SelectionDAGBuilder.cpp revision f1b4eafbfec976f939ec0ea3e8acf91cef5363e3
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetRegisterInfo.h"
48#include "llvm/Target/TargetData.h"
49#include "llvm/Target/TargetFrameInfo.h"
50#include "llvm/Target/TargetInstrInfo.h"
51#include "llvm/Target/TargetIntrinsicInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetOptions.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/Support/CommandLine.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/ErrorHandling.h"
58#include "llvm/Support/MathExtras.h"
59#include "llvm/Support/raw_ostream.h"
60#include <algorithm>
61using namespace llvm;
62
63/// LimitFloatPrecision - Generate low-precision inline sequences for
64/// some float libcalls (6, 8 or 12 bits).
65static unsigned LimitFloatPrecision;
66
67static cl::opt<unsigned, true>
68LimitFPPrecision("limit-float-precision",
69                 cl::desc("Generate low-precision inline sequences "
70                          "for some float libcalls"),
71                 cl::location(LimitFloatPrecision),
72                 cl::init(0));
73
74// Limit the width of DAG chains. This is important in general to prevent
75// prevent DAG-based analysis from blowing up. For example, alias analysis and
76// load clustering may not complete in reasonable time. It is difficult to
77// recognize and avoid this situation within each individual analysis, and
78// future analyses are likely to have the same behavior. Limiting DAG width is
79// the safe approach, and will be especially important with global DAGs.
80//
81// MaxParallelChains default is arbitrarily high to avoid affecting
82// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
83// sequence over this should have been converted to llvm.memcpy by the
84// frontend. It easy to induce this behavior with .ll code such as:
85// %buffer = alloca [4096 x i8]
86// %data = load [4096 x i8]* %argPtr
87// store [4096 x i8] %data, [4096 x i8]* %buffer
88static cl::opt<unsigned>
89MaxParallelChains("dag-chain-limit", cl::desc("Max parallel isel dag chains"),
90                  cl::init(64), cl::Hidden);
91
92static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
93                                      const SDValue *Parts, unsigned NumParts,
94                                      EVT PartVT, EVT ValueVT);
95
96/// getCopyFromParts - Create a value that contains the specified legal parts
97/// combined into the value they represent.  If the parts combine to a type
98/// larger then ValueVT then AssertOp can be used to specify whether the extra
99/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
100/// (ISD::AssertSext).
101static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
102                                const SDValue *Parts,
103                                unsigned NumParts, EVT PartVT, EVT ValueVT,
104                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
105  if (ValueVT.isVector())
106    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
107
108  assert(NumParts > 0 && "No parts to assemble!");
109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
110  SDValue Val = Parts[0];
111
112  if (NumParts > 1) {
113    // Assemble the value from multiple parts.
114    if (ValueVT.isInteger()) {
115      unsigned PartBits = PartVT.getSizeInBits();
116      unsigned ValueBits = ValueVT.getSizeInBits();
117
118      // Assemble the power of 2 part.
119      unsigned RoundParts = NumParts & (NumParts - 1) ?
120        1 << Log2_32(NumParts) : NumParts;
121      unsigned RoundBits = PartBits * RoundParts;
122      EVT RoundVT = RoundBits == ValueBits ?
123        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
124      SDValue Lo, Hi;
125
126      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
127
128      if (RoundParts > 2) {
129        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
130                              PartVT, HalfVT);
131        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
132                              RoundParts / 2, PartVT, HalfVT);
133      } else {
134        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
135        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
136      }
137
138      if (TLI.isBigEndian())
139        std::swap(Lo, Hi);
140
141      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
142
143      if (RoundParts < NumParts) {
144        // Assemble the trailing non-power-of-2 part.
145        unsigned OddParts = NumParts - RoundParts;
146        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
147        Hi = getCopyFromParts(DAG, DL,
148                              Parts + RoundParts, OddParts, PartVT, OddVT);
149
150        // Combine the round and odd parts.
151        Lo = Val;
152        if (TLI.isBigEndian())
153          std::swap(Lo, Hi);
154        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
155        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
156        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
157                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
158                                         TLI.getPointerTy()));
159        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
160        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
161      }
162    } else if (PartVT.isFloatingPoint()) {
163      // FP split into multiple FP parts (for ppcf128)
164      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
165             "Unexpected split");
166      SDValue Lo, Hi;
167      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
168      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
169      if (TLI.isBigEndian())
170        std::swap(Lo, Hi);
171      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
172    } else {
173      // FP split into integer parts (soft fp)
174      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
175             !PartVT.isVector() && "Unexpected split");
176      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
177      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
178    }
179  }
180
181  // There is now one part, held in Val.  Correct it to match ValueVT.
182  PartVT = Val.getValueType();
183
184  if (PartVT == ValueVT)
185    return Val;
186
187  if (PartVT.isInteger() && ValueVT.isInteger()) {
188    if (ValueVT.bitsLT(PartVT)) {
189      // For a truncate, see if we have any information to
190      // indicate whether the truncated bits will always be
191      // zero or sign-extension.
192      if (AssertOp != ISD::DELETED_NODE)
193        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
194                          DAG.getValueType(ValueVT));
195      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
196    }
197    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
198  }
199
200  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
201    // FP_ROUND's are always exact here.
202    if (ValueVT.bitsLT(Val.getValueType()))
203      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
204                         DAG.getIntPtrConstant(1));
205
206    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
207  }
208
209  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
210    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
211
212  llvm_unreachable("Unknown mismatch!");
213  return SDValue();
214}
215
216/// getCopyFromParts - Create a value that contains the specified legal parts
217/// combined into the value they represent.  If the parts combine to a type
218/// larger then ValueVT then AssertOp can be used to specify whether the extra
219/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
220/// (ISD::AssertSext).
221static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
222                                      const SDValue *Parts, unsigned NumParts,
223                                      EVT PartVT, EVT ValueVT) {
224  assert(ValueVT.isVector() && "Not a vector value");
225  assert(NumParts > 0 && "No parts to assemble!");
226  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
227  SDValue Val = Parts[0];
228
229  // Handle a multi-element vector.
230  if (NumParts > 1) {
231    EVT IntermediateVT, RegisterVT;
232    unsigned NumIntermediates;
233    unsigned NumRegs =
234    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
235                               NumIntermediates, RegisterVT);
236    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
237    NumParts = NumRegs; // Silence a compiler warning.
238    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
239    assert(RegisterVT == Parts[0].getValueType() &&
240           "Part type doesn't match part!");
241
242    // Assemble the parts into intermediate operands.
243    SmallVector<SDValue, 8> Ops(NumIntermediates);
244    if (NumIntermediates == NumParts) {
245      // If the register was not expanded, truncate or copy the value,
246      // as appropriate.
247      for (unsigned i = 0; i != NumParts; ++i)
248        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
249                                  PartVT, IntermediateVT);
250    } else if (NumParts > 0) {
251      // If the intermediate type was expanded, build the intermediate
252      // operands from the parts.
253      assert(NumParts % NumIntermediates == 0 &&
254             "Must expand into a divisible number of parts!");
255      unsigned Factor = NumParts / NumIntermediates;
256      for (unsigned i = 0; i != NumIntermediates; ++i)
257        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
258                                  PartVT, IntermediateVT);
259    }
260
261    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
262    // intermediate operands.
263    Val = DAG.getNode(IntermediateVT.isVector() ?
264                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
265                      ValueVT, &Ops[0], NumIntermediates);
266  }
267
268  // There is now one part, held in Val.  Correct it to match ValueVT.
269  PartVT = Val.getValueType();
270
271  if (PartVT == ValueVT)
272    return Val;
273
274  if (PartVT.isVector()) {
275    // If the element type of the source/dest vectors are the same, but the
276    // parts vector has more elements than the value vector, then we have a
277    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
278    // elements we want.
279    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
280      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
281             "Cannot narrow, it would be a lossy transformation");
282      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
283                         DAG.getIntPtrConstant(0));
284    }
285
286    // Vector/Vector bitcast.
287    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
288  }
289
290  assert(ValueVT.getVectorElementType() == PartVT &&
291         ValueVT.getVectorNumElements() == 1 &&
292         "Only trivial scalar-to-vector conversions should get here!");
293  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
294}
295
296
297
298
299static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
300                                 SDValue Val, SDValue *Parts, unsigned NumParts,
301                                 EVT PartVT);
302
303/// getCopyToParts - Create a series of nodes that contain the specified value
304/// split into legal parts.  If the parts contain more bits than Val, then, for
305/// integers, ExtendKind can be used to specify how to generate the extra bits.
306static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
307                           SDValue Val, SDValue *Parts, unsigned NumParts,
308                           EVT PartVT,
309                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
310  EVT ValueVT = Val.getValueType();
311
312  // Handle the vector case separately.
313  if (ValueVT.isVector())
314    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
315
316  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
317  unsigned PartBits = PartVT.getSizeInBits();
318  unsigned OrigNumParts = NumParts;
319  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
320
321  if (NumParts == 0)
322    return;
323
324  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
325  if (PartVT == ValueVT) {
326    assert(NumParts == 1 && "No-op copy with multiple parts!");
327    Parts[0] = Val;
328    return;
329  }
330
331  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
332    // If the parts cover more bits than the value has, promote the value.
333    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
334      assert(NumParts == 1 && "Do not know what to promote to!");
335      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
336    } else {
337      assert(PartVT.isInteger() && ValueVT.isInteger() &&
338             "Unknown mismatch!");
339      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
340      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
341    }
342  } else if (PartBits == ValueVT.getSizeInBits()) {
343    // Different types of the same size.
344    assert(NumParts == 1 && PartVT != ValueVT);
345    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
346  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
347    // If the parts cover less bits than value has, truncate the value.
348    assert(PartVT.isInteger() && ValueVT.isInteger() &&
349           "Unknown mismatch!");
350    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
351    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
352  }
353
354  // The value may have changed - recompute ValueVT.
355  ValueVT = Val.getValueType();
356  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
357         "Failed to tile the value with PartVT!");
358
359  if (NumParts == 1) {
360    assert(PartVT == ValueVT && "Type conversion failed!");
361    Parts[0] = Val;
362    return;
363  }
364
365  // Expand the value into multiple parts.
366  if (NumParts & (NumParts - 1)) {
367    // The number of parts is not a power of 2.  Split off and copy the tail.
368    assert(PartVT.isInteger() && ValueVT.isInteger() &&
369           "Do not know what to expand to!");
370    unsigned RoundParts = 1 << Log2_32(NumParts);
371    unsigned RoundBits = RoundParts * PartBits;
372    unsigned OddParts = NumParts - RoundParts;
373    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
374                                 DAG.getIntPtrConstant(RoundBits));
375    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
376
377    if (TLI.isBigEndian())
378      // The odd parts were reversed by getCopyToParts - unreverse them.
379      std::reverse(Parts + RoundParts, Parts + NumParts);
380
381    NumParts = RoundParts;
382    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
383    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
384  }
385
386  // The number of parts is a power of 2.  Repeatedly bisect the value using
387  // EXTRACT_ELEMENT.
388  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
389                         EVT::getIntegerVT(*DAG.getContext(),
390                                           ValueVT.getSizeInBits()),
391                         Val);
392
393  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
394    for (unsigned i = 0; i < NumParts; i += StepSize) {
395      unsigned ThisBits = StepSize * PartBits / 2;
396      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
397      SDValue &Part0 = Parts[i];
398      SDValue &Part1 = Parts[i+StepSize/2];
399
400      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
401                          ThisVT, Part0, DAG.getIntPtrConstant(1));
402      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
403                          ThisVT, Part0, DAG.getIntPtrConstant(0));
404
405      if (ThisBits == PartBits && ThisVT != PartVT) {
406        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
407        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
408      }
409    }
410  }
411
412  if (TLI.isBigEndian())
413    std::reverse(Parts, Parts + OrigNumParts);
414}
415
416
417/// getCopyToPartsVector - Create a series of nodes that contain the specified
418/// value split into legal parts.
419static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
420                                 SDValue Val, SDValue *Parts, unsigned NumParts,
421                                 EVT PartVT) {
422  EVT ValueVT = Val.getValueType();
423  assert(ValueVT.isVector() && "Not a vector");
424  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
425
426  if (NumParts == 1) {
427    if (PartVT == ValueVT) {
428      // Nothing to do.
429    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
430      // Bitconvert vector->vector case.
431      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432    } else if (PartVT.isVector() &&
433               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
434               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
435      EVT ElementVT = PartVT.getVectorElementType();
436      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
437      // undef elements.
438      SmallVector<SDValue, 16> Ops;
439      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
440        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
441                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
442
443      for (unsigned i = ValueVT.getVectorNumElements(),
444           e = PartVT.getVectorNumElements(); i != e; ++i)
445        Ops.push_back(DAG.getUNDEF(ElementVT));
446
447      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
448
449      // FIXME: Use CONCAT for 2x -> 4x.
450
451      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
452      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
453    } else {
454      // Vector -> scalar conversion.
455      assert(ValueVT.getVectorElementType() == PartVT &&
456             ValueVT.getVectorNumElements() == 1 &&
457             "Only trivial vector-to-scalar conversions should get here!");
458      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
459                        PartVT, Val, DAG.getIntPtrConstant(0));
460    }
461
462    Parts[0] = Val;
463    return;
464  }
465
466  // Handle a multi-element vector.
467  EVT IntermediateVT, RegisterVT;
468  unsigned NumIntermediates;
469  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
470                                                IntermediateVT,
471                                                NumIntermediates, RegisterVT);
472  unsigned NumElements = ValueVT.getVectorNumElements();
473
474  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
475  NumParts = NumRegs; // Silence a compiler warning.
476  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
477
478  // Split the vector into intermediate operands.
479  SmallVector<SDValue, 8> Ops(NumIntermediates);
480  for (unsigned i = 0; i != NumIntermediates; ++i) {
481    if (IntermediateVT.isVector())
482      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
483                           IntermediateVT, Val,
484                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
485    else
486      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
487                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
488  }
489
490  // Split the intermediate operands into legal parts.
491  if (NumParts == NumIntermediates) {
492    // If the register was not expanded, promote or copy the value,
493    // as appropriate.
494    for (unsigned i = 0; i != NumParts; ++i)
495      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
496  } else if (NumParts > 0) {
497    // If the intermediate type was expanded, split each the value into
498    // legal parts.
499    assert(NumParts % NumIntermediates == 0 &&
500           "Must expand into a divisible number of parts!");
501    unsigned Factor = NumParts / NumIntermediates;
502    for (unsigned i = 0; i != NumIntermediates; ++i)
503      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
504  }
505}
506
507
508
509
510namespace {
511  /// RegsForValue - This struct represents the registers (physical or virtual)
512  /// that a particular set of values is assigned, and the type information
513  /// about the value. The most common situation is to represent one value at a
514  /// time, but struct or array values are handled element-wise as multiple
515  /// values.  The splitting of aggregates is performed recursively, so that we
516  /// never have aggregate-typed registers. The values at this point do not
517  /// necessarily have legal types, so each value may require one or more
518  /// registers of some legal type.
519  ///
520  struct RegsForValue {
521    /// ValueVTs - The value types of the values, which may not be legal, and
522    /// may need be promoted or synthesized from one or more registers.
523    ///
524    SmallVector<EVT, 4> ValueVTs;
525
526    /// RegVTs - The value types of the registers. This is the same size as
527    /// ValueVTs and it records, for each value, what the type of the assigned
528    /// register or registers are. (Individual values are never synthesized
529    /// from more than one type of register.)
530    ///
531    /// With virtual registers, the contents of RegVTs is redundant with TLI's
532    /// getRegisterType member function, however when with physical registers
533    /// it is necessary to have a separate record of the types.
534    ///
535    SmallVector<EVT, 4> RegVTs;
536
537    /// Regs - This list holds the registers assigned to the values.
538    /// Each legal or promoted value requires one register, and each
539    /// expanded value requires multiple registers.
540    ///
541    SmallVector<unsigned, 4> Regs;
542
543    RegsForValue() {}
544
545    RegsForValue(const SmallVector<unsigned, 4> &regs,
546                 EVT regvt, EVT valuevt)
547      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
548
549    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
550                 unsigned Reg, const Type *Ty) {
551      ComputeValueVTs(tli, Ty, ValueVTs);
552
553      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
554        EVT ValueVT = ValueVTs[Value];
555        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
556        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
557        for (unsigned i = 0; i != NumRegs; ++i)
558          Regs.push_back(Reg + i);
559        RegVTs.push_back(RegisterVT);
560        Reg += NumRegs;
561      }
562    }
563
564    /// areValueTypesLegal - Return true if types of all the values are legal.
565    bool areValueTypesLegal(const TargetLowering &TLI) {
566      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
567        EVT RegisterVT = RegVTs[Value];
568        if (!TLI.isTypeLegal(RegisterVT))
569          return false;
570      }
571      return true;
572    }
573
574    /// append - Add the specified values to this one.
575    void append(const RegsForValue &RHS) {
576      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
577      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
578      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
579    }
580
581    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
582    /// this value and returns the result as a ValueVTs value.  This uses
583    /// Chain/Flag as the input and updates them for the output Chain/Flag.
584    /// If the Flag pointer is NULL, no flag is used.
585    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
586                            DebugLoc dl,
587                            SDValue &Chain, SDValue *Flag) const;
588
589    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
590    /// specified value into the registers specified by this object.  This uses
591    /// Chain/Flag as the input and updates them for the output Chain/Flag.
592    /// If the Flag pointer is NULL, no flag is used.
593    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
594                       SDValue &Chain, SDValue *Flag) const;
595
596    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
597    /// operand list.  This adds the code marker, matching input operand index
598    /// (if applicable), and includes the number of values added into it.
599    void AddInlineAsmOperands(unsigned Kind,
600                              bool HasMatching, unsigned MatchingIdx,
601                              SelectionDAG &DAG,
602                              std::vector<SDValue> &Ops) const;
603  };
604}
605
606/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
607/// this value and returns the result as a ValueVT value.  This uses
608/// Chain/Flag as the input and updates them for the output Chain/Flag.
609/// If the Flag pointer is NULL, no flag is used.
610SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
611                                      FunctionLoweringInfo &FuncInfo,
612                                      DebugLoc dl,
613                                      SDValue &Chain, SDValue *Flag) const {
614  // A Value with type {} or [0 x %t] needs no registers.
615  if (ValueVTs.empty())
616    return SDValue();
617
618  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
619
620  // Assemble the legal parts into the final values.
621  SmallVector<SDValue, 4> Values(ValueVTs.size());
622  SmallVector<SDValue, 8> Parts;
623  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
624    // Copy the legal parts from the registers.
625    EVT ValueVT = ValueVTs[Value];
626    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
627    EVT RegisterVT = RegVTs[Value];
628
629    Parts.resize(NumRegs);
630    for (unsigned i = 0; i != NumRegs; ++i) {
631      SDValue P;
632      if (Flag == 0) {
633        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
634      } else {
635        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
636        *Flag = P.getValue(2);
637      }
638
639      Chain = P.getValue(1);
640      Parts[i] = P;
641
642      // If the source register was virtual and if we know something about it,
643      // add an assert node.
644      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
645          !RegisterVT.isInteger() || RegisterVT.isVector())
646        continue;
647
648      unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
649      if (SlotNo >= FuncInfo.LiveOutRegInfo.size()) continue;
650
651      const FunctionLoweringInfo::LiveOutInfo &LOI =
652        FuncInfo.LiveOutRegInfo[SlotNo];
653
654      unsigned RegSize = RegisterVT.getSizeInBits();
655      unsigned NumSignBits = LOI.NumSignBits;
656      unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
657
658      // FIXME: We capture more information than the dag can represent.  For
659      // now, just use the tightest assertzext/assertsext possible.
660      bool isSExt = true;
661      EVT FromVT(MVT::Other);
662      if (NumSignBits == RegSize)
663        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
664      else if (NumZeroBits >= RegSize-1)
665        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
666      else if (NumSignBits > RegSize-8)
667        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
668      else if (NumZeroBits >= RegSize-8)
669        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
670      else if (NumSignBits > RegSize-16)
671        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
672      else if (NumZeroBits >= RegSize-16)
673        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
674      else if (NumSignBits > RegSize-32)
675        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
676      else if (NumZeroBits >= RegSize-32)
677        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
678      else
679        continue;
680
681      // Add an assertion node.
682      assert(FromVT != MVT::Other);
683      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
684                             RegisterVT, P, DAG.getValueType(FromVT));
685    }
686
687    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
688                                     NumRegs, RegisterVT, ValueVT);
689    Part += NumRegs;
690    Parts.clear();
691  }
692
693  return DAG.getNode(ISD::MERGE_VALUES, dl,
694                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
695                     &Values[0], ValueVTs.size());
696}
697
698/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
699/// specified value into the registers specified by this object.  This uses
700/// Chain/Flag as the input and updates them for the output Chain/Flag.
701/// If the Flag pointer is NULL, no flag is used.
702void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
703                                 SDValue &Chain, SDValue *Flag) const {
704  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
705
706  // Get the list of the values's legal parts.
707  unsigned NumRegs = Regs.size();
708  SmallVector<SDValue, 8> Parts(NumRegs);
709  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
710    EVT ValueVT = ValueVTs[Value];
711    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
712    EVT RegisterVT = RegVTs[Value];
713
714    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
715                   &Parts[Part], NumParts, RegisterVT);
716    Part += NumParts;
717  }
718
719  // Copy the parts into the registers.
720  SmallVector<SDValue, 8> Chains(NumRegs);
721  for (unsigned i = 0; i != NumRegs; ++i) {
722    SDValue Part;
723    if (Flag == 0) {
724      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
725    } else {
726      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
727      *Flag = Part.getValue(1);
728    }
729
730    Chains[i] = Part.getValue(0);
731  }
732
733  if (NumRegs == 1 || Flag)
734    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
735    // flagged to it. That is the CopyToReg nodes and the user are considered
736    // a single scheduling unit. If we create a TokenFactor and return it as
737    // chain, then the TokenFactor is both a predecessor (operand) of the
738    // user as well as a successor (the TF operands are flagged to the user).
739    // c1, f1 = CopyToReg
740    // c2, f2 = CopyToReg
741    // c3     = TokenFactor c1, c2
742    // ...
743    //        = op c3, ..., f2
744    Chain = Chains[NumRegs-1];
745  else
746    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
747}
748
749/// AddInlineAsmOperands - Add this value to the specified inlineasm node
750/// operand list.  This adds the code marker and includes the number of
751/// values added into it.
752void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
753                                        unsigned MatchingIdx,
754                                        SelectionDAG &DAG,
755                                        std::vector<SDValue> &Ops) const {
756  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
757
758  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
759  if (HasMatching)
760    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
761  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
762  Ops.push_back(Res);
763
764  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
765    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
766    EVT RegisterVT = RegVTs[Value];
767    for (unsigned i = 0; i != NumRegs; ++i) {
768      assert(Reg < Regs.size() && "Mismatch in # registers expected");
769      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
770    }
771  }
772}
773
774void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
775  AA = &aa;
776  GFI = gfi;
777  TD = DAG.getTarget().getTargetData();
778}
779
780/// clear - Clear out the current SelectionDAG and the associated
781/// state and prepare this SelectionDAGBuilder object to be used
782/// for a new block. This doesn't clear out information about
783/// additional blocks that are needed to complete switch lowering
784/// or PHI node updating; that information is cleared out as it is
785/// consumed.
786void SelectionDAGBuilder::clear() {
787  NodeMap.clear();
788  UnusedArgNodeMap.clear();
789  PendingLoads.clear();
790  PendingExports.clear();
791  DanglingDebugInfoMap.clear();
792  CurDebugLoc = DebugLoc();
793  HasTailCall = false;
794}
795
796/// getRoot - Return the current virtual root of the Selection DAG,
797/// flushing any PendingLoad items. This must be done before emitting
798/// a store or any other node that may need to be ordered after any
799/// prior load instructions.
800///
801SDValue SelectionDAGBuilder::getRoot() {
802  if (PendingLoads.empty())
803    return DAG.getRoot();
804
805  if (PendingLoads.size() == 1) {
806    SDValue Root = PendingLoads[0];
807    DAG.setRoot(Root);
808    PendingLoads.clear();
809    return Root;
810  }
811
812  // Otherwise, we have to make a token factor node.
813  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
814                               &PendingLoads[0], PendingLoads.size());
815  PendingLoads.clear();
816  DAG.setRoot(Root);
817  return Root;
818}
819
820/// getControlRoot - Similar to getRoot, but instead of flushing all the
821/// PendingLoad items, flush all the PendingExports items. It is necessary
822/// to do this before emitting a terminator instruction.
823///
824SDValue SelectionDAGBuilder::getControlRoot() {
825  SDValue Root = DAG.getRoot();
826
827  if (PendingExports.empty())
828    return Root;
829
830  // Turn all of the CopyToReg chains into one factored node.
831  if (Root.getOpcode() != ISD::EntryToken) {
832    unsigned i = 0, e = PendingExports.size();
833    for (; i != e; ++i) {
834      assert(PendingExports[i].getNode()->getNumOperands() > 1);
835      if (PendingExports[i].getNode()->getOperand(0) == Root)
836        break;  // Don't add the root if we already indirectly depend on it.
837    }
838
839    if (i == e)
840      PendingExports.push_back(Root);
841  }
842
843  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
844                     &PendingExports[0],
845                     PendingExports.size());
846  PendingExports.clear();
847  DAG.setRoot(Root);
848  return Root;
849}
850
851void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
852  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
853  DAG.AssignOrdering(Node, SDNodeOrder);
854
855  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
856    AssignOrderingToNode(Node->getOperand(I).getNode());
857}
858
859void SelectionDAGBuilder::visit(const Instruction &I) {
860  // Set up outgoing PHI node register values before emitting the terminator.
