, 0x3da235e3));
3799      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3800                               getF32Constant(DAG, 0x3e65b8f3));
3801      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3802      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3803                               getF32Constant(DAG, 0x3f324b07));
3804      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3805      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3806                               getF32Constant(DAG, 0x3f7ff8fd));
3807      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3808      SDValue TwoToFractionalPartOfX =
3809        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3810
3811      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3812                           MVT::f32, TwoToFractionalPartOfX);
3813    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3814      // For floating-point precision of 18:
3815      //
3816      //   TwoToFractionalPartOfX =
3817      //     0.999999982f +
3818      //       (0.693148872f +
3819      //         (0.240227044f +
3820      //           (0.554906021e-1f +
3821      //             (0.961591928e-2f +
3822      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3823      // error 2.47208000*10^(-7), which is better than 18 bits
3824      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3825                               getF32Constant(DAG, 0x3924b03e));
3826      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3827                               getF32Constant(DAG, 0x3ab24b87));
3828      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3829      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3830                               getF32Constant(DAG, 0x3c1d8c17));
3831      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3832      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3833                               getF32Constant(DAG, 0x3d634a1d));
3834      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3835      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3836                               getF32Constant(DAG, 0x3e75fe14));
3837      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3838      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3839                                getF32Constant(DAG, 0x3f317234));
3840      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3841      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3842                                getF32Constant(DAG, 0x3f800000));
3843      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3844      SDValue TwoToFractionalPartOfX =
3845        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3846
3847      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3848                           MVT::f32, TwoToFractionalPartOfX);
3849    }
3850  } else {
3851    // No special expansion.
3852    result = DAG.getNode(ISD::FPOW, dl,
3853                         getValue(I.getArgOperand(0)).getValueType(),
3854                         getValue(I.getArgOperand(0)),
3855                         getValue(I.getArgOperand(1)));
3856  }
3857
3858  setValue(&I, result);
3859}
3860
3861
3862/// ExpandPowI - Expand a llvm.powi intrinsic.
3863static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3864                          SelectionDAG &DAG) {
3865  // If RHS is a constant, we can expand this out to a multiplication tree,
3866  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3867  // optimizing for size, we only want to do this if the expansion would produce
3868  // a small number of multiplies, otherwise we do the full expansion.
3869  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3870    // Get the exponent as a positive value.
3871    unsigned Val = RHSC->getSExtValue();
3872    if ((int)Val < 0) Val = -Val;
3873
3874    // powi(x, 0) -> 1.0
3875    if (Val == 0)
3876      return DAG.getConstantFP(1.0, LHS.getValueType());
3877
3878    const Function *F = DAG.getMachineFunction().getFunction();
3879    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3880        // If optimizing for size, don't insert too many multiplies.  This
3881        // inserts up to 5 multiplies.
3882        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3883      // We use the simple binary decomposition method to generate the multiply
3884      // sequence.  There are more optimal ways to do this (for example,
3885      // powi(x,15) generates one more multiply than it should), but this has
3886      // the benefit of being both really simple and much better than a libcall.
3887      SDValue Res;  // Logically starts equal to 1.0
3888      SDValue CurSquare = LHS;
3889      while (Val) {
3890        if (Val & 1) {
3891          if (Res.getNode())
3892            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3893          else
3894            Res = CurSquare;  // 1.0*CurSquare.
3895        }
3896
3897        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3898                                CurSquare, CurSquare);
3899        Val >>= 1;
3900      }
3901
3902      // If the original was negative, invert the result, producing 1/(x*x*x).
3903      if (RHSC->getSExtValue() < 0)
3904        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3905                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3906      return Res;
3907    }
3908  }
3909
3910  // Otherwise, expand to a libcall.
3911  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3912}
3913
3914/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3915/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3916/// At the end of instruction selection, they will be inserted to the entry BB.
3917bool
3918SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
3919                                              int64_t Offset,
3920                                              const SDValue &N) {
3921  const Argument *Arg = dyn_cast<Argument>(V);
3922  if (!Arg)
3923    return false;
3924
3925  MachineFunction &MF = DAG.getMachineFunction();
3926  // Ignore inlined function arguments here.
3927  DIVariable DV(Variable);
3928  if (DV.isInlinedFnArgument(MF.getFunction()))
3929    return false;
3930
3931  MachineBasicBlock *MBB = FuncInfo.MBB;
3932  if (MBB != &MF.front())
3933    return false;
3934
3935  unsigned Reg = 0;
3936  if (Arg->hasByValAttr()) {
3937    // Byval arguments' frame index is recorded during argument lowering.
3938    // Use this info directly.
3939    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3940    Reg = TRI->getFrameRegister(MF);
3941    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
3942  }
3943
3944  if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) {
3945    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3946    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3947      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3948      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3949      if (PR)
3950        Reg = PR;
3951    }
3952  }
3953
3954  if (!Reg) {
3955    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3956    if (VMI == FuncInfo.ValueMap.end())
3957      return false;
3958    Reg = VMI->second;
3959  }
3960
3961  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3962  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3963                                    TII->get(TargetOpcode::DBG_VALUE))
3964    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3965  FuncInfo.ArgDbgValues.push_back(&*MIB);
3966  return true;
3967}
3968
3969// VisualStudio defines setjmp as _setjmp
3970#if defined(_MSC_VER) && defined(setjmp)
3971#define setjmp_undefined_for_visual_studio
3972#undef setjmp
3973#endif
3974
3975/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3976/// we want to emit this as a call to a named external function, return the name
3977/// otherwise lower it and return null.
3978const char *
3979SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3980  DebugLoc dl = getCurDebugLoc();
3981  SDValue Res;
3982
3983  switch (Intrinsic) {
3984  default:
3985    // By default, turn this into a target intrinsic node.
3986    visitTargetIntrinsic(I, Intrinsic);
3987    return 0;
3988  case Intrinsic::vastart:  visitVAStart(I); return 0;
3989  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3990  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3991  case Intrinsic::returnaddress:
3992    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3993                             getValue(I.getArgOperand(0))));
3994    return 0;
3995  case Intrinsic::frameaddress:
3996    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3997                             getValue(I.getArgOperand(0))));
3998    return 0;
3999  case Intrinsic::setjmp:
4000    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4001  case Intrinsic::longjmp:
4002    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4003  case Intrinsic::memcpy: {
4004    // Assert for address < 256 since we support only user defined address
4005    // spaces.
4006    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4007           < 256 &&
4008           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4009           < 256 &&
4010           "Unknown address space");
4011    SDValue Op1 = getValue(I.getArgOperand(0));
4012    SDValue Op2 = getValue(I.getArgOperand(1));
4013    SDValue Op3 = getValue(I.getArgOperand(2));
4014    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4015    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4016    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4017                              I.getArgOperand(0), 0, I.getArgOperand(1), 0));
4018    return 0;
4019  }
4020  case Intrinsic::memset: {
4021    // Assert for address < 256 since we support only user defined address
4022    // spaces.
4023    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4024           < 256 &&
4025           "Unknown address space");
4026    SDValue Op1 = getValue(I.getArgOperand(0));
4027    SDValue Op2 = getValue(I.getArgOperand(1));
4028    SDValue Op3 = getValue(I.getArgOperand(2));
4029    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4030    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4031    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4032                              I.getArgOperand(0), 0));
4033    return 0;
4034  }
4035  case Intrinsic::memmove: {
4036    // Assert for address < 256 since we support only user defined address
4037    // spaces.
4038    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4039           < 256 &&
4040           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4041           < 256 &&
4042           "Unknown address space");
4043    SDValue Op1 = getValue(I.getArgOperand(0));
4044    SDValue Op2 = getValue(I.getArgOperand(1));
4045    SDValue Op3 = getValue(I.getArgOperand(2));
4046    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4047    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4048
4049    // If the source and destination are known to not be aliases, we can
4050    // lower memmove as memcpy.
4051    uint64_t Size = -1ULL;
4052    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4053      Size = C->getZExtValue();
4054    if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) ==
4055        AliasAnalysis::NoAlias) {
4056      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4057                                false, I.getArgOperand(0), 0,
4058                                I.getArgOperand(1), 0));
4059      return 0;
4060    }
4061
4062    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4063                               I.getArgOperand(0), 0, I.getArgOperand(1), 0));
4064    return 0;
4065  }
4066  case Intrinsic::dbg_declare: {
4067    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4068    MDNode *Variable = DI.getVariable();
4069    const Value *Address = DI.getAddress();
4070    if (!Address || !DIVariable(DI.getVariable()).Verify())
4071      return 0;
4072
4073    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4074    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4075    // absolute, but not relative, values are different depending on whether
4076    // debug info exists.
4077    ++SDNodeOrder;
4078
4079    // Check if address has undef value.
4080    if (isa<UndefValue>(Address) ||
4081        (Address->use_empty() && !isa<Argument>(Address))) {
4082      SDDbgValue*SDV =
4083        DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4084                        0, dl, SDNodeOrder);
4085      DAG.AddDbgValue(SDV, 0, false);
4086      return 0;
4087    }
4088
4089    SDValue &N = NodeMap[Address];
4090    if (!N.getNode() && isa<Argument>(Address))
4091      // Check unused arguments map.
4092      N = UnusedArgNodeMap[Address];
4093    SDDbgValue *SDV;
4094    if (N.getNode()) {
4095      // Parameters are handled specially.
4096      bool isParameter =
4097        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4098      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4099        Address = BCI->getOperand(0);
4100      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4101
4102      if (isParameter && !AI) {
4103        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4104        if (FINode)
4105          // Byval parameter.  We have a frame index at this point.
4106          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4107                                0, dl, SDNodeOrder);
4108        else
4109          // Can't do anything with other non-AI cases yet.  This might be a
4110          // parameter of a callee function that got inlined, for example.
4111          return 0;
4112      } else if (AI)
4113        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4114                              0, dl, SDNodeOrder);
4115      else
4116        // Can't do anything with other non-AI cases yet.
