SelectionDAGBuilder.cpp revision f57e1c29dde4666ea4ec397dde72f991e5b9f854
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameLowering.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getTargetConstant(1, TLI.getPointerTy()));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert(PartVT.isInteger() && ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360    }
361  } else if (PartBits == ValueVT.getSizeInBits()) {
362    // Different types of the same size.
363    assert(NumParts == 1 && PartVT != ValueVT);
364    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366    // If the parts cover less bits than value has, truncate the value.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Unknown mismatch!");
369    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371  }
372
373  // The value may have changed - recompute ValueVT.
374  ValueVT = Val.getValueType();
375  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376         "Failed to tile the value with PartVT!");
377
378  if (NumParts == 1) {
379    assert(PartVT == ValueVT && "Type conversion failed!");
380    Parts[0] = Val;
381    return;
382  }
383
384  // Expand the value into multiple parts.
385  if (NumParts & (NumParts - 1)) {
386    // The number of parts is not a power of 2.  Split off and copy the tail.
387    assert(PartVT.isInteger() && ValueVT.isInteger() &&
388           "Do not know what to expand to!");
389    unsigned RoundParts = 1 << Log2_32(NumParts);
390    unsigned RoundBits = RoundParts * PartBits;
391    unsigned OddParts = NumParts - RoundParts;
392    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                 DAG.getIntPtrConstant(RoundBits));
394    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396    if (TLI.isBigEndian())
397      // The odd parts were reversed by getCopyToParts - unreverse them.
398      std::reverse(Parts + RoundParts, Parts + NumParts);
399
400    NumParts = RoundParts;
401    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403  }
404
405  // The number of parts is a power of 2.  Repeatedly bisect the value using
406  // EXTRACT_ELEMENT.
407  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                         EVT::getIntegerVT(*DAG.getContext(),
409                                           ValueVT.getSizeInBits()),
410                         Val);
411
412  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413    for (unsigned i = 0; i < NumParts; i += StepSize) {
414      unsigned ThisBits = StepSize * PartBits / 2;
415      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416      SDValue &Part0 = Parts[i];
417      SDValue &Part1 = Parts[i+StepSize/2];
418
419      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                          ThisVT, Part0, DAG.getIntPtrConstant(1));
421      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                          ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424      if (ThisBits == PartBits && ThisVT != PartVT) {
425        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427      }
428    }
429  }
430
431  if (TLI.isBigEndian())
432    std::reverse(Parts, Parts + OrigNumParts);
433}
434
435
436/// getCopyToPartsVector - Create a series of nodes that contain the specified
437/// value split into legal parts.
438static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                 SDValue Val, SDValue *Parts, unsigned NumParts,
440                                 EVT PartVT) {
441  EVT ValueVT = Val.getValueType();
442  assert(ValueVT.isVector() && "Not a vector");
443  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445  if (NumParts == 1) {
446    if (PartVT == ValueVT) {
447      // Nothing to do.
448    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449      // Bitconvert vector->vector case.
450      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451    } else if (PartVT.isVector() &&
452               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454      EVT ElementVT = PartVT.getVectorElementType();
455      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456      // undef elements.
457      SmallVector<SDValue, 16> Ops;
458      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462      for (unsigned i = ValueVT.getVectorNumElements(),
463           e = PartVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getUNDEF(ElementVT));
465
466      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468      // FIXME: Use CONCAT for 2x -> 4x.
469
470      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472    } else if (PartVT.isVector() &&
473               PartVT.getVectorElementType().bitsGE(
474                 ValueVT.getVectorElementType()) &&
475               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477      // Promoted vector extract
478      bool Smaller = PartVT.bitsLE(ValueVT);
479      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                        DL, PartVT, Val);
481    } else{
482      // Vector -> scalar conversion.
483      assert(ValueVT.getVectorNumElements() == 1 &&
484             "Only trivial vector-to-scalar conversions should get here!");
485      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                        PartVT, Val, DAG.getIntPtrConstant(0));
487
488      bool Smaller = ValueVT.bitsLE(PartVT);
489      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                         DL, PartVT, Val);
491    }
492
493    Parts[0] = Val;
494    return;
495  }
496
497  // Handle a multi-element vector.
498  EVT IntermediateVT, RegisterVT;
499  unsigned NumIntermediates;
500  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                IntermediateVT,
502                                                NumIntermediates, RegisterVT);
503  unsigned NumElements = ValueVT.getVectorNumElements();
504
505  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506  NumParts = NumRegs; // Silence a compiler warning.
507  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509  // Split the vector into intermediate operands.
510  SmallVector<SDValue, 8> Ops(NumIntermediates);
511  for (unsigned i = 0; i != NumIntermediates; ++i) {
512    if (IntermediateVT.isVector())
513      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                           IntermediateVT, Val,
515                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516    else
517      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
519  }
520
521  // Split the intermediate operands into legal parts.
522  if (NumParts == NumIntermediates) {
523    // If the register was not expanded, promote or copy the value,
524    // as appropriate.
525    for (unsigned i = 0; i != NumParts; ++i)
526      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527  } else if (NumParts > 0) {
528    // If the intermediate type was expanded, split each the value into
529    // legal parts.
530    assert(NumParts % NumIntermediates == 0 &&
531           "Must expand into a divisible number of parts!");
532    unsigned Factor = NumParts / NumIntermediates;
533    for (unsigned i = 0; i != NumIntermediates; ++i)
534      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535  }
536}
537
538
539
540
541namespace {
542  /// RegsForValue - This struct represents the registers (physical or virtual)
543  /// that a particular set of values is assigned, and the type information
544  /// about the value. The most common situation is to represent one value at a
545  /// time, but struct or array values are handled element-wise as multiple
546  /// values.  The splitting of aggregates is performed recursively, so that we
547  /// never have aggregate-typed registers. The values at this point do not
548  /// necessarily have legal types, so each value may require one or more
549  /// registers of some legal type.
550  ///
551  struct RegsForValue {
552    /// ValueVTs - The value types of the values, which may not be legal, and
553    /// may need be promoted or synthesized from one or more registers.
554    ///
555    SmallVector<EVT, 4> ValueVTs;
556
557    /// RegVTs - The value types of the registers. This is the same size as
558    /// ValueVTs and it records, for each value, what the type of the assigned
559    /// register or registers are. (Individual values are never synthesized
560    /// from more than one type of register.)
561    ///
562    /// With virtual registers, the contents of RegVTs is redundant with TLI's
563    /// getRegisterType member function, however when with physical registers
564    /// it is necessary to have a separate record of the types.
565    ///
566    SmallVector<EVT, 4> RegVTs;
567
568    /// Regs - This list holds the registers assigned to the values.
569    /// Each legal or promoted value requires one register, and each
570    /// expanded value requires multiple registers.
571    ///
572    SmallVector<unsigned, 4> Regs;
573
574    RegsForValue() {}
575
576    RegsForValue(const SmallVector<unsigned, 4> &regs,
577                 EVT regvt, EVT valuevt)
578      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
580    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                 unsigned Reg, Type *Ty) {
582      ComputeValueVTs(tli, Ty, ValueVTs);
583
584      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585        EVT ValueVT = ValueVTs[Value];
586        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588        for (unsigned i = 0; i != NumRegs; ++i)
589          Regs.push_back(Reg + i);
590        RegVTs.push_back(RegisterVT);
591        Reg += NumRegs;
592      }
593    }
594
595    /// areValueTypesLegal - Return true if types of all the values are legal.
596    bool areValueTypesLegal(const TargetLowering &TLI) {
597      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598        EVT RegisterVT = RegVTs[Value];
599        if (!TLI.isTypeLegal(RegisterVT))
600          return false;
601      }
602      return true;
603    }
604
605    /// append - Add the specified values to this one.
606    void append(const RegsForValue &RHS) {
607      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610    }
611
612    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613    /// this value and returns the result as a ValueVTs value.  This uses
614    /// Chain/Flag as the input and updates them for the output Chain/Flag.
615    /// If the Flag pointer is NULL, no flag is used.
616    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                            DebugLoc dl,
618                            SDValue &Chain, SDValue *Flag) const;
619
620    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621    /// specified value into the registers specified by this object.  This uses
622    /// Chain/Flag as the input and updates them for the output Chain/Flag.
623    /// If the Flag pointer is NULL, no flag is used.
624    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                       SDValue &Chain, SDValue *Flag) const;
626
627    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628    /// operand list.  This adds the code marker, matching input operand index
629    /// (if applicable), and includes the number of values added into it.
630    void AddInlineAsmOperands(unsigned Kind,
631                              bool HasMatching, unsigned MatchingIdx,
632                              SelectionDAG &DAG,
633                              std::vector<SDValue> &Ops) const;
634  };
635}
636
637/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638/// this value and returns the result as a ValueVT value.  This uses
639/// Chain/Flag as the input and updates them for the output Chain/Flag.
640/// If the Flag pointer is NULL, no flag is used.
641SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                      FunctionLoweringInfo &FuncInfo,
643                                      DebugLoc dl,
644                                      SDValue &Chain, SDValue *Flag) const {
645  // A Value with type {} or [0 x %t] needs no registers.
646  if (ValueVTs.empty())
647    return SDValue();
648
649  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651  // Assemble the legal parts into the final values.
652  SmallVector<SDValue, 4> Values(ValueVTs.size());
653  SmallVector<SDValue, 8> Parts;
654  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655    // Copy the legal parts from the registers.
656    EVT ValueVT = ValueVTs[Value];
657    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658    EVT RegisterVT = RegVTs[Value];
659
660    Parts.resize(NumRegs);
661    for (unsigned i = 0; i != NumRegs; ++i) {
662      SDValue P;
663      if (Flag == 0) {
664        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665      } else {
666        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667        *Flag = P.getValue(2);
668      }
669
670      Chain = P.getValue(1);
671      Parts[i] = P;
672
673      // If the source register was virtual and if we know something about it,
674      // add an assert node.
675      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676          !RegisterVT.isInteger() || RegisterVT.isVector())
677        continue;
678
679      const FunctionLoweringInfo::LiveOutInfo *LOI =
680        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681      if (!LOI)
682        continue;
683
684      unsigned RegSize = RegisterVT.getSizeInBits();
685      unsigned NumSignBits = LOI->NumSignBits;
686      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688      // FIXME: We capture more information than the dag can represent.  For
689      // now, just use the tightest assertzext/assertsext possible.
690      bool isSExt = true;
691      EVT FromVT(MVT::Other);
692      if (NumSignBits == RegSize)
693        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694      else if (NumZeroBits >= RegSize-1)
695        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696      else if (NumSignBits > RegSize-8)
697        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698      else if (NumZeroBits >= RegSize-8)
699        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700      else if (NumSignBits > RegSize-16)
701        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702      else if (NumZeroBits >= RegSize-16)
703        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704      else if (NumSignBits > RegSize-32)
705        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706      else if (NumZeroBits >= RegSize-32)
707        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708      else
709        continue;
710
711      // Add an assertion node.
712      assert(FromVT != MVT::Other);
713      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                             RegisterVT, P, DAG.getValueType(FromVT));
715    }
716
717    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                     NumRegs, RegisterVT, ValueVT);
719    Part += NumRegs;
720    Parts.clear();
721  }
722
723  return DAG.getNode(ISD::MERGE_VALUES, dl,
724                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                     &Values[0], ValueVTs.size());
726}
727
728/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729/// specified value into the registers specified by this object.  This uses
730/// Chain/Flag as the input and updates them for the output Chain/Flag.
731/// If the Flag pointer is NULL, no flag is used.
732void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                 SDValue &Chain, SDValue *Flag) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  // Get the list of the values's legal parts.
737  unsigned NumRegs = Regs.size();
738  SmallVector<SDValue, 8> Parts(NumRegs);
739  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740    EVT ValueVT = ValueVTs[Value];
741    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742    EVT RegisterVT = RegVTs[Value];
743
744    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                   &Parts[Part], NumParts, RegisterVT);
746    Part += NumParts;
747  }
748
749  // Copy the parts into the registers.
750  SmallVector<SDValue, 8> Chains(NumRegs);
751  for (unsigned i = 0; i != NumRegs; ++i) {
752    SDValue Part;
753    if (Flag == 0) {
754      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755    } else {
756      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757      *Flag = Part.getValue(1);
758    }
759
760    Chains[i] = Part.getValue(0);
761  }
762
763  if (NumRegs == 1 || Flag)
764    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765    // flagged to it. That is the CopyToReg nodes and the user are considered
766    // a single scheduling unit. If we create a TokenFactor and return it as
767    // chain, then the TokenFactor is both a predecessor (operand) of the
768    // user as well as a successor (the TF operands are flagged to the user).
769    // c1, f1 = CopyToReg
770    // c2, f2 = CopyToReg
771    // c3     = TokenFactor c1, c2
772    // ...
773    //        = op c3, ..., f2
774    Chain = Chains[NumRegs-1];
775  else
776    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777}
778
779/// AddInlineAsmOperands - Add this value to the specified inlineasm node
780/// operand list.  This adds the code marker and includes the number of
781/// values added into it.
782void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                        unsigned MatchingIdx,
784                                        SelectionDAG &DAG,
785                                        std::vector<SDValue> &Ops) const {
786  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789  if (HasMatching)
790    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791  else if (!Regs.empty() &&
792           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
793    // Put the register class of the virtual registers in the flag word.  That
794    // way, later passes can recompute register class constraints for inline
795    // assembly as well as normal instructions.
796    // Don't do this for tied operands that can use the regclass information
797    // from the def.
798    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
799    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
800    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
801  }
802
803  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
804  Ops.push_back(Res);
805
806  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
807    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
808    EVT RegisterVT = RegVTs[Value];
809    for (unsigned i = 0; i != NumRegs; ++i) {
810      assert(Reg < Regs.size() && "Mismatch in # registers expected");
811      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
812    }
813  }
814}
815
816void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
817                               const TargetLibraryInfo *li) {
818  AA = &aa;
819  GFI = gfi;
820  LibInfo = li;
821  TD = DAG.getTarget().getTargetData();
822  LPadToCallSiteMap.clear();
823}
824
825/// clear - Clear out the current SelectionDAG and the associated
826/// state and prepare this SelectionDAGBuilder object to be used
827/// for a new block. This doesn't clear out information about
828/// additional blocks that are needed to complete switch lowering
829/// or PHI node updating; that information is cleared out as it is
830/// consumed.
831void SelectionDAGBuilder::clear() {
832  NodeMap.clear();
833  UnusedArgNodeMap.clear();
834  PendingLoads.clear();
835  PendingExports.clear();
836  CurDebugLoc = DebugLoc();
837  HasTailCall = false;
838}
839
840/// clearDanglingDebugInfo - Clear the dangling debug information
841/// map. This function is seperated from the clear so that debug
842/// information that is dangling in a basic block can be properly
843/// resolved in a different basic block. This allows the
844/// SelectionDAG to resolve dangling debug information attached
845/// to PHI nodes.
846void SelectionDAGBuilder::clearDanglingDebugInfo() {
847  DanglingDebugInfoMap.clear();
848}
849
850/// getRoot - Return the current virtual root of the Selection DAG,
851/// flushing any PendingLoad items. This must be done before emitting
852/// a store or any other node that may need to be ordered after any
853/// prior load instructions.
854///
855SDValue SelectionDAGBuilder::getRoot() {
856  if (PendingLoads.empty())
857    return DAG.getRoot();
858
859  if (PendingLoads.size() == 1) {
860    SDValue Root = PendingLoads[0];
861    DAG.setRoot(Root);
862    PendingLoads.clear();
863    return Root;
864  }
865
866  // Otherwise, we have to make a token factor node.
867  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
868                               &PendingLoads[0], PendingLoads.size());
869  PendingLoads.clear();
870  DAG.setRoot(Root);
871  return Root;
872}
873
874/// getControlRoot - Similar to getRoot, but instead of flushing all the
875/// PendingLoad items, flush all the PendingExports items. It is necessary
876/// to do this before emitting a terminator instruction.
877///
878SDValue SelectionDAGBuilder::getControlRoot() {
879  SDValue Root = DAG.getRoot();
880
881  if (PendingExports.empty())
882    return Root;
883
884  // Turn all of the CopyToReg chains into one factored node.
885  if (Root.getOpcode() != ISD::EntryToken) {
886    unsigned i = 0, e = PendingExports.size();
887    for (; i != e; ++i) {
888      assert(PendingExports[i].getNode()->getNumOperands() > 1);
889      if (PendingExports[i].getNode()->getOperand(0) == Root)
890        break;  // Don't add the root if we already indirectly depend on it.