861  if (isa<TerminatorInst>(&I))
862    HandlePHINodesInSuccessorBlocks(I.getParent());
863
864  CurDebugLoc = I.getDebugLoc();
865
866  visit(I.getOpcode(), I);
867
868  if (!isa<TerminatorInst>(&I) && !HasTailCall)
869    CopyToExportRegsIfNeeded(&I);
870
871  CurDebugLoc = DebugLoc();
872}
873
874void SelectionDAGBuilder::visitPHI(const PHINode &) {
875  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
876}
877
878void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
879  // Note: this doesn't use InstVisitor, because it has to work with
880  // ConstantExpr's in addition to instructions.
881  switch (Opcode) {
882  default: llvm_unreachable("Unknown instruction type encountered!");
883    // Build the switch statement using the Instruction.def file.
884#define HANDLE_INST(NUM, OPCODE, CLASS) \
885    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
886#include "llvm/Instruction.def"
887  }
888
889  // Assign the ordering to the freshly created DAG nodes.
890  if (NodeMap.count(&I)) {
891    ++SDNodeOrder;
892    AssignOrderingToNode(getValue(&I).getNode());
893  }
894}
895
896// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
897// generate the debug data structures now that we've seen its definition.
898void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
899                                                   SDValue Val) {
900  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
901  if (DDI.getDI()) {
902    const DbgValueInst *DI = DDI.getDI();
903    DebugLoc dl = DDI.getdl();
904    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
905    MDNode *Variable = DI->getVariable();
906    uint64_t Offset = DI->getOffset();
907    SDDbgValue *SDV;
908    if (Val.getNode()) {
909      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
910        SDV = DAG.getDbgValue(Variable, Val.getNode(),
911                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
912        DAG.AddDbgValue(SDV, Val.getNode(), false);
913      }
914    } else
915      DEBUG(dbgs() << "Dropping debug info for " << DI);
916    DanglingDebugInfoMap[V] = DanglingDebugInfo();
917  }
918}
919
920// getValue - Return an SDValue for the given Value.
921SDValue SelectionDAGBuilder::getValue(const Value *V) {
922  // If we already have an SDValue for this value, use it. It's important
923  // to do this first, so that we don't create a CopyFromReg if we already
924  // have a regular SDValue.
925  SDValue &N = NodeMap[V];
926  if (N.getNode()) return N;
927
928  // If there's a virtual register allocated and initialized for this
929  // value, use it.
930  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
931  if (It != FuncInfo.ValueMap.end()) {
932    unsigned InReg = It->second;
933    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
934    SDValue Chain = DAG.getEntryNode();
935    return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
936  }
937
938  // Otherwise create a new SDValue and remember it.
939  SDValue Val = getValueImpl(V);
940  NodeMap[V] = Val;
941  resolveDanglingDebugInfo(V, Val);
942  return Val;
943}
944
945/// getNonRegisterValue - Return an SDValue for the given Value, but
946/// don't look in FuncInfo.ValueMap for a virtual register.
947SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
948  // If we already have an SDValue for this value, use it.
949  SDValue &N = NodeMap[V];
950  if (N.getNode()) return N;
951
952  // Otherwise create a new SDValue and remember it.
953  SDValue Val = getValueImpl(V);
954  NodeMap[V] = Val;
955  resolveDanglingDebugInfo(V, Val);
956  return Val;
957}
958
959/// getValueImpl - Helper function for getValue and getNonRegisterValue.
960/// Create an SDValue for the given value.
961SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
962  if (const Constant *C = dyn_cast<Constant>(V)) {
963    EVT VT = TLI.getValueType(V->getType(), true);
964
965    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
966      return DAG.getConstant(*CI, VT);
967
968    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
969      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
970
971    if (isa<ConstantPointerNull>(C))
972      return DAG.getConstant(0, TLI.getPointerTy());
973
974    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
975      return DAG.getConstantFP(*CFP, VT);
976
977    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
978      return DAG.getUNDEF(VT);
979
980    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
981      visit(CE->getOpcode(), *CE);
982      SDValue N1 = NodeMap[V];
983      assert(N1.getNode() && "visit didn't populate the NodeMap!");
984      return N1;
985    }
986
987    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
988      SmallVector<SDValue, 4> Constants;
989      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
990           OI != OE; ++OI) {
991        SDNode *Val = getValue(*OI).getNode();
992        // If the operand is an empty aggregate, there are no values.
993        if (!Val) continue;
994        // Add each leaf value from the operand to the Constants list
995        // to form a flattened list of all the values.
996        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
997          Constants.push_back(SDValue(Val, i));
998      }
999
1000      return DAG.getMergeValues(&Constants[0], Constants.size(),
1001                                getCurDebugLoc());
1002    }
1003
1004    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1005      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1006             "Unknown struct or array constant!");
1007
1008      SmallVector<EVT, 4> ValueVTs;
1009      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1010      unsigned NumElts = ValueVTs.size();
1011      if (NumElts == 0)
1012        return SDValue(); // empty struct
1013      SmallVector<SDValue, 4> Constants(NumElts);
1014      for (unsigned i = 0; i != NumElts; ++i) {
1015        EVT EltVT = ValueVTs[i];
1016        if (isa<UndefValue>(C))
1017          Constants[i] = DAG.getUNDEF(EltVT);
1018        else if (EltVT.isFloatingPoint())
1019          Constants[i] = DAG.getConstantFP(0, EltVT);
1020        else
1021          Constants[i] = DAG.getConstant(0, EltVT);
1022      }
1023
1024      return DAG.getMergeValues(&Constants[0], NumElts,
1025                                getCurDebugLoc());
1026    }
1027
1028    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1029      return DAG.getBlockAddress(BA, VT);
1030
1031    const VectorType *VecTy = cast<VectorType>(V->getType());
1032    unsigned NumElements = VecTy->getNumElements();
1033
1034    // Now that we know the number and type of the elements, get that number of
1035    // elements into the Ops array based on what kind of constant it is.
1036    SmallVector<SDValue, 16> Ops;
1037    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1038      for (unsigned i = 0; i != NumElements; ++i)
1039        Ops.push_back(getValue(CP->getOperand(i)));
1040    } else {
1041      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1042      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1043
1044      SDValue Op;
1045      if (EltVT.isFloatingPoint())
1046        Op = DAG.getConstantFP(0, EltVT);
1047      else
1048        Op = DAG.getConstant(0, EltVT);
1049      Ops.assign(NumElements, Op);
1050    }
1051
1052    // Create a BUILD_VECTOR node.
1053    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1054                                    VT, &Ops[0], Ops.size());
1055  }
1056
1057  // If this is a static alloca, generate it as the frameindex instead of
1058  // computation.
1059  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1060    DenseMap<const AllocaInst*, int>::iterator SI =
1061      FuncInfo.StaticAllocaMap.find(AI);
1062    if (SI != FuncInfo.StaticAllocaMap.end())
1063      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1064  }
1065
1066  // If this is an instruction which fast-isel has deferred, select it now.
1067  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1068    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1069    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1070    SDValue Chain = DAG.getEntryNode();
1071    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1072  }
1073
1074  llvm_unreachable("Can't get register for value!");
1075  return SDValue();
1076}
1077
1078void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1079  SDValue Chain = getControlRoot();
1080  SmallVector<ISD::OutputArg, 8> Outs;
1081  SmallVector<SDValue, 8> OutVals;
1082
1083  if (!FuncInfo.CanLowerReturn) {
1084    unsigned DemoteReg = FuncInfo.DemoteRegister;
1085    const Function *F = I.getParent()->getParent();
1086
1087    // Emit a store of the return value through the virtual register.
1088    // Leave Outs empty so that LowerReturn won't try to load return
1089    // registers the usual way.
1090    SmallVector<EVT, 1> PtrValueVTs;
1091    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1092                    PtrValueVTs);
1093
1094    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1095    SDValue RetOp = getValue(I.getOperand(0));
1096
1097    SmallVector<EVT, 4> ValueVTs;
1098    SmallVector<uint64_t, 4> Offsets;
1099    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1100    unsigned NumValues = ValueVTs.size();
1101
1102    SmallVector<SDValue, 4> Chains(NumValues);
1103    for (unsigned i = 0; i != NumValues; ++i) {
1104      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1105                                RetPtr.getValueType(), RetPtr,
1106                                DAG.getIntPtrConstant(Offsets[i]));
1107      Chains[i] =
1108        DAG.getStore(Chain, getCurDebugLoc(),
1109                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1110                     // FIXME: better loc info would be nice.
1111                     Add, MachinePointerInfo(), false, false, 0);
1112    }
1113
1114    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1115                        MVT::Other, &Chains[0], NumValues);
1116  } else if (I.getNumOperands() != 0) {
1117    SmallVector<EVT, 4> ValueVTs;
1118    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1119    unsigned NumValues = ValueVTs.size();
1120    if (NumValues) {
1121      SDValue RetOp = getValue(I.getOperand(0));
1122      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1123        EVT VT = ValueVTs[j];
1124
1125        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1126
1127        const Function *F = I.getParent()->getParent();
1128        if (F->paramHasAttr(0, Attribute::SExt))
1129          ExtendKind = ISD::SIGN_EXTEND;
1130        else if (F->paramHasAttr(0, Attribute::ZExt))
1131          ExtendKind = ISD::ZERO_EXTEND;
1132
1133        // FIXME: C calling convention requires the return type to be promoted
1134        // to at least 32-bit. But this is not necessary for non-C calling
1135        // conventions. The frontend should mark functions whose return values
1136        // require promoting with signext or zeroext attributes.
1137        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1138          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1139          if (VT.bitsLT(MinVT))
1140            VT = MinVT;
1141        }
1142
1143        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1144        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1145        SmallVector<SDValue, 4> Parts(NumParts);
1146        getCopyToParts(DAG, getCurDebugLoc(),
1147                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1148                       &Parts[0], NumParts, PartVT, ExtendKind);
1149
1150        // 'inreg' on function refers to return value
1151        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1152        if (F->paramHasAttr(0, Attribute::InReg))
1153          Flags.setInReg();
1154
1155        // Propagate extension type if any
1156        if (F->paramHasAttr(0, Attribute::SExt))
1157          Flags.setSExt();
1158        else if (F->paramHasAttr(0, Attribute::ZExt))
1159          Flags.setZExt();
1160
1161        for (unsigned i = 0; i < NumParts; ++i) {
1162          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1163                                        /*isfixed=*/true));
1164          OutVals.push_back(Parts[i]);
1165        }
1166      }
1167    }
1168  }
1169
1170  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1171  CallingConv::ID CallConv =
1172    DAG.getMachineFunction().getFunction()->getCallingConv();
1173  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1174                          Outs, OutVals, getCurDebugLoc(), DAG);
1175
1176  // Verify that the target's LowerReturn behaved as expected.
1177  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1178         "LowerReturn didn't return a valid chain!");
1179
1180  // Update the DAG with the new chain value resulting from return lowering.
1181  DAG.setRoot(Chain);
1182}
1183
1184/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1185/// created for it, emit nodes to copy the value into the virtual
1186/// registers.
1187void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1188  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1189  if (VMI != FuncInfo.ValueMap.end()) {
1190    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1191    CopyValueToVirtualRegister(V, VMI->second);
1192  }
1193}
1194
1195/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1196/// the current basic block, add it to ValueMap now so that we'll get a
1197/// CopyTo/FromReg.
1198void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1199  // No need to export constants.
1200  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1201
1202  // Already exported?
1203  if (FuncInfo.isExportedInst(V)) return;
1204
1205  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1206  CopyValueToVirtualRegister(V, Reg);
1207}
1208
1209bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1210                                                     const BasicBlock *FromBB) {
1211  // The operands of the setcc have to be in this block.  We don't know
1212  // how to export them from some other block.
1213  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1214    // Can export from current BB.
1215    if (VI->getParent() == FromBB)
1216      return true;
1217
1218    // Is already exported, noop.
1219    return FuncInfo.isExportedInst(V);
1220  }
1221
1222  // If this is an argument, we can export it if the BB is the entry block or
1223  // if it is already exported.
1224  if (isa<Argument>(V)) {
1225    if (FromBB == &FromBB->getParent()->getEntryBlock())
1226      return true;
1227
1228    // Otherwise, can only export this if it is already exported.
1229    return FuncInfo.isExportedInst(V);
1230  }
1231
1232  // Otherwise, constants can always be exported.
1233  return true;
1234}
1235
1236static bool InBlock(const Value *V, const BasicBlock *BB) {
1237  if (const Instruction *I = dyn_cast<Instruction>(V))
1238    return I->getParent() == BB;
1239  return true;
1240}
1241
1242/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1243/// This function emits a branch and is used at the leaves of an OR or an
1244/// AND operator tree.
1245///
1246void
1247SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1248                                                  MachineBasicBlock *TBB,
1249                                                  MachineBasicBlock *FBB,
1250                                                  MachineBasicBlock *CurBB,
1251                                                  MachineBasicBlock *SwitchBB) {
1252  const BasicBlock *BB = CurBB->getBasicBlock();
1253
1254  // If the leaf of the tree is a comparison, merge the condition into
1255  // the caseblock.
1256  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1257    // The operands of the cmp have to be in this block.  We don't know
1258    // how to export them from some other block.  If this is the first block
1259    // of the sequence, no exporting is needed.
1260    if (CurBB == SwitchBB ||
1261        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1262         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1263      ISD::CondCode Condition;
1264      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1265        Condition = getICmpCondCode(IC->getPredicate());
1266      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1267        Condition = getFCmpCondCode(FC->getPredicate());
1268      } else {
1269        Condition = ISD::SETEQ; // silence warning.
1270        llvm_unreachable("Unknown compare instruction");
1271      }
1272
1273      CaseBlock CB(Condition, BOp->getOperand(0),
1274                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1275      SwitchCases.push_back(CB);
1276      return;
1277    }
1278  }
1279
1280  // Create a CaseBlock record representing this branch.
1281  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1282               NULL, TBB, FBB, CurBB);
1283  SwitchCases.push_back(CB);
1284}
1285
1286/// FindMergedConditions - If Cond is an expression like
1287void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1288                                               MachineBasicBlock *TBB,
1289                                               MachineBasicBlock *FBB,
1290                                               MachineBasicBlock *CurBB,
1291                                               MachineBasicBlock *SwitchBB,
1292                                               unsigned Opc) {
1293  // If this node is not part of the or/and tree, emit it as a branch.
1294  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1295  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1296      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1297      BOp->getParent() != CurBB->getBasicBlock() ||
1298      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1299      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1300    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1301    return;
1302  }
1303
1304  //  Create TmpBB after CurBB.
1305  MachineFunction::iterator BBI = CurBB;
1306  MachineFunction &MF = DAG.getMachineFunction();
1307  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1308  CurBB->getParent()->insert(++BBI, TmpBB);
1309
1310  if (Opc == Instruction::Or) {
1311    // Codegen X | Y as:
1312    //   jmp_if_X TBB
1313    //   jmp TmpBB
1314    // TmpBB:
1315    //   jmp_if_Y TBB
1316    //   jmp FBB
1317    //
1318
1319    // Emit the LHS condition.
1320    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1321
1322    // Emit the RHS condition into TmpBB.
1323    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1324  } else {
1325    assert(Opc == Instruction::And && "Unknown merge op!");
1326    // Codegen X & Y as:
1327    //   jmp_if_X TmpBB
1328    //   jmp FBB
1329    // TmpBB:
1330    //   jmp_if_Y TBB
1331    //   jmp FBB
1332    //
1333    //  This requires creation of TmpBB after CurBB.
1334
1335    // Emit the LHS condition.
1336    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1337
1338    // Emit the RHS condition into TmpBB.
1339    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1340  }
1341}
1342
1343/// If the set of cases should be emitted as a series of branches, return true.
1344/// If we should emit this as a bunch of and/or'd together conditions, return
1345/// false.
1346bool
1347SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1348  if (Cases.size() != 2) return true;
1349
1350  // If this is two comparisons of the same values or'd or and'd together, they
1351  // will get folded into a single comparison, so don't emit two blocks.
1352  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1353       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1354      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1355       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1356    return false;
1357  }
1358
1359  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1360  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1361  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1362      Cases[0].CC == Cases[1].CC &&
1363      isa<Constant>(Cases[0].CmpRHS) &&
1364      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1365    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1366      return false;
1367    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1368      return false;
1369  }
1370
1371  return true;
1372}
1373
1374void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1375  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1376
1377  // Update machine-CFG edges.
1378  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1379
1380  // Figure out which block is immediately after the current one.
1381  MachineBasicBlock *NextBlock = 0;
1382  MachineFunction::iterator BBI = BrMBB;
1383  if (++BBI != FuncInfo.MF->end())
1384    NextBlock = BBI;
1385
1386  if (I.isUnconditional()) {
1387    // Update machine-CFG edges.
1388    BrMBB->addSuccessor(Succ0MBB);
1389
1390    // If this is not a fall-through branch, emit the branch.
1391    if (Succ0MBB != NextBlock)
1392      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1393                              MVT::Other, getControlRoot(),
1394                              DAG.getBasicBlock(Succ0MBB)));
1395
1396    return;
1397  }
1398
1399  // If this condition is one of the special cases we handle, do special stuff
1400  // now.
1401  const Value *CondVal = I.getCondition();
1402  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1403
1404  // If this is a series of conditions that are or'd or and'd together, emit
1405  // this as a sequence of branches instead of setcc's with and/or operations.
1406  // As long as jumps are not expensive, this should improve performance.
1407  // For example, instead of something like:
1408  //     cmp A, B
1409  //     C = seteq
1410  //     cmp D, E
1411  //     F = setle
1412  //     or C, F
1413  //     jnz foo
1414  // Emit:
1415  //     cmp A, B
1416  //     je foo
1417  //     cmp D, E
1418  //     jle foo
1419  //
1420  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1421    if (!TLI.isJumpExpensive() &&
1422        BOp->hasOneUse() &&
1423        (BOp->getOpcode() == Instruction::And ||
1424         BOp->getOpcode() == Instruction::Or)) {
1425      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1426                           BOp->getOpcode());
1427      // If the compares in later blocks need to use values not currently
1428      // exported from this block, export them now.  This block should always
1429      // be the first entry.
1430      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1431
1432      // Allow some cases to be rejected.
1433      if (ShouldEmitAsBranches(SwitchCases)) {
1434        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1435          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1436          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1437        }
1438
1439        // Emit the branch for this block.
1440        visitSwitchCase(SwitchCases[0], BrMBB);
1441        SwitchCases.erase(SwitchCases.begin());
1442        return;
1443      }
1444
1445      // Okay, we decided not to do this, remove any inserted MBB's and clear
1446      // SwitchCases.
1447      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1448        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1449
1450      SwitchCases.clear();
1451    }
1452  }
1453
1454  // Create a CaseBlock record representing this branch.
1455  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1456               NULL, Succ0MBB, Succ1MBB, BrMBB);
1457
1458  // Use visitSwitchCase to actually insert the fast branch sequence for this
1459  // cond branch.
1460  visitSwitchCase(CB, BrMBB);
1461}
1462
1463/// visitSwitchCase - Emits the necessary code to represent a single node in
1464/// the binary search tree resulting from lowering a switch instruction.
1465void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1466                                          MachineBasicBlock *SwitchBB) {
1467  SDValue Cond;
1468  SDValue CondLHS = getValue(CB.CmpLHS);
1469  DebugLoc dl = getCurDebugLoc();
1470
1471  // Build the setcc now.
1472  if (CB.CmpMHS == NULL) {
1473    // Fold "(X == true)" to X and "(X == false)" to !X to
1474    // handle common cases produced by branch lowering.
1475    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1476        CB.CC == ISD::SETEQ)
1477      Cond = CondLHS;
1478    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1479             CB.CC == ISD::SETEQ) {
1480      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1481      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1482    } else
1483      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1484  } else {
1485    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1486
1487    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1488    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1489
1490    SDValue CmpOp = getValue(CB.CmpMHS);
1491    EVT VT = CmpOp.getValueType();
1492
1493    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1494      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1495                          ISD::SETLE);
1496    } else {
1497      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1498                                VT, CmpOp, DAG.getConstant(Low, VT));
1499      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1500                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1501    }
1502  }
1503
1504  // Update successor info
1505  SwitchBB->addSuccessor(CB.TrueBB);
1506  SwitchBB->addSuccessor(CB.FalseBB);
1507
1508  // Set NextBlock to be the MBB immediately after the current one, if any.
1509  // This is used to avoid emitting unnecessary branches to the next block.
1510  MachineBasicBlock *NextBlock = 0;
1511  MachineFunction::iterator BBI = SwitchBB;
1512  if (++BBI != FuncInfo.MF->end())
1513    NextBlock = BBI;
1514
1515  // If the lhs block is the next block, invert the condition so that we can
1516  // fall through to the lhs instead of the rhs block.
1517  if (CB.TrueBB == NextBlock) {
1518    std::swap(CB.TrueBB, CB.FalseBB);
1519    SDValue True = DAG.getConstant(1, Cond.getValueType());
1520    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1521  }
1522
1523  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1524                               MVT::Other, getControlRoot(), Cond,
1525                               DAG.getBasicBlock(CB.TrueBB));
1526
1527  // Insert the false branch. Do this even if it's a fall through branch,
1528  // this makes it easier to do DAG optimizations which require inverting
1529  // the branch condition.
1530  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1531                       DAG.getBasicBlock(CB.FalseBB));
1532
1533  DAG.setRoot(BrCond);
1534}
1535
1536/// visitJumpTable - Emit JumpTable node in the current MBB
1537void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1538  // Emit the code for the jump table
1539  assert(JT.Reg != -1U && "Should lower JT Header first!");
1540  EVT PTy = TLI.getPointerTy();
1541  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1542                                     JT.Reg, PTy);
1543  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1544  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1545                                    MVT::Other, Index.getValue(1),
1546                                    Table, Index);
1547  DAG.setRoot(BrJumpTable);
1548}
1549
1550/// visitJumpTableHeader - This function emits necessary code to produce index
1551/// in the JumpTable from switch case.
1552void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1553                                               JumpTableHeader &JTH,
1554                                               MachineBasicBlock *SwitchBB) {
1555  // Subtract the lowest switch case value from the value being switched on and
1556  // conditional branch to default mbb if the result is greater than the
1557  // difference between smallest and largest cases.
1558  SDValue SwitchOp = getValue(JTH.SValue);
1559  EVT VT = SwitchOp.getValueType();
1560  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1561                            DAG.getConstant(JTH.First, VT));
1562
1563  // The SDNode we just created, which holds the value being switched on minus
1564  // the smallest case value, needs to be copied to a virtual register so it
1565  // can be used as an index into the jump table in a subsequent basic block.
1566  // This value may be smaller or larger than the target's pointer type, and
1567  // therefore require extension or truncating.
1568  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1569
1570  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1571  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1572                                    JumpTableReg, SwitchOp);
1573  JT.Reg = JumpTableReg;
1574
1575  // Emit the range check for the jump table, and branch to the default block
1576  // for the switch statement if the value being switched on exceeds the largest
1577  // case in the switch.
1578  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1579                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1580                             DAG.getConstant(JTH.Last-JTH.First,VT),
1581                             ISD::SETUGT);
1582
1583  // Set NextBlock to be the MBB immediately after the current one, if any.
1584  // This is used to avoid emitting unnecessary branches to the next block.
1585  MachineBasicBlock *NextBlock = 0;
1586  MachineFunction::iterator BBI = SwitchBB;
1587
1588  if (++BBI != FuncInfo.MF->end())
1589    NextBlock = BBI;
1590
1591  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1592                               MVT::Other, CopyTo, CMP,
1593                               DAG.getBasicBlock(JT.Default));
1594
1595  if (JT.MBB != NextBlock)
1596    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1597                         DAG.getBasicBlock(JT.MBB));
1598
1599  DAG.setRoot(BrCond);
1600}
1601
1602/// visitBitTestHeader - This function emits necessary code to produce value
1603/// suitable for "bit tests"
1604void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1605                                             MachineBasicBlock *SwitchBB) {
1606  // Subtract the minimum value
1607  SDValue SwitchOp = getValue(B.SValue);
1608  EVT VT = SwitchOp.getValueType();
1609  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1610                            DAG.getConstant(B.First, VT));
1611
1612  // Check range
1613  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1614                                  TLI.getSetCCResultType(Sub.getValueType()),
1615                                  Sub, DAG.getConstant(B.Range, VT),
1616                                  ISD::SETUGT);
1617
1618  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1619                                       TLI.getPointerTy());
1620
1621  B.Reg = FuncInfo.CreateReg(TLI.getPointerTy());
1622  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1623                                    B.Reg, ShiftOp);
1624
1625  // Set NextBlock to be the MBB immediately after the current one, if any.
1626  // This is used to avoid emitting unnecessary branches to the next block.
1627  MachineBasicBlock *NextBlock = 0;
1628  MachineFunction::iterator BBI = SwitchBB;
1629  if (++BBI != FuncInfo.MF->end())
1630    NextBlock = BBI;
1631
1632  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1633
1634  SwitchBB->addSuccessor(B.Default);
1635  SwitchBB->addSuccessor(MBB);
1636
1637  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1638                                MVT::Other, CopyTo, RangeCmp,
1639                                DAG.getBasicBlock(B.Default));
1640
1641  if (MBB != NextBlock)
1642    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1643                          DAG.getBasicBlock(MBB));
1644
1645  DAG.setRoot(BrRange);
1646}
1647
1648/// visitBitTestCase - this function produces one "bit test"
1649void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1650                                           unsigned Reg,
1651                                           BitTestCase &B,
1652                                           MachineBasicBlock *SwitchBB) {
1653  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1654                                       TLI.getPointerTy());
1655  SDValue Cmp;
1656  if (CountPopulation_64(B.Mask) == 1) {
1657    // Testing for a single bit; just compare the shift count with what it
1658    // would need to be to shift a 1 bit in that position.