4117        return 0;
4118      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4119    } else {
4120      // If Address is an arugment then try to emits its dbg value using
4121      // virtual register info from the FuncInfo.ValueMap.
4122      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4123        // If variable is pinned by a alloca in dominating bb then
4124        // use StaticAllocaMap.
4125        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4126          if (AI->getParent() != DI.getParent()) {
4127            DenseMap<const AllocaInst*, int>::iterator SI =
4128              FuncInfo.StaticAllocaMap.find(AI);
4129            if (SI != FuncInfo.StaticAllocaMap.end()) {
4130              SDV = DAG.getDbgValue(Variable, SI->second,
4131                                    0, dl, SDNodeOrder);
4132              DAG.AddDbgValue(SDV, 0, false);
4133              return 0;
4134            }
4135          }
4136        }
4137        // Otherwise add undef to help track missing debug info.
4138        SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4139                              0, dl, SDNodeOrder);
4140        DAG.AddDbgValue(SDV, 0, false);
4141      }
4142    }
4143    return 0;
4144  }
4145  case Intrinsic::dbg_value: {
4146    const DbgValueInst &DI = cast<DbgValueInst>(I);
4147    if (!DIVariable(DI.getVariable()).Verify())
4148      return 0;
4149
4150    MDNode *Variable = DI.getVariable();
4151    uint64_t Offset = DI.getOffset();
4152    const Value *V = DI.getValue();
4153    if (!V)
4154      return 0;
4155
4156    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4157    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4158    // absolute, but not relative, values are different depending on whether
4159    // debug info exists.
4160    ++SDNodeOrder;
4161    SDDbgValue *SDV;
4162    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4163      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4164      DAG.AddDbgValue(SDV, 0, false);
4165    } else {
4166      // Do not use getValue() in here; we don't want to generate code at
4167      // this point if it hasn't been done yet.
4168      SDValue N = NodeMap[V];
4169      if (!N.getNode() && isa<Argument>(V))
4170        // Check unused arguments map.
4171        N = UnusedArgNodeMap[V];
4172      if (N.getNode()) {
4173        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4174          SDV = DAG.getDbgValue(Variable, N.getNode(),
4175                                N.getResNo(), Offset, dl, SDNodeOrder);
4176          DAG.AddDbgValue(SDV, N.getNode(), false);
4177        }
4178      } else if (isa<PHINode>(V) && !V->use_empty() ) {
4179        // Do not call getValue(V) yet, as we don't want to generate code.
4180        // Remember it for later.
4181        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4182        DanglingDebugInfoMap[V] = DDI;
4183      } else {
4184        // We may expand this to cover more cases.  One case where we have no
4185        // data available is an unreferenced parameter; we need this fallback.
4186        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4187                              Offset, dl, SDNodeOrder);
4188        DAG.AddDbgValue(SDV, 0, false);
4189      }
4190    }
4191
4192    // Build a debug info table entry.
4193    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4194      V = BCI->getOperand(0);
4195    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4196    // Don't handle byval struct arguments or VLAs, for example.
4197    if (!AI)
4198      return 0;
4199    DenseMap<const AllocaInst*, int>::iterator SI =
4200      FuncInfo.StaticAllocaMap.find(AI);
4201    if (SI == FuncInfo.StaticAllocaMap.end())
4202      return 0; // VLAs.
4203    int FI = SI->second;
4204
4205    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4206    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4207      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4208    return 0;
4209  }
4210  case Intrinsic::eh_exception: {
4211    // Insert the EXCEPTIONADDR instruction.
4212    assert(FuncInfo.MBB->isLandingPad() &&
4213           "Call to eh.exception not in landing pad!");
4214    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4215    SDValue Ops[1];
4216    Ops[0] = DAG.getRoot();
4217    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4218    setValue(&I, Op);
4219    DAG.setRoot(Op.getValue(1));
4220    return 0;
4221  }
4222
4223  case Intrinsic::eh_selector: {
4224    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4225    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4226    if (CallMBB->isLandingPad())
4227      AddCatchInfo(I, &MMI, CallMBB);
4228    else {
4229#ifndef NDEBUG
4230      FuncInfo.CatchInfoLost.insert(&I);
4231#endif
4232      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4233      unsigned Reg = TLI.getExceptionSelectorRegister();
4234      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4235    }
4236
4237    // Insert the EHSELECTION instruction.
4238    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4239    SDValue Ops[2];
4240    Ops[0] = getValue(I.getArgOperand(0));
4241    Ops[1] = getRoot();
4242    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4243    DAG.setRoot(Op.getValue(1));
4244    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4245    return 0;
4246  }
4247
4248  case Intrinsic::eh_typeid_for: {
4249    // Find the type id for the given typeinfo.
4250    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4251    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4252    Res = DAG.getConstant(TypeID, MVT::i32);
4253    setValue(&I, Res);
4254    return 0;
4255  }
4256
4257  case Intrinsic::eh_return_i32:
4258  case Intrinsic::eh_return_i64:
4259    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4260    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4261                            MVT::Other,
4262                            getControlRoot(),
4263                            getValue(I.getArgOperand(0)),
4264                            getValue(I.getArgOperand(1))));
4265    return 0;
4266  case Intrinsic::eh_unwind_init:
4267    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4268    return 0;
4269  case Intrinsic::eh_dwarf_cfa: {
4270    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4271                                        TLI.getPointerTy());
4272    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4273                                 TLI.getPointerTy(),
4274                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4275                                             TLI.getPointerTy()),
4276                                 CfaArg);
4277    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4278                             TLI.getPointerTy(),
4279                             DAG.getConstant(0, TLI.getPointerTy()));
4280    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4281                             FA, Offset));
4282    return 0;
4283  }
4284  case Intrinsic::eh_sjlj_callsite: {
4285    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4286    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4287    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4288    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4289
4290    MMI.setCurrentCallSite(CI->getZExtValue());
4291    return 0;
4292  }
4293  case Intrinsic::eh_sjlj_setjmp: {
4294    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4295                             getValue(I.getArgOperand(0))));
4296    return 0;
4297  }
4298  case Intrinsic::eh_sjlj_longjmp: {
4299    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4300                            getRoot(),
4301                            getValue(I.getArgOperand(0))));
4302    return 0;
4303  }
4304
4305  case Intrinsic::convertff:
4306  case Intrinsic::convertfsi:
4307  case Intrinsic::convertfui:
4308  case Intrinsic::convertsif:
4309  case Intrinsic::convertuif:
4310  case Intrinsic::convertss:
4311  case Intrinsic::convertsu:
4312  case Intrinsic::convertus:
4313  case Intrinsic::convertuu: {
4314    ISD::CvtCode Code = ISD::CVT_INVALID;
4315    switch (Intrinsic) {
4316    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4317    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4318    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4319    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4320    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4321    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4322    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4323    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4324    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4325    }
4326    EVT DestVT = TLI.getValueType(I.getType());
4327    const Value *Op1 = I.getArgOperand(0);
4328    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4329                               DAG.getValueType(DestVT),
4330                               DAG.getValueType(getValue(Op1).getValueType()),
4331                               getValue(I.getArgOperand(1)),
4332                               getValue(I.getArgOperand(2)),
4333                               Code);
4334    setValue(&I, Res);
4335    return 0;
4336  }
4337  case Intrinsic::sqrt:
4338    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4339                             getValue(I.getArgOperand(0)).getValueType(),
4340                             getValue(I.getArgOperand(0))));
4341    return 0;
4342  case Intrinsic::powi:
4343    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4344                            getValue(I.getArgOperand(1)), DAG));
4345    return 0;
4346  case Intrinsic::sin:
4347    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4348                             getValue(I.getArgOperand(0)).getValueType(),
4349                             getValue(I.getArgOperand(0))));
4350    return 0;
4351  case Intrinsic::cos:
4352    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4353                             getValue(I.getArgOperand(0)).getValueType(),
4354                             getValue(I.getArgOperand(0))));
4355    return 0;
4356  case Intrinsic::log:
4357    visitLog(I);
4358    return 0;
4359  case Intrinsic::log2:
4360    visitLog2(I);
4361    return 0;
4362  case Intrinsic::log10:
4363    visitLog10(I);
4364    return 0;
4365  case Intrinsic::exp:
4366    visitExp(I);
4367    return 0;
4368  case Intrinsic::exp2:
4369    visitExp2(I);
4370    return 0;
4371  case Intrinsic::pow:
4372    visitPow(I);
4373    return 0;
4374  case Intrinsic::convert_to_fp16:
4375    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4376                             MVT::i16, getValue(I.getArgOperand(0))));
4377    return 0;
4378  case Intrinsic::convert_from_fp16:
4379    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4380                             MVT::f32, getValue(I.getArgOperand(0))));
4381    return 0;
4382  case Intrinsic::pcmarker: {
4383    SDValue Tmp = getValue(I.getArgOperand(0));
4384    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4385    return 0;
4386  }
4387  case Intrinsic::readcyclecounter: {
4388    SDValue Op = getRoot();
4389    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4390                      DAG.getVTList(MVT::i64, MVT::Other),
4391                      &Op, 1);
4392    setValue(&I, Res);
4393    DAG.setRoot(Res.getValue(1));
4394    return 0;
4395  }
4396  case Intrinsic::bswap:
4397    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4398                             getValue(I.getArgOperand(0)).getValueType(),
4399                             getValue(I.getArgOperand(0))));
4400    return 0;
4401  case Intrinsic::cttz: {
4402    SDValue Arg = getValue(I.getArgOperand(0));
4403    EVT Ty = Arg.getValueType();
4404    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4405    return 0;
4406  }
4407  case Intrinsic::ctlz: {
4408    SDValue Arg = getValue(I.getArgOperand(0));
4409    EVT Ty = Arg.getValueType();
4410    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4411    return 0;
4412  }
4413  case Intrinsic::ctpop: {
4414    SDValue Arg = getValue(I.getArgOperand(0));
4415    EVT Ty = Arg.getValueType();
4416    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4417    return 0;
4418  }
4419  case Intrinsic::stacksave: {
4420    SDValue Op = getRoot();
4421    Res = DAG.getNode(ISD::STACKSAVE, dl,
4422                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4423    setValue(&I, Res);
4424    DAG.setRoot(Res.getValue(1));
4425    return 0;
4426  }
4427  case Intrinsic::stackrestore: {
4428    Res = getValue(I.getArgOperand(0));
4429    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4430    return 0;
4431  }
4432  case Intrinsic::stackprotector: {
4433    // Emit code into the DAG to store the stack guard onto the stack.