891    }
892
893    if (i == e)
894      PendingExports.push_back(Root);
895  }
896
897  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
898                     &PendingExports[0],
899                     PendingExports.size());
900  PendingExports.clear();
901  DAG.setRoot(Root);
902  return Root;
903}
904
905void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
906  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
907  DAG.AssignOrdering(Node, SDNodeOrder);
908
909  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
910    AssignOrderingToNode(Node->getOperand(I).getNode());
911}
912
913void SelectionDAGBuilder::visit(const Instruction &I) {
914  // Set up outgoing PHI node register values before emitting the terminator.
915  if (isa<TerminatorInst>(&I))
916    HandlePHINodesInSuccessorBlocks(I.getParent());
917
918  CurDebugLoc = I.getDebugLoc();
919
920  visit(I.getOpcode(), I);
921
922  if (!isa<TerminatorInst>(&I) && !HasTailCall)
923    CopyToExportRegsIfNeeded(&I);
924
925  CurDebugLoc = DebugLoc();
926}
927
928void SelectionDAGBuilder::visitPHI(const PHINode &) {
929  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
930}
931
932void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
933  // Note: this doesn't use InstVisitor, because it has to work with
934  // ConstantExpr's in addition to instructions.
935  switch (Opcode) {
936  default: llvm_unreachable("Unknown instruction type encountered!");
937    // Build the switch statement using the Instruction.def file.
938#define HANDLE_INST(NUM, OPCODE, CLASS) \
939    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
940#include "llvm/Instruction.def"
941  }
942
943  // Assign the ordering to the freshly created DAG nodes.
944  if (NodeMap.count(&I)) {
945    ++SDNodeOrder;
946    AssignOrderingToNode(getValue(&I).getNode());
947  }
948}
949
950// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
951// generate the debug data structures now that we've seen its definition.
952void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
953                                                   SDValue Val) {
954  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
955  if (DDI.getDI()) {
956    const DbgValueInst *DI = DDI.getDI();
957    DebugLoc dl = DDI.getdl();
958    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
959    MDNode *Variable = DI->getVariable();
960    uint64_t Offset = DI->getOffset();
961    SDDbgValue *SDV;
962    if (Val.getNode()) {
963      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
964        SDV = DAG.getDbgValue(Variable, Val.getNode(),
965                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
966        DAG.AddDbgValue(SDV, Val.getNode(), false);
967      }
968    } else
969      DEBUG(dbgs() << "Dropping debug info for " << DI);
970    DanglingDebugInfoMap[V] = DanglingDebugInfo();
971  }
972}
973
974/// getValue - Return an SDValue for the given Value.
975SDValue SelectionDAGBuilder::getValue(const Value *V) {
976  // If we already have an SDValue for this value, use it. It's important
977  // to do this first, so that we don't create a CopyFromReg if we already
978  // have a regular SDValue.
979  SDValue &N = NodeMap[V];
980  if (N.getNode()) return N;
981
982  // If there's a virtual register allocated and initialized for this
983  // value, use it.
984  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
985  if (It != FuncInfo.ValueMap.end()) {
986    unsigned InReg = It->second;
987    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
988    SDValue Chain = DAG.getEntryNode();
989    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
990    resolveDanglingDebugInfo(V, N);
991    return N;
992  }
993
994  // Otherwise create a new SDValue and remember it.
995  SDValue Val = getValueImpl(V);
996  NodeMap[V] = Val;
997  resolveDanglingDebugInfo(V, Val);
998  return Val;
999}
1000
1001/// getNonRegisterValue - Return an SDValue for the given Value, but
1002/// don't look in FuncInfo.ValueMap for a virtual register.
1003SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1004  // If we already have an SDValue for this value, use it.
1005  SDValue &N = NodeMap[V];
1006  if (N.getNode()) return N;
1007
1008  // Otherwise create a new SDValue and remember it.
1009  SDValue Val = getValueImpl(V);
1010  NodeMap[V] = Val;
1011  resolveDanglingDebugInfo(V, Val);
1012  return Val;
1013}
1014
1015/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1016/// Create an SDValue for the given value.
1017SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1018  if (const Constant *C = dyn_cast<Constant>(V)) {
1019    EVT VT = TLI.getValueType(V->getType(), true);
1020
1021    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1022      return DAG.getConstant(*CI, VT);
1023
1024    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1025      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1026
1027    if (isa<ConstantPointerNull>(C))
1028      return DAG.getConstant(0, TLI.getPointerTy());
1029
1030    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1031      return DAG.getConstantFP(*CFP, VT);
1032
1033    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1034      return DAG.getUNDEF(VT);
1035
1036    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1037      visit(CE->getOpcode(), *CE);
1038      SDValue N1 = NodeMap[V];
1039      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1040      return N1;
1041    }
1042
1043    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1044      SmallVector<SDValue, 4> Constants;
1045      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1046           OI != OE; ++OI) {
1047        SDNode *Val = getValue(*OI).getNode();
1048        // If the operand is an empty aggregate, there are no values.
1049        if (!Val) continue;
1050        // Add each leaf value from the operand to the Constants list
1051        // to form a flattened list of all the values.
1052        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1053          Constants.push_back(SDValue(Val, i));
1054      }
1055
1056      return DAG.getMergeValues(&Constants[0], Constants.size(),
1057                                getCurDebugLoc());
1058    }
1059
1060    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1061      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1062             "Unknown struct or array constant!");
1063
1064      SmallVector<EVT, 4> ValueVTs;
1065      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1066      unsigned NumElts = ValueVTs.size();
1067      if (NumElts == 0)
1068        return SDValue(); // empty struct
1069      SmallVector<SDValue, 4> Constants(NumElts);
1070      for (unsigned i = 0; i != NumElts; ++i) {
1071        EVT EltVT = ValueVTs[i];
1072        if (isa<UndefValue>(C))
1073          Constants[i] = DAG.getUNDEF(EltVT);
1074        else if (EltVT.isFloatingPoint())
1075          Constants[i] = DAG.getConstantFP(0, EltVT);
1076        else
1077          Constants[i] = DAG.getConstant(0, EltVT);
1078      }
1079
1080      return DAG.getMergeValues(&Constants[0], NumElts,
1081                                getCurDebugLoc());
1082    }
1083
1084    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1085      return DAG.getBlockAddress(BA, VT);
1086
1087    VectorType *VecTy = cast<VectorType>(V->getType());
1088    unsigned NumElements = VecTy->getNumElements();
1089
1090    // Now that we know the number and type of the elements, get that number of
1091    // elements into the Ops array based on what kind of constant it is.
1092    SmallVector<SDValue, 16> Ops;
1093    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1094      for (unsigned i = 0; i != NumElements; ++i)
1095        Ops.push_back(getValue(CP->getOperand(i)));
1096    } else {
1097      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1098      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1099
1100      SDValue Op;
1101      if (EltVT.isFloatingPoint())
1102        Op = DAG.getConstantFP(0, EltVT);
1103      else
1104        Op = DAG.getConstant(0, EltVT);
1105      Ops.assign(NumElements, Op);
1106    }
1107
1108    // Create a BUILD_VECTOR node.
1109    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1110                                    VT, &Ops[0], Ops.size());
1111  }
1112
1113  // If this is a static alloca, generate it as the frameindex instead of
1114  // computation.
1115  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1116    DenseMap<const AllocaInst*, int>::iterator SI =
1117      FuncInfo.StaticAllocaMap.find(AI);
1118    if (SI != FuncInfo.StaticAllocaMap.end())
1119      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1120  }
1121
1122  // If this is an instruction which fast-isel has deferred, select it now.
1123  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1124    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1125    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1126    SDValue Chain = DAG.getEntryNode();
1127    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1128  }
1129
1130  llvm_unreachable("Can't get register for value!");
1131  return SDValue();
1132}
1133
1134void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1135  SDValue Chain = getControlRoot();
1136  SmallVector<ISD::OutputArg, 8> Outs;
1137  SmallVector<SDValue, 8> OutVals;
1138
1139  if (!FuncInfo.CanLowerReturn) {
1140    unsigned DemoteReg = FuncInfo.DemoteRegister;
1141    const Function *F = I.getParent()->getParent();
1142
1143    // Emit a store of the return value through the virtual register.
1144    // Leave Outs empty so that LowerReturn won't try to load return
1145    // registers the usual way.
1146    SmallVector<EVT, 1> PtrValueVTs;
1147    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1148                    PtrValueVTs);
1149
1150    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1151    SDValue RetOp = getValue(I.getOperand(0));
1152
1153    SmallVector<EVT, 4> ValueVTs;
1154    SmallVector<uint64_t, 4> Offsets;
1155    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1156    unsigned NumValues = ValueVTs.size();
1157
1158    SmallVector<SDValue, 4> Chains(NumValues);
1159    for (unsigned i = 0; i != NumValues; ++i) {
1160      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1161                                RetPtr.getValueType(), RetPtr,
1162                                DAG.getIntPtrConstant(Offsets[i]));
1163      Chains[i] =
1164        DAG.getStore(Chain, getCurDebugLoc(),
1165                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1166                     // FIXME: better loc info would be nice.
1167                     Add, MachinePointerInfo(), false, false, 0);
1168    }
1169
1170    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1171                        MVT::Other, &Chains[0], NumValues);
1172  } else if (I.getNumOperands() != 0) {
1173    SmallVector<EVT, 4> ValueVTs;
1174    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1175    unsigned NumValues = ValueVTs.size();
1176    if (NumValues) {
1177      SDValue RetOp = getValue(I.getOperand(0));
1178      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1179        EVT VT = ValueVTs[j];
1180
1181        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1182
1183        const Function *F = I.getParent()->getParent();
1184        if (F->paramHasAttr(0, Attribute::SExt))
1185          ExtendKind = ISD::SIGN_EXTEND;
1186        else if (F->paramHasAttr(0, Attribute::ZExt))
1187          ExtendKind = ISD::ZERO_EXTEND;
1188
1189        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1190          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1191
1192        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1193        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1194        SmallVector<SDValue, 4> Parts(NumParts);
1195        getCopyToParts(DAG, getCurDebugLoc(),
1196                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1197                       &Parts[0], NumParts, PartVT, ExtendKind);
1198
1199        // 'inreg' on function refers to return value
1200        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1201        if (F->paramHasAttr(0, Attribute::InReg))
1202          Flags.setInReg();
1203
1204        // Propagate extension type if any
1205        if (ExtendKind == ISD::SIGN_EXTEND)
1206          Flags.setSExt();
1207        else if (ExtendKind == ISD::ZERO_EXTEND)
1208          Flags.setZExt();
1209
1210        for (unsigned i = 0; i < NumParts; ++i) {
1211          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1212                                        /*isfixed=*/true));
1213          OutVals.push_back(Parts[i]);
1214        }
1215      }
1216    }
1217  }
1218
1219  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1220  CallingConv::ID CallConv =
1221    DAG.getMachineFunction().getFunction()->getCallingConv();
1222  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1223                          Outs, OutVals, getCurDebugLoc(), DAG);
1224
1225  // Verify that the target's LowerReturn behaved as expected.
1226  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1227         "LowerReturn didn't return a valid chain!");
1228
1229  // Update the DAG with the new chain value resulting from return lowering.
1230  DAG.setRoot(Chain);
1231}
1232
1233/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1234/// created for it, emit nodes to copy the value into the virtual
1235/// registers.
1236void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1237  // Skip empty types
1238  if (V->getType()->isEmptyTy())
1239    return;
1240
1241  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1242  if (VMI != FuncInfo.ValueMap.end()) {
1243    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1244    CopyValueToVirtualRegister(V, VMI->second);
1245  }
1246}
1247
1248/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1249/// the current basic block, add it to ValueMap now so that we'll get a
1250/// CopyTo/FromReg.
1251void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1252  // No need to export constants.
1253  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1254
1255  // Already exported?
1256  if (FuncInfo.isExportedInst(V)) return;
1257
1258  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1259  CopyValueToVirtualRegister(V, Reg);
1260}
1261
1262bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1263                                                     const BasicBlock *FromBB) {
1264  // The operands of the setcc have to be in this block.  We don't know
1265  // how to export them from some other block.
1266  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1267    // Can export from current BB.
1268    if (VI->getParent() == FromBB)
1269      return true;
1270
1271    // Is already exported, noop.
1272    return FuncInfo.isExportedInst(V);
1273  }
1274
1275  // If this is an argument, we can export it if the BB is the entry block or
1276  // if it is already exported.
1277  if (isa<Argument>(V)) {
1278    if (FromBB == &FromBB->getParent()->getEntryBlock())
1279      return true;
1280
1281    // Otherwise, can only export this if it is already exported.
1282    return FuncInfo.isExportedInst(V);
1283  }
1284
1285  // Otherwise, constants can always be exported.
1286  return true;
1287}
1288
1289/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1290uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1291                                            const MachineBasicBlock *Dst) const {
1292  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1293  if (!BPI)
1294    return 0;
1295  const BasicBlock *SrcBB = Src->getBasicBlock();
1296  const BasicBlock *DstBB = Dst->getBasicBlock();
1297  return BPI->getEdgeWeight(SrcBB, DstBB);
1298}
1299
1300void SelectionDAGBuilder::
1301addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1302                       uint32_t Weight /* = 0 */) {
1303  if (!Weight)
1304    Weight = getEdgeWeight(Src, Dst);
1305  Src->addSuccessor(Dst, Weight);
1306}
1307
1308
1309static bool InBlock(const Value *V, const BasicBlock *BB) {
1310  if (const Instruction *I = dyn_cast<Instruction>(V))
1311    return I->getParent() == BB;
1312  return true;
1313}
1314
1315/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1316/// This function emits a branch and is used at the leaves of an OR or an
1317/// AND operator tree.
1318///
1319void
1320SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1321                                                  MachineBasicBlock *TBB,
1322                                                  MachineBasicBlock *FBB,
1323                                                  MachineBasicBlock *CurBB,
1324                                                  MachineBasicBlock *SwitchBB) {
1325  const BasicBlock *BB = CurBB->getBasicBlock();
1326
1327  // If the leaf of the tree is a comparison, merge the condition into
1328  // the caseblock.
1329  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1330    // The operands of the cmp have to be in this block.  We don't know
1331    // how to export them from some other block.  If this is the first block
1332    // of the sequence, no exporting is needed.
1333    if (CurBB == SwitchBB ||
1334        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1335         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1336      ISD::CondCode Condition;
1337      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1338        Condition = getICmpCondCode(IC->getPredicate());
1339      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1340        Condition = getFCmpCondCode(FC->getPredicate());
1341        if (TM.Options.NoNaNsFPMath)
1342          Condition = getFCmpCodeWithoutNaN(Condition);
1343      } else {
1344        Condition = ISD::SETEQ; // silence warning.
1345        llvm_unreachable("Unknown compare instruction");
1346      }
1347
1348      CaseBlock CB(Condition, BOp->getOperand(0),
1349                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1350      SwitchCases.push_back(CB);
1351      return;
1352    }
1353  }
1354
1355  // Create a CaseBlock record representing this branch.
1356  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1357               NULL, TBB, FBB, CurBB);
1358  SwitchCases.push_back(CB);
1359}
1360
1361/// FindMergedConditions - If Cond is an expression like
1362void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1363                                               MachineBasicBlock *TBB,
1364                                               MachineBasicBlock *FBB,
1365                                               MachineBasicBlock *CurBB,
1366                                               MachineBasicBlock *SwitchBB,
1367                                               unsigned Opc) {
1368  // If this node is not part of the or/and tree, emit it as a branch.
1369  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1370  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1371      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1372      BOp->getParent() != CurBB->getBasicBlock() ||
1373      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1374      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1375    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1376    return;
1377  }
1378
1379  //  Create TmpBB after CurBB.
1380  MachineFunction::iterator BBI = CurBB;
1381  MachineFunction &MF = DAG.getMachineFunction();
1382  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1383  CurBB->getParent()->insert(++BBI, TmpBB);
1384
1385  if (Opc == Instruction::Or) {
1386    // Codegen X | Y as:
1387    //   jmp_if_X TBB
1388    //   jmp TmpBB
1389    // TmpBB:
1390    //   jmp_if_Y TBB
1391    //   jmp FBB
1392    //
1393
1394    // Emit the LHS condition.