1659    Cmp = DAG.getSetCC(getCurDebugLoc(),
1660                       TLI.getSetCCResultType(ShiftOp.getValueType()),
1661                       ShiftOp,
1662                       DAG.getConstant(CountTrailingZeros_64(B.Mask),
1663                                       TLI.getPointerTy()),
1664                       ISD::SETEQ);
1665  } else {
1666    // Make desired shift
1667    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1668                                    TLI.getPointerTy(),
1669                                    DAG.getConstant(1, TLI.getPointerTy()),
1670                                    ShiftOp);
1671
1672    // Emit bit tests and jumps
1673    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1674                                TLI.getPointerTy(), SwitchVal,
1675                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1676    Cmp = DAG.getSetCC(getCurDebugLoc(),
1677                       TLI.getSetCCResultType(AndOp.getValueType()),
1678                       AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1679                       ISD::SETNE);
1680  }
1681
1682  SwitchBB->addSuccessor(B.TargetBB);
1683  SwitchBB->addSuccessor(NextMBB);
1684
1685  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1686                              MVT::Other, getControlRoot(),
1687                              Cmp, DAG.getBasicBlock(B.TargetBB));
1688
1689  // Set NextBlock to be the MBB immediately after the current one, if any.
1690  // This is used to avoid emitting unnecessary branches to the next block.
1691  MachineBasicBlock *NextBlock = 0;
1692  MachineFunction::iterator BBI = SwitchBB;
1693  if (++BBI != FuncInfo.MF->end())
1694    NextBlock = BBI;
1695
1696  if (NextMBB != NextBlock)
1697    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1698                        DAG.getBasicBlock(NextMBB));
1699
1700  DAG.setRoot(BrAnd);
1701}
1702
1703void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1704  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1705
1706  // Retrieve successors.
1707  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1708  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1709
1710  const Value *Callee(I.getCalledValue());
1711  if (isa<InlineAsm>(Callee))
1712    visitInlineAsm(&I);
1713  else
1714    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1715
1716  // If the value of the invoke is used outside of its defining block, make it
1717  // available as a virtual register.
1718  CopyToExportRegsIfNeeded(&I);
1719
1720  // Update successor info
1721  InvokeMBB->addSuccessor(Return);
1722  InvokeMBB->addSuccessor(LandingPad);
1723
1724  // Drop into normal successor.
1725  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1726                          MVT::Other, getControlRoot(),
1727                          DAG.getBasicBlock(Return)));
1728}
1729
1730void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1731}
1732
1733/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1734/// small case ranges).
1735bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1736                                                 CaseRecVector& WorkList,
1737                                                 const Value* SV,
1738                                                 MachineBasicBlock *Default,
1739                                                 MachineBasicBlock *SwitchBB) {
1740  Case& BackCase  = *(CR.Range.second-1);
1741
1742  // Size is the number of Cases represented by this range.
1743  size_t Size = CR.Range.second - CR.Range.first;
1744  if (Size > 3)
1745    return false;
1746
1747  // Get the MachineFunction which holds the current MBB.  This is used when
1748  // inserting any additional MBBs necessary to represent the switch.
1749  MachineFunction *CurMF = FuncInfo.MF;
1750
1751  // Figure out which block is immediately after the current one.
1752  MachineBasicBlock *NextBlock = 0;
1753  MachineFunction::iterator BBI = CR.CaseBB;
1754
1755  if (++BBI != FuncInfo.MF->end())
1756    NextBlock = BBI;
1757
1758  // If any two of the cases has the same destination, and if one value
1759  // is the same as the other, but has one bit unset that the other has set,
1760  // use bit manipulation to do two compares at once.  For example:
1761  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1762  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1763  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1764  if (Size == 2 && CR.CaseBB == SwitchBB) {
1765    Case &Small = *CR.Range.first;
1766    Case &Big = *(CR.Range.second-1);
1767
1768    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1769      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1770      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1771
1772      // Check that there is only one bit different.
1773      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1774          (SmallValue | BigValue) == BigValue) {
1775        // Isolate the common bit.
1776        APInt CommonBit = BigValue & ~SmallValue;
1777        assert((SmallValue | CommonBit) == BigValue &&
1778               CommonBit.countPopulation() == 1 && "Not a common bit?");
1779
1780        SDValue CondLHS = getValue(SV);
1781        EVT VT = CondLHS.getValueType();
1782        DebugLoc DL = getCurDebugLoc();
1783
1784        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1785                                 DAG.getConstant(CommonBit, VT));
1786        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1787                                    Or, DAG.getConstant(BigValue, VT),
1788                                    ISD::SETEQ);
1789
1790        // Update successor info.
1791        SwitchBB->addSuccessor(Small.BB);
1792        SwitchBB->addSuccessor(Default);
1793
1794        // Insert the true branch.
1795        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1796                                     getControlRoot(), Cond,
1797                                     DAG.getBasicBlock(Small.BB));
1798
1799        // Insert the false branch.
1800        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1801                             DAG.getBasicBlock(Default));
1802
1803        DAG.setRoot(BrCond);
1804        return true;
1805      }
1806    }
1807  }
1808
1809  // Rearrange the case blocks so that the last one falls through if possible.
1810  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1811    // The last case block won't fall through into 'NextBlock' if we emit the
1812    // branches in this order.  See if rearranging a case value would help.
1813    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1814      if (I->BB == NextBlock) {
1815        std::swap(*I, BackCase);
1816        break;
1817      }
1818    }
1819  }
1820
1821  // Create a CaseBlock record representing a conditional branch to
1822  // the Case's target mbb if the value being switched on SV is equal
1823  // to C.
1824  MachineBasicBlock *CurBlock = CR.CaseBB;
1825  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1826    MachineBasicBlock *FallThrough;
1827    if (I != E-1) {
1828      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1829      CurMF->insert(BBI, FallThrough);
1830
1831      // Put SV in a virtual register to make it available from the new blocks.
1832      ExportFromCurrentBlock(SV);
1833    } else {
1834      // If the last case doesn't match, go to the default block.
1835      FallThrough = Default;
1836    }
1837
1838    const Value *RHS, *LHS, *MHS;
1839    ISD::CondCode CC;
1840    if (I->High == I->Low) {
1841      // This is just small small case range :) containing exactly 1 case
1842      CC = ISD::SETEQ;
1843      LHS = SV; RHS = I->High; MHS = NULL;
1844    } else {
1845      CC = ISD::SETLE;
1846      LHS = I->Low; MHS = SV; RHS = I->High;
1847    }
1848    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1849
1850    // If emitting the first comparison, just call visitSwitchCase to emit the
1851    // code into the current block.  Otherwise, push the CaseBlock onto the
1852    // vector to be later processed by SDISel, and insert the node's MBB
1853    // before the next MBB.
1854    if (CurBlock == SwitchBB)
1855      visitSwitchCase(CB, SwitchBB);
1856    else
1857      SwitchCases.push_back(CB);
1858
1859    CurBlock = FallThrough;
1860  }
1861
1862  return true;
1863}
1864
1865static inline bool areJTsAllowed(const TargetLowering &TLI) {
1866  return !DisableJumpTables &&
1867          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1868           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1869}
1870
1871static APInt ComputeRange(const APInt &First, const APInt &Last) {
1872  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1873  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1874  return (LastExt - FirstExt + 1ULL);
1875}
1876
1877/// handleJTSwitchCase - Emit jumptable for current switch case range
1878bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1879                                             CaseRecVector& WorkList,
1880                                             const Value* SV,
1881                                             MachineBasicBlock* Default,
1882                                             MachineBasicBlock *SwitchBB) {
1883  Case& FrontCase = *CR.Range.first;
1884  Case& BackCase  = *(CR.Range.second-1);
1885
1886  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1887  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1888
1889  APInt TSize(First.getBitWidth(), 0);
1890  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1891       I!=E; ++I)
1892    TSize += I->size();
1893
1894  if (!areJTsAllowed(TLI) || TSize.ult(4))
1895    return false;
1896
1897  APInt Range = ComputeRange(First, Last);
1898  double Density = TSize.roundToDouble() / Range.roundToDouble();
1899  if (Density < 0.4)
1900    return false;
1901
1902  DEBUG(dbgs() << "Lowering jump table\n"
1903               << "First entry: " << First << ". Last entry: " << Last << '\n'
1904               << "Range: " << Range
1905               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1906
1907  // Get the MachineFunction which holds the current MBB.  This is used when
1908  // inserting any additional MBBs necessary to represent the switch.
1909  MachineFunction *CurMF = FuncInfo.MF;
1910
1911  // Figure out which block is immediately after the current one.
1912  MachineFunction::iterator BBI = CR.CaseBB;
1913  ++BBI;
1914
1915  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1916
1917  // Create a new basic block to hold the code for loading the address
1918  // of the jump table, and jumping to it.  Update successor information;
1919  // we will either branch to the default case for the switch, or the jump
1920  // table.
1921  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1922  CurMF->insert(BBI, JumpTableBB);
1923  CR.CaseBB->addSuccessor(Default);
1924  CR.CaseBB->addSuccessor(JumpTableBB);
1925
1926  // Build a vector of destination BBs, corresponding to each target
1927  // of the jump table. If the value of the jump table slot corresponds to
1928  // a case statement, push the case's BB onto the vector, otherwise, push
1929  // the default BB.
1930  std::vector<MachineBasicBlock*> DestBBs;
1931  APInt TEI = First;
1932  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1933    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1934    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1935
1936    if (Low.sle(TEI) && TEI.sle(High)) {
1937      DestBBs.push_back(I->BB);
1938      if (TEI==High)
1939        ++I;
1940    } else {
1941      DestBBs.push_back(Default);
1942    }
1943  }
1944
1945  // Update successor info. Add one edge to each unique successor.
1946  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1947  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1948         E = DestBBs.end(); I != E; ++I) {
1949    if (!SuccsHandled[(*I)->getNumber()]) {
1950      SuccsHandled[(*I)->getNumber()] = true;
1951      JumpTableBB->addSuccessor(*I);
1952    }
1953  }
1954
1955  // Create a jump table index for this jump table.
1956  unsigned JTEncoding = TLI.getJumpTableEncoding();
1957  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1958                       ->createJumpTableIndex(DestBBs);
1959
1960  // Set the jump table information so that we can codegen it as a second
1961  // MachineBasicBlock
1962  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1963  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1964  if (CR.CaseBB == SwitchBB)
1965    visitJumpTableHeader(JT, JTH, SwitchBB);
1966
1967  JTCases.push_back(JumpTableBlock(JTH, JT));
1968
1969  return true;
1970}
1971
1972/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1973/// 2 subtrees.
1974bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1975                                                  CaseRecVector& WorkList,
1976                                                  const Value* SV,
1977                                                  MachineBasicBlock *Default,
1978                                                  MachineBasicBlock *SwitchBB) {
1979  // Get the MachineFunction which holds the current MBB.  This is used when
1980  // inserting any additional MBBs necessary to represent the switch.
1981  MachineFunction *CurMF = FuncInfo.MF;
1982
1983  // Figure out which block is immediately after the current one.
1984  MachineFunction::iterator BBI = CR.CaseBB;
1985  ++BBI;
1986
1987  Case& FrontCase = *CR.Range.first;
1988  Case& BackCase  = *(CR.Range.second-1);
1989  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1990
1991  // Size is the number of Cases represented by this range.
1992  unsigned Size = CR.Range.second - CR.Range.first;
1993
1994  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1995  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1996  double FMetric = 0;
1997  CaseItr Pivot = CR.Range.first + Size/2;
1998
1999  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2000  // (heuristically) allow us to emit JumpTable's later.
2001  APInt TSize(First.getBitWidth(), 0);
2002  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2003       I!=E; ++I)
2004    TSize += I->size();
2005
2006  APInt LSize = FrontCase.size();
2007  APInt RSize = TSize-LSize;
2008  DEBUG(dbgs() << "Selecting best pivot: \n"
2009               << "First: " << First << ", Last: " << Last <<'\n'
2010               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2011  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2012       J!=E; ++I, ++J) {
2013    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2014    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2015    APInt Range = ComputeRange(LEnd, RBegin);
2016    assert((Range - 2ULL).isNonNegative() &&
2017           "Invalid case distance");
2018    double LDensity = (double)LSize.roundToDouble() /
2019                           (LEnd - First + 1ULL).roundToDouble();
2020    double RDensity = (double)RSize.roundToDouble() /
2021                           (Last - RBegin + 1ULL).roundToDouble();
2022    double Metric = Range.logBase2()*(LDensity+RDensity);
2023    // Should always split in some non-trivial place
2024    DEBUG(dbgs() <<"=>Step\n"
2025                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2026                 << "LDensity: " << LDensity
2027                 << ", RDensity: " << RDensity << '\n'
2028                 << "Metric: " << Metric << '\n');
2029    if (FMetric < Metric) {
2030      Pivot = J;
2031      FMetric = Metric;
2032      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2033    }
2034
2035    LSize += J->size();
2036    RSize -= J->size();
2037  }
2038  if (areJTsAllowed(TLI)) {
2039    // If our case is dense we *really* should handle it earlier!
2040    assert((FMetric > 0) && "Should handle dense range earlier!");
2041  } else {
2042    Pivot = CR.Range.first + Size/2;
2043  }
2044
2045  CaseRange LHSR(CR.Range.first, Pivot);
2046  CaseRange RHSR(Pivot, CR.Range.second);
2047  Constant *C = Pivot->Low;
2048  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2049
2050  // We know that we branch to the LHS if the Value being switched on is
2051  // less than the Pivot value, C.  We use this to optimize our binary
2052  // tree a bit, by recognizing that if SV is greater than or equal to the
2053  // LHS's Case Value, and that Case Value is exactly one less than the
2054  // Pivot's Value, then we can branch directly to the LHS's Target,
2055  // rather than creating a leaf node for it.
2056  if ((LHSR.second - LHSR.first) == 1 &&
2057      LHSR.first->High == CR.GE &&
2058      cast<ConstantInt>(C)->getValue() ==
2059      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2060    TrueBB = LHSR.first->BB;
2061  } else {
2062    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2063    CurMF->insert(BBI, TrueBB);
2064    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2065
2066    // Put SV in a virtual register to make it available from the new blocks.
2067    ExportFromCurrentBlock(SV);
2068  }
2069
2070  // Similar to the optimization above, if the Value being switched on is
2071  // known to be less than the Constant CR.LT, and the current Case Value
2072  // is CR.LT - 1, then we can branch directly to the target block for
2073  // the current Case Value, rather than emitting a RHS leaf node for it.
2074  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2075      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2076      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2077    FalseBB = RHSR.first->BB;
2078  } else {
2079    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2080    CurMF->insert(BBI, FalseBB);
2081    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2082
2083    // Put SV in a virtual register to make it available from the new blocks.
2084    ExportFromCurrentBlock(SV);
2085  }
2086
2087  // Create a CaseBlock record representing a conditional branch to
2088  // the LHS node if the value being switched on SV is less than C.
2089  // Otherwise, branch to LHS.
2090  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2091
2092  if (CR.CaseBB == SwitchBB)
2093    visitSwitchCase(CB, SwitchBB);
2094  else
2095    SwitchCases.push_back(CB);
2096
2097  return true;
2098}
2099
2100/// handleBitTestsSwitchCase - if current case range has few destination and
2101/// range span less, than machine word bitwidth, encode case range into series
2102/// of masks and emit bit tests with these masks.
2103bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2104                                                   CaseRecVector& WorkList,
2105                                                   const Value* SV,
2106                                                   MachineBasicBlock* Default,
2107                                                   MachineBasicBlock *SwitchBB){
2108  EVT PTy = TLI.getPointerTy();
2109  unsigned IntPtrBits = PTy.getSizeInBits();
2110
2111  Case& FrontCase = *CR.Range.first;
2112  Case& BackCase  = *(CR.Range.second-1);
2113
2114  // Get the MachineFunction which holds the current MBB.  This is used when
2115  // inserting any additional MBBs necessary to represent the switch.
2116  MachineFunction *CurMF = FuncInfo.MF;
2117
2118  // If target does not have legal shift left, do not emit bit tests at all.
2119  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2120    return false;
2121
2122  size_t numCmps = 0;
2123  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2124       I!=E; ++I) {
2125    // Single case counts one, case range - two.
2126    numCmps += (I->Low == I->High ? 1 : 2);
2127  }
2128
2129  // Count unique destinations
2130  SmallSet<MachineBasicBlock*, 4> Dests;
2131  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2132    Dests.insert(I->BB);
2133    if (Dests.size() > 3)
2134      // Don't bother the code below, if there are too much unique destinations
2135      return false;
2136  }
2137  DEBUG(dbgs() << "Total number of unique destinations: "
2138        << Dests.size() << '\n'
2139        << "Total number of comparisons: " << numCmps << '\n');
2140
2141  // Compute span of values.
2142  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2143  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2144  APInt cmpRange = maxValue - minValue;
2145
2146  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2147               << "Low bound: " << minValue << '\n'
2148               << "High bound: " << maxValue << '\n');
2149
2150  if (cmpRange.uge(IntPtrBits) ||
2151      (!(Dests.size() == 1 && numCmps >= 3) &&
2152       !(Dests.size() == 2 && numCmps >= 5) &&
2153       !(Dests.size() >= 3 && numCmps >= 6)))
2154    return false;
2155
2156  DEBUG(dbgs() << "Emitting bit tests\n");
2157  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2158
2159  // Optimize the case where all the case values fit in a
2160  // word without having to subtract minValue. In this case,
2161  // we can optimize away the subtraction.
2162  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2163    cmpRange = maxValue;
2164  } else {
2165    lowBound = minValue;
2166  }
2167
2168  CaseBitsVector CasesBits;
2169  unsigned i, count = 0;
2170
2171  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2172    MachineBasicBlock* Dest = I->BB;
2173    for (i = 0; i < count; ++i)
2174      if (Dest == CasesBits[i].BB)
2175        break;
2176
2177    if (i == count) {
2178      assert((count < 3) && "Too much destinations to test!");
2179      CasesBits.push_back(CaseBits(0, Dest, 0));
2180      count++;
2181    }
2182
2183    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2184    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2185
2186    uint64_t lo = (lowValue - lowBound).getZExtValue();
2187    uint64_t hi = (highValue - lowBound).getZExtValue();
2188
2189    for (uint64_t j = lo; j <= hi; j++) {
2190      CasesBits[i].Mask |=  1ULL << j;
2191      CasesBits[i].Bits++;
2192    }
2193
2194  }
2195  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2196
2197  BitTestInfo BTC;
2198
2199  // Figure out which block is immediately after the current one.
2200  MachineFunction::iterator BBI = CR.CaseBB;
2201  ++BBI;
2202
2203  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2204
2205  DEBUG(dbgs() << "Cases:\n");
2206  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2207    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2208                 << ", Bits: " << CasesBits[i].Bits
2209                 << ", BB: " << CasesBits[i].BB << '\n');
2210
2211    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2212    CurMF->insert(BBI, CaseBB);
2213    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2214                              CaseBB,
2215                              CasesBits[i].BB));
2216
2217    // Put SV in a virtual register to make it available from the new blocks.
2218    ExportFromCurrentBlock(SV);
2219  }
2220
2221  BitTestBlock BTB(lowBound, cmpRange, SV,
2222                   -1U, (CR.CaseBB == SwitchBB),
2223                   CR.CaseBB, Default, BTC);
2224
2225  if (CR.CaseBB == SwitchBB)
2226    visitBitTestHeader(BTB, SwitchBB);
2227
2228  BitTestCases.push_back(BTB);
2229
2230  return true;
2231}
2232
2233/// Clusterify - Transform simple list of Cases into list of CaseRange's
2234size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2235                                       const SwitchInst& SI) {
2236  size_t numCmps = 0;
2237
2238  // Start with "simple" cases
2239  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2240    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2241    Cases.push_back(Case(SI.getSuccessorValue(i),
2242                         SI.getSuccessorValue(i),
2243                         SMBB));
2244  }
2245  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2246
2247  // Merge case into clusters
2248  if (Cases.size() >= 2)
2249    // Must recompute end() each iteration because it may be
2250    // invalidated by erase if we hold on to it
2251    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2252      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2253      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2254      MachineBasicBlock* nextBB = J->BB;
2255      MachineBasicBlock* currentBB = I->BB;
2256
2257      // If the two neighboring cases go to the same destination, merge them
2258      // into a single case.
2259      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2260        I->High = J->High;
2261        J = Cases.erase(J);
2262      } else {
2263        I = J++;
2264      }
2265    }
2266
2267  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2268    if (I->Low != I->High)
2269      // A range counts double, since it requires two compares.
2270      ++numCmps;
2271  }
2272
2273  return numCmps;
2274}
2275
2276void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2277                                           MachineBasicBlock *Last) {
2278  // Update JTCases.
2279  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2280    if (JTCases[i].first.HeaderBB == First)
2281      JTCases[i].first.HeaderBB = Last;
2282
2283  // Update BitTestCases.
2284  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2285    if (BitTestCases[i].Parent == First)
2286      BitTestCases[i].Parent = Last;
2287}
2288
2289void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2290  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2291
2292  // Figure out which block is immediately after the current one.
2293  MachineBasicBlock *NextBlock = 0;
2294  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2295
2296  // If there is only the default destination, branch to it if it is not the
2297  // next basic block.  Otherwise, just fall through.
2298  if (SI.getNumOperands() == 2) {
2299    // Update machine-CFG edges.
2300
2301    // If this is not a fall-through branch, emit the branch.
2302    SwitchMBB->addSuccessor(Default);
2303    if (Default != NextBlock)
2304      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2305                              MVT::Other, getControlRoot(),
2306                              DAG.getBasicBlock(Default)));
2307
2308    return;
2309  }
2310
2311  // If there are any non-default case statements, create a vector of Cases
2312  // representing each one, and sort the vector so that we can efficiently
2313  // create a binary search tree from them.
2314  CaseVector Cases;
2315  size_t numCmps = Clusterify(Cases, SI);
2316  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2317               << ". Total compares: " << numCmps << '\n');
2318  numCmps = 0;
2319
2320  // Get the Value to be switched on and default basic blocks, which will be
2321  // inserted into CaseBlock records, representing basic blocks in the binary
2322  // search tree.
2323  const Value *SV = SI.getOperand(0);
2324
2325  // Push the initial CaseRec onto the worklist
2326  CaseRecVector WorkList;
2327  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2328                             CaseRange(Cases.begin(),Cases.end())));
2329
2330  while (!WorkList.empty()) {
2331    // Grab a record representing a case range to process off the worklist
2332    CaseRec CR = WorkList.back();
2333    WorkList.pop_back();
2334
2335    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2336      continue;
2337
2338    // If the range has few cases (two or less) emit a series of specific
2339    // tests.
2340    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2341      continue;
2342
2343    // If the switch has more than 5 blocks, and at least 40% dense, and the
2344    // target supports indirect branches, then emit a jump table rather than
2345    // lowering the switch to a binary tree of conditional branches.
2346    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2347      continue;
2348
2349    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2350    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2351    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2352  }
2353}
2354
2355void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2356  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2357
2358  // Update machine-CFG edges with unique successors.
2359  SmallVector<BasicBlock*, 32> succs;
2360  succs.reserve(I.getNumSuccessors());
2361  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2362    succs.push_back(I.getSuccessor(i));
2363  array_pod_sort(succs.begin(), succs.end());
2364  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2365  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2366    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2367
2368  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2369                          MVT::Other, getControlRoot(),
2370                          getValue(I.getAddress())));
2371}
2372
2373void SelectionDAGBuilder::visitFSub(const User &I) {
2374  // -0.0 - X --> fneg
2375  const Type *Ty = I.getType();
2376  if (Ty->isVectorTy()) {
2377    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2378      const VectorType *DestTy = cast<VectorType>(I.getType());
2379      const Type *ElTy = DestTy->getElementType();
2380      unsigned VL = DestTy->getNumElements();
2381      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2382      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2383      if (CV == CNZ) {
2384        SDValue Op2 = getValue(I.getOperand(1));
2385        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2386                                 Op2.getValueType(), Op2));
2387        return;
2388      }
2389    }
2390  }
2391
2392  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2393    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2394      SDValue Op2 = getValue(I.getOperand(1));
2395      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2396                               Op2.getValueType(), Op2));
2397      return;
2398    }
2399
2400  visitBinary(I, ISD::FSUB);
2401}
2402
2403void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2404  SDValue Op1 = getValue(I.getOperand(0));
2405  SDValue Op2 = getValue(I.getOperand(1));
2406  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2407                           Op1.getValueType(), Op1, Op2));
2408}
2409
2410void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2411  SDValue Op1 = getValue(I.getOperand(0));
2412  SDValue Op2 = getValue(I.getOperand(1));
2413  if (!I.getType()->isVectorTy() &&
2414      Op2.getValueType() != TLI.getShiftAmountTy()) {
2415    // If the operand is smaller than the shift count type, promote it.
2416    EVT PTy = TLI.getPointerTy();
2417    EVT STy = TLI.getShiftAmountTy();
2418    if (STy.bitsGT(Op2.getValueType()))
2419      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2420                        TLI.getShiftAmountTy(), Op2);
2421    // If the operand is larger than the shift count type but the shift
2422    // count type has enough bits to represent any shift value, truncate
2423    // it now. This is a common case and it exposes the truncate to
2424    // optimization early.