4434    MachineFunction &MF = DAG.getMachineFunction();
4435    MachineFrameInfo *MFI = MF.getFrameInfo();
4436    EVT PtrTy = TLI.getPointerTy();
4437
4438    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4439    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4440
4441    int FI = FuncInfo.StaticAllocaMap[Slot];
4442    MFI->setStackProtectorIndex(FI);
4443
4444    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4445
4446    // Store the stack protector onto the stack.
4447    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4448                       PseudoSourceValue::getFixedStack(FI),
4449                       0, true, false, 0);
4450    setValue(&I, Res);
4451    DAG.setRoot(Res);
4452    return 0;
4453  }
4454  case Intrinsic::objectsize: {
4455    // If we don't know by now, we're never going to know.
4456    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4457
4458    assert(CI && "Non-constant type in __builtin_object_size?");
4459
4460    SDValue Arg = getValue(I.getCalledValue());
4461    EVT Ty = Arg.getValueType();
4462
4463    if (CI->isZero())
4464      Res = DAG.getConstant(-1ULL, Ty);
4465    else
4466      Res = DAG.getConstant(0, Ty);
4467
4468    setValue(&I, Res);
4469    return 0;
4470  }
4471  case Intrinsic::var_annotation:
4472    // Discard annotate attributes
4473    return 0;
4474
4475  case Intrinsic::init_trampoline: {
4476    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4477
4478    SDValue Ops[6];
4479    Ops[0] = getRoot();
4480    Ops[1] = getValue(I.getArgOperand(0));
4481    Ops[2] = getValue(I.getArgOperand(1));
4482    Ops[3] = getValue(I.getArgOperand(2));
4483    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4484    Ops[5] = DAG.getSrcValue(F);
4485
4486    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4487                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4488                      Ops, 6);
4489
4490    setValue(&I, Res);
4491    DAG.setRoot(Res.getValue(1));
4492    return 0;
4493  }
4494  case Intrinsic::gcroot:
4495    if (GFI) {
4496      const Value *Alloca = I.getArgOperand(0);
4497      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4498
4499      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4500      GFI->addStackRoot(FI->getIndex(), TypeMap);
4501    }
4502    return 0;
4503  case Intrinsic::gcread:
4504  case Intrinsic::gcwrite:
4505    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4506    return 0;
4507  case Intrinsic::flt_rounds:
4508    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4509    return 0;
4510  case Intrinsic::trap:
4511    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4512    return 0;
4513  case Intrinsic::uadd_with_overflow:
4514    return implVisitAluOverflow(I, ISD::UADDO);
4515  case Intrinsic::sadd_with_overflow:
4516    return implVisitAluOverflow(I, ISD::SADDO);
4517  case Intrinsic::usub_with_overflow:
4518    return implVisitAluOverflow(I, ISD::USUBO);
4519  case Intrinsic::ssub_with_overflow:
4520    return implVisitAluOverflow(I, ISD::SSUBO);
4521  case Intrinsic::umul_with_overflow:
4522    return implVisitAluOverflow(I, ISD::UMULO);
4523  case Intrinsic::smul_with_overflow:
4524    return implVisitAluOverflow(I, ISD::SMULO);
4525
4526  case Intrinsic::prefetch: {
4527    SDValue Ops[4];
4528    Ops[0] = getRoot();
4529    Ops[1] = getValue(I.getArgOperand(0));
4530    Ops[2] = getValue(I.getArgOperand(1));
4531    Ops[3] = getValue(I.getArgOperand(2));
4532    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4533    return 0;
4534  }
4535
4536  case Intrinsic::memory_barrier: {
4537    SDValue Ops[6];
4538    Ops[0] = getRoot();
4539    for (int x = 1; x < 6; ++x)
4540      Ops[x] = getValue(I.getArgOperand(x - 1));
4541
4542    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4543    return 0;
4544  }
4545  case Intrinsic::atomic_cmp_swap: {
4546    SDValue Root = getRoot();
4547    SDValue L =
4548      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4549                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4550                    Root,
4551                    getValue(I.getArgOperand(0)),
4552                    getValue(I.getArgOperand(1)),
4553                    getValue(I.getArgOperand(2)),
4554                    MachinePointerInfo(I.getArgOperand(0)));
4555    setValue(&I, L);
4556    DAG.setRoot(L.getValue(1));
4557    return 0;
4558  }
4559  case Intrinsic::atomic_load_add:
4560    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4561  case Intrinsic::atomic_load_sub:
4562    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4563  case Intrinsic::atomic_load_or:
4564    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4565  case Intrinsic::atomic_load_xor:
4566    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4567  case Intrinsic::atomic_load_and:
4568    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4569  case Intrinsic::atomic_load_nand:
4570    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4571  case Intrinsic::atomic_load_max:
4572    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4573  case Intrinsic::atomic_load_min:
4574    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4575  case Intrinsic::atomic_load_umin:
4576    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4577  case Intrinsic::atomic_load_umax:
4578    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4579  case Intrinsic::atomic_swap:
4580    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4581
4582  case Intrinsic::invariant_start:
4583  case Intrinsic::lifetime_start:
4584    // Discard region information.
4585    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4586    return 0;
4587  case Intrinsic::invariant_end:
4588  case Intrinsic::lifetime_end:
4589    // Discard region information.
4590    return 0;
4591  }
4592}
4593
4594void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4595                                      bool isTailCall,
4596                                      MachineBasicBlock *LandingPad) {
4597  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4598  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4599  const Type *RetTy = FTy->getReturnType();
4600  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4601  MCSymbol *BeginLabel = 0;
4602
4603  TargetLowering::ArgListTy Args;
4604  TargetLowering::ArgListEntry Entry;
4605  Args.reserve(CS.arg_size());
4606
4607  // Check whether the function can return without sret-demotion.
4608  SmallVector<ISD::OutputArg, 4> Outs;
4609  SmallVector<uint64_t, 4> Offsets;
4610  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4611                Outs, TLI, &Offsets);
4612
4613  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4614                        FTy->isVarArg(), Outs, FTy->getContext());
4615
4616  SDValue DemoteStackSlot;
4617
4618  if (!CanLowerReturn) {
4619    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4620                      FTy->getReturnType());
4621    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4622                      FTy->getReturnType());
4623    MachineFunction &MF = DAG.getMachineFunction();
4624    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4625    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4626
4627    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4628    Entry.Node = DemoteStackSlot;
4629    Entry.Ty = StackSlotPtrType;
4630    Entry.isSExt = false;
4631    Entry.isZExt = false;
4632    Entry.isInReg = false;
4633    Entry.isSRet = true;
4634    Entry.isNest = false;
4635    Entry.isByVal = false;
4636    Entry.Alignment = Align;
4637    Args.push_back(Entry);
4638    RetTy = Type::getVoidTy(FTy->getContext());
4639  }
4640
4641  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4642       i != e; ++i) {
4643    SDValue ArgNode = getValue(*i);
4644    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4645
4646    unsigned attrInd = i - CS.arg_begin() + 1;
4647    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4648    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4649    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4650    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4651    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4652    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4653    Entry.Alignment = CS.getParamAlignment(attrInd);
4654    Args.push_back(Entry);
4655  }
4656
4657  if (LandingPad) {
4658    // Insert a label before the invoke call to mark the try range.  This can be
4659    // used to detect deletion of the invoke via the MachineModuleInfo.
4660    BeginLabel = MMI.getContext().CreateTempSymbol();
4661
4662    // For SjLj, keep track of which landing pads go with which invokes
4663    // so as to maintain the ordering of pads in the LSDA.
4664    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4665    if (CallSiteIndex) {
4666      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4667      // Now that the call site is handled, stop tracking it.
4668      MMI.setCurrentCallSite(0);
4669    }
4670
4671    // Both PendingLoads and PendingExports must be flushed here;
4672    // this call might not return.
4673    (void)getRoot();
4674    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4675  }
4676
4677  // Check if target-independent constraints permit a tail call here.
4678  // Target-dependent constraints are checked within TLI.LowerCallTo.
4679  if (isTailCall &&
4680      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4681    isTailCall = false;
4682
4683  // If there's a possibility that fast-isel has already selected some amount
4684  // of the current basic block, don't emit a tail call.
4685  if (isTailCall && EnableFastISel)
4686    isTailCall = false;
4687
4688  std::pair<SDValue,SDValue> Result =
4689    TLI.LowerCallTo(getRoot(), RetTy,
4690                    CS.paramHasAttr(0, Attribute::SExt),
4691                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4692                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4693                    CS.getCallingConv(),
4694                    isTailCall,
4695                    !CS.getInstruction()->use_empty(),
4696                    Callee, Args, DAG, getCurDebugLoc());
4697  assert((isTailCall || Result.second.getNode()) &&
4698         "Non-null chain expected with non-tail call!");
4699  assert((Result.second.getNode() || !Result.first.getNode()) &&
4700         "Null value expected with tail call!");
4701  if (Result.first.getNode()) {
4702    setValue(CS.getInstruction(), Result.first);
4703  } else if (!CanLowerReturn && Result.second.getNode()) {
4704    // The instruction result is the result of loading from the
4705    // hidden sret parameter.