1395    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1396
1397    // Emit the RHS condition into TmpBB.
1398    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1399  } else {
1400    assert(Opc == Instruction::And && "Unknown merge op!");
1401    // Codegen X & Y as:
1402    //   jmp_if_X TmpBB
1403    //   jmp FBB
1404    // TmpBB:
1405    //   jmp_if_Y TBB
1406    //   jmp FBB
1407    //
1408    //  This requires creation of TmpBB after CurBB.
1409
1410    // Emit the LHS condition.
1411    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1412
1413    // Emit the RHS condition into TmpBB.
1414    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1415  }
1416}
1417
1418/// If the set of cases should be emitted as a series of branches, return true.
1419/// If we should emit this as a bunch of and/or'd together conditions, return
1420/// false.
1421bool
1422SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1423  if (Cases.size() != 2) return true;
1424
1425  // If this is two comparisons of the same values or'd or and'd together, they
1426  // will get folded into a single comparison, so don't emit two blocks.
1427  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1428       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1429      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1430       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1431    return false;
1432  }
1433
1434  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1435  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1436  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1437      Cases[0].CC == Cases[1].CC &&
1438      isa<Constant>(Cases[0].CmpRHS) &&
1439      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1440    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1441      return false;
1442    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1443      return false;
1444  }
1445
1446  return true;
1447}
1448
1449void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1450  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1451
1452  // Update machine-CFG edges.
1453  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1454
1455  // Figure out which block is immediately after the current one.
1456  MachineBasicBlock *NextBlock = 0;
1457  MachineFunction::iterator BBI = BrMBB;
1458  if (++BBI != FuncInfo.MF->end())
1459    NextBlock = BBI;
1460
1461  if (I.isUnconditional()) {
1462    // Update machine-CFG edges.
1463    BrMBB->addSuccessor(Succ0MBB);
1464
1465    // If this is not a fall-through branch, emit the branch.
1466    if (Succ0MBB != NextBlock)
1467      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1468                              MVT::Other, getControlRoot(),
1469                              DAG.getBasicBlock(Succ0MBB)));
1470
1471    return;
1472  }
1473
1474  // If this condition is one of the special cases we handle, do special stuff
1475  // now.
1476  const Value *CondVal = I.getCondition();
1477  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1478
1479  // If this is a series of conditions that are or'd or and'd together, emit
1480  // this as a sequence of branches instead of setcc's with and/or operations.
1481  // As long as jumps are not expensive, this should improve performance.
1482  // For example, instead of something like:
1483  //     cmp A, B
1484  //     C = seteq
1485  //     cmp D, E
1486  //     F = setle
1487  //     or C, F
1488  //     jnz foo
1489  // Emit:
1490  //     cmp A, B
1491  //     je foo
1492  //     cmp D, E
1493  //     jle foo
1494  //
1495  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1496    if (!TLI.isJumpExpensive() &&
1497        BOp->hasOneUse() &&
1498        (BOp->getOpcode() == Instruction::And ||
1499         BOp->getOpcode() == Instruction::Or)) {
1500      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1501                           BOp->getOpcode());
1502      // If the compares in later blocks need to use values not currently
1503      // exported from this block, export them now.  This block should always
1504      // be the first entry.
1505      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1506
1507      // Allow some cases to be rejected.
1508      if (ShouldEmitAsBranches(SwitchCases)) {
1509        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1510          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1511          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1512        }
1513
1514        // Emit the branch for this block.
1515        visitSwitchCase(SwitchCases[0], BrMBB);
1516        SwitchCases.erase(SwitchCases.begin());
1517        return;
1518      }
1519
1520      // Okay, we decided not to do this, remove any inserted MBB's and clear
1521      // SwitchCases.
1522      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1523        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1524
1525      SwitchCases.clear();
1526    }
1527  }
1528
1529  // Create a CaseBlock record representing this branch.
1530  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1531               NULL, Succ0MBB, Succ1MBB, BrMBB);
1532
1533  // Use visitSwitchCase to actually insert the fast branch sequence for this
1534  // cond branch.
1535  visitSwitchCase(CB, BrMBB);
1536}
1537
1538/// visitSwitchCase - Emits the necessary code to represent a single node in
1539/// the binary search tree resulting from lowering a switch instruction.
1540void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1541                                          MachineBasicBlock *SwitchBB) {
1542  SDValue Cond;
1543  SDValue CondLHS = getValue(CB.CmpLHS);
1544  DebugLoc dl = getCurDebugLoc();
1545
1546  // Build the setcc now.
1547  if (CB.CmpMHS == NULL) {
1548    // Fold "(X == true)" to X and "(X == false)" to !X to
1549    // handle common cases produced by branch lowering.
1550    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1551        CB.CC == ISD::SETEQ)
1552      Cond = CondLHS;
1553    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1554             CB.CC == ISD::SETEQ) {
1555      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1556      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1557    } else
1558      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1559  } else {
1560    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1561
1562    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1563    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1564
1565    SDValue CmpOp = getValue(CB.CmpMHS);
1566    EVT VT = CmpOp.getValueType();
1567
1568    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1569      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1570                          ISD::SETLE);
1571    } else {
1572      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1573                                VT, CmpOp, DAG.getConstant(Low, VT));
1574      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1575                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1576    }
1577  }
1578
1579  // Update successor info
1580  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1581  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1582
1583  // Set NextBlock to be the MBB immediately after the current one, if any.
1584  // This is used to avoid emitting unnecessary branches to the next block.
1585  MachineBasicBlock *NextBlock = 0;
1586  MachineFunction::iterator BBI = SwitchBB;
1587  if (++BBI != FuncInfo.MF->end())
1588    NextBlock = BBI;
1589
1590  // If the lhs block is the next block, invert the condition so that we can
1591  // fall through to the lhs instead of the rhs block.
1592  if (CB.TrueBB == NextBlock) {
1593    std::swap(CB.TrueBB, CB.FalseBB);
1594    SDValue True = DAG.getConstant(1, Cond.getValueType());
1595    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1596  }
1597
1598  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1599                               MVT::Other, getControlRoot(), Cond,
1600                               DAG.getBasicBlock(CB.TrueBB));
1601
1602  // Insert the false branch. Do this even if it's a fall through branch,
1603  // this makes it easier to do DAG optimizations which require inverting
1604  // the branch condition.
1605  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1606                       DAG.getBasicBlock(CB.FalseBB));
1607
1608  DAG.setRoot(BrCond);
1609}
1610
1611/// visitJumpTable - Emit JumpTable node in the current MBB
1612void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1613  // Emit the code for the jump table
1614  assert(JT.Reg != -1U && "Should lower JT Header first!");
1615  EVT PTy = TLI.getPointerTy();
1616  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1617                                     JT.Reg, PTy);
1618  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1619  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1620                                    MVT::Other, Index.getValue(1),
1621                                    Table, Index);
1622  DAG.setRoot(BrJumpTable);
1623}
1624
1625/// visitJumpTableHeader - This function emits necessary code to produce index
1626/// in the JumpTable from switch case.
1627void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1628                                               JumpTableHeader &JTH,
1629                                               MachineBasicBlock *SwitchBB) {
1630  // Subtract the lowest switch case value from the value being switched on and
1631  // conditional branch to default mbb if the result is greater than the
1632  // difference between smallest and largest cases.
1633  SDValue SwitchOp = getValue(JTH.SValue);
1634  EVT VT = SwitchOp.getValueType();
1635  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1636                            DAG.getConstant(JTH.First, VT));
1637
1638  // The SDNode we just created, which holds the value being switched on minus
1639  // the smallest case value, needs to be copied to a virtual register so it
1640  // can be used as an index into the jump table in a subsequent basic block.
1641  // This value may be smaller or larger than the target's pointer type, and
1642  // therefore require extension or truncating.
1643  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1644
1645  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1646  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1647                                    JumpTableReg, SwitchOp);
1648  JT.Reg = JumpTableReg;
1649
1650  // Emit the range check for the jump table, and branch to the default block
1651  // for the switch statement if the value being switched on exceeds the largest
1652  // case in the switch.
1653  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1654                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1655                             DAG.getConstant(JTH.Last-JTH.First,VT),
1656                             ISD::SETUGT);
1657
1658  // Set NextBlock to be the MBB immediately after the current one, if any.
1659  // This is used to avoid emitting unnecessary branches to the next block.
1660  MachineBasicBlock *NextBlock = 0;
1661  MachineFunction::iterator BBI = SwitchBB;
1662
1663  if (++BBI != FuncInfo.MF->end())
1664    NextBlock = BBI;
1665
1666  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1667                               MVT::Other, CopyTo, CMP,
1668                               DAG.getBasicBlock(JT.Default));
1669
1670  if (JT.MBB != NextBlock)
1671    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1672                         DAG.getBasicBlock(JT.MBB));
1673
1674  DAG.setRoot(BrCond);
1675}
1676
1677/// visitBitTestHeader - This function emits necessary code to produce value
1678/// suitable for "bit tests"
1679void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1680                                             MachineBasicBlock *SwitchBB) {
1681  // Subtract the minimum value
1682  SDValue SwitchOp = getValue(B.SValue);
1683  EVT VT = SwitchOp.getValueType();
1684  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1685                            DAG.getConstant(B.First, VT));
1686
1687  // Check range
1688  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1689                                  TLI.getSetCCResultType(Sub.getValueType()),
1690                                  Sub, DAG.getConstant(B.Range, VT),
1691                                  ISD::SETUGT);
1692
1693  // Determine the type of the test operands.
1694  bool UsePtrType = false;
1695  if (!TLI.isTypeLegal(VT))
1696    UsePtrType = true;
1697  else {
1698    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1699      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1700        // Switch table case range are encoded into series of masks.
1701        // Just use pointer type, it's guaranteed to fit.
1702        UsePtrType = true;
1703        break;
1704      }
1705  }
1706  if (UsePtrType) {
1707    VT = TLI.getPointerTy();
1708    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1709  }
1710
1711  B.RegVT = VT;
1712  B.Reg = FuncInfo.CreateReg(VT);
1713  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1714                                    B.Reg, Sub);
1715
1716  // Set NextBlock to be the MBB immediately after the current one, if any.
1717  // This is used to avoid emitting unnecessary branches to the next block.
1718  MachineBasicBlock *NextBlock = 0;
1719  MachineFunction::iterator BBI = SwitchBB;
1720  if (++BBI != FuncInfo.MF->end())
1721    NextBlock = BBI;
1722
1723  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1724
1725  addSuccessorWithWeight(SwitchBB, B.Default);
1726  addSuccessorWithWeight(SwitchBB, MBB);
1727
1728  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1729                                MVT::Other, CopyTo, RangeCmp,
1730                                DAG.getBasicBlock(B.Default));
1731
1732  if (MBB != NextBlock)
1733    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1734                          DAG.getBasicBlock(MBB));
1735
1736  DAG.setRoot(BrRange);
1737}
1738
1739/// visitBitTestCase - this function produces one "bit test"
1740void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1741                                           MachineBasicBlock* NextMBB,
1742                                           unsigned Reg,
1743                                           BitTestCase &B,
1744                                           MachineBasicBlock *SwitchBB) {
1745  EVT VT = BB.RegVT;
1746  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1747                                       Reg, VT);
1748  SDValue Cmp;
1749  unsigned PopCount = CountPopulation_64(B.Mask);
1750  if (PopCount == 1) {
1751    // Testing for a single bit; just compare the shift count with what it
1752    // would need to be to shift a 1 bit in that position.
1753    Cmp = DAG.getSetCC(getCurDebugLoc(),
1754                       TLI.getSetCCResultType(VT),
1755                       ShiftOp,
1756                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1757                       ISD::SETEQ);
1758  } else if (PopCount == BB.Range) {
1759    // There is only one zero bit in the range, test for it directly.
1760    Cmp = DAG.getSetCC(getCurDebugLoc(),
1761                       TLI.getSetCCResultType(VT),
1762                       ShiftOp,
1763                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1764                       ISD::SETNE);
1765  } else {
1766    // Make desired shift
1767    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1768                                    DAG.getConstant(1, VT), ShiftOp);
1769
1770    // Emit bit tests and jumps
1771    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1772                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1773    Cmp = DAG.getSetCC(getCurDebugLoc(),
1774                       TLI.getSetCCResultType(VT),
1775                       AndOp, DAG.getConstant(0, VT),
1776                       ISD::SETNE);
1777  }
1778
1779  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1780  addSuccessorWithWeight(SwitchBB, NextMBB);
1781
1782  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1783                              MVT::Other, getControlRoot(),
1784                              Cmp, DAG.getBasicBlock(B.TargetBB));
1785
1786  // Set NextBlock to be the MBB immediately after the current one, if any.
1787  // This is used to avoid emitting unnecessary branches to the next block.
1788  MachineBasicBlock *NextBlock = 0;
1789  MachineFunction::iterator BBI = SwitchBB;
1790  if (++BBI != FuncInfo.MF->end())
1791    NextBlock = BBI;
1792
1793  if (NextMBB != NextBlock)
1794    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1795                        DAG.getBasicBlock(NextMBB));
1796
1797  DAG.setRoot(BrAnd);
1798}
1799
1800void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1801  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1802
1803  // Retrieve successors.
1804  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1805  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1806
1807  const Value *Callee(I.getCalledValue());
1808  if (isa<InlineAsm>(Callee))
1809    visitInlineAsm(&I);
1810  else
1811    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1812
1813  // If the value of the invoke is used outside of its defining block, make it
1814  // available as a virtual register.
1815  CopyToExportRegsIfNeeded(&I);
1816
1817  // Update successor info
1818  addSuccessorWithWeight(InvokeMBB, Return);
1819  addSuccessorWithWeight(InvokeMBB, LandingPad);
1820
1821  // Drop into normal successor.
1822  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1823                          MVT::Other, getControlRoot(),
1824                          DAG.getBasicBlock(Return)));
1825}
1826
1827void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1828}
1829
1830void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1831  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1832}
1833
1834void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1835  assert(FuncInfo.MBB->isLandingPad() &&
1836         "Call to landingpad not in landing pad!");
1837
1838  MachineBasicBlock *MBB = FuncInfo.MBB;
1839  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1840  AddLandingPadInfo(LP, MMI, MBB);
1841
1842  SmallVector<EVT, 2> ValueVTs;
1843  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1844
1845  // Insert the EXCEPTIONADDR instruction.
1846  assert(FuncInfo.MBB->isLandingPad() &&
1847         "Call to eh.exception not in landing pad!");
1848  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1849  SDValue Ops[2];
1850  Ops[0] = DAG.getRoot();
1851  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1852  SDValue Chain = Op1.getValue(1);
1853
1854  // Insert the EHSELECTION instruction.
1855  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1856  Ops[0] = Op1;
1857  Ops[1] = Chain;
1858  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1859  Chain = Op2.getValue(1);
1860  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1861
1862  Ops[0] = Op1;
1863  Ops[1] = Op2;
1864  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1865                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1866                            &Ops[0], 2);
1867
1868  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1869  setValue(&LP, RetPair.first);
1870  DAG.setRoot(RetPair.second);
1871}
1872
1873/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1874/// small case ranges).
1875bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1876                                                 CaseRecVector& WorkList,
1877                                                 const Value* SV,
1878                                                 MachineBasicBlock *Default,
1879                                                 MachineBasicBlock *SwitchBB) {
1880  Case& BackCase  = *(CR.Range.second-1);
1881
1882  // Size is the number of Cases represented by this range.
1883  size_t Size = CR.Range.second - CR.Range.first;
1884  if (Size > 3)
1885    return false;
1886
1887  // Get the MachineFunction which holds the current MBB.  This is used when
1888  // inserting any additional MBBs necessary to represent the switch.
1889  MachineFunction *CurMF = FuncInfo.MF;
1890
1891  // Figure out which block is immediately after the current one.
1892  MachineBasicBlock *NextBlock = 0;
1893  MachineFunction::iterator BBI = CR.CaseBB;
1894
1895  if (++BBI != FuncInfo.MF->end())
1896    NextBlock = BBI;
1897
1898  // If any two of the cases has the same destination, and if one value
1899  // is the same as the other, but has one bit unset that the other has set,
1900  // use bit manipulation to do two compares at once.  For example:
1901  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1902  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1903  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1904  if (Size == 2 && CR.CaseBB == SwitchBB) {
1905    Case &Small = *CR.Range.first;
1906    Case &Big = *(CR.Range.second-1);
1907
1908    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1909      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1910      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1911
1912      // Check that there is only one bit different.