2425    else if (STy.getSizeInBits() >=
2426             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2427      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2428                        TLI.getShiftAmountTy(), Op2);
2429    // Otherwise we'll need to temporarily settle for some other
2430    // convenient type; type legalization will make adjustments as
2431    // needed.
2432    else if (PTy.bitsLT(Op2.getValueType()))
2433      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2434                        TLI.getPointerTy(), Op2);
2435    else if (PTy.bitsGT(Op2.getValueType()))
2436      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2437                        TLI.getPointerTy(), Op2);
2438  }
2439
2440  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2441                           Op1.getValueType(), Op1, Op2));
2442}
2443
2444void SelectionDAGBuilder::visitICmp(const User &I) {
2445  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2446  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2447    predicate = IC->getPredicate();
2448  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2449    predicate = ICmpInst::Predicate(IC->getPredicate());
2450  SDValue Op1 = getValue(I.getOperand(0));
2451  SDValue Op2 = getValue(I.getOperand(1));
2452  ISD::CondCode Opcode = getICmpCondCode(predicate);
2453
2454  EVT DestVT = TLI.getValueType(I.getType());
2455  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2456}
2457
2458void SelectionDAGBuilder::visitFCmp(const User &I) {
2459  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2460  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2461    predicate = FC->getPredicate();
2462  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2463    predicate = FCmpInst::Predicate(FC->getPredicate());
2464  SDValue Op1 = getValue(I.getOperand(0));
2465  SDValue Op2 = getValue(I.getOperand(1));
2466  ISD::CondCode Condition = getFCmpCondCode(predicate);
2467  EVT DestVT = TLI.getValueType(I.getType());
2468  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2469}
2470
2471void SelectionDAGBuilder::visitSelect(const User &I) {
2472  SmallVector<EVT, 4> ValueVTs;
2473  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2474  unsigned NumValues = ValueVTs.size();
2475  if (NumValues == 0) return;
2476
2477  SmallVector<SDValue, 4> Values(NumValues);
2478  SDValue Cond     = getValue(I.getOperand(0));
2479  SDValue TrueVal  = getValue(I.getOperand(1));
2480  SDValue FalseVal = getValue(I.getOperand(2));
2481
2482  for (unsigned i = 0; i != NumValues; ++i)
2483    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2484                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2485                            Cond,
2486                            SDValue(TrueVal.getNode(),
2487                                    TrueVal.getResNo() + i),
2488                            SDValue(FalseVal.getNode(),
2489                                    FalseVal.getResNo() + i));
2490
2491  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2492                           DAG.getVTList(&ValueVTs[0], NumValues),
2493                           &Values[0], NumValues));
2494}
2495
2496void SelectionDAGBuilder::visitTrunc(const User &I) {
2497  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2498  SDValue N = getValue(I.getOperand(0));
2499  EVT DestVT = TLI.getValueType(I.getType());
2500  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2501}
2502
2503void SelectionDAGBuilder::visitZExt(const User &I) {
2504  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2505  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2506  SDValue N = getValue(I.getOperand(0));
2507  EVT DestVT = TLI.getValueType(I.getType());
2508  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2509}
2510
2511void SelectionDAGBuilder::visitSExt(const User &I) {
2512  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2513  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2514  SDValue N = getValue(I.getOperand(0));
2515  EVT DestVT = TLI.getValueType(I.getType());
2516  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2517}
2518
2519void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2520  // FPTrunc is never a no-op cast, no need to check
2521  SDValue N = getValue(I.getOperand(0));
2522  EVT DestVT = TLI.getValueType(I.getType());
2523  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2524                           DestVT, N, DAG.getIntPtrConstant(0)));
2525}
2526
2527void SelectionDAGBuilder::visitFPExt(const User &I){
2528  // FPTrunc is never a no-op cast, no need to check
2529  SDValue N = getValue(I.getOperand(0));
2530  EVT DestVT = TLI.getValueType(I.getType());
2531  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2532}
2533
2534void SelectionDAGBuilder::visitFPToUI(const User &I) {
2535  // FPToUI is never a no-op cast, no need to check
2536  SDValue N = getValue(I.getOperand(0));
2537  EVT DestVT = TLI.getValueType(I.getType());
2538  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2539}
2540
2541void SelectionDAGBuilder::visitFPToSI(const User &I) {
2542  // FPToSI is never a no-op cast, no need to check
2543  SDValue N = getValue(I.getOperand(0));
2544  EVT DestVT = TLI.getValueType(I.getType());
2545  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2546}
2547
2548void SelectionDAGBuilder::visitUIToFP(const User &I) {
2549  // UIToFP is never a no-op cast, no need to check
2550  SDValue N = getValue(I.getOperand(0));
2551  EVT DestVT = TLI.getValueType(I.getType());
2552  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2553}
2554
2555void SelectionDAGBuilder::visitSIToFP(const User &I){
2556  // SIToFP is never a no-op cast, no need to check
2557  SDValue N = getValue(I.getOperand(0));
2558  EVT DestVT = TLI.getValueType(I.getType());
2559  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2560}
2561
2562void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2563  // What to do depends on the size of the integer and the size of the pointer.
2564  // We can either truncate, zero extend, or no-op, accordingly.
2565  SDValue N = getValue(I.getOperand(0));
2566  EVT DestVT = TLI.getValueType(I.getType());
2567  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2568}
2569
2570void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2571  // What to do depends on the size of the integer and the size of the pointer.
2572  // We can either truncate, zero extend, or no-op, accordingly.
2573  SDValue N = getValue(I.getOperand(0));
2574  EVT DestVT = TLI.getValueType(I.getType());
2575  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2576}
2577
2578void SelectionDAGBuilder::visitBitCast(const User &I) {
2579  SDValue N = getValue(I.getOperand(0));
2580  EVT DestVT = TLI.getValueType(I.getType());
2581
2582  // BitCast assures us that source and destination are the same size so this is
2583  // either a BITCAST or a no-op.
2584  if (DestVT != N.getValueType())
2585    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2586                             DestVT, N)); // convert types.
2587  else
2588    setValue(&I, N);            // noop cast.
2589}
2590
2591void SelectionDAGBuilder::visitInsertElement(const User &I) {
2592  SDValue InVec = getValue(I.getOperand(0));
2593  SDValue InVal = getValue(I.getOperand(1));
2594  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2595                              TLI.getPointerTy(),
2596                              getValue(I.getOperand(2)));
2597  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2598                           TLI.getValueType(I.getType()),
2599                           InVec, InVal, InIdx));
2600}
2601
2602void SelectionDAGBuilder::visitExtractElement(const User &I) {
2603  SDValue InVec = getValue(I.getOperand(0));
2604  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2605                              TLI.getPointerTy(),
2606                              getValue(I.getOperand(1)));
2607  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2608                           TLI.getValueType(I.getType()), InVec, InIdx));
2609}
2610
2611// Utility for visitShuffleVector - Returns true if the mask is mask starting
2612// from SIndx and increasing to the element length (undefs are allowed).
2613static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2614  unsigned MaskNumElts = Mask.size();
2615  for (unsigned i = 0; i != MaskNumElts; ++i)
2616    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2617      return false;
2618  return true;
2619}
2620
2621void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2622  SmallVector<int, 8> Mask;
2623  SDValue Src1 = getValue(I.getOperand(0));
2624  SDValue Src2 = getValue(I.getOperand(1));
2625
2626  // Convert the ConstantVector mask operand into an array of ints, with -1
2627  // representing undef values.
2628  SmallVector<Constant*, 8> MaskElts;
2629  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2630  unsigned MaskNumElts = MaskElts.size();
2631  for (unsigned i = 0; i != MaskNumElts; ++i) {
2632    if (isa<UndefValue>(MaskElts[i]))
2633      Mask.push_back(-1);
2634    else
2635      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2636  }
2637
2638  EVT VT = TLI.getValueType(I.getType());
2639  EVT SrcVT = Src1.getValueType();
2640  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2641
2642  if (SrcNumElts == MaskNumElts) {
2643    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2644                                      &Mask[0]));
2645    return;
2646  }
2647
2648  // Normalize the shuffle vector since mask and vector length don't match.
2649  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2650    // Mask is longer than the source vectors and is a multiple of the source
2651    // vectors.  We can use concatenate vector to make the mask and vectors
2652    // lengths match.
2653    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2654      // The shuffle is concatenating two vectors together.
2655      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2656                               VT, Src1, Src2));
2657      return;
2658    }
2659
2660    // Pad both vectors with undefs to make them the same length as the mask.
2661    unsigned NumConcat = MaskNumElts / SrcNumElts;
2662    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2663    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2664    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2665
2666    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2667    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2668    MOps1[0] = Src1;
2669    MOps2[0] = Src2;
2670
2671    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2672                                                  getCurDebugLoc(), VT,
2673                                                  &MOps1[0], NumConcat);
2674    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2675                                                  getCurDebugLoc(), VT,
2676                                                  &MOps2[0], NumConcat);
2677
2678    // Readjust mask for new input vector length.
2679    SmallVector<int, 8> MappedOps;
2680    for (unsigned i = 0; i != MaskNumElts; ++i) {
2681      int Idx = Mask[i];
2682      if (Idx < (int)SrcNumElts)
2683        MappedOps.push_back(Idx);
2684      else
2685        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2686    }
2687
2688    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2689                                      &MappedOps[0]));
2690    return;
2691  }
2692
2693  if (SrcNumElts > MaskNumElts) {
2694    // Analyze the access pattern of the vector to see if we can extract
2695    // two subvectors and do the shuffle. The analysis is done by calculating
2696    // the range of elements the mask access on both vectors.
2697    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2698    int MaxRange[2] = {-1, -1};
2699
2700    for (unsigned i = 0; i != MaskNumElts; ++i) {
2701      int Idx = Mask[i];
2702      int Input = 0;
2703      if (Idx < 0)
2704        continue;
2705
2706      if (Idx >= (int)SrcNumElts) {
2707        Input = 1;
2708        Idx -= SrcNumElts;
2709      }
2710      if (Idx > MaxRange[Input])
2711        MaxRange[Input] = Idx;
2712      if (Idx < MinRange[Input])
2713        MinRange[Input] = Idx;
2714    }
2715
2716    // Check if the access is smaller than the vector size and can we find
2717    // a reasonable extract index.
2718    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2719                                 // Extract.
2720    int StartIdx[2];  // StartIdx to extract from
2721    for (int Input=0; Input < 2; ++Input) {
2722      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2723        RangeUse[Input] = 0; // Unused
2724        StartIdx[Input] = 0;
2725      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2726        // Fits within range but we should see if we can find a good
2727        // start index that is a multiple of the mask length.
2728        if (MaxRange[Input] < (int)MaskNumElts) {
2729          RangeUse[Input] = 1; // Extract from beginning of the vector
2730          StartIdx[Input] = 0;
2731        } else {
2732          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2733          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2734              StartIdx[Input] + MaskNumElts < SrcNumElts)
2735            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2736        }
2737      }
2738    }
2739
2740    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2741      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2742      return;
2743    }
2744    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2745      // Extract appropriate subvector and generate a vector shuffle
2746      for (int Input=0; Input < 2; ++Input) {
2747        SDValue &Src = Input == 0 ? Src1 : Src2;
2748        if (RangeUse[Input] == 0)
2749          Src = DAG.getUNDEF(VT);
2750        else
2751          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2752                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2753      }
2754
2755      // Calculate new mask.
2756      SmallVector<int, 8> MappedOps;
2757      for (unsigned i = 0; i != MaskNumElts; ++i) {
2758        int Idx = Mask[i];
2759        if (Idx < 0)
2760          MappedOps.push_back(Idx);
2761        else if (Idx < (int)SrcNumElts)
2762          MappedOps.push_back(Idx - StartIdx[0]);
2763        else
2764          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2765      }
2766
2767      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2768                                        &MappedOps[0]));
2769      return;
2770    }
2771  }
2772
2773  // We can't use either concat vectors or extract subvectors so fall back to
2774  // replacing the shuffle with extract and build vector.
2775  // to insert and build vector.
2776  EVT EltVT = VT.getVectorElementType();
2777  EVT PtrVT = TLI.getPointerTy();
2778  SmallVector<SDValue,8> Ops;
2779  for (unsigned i = 0; i != MaskNumElts; ++i) {
2780    if (Mask[i] < 0) {
2781      Ops.push_back(DAG.getUNDEF(EltVT));
2782    } else {
2783      int Idx = Mask[i];
2784      SDValue Res;
2785
2786      if (Idx < (int)SrcNumElts)
2787        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2788                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2789      else
2790        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2791                          EltVT, Src2,
2792                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2793
2794      Ops.push_back(Res);
2795    }
2796  }
2797
2798  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2799                           VT, &Ops[0], Ops.size()));
2800}
2801
2802void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2803  const Value *Op0 = I.getOperand(0);
2804  const Value *Op1 = I.getOperand(1);
2805  const Type *AggTy = I.getType();
2806  const Type *ValTy = Op1->getType();
2807  bool IntoUndef = isa<UndefValue>(Op0);
2808  bool FromUndef = isa<UndefValue>(Op1);
2809
2810  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2811
2812  SmallVector<EVT, 4> AggValueVTs;
2813  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2814  SmallVector<EVT, 4> ValValueVTs;
2815  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2816
2817  unsigned NumAggValues = AggValueVTs.size();
2818  unsigned NumValValues = ValValueVTs.size();
2819  SmallVector<SDValue, 4> Values(NumAggValues);
2820
2821  SDValue Agg = getValue(Op0);
2822  SDValue Val = getValue(Op1);
2823  unsigned i = 0;
2824  // Copy the beginning value(s) from the original aggregate.
2825  for (; i != LinearIndex; ++i)
2826    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2827                SDValue(Agg.getNode(), Agg.getResNo() + i);
2828  // Copy values from the inserted value(s).
2829  for (; i != LinearIndex + NumValValues; ++i)
2830    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2831                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2832  // Copy remaining value(s) from the original aggregate.
2833  for (; i != NumAggValues; ++i)
2834    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2835                SDValue(Agg.getNode(), Agg.getResNo() + i);
2836
2837  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2838                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2839                           &Values[0], NumAggValues));
2840}
2841
2842void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2843  const Value *Op0 = I.getOperand(0);
2844  const Type *AggTy = Op0->getType();
2845  const Type *ValTy = I.getType();
2846  bool OutOfUndef = isa<UndefValue>(Op0);
2847
2848  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2849
2850  SmallVector<EVT, 4> ValValueVTs;
2851  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2852
2853  unsigned NumValValues = ValValueVTs.size();
2854  SmallVector<SDValue, 4> Values(NumValValues);
2855
2856  SDValue Agg = getValue(Op0);
2857  // Copy out the selected value(s).
2858  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2859    Values[i - LinearIndex] =
2860      OutOfUndef ?
2861        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2862        SDValue(Agg.getNode(), Agg.getResNo() + i);
2863
2864  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2865                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2866                           &Values[0], NumValValues));
2867}
2868
2869void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2870  SDValue N = getValue(I.getOperand(0));
2871  const Type *Ty = I.getOperand(0)->getType();
2872
2873  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2874       OI != E; ++OI) {
2875    const Value *Idx = *OI;
2876    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2877      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2878      if (Field) {
2879        // N = N + Offset
2880        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2881        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2882                        DAG.getIntPtrConstant(Offset));
2883      }
2884
2885      Ty = StTy->getElementType(Field);
2886    } else {
2887      Ty = cast<SequentialType>(Ty)->getElementType();
2888
2889      // If this is a constant subscript, handle it quickly.
2890      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2891        if (CI->isZero()) continue;
2892        uint64_t Offs =
2893            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2894        SDValue OffsVal;
2895        EVT PTy = TLI.getPointerTy();
2896        unsigned PtrBits = PTy.getSizeInBits();
2897        if (PtrBits < 64)
2898          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2899                                TLI.getPointerTy(),
2900                                DAG.getConstant(Offs, MVT::i64));
2901        else
2902          OffsVal = DAG.getIntPtrConstant(Offs);
2903
2904        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2905                        OffsVal);
2906        continue;
2907      }
2908
2909      // N = N + Idx * ElementSize;
2910      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2911                                TD->getTypeAllocSize(Ty));
2912      SDValue IdxN = getValue(Idx);
2913
2914      // If the index is smaller or larger than intptr_t, truncate or extend
2915      // it.
2916      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2917
2918      // If this is a multiply by a power of two, turn it into a shl
2919      // immediately.  This is a very common case.
2920      if (ElementSize != 1) {
2921        if (ElementSize.isPowerOf2()) {
2922          unsigned Amt = ElementSize.logBase2();
2923          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2924                             N.getValueType(), IdxN,
2925                             DAG.getConstant(Amt, TLI.getPointerTy()));
2926        } else {
2927          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2928          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2929                             N.getValueType(), IdxN, Scale);
2930        }
2931      }
2932
2933      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2934                      N.getValueType(), N, IdxN);
2935    }
2936  }
2937
2938  setValue(&I, N);
2939}
2940
2941void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2942  // If this is a fixed sized alloca in the entry block of the function,
2943  // allocate it statically on the stack.
2944  if (FuncInfo.StaticAllocaMap.count(&I))
2945    return;   // getValue will auto-populate this.
2946
2947  const Type *Ty = I.getAllocatedType();
2948  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2949  unsigned Align =
2950    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2951             I.getAlignment());
2952
2953  SDValue AllocSize = getValue(I.getArraySize());
2954
2955  EVT IntPtr = TLI.getPointerTy();
2956  if (AllocSize.getValueType() != IntPtr)
2957    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2958
2959  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2960                          AllocSize,
2961                          DAG.getConstant(TySize, IntPtr));
2962
2963  // Handle alignment.  If the requested alignment is less than or equal to
2964  // the stack alignment, ignore it.  If the size is greater than or equal to
2965  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2966  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2967  if (Align <= StackAlign)
2968    Align = 0;
2969
2970  // Round the size of the allocation up to the stack alignment size
2971  // by add SA-1 to the size.
2972  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2973                          AllocSize.getValueType(), AllocSize,
2974                          DAG.getIntPtrConstant(StackAlign-1));
2975
2976  // Mask out the low bits for alignment purposes.
2977  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2978                          AllocSize.getValueType(), AllocSize,
2979                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2980
2981  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2982  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2983  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2984                            VTs, Ops, 3);
2985  setValue(&I, DSA);
2986  DAG.setRoot(DSA.getValue(1));
2987
2988  // Inform the Frame Information that we have just allocated a variable-sized
2989  // object.
2990  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
2991}
2992
2993void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2994  const Value *SV = I.getOperand(0);
2995  SDValue Ptr = getValue(SV);
2996
2997  const Type *Ty = I.getType();
2998
2999  bool isVolatile = I.isVolatile();
3000  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3001  unsigned Alignment = I.getAlignment();
3002  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3003
3004  SmallVector<EVT, 4> ValueVTs;
3005  SmallVector<uint64_t, 4> Offsets;
3006  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3007  unsigned NumValues = ValueVTs.size();
3008  if (NumValues == 0)
3009    return;
3010
3011  SDValue Root;
3012  bool ConstantMemory = false;
3013  if (I.isVolatile() || NumValues > MaxParallelChains)
3014    // Serialize volatile loads with other side effects.
3015    Root = getRoot();
3016  else if (AA->pointsToConstantMemory(
3017             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3018    // Do not serialize (non-volatile) loads of constant memory with anything.
3019    Root = DAG.getEntryNode();
3020    ConstantMemory = true;
3021  } else {
3022    // Do not serialize non-volatile loads against each other.
3023    Root = DAG.getRoot();
3024  }
3025
3026  SmallVector<SDValue, 4> Values(NumValues);
3027  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3028                                          NumValues));
3029  EVT PtrVT = Ptr.getValueType();
3030  unsigned ChainI = 0;
3031  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3032    // Serializing loads here may result in excessive register pressure, and
3033    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3034    // could recover a bit by hoisting nodes upward in the chain by recognizing
3035    // they are side-effect free or do not alias. The optimizer should really
3036    // avoid this case by converting large object/array copies to llvm.memcpy
3037    // (MaxParallelChains should always remain as failsafe).
3038    if (ChainI == MaxParallelChains) {
3039      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3040      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3041                                  MVT::Other, &Chains[0], ChainI);
3042      Root = Chain;
3043      ChainI = 0;
3044    }
3045    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3046                            PtrVT, Ptr,
3047                            DAG.getConstant(Offsets[i], PtrVT));
3048    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3049                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3050                            isNonTemporal, Alignment, TBAAInfo);
3051
3052    Values[i] = L;
3053    Chains[ChainI] = L.getValue(1);
3054  }
3055
3056  if (!ConstantMemory) {
3057    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3058                                MVT::Other, &Chains[0], ChainI);
3059    if (isVolatile)
3060      DAG.setRoot(Chain);
3061    else
3062      PendingLoads.push_back(Chain);
3063  }
3064
3065  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3066                           DAG.getVTList(&ValueVTs[0], NumValues),
3067                           &Values[0], NumValues));
3068}
3069
3070void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3071  const Value *SrcV = I.getOperand(0);
3072  const Value *PtrV = I.getOperand(1);
3073
3074  SmallVector<EVT, 4> ValueVTs;
3075  SmallVector<uint64_t, 4> Offsets;
3076  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3077  unsigned NumValues = ValueVTs.size();
3078  if (NumValues == 0)
3079    return;
3080
3081  // Get the lowered operands. Note that we do this after
3082  // checking if NumResults is zero, because with zero results
3083  // the operands won't have values in the map.
3084  SDValue Src = getValue(SrcV);
3085  SDValue Ptr = getValue(PtrV);
3086
3087  SDValue Root = getRoot();
3088  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3089                                          NumValues));
3090  EVT PtrVT = Ptr.getValueType();
3091  bool isVolatile = I.isVolatile();
3092  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3093  unsigned Alignment = I.getAlignment();
3094  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3095
3096  unsigned ChainI = 0;
3097  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3098    // See visitLoad comments.
3099    if (ChainI == MaxParallelChains) {
3100      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3101                                  MVT::Other, &Chains[0], ChainI);
3102      Root = Chain;
3103      ChainI = 0;
3104    }
3105    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3106                              DAG.getConstant(Offsets[i], PtrVT));
3107    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3108                              SDValue(Src.getNode(), Src.getResNo() + i),
3109                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3110                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3111    Chains[ChainI] = St;
3112  }
3113
3114  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3115                                  MVT::Other, &Chains[0], ChainI);
3116  ++SDNodeOrder;
3117  AssignOrderingToNode(StoreNode.getNode());
3118  DAG.setRoot(StoreNode);
3119}
3120
3121/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3122/// node.
3123void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3124                                               unsigned Intrinsic) {
3125  bool HasChain = !I.doesNotAccessMemory();
3126  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3127
3128  // Build the operand list.
3129  SmallVector<SDValue, 8> Ops;
3130  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3131    if (OnlyLoad) {
3132      // We don't need to serialize loads against other loads.
3133      Ops.push_back(DAG.getRoot());
3134    } else {
3135      Ops.push_back(getRoot());
3136    }
3137  }
3138
3139  // Info is set by getTgtMemInstrinsic
3140  TargetLowering::IntrinsicInfo Info;
3141  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3142
3143  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3144  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3145      Info.opc == ISD::INTRINSIC_W_CHAIN)
3146    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3147
3148  // Add all operands of the call to the operand list.
3149  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3150    SDValue Op = getValue(I.getArgOperand(i));
3151    assert(TLI.isTypeLegal(Op.getValueType()) &&
3152           "Intrinsic uses a non-legal type?");
3153    Ops.push_back(Op);
3154  }
3155
3156  SmallVector<EVT, 4> ValueVTs;
3157  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3158#ifndef NDEBUG
3159  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3160    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3161           "Intrinsic uses a non-legal type?");
3162  }
3163#endif // NDEBUG
3164
3165  if (HasChain)
3166    ValueVTs.push_back(MVT::Other);
3167
3168  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3169
3170  // Create the node.
3171  SDValue Result;
3172  if (IsTgtIntrinsic) {
3173    // This is target intrinsic that touches memory
3174    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3175                                     VTs, &Ops[0], Ops.size(),
3176                                     Info.memVT,
3177                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3178                                     Info.align, Info.vol,
3179                                     Info.readMem, Info.writeMem);
3180  } else if (!HasChain) {
3181    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3182                         VTs, &Ops[0], Ops.size());
3183  } else if (!I.getType()->isVoidTy()) {
3184    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3185                         VTs, &Ops[0], Ops.size());
3186  } else {
3187    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3188                         VTs, &Ops[0], Ops.size());
3189  }
3190
3191  if (HasChain) {
3192    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3193    if (OnlyLoad)
3194      PendingLoads.push_back(Chain);
3195    else
3196      DAG.setRoot(Chain);
3197  }
3198
3199  if (!I.getType()->isVoidTy()) {
3200    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3201      EVT VT = TLI.getValueType(PTy);
3202      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3203    }
3204
3205    setValue(&I, Result);
3206  }
3207}
3208
3209/// GetSignificand - Get the significand and build it into a floating-point
3210/// number with exponent of 1:
3211///
3212///   Op = (Op & 0x007fffff) | 0x3f800000;
3213///
3214/// where Op is the hexidecimal representation of floating point value.
3215static SDValue
3216GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3217  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3218                           DAG.getConstant(0x007fffff, MVT::i32));
3219  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3220                           DAG.getConstant(0x3f800000, MVT::i32));
3221  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3222}
3223
3224/// GetExponent - Get the exponent:
3225///
3226///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3227///
3228/// where Op is the hexidecimal representation of floating point value.
3229static SDValue
3230GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3231            DebugLoc dl) {
3232  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3233                           DAG.getConstant(0x7f800000, MVT::i32));
3234  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3235                           DAG.getConstant(23, TLI.getPointerTy()));
3236  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3237                           DAG.getConstant(127, MVT::i32));
3238  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3239}
3240
3241/// getF32Constant - Get 32-bit floating point constant.