4706    SmallVector<EVT, 1> PVTs;
4707    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4708
4709    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4710    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4711    EVT PtrVT = PVTs[0];
4712    unsigned NumValues = Outs.size();
4713    SmallVector<SDValue, 4> Values(NumValues);
4714    SmallVector<SDValue, 4> Chains(NumValues);
4715
4716    for (unsigned i = 0; i < NumValues; ++i) {
4717      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4718                                DemoteStackSlot,
4719                                DAG.getConstant(Offsets[i], PtrVT));
4720      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4721                              Add, NULL, Offsets[i], false, false, 1);
4722      Values[i] = L;
4723      Chains[i] = L.getValue(1);
4724    }
4725
4726    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4727                                MVT::Other, &Chains[0], NumValues);
4728    PendingLoads.push_back(Chain);
4729
4730    // Collect the legal value parts into potentially illegal values
4731    // that correspond to the original function's return values.
4732    SmallVector<EVT, 4> RetTys;
4733    RetTy = FTy->getReturnType();
4734    ComputeValueVTs(TLI, RetTy, RetTys);
4735    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4736    SmallVector<SDValue, 4> ReturnValues;
4737    unsigned CurReg = 0;
4738    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4739      EVT VT = RetTys[I];
4740      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4741      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4742
4743      SDValue ReturnValue =
4744        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4745                         RegisterVT, VT, AssertOp);
4746      ReturnValues.push_back(ReturnValue);
4747      CurReg += NumRegs;
4748    }
4749
4750    setValue(CS.getInstruction(),
4751             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4752                         DAG.getVTList(&RetTys[0], RetTys.size()),
4753                         &ReturnValues[0], ReturnValues.size()));
4754
4755  }
4756
4757  // As a special case, a null chain means that a tail call has been emitted and
4758  // the DAG root is already updated.
4759  if (Result.second.getNode())
4760    DAG.setRoot(Result.second);
4761  else
4762    HasTailCall = true;
4763
4764  if (LandingPad) {
4765    // Insert a label at the end of the invoke call to mark the try range.  This
4766    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4767    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4768    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4769
4770    // Inform MachineModuleInfo of range.
4771    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4772  }
4773}
4774
4775/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4776/// value is equal or not-equal to zero.
4777static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4778  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4779       UI != E; ++UI) {
4780    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4781      if (IC->isEquality())
4782        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4783          if (C->isNullValue())
4784            continue;
4785    // Unknown instruction.
4786    return false;
4787  }
4788  return true;
4789}
4790
4791static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4792                             const Type *LoadTy,
4793                             SelectionDAGBuilder &Builder) {
4794
4795  // Check to see if this load can be trivially constant folded, e.g. if the
4796  // input is from a string literal.
4797  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4798    // Cast pointer to the type we really want to load.
4799    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4800                                         PointerType::getUnqual(LoadTy));
4801
4802    if (const Constant *LoadCst =
4803          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4804                                       Builder.TD))
4805      return Builder.getValue(LoadCst);
4806  }
4807
4808  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4809  // still constant memory, the input chain can be the entry node.
4810  SDValue Root;
4811  bool ConstantMemory = false;
4812
4813  // Do not serialize (non-volatile) loads of constant memory with anything.
4814  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4815    Root = Builder.DAG.getEntryNode();
4816    ConstantMemory = true;
4817  } else {
4818    // Do not serialize non-volatile loads against each other.
4819    Root = Builder.DAG.getRoot();
4820  }
4821
4822  SDValue Ptr = Builder.getValue(PtrVal);
4823  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4824                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4825                                        false /*volatile*/,
4826                                        false /*nontemporal*/, 1 /* align=1 */);
4827
4828  if (!ConstantMemory)
4829    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4830  return LoadVal;
4831}
4832
4833
4834/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4835/// If so, return true and lower it, otherwise return false and it will be
4836/// lowered like a normal call.
4837bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4838  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4839  if (I.getNumArgOperands() != 3)
4840    return false;
4841
4842  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
4843  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4844      !I.getArgOperand(2)->getType()->isIntegerTy() ||
4845      !I.getType()->isIntegerTy())
4846    return false;
4847
4848  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
4849
4850  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4851  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4852  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4853    bool ActuallyDoIt = true;
4854    MVT LoadVT;
4855    const Type *LoadTy;
4856    switch (Size->getZExtValue()) {
4857    default:
4858      LoadVT = MVT::Other;
4859      LoadTy = 0;
4860      ActuallyDoIt = false;
4861      break;
4862    case 2:
4863      LoadVT = MVT::i16;
4864      LoadTy = Type::getInt16Ty(Size->getContext());
4865      break;
4866    case 4:
4867      LoadVT = MVT::i32;
4868      LoadTy = Type::getInt32Ty(Size->getContext());
4869      break;
4870    case 8:
4871      LoadVT = MVT::i64;
4872      LoadTy = Type::getInt64Ty(Size->getContext());
4873      break;
4874        /*
4875    case 16:
4876      LoadVT = MVT::v4i32;
4877      LoadTy = Type::getInt32Ty(Size->getContext());
4878      LoadTy = VectorType::get(LoadTy, 4);
4879      break;
4880         */
4881    }
4882
4883    // This turns into unaligned loads.  We only do this if the target natively
4884    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4885    // we'll only produce a small number of byte loads.
4886
4887    // Require that we can find a legal MVT, and only do this if the target
4888    // supports unaligned loads of that type.  Expanding into byte loads would
4889    // bloat the code.
4890    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4891      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4892      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4893      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4894        ActuallyDoIt = false;
4895    }
4896
4897    if (ActuallyDoIt) {
4898      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4899      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4900
4901      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4902                                 ISD::SETNE);
4903      EVT CallVT = TLI.getValueType(I.getType(), true);
4904      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4905      return true;
4906    }
4907  }
4908
4909
4910  return false;
4911}
4912
4913
4914void SelectionDAGBuilder::visitCall(const CallInst &I) {
4915  // Handle inline assembly differently.
4916  if (isa<InlineAsm>(I.getCalledValue())) {
4917    visitInlineAsm(&I);
4918    return;
4919  }
4920
4921  const char *RenameFn = 0;
4922  if (Function *F = I.getCalledFunction()) {
4923    if (F->isDeclaration()) {
4924      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
4925        if (unsigned IID = II->getIntrinsicID(F)) {
4926          RenameFn = visitIntrinsicCall(I, IID);
4927          if (!RenameFn)
4928            return;
4929        }
4930      }
4931      if (unsigned IID = F->getIntrinsicID()) {
4932        RenameFn = visitIntrinsicCall(I, IID);
4933        if (!RenameFn)
4934          return;
4935      }
4936    }
4937
4938    // Check for well-known libc/libm calls.  If the function is internal, it
4939    // can't be a library call.
4940    if (!F->hasLocalLinkage() && F->hasName()) {
4941      StringRef Name = F->getName();
4942      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4943        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
4944            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4945            I.getType() == I.getArgOperand(0)->getType() &&
4946            I.getType() == I.getArgOperand(1)->getType()) {
4947          SDValue LHS = getValue(I.getArgOperand(0));
4948          SDValue RHS = getValue(I.getArgOperand(1));
4949          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4950                                   LHS.getValueType(), LHS, RHS));
4951          return;
4952        }
4953      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4954        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4955            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4956            I.getType() == I.getArgOperand(0)->getType()) {
4957          SDValue Tmp = getValue(I.getArgOperand(0));
4958          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4959                                   Tmp.getValueType(), Tmp));
4960          return;
4961        }
4962      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4963        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4964            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4965            I.getType() == I.getArgOperand(0)->getType() &&
4966            I.onlyReadsMemory()) {
4967          SDValue Tmp = getValue(I.getArgOperand(0));
4968          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4969                                   Tmp.getValueType(), Tmp));
4970          return;
4971        }
4972      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4973        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4974            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4975            I.getType() == I.getArgOperand(0)->getType() &&
4976            I.onlyReadsMemory()) {
4977          SDValue Tmp = getValue(I.getArgOperand(0));
4978          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4979                                   Tmp.getValueType(), Tmp));
4980          return;
4981        }
4982      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4983        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4984            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4985            I.getType() == I.getArgOperand(0)->getType() &&
4986            I.onlyReadsMemory()) {
4987          SDValue Tmp = getValue(I.getArgOperand(0));
4988          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4989                                   Tmp.getValueType(), Tmp));
4990          return;
4991        }
4992      } else if (Name == "memcmp") {
4993        if (visitMemCmpCall(I))
4994          return;
4995      }
4996    }
4997  }
4998
4999  SDValue Callee;
5000  if (!RenameFn)
5001    Callee = getValue(I.getCalledValue());
5002  else
5003    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5004
5005  // Check if we can potentially perform a tail call. More detailed checking is
5006  // be done within LowerCallTo, after more information about the call is known.
5007  LowerCallTo(&I, Callee, I.isTailCall());
5008}
5009
5010namespace llvm {
5011
5012/// AsmOperandInfo - This contains information for each constraint that we are
5013/// lowering.
5014class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
5015    public TargetLowering::AsmOperandInfo {
5016public:
5017  /// CallOperand - If this is the result output operand or a clobber
5018  /// this is null, otherwise it is the incoming operand to the CallInst.
5019  /// This gets modified as the asm is processed.
5020  SDValue CallOperand;
5021
5022  /// AssignedRegs - If this is a register or register class operand, this
5023  /// contains the set of register corresponding to the operand.
5024  RegsForValue AssignedRegs;
5025
5026  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5027    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5028  }
5029
5030  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5031  /// busy in OutputRegs/InputRegs.
5032  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5033                         std::set<unsigned> &OutputRegs,
5034                         std::set<unsigned> &InputRegs,
5035                         const TargetRegisterInfo &TRI) const {
5036    if (isOutReg) {
5037      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5038        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5039    }
5040    if (isInReg) {
5041      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5042        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5043    }
5044  }
5045
5046  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5047  /// corresponds to.  If there is no Value* for this operand, it returns
5048  /// MVT::Other.