1913      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1914          (SmallValue | BigValue) == BigValue) {
1915        // Isolate the common bit.
1916        APInt CommonBit = BigValue & ~SmallValue;
1917        assert((SmallValue | CommonBit) == BigValue &&
1918               CommonBit.countPopulation() == 1 && "Not a common bit?");
1919
1920        SDValue CondLHS = getValue(SV);
1921        EVT VT = CondLHS.getValueType();
1922        DebugLoc DL = getCurDebugLoc();
1923
1924        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1925                                 DAG.getConstant(CommonBit, VT));
1926        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1927                                    Or, DAG.getConstant(BigValue, VT),
1928                                    ISD::SETEQ);
1929
1930        // Update successor info.
1931        addSuccessorWithWeight(SwitchBB, Small.BB);
1932        addSuccessorWithWeight(SwitchBB, Default);
1933
1934        // Insert the true branch.
1935        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1936                                     getControlRoot(), Cond,
1937                                     DAG.getBasicBlock(Small.BB));
1938
1939        // Insert the false branch.
1940        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1941                             DAG.getBasicBlock(Default));
1942
1943        DAG.setRoot(BrCond);
1944        return true;
1945      }
1946    }
1947  }
1948
1949  // Rearrange the case blocks so that the last one falls through if possible.
1950  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1951    // The last case block won't fall through into 'NextBlock' if we emit the
1952    // branches in this order.  See if rearranging a case value would help.
1953    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1954      if (I->BB == NextBlock) {
1955        std::swap(*I, BackCase);
1956        break;
1957      }
1958    }
1959  }
1960
1961  // Create a CaseBlock record representing a conditional branch to
1962  // the Case's target mbb if the value being switched on SV is equal
1963  // to C.
1964  MachineBasicBlock *CurBlock = CR.CaseBB;
1965  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1966    MachineBasicBlock *FallThrough;
1967    if (I != E-1) {
1968      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1969      CurMF->insert(BBI, FallThrough);
1970
1971      // Put SV in a virtual register to make it available from the new blocks.
1972      ExportFromCurrentBlock(SV);
1973    } else {
1974      // If the last case doesn't match, go to the default block.
1975      FallThrough = Default;
1976    }
1977
1978    const Value *RHS, *LHS, *MHS;
1979    ISD::CondCode CC;
1980    if (I->High == I->Low) {
1981      // This is just small small case range :) containing exactly 1 case
1982      CC = ISD::SETEQ;
1983      LHS = SV; RHS = I->High; MHS = NULL;
1984    } else {
1985      CC = ISD::SETLE;
1986      LHS = I->Low; MHS = SV; RHS = I->High;
1987    }
1988
1989    uint32_t ExtraWeight = I->ExtraWeight;
1990    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1991                 /* me */ CurBlock,
1992                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1993
1994    // If emitting the first comparison, just call visitSwitchCase to emit the
1995    // code into the current block.  Otherwise, push the CaseBlock onto the
1996    // vector to be later processed by SDISel, and insert the node's MBB
1997    // before the next MBB.
1998    if (CurBlock == SwitchBB)
1999      visitSwitchCase(CB, SwitchBB);
2000    else
2001      SwitchCases.push_back(CB);
2002
2003    CurBlock = FallThrough;
2004  }
2005
2006  return true;
2007}
2008
2009static inline bool areJTsAllowed(const TargetLowering &TLI) {
2010  return !TLI.getTargetMachine().Options.DisableJumpTables &&
2011          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2012           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2013}
2014
2015static APInt ComputeRange(const APInt &First, const APInt &Last) {
2016  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2017  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2018  return (LastExt - FirstExt + 1ULL);
2019}
2020
2021/// handleJTSwitchCase - Emit jumptable for current switch case range
2022bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2023                                             CaseRecVector &WorkList,
2024                                             const Value *SV,
2025                                             MachineBasicBlock *Default,
2026                                             MachineBasicBlock *SwitchBB) {
2027  Case& FrontCase = *CR.Range.first;
2028  Case& BackCase  = *(CR.Range.second-1);
2029
2030  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2031  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2032
2033  APInt TSize(First.getBitWidth(), 0);
2034  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2035    TSize += I->size();
2036
2037  if (!areJTsAllowed(TLI) || TSize.ult(4))
2038    return false;
2039
2040  APInt Range = ComputeRange(First, Last);
2041  // The density is TSize / Range. Require at least 40%.
2042  // It should not be possible for IntTSize to saturate for sane code, but make
2043  // sure we handle Range saturation correctly.
2044  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2045  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2046  if (IntTSize * 10 < IntRange * 4)
2047    return false;
2048
2049  DEBUG(dbgs() << "Lowering jump table\n"
2050               << "First entry: " << First << ". Last entry: " << Last << '\n'
2051               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2052
2053  // Get the MachineFunction which holds the current MBB.  This is used when
2054  // inserting any additional MBBs necessary to represent the switch.
2055  MachineFunction *CurMF = FuncInfo.MF;
2056
2057  // Figure out which block is immediately after the current one.
2058  MachineFunction::iterator BBI = CR.CaseBB;
2059  ++BBI;
2060
2061  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2062
2063  // Create a new basic block to hold the code for loading the address
2064  // of the jump table, and jumping to it.  Update successor information;
2065  // we will either branch to the default case for the switch, or the jump
2066  // table.
2067  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2068  CurMF->insert(BBI, JumpTableBB);
2069
2070  addSuccessorWithWeight(CR.CaseBB, Default);
2071  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2072
2073  // Build a vector of destination BBs, corresponding to each target
2074  // of the jump table. If the value of the jump table slot corresponds to
2075  // a case statement, push the case's BB onto the vector, otherwise, push
2076  // the default BB.
2077  std::vector<MachineBasicBlock*> DestBBs;
2078  APInt TEI = First;
2079  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2080    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2081    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2082
2083    if (Low.sle(TEI) && TEI.sle(High)) {
2084      DestBBs.push_back(I->BB);
2085      if (TEI==High)
2086        ++I;
2087    } else {
2088      DestBBs.push_back(Default);
2089    }
2090  }
2091
2092  // Update successor info. Add one edge to each unique successor.
2093  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2094  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2095         E = DestBBs.end(); I != E; ++I) {
2096    if (!SuccsHandled[(*I)->getNumber()]) {
2097      SuccsHandled[(*I)->getNumber()] = true;
2098      addSuccessorWithWeight(JumpTableBB, *I);
2099    }
2100  }
2101
2102  // Create a jump table index for this jump table.
2103  unsigned JTEncoding = TLI.getJumpTableEncoding();
2104  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2105                       ->createJumpTableIndex(DestBBs);
2106
2107  // Set the jump table information so that we can codegen it as a second
2108  // MachineBasicBlock
2109  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2110  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2111  if (CR.CaseBB == SwitchBB)
2112    visitJumpTableHeader(JT, JTH, SwitchBB);
2113
2114  JTCases.push_back(JumpTableBlock(JTH, JT));
2115  return true;
2116}
2117
2118/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2119/// 2 subtrees.
2120bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2121                                                  CaseRecVector& WorkList,
2122                                                  const Value* SV,
2123                                                  MachineBasicBlock *Default,
2124                                                  MachineBasicBlock *SwitchBB) {
2125  // Get the MachineFunction which holds the current MBB.  This is used when
2126  // inserting any additional MBBs necessary to represent the switch.
2127  MachineFunction *CurMF = FuncInfo.MF;
2128
2129  // Figure out which block is immediately after the current one.
2130  MachineFunction::iterator BBI = CR.CaseBB;
2131  ++BBI;
2132
2133  Case& FrontCase = *CR.Range.first;
2134  Case& BackCase  = *(CR.Range.second-1);
2135  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2136
2137  // Size is the number of Cases represented by this range.
2138  unsigned Size = CR.Range.second - CR.Range.first;
2139
2140  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2141  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2142  double FMetric = 0;
2143  CaseItr Pivot = CR.Range.first + Size/2;
2144
2145  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2146  // (heuristically) allow us to emit JumpTable's later.
2147  APInt TSize(First.getBitWidth(), 0);
2148  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2149       I!=E; ++I)
2150    TSize += I->size();
2151
2152  APInt LSize = FrontCase.size();
2153  APInt RSize = TSize-LSize;
2154  DEBUG(dbgs() << "Selecting best pivot: \n"
2155               << "First: " << First << ", Last: " << Last <<'\n'
2156               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2157  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2158       J!=E; ++I, ++J) {
2159    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2160    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2161    APInt Range = ComputeRange(LEnd, RBegin);
2162    assert((Range - 2ULL).isNonNegative() &&
2163           "Invalid case distance");
2164    // Use volatile double here to avoid excess precision issues on some hosts,
2165    // e.g. that use 80-bit X87 registers.
2166    volatile double LDensity =
2167       (double)LSize.roundToDouble() /
2168                           (LEnd - First + 1ULL).roundToDouble();
2169    volatile double RDensity =
2170      (double)RSize.roundToDouble() /
2171                           (Last - RBegin + 1ULL).roundToDouble();
2172    double Metric = Range.logBase2()*(LDensity+RDensity);
2173    // Should always split in some non-trivial place
2174    DEBUG(dbgs() <<"=>Step\n"
2175                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2176                 << "LDensity: " << LDensity
2177                 << ", RDensity: " << RDensity << '\n'
2178                 << "Metric: " << Metric << '\n');
2179    if (FMetric < Metric) {
2180      Pivot = J;
2181      FMetric = Metric;
2182      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2183    }
2184
2185    LSize += J->size();
2186    RSize -= J->size();
2187  }
2188  if (areJTsAllowed(TLI)) {
2189    // If our case is dense we *really* should handle it earlier!
2190    assert((FMetric > 0) && "Should handle dense range earlier!");
2191  } else {
2192    Pivot = CR.Range.first + Size/2;
2193  }
2194
2195  CaseRange LHSR(CR.Range.first, Pivot);
2196  CaseRange RHSR(Pivot, CR.Range.second);
2197  Constant *C = Pivot->Low;
2198  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2199
2200  // We know that we branch to the LHS if the Value being switched on is
2201  // less than the Pivot value, C.  We use this to optimize our binary
2202  // tree a bit, by recognizing that if SV is greater than or equal to the
2203  // LHS's Case Value, and that Case Value is exactly one less than the
2204  // Pivot's Value, then we can branch directly to the LHS's Target,
2205  // rather than creating a leaf node for it.
2206  if ((LHSR.second - LHSR.first) == 1 &&
2207      LHSR.first->High == CR.GE &&
2208      cast<ConstantInt>(C)->getValue() ==
2209      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2210    TrueBB = LHSR.first->BB;
2211  } else {
2212    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2213    CurMF->insert(BBI, TrueBB);
2214    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2215
2216    // Put SV in a virtual register to make it available from the new blocks.
2217    ExportFromCurrentBlock(SV);
2218  }
2219
2220  // Similar to the optimization above, if the Value being switched on is
2221  // known to be less than the Constant CR.LT, and the current Case Value
2222  // is CR.LT - 1, then we can branch directly to the target block for
2223  // the current Case Value, rather than emitting a RHS leaf node for it.
2224  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2225      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2226      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2227    FalseBB = RHSR.first->BB;
2228  } else {
2229    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2230    CurMF->insert(BBI, FalseBB);
2231    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2232
2233    // Put SV in a virtual register to make it available from the new blocks.
2234    ExportFromCurrentBlock(SV);
2235  }
2236
2237  // Create a CaseBlock record representing a conditional branch to
2238  // the LHS node if the value being switched on SV is less than C.
2239  // Otherwise, branch to LHS.
2240  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2241
2242  if (CR.CaseBB == SwitchBB)
2243    visitSwitchCase(CB, SwitchBB);
2244  else
2245    SwitchCases.push_back(CB);
2246
2247  return true;
2248}
2249
2250/// handleBitTestsSwitchCase - if current case range has few destination and
2251/// range span less, than machine word bitwidth, encode case range into series
2252/// of masks and emit bit tests with these masks.
2253bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2254                                                   CaseRecVector& WorkList,
2255                                                   const Value* SV,
2256                                                   MachineBasicBlock* Default,
2257                                                   MachineBasicBlock *SwitchBB){
2258  EVT PTy = TLI.getPointerTy();
2259  unsigned IntPtrBits = PTy.getSizeInBits();
2260
2261  Case& FrontCase = *CR.Range.first;
2262  Case& BackCase  = *(CR.Range.second-1);
2263
2264  // Get the MachineFunction which holds the current MBB.  This is used when
2265  // inserting any additional MBBs necessary to represent the switch.
2266  MachineFunction *CurMF = FuncInfo.MF;
2267
2268  // If target does not have legal shift left, do not emit bit tests at all.
2269  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2270    return false;
2271
2272  size_t numCmps = 0;
2273  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2274       I!=E; ++I) {
2275    // Single case counts one, case range - two.
2276    numCmps += (I->Low == I->High ? 1 : 2);
2277  }
2278
2279  // Count unique destinations
2280  SmallSet<MachineBasicBlock*, 4> Dests;
2281  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2282    Dests.insert(I->BB);
2283    if (Dests.size() > 3)
2284      // Don't bother the code below, if there are too much unique destinations
2285      return false;
2286  }
2287  DEBUG(dbgs() << "Total number of unique destinations: "
2288        << Dests.size() << '\n'
2289        << "Total number of comparisons: " << numCmps << '\n');
2290
2291  // Compute span of values.
2292  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2293  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2294  APInt cmpRange = maxValue - minValue;
2295
2296  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2297               << "Low bound: " << minValue << '\n'
2298               << "High bound: " << maxValue << '\n');
2299
2300  if (cmpRange.uge(IntPtrBits) ||
2301      (!(Dests.size() == 1 && numCmps >= 3) &&
2302       !(Dests.size() == 2 && numCmps >= 5) &&
2303       !(Dests.size() >= 3 && numCmps >= 6)))
2304    return false;
2305
2306  DEBUG(dbgs() << "Emitting bit tests\n");
2307  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2308
2309  // Optimize the case where all the case values fit in a
2310  // word without having to subtract minValue. In this case,
2311  // we can optimize away the subtraction.
2312  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2313    cmpRange = maxValue;
2314  } else {
2315    lowBound = minValue;
2316  }
2317
2318  CaseBitsVector CasesBits;
2319  unsigned i, count = 0;
2320
2321  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2322    MachineBasicBlock* Dest = I->BB;
2323    for (i = 0; i < count; ++i)
2324      if (Dest == CasesBits[i].BB)
2325        break;
2326
2327    if (i == count) {
2328      assert((count < 3) && "Too much destinations to test!");
2329      CasesBits.push_back(CaseBits(0, Dest, 0));
2330      count++;
2331    }
2332
2333    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2334    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2335
2336    uint64_t lo = (lowValue - lowBound).getZExtValue();
2337    uint64_t hi = (highValue - lowBound).getZExtValue();
2338
2339    for (uint64_t j = lo; j <= hi; j++) {
2340      CasesBits[i].Mask |=  1ULL << j;
2341      CasesBits[i].Bits++;
2342    }
2343
2344  }
2345  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2346
2347  BitTestInfo BTC;
2348
2349  // Figure out which block is immediately after the current one.
2350  MachineFunction::iterator BBI = CR.CaseBB;
2351  ++BBI;
2352
2353  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2354
2355  DEBUG(dbgs() << "Cases:\n");
2356  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2357    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2358                 << ", Bits: " << CasesBits[i].Bits
2359                 << ", BB: " << CasesBits[i].BB << '\n');
2360
2361    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2362    CurMF->insert(BBI, CaseBB);
2363    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2364                              CaseBB,
2365                              CasesBits[i].BB));
2366
2367    // Put SV in a virtual register to make it available from the new blocks.