3242static SDValue
3243getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3244  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3245}
3246
3247/// Inlined utility function to implement binary input atomic intrinsics for
3248/// visitIntrinsicCall: I is a call instruction
3249///                     Op is the associated NodeType for I
3250const char *
3251SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3252                                           ISD::NodeType Op) {
3253  SDValue Root = getRoot();
3254  SDValue L =
3255    DAG.getAtomic(Op, getCurDebugLoc(),
3256                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3257                  Root,
3258                  getValue(I.getArgOperand(0)),
3259                  getValue(I.getArgOperand(1)),
3260                  I.getArgOperand(0));
3261  setValue(&I, L);
3262  DAG.setRoot(L.getValue(1));
3263  return 0;
3264}
3265
3266// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3267const char *
3268SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3269  SDValue Op1 = getValue(I.getArgOperand(0));
3270  SDValue Op2 = getValue(I.getArgOperand(1));
3271
3272  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3273  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3274  return 0;
3275}
3276
3277/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3278/// limited-precision mode.
3279void
3280SelectionDAGBuilder::visitExp(const CallInst &I) {
3281  SDValue result;
3282  DebugLoc dl = getCurDebugLoc();
3283
3284  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3285      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3286    SDValue Op = getValue(I.getArgOperand(0));
3287
3288    // Put the exponent in the right bit position for later addition to the
3289    // final result:
3290    //
3291    //   #define LOG2OFe 1.4426950f
3292    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3293    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3294                             getF32Constant(DAG, 0x3fb8aa3b));
3295    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3296
3297    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3298    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3299    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3300
3301    //   IntegerPartOfX <<= 23;
3302    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3303                                 DAG.getConstant(23, TLI.getPointerTy()));
3304
3305    if (LimitFloatPrecision <= 6) {
3306      // For floating-point precision of 6:
3307      //
3308      //   TwoToFractionalPartOfX =
3309      //     0.997535578f +
3310      //       (0.735607626f + 0.252464424f * x) * x;
3311      //
3312      // error 0.0144103317, which is 6 bits
3313      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3314                               getF32Constant(DAG, 0x3e814304));
3315      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3316                               getF32Constant(DAG, 0x3f3c50c8));
3317      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3318      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3319                               getF32Constant(DAG, 0x3f7f5e7e));
3320      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3321
3322      // Add the exponent into the result in integer domain.
3323      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3324                               TwoToFracPartOfX, IntegerPartOfX);
3325
3326      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3327    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3328      // For floating-point precision of 12:
3329      //
3330      //   TwoToFractionalPartOfX =
3331      //     0.999892986f +
3332      //       (0.696457318f +
3333      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3334      //
3335      // 0.000107046256 error, which is 13 to 14 bits
3336      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3337                               getF32Constant(DAG, 0x3da235e3));
3338      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3339                               getF32Constant(DAG, 0x3e65b8f3));
3340      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3341      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3342                               getF32Constant(DAG, 0x3f324b07));
3343      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3344      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3345                               getF32Constant(DAG, 0x3f7ff8fd));
3346      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3347
3348      // Add the exponent into the result in integer domain.
3349      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3350                               TwoToFracPartOfX, IntegerPartOfX);
3351
3352      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3353    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3354      // For floating-point precision of 18:
3355      //
3356      //   TwoToFractionalPartOfX =
3357      //     0.999999982f +
3358      //       (0.693148872f +
3359      //         (0.240227044f +
3360      //           (0.554906021e-1f +
3361      //             (0.961591928e-2f +
3362      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3363      //
3364      // error 2.47208000*10^(-7), which is better than 18 bits
3365      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3366                               getF32Constant(DAG, 0x3924b03e));
3367      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3368                               getF32Constant(DAG, 0x3ab24b87));
3369      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3370      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3371                               getF32Constant(DAG, 0x3c1d8c17));
3372      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3373      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3374                               getF32Constant(DAG, 0x3d634a1d));
3375      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3376      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3377                               getF32Constant(DAG, 0x3e75fe14));
3378      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3379      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3380                                getF32Constant(DAG, 0x3f317234));
3381      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3382      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3383                                getF32Constant(DAG, 0x3f800000));
3384      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3385                                             MVT::i32, t13);
3386
3387      // Add the exponent into the result in integer domain.
3388      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3389                                TwoToFracPartOfX, IntegerPartOfX);
3390
3391      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3392    }
3393  } else {
3394    // No special expansion.
3395    result = DAG.getNode(ISD::FEXP, dl,
3396                         getValue(I.getArgOperand(0)).getValueType(),
3397                         getValue(I.getArgOperand(0)));
3398  }
3399
3400  setValue(&I, result);
3401}
3402
3403/// visitLog - Lower a log intrinsic. Handles the special sequences for
3404/// limited-precision mode.
3405void
3406SelectionDAGBuilder::visitLog(const CallInst &I) {
3407  SDValue result;
3408  DebugLoc dl = getCurDebugLoc();
3409
3410  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3411      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3412    SDValue Op = getValue(I.getArgOperand(0));
3413    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3414
3415    // Scale the exponent by log(2) [0.69314718f].
3416    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3417    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3418                                        getF32Constant(DAG, 0x3f317218));
3419
3420    // Get the significand and build it into a floating-point number with
3421    // exponent of 1.
3422    SDValue X = GetSignificand(DAG, Op1, dl);
3423
3424    if (LimitFloatPrecision <= 6) {
3425      // For floating-point precision of 6:
3426      //
3427      //   LogofMantissa =
3428      //     -1.1609546f +
3429      //       (1.4034025f - 0.23903021f * x) * x;
3430      //
3431      // error 0.0034276066, which is better than 8 bits
3432      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3433                               getF32Constant(DAG, 0xbe74c456));
3434      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3435                               getF32Constant(DAG, 0x3fb3a2b1));
3436      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3437      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3438                                          getF32Constant(DAG, 0x3f949a29));
3439
3440      result = DAG.getNode(ISD::FADD, dl,
3441                           MVT::f32, LogOfExponent, LogOfMantissa);
3442    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3443      // For floating-point precision of 12:
3444      //
3445      //   LogOfMantissa =
3446      //     -1.7417939f +
3447      //       (2.8212026f +
3448      //         (-1.4699568f +
3449      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3450      //
3451      // error 0.000061011436, which is 14 bits
3452      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3453                               getF32Constant(DAG, 0xbd67b6d6));
3454      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3455                               getF32Constant(DAG, 0x3ee4f4b8));
3456      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3457      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3458                               getF32Constant(DAG, 0x3fbc278b));
3459      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3460      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3461                               getF32Constant(DAG, 0x40348e95));
3462      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3463      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3464                                          getF32Constant(DAG, 0x3fdef31a));
3465
3466      result = DAG.getNode(ISD::FADD, dl,
3467                           MVT::f32, LogOfExponent, LogOfMantissa);
3468    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3469      // For floating-point precision of 18:
3470      //
3471      //   LogOfMantissa =
3472      //     -2.1072184f +
3473      //       (4.2372794f +
3474      //         (-3.7029485f +
3475      //           (2.2781945f +
3476      //             (-0.87823314f +
3477      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3478      //
3479      // error 0.0000023660568, which is better than 18 bits
3480      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3481                               getF32Constant(DAG, 0xbc91e5ac));
3482      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3483                               getF32Constant(DAG, 0x3e4350aa));
3484      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3485      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3486                               getF32Constant(DAG, 0x3f60d3e3));
3487      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3488      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3489                               getF32Constant(DAG, 0x4011cdf0));
3490      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3491      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3492                               getF32Constant(DAG, 0x406cfd1c));
3493      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3494      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3495                               getF32Constant(DAG, 0x408797cb));
3496      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3497      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3498                                          getF32Constant(DAG, 0x4006dcab));
3499
3500      result = DAG.getNode(ISD::FADD, dl,
3501                           MVT::f32, LogOfExponent, LogOfMantissa);
3502    }
3503  } else {
3504    // No special expansion.
3505    result = DAG.getNode(ISD::FLOG, dl,
3506                         getValue(I.getArgOperand(0)).getValueType(),
3507                         getValue(I.getArgOperand(0)));
3508  }
3509
3510  setValue(&I, result);
3511}
3512
3513/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3514/// limited-precision mode.
3515void
3516SelectionDAGBuilder::visitLog2(const CallInst &I) {
3517  SDValue result;
3518  DebugLoc dl = getCurDebugLoc();
3519
3520  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3521      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3522    SDValue Op = getValue(I.getArgOperand(0));
3523    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3524
3525    // Get the exponent.
3526    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3527
3528    // Get the significand and build it into a floating-point number with
3529    // exponent of 1.
3530    SDValue X = GetSignificand(DAG, Op1, dl);
3531
3532    // Different possible minimax approximations of significand in
3533    // floating-point for various degrees of accuracy over [1,2].
3534    if (LimitFloatPrecision <= 6) {
3535      // For floating-point precision of 6:
3536      //
3537      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3538      //
3539      // error 0.0049451742, which is more than 7 bits
3540      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3541                               getF32Constant(DAG, 0xbeb08fe0));
3542      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3543                               getF32Constant(DAG, 0x40019463));
3544      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3545      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3546                                           getF32Constant(DAG, 0x3fd6633d));
3547
3548      result = DAG.getNode(ISD::FADD, dl,
3549                           MVT::f32, LogOfExponent, Log2ofMantissa);
3550    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3551      // For floating-point precision of 12:
3552      //
3553      //   Log2ofMantissa =
3554      //     -2.51285454f +
3555      //       (4.07009056f +
3556      //         (-2.12067489f +
3557      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3558      //
3559      // error 0.0000876136000, which is better than 13 bits
3560      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3561                               getF32Constant(DAG, 0xbda7262e));
3562      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3563                               getF32Constant(DAG, 0x3f25280b));
3564      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3565      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3566                               getF32Constant(DAG, 0x4007b923));
3567      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3568      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3569                               getF32Constant(DAG, 0x40823e2f));
3570      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3571      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3572                                           getF32Constant(DAG, 0x4020d29c));
3573
3574      result = DAG.getNode(ISD::FADD, dl,
3575                           MVT::f32, LogOfExponent, Log2ofMantissa);
3576    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3577      // For floating-point precision of 18:
3578      //
3579      //   Log2ofMantissa =
3580      //     -3.0400495f +
3581      //       (6.1129976f +
3582      //         (-5.3420409f +
3583      //           (3.2865683f +
3584      //             (-1.2669343f +
3585      //               (0.27515199f -
3586      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3587      //
3588      // error 0.0000018516, which is better than 18 bits
3589      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3590                               getF32Constant(DAG, 0xbcd2769e));
3591      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3592                               getF32Constant(DAG, 0x3e8ce0b9));
3593      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3594      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3595                               getF32Constant(DAG, 0x3fa22ae7));
3596      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3597      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3598                               getF32Constant(DAG, 0x40525723));
3599      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3600      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3601                               getF32Constant(DAG, 0x40aaf200));
3602      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3603      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3604                               getF32Constant(DAG, 0x40c39dad));
3605      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3606      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3607                                           getF32Constant(DAG, 0x4042902c));
3608
3609      result = DAG.getNode(ISD::FADD, dl,
3610                           MVT::f32, LogOfExponent, Log2ofMantissa);
3611    }
3612  } else {
3613    // No special expansion.
3614    result = DAG.getNode(ISD::FLOG2, dl,
3615                         getValue(I.getArgOperand(0)).getValueType(),
3616                         getValue(I.getArgOperand(0)));
3617  }
3618
3619  setValue(&I, result);
3620}
3621
3622/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3623/// limited-precision mode.
3624void
3625SelectionDAGBuilder::visitLog10(const CallInst &I) {
3626  SDValue result;
3627  DebugLoc dl = getCurDebugLoc();
3628
3629  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3630      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3631    SDValue Op = getValue(I.getArgOperand(0));
3632    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3633
3634    // Scale the exponent by log10(2) [0.30102999f].
3635    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3636    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3637                                        getF32Constant(DAG, 0x3e9a209a));
3638
3639    // Get the significand and build it into a floating-point number with
3640    // exponent of 1.
3641    SDValue X = GetSignificand(DAG, Op1, dl);
3642
3643    if (LimitFloatPrecision <= 6) {
3644      // For floating-point precision of 6:
3645      //
3646      //   Log10ofMantissa =
3647      //     -0.50419619f +
3648      //       (0.60948995f - 0.10380950f * x) * x;
3649      //
3650      // error 0.0014886165, which is 6 bits
3651      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3652                               getF32Constant(DAG, 0xbdd49a13));
3653      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3654                               getF32Constant(DAG, 0x3f1c0789));
3655      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3656      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3657                                            getF32Constant(DAG, 0x3f011300));
3658
3659      result = DAG.getNode(ISD::FADD, dl,
3660                           MVT::f32, LogOfExponent, Log10ofMantissa);
3661    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3662      // For floating-point precision of 12:
3663      //
3664      //   Log10ofMantissa =
3665      //     -0.64831180f +
3666      //       (0.91751397f +
3667      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3668      //
3669      // error 0.00019228036, which is better than 12 bits
3670      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3671                               getF32Constant(DAG, 0x3d431f31));
3672      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3673                               getF32Constant(DAG, 0x3ea21fb2));
3674      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3675      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3676                               getF32Constant(DAG, 0x3f6ae232));
3677      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3678      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3679                                            getF32Constant(DAG, 0x3f25f7c3));
3680
3681      result = DAG.getNode(ISD::FADD, dl,
3682                           MVT::f32, LogOfExponent, Log10ofMantissa);
3683    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3684      // For floating-point precision of 18:
3685      //
3686      //   Log10ofMantissa =
3687      //     -0.84299375f +
3688      //       (1.5327582f +
3689      //         (-1.0688956f +
3690      //           (0.49102474f +
3691      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3692      //
3693      // error 0.0000037995730, which is better than 18 bits
3694      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3695                               getF32Constant(DAG, 0x3c5d51ce));
3696      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3697                               getF32Constant(DAG, 0x3e00685a));
3698      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3699      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3700                               getF32Constant(DAG, 0x3efb6798));
3701      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3702      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3703                               getF32Constant(DAG, 0x3f88d192));
3704      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3705      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3706                               getF32Constant(DAG, 0x3fc4316c));
3707      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3708      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3709                                            getF32Constant(DAG, 0x3f57ce70));
3710
3711      result = DAG.getNode(ISD::FADD, dl,
3712                           MVT::f32, LogOfExponent, Log10ofMantissa);
3713    }
3714  } else {
3715    // No special expansion.
3716    result = DAG.getNode(ISD::FLOG10, dl,
3717                         getValue(I.getArgOperand(0)).getValueType(),
3718                         getValue(I.getArgOperand(0)));
3719  }
3720
3721  setValue(&I, result);
3722}
3723
3724/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3725/// limited-precision mode.
3726void
3727SelectionDAGBuilder::visitExp2(const CallInst &I) {
3728  SDValue result;
3729  DebugLoc dl = getCurDebugLoc();
3730
3731  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3732      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3733    SDValue Op = getValue(I.getArgOperand(0));
3734
3735    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3736
3737    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3738    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3739    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3740
3741    //   IntegerPartOfX <<= 23;
3742    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3743                                 DAG.getConstant(23, TLI.getPointerTy()));
3744
3745    if (LimitFloatPrecision <= 6) {
3746      // For floating-point precision of 6:
3747      //
3748      //   TwoToFractionalPartOfX =
3749      //     0.997535578f +
3750      //       (0.735607626f + 0.252464424f * x) * x;
3751      //
3752      // error 0.0144103317, which is 6 bits
3753      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3754                               getF32Constant(DAG, 0x3e814304));
3755      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3756                               getF32Constant(DAG, 0x3f3c50c8));
3757      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3758      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3759                               getF32Constant(DAG, 0x3f7f5e7e));
3760      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3761      SDValue TwoToFractionalPartOfX =
3762        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3763
3764      result = DAG.getNode(ISD::BITCAST, dl,
3765                           MVT::f32, TwoToFractionalPartOfX);
3766    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3767      // For floating-point precision of 12:
3768      //
3769      //   TwoToFractionalPartOfX =
3770      //     0.999892986f +
3771      //       (0.696457318f +
3772      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3773      //
3774      // error 0.000107046256, which is 13 to 14 bits
3775      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3776                               getF32Constant(DAG, 0x3da235e3));
3777      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3778                               getF32Constant(DAG, 0x3e65b8f3));
3779      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3780      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3781                               getF32Constant(DAG, 0x3f324b07));
3782      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3783      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3784                               getF32Constant(DAG, 0x3f7ff8fd));
3785      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3786      SDValue TwoToFractionalPartOfX =
3787        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3788
3789      result = DAG.getNode(ISD::BITCAST, dl,
3790                           MVT::f32, TwoToFractionalPartOfX);
3791    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3792      // For floating-point precision of 18:
3793      //
3794      //   TwoToFractionalPartOfX =
3795      //     0.999999982f +
3796      //       (0.693148872f +
3797      //         (0.240227044f +
3798      //           (0.554906021e-1f +
3799      //             (0.961591928e-2f +
3800      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3801      // error 2.47208000*10^(-7), which is better than 18 bits
3802      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3803                               getF32Constant(DAG, 0x3924b03e));
3804      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3805                               getF32Constant(DAG, 0x3ab24b87));
3806      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3807      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3808                               getF32Constant(DAG, 0x3c1d8c17));
3809      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3810      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3811                               getF32Constant(DAG, 0x3d634a1d));
3812      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3813      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3814                               getF32Constant(DAG, 0x3e75fe14));
3815      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3816      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3817                                getF32Constant(DAG, 0x3f317234));
3818      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3819      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3820                                getF32Constant(DAG, 0x3f800000));
3821      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3822      SDValue TwoToFractionalPartOfX =
3823        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3824
3825      result = DAG.getNode(ISD::BITCAST, dl,
3826                           MVT::f32, TwoToFractionalPartOfX);
3827    }
3828  } else {
3829    // No special expansion.
3830    result = DAG.getNode(ISD::FEXP2, dl,
3831                         getValue(I.getArgOperand(0)).getValueType(),
3832                         getValue(I.getArgOperand(0)));
3833  }
3834
3835  setValue(&I, result);
3836}
3837
3838/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3839/// limited-precision mode with x == 10.0f.
3840void
3841SelectionDAGBuilder::visitPow(const CallInst &I) {
3842  SDValue result;
3843  const Value *Val = I.getArgOperand(0);
3844  DebugLoc dl = getCurDebugLoc();
3845  bool IsExp10 = false;
3846
3847  if (getValue(Val).getValueType() == MVT::f32 &&
3848      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3849      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3850    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3851      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3852        APFloat Ten(10.0f);
3853        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3854      }
3855    }
3856  }
3857
3858  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3859    SDValue Op = getValue(I.getArgOperand(1));
3860
3861    // Put the exponent in the right bit position for later addition to the
3862    // final result:
3863    //
3864    //   #define LOG2OF10 3.3219281f
3865    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3866    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3867                             getF32Constant(DAG, 0x40549a78));
3868    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3869
3870    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3871    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3872    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3873
3874    //   IntegerPartOfX <<= 23;
3875    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3876                                 DAG.getConstant(23, TLI.getPointerTy()));
3877
3878    if (LimitFloatPrecision <= 6) {
3879      // For floating-point precision of 6:
3880      //
3881      //   twoToFractionalPartOfX =
3882      //     0.997535578f +
3883      //       (0.735607626f + 0.252464424f * x) * x;
3884      //
3885      // error 0.0144103317, which is 6 bits
3886      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3887                               getF32Constant(DAG, 0x3e814304));
3888      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3889                               getF32Constant(DAG, 0x3f3c50c8));
3890      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3891      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3892                               getF32Constant(DAG, 0x3f7f5e7e));
3893      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3894      SDValue TwoToFractionalPartOfX =
3895        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3896
3897      result = DAG.getNode(ISD::BITCAST, dl,
3898                           MVT::f32, TwoToFractionalPartOfX);
3899    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3900      // For floating-point precision of 12:
3901      //
3902      //   TwoToFractionalPartOfX =
3903      //     0.999892986f +
3904      //       (0.696457318f +
3905      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3906      //
3907      // error 0.000107046256, which is 13 to 14 bits
3908      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3909                               getF32Constant(DAG, 0x3da235e3));
3910      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3911                               getF32Constant(DAG, 0x3e65b8f3));
3912      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3913      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3914                               getF32Constant(DAG, 0x3f324b07));
3915      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3916      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3917                               getF32Constant(DAG, 0x3f7ff8fd));
3918      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3919      SDValue TwoToFractionalPartOfX =
3920        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3921
3922      result = DAG.getNode(ISD::BITCAST, dl,
3923                           MVT::f32, TwoToFractionalPartOfX);
3924    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3925      // For floating-point precision of 18:
3926      //
3927      //   TwoToFractionalPartOfX =
3928      //     0.999999982f +
3929      //       (0.693148872f +
3930      //         (0.240227044f +
3931      //           (0.554906021e-1f +
3932      //             (0.961591928e-2f +
3933      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3934      // error 2.47208000*10^(-7), which is better than 18 bits
3935      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3936                               getF32Constant(DAG, 0x3924b03e));
3937      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3938                               getF32Constant(DAG, 0x3ab24b87));
3939      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3940      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3941                               getF32Constant(DAG, 0x3c1d8c17));
3942      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3943      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3944                               getF32Constant(DAG, 0x3d634a1d));
3945      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3946      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3947                               getF32Constant(DAG, 0x3e75fe14));
3948      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3949      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3950                                getF32Constant(DAG, 0x3f317234));
3951      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3952      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3953                                getF32Constant(DAG, 0x3f800000));
3954      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3955      SDValue TwoToFractionalPartOfX =
3956        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3957
3958      result = DAG.getNode(ISD::BITCAST, dl,
3959                           MVT::f32, TwoToFractionalPartOfX);
3960    }
3961  } else {
3962    // No special expansion.
3963    result = DAG.getNode(ISD::FPOW, dl,
3964                         getValue(I.getArgOperand(0)).getValueType(),
3965                         getValue(I.getArgOperand(0)),
3966                         getValue(I.getArgOperand(1)));
3967  }
3968
3969  setValue(&I, result);
3970}
3971
3972
3973/// ExpandPowI - Expand a llvm.powi intrinsic.
3974static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3975                          SelectionDAG &DAG) {
3976  // If RHS is a constant, we can expand this out to a multiplication tree,
3977  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3978  // optimizing for size, we only want to do this if the expansion would produce
3979  // a small number of multiplies, otherwise we do the full expansion.
3980  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3981    // Get the exponent as a positive value.
3982    unsigned Val = RHSC->getSExtValue();
3983    if ((int)Val < 0) Val = -Val;
3984
3985    // powi(x, 0) -> 1.0
3986    if (Val == 0)
3987      return DAG.getConstantFP(1.0, LHS.getValueType());
3988
3989    const Function *F = DAG.getMachineFunction().getFunction();
3990    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3991        // If optimizing for size, don't insert too many multiplies.  This
3992        // inserts up to 5 multiplies.
3993        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3994      // We use the simple binary decomposition method to generate the multiply
3995      // sequence.  There are more optimal ways to do this (for example,
3996      // powi(x,15) generates one more multiply than it should), but this has
3997      // the benefit of being both really simple and much better than a libcall.
3998      SDValue Res;  // Logically starts equal to 1.0
3999      SDValue CurSquare = LHS;
4000      while (Val) {
4001        if (Val & 1) {
4002          if (Res.getNode())
4003            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4004          else
4005            Res = CurSquare;  // 1.0*CurSquare.
4006        }
4007
4008        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4009                                CurSquare, CurSquare);
4010        Val >>= 1;
4011      }
4012
4013      // If the original was negative, invert the result, producing 1/(x*x*x).
4014      if (RHSC->getSExtValue() < 0)
4015        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4016                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4017      return Res;
4018    }
4019  }
4020
4021  // Otherwise, expand to a libcall.
4022  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4023}
4024
4025/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4026/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4027/// At the end of instruction selection, they will be inserted to the entry BB.
4028bool
4029SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4030                                              int64_t Offset,
4031                                              const SDValue &N) {
4032  const Argument *Arg = dyn_cast<Argument>(V);
4033  if (!Arg)
4034    return false;
4035
4036  MachineFunction &MF = DAG.getMachineFunction();
4037  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4038  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4039
4040  // Ignore inlined function arguments here.
4041  DIVariable DV(Variable);
4042  if (DV.isInlinedFnArgument(MF.getFunction()))
4043    return false;
4044
4045  MachineBasicBlock *MBB = FuncInfo.MBB;
4046  if (MBB != &MF.front())
4047    return false;
4048
4049  unsigned Reg = 0;
4050  if (Arg->hasByValAttr()) {
4051    // Byval arguments' frame index is recorded during argument lowering.
4052    // Use this info directly.
4053    Reg = TRI->getFrameRegister(MF);
4054    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4055    // If byval argument ofset is not recorded then ignore this.
4056    if (!Offset)
4057      Reg = 0;
4058  }
4059
4060  if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) {
4061    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4062    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4063      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4064      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4065      if (PR)
4066        Reg = PR;
4067    }
4068  }
4069
4070  if (!Reg) {
4071    // Check if ValueMap has reg number.
4072    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4073    if (VMI != FuncInfo.ValueMap.end())
4074      Reg = VMI->second;
4075  }
4076
4077  if (!Reg && N.getNode()) {
4078    // Check if frame index is available.