5049  EVT getCallOperandValEVT(LLVMContext &Context,
5050                           const TargetLowering &TLI,
5051                           const TargetData *TD) const {
5052    if (CallOperandVal == 0) return MVT::Other;
5053
5054    if (isa<BasicBlock>(CallOperandVal))
5055      return TLI.getPointerTy();
5056
5057    const llvm::Type *OpTy = CallOperandVal->getType();
5058
5059    // If this is an indirect operand, the operand is a pointer to the
5060    // accessed type.
5061    if (isIndirect) {
5062      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5063      if (!PtrTy)
5064        report_fatal_error("Indirect operand for inline asm not a pointer!");
5065      OpTy = PtrTy->getElementType();
5066    }
5067
5068    // If OpTy is not a single value, it may be a struct/union that we
5069    // can tile with integers.
5070    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5071      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5072      switch (BitSize) {
5073      default: break;
5074      case 1:
5075      case 8:
5076      case 16:
5077      case 32:
5078      case 64:
5079      case 128:
5080        OpTy = IntegerType::get(Context, BitSize);
5081        break;
5082      }
5083    }
5084
5085    return TLI.getValueType(OpTy, true);
5086  }
5087
5088private:
5089  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5090  /// specified set.
5091  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5092                                const TargetRegisterInfo &TRI) {
5093    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5094    Regs.insert(Reg);
5095    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5096      for (; *Aliases; ++Aliases)
5097        Regs.insert(*Aliases);
5098  }
5099};
5100
5101} // end llvm namespace.
5102
5103/// isAllocatableRegister - If the specified register is safe to allocate,
5104/// i.e. it isn't a stack pointer or some other special register, return the
5105/// register class for the register.  Otherwise, return null.
5106static const TargetRegisterClass *
5107isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5108                      const TargetLowering &TLI,
5109                      const TargetRegisterInfo *TRI) {
5110  EVT FoundVT = MVT::Other;
5111  const TargetRegisterClass *FoundRC = 0;
5112  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5113       E = TRI->regclass_end(); RCI != E; ++RCI) {
5114    EVT ThisVT = MVT::Other;
5115
5116    const TargetRegisterClass *RC = *RCI;
5117    // If none of the value types for this register class are valid, we
5118    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5119    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5120         I != E; ++I) {
5121      if (TLI.isTypeLegal(*I)) {
5122        // If we have already found this register in a different register class,
5123        // choose the one with the largest VT specified.  For example, on
5124        // PowerPC, we favor f64 register classes over f32.
5125        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5126          ThisVT = *I;
5127          break;
5128        }
5129      }
5130    }
5131
5132    if (ThisVT == MVT::Other) continue;
5133
5134    // NOTE: This isn't ideal.  In particular, this might allocate the
5135    // frame pointer in functions that need it (due to them not being taken
5136    // out of allocation, because a variable sized allocation hasn't been seen
5137    // yet).  This is a slight code pessimization, but should still work.
5138    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5139         E = RC->allocation_order_end(MF); I != E; ++I)
5140      if (*I == Reg) {
5141        // We found a matching register class.  Keep looking at others in case
5142        // we find one with larger registers that this physreg is also in.
5143        FoundRC = RC;
5144        FoundVT = ThisVT;
5145        break;
5146      }
5147  }
5148  return FoundRC;
5149}
5150
5151/// GetRegistersForValue - Assign registers (virtual or physical) for the
5152/// specified operand.  We prefer to assign virtual registers, to allow the
5153/// register allocator to handle the assignment process.  However, if the asm
5154/// uses features that we can't model on machineinstrs, we have SDISel do the
5155/// allocation.  This produces generally horrible, but correct, code.
5156///
5157///   OpInfo describes the operand.
5158///   Input and OutputRegs are the set of already allocated physical registers.
5159///
5160void SelectionDAGBuilder::
5161GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5162                     std::set<unsigned> &OutputRegs,
5163                     std::set<unsigned> &InputRegs) {
5164  LLVMContext &Context = FuncInfo.Fn->getContext();
5165
5166  // Compute whether this value requires an input register, an output register,
5167  // or both.
5168  bool isOutReg = false;
5169  bool isInReg = false;
5170  switch (OpInfo.Type) {
5171  case InlineAsm::isOutput:
5172    isOutReg = true;
5173
5174    // If there is an input constraint that matches this, we need to reserve
5175    // the input register so no other inputs allocate to it.
5176    isInReg = OpInfo.hasMatchingInput();
5177    break;
5178  case InlineAsm::isInput:
5179    isInReg = true;
5180    isOutReg = false;
5181    break;
5182  case InlineAsm::isClobber:
5183    isOutReg = true;
5184    isInReg = true;
5185    break;
5186  }
5187
5188
5189  MachineFunction &MF = DAG.getMachineFunction();
5190  SmallVector<unsigned, 4> Regs;
5191
5192  // If this is a constraint for a single physreg, or a constraint for a
5193  // register class, find it.
5194  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5195    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5196                                     OpInfo.ConstraintVT);
5197
5198  unsigned NumRegs = 1;
5199  if (OpInfo.ConstraintVT != MVT::Other) {
5200    // If this is a FP input in an integer register (or visa versa) insert a bit
5201    // cast of the input value.  More generally, handle any case where the input
5202    // value disagrees with the register class we plan to stick this in.
5203    if (OpInfo.Type == InlineAsm::isInput &&
5204        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5205      // Try to convert to the first EVT that the reg class contains.  If the
5206      // types are identical size, use a bitcast to convert (e.g. two differing
5207      // vector types).
5208      EVT RegVT = *PhysReg.second->vt_begin();
5209      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5210        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5211                                         RegVT, OpInfo.CallOperand);
5212        OpInfo.ConstraintVT = RegVT;
5213      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5214        // If the input is a FP value and we want it in FP registers, do a
5215        // bitcast to the corresponding integer type.  This turns an f64 value
5216        // into i64, which can be passed with two i32 values on a 32-bit
5217        // machine.
5218        RegVT = EVT::getIntegerVT(Context,
5219                                  OpInfo.ConstraintVT.getSizeInBits());
5220        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5221                                         RegVT, OpInfo.CallOperand);
5222        OpInfo.ConstraintVT = RegVT;
5223      }
5224    }
5225
5226    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5227  }
5228
5229  EVT RegVT;
5230  EVT ValueVT = OpInfo.ConstraintVT;
5231
5232  // If this is a constraint for a specific physical register, like {r17},
5233  // assign it now.
5234  if (unsigned AssignedReg = PhysReg.first) {
5235    const TargetRegisterClass *RC = PhysReg.second;
5236    if (OpInfo.ConstraintVT == MVT::Other)
5237      ValueVT = *RC->vt_begin();
5238
5239    // Get the actual register value type.  This is important, because the user
5240    // may have asked for (e.g.) the AX register in i32 type.  We need to
5241    // remember that AX is actually i16 to get the right extension.
5242    RegVT = *RC->vt_begin();
5243
5244    // This is a explicit reference to a physical register.
5245    Regs.push_back(AssignedReg);
5246
5247    // If this is an expanded reference, add the rest of the regs to Regs.
5248    if (NumRegs != 1) {
5249      TargetRegisterClass::iterator I = RC->begin();
5250      for (; *I != AssignedReg; ++I)
5251        assert(I != RC->end() && "Didn't find reg!");
5252
5253      // Already added the first reg.
5254      --NumRegs; ++I;
5255      for (; NumRegs; --NumRegs, ++I) {
5256        assert(I != RC->end() && "Ran out of registers to allocate!");
5257        Regs.push_back(*I);
5258      }
5259    }
5260
5261    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5262    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5263    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5264    return;
5265  }
5266
5267  // Otherwise, if this was a reference to an LLVM register class, create vregs
5268  // for this reference.
5269  if (const TargetRegisterClass *RC = PhysReg.second) {
5270    RegVT = *RC->vt_begin();
5271    if (OpInfo.ConstraintVT == MVT::Other)
5272      ValueVT = RegVT;
5273
5274    // Create the appropriate number of virtual registers.
5275    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5276    for (; NumRegs; --NumRegs)
5277      Regs.push_back(RegInfo.createVirtualRegister(RC));
5278
5279    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5280    return;
5281  }
5282
5283  // This is a reference to a register class that doesn't directly correspond
5284  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5285  // registers from the class.
5286  std::vector<unsigned> RegClassRegs
5287    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5288                                            OpInfo.ConstraintVT);
5289
5290  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5291  unsigned NumAllocated = 0;
5292  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5293    unsigned Reg = RegClassRegs[i];
5294    // See if this register is available.
5295    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5296        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5297      // Make sure we find consecutive registers.
5298      NumAllocated = 0;
5299      continue;
5300    }
5301
5302    // Check to see if this register is allocatable (i.e. don't give out the
5303    // stack pointer).
5304    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5305    if (!RC) {        // Couldn't allocate this register.
5306      // Reset NumAllocated to make sure we return consecutive registers.
5307      NumAllocated = 0;
5308      continue;
5309    }
5310
5311    // Okay, this register is good, we can use it.
5312    ++NumAllocated;
5313
5314    // If we allocated enough consecutive registers, succeed.
5315    if (NumAllocated == NumRegs) {
5316      unsigned RegStart = (i-NumAllocated)+1;
5317      unsigned RegEnd   = i+1;
5318      // Mark all of the allocated registers used.
5319      for (unsigned i = RegStart; i != RegEnd; ++i)
5320        Regs.push_back(RegClassRegs[i]);
5321
5322      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5323                                         OpInfo.ConstraintVT);
5324      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5325      return;
5326    }
5327  }
5328
5329  // Otherwise, we couldn't allocate enough registers for this.
5330}
5331
5332/// visitInlineAsm - Handle a call to an InlineAsm object.
5333///
5334void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5335  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5336
5337  /// ConstraintOperands - Information about all of the constraints.