2368    ExportFromCurrentBlock(SV);
2369  }
2370
2371  BitTestBlock BTB(lowBound, cmpRange, SV,
2372                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2373                   CR.CaseBB, Default, BTC);
2374
2375  if (CR.CaseBB == SwitchBB)
2376    visitBitTestHeader(BTB, SwitchBB);
2377
2378  BitTestCases.push_back(BTB);
2379
2380  return true;
2381}
2382
2383/// Clusterify - Transform simple list of Cases into list of CaseRange's
2384size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2385                                       const SwitchInst& SI) {
2386  size_t numCmps = 0;
2387
2388  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2389  // Start with "simple" cases
2390  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2391    BasicBlock *SuccBB = SI.getSuccessor(i);
2392    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2393
2394    uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2395
2396    Cases.push_back(Case(SI.getSuccessorValue(i),
2397                         SI.getSuccessorValue(i),
2398                         SMBB, ExtraWeight));
2399  }
2400  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2401
2402  // Merge case into clusters
2403  if (Cases.size() >= 2)
2404    // Must recompute end() each iteration because it may be
2405    // invalidated by erase if we hold on to it
2406    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2407         J != Cases.end(); ) {
2408      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2409      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2410      MachineBasicBlock* nextBB = J->BB;
2411      MachineBasicBlock* currentBB = I->BB;
2412
2413      // If the two neighboring cases go to the same destination, merge them
2414      // into a single case.
2415      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2416        I->High = J->High;
2417        J = Cases.erase(J);
2418
2419        if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2420          uint32_t CurWeight = currentBB->getBasicBlock() ?
2421            BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2422          uint32_t NextWeight = nextBB->getBasicBlock() ?
2423            BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2424
2425          BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2426                             CurWeight + NextWeight);
2427        }
2428      } else {
2429        I = J++;
2430      }
2431    }
2432
2433  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2434    if (I->Low != I->High)
2435      // A range counts double, since it requires two compares.
2436      ++numCmps;
2437  }
2438
2439  return numCmps;
2440}
2441
2442void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2443                                           MachineBasicBlock *Last) {
2444  // Update JTCases.
2445  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2446    if (JTCases[i].first.HeaderBB == First)
2447      JTCases[i].first.HeaderBB = Last;
2448
2449  // Update BitTestCases.
2450  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2451    if (BitTestCases[i].Parent == First)
2452      BitTestCases[i].Parent = Last;
2453}
2454
2455void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2456  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2457
2458  // Figure out which block is immediately after the current one.
2459  MachineBasicBlock *NextBlock = 0;
2460  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2461
2462  // If there is only the default destination, branch to it if it is not the
2463  // next basic block.  Otherwise, just fall through.
2464  if (SI.getNumCases() == 1) {
2465    // Update machine-CFG edges.
2466
2467    // If this is not a fall-through branch, emit the branch.
2468    SwitchMBB->addSuccessor(Default);
2469    if (Default != NextBlock)
2470      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2471                              MVT::Other, getControlRoot(),
2472                              DAG.getBasicBlock(Default)));
2473
2474    return;
2475  }
2476
2477  // If there are any non-default case statements, create a vector of Cases
2478  // representing each one, and sort the vector so that we can efficiently
2479  // create a binary search tree from them.
2480  CaseVector Cases;
2481  size_t numCmps = Clusterify(Cases, SI);
2482  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2483               << ". Total compares: " << numCmps << '\n');
2484  (void)numCmps;
2485
2486  // Get the Value to be switched on and default basic blocks, which will be
2487  // inserted into CaseBlock records, representing basic blocks in the binary
2488  // search tree.
2489  const Value *SV = SI.getCondition();
2490
2491  // Push the initial CaseRec onto the worklist
2492  CaseRecVector WorkList;
2493  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2494                             CaseRange(Cases.begin(),Cases.end())));
2495
2496  while (!WorkList.empty()) {
2497    // Grab a record representing a case range to process off the worklist
2498    CaseRec CR = WorkList.back();
2499    WorkList.pop_back();
2500
2501    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2502      continue;
2503
2504    // If the range has few cases (two or less) emit a series of specific
2505    // tests.
2506    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2507      continue;
2508
2509    // If the switch has more than 5 blocks, and at least 40% dense, and the
2510    // target supports indirect branches, then emit a jump table rather than
2511    // lowering the switch to a binary tree of conditional branches.
2512    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2513      continue;
2514
2515    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2516    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2517    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2518  }
2519}
2520
2521void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2522  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2523
2524  // Update machine-CFG edges with unique successors.
2525  SmallVector<BasicBlock*, 32> succs;
2526  succs.reserve(I.getNumSuccessors());
2527  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2528    succs.push_back(I.getSuccessor(i));
2529  array_pod_sort(succs.begin(), succs.end());
2530  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2531  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2532    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2533    addSuccessorWithWeight(IndirectBrMBB, Succ);
2534  }
2535
2536  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2537                          MVT::Other, getControlRoot(),
2538                          getValue(I.getAddress())));
2539}
2540
2541void SelectionDAGBuilder::visitFSub(const User &I) {
2542  // -0.0 - X --> fneg
2543  Type *Ty = I.getType();
2544  if (isa<Constant>(I.getOperand(0)) &&
2545      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2546    SDValue Op2 = getValue(I.getOperand(1));
2547    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2548                             Op2.getValueType(), Op2));
2549    return;
2550  }
2551
2552  visitBinary(I, ISD::FSUB);
2553}
2554
2555void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2556  SDValue Op1 = getValue(I.getOperand(0));
2557  SDValue Op2 = getValue(I.getOperand(1));
2558  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2559                           Op1.getValueType(), Op1, Op2));
2560}
2561
2562void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2563  SDValue Op1 = getValue(I.getOperand(0));
2564  SDValue Op2 = getValue(I.getOperand(1));
2565
2566  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2567
2568  // Coerce the shift amount to the right type if we can.
2569  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2570    unsigned ShiftSize = ShiftTy.getSizeInBits();
2571    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2572    DebugLoc DL = getCurDebugLoc();
2573
2574    // If the operand is smaller than the shift count type, promote it.
2575    if (ShiftSize > Op2Size)
2576      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2577
2578    // If the operand is larger than the shift count type but the shift
2579    // count type has enough bits to represent any shift value, truncate
2580    // it now. This is a common case and it exposes the truncate to
2581    // optimization early.
2582    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2583      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2584    // Otherwise we'll need to temporarily settle for some other convenient
2585    // type.  Type legalization will make adjustments once the shiftee is split.
2586    else
2587      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2588  }
2589
2590  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2591                           Op1.getValueType(), Op1, Op2));
2592}
2593
2594void SelectionDAGBuilder::visitSDiv(const User &I) {
2595  SDValue Op1 = getValue(I.getOperand(0));
2596  SDValue Op2 = getValue(I.getOperand(1));
2597
2598  // Turn exact SDivs into multiplications.
2599  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2600  // exact bit.
2601  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2602      !isa<ConstantSDNode>(Op1) &&
2603      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2604    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2605  else
2606    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2607                             Op1, Op2));
2608}
2609
2610void SelectionDAGBuilder::visitICmp(const User &I) {
2611  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2612  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2613    predicate = IC->getPredicate();
2614  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2615    predicate = ICmpInst::Predicate(IC->getPredicate());
2616  SDValue Op1 = getValue(I.getOperand(0));
2617  SDValue Op2 = getValue(I.getOperand(1));
2618  ISD::CondCode Opcode = getICmpCondCode(predicate);
2619
2620  EVT DestVT = TLI.getValueType(I.getType());
2621  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2622}
2623
2624void SelectionDAGBuilder::visitFCmp(const User &I) {
2625  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2626  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2627    predicate = FC->getPredicate();
2628  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2629    predicate = FCmpInst::Predicate(FC->getPredicate());
2630  SDValue Op1 = getValue(I.getOperand(0));
2631  SDValue Op2 = getValue(I.getOperand(1));
2632  ISD::CondCode Condition = getFCmpCondCode(predicate);
2633  if (TM.Options.NoNaNsFPMath)
2634    Condition = getFCmpCodeWithoutNaN(Condition);
2635  EVT DestVT = TLI.getValueType(I.getType());
2636  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2637}
2638
2639void SelectionDAGBuilder::visitSelect(const User &I) {
2640  SmallVector<EVT, 4> ValueVTs;
2641  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2642  unsigned NumValues = ValueVTs.size();
2643  if (NumValues == 0) return;
2644
2645  SmallVector<SDValue, 4> Values(NumValues);
2646  SDValue Cond     = getValue(I.getOperand(0));
2647  SDValue TrueVal  = getValue(I.getOperand(1));
2648  SDValue FalseVal = getValue(I.getOperand(2));
2649  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2650    ISD::VSELECT : ISD::SELECT;
2651
2652  for (unsigned i = 0; i != NumValues; ++i)
2653    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2654                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2655                            Cond,
2656                            SDValue(TrueVal.getNode(),
2657                                    TrueVal.getResNo() + i),
2658                            SDValue(FalseVal.getNode(),
2659                                    FalseVal.getResNo() + i));
2660
2661  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2662                           DAG.getVTList(&ValueVTs[0], NumValues),
2663                           &Values[0], NumValues));
2664}
2665
2666void SelectionDAGBuilder::visitTrunc(const User &I) {
2667  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2668  SDValue N = getValue(I.getOperand(0));
2669  EVT DestVT = TLI.getValueType(I.getType());
2670  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2671}
2672
2673void SelectionDAGBuilder::visitZExt(const User &I) {
2674  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2675  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2676  SDValue N = getValue(I.getOperand(0));
2677  EVT DestVT = TLI.getValueType(I.getType());
2678  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2679}
2680
2681void SelectionDAGBuilder::visitSExt(const User &I) {
2682  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2683  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2684  SDValue N = getValue(I.getOperand(0));
2685  EVT DestVT = TLI.getValueType(I.getType());
2686  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2687}
2688
2689void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2690  // FPTrunc is never a no-op cast, no need to check
2691  SDValue N = getValue(I.getOperand(0));
2692  EVT DestVT = TLI.getValueType(I.getType());
2693  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2694                           DestVT, N,
2695                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2696}
2697
2698void SelectionDAGBuilder::visitFPExt(const User &I){
2699  // FPExt is never a no-op cast, no need to check
2700  SDValue N = getValue(I.getOperand(0));
2701  EVT DestVT = TLI.getValueType(I.getType());
2702  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2703}
2704
2705void SelectionDAGBuilder::visitFPToUI(const User &I) {
2706  // FPToUI is never a no-op cast, no need to check
2707  SDValue N = getValue(I.getOperand(0));
2708  EVT DestVT = TLI.getValueType(I.getType());
2709  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2710}
2711
2712void SelectionDAGBuilder::visitFPToSI(const User &I) {
2713  // FPToSI is never a no-op cast, no need to check
2714  SDValue N = getValue(I.getOperand(0));
2715  EVT DestVT = TLI.getValueType(I.getType());
2716  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2717}
2718
2719void SelectionDAGBuilder::visitUIToFP(const User &I) {
2720  // UIToFP is never a no-op cast, no need to check
2721  SDValue N = getValue(I.getOperand(0));
2722  EVT DestVT = TLI.getValueType(I.getType());
2723  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2724}
2725
2726void SelectionDAGBuilder::visitSIToFP(const User &I){
2727  // SIToFP is never a no-op cast, no need to check
2728  SDValue N = getValue(I.getOperand(0));
2729  EVT DestVT = TLI.getValueType(I.getType());
2730  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2731}
2732
2733void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2734  // What to do depends on the size of the integer and the size of the pointer.
2735  // We can either truncate, zero extend, or no-op, accordingly.
2736  SDValue N = getValue(I.getOperand(0));
2737  EVT DestVT = TLI.getValueType(I.getType());
2738  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2739}
2740
2741void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2742  // What to do depends on the size of the integer and the size of the pointer.
2743  // We can either truncate, zero extend, or no-op, accordingly.
2744  SDValue N = getValue(I.getOperand(0));
2745  EVT DestVT = TLI.getValueType(I.getType());
2746  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2747}
2748
2749void SelectionDAGBuilder::visitBitCast(const User &I) {
2750  SDValue N = getValue(I.getOperand(0));
2751  EVT DestVT = TLI.getValueType(I.getType());
2752
2753  // BitCast assures us that source and destination are the same size so this is
2754  // either a BITCAST or a no-op.
2755  if (DestVT != N.getValueType())
2756    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2757                             DestVT, N)); // convert types.
2758  else
2759    setValue(&I, N);            // noop cast.
2760}
2761
2762void SelectionDAGBuilder::visitInsertElement(const User &I) {
2763  SDValue InVec = getValue(I.getOperand(0));
2764  SDValue InVal = getValue(I.getOperand(1));
2765  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2766                              TLI.getPointerTy(),
2767                              getValue(I.getOperand(2)));
2768  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2769                           TLI.getValueType(I.getType()),
2770                           InVec, InVal, InIdx));
2771}
2772
2773void SelectionDAGBuilder::visitExtractElement(const User &I) {
2774  SDValue InVec = getValue(I.getOperand(0));
2775  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2776                              TLI.getPointerTy(),
2777                              getValue(I.getOperand(1)));
2778  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2779                           TLI.getValueType(I.getType()), InVec, InIdx));
2780}
2781
2782// Utility for visitShuffleVector - Return true if every element in Mask,
2783// begining // from position Pos and ending in Pos+Size, falls within the
2784// specified sequential range [L, L+Pos). or is undef.
2785static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2786                                int Pos, int Size, int Low) {
2787  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2788    if (Mask[i] >= 0 && Mask[i] != Low)
2789      return false;
2790  return true;
2791}
2792
2793void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2794  SmallVector<int, 8> Mask;
2795  SDValue Src1 = getValue(I.getOperand(0));
2796  SDValue Src2 = getValue(I.getOperand(1));
2797
2798  // Convert the ConstantVector mask operand into an array of ints, with -1
2799  // representing undef values.
2800  SmallVector<Constant*, 8> MaskElts;
2801  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2802  unsigned MaskNumElts = MaskElts.size();
2803  for (unsigned i = 0; i != MaskNumElts; ++i) {
2804    if (isa<UndefValue>(MaskElts[i]))
2805      Mask.push_back(-1);
2806    else
2807      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2808  }
2809
2810  EVT VT = TLI.getValueType(I.getType());
2811  EVT SrcVT = Src1.getValueType();
2812  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2813
2814  if (SrcNumElts == MaskNumElts) {
2815    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2816                                      &Mask[0]));
2817    return;
2818  }
2819
2820  // Normalize the shuffle vector since mask and vector length don't match.
2821  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2822    // Mask is longer than the source vectors and is a multiple of the source
2823    // vectors.  We can use concatenate vector to make the mask and vectors
2824    // lengths match.
2825    if (SrcNumElts*2 == MaskNumElts) {
2826      // First check for Src1 in low and Src2 in high
2827      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2828          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2829        // The shuffle is concatenating two vectors together.
2830        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2831                                 VT, Src1, Src2));
2832        return;
2833      }
2834      // Then check for Src2 in low and Src1 in high
2835      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2836          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2837        // The shuffle is concatenating two vectors together.
2838        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2839                                 VT, Src2, Src1));
2840        return;
2841      }
2842    }
2843
2844    // Pad both vectors with undefs to make them the same length as the mask.
2845    unsigned NumConcat = MaskNumElts / SrcNumElts;
2846    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2847    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2848    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2849
2850    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2851    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2852    MOps1[0] = Src1;
2853    MOps2[0] = Src2;
2854
2855    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2856                                                  getCurDebugLoc(), VT,
2857                                                  &MOps1[0], NumConcat);
2858    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2859                                                  getCurDebugLoc(), VT,
2860                                                  &MOps2[0], NumConcat);
2861
2862    // Readjust mask for new input vector length.
2863    SmallVector<int, 8> MappedOps;
2864    for (unsigned i = 0; i != MaskNumElts; ++i) {
2865      int Idx = Mask[i];
2866      if (Idx < (int)SrcNumElts)
2867        MappedOps.push_back(Idx);
2868      else
2869        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2870    }
2871
2872    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2873                                      &MappedOps[0]));
2874    return;
2875  }
2876
2877  if (SrcNumElts > MaskNumElts) {
2878    // Analyze the access pattern of the vector to see if we can extract
2879    // two subvectors and do the shuffle. The analysis is done by calculating
2880    // the range of elements the mask access on both vectors.
2881    int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2882                        static_cast<int>(SrcNumElts+1)};
2883    int MaxRange[2] = {-1, -1};
2884
2885    for (unsigned i = 0; i != MaskNumElts; ++i) {
2886      int Idx = Mask[i];
2887      int Input = 0;
2888      if (Idx < 0)
2889        continue;
2890
2891      if (Idx >= (int)SrcNumElts) {
2892        Input = 1;
2893        Idx -= SrcNumElts;
2894      }
2895      if (Idx > MaxRange[Input])
2896        MaxRange[Input] = Idx;
2897      if (Idx < MinRange[Input])
2898        MinRange[Input] = Idx;
2899    }
2900
2901    // Check if the access is smaller than the vector size and can we find
2902    // a reasonable extract index.