4079    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4080      if (FrameIndexSDNode *FINode =
4081          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4082        Reg = TRI->getFrameRegister(MF);
4083        Offset = FINode->getIndex();
4084      }
4085  }
4086
4087  if (!Reg)
4088    return false;
4089
4090  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4091                                    TII->get(TargetOpcode::DBG_VALUE))
4092    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4093  FuncInfo.ArgDbgValues.push_back(&*MIB);
4094  return true;
4095}
4096
4097// VisualStudio defines setjmp as _setjmp
4098#if defined(_MSC_VER) && defined(setjmp) && \
4099                         !defined(setjmp_undefined_for_msvc)
4100#  pragma push_macro("setjmp")
4101#  undef setjmp
4102#  define setjmp_undefined_for_msvc
4103#endif
4104
4105/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4106/// we want to emit this as a call to a named external function, return the name
4107/// otherwise lower it and return null.
4108const char *
4109SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4110  DebugLoc dl = getCurDebugLoc();
4111  SDValue Res;
4112
4113  switch (Intrinsic) {
4114  default:
4115    // By default, turn this into a target intrinsic node.
4116    visitTargetIntrinsic(I, Intrinsic);
4117    return 0;
4118  case Intrinsic::vastart:  visitVAStart(I); return 0;
4119  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4120  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4121  case Intrinsic::returnaddress:
4122    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4123                             getValue(I.getArgOperand(0))));
4124    return 0;
4125  case Intrinsic::frameaddress:
4126    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4127                             getValue(I.getArgOperand(0))));
4128    return 0;
4129  case Intrinsic::setjmp:
4130    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4131  case Intrinsic::longjmp:
4132    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4133  case Intrinsic::memcpy: {
4134    // Assert for address < 256 since we support only user defined address
4135    // spaces.
4136    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4137           < 256 &&
4138           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4139           < 256 &&
4140           "Unknown address space");
4141    SDValue Op1 = getValue(I.getArgOperand(0));
4142    SDValue Op2 = getValue(I.getArgOperand(1));
4143    SDValue Op3 = getValue(I.getArgOperand(2));
4144    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4145    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4146    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4147                              MachinePointerInfo(I.getArgOperand(0)),
4148                              MachinePointerInfo(I.getArgOperand(1))));
4149    return 0;
4150  }
4151  case Intrinsic::memset: {
4152    // Assert for address < 256 since we support only user defined address
4153    // spaces.
4154    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4155           < 256 &&
4156           "Unknown address space");
4157    SDValue Op1 = getValue(I.getArgOperand(0));
4158    SDValue Op2 = getValue(I.getArgOperand(1));
4159    SDValue Op3 = getValue(I.getArgOperand(2));
4160    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4161    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4162    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4163                              MachinePointerInfo(I.getArgOperand(0))));
4164    return 0;
4165  }
4166  case Intrinsic::memmove: {
4167    // Assert for address < 256 since we support only user defined address
4168    // spaces.
4169    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4170           < 256 &&
4171           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4172           < 256 &&
4173           "Unknown address space");
4174    SDValue Op1 = getValue(I.getArgOperand(0));
4175    SDValue Op2 = getValue(I.getArgOperand(1));
4176    SDValue Op3 = getValue(I.getArgOperand(2));
4177    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4178    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4179    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4180                               MachinePointerInfo(I.getArgOperand(0)),
4181                               MachinePointerInfo(I.getArgOperand(1))));
4182    return 0;
4183  }
4184  case Intrinsic::dbg_declare: {
4185    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4186    MDNode *Variable = DI.getVariable();
4187    const Value *Address = DI.getAddress();
4188    if (!Address || !DIVariable(DI.getVariable()).Verify())
4189      return 0;
4190
4191    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4192    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4193    // absolute, but not relative, values are different depending on whether
4194    // debug info exists.
4195    ++SDNodeOrder;
4196
4197    // Check if address has undef value.
4198    if (isa<UndefValue>(Address) ||
4199        (Address->use_empty() && !isa<Argument>(Address))) {
4200      DEBUG(dbgs() << "Dropping debug info for " << DI);
4201      return 0;
4202    }
4203
4204    SDValue &N = NodeMap[Address];
4205    if (!N.getNode() && isa<Argument>(Address))
4206      // Check unused arguments map.
4207      N = UnusedArgNodeMap[Address];
4208    SDDbgValue *SDV;
4209    if (N.getNode()) {
4210      // Parameters are handled specially.
4211      bool isParameter =
4212        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4213      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4214        Address = BCI->getOperand(0);
4215      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4216
4217      if (isParameter && !AI) {
4218        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4219        if (FINode)
4220          // Byval parameter.  We have a frame index at this point.
4221          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4222                                0, dl, SDNodeOrder);
4223        else {
4224          // Can't do anything with other non-AI cases yet.  This might be a
4225          // parameter of a callee function that got inlined, for example.
4226          DEBUG(dbgs() << "Dropping debug info for " << DI);
4227          return 0;
4228        }
4229      } else if (AI)
4230        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4231                              0, dl, SDNodeOrder);
4232      else {
4233        // Can't do anything with other non-AI cases yet.
4234        DEBUG(dbgs() << "Dropping debug info for " << DI);
4235        return 0;
4236      }
4237      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4238    } else {
4239      // If Address is an argument then try to emit its dbg value using
4240      // virtual register info from the FuncInfo.ValueMap.
4241      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4242        // If variable is pinned by a alloca in dominating bb then
4243        // use StaticAllocaMap.
4244        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4245          if (AI->getParent() != DI.getParent()) {
4246            DenseMap<const AllocaInst*, int>::iterator SI =
4247              FuncInfo.StaticAllocaMap.find(AI);
4248            if (SI != FuncInfo.StaticAllocaMap.end()) {
4249              SDV = DAG.getDbgValue(Variable, SI->second,
4250                                    0, dl, SDNodeOrder);
4251              DAG.AddDbgValue(SDV, 0, false);
4252              return 0;
4253            }
4254          }
4255        }
4256        DEBUG(dbgs() << "Dropping debug info for " << DI);
4257      }
4258    }
4259    return 0;
4260  }
4261  case Intrinsic::dbg_value: {
4262    const DbgValueInst &DI = cast<DbgValueInst>(I);
4263    if (!DIVariable(DI.getVariable()).Verify())
4264      return 0;
4265
4266    MDNode *Variable = DI.getVariable();
4267    uint64_t Offset = DI.getOffset();
4268    const Value *V = DI.getValue();
4269    if (!V)
4270      return 0;
4271
4272    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4273    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4274    // absolute, but not relative, values are different depending on whether
4275    // debug info exists.
4276    ++SDNodeOrder;
4277    SDDbgValue *SDV;
4278    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4279      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4280      DAG.AddDbgValue(SDV, 0, false);
4281    } else {
4282      // Do not use getValue() in here; we don't want to generate code at
4283      // this point if it hasn't been done yet.
4284      SDValue N = NodeMap[V];
4285      if (!N.getNode() && isa<Argument>(V))
4286        // Check unused arguments map.
4287        N = UnusedArgNodeMap[V];
4288      if (N.getNode()) {
4289        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4290          SDV = DAG.getDbgValue(Variable, N.getNode(),
4291                                N.getResNo(), Offset, dl, SDNodeOrder);
4292          DAG.AddDbgValue(SDV, N.getNode(), false);
4293        }
4294      } else if (isa<PHINode>(V) && !V->use_empty() ) {
4295        // Do not call getValue(V) yet, as we don't want to generate code.
4296        // Remember it for later.
4297        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4298        DanglingDebugInfoMap[V] = DDI;
4299      } else {
4300        // We may expand this to cover more cases.  One case where we have no
4301        // data available is an unreferenced parameter.
4302        DEBUG(dbgs() << "Dropping debug info for " << DI);
4303      }
4304    }
4305
4306    // Build a debug info table entry.
4307    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4308      V = BCI->getOperand(0);
4309    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4310    // Don't handle byval struct arguments or VLAs, for example.
4311    if (!AI)
4312      return 0;
4313    DenseMap<const AllocaInst*, int>::iterator SI =
4314      FuncInfo.StaticAllocaMap.find(AI);
4315    if (SI == FuncInfo.StaticAllocaMap.end())
4316      return 0; // VLAs.
4317    int FI = SI->second;
4318
4319    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4320    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4321      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4322    return 0;
4323  }
4324  case Intrinsic::eh_exception: {
4325    // Insert the EXCEPTIONADDR instruction.
4326    assert(FuncInfo.MBB->isLandingPad() &&
4327           "Call to eh.exception not in landing pad!");
4328    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4329    SDValue Ops[1];
4330    Ops[0] = DAG.getRoot();
4331    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4332    setValue(&I, Op);
4333    DAG.setRoot(Op.getValue(1));
4334    return 0;
4335  }
4336
4337  case Intrinsic::eh_selector: {
4338    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4339    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4340    if (CallMBB->isLandingPad())
4341      AddCatchInfo(I, &MMI, CallMBB);
4342    else {
4343#ifndef NDEBUG
4344      FuncInfo.CatchInfoLost.insert(&I);
4345#endif
4346      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4347      unsigned Reg = TLI.getExceptionSelectorRegister();
4348      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4349    }
4350
4351    // Insert the EHSELECTION instruction.
4352    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4353    SDValue Ops[2];
4354    Ops[0] = getValue(I.getArgOperand(0));
4355    Ops[1] = getRoot();
4356    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4357    DAG.setRoot(Op.getValue(1));
4358    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4359    return 0;
4360  }
4361
4362  case Intrinsic::eh_typeid_for: {
4363    // Find the type id for the given typeinfo.
4364    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4365    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4366    Res = DAG.getConstant(TypeID, MVT::i32);
4367    setValue(&I, Res);
4368    return 0;
4369  }
4370
4371  case Intrinsic::eh_return_i32:
4372  case Intrinsic::eh_return_i64:
4373    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4374    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4375                            MVT::Other,
4376                            getControlRoot(),
4377                            getValue(I.getArgOperand(0)),
4378                            getValue(I.getArgOperand(1))));
4379    return 0;
4380  case Intrinsic::eh_unwind_init:
4381    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4382    return 0;
4383  case Intrinsic::eh_dwarf_cfa: {
4384    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4385                                        TLI.getPointerTy());
4386    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4387                                 TLI.getPointerTy(),
4388                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4389                                             TLI.getPointerTy()),
4390                                 CfaArg);
4391    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4392                             TLI.getPointerTy(),
4393                             DAG.getConstant(0, TLI.getPointerTy()));
4394    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4395                             FA, Offset));
4396    return 0;
4397  }
4398  case Intrinsic::eh_sjlj_callsite: {
4399    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4400    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4401    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4402    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4403
4404    MMI.setCurrentCallSite(CI->getZExtValue());
4405    return 0;
4406  }
4407  case Intrinsic::eh_sjlj_setjmp: {
4408    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4409                             getValue(I.getArgOperand(0))));
4410    return 0;
4411  }
4412  case Intrinsic::eh_sjlj_longjmp: {
4413    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4414                            getRoot(), getValue(I.getArgOperand(0))));
4415    return 0;
4416  }
4417  case Intrinsic::eh_sjlj_dispatch_setup: {
4418    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4419                            getRoot(), getValue(I.getArgOperand(0))));
4420    return 0;
4421  }
4422
4423  case Intrinsic::x86_mmx_pslli_w:
4424  case Intrinsic::x86_mmx_pslli_d:
4425  case Intrinsic::x86_mmx_pslli_q:
4426  case Intrinsic::x86_mmx_psrli_w:
4427  case Intrinsic::x86_mmx_psrli_d:
4428  case Intrinsic::x86_mmx_psrli_q:
4429  case Intrinsic::x86_mmx_psrai_w:
4430  case Intrinsic::x86_mmx_psrai_d: {
4431    SDValue ShAmt = getValue(I.getArgOperand(1));
4432    if (isa<ConstantSDNode>(ShAmt)) {
4433      visitTargetIntrinsic(I, Intrinsic);
4434      return 0;
4435    }
4436    unsigned NewIntrinsic = 0;
4437    EVT ShAmtVT = MVT::v2i32;
4438    switch (Intrinsic) {
4439    case Intrinsic::x86_mmx_pslli_w:
4440      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4441      break;
4442    case Intrinsic::x86_mmx_pslli_d:
4443      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4444      break;
4445    case Intrinsic::x86_mmx_pslli_q:
4446      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4447      break;
4448    case Intrinsic::x86_mmx_psrli_w:
4449      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4450      break;
4451    case Intrinsic::x86_mmx_psrli_d:
4452      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4453      break;
4454    case Intrinsic::x86_mmx_psrli_q:
4455      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4456      break;
4457    case Intrinsic::x86_mmx_psrai_w:
4458      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4459      break;
4460    case Intrinsic::x86_mmx_psrai_d:
4461      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4462      break;
4463    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4464    }
4465
4466    // The vector shift intrinsics with scalars uses 32b shift amounts but
4467    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4468    // to be zero.
4469    // We must do this early because v2i32 is not a legal type.
4470    DebugLoc dl = getCurDebugLoc();
4471    SDValue ShOps[2];
4472    ShOps[0] = ShAmt;
4473    ShOps[1] = DAG.getConstant(0, MVT::i32);
4474    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4475    EVT DestVT = TLI.getValueType(I.getType());
4476    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4477    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4478                       DAG.getConstant(NewIntrinsic, MVT::i32),
4479                       getValue(I.getArgOperand(0)), ShAmt);
4480    setValue(&I, Res);
4481    return 0;
4482  }
4483  case Intrinsic::convertff:
4484  case Intrinsic::convertfsi:
4485  case Intrinsic::convertfui:
4486  case Intrinsic::convertsif:
4487  case Intrinsic::convertuif:
4488  case Intrinsic::convertss:
4489  case Intrinsic::convertsu:
4490  case Intrinsic::convertus:
4491  case Intrinsic::convertuu: {
4492    ISD::CvtCode Code = ISD::CVT_INVALID;
4493    switch (Intrinsic) {
4494    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4495    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4496    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4497    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4498    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4499    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4500    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4501    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4502    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4503    }
4504    EVT DestVT = TLI.getValueType(I.getType());
4505    const Value *Op1 = I.getArgOperand(0);
4506    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4507                               DAG.getValueType(DestVT),
4508                               DAG.getValueType(getValue(Op1).getValueType()),
4509                               getValue(I.getArgOperand(1)),
4510                               getValue(I.getArgOperand(2)),
4511                               Code);
4512    setValue(&I, Res);
4513    return 0;
4514  }
4515  case Intrinsic::sqrt:
4516    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4517                             getValue(I.getArgOperand(0)).getValueType(),
4518                             getValue(I.getArgOperand(0))));
4519    return 0;
4520  case Intrinsic::powi:
4521    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4522                            getValue(I.getArgOperand(1)), DAG));
4523    return 0;
4524  case Intrinsic::sin:
4525    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4526                             getValue(I.getArgOperand(0)).getValueType(),
4527                             getValue(I.getArgOperand(0))));
4528    return 0;
4529  case Intrinsic::cos:
4530    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4531                             getValue(I.getArgOperand(0)).getValueType(),
4532                             getValue(I.getArgOperand(0))));
4533    return 0;
4534  case Intrinsic::log:
4535    visitLog(I);
4536    return 0;
4537  case Intrinsic::log2:
4538    visitLog2(I);
4539    return 0;
4540  case Intrinsic::log10:
4541    visitLog10(I);
4542    return 0;
4543  case Intrinsic::exp:
4544    visitExp(I);
4545    return 0;
4546  case Intrinsic::exp2:
4547    visitExp2(I);
4548    return 0;
4549  case Intrinsic::pow:
4550    visitPow(I);
4551    return 0;
4552  case Intrinsic::convert_to_fp16:
4553    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4554                             MVT::i16, getValue(I.getArgOperand(0))));
4555    return 0;
4556  case Intrinsic::convert_from_fp16:
4557    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4558                             MVT::f32, getValue(I.getArgOperand(0))));
4559    return 0;
4560  case Intrinsic::pcmarker: {
4561    SDValue Tmp = getValue(I.getArgOperand(0));
4562    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4563    return 0;
4564  }
4565  case Intrinsic::readcyclecounter: {
4566    SDValue Op = getRoot();
4567    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4568                      DAG.getVTList(MVT::i64, MVT::Other),
4569                      &Op, 1);
4570    setValue(&I, Res);
4571    DAG.setRoot(Res.getValue(1));
4572    return 0;
4573  }
4574  case Intrinsic::bswap:
4575    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4576                             getValue(I.getArgOperand(0)).getValueType(),
4577                             getValue(I.getArgOperand(0))));
4578    return 0;
4579  case Intrinsic::cttz: {
4580    SDValue Arg = getValue(I.getArgOperand(0));
4581    EVT Ty = Arg.getValueType();
4582    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4583    return 0;
4584  }
4585  case Intrinsic::ctlz: {
4586    SDValue Arg = getValue(I.getArgOperand(0));
4587    EVT Ty = Arg.getValueType();
4588    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4589    return 0;
4590  }
4591  case Intrinsic::ctpop: {
4592    SDValue Arg = getValue(I.getArgOperand(0));
4593    EVT Ty = Arg.getValueType();
4594    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4595    return 0;
4596  }
4597  case Intrinsic::stacksave: {
4598    SDValue Op = getRoot();
4599    Res = DAG.getNode(ISD::STACKSAVE, dl,
4600                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4601    setValue(&I, Res);
4602    DAG.setRoot(Res.getValue(1));
4603    return 0;
4604  }
4605  case Intrinsic::stackrestore: {
4606    Res = getValue(I.getArgOperand(0));
4607    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4608    return 0;
4609  }
4610  case Intrinsic::stackprotector: {
4611    // Emit code into the DAG to store the stack guard onto the stack.
4612    MachineFunction &MF = DAG.getMachineFunction();
4613    MachineFrameInfo *MFI = MF.getFrameInfo();
4614    EVT PtrTy = TLI.getPointerTy();
4615
4616    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4617    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4618
4619    int FI = FuncInfo.StaticAllocaMap[Slot];
4620    MFI->setStackProtectorIndex(FI);
4621
4622    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4623
4624    // Store the stack protector onto the stack.
4625    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4626                       MachinePointerInfo::getFixedStack(FI),
4627                       true, false, 0);
4628    setValue(&I, Res);
4629    DAG.setRoot(Res);
4630    return 0;
4631  }
4632  case Intrinsic::objectsize: {
4633    // If we don't know by now, we're never going to know.
4634    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4635
4636    assert(CI && "Non-constant type in __builtin_object_size?");
4637
4638    SDValue Arg = getValue(I.getCalledValue());
4639    EVT Ty = Arg.getValueType();
4640
4641    if (CI->isZero())
4642      Res = DAG.getConstant(-1ULL, Ty);
4643    else
4644      Res = DAG.getConstant(0, Ty);
4645
4646    setValue(&I, Res);
4647    return 0;
4648  }
4649  case Intrinsic::var_annotation:
4650    // Discard annotate attributes
4651    return 0;
4652
4653  case Intrinsic::init_trampoline: {
4654    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4655
4656    SDValue Ops[6];
4657    Ops[0] = getRoot();
4658    Ops[1] = getValue(I.getArgOperand(0));
4659    Ops[2] = getValue(I.getArgOperand(1));
4660    Ops[3] = getValue(I.getArgOperand(2));
4661    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4662    Ops[5] = DAG.getSrcValue(F);
4663
4664    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4665                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4666                      Ops, 6);
4667
4668    setValue(&I, Res);
4669    DAG.setRoot(Res.getValue(1));
4670    return 0;
4671  }
4672  case Intrinsic::gcroot:
4673    if (GFI) {
4674      const Value *Alloca = I.getArgOperand(0);
4675      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4676
4677      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4678      GFI->addStackRoot(FI->getIndex(), TypeMap);
4679    }
4680    return 0;
4681  case Intrinsic::gcread:
4682  case Intrinsic::gcwrite:
4683    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4684    return 0;
4685  case Intrinsic::flt_rounds:
4686    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4687    return 0;
4688  case Intrinsic::trap:
4689    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4690    return 0;
4691  case Intrinsic::uadd_with_overflow:
4692    return implVisitAluOverflow(I, ISD::UADDO);
4693  case Intrinsic::sadd_with_overflow:
4694    return implVisitAluOverflow(I, ISD::SADDO);
4695  case Intrinsic::usub_with_overflow:
4696    return implVisitAluOverflow(I, ISD::USUBO);
4697  case Intrinsic::ssub_with_overflow:
4698    return implVisitAluOverflow(I, ISD::SSUBO);
4699  case Intrinsic::umul_with_overflow:
4700    return implVisitAluOverflow(I, ISD::UMULO);
4701  case Intrinsic::smul_with_overflow:
4702    return implVisitAluOverflow(I, ISD::SMULO);
4703
4704  case Intrinsic::prefetch: {
4705    SDValue Ops[4];
4706    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4707    Ops[0] = getRoot();
4708    Ops[1] = getValue(I.getArgOperand(0));
4709    Ops[2] = getValue(I.getArgOperand(1));
4710    Ops[3] = getValue(I.getArgOperand(2));
4711    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4712                                        DAG.getVTList(MVT::Other),
4713                                        &Ops[0], 4,
4714                                        EVT::getIntegerVT(*Context, 8),
4715                                        MachinePointerInfo(I.getArgOperand(0)),
4716                                        0, /* align */
4717                                        false, /* volatile */
4718                                        rw==0, /* read */
4719                                        rw==1)); /* write */
4720    return 0;
4721  }
4722  case Intrinsic::memory_barrier: {
4723    SDValue Ops[6];
4724    Ops[0] = getRoot();
4725    for (int x = 1; x < 6; ++x)
4726      Ops[x] = getValue(I.getArgOperand(x - 1));
4727
4728    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4729    return 0;
4730  }
4731  case Intrinsic::atomic_cmp_swap: {
4732    SDValue Root = getRoot();
4733    SDValue L =
4734      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4735                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4736                    Root,
4737                    getValue(I.getArgOperand(0)),
4738                    getValue(I.getArgOperand(1)),
4739                    getValue(I.getArgOperand(2)),
4740                    MachinePointerInfo(I.getArgOperand(0)));
4741    setValue(&I, L);
4742    DAG.setRoot(L.getValue(1));
4743    return 0;
4744  }
4745  case Intrinsic::atomic_load_add:
4746    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4747  case Intrinsic::atomic_load_sub:
4748    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4749  case Intrinsic::atomic_load_or:
4750    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4751  case Intrinsic::atomic_load_xor:
4752    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4753  case Intrinsic::atomic_load_and:
4754    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4755  case Intrinsic::atomic_load_nand:
4756    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4757  case Intrinsic::atomic_load_max:
4758    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4759  case Intrinsic::atomic_load_min:
4760    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4761  case Intrinsic::atomic_load_umin:
4762    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4763  case Intrinsic::atomic_load_umax:
4764    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4765  case Intrinsic::atomic_swap:
4766    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4767
4768  case Intrinsic::invariant_start:
4769  case Intrinsic::lifetime_start:
4770    // Discard region information.
4771    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4772    return 0;
4773  case Intrinsic::invariant_end:
4774  case Intrinsic::lifetime_end:
4775    // Discard region information.
4776    return 0;
4777  }
4778}
4779
4780void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4781                                      bool isTailCall,
4782                                      MachineBasicBlock *LandingPad) {
4783  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4784  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4785  const Type *RetTy = FTy->getReturnType();
4786  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4787  MCSymbol *BeginLabel = 0;
4788
4789  TargetLowering::ArgListTy Args;
4790  TargetLowering::ArgListEntry Entry;
4791  Args.reserve(CS.arg_size());
4792
4793  // Check whether the function can return without sret-demotion.
4794  SmallVector<ISD::OutputArg, 4> Outs;
4795  SmallVector<uint64_t, 4> Offsets;
4796  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4797                Outs, TLI, &Offsets);
4798
4799  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4800                        FTy->isVarArg(), Outs, FTy->getContext());
4801
4802  SDValue DemoteStackSlot;
4803  int DemoteStackIdx = -100;
4804
4805  if (!CanLowerReturn) {
4806    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4807                      FTy->getReturnType());
4808    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4809                      FTy->getReturnType());
4810    MachineFunction &MF = DAG.getMachineFunction();
4811    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4812    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4813
4814    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4815    Entry.Node = DemoteStackSlot;
4816    Entry.Ty = StackSlotPtrType;
4817    Entry.isSExt = false;
4818    Entry.isZExt = false;
4819    Entry.isInReg = false;
4820    Entry.isSRet = true;
4821    Entry.isNest = false;
4822    Entry.isByVal = false;
4823    Entry.Alignment = Align;
4824    Args.push_back(Entry);
4825    RetTy = Type::getVoidTy(FTy->getContext());
4826  }
4827
4828  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4829       i != e; ++i) {
4830    SDValue ArgNode = getValue(*i);
4831    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4832
4833    unsigned attrInd = i - CS.arg_begin() + 1;
4834    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4835    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4836    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4837    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4838    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4839    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4840    Entry.Alignment = CS.getParamAlignment(attrInd);
4841    Args.push_back(Entry);
4842  }
4843
4844  if (LandingPad) {
4845    // Insert a label before the invoke call to mark the try range.  This can be
4846    // used to detect deletion of the invoke via the MachineModuleInfo.
4847    BeginLabel = MMI.getContext().CreateTempSymbol();
4848
4849    // For SjLj, keep track of which landing pads go with which invokes
4850    // so as to maintain the ordering of pads in the LSDA.
4851    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4852    if (CallSiteIndex) {
4853      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4854      // Now that the call site is handled, stop tracking it.
4855      MMI.setCurrentCallSite(0);
4856    }
4857
4858    // Both PendingLoads and PendingExports must be flushed here;
4859    // this call might not return.