5338  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5339
5340  std::set<unsigned> OutputRegs, InputRegs;
5341
5342  std::vector<TargetLowering::AsmOperandInfo> TargetConstraints = TLI.ParseConstraints(CS);
5343  bool hasMemory = false;
5344
5345  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5346  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5347  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5348    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5349    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5350
5351    EVT OpVT = MVT::Other;
5352
5353    // Compute the value type for each operand.
5354    switch (OpInfo.Type) {
5355    case InlineAsm::isOutput:
5356      // Indirect outputs just consume an argument.
5357      if (OpInfo.isIndirect) {
5358        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5359        break;
5360      }
5361
5362      // The return value of the call is this value.  As such, there is no
5363      // corresponding argument.
5364      assert(!CS.getType()->isVoidTy() &&
5365             "Bad inline asm!");
5366      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5367        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5368      } else {
5369        assert(ResNo == 0 && "Asm only has one result!");
5370        OpVT = TLI.getValueType(CS.getType());
5371      }
5372      ++ResNo;
5373      break;
5374    case InlineAsm::isInput:
5375      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5376      break;
5377    case InlineAsm::isClobber:
5378      // Nothing to do.
5379      break;
5380    }
5381
5382    // If this is an input or an indirect output, process the call argument.
5383    // BasicBlocks are labels, currently appearing only in asm's.
5384    if (OpInfo.CallOperandVal) {
5385      // Strip bitcasts, if any.  This mostly comes up for functions.
5386      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5387
5388      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5389        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5390      } else {
5391        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5392      }
5393
5394      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5395    }
5396
5397    OpInfo.ConstraintVT = OpVT;
5398
5399    // Indirect operand accesses access memory.
5400    if (OpInfo.isIndirect)
5401      hasMemory = true;
5402    else {
5403      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5404        TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
5405        if (CType == TargetLowering::C_Memory) {
5406          hasMemory = true;
5407          break;
5408        }
5409      }
5410    }
5411  }
5412
5413  SDValue Chain, Flag;
5414
5415  // We won't need to flush pending loads if this asm doesn't touch
5416  // memory and is nonvolatile.
5417  if (hasMemory || IA->hasSideEffects())
5418    Chain = getRoot();
5419  else
5420    Chain = DAG.getRoot();
5421
5422  // Second pass over the constraints: compute which constraint option to use
5423  // and assign registers to constraints that want a specific physreg.
5424  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5425    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5426
5427    // Compute the constraint code and ConstraintType to use.
5428    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5429
5430    // If this is a memory input, and if the operand is not indirect, do what we
5431    // need to to provide an address for the memory input.
5432    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5433        !OpInfo.isIndirect) {
5434      assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
5435             "Can only indirectify direct input operands!");
5436
5437      // Memory operands really want the address of the value.  If we don't have
5438      // an indirect input, put it in the constpool if we can, otherwise spill
5439      // it to a stack slot.
5440
5441      // If the operand is a float, integer, or vector constant, spill to a
5442      // constant pool entry to get its address.
5443      const Value *OpVal = OpInfo.CallOperandVal;
5444      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5445          isa<ConstantVector>(OpVal)) {
5446        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5447                                                 TLI.getPointerTy());
5448      } else {
5449        // Otherwise, create a stack slot and emit a store to it before the
5450        // asm.
5451        const Type *Ty = OpVal->getType();
5452        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5453        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5454        MachineFunction &MF = DAG.getMachineFunction();
5455        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5456        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5457        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5458                             OpInfo.CallOperand, StackSlot, NULL, 0,
5459                             false, false, 0);
5460        OpInfo.CallOperand = StackSlot;
5461      }
5462
5463      // There is no longer a Value* corresponding to this operand.
5464      OpInfo.CallOperandVal = 0;
5465
5466      // It is now an indirect operand.
5467      OpInfo.isIndirect = true;
5468    }
5469
5470    // If this constraint is for a specific register, allocate it before
5471    // anything else.
5472    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5473      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5474  }
5475
5476  // Second pass - Loop over all of the operands, assigning virtual or physregs
5477  // to register class operands.
5478  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5479    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5480
5481    // C_Register operands have already been allocated, Other/Memory don't need
5482    // to be.
5483    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5484      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5485  }
5486
5487  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5488  std::vector<SDValue> AsmNodeOperands;
5489  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5490  AsmNodeOperands.push_back(
5491          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5492                                      TLI.getPointerTy()));
5493
5494  // If we have a !srcloc metadata node associated with it, we want to attach
5495  // this to the ultimately generated inline asm machineinstr.  To do this, we
5496  // pass in the third operand as this (potentially null) inline asm MDNode.
5497  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5498  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5499
5500  // Remember the AlignStack bit as operand 3.
5501  AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0,
5502                                            MVT::i1));
5503
5504  // Loop over all of the inputs, copying the operand values into the
5505  // appropriate registers and processing the output regs.
5506  RegsForValue RetValRegs;
5507
5508  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5509  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5510
5511  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5512    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5513
5514    switch (OpInfo.Type) {
5515    case InlineAsm::isOutput: {
5516      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5517          OpInfo.ConstraintType != TargetLowering::C_Register) {
5518        // Memory output, or 'other' output (e.g. 'X' constraint).
5519        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5520
5521        // Add information to the INLINEASM node to know about this output.
5522        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5523        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5524                                                        TLI.getPointerTy()));
5525        AsmNodeOperands.push_back(OpInfo.CallOperand);
5526        break;
5527      }
5528
5529      // Otherwise, this is a register or register class output.
5530
5531      // Copy the output from the appropriate register.  Find a register that
5532      // we can use.
5533      if (OpInfo.AssignedRegs.Regs.empty())
5534        report_fatal_error("Couldn't allocate output reg for constraint '" +
5535                           Twine(OpInfo.ConstraintCode) + "'!");
5536
5537      // If this is an indirect operand, store through the pointer after the
5538      // asm.
5539      if (OpInfo.isIndirect) {
5540        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5541                                                      OpInfo.CallOperandVal));
5542      } else {
5543        // This is the result value of the call.
5544        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5545        // Concatenate this output onto the outputs list.
5546        RetValRegs.append(OpInfo.AssignedRegs);
5547      }
5548
5549      // Add information to the INLINEASM node to know that this register is
5550      // set.
5551      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5552                                           InlineAsm::Kind_RegDefEarlyClobber :
5553                                               InlineAsm::Kind_RegDef,
5554                                               false,
5555                                               0,
5556                                               DAG,
5557                                               AsmNodeOperands);
5558      break;
5559    }
5560    case InlineAsm::isInput: {
5561      SDValue InOperandVal = OpInfo.CallOperand;
5562
5563      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5564        // If this is required to match an output register we have already set,
5565        // just use its register.
5566        unsigned OperandNo = OpInfo.getMatchedOperand();
5567
5568        // Scan until we find the definition we already emitted of this operand.
5569        // When we find it, create a RegsForValue operand.
5570        unsigned CurOp = InlineAsm::Op_FirstOperand;
5571        for (; OperandNo; --OperandNo) {
5572          // Advance to the next operand.
5573          unsigned OpFlag =
5574            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5575          assert((InlineAsm::isRegDefKind(OpFlag) ||
5576                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5577                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5578          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5579        }
5580
5581        unsigned OpFlag =
5582          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5583        if (InlineAsm::isRegDefKind(OpFlag) ||
5584            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5585          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5586          if (OpInfo.isIndirect) {
5587            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5588            LLVMContext &Ctx = *DAG.getContext();
5589            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5590                          " don't know how to handle tied "
5591                          "indirect register inputs");
5592          }
5593
5594          RegsForValue MatchedRegs;
5595          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5596          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5597          MatchedRegs.RegVTs.push_back(RegVT);
5598          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5599          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5600               i != e; ++i)
5601            MatchedRegs.Regs.push_back
5602              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5603
5604          // Use the produced MatchedRegs object to
5605          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5606                                    Chain, &Flag);
5607          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5608                                           true, OpInfo.getMatchedOperand(),
5609                                           DAG, AsmNodeOperands);
5610          break;
5611        }
5612
5613        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5614        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5615               "Unexpected number of operands");
5616        // Add information to the INLINEASM node to know about this input.
5617        // See InlineAsm.h isUseOperandTiedToDef.
5618        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5619                                                    OpInfo.getMatchedOperand());
5620        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5621                                                        TLI.getPointerTy()));
5622        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5623        break;
5624      }
5625
5626      // Treat indirect 'X' constraint as memory.
5627      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5628          OpInfo.isIndirect)
5629        OpInfo.ConstraintType = TargetLowering::C_Memory;
5630
5631      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5632        std::vector<SDValue> Ops;
5633        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5634                                         Ops, DAG);
5635        if (Ops.empty())
5636          report_fatal_error("Invalid operand for inline asm constraint '" +
5637                             Twine(OpInfo.ConstraintCode) + "'!");
5638
5639        // Add information to the INLINEASM node to know about this input.
5640        unsigned ResOpType =
5641          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5642        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5643                                                        TLI.getPointerTy()));
5644        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5645        break;
5646      }
5647
5648      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5649        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5650        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5651               "Memory operands expect pointer values");
5652
5653        // Add information to the INLINEASM node to know about this input.
5654        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5655        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5656                                                        TLI.getPointerTy()));
5657        AsmNodeOperands.push_back(InOperandVal);
5658        break;
5659      }
5660
5661      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5662              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5663             "Unknown constraint type!");
5664      assert(!OpInfo.isIndirect &&
5665             "Don't know how to handle indirect register inputs yet!");
5666
5667      // Copy the input into the appropriate registers.
5668      if (OpInfo.AssignedRegs.Regs.empty() ||
5669          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5670        report_fatal_error("Couldn't allocate input reg for constraint '" +
5671                           Twine(OpInfo.ConstraintCode) + "'!");
5672
5673      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5674                                        Chain, &Flag);
5675
5676      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5677                                               DAG, AsmNodeOperands);
5678      break;
5679    }
5680    case InlineAsm::isClobber: {
5681      // Add the clobbered value to the operand list, so that the register
5682      // allocator is aware that the physreg got clobbered.