2903    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2904                                 // Extract.
2905    int StartIdx[2];  // StartIdx to extract from
2906    for (int Input=0; Input < 2; ++Input) {
2907      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2908        RangeUse[Input] = 0; // Unused
2909        StartIdx[Input] = 0;
2910      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2911        // Fits within range but we should see if we can find a good
2912        // start index that is a multiple of the mask length.
2913        if (MaxRange[Input] < (int)MaskNumElts) {
2914          RangeUse[Input] = 1; // Extract from beginning of the vector
2915          StartIdx[Input] = 0;
2916        } else {
2917          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2918          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2919              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2920            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2921        }
2922      }
2923    }
2924
2925    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2926      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2927      return;
2928    }
2929    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2930      // Extract appropriate subvector and generate a vector shuffle
2931      for (int Input=0; Input < 2; ++Input) {
2932        SDValue &Src = Input == 0 ? Src1 : Src2;
2933        if (RangeUse[Input] == 0)
2934          Src = DAG.getUNDEF(VT);
2935        else
2936          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2937                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2938      }
2939
2940      // Calculate new mask.
2941      SmallVector<int, 8> MappedOps;
2942      for (unsigned i = 0; i != MaskNumElts; ++i) {
2943        int Idx = Mask[i];
2944        if (Idx < 0)
2945          MappedOps.push_back(Idx);
2946        else if (Idx < (int)SrcNumElts)
2947          MappedOps.push_back(Idx - StartIdx[0]);
2948        else
2949          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2950      }
2951
2952      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2953                                        &MappedOps[0]));
2954      return;
2955    }
2956  }
2957
2958  // We can't use either concat vectors or extract subvectors so fall back to
2959  // replacing the shuffle with extract and build vector.
2960  // to insert and build vector.
2961  EVT EltVT = VT.getVectorElementType();
2962  EVT PtrVT = TLI.getPointerTy();
2963  SmallVector<SDValue,8> Ops;
2964  for (unsigned i = 0; i != MaskNumElts; ++i) {
2965    if (Mask[i] < 0) {
2966      Ops.push_back(DAG.getUNDEF(EltVT));
2967    } else {
2968      int Idx = Mask[i];
2969      SDValue Res;
2970
2971      if (Idx < (int)SrcNumElts)
2972        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2973                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2974      else
2975        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2976                          EltVT, Src2,
2977                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2978
2979      Ops.push_back(Res);
2980    }
2981  }
2982
2983  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2984                           VT, &Ops[0], Ops.size()));
2985}
2986
2987void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2988  const Value *Op0 = I.getOperand(0);
2989  const Value *Op1 = I.getOperand(1);
2990  Type *AggTy = I.getType();
2991  Type *ValTy = Op1->getType();
2992  bool IntoUndef = isa<UndefValue>(Op0);
2993  bool FromUndef = isa<UndefValue>(Op1);
2994
2995  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2996
2997  SmallVector<EVT, 4> AggValueVTs;
2998  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2999  SmallVector<EVT, 4> ValValueVTs;
3000  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3001
3002  unsigned NumAggValues = AggValueVTs.size();
3003  unsigned NumValValues = ValValueVTs.size();
3004  SmallVector<SDValue, 4> Values(NumAggValues);
3005
3006  SDValue Agg = getValue(Op0);
3007  unsigned i = 0;
3008  // Copy the beginning value(s) from the original aggregate.
3009  for (; i != LinearIndex; ++i)
3010    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3011                SDValue(Agg.getNode(), Agg.getResNo() + i);
3012  // Copy values from the inserted value(s).
3013  if (NumValValues) {
3014    SDValue Val = getValue(Op1);
3015    for (; i != LinearIndex + NumValValues; ++i)
3016      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3017                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3018  }
3019  // Copy remaining value(s) from the original aggregate.
3020  for (; i != NumAggValues; ++i)
3021    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3022                SDValue(Agg.getNode(), Agg.getResNo() + i);
3023
3024  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3025                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3026                           &Values[0], NumAggValues));
3027}
3028
3029void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3030  const Value *Op0 = I.getOperand(0);
3031  Type *AggTy = Op0->getType();
3032  Type *ValTy = I.getType();
3033  bool OutOfUndef = isa<UndefValue>(Op0);
3034
3035  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3036
3037  SmallVector<EVT, 4> ValValueVTs;
3038  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3039
3040  unsigned NumValValues = ValValueVTs.size();
3041
3042  // Ignore a extractvalue that produces an empty object
3043  if (!NumValValues) {
3044    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3045    return;
3046  }
3047
3048  SmallVector<SDValue, 4> Values(NumValValues);
3049
3050  SDValue Agg = getValue(Op0);
3051  // Copy out the selected value(s).
3052  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3053    Values[i - LinearIndex] =
3054      OutOfUndef ?
3055        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3056        SDValue(Agg.getNode(), Agg.getResNo() + i);
3057
3058  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3059                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3060                           &Values[0], NumValValues));
3061}
3062
3063void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3064  SDValue N = getValue(I.getOperand(0));
3065  Type *Ty = I.getOperand(0)->getType();
3066
3067  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3068       OI != E; ++OI) {
3069    const Value *Idx = *OI;
3070    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3071      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3072      if (Field) {
3073        // N = N + Offset
3074        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3075        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3076                        DAG.getIntPtrConstant(Offset));
3077      }
3078
3079      Ty = StTy->getElementType(Field);
3080    } else {
3081      Ty = cast<SequentialType>(Ty)->getElementType();
3082
3083      // If this is a constant subscript, handle it quickly.
3084      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3085        if (CI->isZero()) continue;
3086        uint64_t Offs =
3087            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3088        SDValue OffsVal;
3089        EVT PTy = TLI.getPointerTy();
3090        unsigned PtrBits = PTy.getSizeInBits();
3091        if (PtrBits < 64)
3092          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3093                                TLI.getPointerTy(),
3094                                DAG.getConstant(Offs, MVT::i64));
3095        else
3096          OffsVal = DAG.getIntPtrConstant(Offs);
3097
3098        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3099                        OffsVal);
3100        continue;
3101      }
3102
3103      // N = N + Idx * ElementSize;
3104      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3105                                TD->getTypeAllocSize(Ty));
3106      SDValue IdxN = getValue(Idx);
3107
3108      // If the index is smaller or larger than intptr_t, truncate or extend
3109      // it.
3110      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3111
3112      // If this is a multiply by a power of two, turn it into a shl
3113      // immediately.  This is a very common case.
3114      if (ElementSize != 1) {
3115        if (ElementSize.isPowerOf2()) {
3116          unsigned Amt = ElementSize.logBase2();
3117          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3118                             N.getValueType(), IdxN,
3119                             DAG.getConstant(Amt, IdxN.getValueType()));
3120        } else {
3121          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3122          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3123                             N.getValueType(), IdxN, Scale);
3124        }
3125      }
3126
3127      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3128                      N.getValueType(), N, IdxN);
3129    }
3130  }
3131
3132  setValue(&I, N);
3133}
3134
3135void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3136  // If this is a fixed sized alloca in the entry block of the function,
3137  // allocate it statically on the stack.
3138  if (FuncInfo.StaticAllocaMap.count(&I))
3139    return;   // getValue will auto-populate this.
3140
3141  Type *Ty = I.getAllocatedType();
3142  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3143  unsigned Align =
3144    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3145             I.getAlignment());
3146
3147  SDValue AllocSize = getValue(I.getArraySize());
3148
3149  EVT IntPtr = TLI.getPointerTy();
3150  if (AllocSize.getValueType() != IntPtr)
3151    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3152
3153  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3154                          AllocSize,
3155                          DAG.getConstant(TySize, IntPtr));
3156
3157  // Handle alignment.  If the requested alignment is less than or equal to
3158  // the stack alignment, ignore it.  If the size is greater than or equal to
3159  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3160  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3161  if (Align <= StackAlign)
3162    Align = 0;
3163
3164  // Round the size of the allocation up to the stack alignment size
3165  // by add SA-1 to the size.
3166  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3167                          AllocSize.getValueType(), AllocSize,
3168                          DAG.getIntPtrConstant(StackAlign-1));
3169
3170  // Mask out the low bits for alignment purposes.
3171  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3172                          AllocSize.getValueType(), AllocSize,
3173                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3174
3175  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3176  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3177  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3178                            VTs, Ops, 3);
3179  setValue(&I, DSA);
3180  DAG.setRoot(DSA.getValue(1));
3181
3182  // Inform the Frame Information that we have just allocated a variable-sized
3183  // object.
3184  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3185}
3186
3187void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3188  if (I.isAtomic())
3189    return visitAtomicLoad(I);
3190
3191  const Value *SV = I.getOperand(0);
3192  SDValue Ptr = getValue(SV);
3193
3194  Type *Ty = I.getType();
3195
3196  bool isVolatile = I.isVolatile();
3197  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3198  bool isInvariant = I.getMetadata("invariant.load") != 0;
3199  unsigned Alignment = I.getAlignment();
3200  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3201
3202  SmallVector<EVT, 4> ValueVTs;
3203  SmallVector<uint64_t, 4> Offsets;
3204  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3205  unsigned NumValues = ValueVTs.size();
3206  if (NumValues == 0)
3207    return;
3208
3209  SDValue Root;
3210  bool ConstantMemory = false;
3211  if (I.isVolatile() || NumValues > MaxParallelChains)
3212    // Serialize volatile loads with other side effects.
3213    Root = getRoot();
3214  else if (AA->pointsToConstantMemory(
3215             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3216    // Do not serialize (non-volatile) loads of constant memory with anything.
3217    Root = DAG.getEntryNode();
3218    ConstantMemory = true;
3219  } else {
3220    // Do not serialize non-volatile loads against each other.
3221    Root = DAG.getRoot();
3222  }
3223
3224  SmallVector<SDValue, 4> Values(NumValues);
3225  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3226                                          NumValues));
3227  EVT PtrVT = Ptr.getValueType();
3228  unsigned ChainI = 0;
3229  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3230    // Serializing loads here may result in excessive register pressure, and
3231    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3232    // could recover a bit by hoisting nodes upward in the chain by recognizing
3233    // they are side-effect free or do not alias. The optimizer should really
3234    // avoid this case by converting large object/array copies to llvm.memcpy
3235    // (MaxParallelChains should always remain as failsafe).
3236    if (ChainI == MaxParallelChains) {
3237      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3238      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3239                                  MVT::Other, &Chains[0], ChainI);
3240      Root = Chain;
3241      ChainI = 0;
3242    }
3243    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3244                            PtrVT, Ptr,
3245                            DAG.getConstant(Offsets[i], PtrVT));
3246    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3247                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3248                            isNonTemporal, isInvariant, Alignment, TBAAInfo);
3249
3250    Values[i] = L;
3251    Chains[ChainI] = L.getValue(1);
3252  }
3253
3254  if (!ConstantMemory) {
3255    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3256                                MVT::Other, &Chains[0], ChainI);
3257    if (isVolatile)
3258      DAG.setRoot(Chain);
3259    else
3260      PendingLoads.push_back(Chain);
3261  }
3262
3263  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3264                           DAG.getVTList(&ValueVTs[0], NumValues),
3265                           &Values[0], NumValues));
3266}
3267
3268void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3269  if (I.isAtomic())
3270    return visitAtomicStore(I);
3271
3272  const Value *SrcV = I.getOperand(0);
3273  const Value *PtrV = I.getOperand(1);
3274
3275  SmallVector<EVT, 4> ValueVTs;
3276  SmallVector<uint64_t, 4> Offsets;
3277  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3278  unsigned NumValues = ValueVTs.size();
3279  if (NumValues == 0)
3280    return;
3281
3282  // Get the lowered operands. Note that we do this after
3283  // checking if NumResults is zero, because with zero results
3284  // the operands won't have values in the map.
3285  SDValue Src = getValue(SrcV);
3286  SDValue Ptr = getValue(PtrV);
3287
3288  SDValue Root = getRoot();
3289  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3290                                          NumValues));
3291  EVT PtrVT = Ptr.getValueType();
3292  bool isVolatile = I.isVolatile();
3293  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3294  unsigned Alignment = I.getAlignment();
3295  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3296
3297  unsigned ChainI = 0;
3298  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3299    // See visitLoad comments.
3300    if (ChainI == MaxParallelChains) {
3301      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3302                                  MVT::Other, &Chains[0], ChainI);
3303      Root = Chain;
3304      ChainI = 0;
3305    }
3306    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3307                              DAG.getConstant(Offsets[i], PtrVT));
3308    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3309                              SDValue(Src.getNode(), Src.getResNo() + i),
3310                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3311                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3312    Chains[ChainI] = St;
3313  }
3314
3315  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3316                                  MVT::Other, &Chains[0], ChainI);
3317  ++SDNodeOrder;
3318  AssignOrderingToNode(StoreNode.getNode());
3319  DAG.setRoot(StoreNode);
3320}
3321
3322static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3323                                    SynchronizationScope Scope,
3324                                    bool Before, DebugLoc dl,
3325                                    SelectionDAG &DAG,
3326                                    const TargetLowering &TLI) {
3327  // Fence, if necessary
3328  if (Before) {
3329    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3330      Order = Release;
3331    else if (Order == Acquire || Order == Monotonic)
3332      return Chain;
3333  } else {
3334    if (Order == AcquireRelease)
3335      Order = Acquire;
3336    else if (Order == Release || Order == Monotonic)
3337      return Chain;
3338  }
3339  SDValue Ops[3];
3340  Ops[0] = Chain;
3341  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3342  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3343  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3344}
3345
3346void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3347  DebugLoc dl = getCurDebugLoc();
3348  AtomicOrdering Order = I.getOrdering();
3349  SynchronizationScope Scope = I.getSynchScope();
3350
3351  SDValue InChain = getRoot();
3352
3353  if (TLI.getInsertFencesForAtomic())
3354    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3355                                   DAG, TLI);
3356
3357  SDValue L =
3358    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3359                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3360                  InChain,
3361                  getValue(I.getPointerOperand()),
3362                  getValue(I.getCompareOperand()),
3363                  getValue(I.getNewValOperand()),
3364                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3365                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3366                  Scope);
3367
3368  SDValue OutChain = L.getValue(1);
3369
3370  if (TLI.getInsertFencesForAtomic())
3371    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3372                                    DAG, TLI);
3373
3374  setValue(&I, L);
3375  DAG.setRoot(OutChain);
3376}
3377
3378void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3379  DebugLoc dl = getCurDebugLoc();
3380  ISD::NodeType NT;
3381  switch (I.getOperation()) {
3382  default: llvm_unreachable("Unknown atomicrmw operation"); return;
3383  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3384  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3385  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3386  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3387  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3388  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3389  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3390  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3391  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3392  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3393  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3394  }
3395  AtomicOrdering Order = I.getOrdering();
3396  SynchronizationScope Scope = I.getSynchScope();
3397
3398  SDValue InChain = getRoot();
3399
3400  if (TLI.getInsertFencesForAtomic())
3401    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3402                                   DAG, TLI);
3403
3404  SDValue L =
3405    DAG.getAtomic(NT, dl,
3406                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3407                  InChain,
3408                  getValue(I.getPointerOperand()),
3409                  getValue(I.getValOperand()),
3410                  I.getPointerOperand(), 0 /* Alignment */,
3411                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3412                  Scope);
3413
3414  SDValue OutChain = L.getValue(1);
3415
3416  if (TLI.getInsertFencesForAtomic())
3417    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3418                                    DAG, TLI);
3419
3420  setValue(&I, L);
3421  DAG.setRoot(OutChain);
3422}
3423
3424void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3425  DebugLoc dl = getCurDebugLoc();
3426  SDValue Ops[3];
3427  Ops[0] = getRoot();
3428  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3429  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3430  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3431}
3432
3433void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3434  DebugLoc dl = getCurDebugLoc();
3435  AtomicOrdering Order = I.getOrdering();
3436  SynchronizationScope Scope = I.getSynchScope();
3437
3438  SDValue InChain = getRoot();
3439
3440  EVT VT = EVT::getEVT(I.getType());
3441
3442  if (I.getAlignment() * 8 < VT.getSizeInBits())
3443    report_fatal_error("Cannot generate unaligned atomic load");
3444
3445  SDValue L =
3446    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3447                  getValue(I.getPointerOperand()),
3448                  I.getPointerOperand(), I.getAlignment(),
3449                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3450                  Scope);
3451
3452  SDValue OutChain = L.getValue(1);
3453
3454  if (TLI.getInsertFencesForAtomic())
3455    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3456                                    DAG, TLI);
3457
3458  setValue(&I, L);
3459  DAG.setRoot(OutChain);
3460}
3461
3462void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3463  DebugLoc dl = getCurDebugLoc();
3464
3465  AtomicOrdering Order = I.getOrdering();
3466  SynchronizationScope Scope = I.getSynchScope();
3467
3468  SDValue InChain = getRoot();
3469
3470  EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3471
3472  if (I.getAlignment() * 8 < VT.getSizeInBits())
3473    report_fatal_error("Cannot generate unaligned atomic store");
3474
3475  if (TLI.getInsertFencesForAtomic())
3476    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3477                                   DAG, TLI);
3478
3479  SDValue OutChain =
3480    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3481                  InChain,
3482                  getValue(I.getPointerOperand()),
3483                  getValue(I.getValueOperand()),
3484                  I.getPointerOperand(), I.getAlignment(),
3485                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3486                  Scope);
3487
3488  if (TLI.getInsertFencesForAtomic())
3489    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3490                                    DAG, TLI);
3491
3492  DAG.setRoot(OutChain);
3493}
3494
3495/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3496/// node.