4860    (void)getRoot();
4861    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4862  }
4863
4864  // Check if target-independent constraints permit a tail call here.
4865  // Target-dependent constraints are checked within TLI.LowerCallTo.
4866  if (isTailCall &&
4867      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4868    isTailCall = false;
4869
4870  // If there's a possibility that fast-isel has already selected some amount
4871  // of the current basic block, don't emit a tail call.
4872  if (isTailCall && EnableFastISel)
4873    isTailCall = false;
4874
4875  std::pair<SDValue,SDValue> Result =
4876    TLI.LowerCallTo(getRoot(), RetTy,
4877                    CS.paramHasAttr(0, Attribute::SExt),
4878                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4879                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4880                    CS.getCallingConv(),
4881                    isTailCall,
4882                    !CS.getInstruction()->use_empty(),
4883                    Callee, Args, DAG, getCurDebugLoc());
4884  assert((isTailCall || Result.second.getNode()) &&
4885         "Non-null chain expected with non-tail call!");
4886  assert((Result.second.getNode() || !Result.first.getNode()) &&
4887         "Null value expected with tail call!");
4888  if (Result.first.getNode()) {
4889    setValue(CS.getInstruction(), Result.first);
4890  } else if (!CanLowerReturn && Result.second.getNode()) {
4891    // The instruction result is the result of loading from the
4892    // hidden sret parameter.
4893    SmallVector<EVT, 1> PVTs;
4894    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4895
4896    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4897    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4898    EVT PtrVT = PVTs[0];
4899    unsigned NumValues = Outs.size();
4900    SmallVector<SDValue, 4> Values(NumValues);
4901    SmallVector<SDValue, 4> Chains(NumValues);
4902
4903    for (unsigned i = 0; i < NumValues; ++i) {
4904      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4905                                DemoteStackSlot,
4906                                DAG.getConstant(Offsets[i], PtrVT));
4907      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4908                              Add,
4909                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4910                              false, false, 1);
4911      Values[i] = L;
4912      Chains[i] = L.getValue(1);
4913    }
4914
4915    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4916                                MVT::Other, &Chains[0], NumValues);
4917    PendingLoads.push_back(Chain);
4918
4919    // Collect the legal value parts into potentially illegal values
4920    // that correspond to the original function's return values.
4921    SmallVector<EVT, 4> RetTys;
4922    RetTy = FTy->getReturnType();
4923    ComputeValueVTs(TLI, RetTy, RetTys);
4924    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4925    SmallVector<SDValue, 4> ReturnValues;
4926    unsigned CurReg = 0;
4927    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4928      EVT VT = RetTys[I];
4929      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4930      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4931
4932      SDValue ReturnValue =
4933        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4934                         RegisterVT, VT, AssertOp);
4935      ReturnValues.push_back(ReturnValue);
4936      CurReg += NumRegs;
4937    }
4938
4939    setValue(CS.getInstruction(),
4940             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4941                         DAG.getVTList(&RetTys[0], RetTys.size()),
4942                         &ReturnValues[0], ReturnValues.size()));
4943
4944  }
4945
4946  // As a special case, a null chain means that a tail call has been emitted and
4947  // the DAG root is already updated.
4948  if (Result.second.getNode())
4949    DAG.setRoot(Result.second);
4950  else
4951    HasTailCall = true;
4952
4953  if (LandingPad) {
4954    // Insert a label at the end of the invoke call to mark the try range.  This
4955    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4956    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4957    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4958
4959    // Inform MachineModuleInfo of range.
4960    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4961  }
4962}
4963
4964/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4965/// value is equal or not-equal to zero.
4966static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4967  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4968       UI != E; ++UI) {
4969    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4970      if (IC->isEquality())
4971        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4972          if (C->isNullValue())
4973            continue;
4974    // Unknown instruction.
4975    return false;
4976  }
4977  return true;
4978}
4979
4980static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4981                             const Type *LoadTy,
4982                             SelectionDAGBuilder &Builder) {
4983
4984  // Check to see if this load can be trivially constant folded, e.g. if the
4985  // input is from a string literal.
4986  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4987    // Cast pointer to the type we really want to load.
4988    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4989                                         PointerType::getUnqual(LoadTy));
4990
4991    if (const Constant *LoadCst =
4992          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4993                                       Builder.TD))
4994      return Builder.getValue(LoadCst);
4995  }
4996
4997  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4998  // still constant memory, the input chain can be the entry node.
4999  SDValue Root;
5000  bool ConstantMemory = false;
5001
5002  // Do not serialize (non-volatile) loads of constant memory with anything.
5003  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5004    Root = Builder.DAG.getEntryNode();
5005    ConstantMemory = true;
5006  } else {
5007    // Do not serialize non-volatile loads against each other.
5008    Root = Builder.DAG.getRoot();
5009  }
5010
5011  SDValue Ptr = Builder.getValue(PtrVal);
5012  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5013                                        Ptr, MachinePointerInfo(PtrVal),
5014                                        false /*volatile*/,
5015                                        false /*nontemporal*/, 1 /* align=1 */);
5016
5017  if (!ConstantMemory)
5018    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5019  return LoadVal;
5020}
5021
5022
5023/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5024/// If so, return true and lower it, otherwise return false and it will be
5025/// lowered like a normal call.
5026bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5027  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5028  if (I.getNumArgOperands() != 3)
5029    return false;
5030
5031  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5032  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5033      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5034      !I.getType()->isIntegerTy())
5035    return false;
5036
5037  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5038
5039  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5040  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5041  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5042    bool ActuallyDoIt = true;
5043    MVT LoadVT;
5044    const Type *LoadTy;
5045    switch (Size->getZExtValue()) {
5046    default:
5047      LoadVT = MVT::Other;
5048      LoadTy = 0;
5049      ActuallyDoIt = false;
5050      break;
5051    case 2:
5052      LoadVT = MVT::i16;
5053      LoadTy = Type::getInt16Ty(Size->getContext());
5054      break;
5055    case 4:
5056      LoadVT = MVT::i32;
5057      LoadTy = Type::getInt32Ty(Size->getContext());
5058      break;
5059    case 8:
5060      LoadVT = MVT::i64;
5061      LoadTy = Type::getInt64Ty(Size->getContext());
5062      break;
5063        /*
5064    case 16:
5065      LoadVT = MVT::v4i32;
5066      LoadTy = Type::getInt32Ty(Size->getContext());
5067      LoadTy = VectorType::get(LoadTy, 4);
5068      break;
5069         */
5070    }
5071
5072    // This turns into unaligned loads.  We only do this if the target natively
5073    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5074    // we'll only produce a small number of byte loads.
5075
5076    // Require that we can find a legal MVT, and only do this if the target
5077    // supports unaligned loads of that type.  Expanding into byte loads would
5078    // bloat the code.
5079    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5080      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5081      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5082      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5083        ActuallyDoIt = false;
5084    }
5085
5086    if (ActuallyDoIt) {
5087      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5088      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5089
5090      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5091                                 ISD::SETNE);
5092      EVT CallVT = TLI.getValueType(I.getType(), true);
5093      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5094      return true;
5095    }
5096  }
5097
5098
5099  return false;
5100}
5101
5102
5103void SelectionDAGBuilder::visitCall(const CallInst &I) {
5104  // Handle inline assembly differently.
5105  if (isa<InlineAsm>(I.getCalledValue())) {
5106    visitInlineAsm(&I);
5107    return;
5108  }
5109
5110  // See if any floating point values are being passed to this function. This is
5111  // used to emit an undefined reference to fltused on Windows.
5112  const FunctionType *FT =
5113    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5114  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5115  if (FT->isVarArg() &&
5116      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5117    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5118      const Type* T = I.getArgOperand(i)->getType();
5119      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5120           i != e; ++i) {
5121        if (!i->isFloatingPointTy()) continue;
5122        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5123        break;
5124      }
5125    }
5126  }
5127
5128  const char *RenameFn = 0;
5129  if (Function *F = I.getCalledFunction()) {
5130    if (F->isDeclaration()) {
5131      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5132        if (unsigned IID = II->getIntrinsicID(F)) {
5133          RenameFn = visitIntrinsicCall(I, IID);
5134          if (!RenameFn)
5135            return;
5136        }
5137      }
5138      if (unsigned IID = F->getIntrinsicID()) {
5139        RenameFn = visitIntrinsicCall(I, IID);
5140        if (!RenameFn)
5141          return;
5142      }
5143    }
5144
5145    // Check for well-known libc/libm calls.  If the function is internal, it
5146    // can't be a library call.
5147    if (!F->hasLocalLinkage() && F->hasName()) {
5148      StringRef Name = F->getName();
5149      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5150        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5151            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5152            I.getType() == I.getArgOperand(0)->getType() &&
5153            I.getType() == I.getArgOperand(1)->getType()) {
5154          SDValue LHS = getValue(I.getArgOperand(0));
5155          SDValue RHS = getValue(I.getArgOperand(1));
5156          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5157                                   LHS.getValueType(), LHS, RHS));
5158          return;
5159        }
5160      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5161        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5162            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5163            I.getType() == I.getArgOperand(0)->getType()) {
5164          SDValue Tmp = getValue(I.getArgOperand(0));
5165          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5166                                   Tmp.getValueType(), Tmp));
5167          return;
5168        }
5169      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5170        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5171            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5172            I.getType() == I.getArgOperand(0)->getType() &&
5173            I.onlyReadsMemory()) {
5174          SDValue Tmp = getValue(I.getArgOperand(0));
5175          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5176                                   Tmp.getValueType(), Tmp));
5177          return;
5178        }
5179      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5180        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5181            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5182            I.getType() == I.getArgOperand(0)->getType() &&
5183            I.onlyReadsMemory()) {
5184          SDValue Tmp = getValue(I.getArgOperand(0));
5185          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5186                                   Tmp.getValueType(), Tmp));
5187          return;
5188        }
5189      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5190        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5191            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5192            I.getType() == I.getArgOperand(0)->getType() &&
5193            I.onlyReadsMemory()) {
5194          SDValue Tmp = getValue(I.getArgOperand(0));
5195          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5196                                   Tmp.getValueType(), Tmp));
5197          return;
5198        }
5199      } else if (Name == "memcmp") {
5200        if (visitMemCmpCall(I))
5201          return;
5202      }
5203    }
5204  }
5205
5206  SDValue Callee;
5207  if (!RenameFn)
5208    Callee = getValue(I.getCalledValue());
5209  else
5210    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5211
5212  // Check if we can potentially perform a tail call. More detailed checking is
5213  // be done within LowerCallTo, after more information about the call is known.
5214  LowerCallTo(&I, Callee, I.isTailCall());
5215}
5216
5217namespace llvm {
5218
5219/// AsmOperandInfo - This contains information for each constraint that we are
5220/// lowering.
5221class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
5222    public TargetLowering::AsmOperandInfo {
5223public:
5224  /// CallOperand - If this is the result output operand or a clobber
5225  /// this is null, otherwise it is the incoming operand to the CallInst.
5226  /// This gets modified as the asm is processed.
5227  SDValue CallOperand;
5228
5229  /// AssignedRegs - If this is a register or register class operand, this
5230  /// contains the set of register corresponding to the operand.
5231  RegsForValue AssignedRegs;
5232
5233  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5234    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5235  }
5236
5237  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5238  /// busy in OutputRegs/InputRegs.
5239  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5240                         std::set<unsigned> &OutputRegs,
5241                         std::set<unsigned> &InputRegs,
5242                         const TargetRegisterInfo &TRI) const {
5243    if (isOutReg) {
5244      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5245        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5246    }
5247    if (isInReg) {
5248      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5249        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5250    }
5251  }
5252
5253  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5254  /// corresponds to.  If there is no Value* for this operand, it returns
5255  /// MVT::Other.
5256  EVT getCallOperandValEVT(LLVMContext &Context,
5257                           const TargetLowering &TLI,
5258                           const TargetData *TD) const {
5259    if (CallOperandVal == 0) return MVT::Other;
5260
5261    if (isa<BasicBlock>(CallOperandVal))
5262      return TLI.getPointerTy();
5263
5264    const llvm::Type *OpTy = CallOperandVal->getType();
5265
5266    // If this is an indirect operand, the operand is a pointer to the
5267    // accessed type.
5268    if (isIndirect) {
5269      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5270      if (!PtrTy)
5271        report_fatal_error("Indirect operand for inline asm not a pointer!");
5272      OpTy = PtrTy->getElementType();
5273    }
5274
5275    // If OpTy is not a single value, it may be a struct/union that we
5276    // can tile with integers.
5277    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5278      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5279      switch (BitSize) {
5280      default: break;
5281      case 1:
5282      case 8:
5283      case 16:
5284      case 32:
5285      case 64:
5286      case 128:
5287        OpTy = IntegerType::get(Context, BitSize);
5288        break;
5289      }
5290    }
5291
5292    return TLI.getValueType(OpTy, true);
5293  }
5294
5295private:
5296  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5297  /// specified set.
5298  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5299                                const TargetRegisterInfo &TRI) {
5300    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5301    Regs.insert(Reg);
5302    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5303      for (; *Aliases; ++Aliases)
5304        Regs.insert(*Aliases);
5305  }
5306};
5307
5308typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5309
5310} // end llvm namespace.
5311
5312/// isAllocatableRegister - If the specified register is safe to allocate,
5313/// i.e. it isn't a stack pointer or some other special register, return the
5314/// register class for the register.  Otherwise, return null.
5315static const TargetRegisterClass *
5316isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5317                      const TargetLowering &TLI,
5318                      const TargetRegisterInfo *TRI) {
5319  EVT FoundVT = MVT::Other;
5320  const TargetRegisterClass *FoundRC = 0;
5321  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5322       E = TRI->regclass_end(); RCI != E; ++RCI) {
5323    EVT ThisVT = MVT::Other;
5324
5325    const TargetRegisterClass *RC = *RCI;
5326    // If none of the value types for this register class are valid, we
5327    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5328    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5329         I != E; ++I) {
5330      if (TLI.isTypeLegal(*I)) {
5331        // If we have already found this register in a different register class,
5332        // choose the one with the largest VT specified.  For example, on
5333        // PowerPC, we favor f64 register classes over f32.
5334        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5335          ThisVT = *I;
5336          break;
5337        }
5338      }
5339    }
5340
5341    if (ThisVT == MVT::Other) continue;
5342
5343    // NOTE: This isn't ideal.  In particular, this might allocate the
5344    // frame pointer in functions that need it (due to them not being taken
5345    // out of allocation, because a variable sized allocation hasn't been seen
5346    // yet).  This is a slight code pessimization, but should still work.
5347    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5348         E = RC->allocation_order_end(MF); I != E; ++I)
5349      if (*I == Reg) {
5350        // We found a matching register class.  Keep looking at others in case
5351        // we find one with larger registers that this physreg is also in.
5352        FoundRC = RC;
5353        FoundVT = ThisVT;
5354        break;
5355      }
5356  }
5357  return FoundRC;
5358}
5359
5360/// GetRegistersForValue - Assign registers (virtual or physical) for the
5361/// specified operand.  We prefer to assign virtual registers, to allow the
5362/// register allocator to handle the assignment process.  However, if the asm
5363/// uses features that we can't model on machineinstrs, we have SDISel do the
5364/// allocation.  This produces generally horrible, but correct, code.
5365///
5366///   OpInfo describes the operand.
5367///   Input and OutputRegs are the set of already allocated physical registers.
5368///
5369void SelectionDAGBuilder::
5370GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5371                     std::set<unsigned> &OutputRegs,
5372                     std::set<unsigned> &InputRegs) {
5373  LLVMContext &Context = FuncInfo.Fn->getContext();
5374
5375  // Compute whether this value requires an input register, an output register,
5376  // or both.
5377  bool isOutReg = false;
5378  bool isInReg = false;
5379  switch (OpInfo.Type) {
5380  case InlineAsm::isOutput:
5381    isOutReg = true;
5382
5383    // If there is an input constraint that matches this, we need to reserve
5384    // the input register so no other inputs allocate to it.
5385    isInReg = OpInfo.hasMatchingInput();
5386    break;
5387  case InlineAsm::isInput:
5388    isInReg = true;
5389    isOutReg = false;
5390    break;
5391  case InlineAsm::isClobber:
5392    isOutReg = true;
5393    isInReg = true;
5394    break;
5395  }
5396
5397
5398  MachineFunction &MF = DAG.getMachineFunction();
5399  SmallVector<unsigned, 4> Regs;
5400
5401  // If this is a constraint for a single physreg, or a constraint for a
5402  // register class, find it.
5403  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5404    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5405                                     OpInfo.ConstraintVT);
5406
5407  unsigned NumRegs = 1;
5408  if (OpInfo.ConstraintVT != MVT::Other) {
5409    // If this is a FP input in an integer register (or visa versa) insert a bit
5410    // cast of the input value.  More generally, handle any case where the input
5411    // value disagrees with the register class we plan to stick this in.
5412    if (OpInfo.Type == InlineAsm::isInput &&
5413        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5414      // Try to convert to the first EVT that the reg class contains.  If the
5415      // types are identical size, use a bitcast to convert (e.g. two differing
5416      // vector types).
5417      EVT RegVT = *PhysReg.second->vt_begin();
5418      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5419        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5420                                         RegVT, OpInfo.CallOperand);
5421        OpInfo.ConstraintVT = RegVT;
5422      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5423        // If the input is a FP value and we want it in FP registers, do a
5424        // bitcast to the corresponding integer type.  This turns an f64 value
5425        // into i64, which can be passed with two i32 values on a 32-bit
5426        // machine.
5427        RegVT = EVT::getIntegerVT(Context,
5428                                  OpInfo.ConstraintVT.getSizeInBits());
5429        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5430                                         RegVT, OpInfo.CallOperand);
5431        OpInfo.ConstraintVT = RegVT;
5432      }
5433    }
5434
5435    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5436  }
5437
5438  EVT RegVT;
5439  EVT ValueVT = OpInfo.ConstraintVT;
5440
5441  // If this is a constraint for a specific physical register, like {r17},
5442  // assign it now.
5443  if (unsigned AssignedReg = PhysReg.first) {
5444    const TargetRegisterClass *RC = PhysReg.second;
5445    if (OpInfo.ConstraintVT == MVT::Other)
5446      ValueVT = *RC->vt_begin();
5447
5448    // Get the actual register value type.  This is important, because the user
5449    // may have asked for (e.g.) the AX register in i32 type.  We need to
5450    // remember that AX is actually i16 to get the right extension.
5451    RegVT = *RC->vt_begin();
5452
5453    // This is a explicit reference to a physical register.
5454    Regs.push_back(AssignedReg);
5455
5456    // If this is an expanded reference, add the rest of the regs to Regs.
5457    if (NumRegs != 1) {
5458      TargetRegisterClass::iterator I = RC->begin();
5459      for (; *I != AssignedReg; ++I)
5460        assert(I != RC->end() && "Didn't find reg!");
5461
5462      // Already added the first reg.
5463      --NumRegs; ++I;
5464      for (; NumRegs; --NumRegs, ++I) {
5465        assert(I != RC->end() && "Ran out of registers to allocate!");
5466        Regs.push_back(*I);
5467      }
5468    }
5469
5470    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5471    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5472    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5473    return;
5474  }
5475
5476  // Otherwise, if this was a reference to an LLVM register class, create vregs
5477  // for this reference.
5478  if (const TargetRegisterClass *RC = PhysReg.second) {
5479    RegVT = *RC->vt_begin();
5480    if (OpInfo.ConstraintVT == MVT::Other)
5481      ValueVT = RegVT;
5482
5483    // Create the appropriate number of virtual registers.
5484    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5485    for (; NumRegs; --NumRegs)
5486      Regs.push_back(RegInfo.createVirtualRegister(RC));
5487
5488    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5489    return;
5490  }
5491
5492  // This is a reference to a register class that doesn't directly correspond
5493  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5494  // registers from the class.
5495  std::vector<unsigned> RegClassRegs
5496    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5497                                            OpInfo.ConstraintVT);
5498
5499  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5500  unsigned NumAllocated = 0;
5501  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5502    unsigned Reg = RegClassRegs[i];
5503    // See if this register is available.
5504    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5505        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5506      // Make sure we find consecutive registers.
5507      NumAllocated = 0;
5508      continue;
5509    }
5510
5511    // Check to see if this register is allocatable (i.e. don't give out the
5512    // stack pointer).
5513    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5514    if (!RC) {        // Couldn't allocate this register.
5515      // Reset NumAllocated to make sure we return consecutive registers.
5516      NumAllocated = 0;
5517      continue;
5518    }
5519
5520    // Okay, this register is good, we can use it.
5521    ++NumAllocated;
5522
5523    // If we allocated enough consecutive registers, succeed.
5524    if (NumAllocated == NumRegs) {
5525      unsigned RegStart = (i-NumAllocated)+1;
5526      unsigned RegEnd   = i+1;
5527      // Mark all of the allocated registers used.
5528      for (unsigned i = RegStart; i != RegEnd; ++i)
5529        Regs.push_back(RegClassRegs[i]);
5530
5531      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5532                                         OpInfo.ConstraintVT);
5533      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5534      return;
5535    }
5536  }
5537
5538  // Otherwise, we couldn't allocate enough registers for this.
5539}
5540
5541/// visitInlineAsm - Handle a call to an InlineAsm object.
5542///
5543void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5544  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5545
5546  /// ConstraintOperands - Information about all of the constraints.
5547  SDISelAsmOperandInfoVector ConstraintOperands;
5548
5549  std::set<unsigned> OutputRegs, InputRegs;
5550
5551  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(CS);
5552  bool hasMemory = false;
5553
5554  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5555  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5556  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5557    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5558    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5559
5560    EVT OpVT = MVT::Other;
5561
5562    // Compute the value type for each operand.
5563    switch (OpInfo.Type) {
5564    case InlineAsm::isOutput:
5565      // Indirect outputs just consume an argument.
5566      if (OpInfo.isIndirect) {
5567        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5568        break;
5569      }
5570
5571      // The return value of the call is this value.  As such, there is no
5572      // corresponding argument.
5573      assert(!CS.getType()->isVoidTy() &&
5574             "Bad inline asm!");
5575      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5576        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5577      } else {
5578        assert(ResNo == 0 && "Asm only has one result!");
5579        OpVT = TLI.getValueType(CS.getType());
5580      }
5581      ++ResNo;
5582      break;
5583    case InlineAsm::isInput:
5584      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5585      break;
5586    case InlineAsm::isClobber:
5587      // Nothing to do.
5588      break;
5589    }
5590
5591    // If this is an input or an indirect output, process the call argument.
5592    // BasicBlocks are labels, currently appearing only in asm's.
5593    if (OpInfo.CallOperandVal) {
5594      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5595        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5596      } else {
5597        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5598      }
5599
5600      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5601    }
5602
5603    OpInfo.ConstraintVT = OpVT;
5604
5605    // Indirect operand accesses access memory.
5606    if (OpInfo.isIndirect)
5607      hasMemory = true;
5608    else {
5609      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5610        TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
5611        if (CType == TargetLowering::C_Memory) {
5612          hasMemory = true;
5613          break;
5614        }
5615      }
5616    }
5617  }
5618
5619  SDValue Chain, Flag;
5620
5621  // We won't need to flush pending loads if this asm doesn't touch
5622  // memory and is nonvolatile.
5623  if (hasMemory || IA->hasSideEffects())
5624    Chain = getRoot();
5625  else
5626    Chain = DAG.getRoot();
5627
5628  // Second pass over the constraints: compute which constraint option to use
5629  // and assign registers to constraints that want a specific physreg.
5630  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5631    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5632
5633    // If this is an output operand with a matching input operand, look up the
5634    // matching input. If their types mismatch, e.g. one is an integer, the
5635    // other is floating point, or their sizes are different, flag it as an
5636    // error.
5637    if (OpInfo.hasMatchingInput()) {
5638      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5639
5640      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5641        if ((OpInfo.ConstraintVT.isInteger() !=
5642             Input.ConstraintVT.isInteger()) ||
5643            (OpInfo.ConstraintVT.getSizeInBits() !=
5644             Input.ConstraintVT.getSizeInBits())) {
5645          report_fatal_error("Unsupported asm: input constraint"
5646                             " with a matching output constraint of"
5647                             " incompatible type!");
5648        }
5649        Input.ConstraintVT = OpInfo.ConstraintVT;
5650      }
5651    }
5652
5653    // Compute the constraint code and ConstraintType to use.
5654    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5655
5656    // If this is a memory input, and if the operand is not indirect, do what we
5657    // need to to provide an address for the memory input.
5658    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5659        !OpInfo.isIndirect) {
5660      assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
5661             "Can only indirectify direct input operands!");
5662
5663      // Memory operands really want the address of the value.  If we don't have
5664      // an indirect input, put it in the constpool if we can, otherwise spill
5665      // it to a stack slot.
5666
5667      // If the operand is a float, integer, or vector constant, spill to a
5668      // constant pool entry to get its address.
5669      const Value *OpVal = OpInfo.CallOperandVal;
5670      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5671          isa<ConstantVector>(OpVal)) {
5672        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5673                                                 TLI.getPointerTy());
5674      } else {
5675        // Otherwise, create a stack slot and emit a store to it before the
5676        // asm.
5677        const Type *Ty = OpVal->getType();
5678        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5679        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5680        MachineFunction &MF = DAG.getMachineFunction();
5681        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5682        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5683        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5684                             OpInfo.CallOperand, StackSlot,
5685                             MachinePointerInfo::getFixedStack(SSFI),
5686                             false, false, 0);
5687        OpInfo.CallOperand = StackSlot;
5688      }
5689
5690      // There is no longer a Value* corresponding to this operand.