5683      if (!OpInfo.AssignedRegs.Regs.empty())
5684        OpInfo.AssignedRegs.AddInlineAsmOperands(
5685                                            InlineAsm::Kind_RegDefEarlyClobber,
5686                                                 false, 0, DAG,
5687                                                 AsmNodeOperands);
5688      break;
5689    }
5690    }
5691  }
5692
5693  // Finish up input operands.  Set the input chain and add the flag last.
5694  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5695  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5696
5697  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5698                      DAG.getVTList(MVT::Other, MVT::Flag),
5699                      &AsmNodeOperands[0], AsmNodeOperands.size());
5700  Flag = Chain.getValue(1);
5701
5702  // If this asm returns a register value, copy the result from that register
5703  // and set it as the value of the call.
5704  if (!RetValRegs.Regs.empty()) {
5705    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5706                                             Chain, &Flag);
5707
5708    // FIXME: Why don't we do this for inline asms with MRVs?
5709    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5710      EVT ResultType = TLI.getValueType(CS.getType());
5711
5712      // If any of the results of the inline asm is a vector, it may have the
5713      // wrong width/num elts.  This can happen for register classes that can
5714      // contain multiple different value types.  The preg or vreg allocated may
5715      // not have the same VT as was expected.  Convert it to the right type
5716      // with bit_convert.
5717      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5718        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5719                          ResultType, Val);
5720
5721      } else if (ResultType != Val.getValueType() &&
5722                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5723        // If a result value was tied to an input value, the computed result may
5724        // have a wider width than the expected result.  Extract the relevant
5725        // portion.
5726        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5727      }
5728
5729      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5730    }
5731
5732    setValue(CS.getInstruction(), Val);
5733    // Don't need to use this as a chain in this case.
5734    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5735      return;
5736  }
5737
5738  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5739
5740  // Process indirect outputs, first output all of the flagged copies out of
5741  // physregs.
5742  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5743    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5744    const Value *Ptr = IndirectStoresToEmit[i].second;
5745    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5746                                             Chain, &Flag);
5747    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5748  }
5749
5750  // Emit the non-flagged stores from the physregs.
5751  SmallVector<SDValue, 8> OutChains;
5752  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5753    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5754                               StoresToEmit[i].first,
5755                               getValue(StoresToEmit[i].second),
5756                               StoresToEmit[i].second, 0,
5757                               false, false, 0);
5758    OutChains.push_back(Val);
5759  }
5760
5761  if (!OutChains.empty())
5762    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5763                        &OutChains[0], OutChains.size());
5764
5765  DAG.setRoot(Chain);
5766}
5767
5768void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5769  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5770                          MVT::Other, getRoot(),
5771                          getValue(I.getArgOperand(0)),
5772                          DAG.getSrcValue(I.getArgOperand(0))));
5773}
5774
5775void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5776  const TargetData &TD = *TLI.getTargetData();
5777  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5778                           getRoot(), getValue(I.getOperand(0)),
5779                           DAG.getSrcValue(I.getOperand(0)),
5780                           TD.getABITypeAlignment(I.getType()));
5781  setValue(&I, V);
5782  DAG.setRoot(V.getValue(1));
5783}
5784
5785void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5786  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5787                          MVT::Other, getRoot(),
5788                          getValue(I.getArgOperand(0)),
5789                          DAG.getSrcValue(I.getArgOperand(0))));
5790}
5791
5792void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5793  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5794                          MVT::Other, getRoot(),
5795                          getValue(I.getArgOperand(0)),
5796                          getValue(I.getArgOperand(1)),
5797                          DAG.getSrcValue(I.getArgOperand(0)),
5798                          DAG.getSrcValue(I.getArgOperand(1))));
5799}
5800
5801/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5802/// implementation, which just calls LowerCall.
5803/// FIXME: When all targets are
5804/// migrated to using LowerCall, this hook should be integrated into SDISel.
5805std::pair<SDValue, SDValue>
5806TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5807                            bool RetSExt, bool RetZExt, bool isVarArg,
5808                            bool isInreg, unsigned NumFixedArgs,
5809                            CallingConv::ID CallConv, bool isTailCall,
5810                            bool isReturnValueUsed,
5811                            SDValue Callee,
5812                            ArgListTy &Args, SelectionDAG &DAG,
5813                            DebugLoc dl) const {
5814  // Handle all of the outgoing arguments.
5815  SmallVector<ISD::OutputArg, 32> Outs;
5816  SmallVector<SDValue, 32> OutVals;
5817  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5818    SmallVector<EVT, 4> ValueVTs;
5819    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5820    for (unsigned Value = 0, NumValues = ValueVTs.size();
5821         Value != NumValues; ++Value) {
5822      EVT VT = ValueVTs[Value];
5823      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5824      SDValue Op = SDValue(Args[i].Node.getNode(),
5825                           Args[i].Node.getResNo() + Value);
5826      ISD::ArgFlagsTy Flags;
5827      unsigned OriginalAlignment =
5828        getTargetData()->getABITypeAlignment(ArgTy);
5829
5830      if (Args[i].isZExt)
5831        Flags.setZExt();
5832      if (Args[i].isSExt)
5833        Flags.setSExt();
5834      if (Args[i].isInReg)
5835        Flags.setInReg();
5836      if (Args[i].isSRet)
5837        Flags.setSRet();
5838      if (Args[i].isByVal) {
5839        Flags.setByVal();
5840        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5841        const Type *ElementTy = Ty->getElementType();
5842        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5843        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5844        // For ByVal, alignment should come from FE.  BE will guess if this
5845        // info is not there but there are cases it cannot get right.
5846        if (Args[i].Alignment)
5847          FrameAlign = Args[i].Alignment;
5848        Flags.setByValAlign(FrameAlign);
5849        Flags.setByValSize(FrameSize);
5850      }
5851      if (Args[i].isNest)
5852        Flags.setNest();
5853      Flags.setOrigAlign(OriginalAlignment);
5854
5855      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5856      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5857      SmallVector<SDValue, 4> Parts(NumParts);
5858      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5859
5860      if (Args[i].isSExt)
5861        ExtendKind = ISD::SIGN_EXTEND;
5862      else if (Args[i].isZExt)
5863        ExtendKind = ISD::ZERO_EXTEND;
5864
5865      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5866                     PartVT, ExtendKind);
5867
5868      for (unsigned j = 0; j != NumParts; ++j) {
5869        // if it isn't first piece, alignment must be 1
5870        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
5871                               i < NumFixedArgs);
5872        if (NumParts > 1 && j == 0)
5873          MyFlags.Flags.setSplit();
5874        else if (j != 0)
5875          MyFlags.Flags.setOrigAlign(1);
5876
5877        Outs.push_back(MyFlags);
5878        OutVals.push_back(Parts[j]);
5879      }
5880    }
5881  }
5882
5883  // Handle the incoming return values from the call.
5884  SmallVector<ISD::InputArg, 32> Ins;
5885  SmallVector<EVT, 4> RetTys;
5886  ComputeValueVTs(*this, RetTy, RetTys);
5887  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5888    EVT VT = RetTys[I];
5889    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5890    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5891    for (unsigned i = 0; i != NumRegs; ++i) {
5892      ISD::InputArg MyFlags;
5893      MyFlags.VT = RegisterVT;
5894      MyFlags.Used = isReturnValueUsed;
5895      if (RetSExt)
5896        MyFlags.Flags.setSExt();
5897      if (RetZExt)
5898        MyFlags.Flags.setZExt();
5899      if (isInreg)
5900        MyFlags.Flags.setInReg();
5901      Ins.push_back(MyFlags);
5902    }
5903  }
5904
5905  SmallVector<SDValue, 4> InVals;
5906  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5907                    Outs, OutVals, Ins, dl, DAG, InVals);
5908
5909  // Verify that the target's LowerCall behaved as expected.
5910  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5911         "LowerCall didn't return a valid chain!");
5912  assert((!isTailCall || InVals.empty()) &&
5913         "LowerCall emitted a return value for a tail call!");
5914  assert((isTailCall || InVals.size() == Ins.size()) &&
5915         "LowerCall didn't emit the correct number of values!");
5916
5917  // For a tail call, the return value is merely live-out and there aren't
5918  // any nodes in the DAG representing it. Return a special value to
5919  // indicate that a tail call has been emitted and no more Instructions
5920  // should be processed in the current block.
5921  if (isTailCall) {
5922    DAG.setRoot(Chain);
5923    return std::make_pair(SDValue(), SDValue());
5924  }
5925
5926  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5927          assert(InVals[i].getNode() &&
5928                 "LowerCall emitted a null value!");
5929          assert(Ins[i].VT == InVals[i].getValueType() &&
5930                 "LowerCall emitted a value with the wrong type!");
5931        });
5932
5933  // Collect the legal value parts into potentially illegal values
5934  // that correspond to the original function's return values.
5935  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5936  if (RetSExt)
5937    AssertOp = ISD::AssertSext;
5938  else if (RetZExt)
5939    AssertOp = ISD::AssertZext;
5940  SmallVector<SDValue, 4> ReturnValues;
5941  unsigned CurReg = 0;
5942  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5943    EVT VT = RetTys[I];
5944    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5945    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5946
5947    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5948                                            NumRegs, RegisterVT, VT,
5949                                            AssertOp));
5950    CurReg += NumRegs;
5951  }
5952
5953  // For a function returning void, there is no return value. We can't create
5954  // such a node, so we just return a null return value in that case. In
5955  // that case, nothing will actualy look at the value.