3497void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3498                                               unsigned Intrinsic) {
3499  bool HasChain = !I.doesNotAccessMemory();
3500  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3501
3502  // Build the operand list.
3503  SmallVector<SDValue, 8> Ops;
3504  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3505    if (OnlyLoad) {
3506      // We don't need to serialize loads against other loads.
3507      Ops.push_back(DAG.getRoot());
3508    } else {
3509      Ops.push_back(getRoot());
3510    }
3511  }
3512
3513  // Info is set by getTgtMemInstrinsic
3514  TargetLowering::IntrinsicInfo Info;
3515  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3516
3517  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3518  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3519      Info.opc == ISD::INTRINSIC_W_CHAIN)
3520    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3521
3522  // Add all operands of the call to the operand list.
3523  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3524    SDValue Op = getValue(I.getArgOperand(i));
3525    Ops.push_back(Op);
3526  }
3527
3528  SmallVector<EVT, 4> ValueVTs;
3529  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3530
3531  if (HasChain)
3532    ValueVTs.push_back(MVT::Other);
3533
3534  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3535
3536  // Create the node.
3537  SDValue Result;
3538  if (IsTgtIntrinsic) {
3539    // This is target intrinsic that touches memory
3540    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3541                                     VTs, &Ops[0], Ops.size(),
3542                                     Info.memVT,
3543                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3544                                     Info.align, Info.vol,
3545                                     Info.readMem, Info.writeMem);
3546  } else if (!HasChain) {
3547    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3548                         VTs, &Ops[0], Ops.size());
3549  } else if (!I.getType()->isVoidTy()) {
3550    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3551                         VTs, &Ops[0], Ops.size());
3552  } else {
3553    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3554                         VTs, &Ops[0], Ops.size());
3555  }
3556
3557  if (HasChain) {
3558    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3559    if (OnlyLoad)
3560      PendingLoads.push_back(Chain);
3561    else
3562      DAG.setRoot(Chain);
3563  }
3564
3565  if (!I.getType()->isVoidTy()) {
3566    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3567      EVT VT = TLI.getValueType(PTy);
3568      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3569    }
3570
3571    setValue(&I, Result);
3572  }
3573}
3574
3575/// GetSignificand - Get the significand and build it into a floating-point
3576/// number with exponent of 1:
3577///
3578///   Op = (Op & 0x007fffff) | 0x3f800000;
3579///
3580/// where Op is the hexidecimal representation of floating point value.
3581static SDValue
3582GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3583  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3584                           DAG.getConstant(0x007fffff, MVT::i32));
3585  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3586                           DAG.getConstant(0x3f800000, MVT::i32));
3587  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3588}
3589
3590/// GetExponent - Get the exponent:
3591///
3592///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3593///
3594/// where Op is the hexidecimal representation of floating point value.
3595static SDValue
3596GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3597            DebugLoc dl) {
3598  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3599                           DAG.getConstant(0x7f800000, MVT::i32));
3600  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3601                           DAG.getConstant(23, TLI.getPointerTy()));
3602  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3603                           DAG.getConstant(127, MVT::i32));
3604  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3605}
3606
3607/// getF32Constant - Get 32-bit floating point constant.
3608static SDValue
3609getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3610  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3611}
3612
3613// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3614const char *
3615SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3616  SDValue Op1 = getValue(I.getArgOperand(0));
3617  SDValue Op2 = getValue(I.getArgOperand(1));
3618
3619  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3620  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3621  return 0;
3622}
3623
3624/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3625/// limited-precision mode.
3626void
3627SelectionDAGBuilder::visitExp(const CallInst &I) {
3628  SDValue result;
3629  DebugLoc dl = getCurDebugLoc();
3630
3631  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3632      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3633    SDValue Op = getValue(I.getArgOperand(0));
3634
3635    // Put the exponent in the right bit position for later addition to the
3636    // final result:
3637    //
3638    //   #define LOG2OFe 1.4426950f
3639    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3640    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3641                             getF32Constant(DAG, 0x3fb8aa3b));
3642    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3643
3644    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3645    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3646    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3647
3648    //   IntegerPartOfX <<= 23;
3649    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3650                                 DAG.getConstant(23, TLI.getPointerTy()));
3651
3652    if (LimitFloatPrecision <= 6) {
3653      // For floating-point precision of 6:
3654      //
3655      //   TwoToFractionalPartOfX =
3656      //     0.997535578f +
3657      //       (0.735607626f + 0.252464424f * x) * x;
3658      //
3659      // error 0.0144103317, which is 6 bits
3660      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3661                               getF32Constant(DAG, 0x3e814304));
3662      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3663                               getF32Constant(DAG, 0x3f3c50c8));
3664      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3665      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3666                               getF32Constant(DAG, 0x3f7f5e7e));
3667      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3668
3669      // Add the exponent into the result in integer domain.
3670      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3671                               TwoToFracPartOfX, IntegerPartOfX);
3672
3673      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3674    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3675      // For floating-point precision of 12:
3676      //
3677      //   TwoToFractionalPartOfX =
3678      //     0.999892986f +
3679      //       (0.696457318f +
3680      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3681      //
3682      // 0.000107046256 error, which is 13 to 14 bits
3683      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3684                               getF32Constant(DAG, 0x3da235e3));
3685      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3686                               getF32Constant(DAG, 0x3e65b8f3));
3687      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3688      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3689                               getF32Constant(DAG, 0x3f324b07));
3690      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3691      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3692                               getF32Constant(DAG, 0x3f7ff8fd));
3693      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3694
3695      // Add the exponent into the result in integer domain.
3696      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3697                               TwoToFracPartOfX, IntegerPartOfX);
3698
3699      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3700    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3701      // For floating-point precision of 18:
3702      //
3703      //   TwoToFractionalPartOfX =
3704      //     0.999999982f +
3705      //       (0.693148872f +
3706      //         (0.240227044f +
3707      //           (0.554906021e-1f +
3708      //             (0.961591928e-2f +
3709      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3710      //
3711      // error 2.47208000*10^(-7), which is better than 18 bits
3712      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3713                               getF32Constant(DAG, 0x3924b03e));
3714      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3715                               getF32Constant(DAG, 0x3ab24b87));
3716      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3717      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3718                               getF32Constant(DAG, 0x3c1d8c17));
3719      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3720      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3721                               getF32Constant(DAG, 0x3d634a1d));
3722      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3723      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3724                               getF32Constant(DAG, 0x3e75fe14));
3725      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3726      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3727                                getF32Constant(DAG, 0x3f317234));
3728      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3729      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3730                                getF32Constant(DAG, 0x3f800000));
3731      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3732                                             MVT::i32, t13);
3733
3734      // Add the exponent into the result in integer domain.
3735      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3736                                TwoToFracPartOfX, IntegerPartOfX);
3737
3738      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3739    }
3740  } else {
3741    // No special expansion.
3742    result = DAG.getNode(ISD::FEXP, dl,
3743                         getValue(I.getArgOperand(0)).getValueType(),
3744                         getValue(I.getArgOperand(0)));
3745  }
3746
3747  setValue(&I, result);
3748}
3749
3750/// visitLog - Lower a log intrinsic. Handles the special sequences for
3751/// limited-precision mode.
3752void
3753SelectionDAGBuilder::visitLog(const CallInst &I) {
3754  SDValue result;
3755  DebugLoc dl = getCurDebugLoc();
3756
3757  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3758      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3759    SDValue Op = getValue(I.getArgOperand(0));
3760    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3761
3762    // Scale the exponent by log(2) [0.69314718f].
3763    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3764    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3765                                        getF32Constant(DAG, 0x3f317218));
3766
3767    // Get the significand and build it into a floating-point number with
3768    // exponent of 1.
3769    SDValue X = GetSignificand(DAG, Op1, dl);
3770
3771    if (LimitFloatPrecision <= 6) {
3772      // For floating-point precision of 6:
3773      //
3774      //   LogofMantissa =
3775      //     -1.1609546f +
3776      //       (1.4034025f - 0.23903021f * x) * x;
3777      //
3778      // error 0.0034276066, which is better than 8 bits
3779      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3780                               getF32Constant(DAG, 0xbe74c456));
3781      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3782                               getF32Constant(DAG, 0x3fb3a2b1));
3783      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3784      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3785                                          getF32Constant(DAG, 0x3f949a29));
3786
3787      result = DAG.getNode(ISD::FADD, dl,
3788                           MVT::f32, LogOfExponent, LogOfMantissa);
3789    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3790      // For floating-point precision of 12:
3791      //
3792      //   LogOfMantissa =
3793      //     -1.7417939f +
3794      //       (2.8212026f +
3795      //         (-1.4699568f +
3796      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3797      //
3798      // error 0.000061011436, which is 14 bits
3799      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3800                               getF32Constant(DAG, 0xbd67b6d6));
3801      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3802                               getF32Constant(DAG, 0x3ee4f4b8));
3803      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3804      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3805                               getF32Constant(DAG, 0x3fbc278b));
3806      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3807      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3808                               getF32Constant(DAG, 0x40348e95));
3809      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3810      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3811                                          getF32Constant(DAG, 0x3fdef31a));
3812
3813      result = DAG.getNode(ISD::FADD, dl,
3814                           MVT::f32, LogOfExponent, LogOfMantissa);
3815    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3816      // For floating-point precision of 18:
3817      //
3818      //   LogOfMantissa =
3819      //     -2.1072184f +
3820      //       (4.2372794f +
3821      //         (-3.7029485f +
3822      //           (2.2781945f +
3823      //             (-0.87823314f +
3824      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3825      //
3826      // error 0.0000023660568, which is better than 18 bits
3827      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3828                               getF32Constant(DAG, 0xbc91e5ac));
3829      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3830                               getF32Constant(DAG, 0x3e4350aa));
3831      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3832      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3833                               getF32Constant(DAG, 0x3f60d3e3));
3834      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3835      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3836                               getF32Constant(DAG, 0x4011cdf0));
3837      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3838      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3839                               getF32Constant(DAG, 0x406cfd1c));
3840      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3841      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3842                               getF32Constant(DAG, 0x408797cb));
3843      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3844      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3845                                          getF32Constant(DAG, 0x4006dcab));
3846
3847      result = DAG.getNode(ISD::FADD, dl,
3848                           MVT::f32, LogOfExponent, LogOfMantissa);
3849    }
3850  } else {
3851    // No special expansion.
3852    result = DAG.getNode(ISD::FLOG, dl,
3853                         getValue(I.getArgOperand(0)).getValueType(),
3854                         getValue(I.getArgOperand(0)));
3855  }
3856
3857  setValue(&I, result);
3858}
3859
3860/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3861/// limited-precision mode.
3862void
3863SelectionDAGBuilder::visitLog2(const CallInst &I) {
3864  SDValue result;
3865  DebugLoc dl = getCurDebugLoc();
3866
3867  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3868      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3869    SDValue Op = getValue(I.getArgOperand(0));
3870    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3871
3872    // Get the exponent.
3873    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3874
3875    // Get the significand and build it into a floating-point number with
3876    // exponent of 1.
3877    SDValue X = GetSignificand(DAG, Op1, dl);
3878
3879    // Different possible minimax approximations of significand in
3880    // floating-point for various degrees of accuracy over [1,2].
3881    if (LimitFloatPrecision <= 6) {
3882      // For floating-point precision of 6:
3883      //
3884      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3885      //
3886      // error 0.0049451742, which is more than 7 bits
3887      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3888                               getF32Constant(DAG, 0xbeb08fe0));
3889      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3890                               getF32Constant(DAG, 0x40019463));
3891      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3892      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3893                                           getF32Constant(DAG, 0x3fd6633d));
3894
3895      result = DAG.getNode(ISD::FADD, dl,
3896                           MVT::f32, LogOfExponent, Log2ofMantissa);
3897    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3898      // For floating-point precision of 12:
3899      //
3900      //   Log2ofMantissa =
3901      //     -2.51285454f +
3902      //       (4.07009056f +
3903      //         (-2.12067489f +
3904      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3905      //
3906      // error 0.0000876136000, which is better than 13 bits
3907      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3908                               getF32Constant(DAG, 0xbda7262e));
3909      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3910                               getF32Constant(DAG, 0x3f25280b));
3911      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3912      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3913                               getF32Constant(DAG, 0x4007b923));
3914      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3915      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3916                               getF32Constant(DAG, 0x40823e2f));
3917      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3918      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3919                                           getF32Constant(DAG, 0x4020d29c));
3920
3921      result = DAG.getNode(ISD::FADD, dl,
3922                           MVT::f32, LogOfExponent, Log2ofMantissa);
3923    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3924      // For floating-point precision of 18:
3925      //
3926      //   Log2ofMantissa =
3927      //     -3.0400495f +
3928      //       (6.1129976f +
3929      //         (-5.3420409f +
3930      //           (3.2865683f +
3931      //             (-1.2669343f +
3932      //               (0.27515199f -
3933      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3934      //
3935      // error 0.0000018516, which is better than 18 bits
3936      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3937                               getF32Constant(DAG, 0xbcd2769e));
3938      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3939                               getF32Constant(DAG, 0x3e8ce0b9));
3940      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3941      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3942                               getF32Constant(DAG, 0x3fa22ae7));
3943      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3944      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3945                               getF32Constant(DAG, 0x40525723));
3946      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3947      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3948                               getF32Constant(DAG, 0x40aaf200));
3949      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3950      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3951                               getF32Constant(DAG, 0x40c39dad));
3952      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3953      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3954                                           getF32Constant(DAG, 0x4042902c));
3955
3956      result = DAG.getNode(ISD::FADD, dl,
3957                           MVT::f32, LogOfExponent, Log2ofMantissa);
3958    }
3959  } else {
3960    // No special expansion.
3961    result = DAG.getNode(ISD::FLOG2, dl,
3962                         getValue(I.getArgOperand(0)).getValueType(),
3963                         getValue(I.getArgOperand(0)));
3964  }
3965
3966  setValue(&I, result);
3967}
3968
3969/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3970/// limited-precision mode.
3971void
3972SelectionDAGBuilder::visitLog10(const CallInst &I) {
3973  SDValue result;
3974  DebugLoc dl = getCurDebugLoc();
3975
3976  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3977      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3978    SDValue Op = getValue(I.getArgOperand(0));
3979    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3980
3981    // Scale the exponent by log10(2) [0.30102999f].
3982    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3983    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3984                                        getF32Constant(DAG, 0x3e9a209a));
3985
3986    // Get the significand and build it into a floating-point number with
3987    // exponent of 1.