5691      OpInfo.CallOperandVal = 0;
5692
5693      // It is now an indirect operand.
5694      OpInfo.isIndirect = true;
5695    }
5696
5697    // If this constraint is for a specific register, allocate it before
5698    // anything else.
5699    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5700      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5701  }
5702
5703  // Second pass - Loop over all of the operands, assigning virtual or physregs
5704  // to register class operands.
5705  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5706    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5707
5708    // C_Register operands have already been allocated, Other/Memory don't need
5709    // to be.
5710    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5711      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5712  }
5713
5714  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5715  std::vector<SDValue> AsmNodeOperands;
5716  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5717  AsmNodeOperands.push_back(
5718          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5719                                      TLI.getPointerTy()));
5720
5721  // If we have a !srcloc metadata node associated with it, we want to attach
5722  // this to the ultimately generated inline asm machineinstr.  To do this, we
5723  // pass in the third operand as this (potentially null) inline asm MDNode.
5724  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5725  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5726
5727  // Remember the AlignStack bit as operand 3.
5728  AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0,
5729                                            MVT::i1));
5730
5731  // Loop over all of the inputs, copying the operand values into the
5732  // appropriate registers and processing the output regs.
5733  RegsForValue RetValRegs;
5734
5735  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5736  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5737
5738  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5739    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5740
5741    switch (OpInfo.Type) {
5742    case InlineAsm::isOutput: {
5743      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5744          OpInfo.ConstraintType != TargetLowering::C_Register) {
5745        // Memory output, or 'other' output (e.g. 'X' constraint).
5746        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5747
5748        // Add information to the INLINEASM node to know about this output.
5749        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5750        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5751                                                        TLI.getPointerTy()));
5752        AsmNodeOperands.push_back(OpInfo.CallOperand);
5753        break;
5754      }
5755
5756      // Otherwise, this is a register or register class output.
5757
5758      // Copy the output from the appropriate register.  Find a register that
5759      // we can use.
5760      if (OpInfo.AssignedRegs.Regs.empty())
5761        report_fatal_error("Couldn't allocate output reg for constraint '" +
5762                           Twine(OpInfo.ConstraintCode) + "'!");
5763
5764      // If this is an indirect operand, store through the pointer after the
5765      // asm.
5766      if (OpInfo.isIndirect) {
5767        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5768                                                      OpInfo.CallOperandVal));
5769      } else {
5770        // This is the result value of the call.
5771        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5772        // Concatenate this output onto the outputs list.
5773        RetValRegs.append(OpInfo.AssignedRegs);
5774      }
5775
5776      // Add information to the INLINEASM node to know that this register is
5777      // set.
5778      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5779                                           InlineAsm::Kind_RegDefEarlyClobber :
5780                                               InlineAsm::Kind_RegDef,
5781                                               false,
5782                                               0,
5783                                               DAG,
5784                                               AsmNodeOperands);
5785      break;
5786    }
5787    case InlineAsm::isInput: {
5788      SDValue InOperandVal = OpInfo.CallOperand;
5789
5790      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5791        // If this is required to match an output register we have already set,
5792        // just use its register.
5793        unsigned OperandNo = OpInfo.getMatchedOperand();
5794
5795        // Scan until we find the definition we already emitted of this operand.
5796        // When we find it, create a RegsForValue operand.
5797        unsigned CurOp = InlineAsm::Op_FirstOperand;
5798        for (; OperandNo; --OperandNo) {
5799          // Advance to the next operand.
5800          unsigned OpFlag =
5801            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5802          assert((InlineAsm::isRegDefKind(OpFlag) ||
5803                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5804                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5805          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5806        }
5807
5808        unsigned OpFlag =
5809          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5810        if (InlineAsm::isRegDefKind(OpFlag) ||
5811            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5812          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5813          if (OpInfo.isIndirect) {
5814            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5815            LLVMContext &Ctx = *DAG.getContext();
5816            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5817                          " don't know how to handle tied "
5818                          "indirect register inputs");
5819          }
5820
5821          RegsForValue MatchedRegs;
5822          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5823          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5824          MatchedRegs.RegVTs.push_back(RegVT);
5825          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5826          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5827               i != e; ++i)
5828            MatchedRegs.Regs.push_back
5829              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5830
5831          // Use the produced MatchedRegs object to
5832          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5833                                    Chain, &Flag);
5834          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5835                                           true, OpInfo.getMatchedOperand(),
5836                                           DAG, AsmNodeOperands);
5837          break;
5838        }
5839
5840        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5841        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5842               "Unexpected number of operands");
5843        // Add information to the INLINEASM node to know about this input.
5844        // See InlineAsm.h isUseOperandTiedToDef.
5845        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5846                                                    OpInfo.getMatchedOperand());
5847        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5848                                                        TLI.getPointerTy()));
5849        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5850        break;
5851      }
5852
5853      // Treat indirect 'X' constraint as memory.
5854      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5855          OpInfo.isIndirect)
5856        OpInfo.ConstraintType = TargetLowering::C_Memory;
5857
5858      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5859        std::vector<SDValue> Ops;
5860        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5861                                         Ops, DAG);
5862        if (Ops.empty())
5863          report_fatal_error("Invalid operand for inline asm constraint '" +
5864                             Twine(OpInfo.ConstraintCode) + "'!");
5865
5866        // Add information to the INLINEASM node to know about this input.
5867        unsigned ResOpType =
5868          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5869        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5870                                                        TLI.getPointerTy()));
5871        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5872        break;
5873      }
5874
5875      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5876        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5877        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5878               "Memory operands expect pointer values");
5879
5880        // Add information to the INLINEASM node to know about this input.
5881        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5882        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5883                                                        TLI.getPointerTy()));
5884        AsmNodeOperands.push_back(InOperandVal);
5885        break;
5886      }
5887
5888      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5889              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5890             "Unknown constraint type!");
5891      assert(!OpInfo.isIndirect &&
5892             "Don't know how to handle indirect register inputs yet!");
5893
5894      // Copy the input into the appropriate registers.
5895      if (OpInfo.AssignedRegs.Regs.empty() ||
5896          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5897        report_fatal_error("Couldn't allocate input reg for constraint '" +
5898                           Twine(OpInfo.ConstraintCode) + "'!");
5899
5900      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5901                                        Chain, &Flag);
5902
5903      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5904                                               DAG, AsmNodeOperands);
5905      break;
5906    }
5907    case InlineAsm::isClobber: {
5908      // Add the clobbered value to the operand list, so that the register
5909      // allocator is aware that the physreg got clobbered.
5910      if (!OpInfo.AssignedRegs.Regs.empty())
5911        OpInfo.AssignedRegs.AddInlineAsmOperands(
5912                                            InlineAsm::Kind_RegDefEarlyClobber,
5913                                                 false, 0, DAG,
5914                                                 AsmNodeOperands);
5915      break;
5916    }
5917    }
5918  }
5919
5920  // Finish up input operands.  Set the input chain and add the flag last.
5921  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5922  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5923
5924  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5925                      DAG.getVTList(MVT::Other, MVT::Glue),
5926                      &AsmNodeOperands[0], AsmNodeOperands.size());
5927  Flag = Chain.getValue(1);
5928
5929  // If this asm returns a register value, copy the result from that register
5930  // and set it as the value of the call.
5931  if (!RetValRegs.Regs.empty()) {
5932    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5933                                             Chain, &Flag);
5934
5935    // FIXME: Why don't we do this for inline asms with MRVs?
5936    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5937      EVT ResultType = TLI.getValueType(CS.getType());
5938
5939      // If any of the results of the inline asm is a vector, it may have the
5940      // wrong width/num elts.  This can happen for register classes that can
5941      // contain multiple different value types.  The preg or vreg allocated may
5942      // not have the same VT as was expected.  Convert it to the right type
5943      // with bit_convert.
5944      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5945        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5946                          ResultType, Val);
5947
5948      } else if (ResultType != Val.getValueType() &&
5949                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5950        // If a result value was tied to an input value, the computed result may
5951        // have a wider width than the expected result.  Extract the relevant
5952        // portion.
5953        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5954      }
5955
5956      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5957    }
5958
5959    setValue(CS.getInstruction(), Val);
5960    // Don't need to use this as a chain in this case.
5961    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5962      return;
5963  }
5964
5965  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5966
5967  // Process indirect outputs, first output all of the flagged copies out of
5968  // physregs.
5969  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5970    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5971    const Value *Ptr = IndirectStoresToEmit[i].second;
5972    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5973                                             Chain, &Flag);
5974    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5975  }
5976
5977  // Emit the non-flagged stores from the physregs.
5978  SmallVector<SDValue, 8> OutChains;
5979  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5980    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5981                               StoresToEmit[i].first,
5982                               getValue(StoresToEmit[i].second),
5983                               MachinePointerInfo(StoresToEmit[i].second),
5984                               false, false, 0);
5985    OutChains.push_back(Val);
5986  }
5987
5988  if (!OutChains.empty())
5989    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5990                        &OutChains[0], OutChains.size());
5991
5992  DAG.setRoot(Chain);
5993}
5994
5995void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5996  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5997                          MVT::Other, getRoot(),
5998                          getValue(I.getArgOperand(0)),
5999                          DAG.getSrcValue(I.getArgOperand(0))));
6000}
6001
6002void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6003  const TargetData &TD = *TLI.getTargetData();
6004  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6005                           getRoot(), getValue(I.getOperand(0)),
6006                           DAG.getSrcValue(I.getOperand(0)),
6007                           TD.getABITypeAlignment(I.getType()));
6008  setValue(&I, V);
6009  DAG.setRoot(V.getValue(1));
6010}
6011
6012void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6013  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6014                          MVT::Other, getRoot(),
6015                          getValue(I.getArgOperand(0)),
6016                          DAG.getSrcValue(I.getArgOperand(0))));
6017}
6018
6019void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6020  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6021                          MVT::Other, getRoot(),
6022                          getValue(I.getArgOperand(0)),
6023                          getValue(I.getArgOperand(1)),
6024                          DAG.getSrcValue(I.getArgOperand(0)),
6025                          DAG.getSrcValue(I.getArgOperand(1))));
6026}
6027
6028/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6029/// implementation, which just calls LowerCall.
6030/// FIXME: When all targets are
6031/// migrated to using LowerCall, this hook should be integrated into SDISel.
6032std::pair<SDValue, SDValue>
6033TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6034                            bool RetSExt, bool RetZExt, bool isVarArg,
6035                            bool isInreg, unsigned NumFixedArgs,
6036                            CallingConv::ID CallConv, bool isTailCall,
6037                            bool isReturnValueUsed,
6038                            SDValue Callee,
6039                            ArgListTy &Args, SelectionDAG &DAG,
6040                            DebugLoc dl) const {
6041  // Handle all of the outgoing arguments.
6042  SmallVector<ISD::OutputArg, 32> Outs;
6043  SmallVector<SDValue, 32> OutVals;
6044  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6045    SmallVector<EVT, 4> ValueVTs;
6046    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6047    for (unsigned Value = 0, NumValues = ValueVTs.size();
6048         Value != NumValues; ++Value) {
6049      EVT VT = ValueVTs[Value];
6050      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6051      SDValue Op = SDValue(Args[i].Node.getNode(),
6052                           Args[i].Node.getResNo() + Value);
6053      ISD::ArgFlagsTy Flags;
6054      unsigned OriginalAlignment =
6055        getTargetData()->getABITypeAlignment(ArgTy);
6056
6057      if (Args[i].isZExt)
6058        Flags.setZExt();
6059      if (Args[i].isSExt)
6060        Flags.setSExt();
6061      if (Args[i].isInReg)
6062        Flags.setInReg();
6063      if (Args[i].isSRet)
6064        Flags.setSRet();
6065      if (Args[i].isByVal) {
6066        Flags.setByVal();
6067        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6068        const Type *ElementTy = Ty->getElementType();
6069        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
6070        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
6071        // For ByVal, alignment should come from FE.  BE will guess if this
6072        // info is not there but there are cases it cannot get right.
6073        if (Args[i].Alignment)
6074          FrameAlign = Args[i].Alignment;
6075        Flags.setByValAlign(FrameAlign);
6076        Flags.setByValSize(FrameSize);
6077      }
6078      if (Args[i].isNest)
6079        Flags.setNest();
6080      Flags.setOrigAlign(OriginalAlignment);
6081
6082      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6083      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6084      SmallVector<SDValue, 4> Parts(NumParts);
6085      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6086
6087      if (Args[i].isSExt)
6088        ExtendKind = ISD::SIGN_EXTEND;
6089      else if (Args[i].isZExt)
6090        ExtendKind = ISD::ZERO_EXTEND;
6091
6092      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6093                     PartVT, ExtendKind);
6094
6095      for (unsigned j = 0; j != NumParts; ++j) {
6096        // if it isn't first piece, alignment must be 1
6097        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6098                               i < NumFixedArgs);
6099        if (NumParts > 1 && j == 0)
6100          MyFlags.Flags.setSplit();
6101        else if (j != 0)
6102          MyFlags.Flags.setOrigAlign(1);
6103
6104        Outs.push_back(MyFlags);
6105        OutVals.push_back(Parts[j]);
6106      }
6107    }
6108  }
6109
6110  // Handle the incoming return values from the call.
6111  SmallVector<ISD::InputArg, 32> Ins;
6112  SmallVector<EVT, 4> RetTys;
6113  ComputeValueVTs(*this, RetTy, RetTys);
6114  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6115    EVT VT = RetTys[I];
6116    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6117    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6118    for (unsigned i = 0; i != NumRegs; ++i) {
6119      ISD::InputArg MyFlags;
6120      MyFlags.VT = RegisterVT.getSimpleVT();
6121      MyFlags.Used = isReturnValueUsed;
6122      if (RetSExt)
6123        MyFlags.Flags.setSExt();
6124      if (RetZExt)
6125        MyFlags.Flags.setZExt();
6126      if (isInreg)
6127        MyFlags.Flags.setInReg();
6128      Ins.push_back(MyFlags);
6129    }
6130  }
6131
6132  SmallVector<SDValue, 4> InVals;
6133  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6134                    Outs, OutVals, Ins, dl, DAG, InVals);
6135
6136  // Verify that the target's LowerCall behaved as expected.
6137  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6138         "LowerCall didn't return a valid chain!");
6139  assert((!isTailCall || InVals.empty()) &&
6140         "LowerCall emitted a return value for a tail call!");
6141  assert((isTailCall || InVals.size() == Ins.size()) &&
6142         "LowerCall didn't emit the correct number of values!");
6143
6144  // For a tail call, the return value is merely live-out and there aren't
6145  // any nodes in the DAG representing it. Return a special value to
6146  // indicate that a tail call has been emitted and no more Instructions
6147  // should be processed in the current block.
6148  if (isTailCall) {
6149    DAG.setRoot(Chain);
6150    return std::make_pair(SDValue(), SDValue());
6151  }
6152
6153  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6154          assert(InVals[i].getNode() &&
6155                 "LowerCall emitted a null value!");
6156          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6157                 "LowerCall emitted a value with the wrong type!");
6158        });
6159
6160  // Collect the legal value parts into potentially illegal values
6161  // that correspond to the original function's return values.
6162  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6163  if (RetSExt)
6164    AssertOp = ISD::AssertSext;
6165  else if (RetZExt)
6166    AssertOp = ISD::AssertZext;
6167  SmallVector<SDValue, 4> ReturnValues;
6168  unsigned CurReg = 0;
6169  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6170    EVT VT = RetTys[I];
6171    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6172    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6173
6174    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6175                                            NumRegs, RegisterVT, VT,
6176                                            AssertOp));
6177    CurReg += NumRegs;
6178  }
6179
6180  // For a function returning void, there is no return value. We can't create
6181  // such a node, so we just return a null return value in that case. In
6182  // that case, nothing will actualy look at the value.
6183  if (ReturnValues.empty())
6184    return std::make_pair(SDValue(), Chain);
6185
6186  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6187                            DAG.getVTList(&RetTys[0], RetTys.size()),
6188                            &ReturnValues[0], ReturnValues.size());
6189  return std::make_pair(Res, Chain);
6190}
6191
6192void TargetLowering::LowerOperationWrapper(SDNode *N,
6193                                           SmallVectorImpl<SDValue> &Results,
6194                                           SelectionDAG &DAG) const {
6195  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6196  if (Res.getNode())
6197    Results.push_back(Res);
6198}
6199
6200SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6201  llvm_unreachable("LowerOperation not implemented for this target!");
6202  return SDValue();
6203}
6204
6205void
6206SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6207  SDValue Op = getNonRegisterValue(V);
6208  assert((Op.getOpcode() != ISD::CopyFromReg ||
6209          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6210         "Copy from a reg to the same reg!");
6211  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6212
6213  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6214  SDValue Chain = DAG.getEntryNode();
6215  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6216  PendingExports.push_back(Chain);
6217}
6218
6219#include "llvm/CodeGen/SelectionDAGISel.h"
6220
6221void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6222  // If this is the entry block, emit arguments.
6223  const Function &F = *LLVMBB->getParent();
6224  SelectionDAG &DAG = SDB->DAG;
6225  DebugLoc dl = SDB->getCurDebugLoc();
6226  const TargetData *TD = TLI.getTargetData();
6227  SmallVector<ISD::InputArg, 16> Ins;
6228
6229  // Check whether the function can return without sret-demotion.
6230  SmallVector<ISD::OutputArg, 4> Outs;
6231  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6232                Outs, TLI);
6233
6234  if (!FuncInfo->CanLowerReturn) {
6235    // Put in an sret pointer parameter before all the other parameters.
6236    SmallVector<EVT, 1> ValueVTs;
6237    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6238
6239    // NOTE: Assuming that a pointer will never break down to more than one VT
6240    // or one register.
6241    ISD::ArgFlagsTy Flags;
6242    Flags.setSRet();
6243    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6244    ISD::InputArg RetArg(Flags, RegisterVT, true);
6245    Ins.push_back(RetArg);
6246  }
6247
6248  // Set up the incoming argument description vector.
6249  unsigned Idx = 1;
6250  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6251       I != E; ++I, ++Idx) {
6252    SmallVector<EVT, 4> ValueVTs;
6253    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6254    bool isArgValueUsed = !I->use_empty();
6255    for (unsigned Value = 0, NumValues = ValueVTs.size();
6256         Value != NumValues; ++Value) {
6257      EVT VT = ValueVTs[Value];
6258      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6259      ISD::ArgFlagsTy Flags;
6260      unsigned OriginalAlignment =
6261        TD->getABITypeAlignment(ArgTy);
6262
6263      if (F.paramHasAttr(Idx, Attribute::ZExt))
6264        Flags.setZExt();
6265      if (F.paramHasAttr(Idx, Attribute::SExt))
6266        Flags.setSExt();
6267      if (F.paramHasAttr(Idx, Attribute::InReg))
6268        Flags.setInReg();
6269      if (F.paramHasAttr(Idx, Attribute::StructRet))
6270        Flags.setSRet();
6271      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6272        Flags.setByVal();
6273        const PointerType *Ty = cast<PointerType>(I->getType());
6274        const Type *ElementTy = Ty->getElementType();
6275        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6276        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6277        // For ByVal, alignment should be passed from FE.  BE will guess if
6278        // this info is not there but there are cases it cannot get right.
6279        if (F.getParamAlignment(Idx))
6280          FrameAlign = F.getParamAlignment(Idx);
6281        Flags.setByValAlign(FrameAlign);
6282        Flags.setByValSize(FrameSize);
6283      }
6284      if (F.paramHasAttr(Idx, Attribute::Nest))
6285        Flags.setNest();
6286      Flags.setOrigAlign(OriginalAlignment);
6287
6288      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6289      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6290      for (unsigned i = 0; i != NumRegs; ++i) {
6291        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6292        if (NumRegs > 1 && i == 0)
6293          MyFlags.Flags.setSplit();
6294        // if it isn't first piece, alignment must be 1
6295        else if (i > 0)
6296          MyFlags.Flags.setOrigAlign(1);
6297        Ins.push_back(MyFlags);
6298      }
6299    }
6300  }
6301
6302  // Call the target to set up the argument values.
6303  SmallVector<SDValue, 8> InVals;
6304  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6305                                             F.isVarArg(), Ins,
6306                                             dl, DAG, InVals);
6307
6308  // Verify that the target's LowerFormalArguments behaved as expected.
6309  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6310         "LowerFormalArguments didn't return a valid chain!");
6311  assert(InVals.size() == Ins.size() &&
6312         "LowerFormalArguments didn't emit the correct number of values!");
6313  DEBUG({
6314      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6315        assert(InVals[i].getNode() &&
6316               "LowerFormalArguments emitted a null value!");
6317        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6318               "LowerFormalArguments emitted a value with the wrong type!");
6319      }
6320    });
6321
6322  // Update the DAG with the new chain value resulting from argument lowering.
6323  DAG.setRoot(NewRoot);
6324
6325  // Set up the argument values.
6326  unsigned i = 0;
6327  Idx = 1;
6328  if (!FuncInfo->CanLowerReturn) {
6329    // Create a virtual register for the sret pointer, and put in a copy
6330    // from the sret argument into it.
6331    SmallVector<EVT, 1> ValueVTs;
6332    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6333    EVT VT = ValueVTs[0];
6334    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6335    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6336    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6337                                        RegVT, VT, AssertOp);
6338
6339    MachineFunction& MF = SDB->DAG.getMachineFunction();
6340    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6341    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6342    FuncInfo->DemoteRegister = SRetReg;
6343    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6344                                    SRetReg, ArgValue);
6345    DAG.setRoot(NewRoot);
6346
6347    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6348    // Idx indexes LLVM arguments.  Don't touch it.
6349    ++i;
6350  }
6351
6352  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6353      ++I, ++Idx) {
6354    SmallVector<SDValue, 4> ArgValues;
6355    SmallVector<EVT, 4> ValueVTs;
6356    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6357    unsigned NumValues = ValueVTs.size();
6358
6359    // If this argument is unused then remember its value. It is used to generate
6360    // debugging information.
6361    if (I->use_empty() && NumValues)
6362      SDB->setUnusedArgValue(I, InVals[i]);
6363
6364    for (unsigned Value = 0; Value != NumValues; ++Value) {
6365      EVT VT = ValueVTs[Value];
6366      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6367      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6368
6369      if (!I->use_empty()) {
6370        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6371        if (F.paramHasAttr(Idx, Attribute::SExt))
6372          AssertOp = ISD::AssertSext;
6373        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6374          AssertOp = ISD::AssertZext;
6375
6376        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6377                                             NumParts, PartVT, VT,
6378                                             AssertOp));
6379      }
6380
6381      i += NumParts;
6382    }
6383
6384    // Note down frame index for byval arguments.
6385    if (I->hasByValAttr() && !ArgValues.empty())
6386      if (FrameIndexSDNode *FI =
6387          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6388        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6389
6390    if (!I->use_empty()) {
6391      SDValue Res;
6392      if (!ArgValues.empty())
6393        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6394                                 SDB->getCurDebugLoc());
6395      SDB->setValue(I, Res);
6396
6397      // If this argument is live outside of the entry block, insert a copy from
6398      // whereever we got it to the vreg that other BB's will reference it as.
6399      SDB->CopyToExportRegsIfNeeded(I);
6400    }
6401  }
6402
6403  assert(i == InVals.size() && "Argument register count mismatch!");
6404
6405  // Finally, if the target has anything special to do, allow it to do so.
6406  // FIXME: this should insert code into the DAG!
6407  EmitFunctionEntryCode();
6408}
6409
6410/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6411/// ensure constants are generated when needed.  Remember the virtual registers
6412/// that need to be added to the Machine PHI nodes as input.  We cannot just
6413/// directly add them, because expansion might result in multiple MBB's for one
6414/// BB.  As such, the start of the BB might correspond to a different MBB than
6415/// the end.
6416///
6417void
6418SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6419  const TerminatorInst *TI = LLVMBB->getTerminator();
6420
6421  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6422
6423  // Check successor nodes' PHI nodes that expect a constant to be available
6424  // from this block.
6425  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6426    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6427    if (!isa<PHINode>(SuccBB->begin())) continue;
6428    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6429
6430    // If this terminator has multiple identical successors (common for
6431    // switches), only handle each succ once.
6432    if (!SuccsHandled.insert(SuccMBB)) continue;
6433
6434    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6435
6436    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6437    // nodes and Machine PHI nodes, but the incoming operands have not been
6438    // emitted yet.
6439    for (BasicBlock::const_iterator I = SuccBB->begin();
6440         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6441      // Ignore dead phi's.
6442      if (PN->use_empty()) continue;
6443
6444      unsigned Reg;
6445      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6446
6447      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6448        unsigned &RegOut = ConstantsOut[C];
6449        if (RegOut == 0) {
6450          RegOut = FuncInfo.CreateRegs(C->getType());
6451          CopyValueToVirtualRegister(C, RegOut);
6452        }
6453        Reg = RegOut;
6454      } else {
6455        DenseMap<const Value *, unsigned>::iterator I =
6456          FuncInfo.ValueMap.find(PHIOp);
6457        if (I != FuncInfo.ValueMap.end())
6458          Reg = I->second;
6459        else {
6460          assert(isa<AllocaInst>(PHIOp) &&
6461                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6462                 "Didn't codegen value into a register!??");
6463          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6464          CopyValueToVirtualRegister(PHIOp, Reg);
6465        }
6466      }
6467
6468      // Remember that this register needs to added to the machine PHI node as
6469      // the input for this MBB.
6470      SmallVector<EVT, 4> ValueVTs;
6471      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6472      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6473        EVT VT = ValueVTs[vti];
6474        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6475        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6476          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6477        Reg += NumRegisters;
6478      }
6479    }
6480  }
6481  ConstantsOut.clear();
6482}
6483