5956  if (ReturnValues.empty())
5957    return std::make_pair(SDValue(), Chain);
5958
5959  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5960                            DAG.getVTList(&RetTys[0], RetTys.size()),
5961                            &ReturnValues[0], ReturnValues.size());
5962  return std::make_pair(Res, Chain);
5963}
5964
5965void TargetLowering::LowerOperationWrapper(SDNode *N,
5966                                           SmallVectorImpl<SDValue> &Results,
5967                                           SelectionDAG &DAG) const {
5968  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5969  if (Res.getNode())
5970    Results.push_back(Res);
5971}
5972
5973SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5974  llvm_unreachable("LowerOperation not implemented for this target!");
5975  return SDValue();
5976}
5977
5978void
5979SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5980  SDValue Op = getNonRegisterValue(V);
5981  assert((Op.getOpcode() != ISD::CopyFromReg ||
5982          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5983         "Copy from a reg to the same reg!");
5984  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5985
5986  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5987  SDValue Chain = DAG.getEntryNode();
5988  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5989  PendingExports.push_back(Chain);
5990}
5991
5992#include "llvm/CodeGen/SelectionDAGISel.h"
5993
5994void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5995  // If this is the entry block, emit arguments.
5996  const Function &F = *LLVMBB->getParent();
5997  SelectionDAG &DAG = SDB->DAG;
5998  DebugLoc dl = SDB->getCurDebugLoc();
5999  const TargetData *TD = TLI.getTargetData();
6000  SmallVector<ISD::InputArg, 16> Ins;
6001
6002  // Check whether the function can return without sret-demotion.
6003  SmallVector<ISD::OutputArg, 4> Outs;
6004  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6005                Outs, TLI);
6006
6007  if (!FuncInfo->CanLowerReturn) {
6008    // Put in an sret pointer parameter before all the other parameters.
6009    SmallVector<EVT, 1> ValueVTs;
6010    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6011
6012    // NOTE: Assuming that a pointer will never break down to more than one VT
6013    // or one register.
6014    ISD::ArgFlagsTy Flags;
6015    Flags.setSRet();
6016    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6017    ISD::InputArg RetArg(Flags, RegisterVT, true);
6018    Ins.push_back(RetArg);
6019  }
6020
6021  // Set up the incoming argument description vector.
6022  unsigned Idx = 1;
6023  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6024       I != E; ++I, ++Idx) {
6025    SmallVector<EVT, 4> ValueVTs;
6026    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6027    bool isArgValueUsed = !I->use_empty();
6028    for (unsigned Value = 0, NumValues = ValueVTs.size();
6029         Value != NumValues; ++Value) {
6030      EVT VT = ValueVTs[Value];
6031      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6032      ISD::ArgFlagsTy Flags;
6033      unsigned OriginalAlignment =
6034        TD->getABITypeAlignment(ArgTy);
6035
6036      if (F.paramHasAttr(Idx, Attribute::ZExt))
6037        Flags.setZExt();
6038      if (F.paramHasAttr(Idx, Attribute::SExt))
6039        Flags.setSExt();
6040      if (F.paramHasAttr(Idx, Attribute::InReg))
6041        Flags.setInReg();
6042      if (F.paramHasAttr(Idx, Attribute::StructRet))
6043        Flags.setSRet();
6044      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6045        Flags.setByVal();
6046        const PointerType *Ty = cast<PointerType>(I->getType());
6047        const Type *ElementTy = Ty->getElementType();
6048        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6049        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6050        // For ByVal, alignment should be passed from FE.  BE will guess if
6051        // this info is not there but there are cases it cannot get right.
6052        if (F.getParamAlignment(Idx))
6053          FrameAlign = F.getParamAlignment(Idx);
6054        Flags.setByValAlign(FrameAlign);
6055        Flags.setByValSize(FrameSize);
6056      }
6057      if (F.paramHasAttr(Idx, Attribute::Nest))
6058        Flags.setNest();
6059      Flags.setOrigAlign(OriginalAlignment);
6060
6061      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6062      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6063      for (unsigned i = 0; i != NumRegs; ++i) {
6064        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6065        if (NumRegs > 1 && i == 0)
6066          MyFlags.Flags.setSplit();
6067        // if it isn't first piece, alignment must be 1
6068        else if (i > 0)
6069          MyFlags.Flags.setOrigAlign(1);
6070        Ins.push_back(MyFlags);
6071      }
6072    }
6073  }
6074
6075  // Call the target to set up the argument values.
6076  SmallVector<SDValue, 8> InVals;
6077  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6078                                             F.isVarArg(), Ins,
6079                                             dl, DAG, InVals);
6080
6081  // Verify that the target's LowerFormalArguments behaved as expected.
6082  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6083         "LowerFormalArguments didn't return a valid chain!");
6084  assert(InVals.size() == Ins.size() &&
6085         "LowerFormalArguments didn't emit the correct number of values!");
6086  DEBUG({
6087      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6088        assert(InVals[i].getNode() &&
6089               "LowerFormalArguments emitted a null value!");
6090        assert(Ins[i].VT == InVals[i].getValueType() &&
6091               "LowerFormalArguments emitted a value with the wrong type!");
6092      }
6093    });
6094
6095  // Update the DAG with the new chain value resulting from argument lowering.
6096  DAG.setRoot(NewRoot);
6097
6098  // Set up the argument values.
6099  unsigned i = 0;
6100  Idx = 1;
6101  if (!FuncInfo->CanLowerReturn) {
6102    // Create a virtual register for the sret pointer, and put in a copy
6103    // from the sret argument into it.
6104    SmallVector<EVT, 1> ValueVTs;
6105    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6106    EVT VT = ValueVTs[0];
6107    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6108    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6109    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6110                                        RegVT, VT, AssertOp);
6111
6112    MachineFunction& MF = SDB->DAG.getMachineFunction();
6113    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6114    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6115    FuncInfo->DemoteRegister = SRetReg;
6116    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6117                                    SRetReg, ArgValue);
6118    DAG.setRoot(NewRoot);
6119
6120    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6121    // Idx indexes LLVM arguments.  Don't touch it.
6122    ++i;
6123  }
6124
6125  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6126      ++I, ++Idx) {
6127    SmallVector<SDValue, 4> ArgValues;
6128    SmallVector<EVT, 4> ValueVTs;
6129    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6130    unsigned NumValues = ValueVTs.size();
6131
6132    // If this argument is unused then remember its value. It is used to generate
6133    // debugging information.
6134    if (I->use_empty() && NumValues)
6135      SDB->setUnusedArgValue(I, InVals[i]);
6136
6137    for (unsigned Value = 0; Value != NumValues; ++Value) {
6138      EVT VT = ValueVTs[Value];
6139      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6140      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6141
6142      if (!I->use_empty()) {
6143        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6144        if (F.paramHasAttr(Idx, Attribute::SExt))
6145          AssertOp = ISD::AssertSext;
6146        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6147          AssertOp = ISD::AssertZext;
6148
6149        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6150                                             NumParts, PartVT, VT,
6151                                             AssertOp));
6152      }
6153
6154      i += NumParts;
6155    }
6156
6157    // Note down frame index for byval arguments.
6158    if (I->hasByValAttr() && !ArgValues.empty())
6159      if (FrameIndexSDNode *FI =
6160          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6161        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6162
6163    if (!I->use_empty()) {
6164      SDValue Res;
6165      if (!ArgValues.empty())
6166        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6167                                 SDB->getCurDebugLoc());
6168      SDB->setValue(I, Res);
6169
6170      // If this argument is live outside of the entry block, insert a copy from
6171      // whereever we got it to the vreg that other BB's will reference it as.
6172      SDB->CopyToExportRegsIfNeeded(I);
6173    }
6174  }
6175
6176  assert(i == InVals.size() && "Argument register count mismatch!");
6177
6178  // Finally, if the target has anything special to do, allow it to do so.
6179  // FIXME: this should insert code into the DAG!
6180  EmitFunctionEntryCode();
6181}
6182
6183/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6184/// ensure constants are generated when needed.  Remember the virtual registers
6185/// that need to be added to the Machine PHI nodes as input.  We cannot just
6186/// directly add them, because expansion might result in multiple MBB's for one
6187/// BB.  As such, the start of the BB might correspond to a different MBB than
6188/// the end.
6189///
6190void
6191SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6192  const TerminatorInst *TI = LLVMBB->getTerminator();
6193
6194  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6195
6196  // Check successor nodes' PHI nodes that expect a constant to be available
6197  // from this block.
6198  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6199    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6200    if (!isa<PHINode>(SuccBB->begin())) continue;
6201    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6202
6203    // If this terminator has multiple identical successors (common for
6204    // switches), only handle each succ once.
6205    if (!SuccsHandled.insert(SuccMBB)) continue;
6206
6207    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6208
6209    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6210    // nodes and Machine PHI nodes, but the incoming operands have not been
6211    // emitted yet.
6212    for (BasicBlock::const_iterator I = SuccBB->begin();
6213         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6214      // Ignore dead phi's.
6215      if (PN->use_empty()) continue;
6216
6217      unsigned Reg;
6218      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6219
6220      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6221        unsigned &RegOut = ConstantsOut[C];
6222        if (RegOut == 0) {
6223          RegOut = FuncInfo.CreateRegs(C->getType());
6224          CopyValueToVirtualRegister(C, RegOut);
6225        }
6226        Reg = RegOut;
6227      } else {
6228        DenseMap<const Value *, unsigned>::iterator I =
6229          FuncInfo.ValueMap.find(PHIOp);
6230        if (I != FuncInfo.ValueMap.end())
6231          Reg = I->second;
6232        else {
6233          assert(isa<AllocaInst>(PHIOp) &&
6234                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6235                 "Didn't codegen value into a register!??");
6236          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6237          CopyValueToVirtualRegister(PHIOp, Reg);
6238        }
6239      }
6240
6241      // Remember that this register needs to added to the machine PHI node as
6242      // the input for this MBB.
6243      SmallVector<EVT, 4> ValueVTs;
6244      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6245      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6246        EVT VT = ValueVTs[vti];
6247        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6248        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6249          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6250        Reg += NumRegisters;
6251      }
6252    }
6253  }
6254  ConstantsOut.clear();
6255}
6256