3988    SDValue X = GetSignificand(DAG, Op1, dl);
3989
3990    if (LimitFloatPrecision <= 6) {
3991      // For floating-point precision of 6:
3992      //
3993      //   Log10ofMantissa =
3994      //     -0.50419619f +
3995      //       (0.60948995f - 0.10380950f * x) * x;
3996      //
3997      // error 0.0014886165, which is 6 bits
3998      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3999                               getF32Constant(DAG, 0xbdd49a13));
4000      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4001                               getF32Constant(DAG, 0x3f1c0789));
4002      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4003      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4004                                            getF32Constant(DAG, 0x3f011300));
4005
4006      result = DAG.getNode(ISD::FADD, dl,
4007                           MVT::f32, LogOfExponent, Log10ofMantissa);
4008    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4009      // For floating-point precision of 12:
4010      //
4011      //   Log10ofMantissa =
4012      //     -0.64831180f +
4013      //       (0.91751397f +
4014      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4015      //
4016      // error 0.00019228036, which is better than 12 bits
4017      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4018                               getF32Constant(DAG, 0x3d431f31));
4019      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4020                               getF32Constant(DAG, 0x3ea21fb2));
4021      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4022      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4023                               getF32Constant(DAG, 0x3f6ae232));
4024      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4025      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4026                                            getF32Constant(DAG, 0x3f25f7c3));
4027
4028      result = DAG.getNode(ISD::FADD, dl,
4029                           MVT::f32, LogOfExponent, Log10ofMantissa);
4030    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4031      // For floating-point precision of 18:
4032      //
4033      //   Log10ofMantissa =
4034      //     -0.84299375f +
4035      //       (1.5327582f +
4036      //         (-1.0688956f +
4037      //           (0.49102474f +
4038      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4039      //
4040      // error 0.0000037995730, which is better than 18 bits
4041      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4042                               getF32Constant(DAG, 0x3c5d51ce));
4043      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4044                               getF32Constant(DAG, 0x3e00685a));
4045      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4046      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4047                               getF32Constant(DAG, 0x3efb6798));
4048      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4049      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4050                               getF32Constant(DAG, 0x3f88d192));
4051      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4052      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4053                               getF32Constant(DAG, 0x3fc4316c));
4054      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4055      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4056                                            getF32Constant(DAG, 0x3f57ce70));
4057
4058      result = DAG.getNode(ISD::FADD, dl,
4059                           MVT::f32, LogOfExponent, Log10ofMantissa);
4060    }
4061  } else {
4062    // No special expansion.
4063    result = DAG.getNode(ISD::FLOG10, dl,
4064                         getValue(I.getArgOperand(0)).getValueType(),
4065                         getValue(I.getArgOperand(0)));
4066  }
4067
4068  setValue(&I, result);
4069}
4070
4071/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4072/// limited-precision mode.
4073void
4074SelectionDAGBuilder::visitExp2(const CallInst &I) {
4075  SDValue result;
4076  DebugLoc dl = getCurDebugLoc();
4077
4078  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4079      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4080    SDValue Op = getValue(I.getArgOperand(0));
4081
4082    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4083
4084    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4085    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4086    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4087
4088    //   IntegerPartOfX <<= 23;
4089    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4090                                 DAG.getConstant(23, TLI.getPointerTy()));
4091
4092    if (LimitFloatPrecision <= 6) {
4093      // For floating-point precision of 6:
4094      //
4095      //   TwoToFractionalPartOfX =
4096      //     0.997535578f +
4097      //       (0.735607626f + 0.252464424f * x) * x;
4098      //
4099      // error 0.0144103317, which is 6 bits
4100      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4101                               getF32Constant(DAG, 0x3e814304));
4102      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4103                               getF32Constant(DAG, 0x3f3c50c8));
4104      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4105      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4106                               getF32Constant(DAG, 0x3f7f5e7e));
4107      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4108      SDValue TwoToFractionalPartOfX =
4109        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4110
4111      result = DAG.getNode(ISD::BITCAST, dl,
4112                           MVT::f32, TwoToFractionalPartOfX);
4113    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4114      // For floating-point precision of 12:
4115      //
4116      //   TwoToFractionalPartOfX =
4117      //     0.999892986f +
4118      //       (0.696457318f +
4119      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4120      //
4121      // error 0.000107046256, which is 13 to 14 bits
4122      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4123                               getF32Constant(DAG, 0x3da235e3));
4124      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4125                               getF32Constant(DAG, 0x3e65b8f3));
4126      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4127      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4128                               getF32Constant(DAG, 0x3f324b07));
4129      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4130      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4131                               getF32Constant(DAG, 0x3f7ff8fd));
4132      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4133      SDValue TwoToFractionalPartOfX =
4134        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4135
4136      result = DAG.getNode(ISD::BITCAST, dl,
4137                           MVT::f32, TwoToFractionalPartOfX);
4138    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4139      // For floating-point precision of 18:
4140      //
4141      //   TwoToFractionalPartOfX =
4142      //     0.999999982f +
4143      //       (0.693148872f +
4144      //         (0.240227044f +
4145      //           (0.554906021e-1f +
4146      //             (0.961591928e-2f +
4147      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4148      // error 2.47208000*10^(-7), which is better than 18 bits
4149      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4150                               getF32Constant(DAG, 0x3924b03e));
4151      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4152                               getF32Constant(DAG, 0x3ab24b87));
4153      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4154      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4155                               getF32Constant(DAG, 0x3c1d8c17));
4156      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4157      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4158                               getF32Constant(DAG, 0x3d634a1d));
4159      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4160      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4161                               getF32Constant(DAG, 0x3e75fe14));
4162      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4163      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4164                                getF32Constant(DAG, 0x3f317234));
4165      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4166      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4167                                getF32Constant(DAG, 0x3f800000));
4168      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4169      SDValue TwoToFractionalPartOfX =
4170        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4171
4172      result = DAG.getNode(ISD::BITCAST, dl,
4173                           MVT::f32, TwoToFractionalPartOfX);
4174    }
4175  } else {
4176    // No special expansion.
4177    result = DAG.getNode(ISD::FEXP2, dl,
4178                         getValue(I.getArgOperand(0)).getValueType(),
4179                         getValue(I.getArgOperand(0)));
4180  }
4181
4182  setValue(&I, result);
4183}
4184
4185/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4186/// limited-precision mode with x == 10.0f.
4187void
4188SelectionDAGBuilder::visitPow(const CallInst &I) {
4189  SDValue result;
4190  const Value *Val = I.getArgOperand(0);
4191  DebugLoc dl = getCurDebugLoc();
4192  bool IsExp10 = false;
4193
4194  if (getValue(Val).getValueType() == MVT::f32 &&
4195      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4196      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4197    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4198      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4199        APFloat Ten(10.0f);
4200        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4201      }
4202    }
4203  }
4204
4205  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4206    SDValue Op = getValue(I.getArgOperand(1));
4207
4208    // Put the exponent in the right bit position for later addition to the
4209    // final result:
4210    //
4211    //   #define LOG2OF10 3.3219281f
4212    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4213    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4214                             getF32Constant(DAG, 0x40549a78));
4215    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4216
4217    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4218    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4219    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4220
4221    //   IntegerPartOfX <<= 23;
4222    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4223                                 DAG.getConstant(23, TLI.getPointerTy()));
4224
4225    if (LimitFloatPrecision <= 6) {
4226      // For floating-point precision of 6:
4227      //
4228      //   twoToFractionalPartOfX =
4229      //     0.997535578f +
4230      //       (0.735607626f + 0.252464424f * x) * x;
4231      //
4232      // error 0.0144103317, which is 6 bits
4233      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4234                               getF32Constant(DAG, 0x3e814304));
4235      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4236                               getF32Constant(DAG, 0x3f3c50c8));
4237      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4238      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4239                               getF32Constant(DAG, 0x3f7f5e7e));
4240      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4241      SDValue TwoToFractionalPartOfX =
4242        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4243
4244      result = DAG.getNode(ISD::BITCAST, dl,
4245                           MVT::f32, TwoToFractionalPartOfX);
4246    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4247      // For floating-point precision of 12:
4248      //
4249      //   TwoToFractionalPartOfX =
4250      //     0.999892986f +
4251      //       (0.696457318f +
4252      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4253      //
4254      // error 0.000107046256, which is 13 to 14 bits
4255      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4256                               getF32Constant(DAG, 0x3da235e3));
4257      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4258                               getF32Constant(DAG, 0x3e65b8f3));
4259      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4260      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4261                               getF32Constant(DAG, 0x3f324b07));
4262      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4263      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4264                               getF32Constant(DAG, 0x3f7ff8fd));
4265      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4266      SDValue TwoToFractionalPartOfX =
4267        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4268
4269      result = DAG.getNode(ISD::BITCAST, dl,
4270                           MVT::f32, TwoToFractionalPartOfX);
4271    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4272      // For floating-point precision of 18:
4273      //
4274      //   TwoToFractionalPartOfX =
4275      //     0.999999982f +
4276      //       (0.693148872f +
4277      //         (0.240227044f +
4278      //           (0.554906021e-1f +
4279      //             (0.961591928e-2f +
4280      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4281      // error 2.47208000*10^(-7), which is better than 18 bits
4282      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4283                               getF32Constant(DAG, 0x3924b03e));
4284      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4285                               getF32Constant(DAG, 0x3ab24b87));
4286      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4287      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4288                               getF32Constant(DAG, 0x3c1d8c17));
4289      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4290      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4291                               getF32Constant(DAG, 0x3d634a1d));
4292      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4293      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4294                               getF32Constant(DAG, 0x3e75fe14));
4295      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4296      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4297                                getF32Constant(DAG, 0x3f317234));
4298      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4299      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4300                                getF32Constant(DAG, 0x3f800000));
4301      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4302      SDValue TwoToFractionalPartOfX =
4303        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4304
4305      result = DAG.getNode(ISD::BITCAST, dl,
4306                           MVT::f32, TwoToFractionalPartOfX);
4307    }
4308  } else {
4309    // No special expansion.
4310    result = DAG.getNode(ISD::FPOW, dl,
4311                         getValue(I.getArgOperand(0)).getValueType(),
4312                         getValue(I.getArgOperand(0)),
4313                         getValue(I.getArgOperand(1)));
4314  }
4315
4316  setValue(&I, result);
4317}
4318
4319
4320/// ExpandPowI - Expand a llvm.powi intrinsic.
4321static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4322                          SelectionDAG &DAG) {
4323  // If RHS is a constant, we can expand this out to a multiplication tree,
4324  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4325  // optimizing for size, we only want to do this if the expansion would produce
4326  // a small number of multiplies, otherwise we do the full expansion.
4327  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4328    // Get the exponent as a positive value.
4329    unsigned Val = RHSC->getSExtValue();
4330    if ((int)Val < 0) Val = -Val;
4331
4332    // powi(x, 0) -> 1.0
4333    if (Val == 0)
4334      return DAG.getConstantFP(1.0, LHS.getValueType());
4335
4336    const Function *F = DAG.getMachineFunction().getFunction();
4337    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4338        // If optimizing for size, don't insert too many multiplies.  This
4339        // inserts up to 5 multiplies.
4340        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4341      // We use the simple binary decomposition method to generate the multiply
4342      // sequence.  There are more optimal ways to do this (for example,
4343      // powi(x,15) generates one more multiply than it should), but this has
4344      // the benefit of being both really simple and much better than a libcall.
4345      SDValue Res;  // Logically starts equal to 1.0
4346      SDValue CurSquare = LHS;
4347      while (Val) {
4348        if (Val & 1) {
4349          if (Res.getNode())
4350            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4351          else
4352            Res = CurSquare;  // 1.0*CurSquare.
4353        }
4354
4355        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4356                                CurSquare, CurSquare);
4357        Val >>= 1;
4358      }
4359
4360      // If the original was negative, invert the result, producing 1/(x*x*x).
4361      if (RHSC->getSExtValue() < 0)
4362        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4363                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4364      return Res;
4365    }
4366  }
4367
4368  // Otherwise, expand to a libcall.
4369  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4370}
4371
4372// getTruncatedArgReg - Find underlying register used for an truncated
4373// argument.
4374static unsigned getTruncatedArgReg(const SDValue &N) {
4375  if (N.getOpcode() != ISD::TRUNCATE)
4376    return 0;
4377
4378  const SDValue &Ext = N.getOperand(0);
4379  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4380    const SDValue &CFR = Ext.getOperand(0);
4381    if (CFR.getOpcode() == ISD::CopyFromReg)
4382      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4383    else
4384      if (CFR.getOpcode() == ISD::TRUNCATE)
4385        return getTruncatedArgReg(CFR);
4386  }
4387  return 0;
4388}
4389
4390/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4391/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4392/// At the end of instruction selection, they will be inserted to the entry BB.
4393bool
4394SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4395                                              int64_t Offset,
4396                                              const SDValue &N) {
4397  const Argument *Arg = dyn_cast<Argument>(V);
4398  if (!Arg)
4399    return false;
4400
4401  MachineFunction &MF = DAG.getMachineFunction();
4402  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4403  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4404
4405  // Ignore inlined function arguments here.
4406  DIVariable DV(Variable);
4407  if (DV.isInlinedFnArgument(MF.getFunction()))
4408    return false;
4409
4410  unsigned Reg = 0;
4411  // Some arguments' frame index is recorded during argument lowering.
4412  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4413  if (Offset)
4414      Reg = TRI->getFrameRegister(MF);
4415
4416  if (!Reg && N.getNode()) {
4417    if (N.getOpcode() == ISD::CopyFromReg)
4418      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4419    else
4420      Reg = getTruncatedArgReg(N);
4421    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4422      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4423      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4424      if (PR)
4425        Reg = PR;
4426    }
4427  }
4428
4429  if (!Reg) {
4430    // Check if ValueMap has reg number.
4431    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4432    if (VMI != FuncInfo.ValueMap.end())
4433      Reg = VMI->second;
4434  }
4435
4436  if (!Reg && N.getNode()) {
4437    // Check if frame index is available.
4438    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4439      if (FrameIndexSDNode *FINode =
4440          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4441        Reg = TRI->getFrameRegister(MF);
4442        Offset = FINode->getIndex();
4443      }
4444  }
4445
4446  if (!Reg)
4447    return false;
4448
4449  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4450                                    TII->get(TargetOpcode::DBG_VALUE))
4451    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4452  FuncInfo.ArgDbgValues.push_back(&*MIB);
4453  return true;
4454}
4455
4456// VisualStudio defines setjmp as _setjmp
4457#if defined(_MSC_VER) && defined(setjmp) && \
4458                         !defined(setjmp_undefined_for_msvc)
4459#  pragma push_macro("setjmp")
4460#  undef setjmp
4461#  define setjmp_undefined_for_msvc
4462#endif
4463
4464/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4465/// we want to emit this as a call to a named external function, return the name
4466/// otherwise lower it and return null.
4467const char *
4468SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4469  DebugLoc dl = getCurDebugLoc();
4470  SDValue Res;
4471
4472  switch (Intrinsic) {
4473  default:
4474    // By default, turn this into a target intrinsic node.
4475    visitTargetIntrinsic(I, Intrinsic);
4476    return 0;
4477  case Intrinsic::vastart:  visitVAStart(I); return 0;
4478  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4479  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4480  case Intrinsic::returnaddress:
4481    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4482                             getValue(I.getArgOperand(0))));
4483    return 0;
4484  case Intrinsic::frameaddress:
4485    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4486                             getValue(I.getArgOperand(0))));
4487    return 0;
4488  case Intrinsic::setjmp:
4489    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4490  case Intrinsic::longjmp:
4491    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4492  case Intrinsic::memcpy: {
4493    // Assert for address < 256 since we support only user defined address
4494    // spaces.
4495    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4496           < 256 &&
4497           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4498           < 256 &&
4499           "Unknown address space");
4500    SDValue Op1 = getValue(I.getArgOperand(0));
4501    SDValue Op2 = getValue(I.getArgOperand(1));
4502    SDValue Op3 = getValue(I.getArgOperand(2));
4503    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4504    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4505    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4506                              MachinePointerInfo(I.getArgOperand(0)),
4507                              MachinePointerInfo(I.getArgOperand(1))));
4508    return 0;
4509  }
4510  case Intrinsic::memset: {
4511    // Assert for address < 256 since we support only user defined address
4512    // spaces.
4513    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4514           < 256 &&
4515           "Unknown address space");
4516    SDValue Op1 = getValue(I.getArgOperand(0));
4517    SDValue Op2 = getValue(I.getArgOperand(1));
4518    SDValue Op3 = getValue(I.getArgOperand(2));
4519    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4520    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4521    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4522                              MachinePointerInfo(I.getArgOperand(0))));
4523    return 0;
4524  }
4525  case Intrinsic::memmove: {
4526    // Assert for address < 256 since we support only user defined address
4527    // spaces.
4528    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4529           < 256 &&
4530           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4531           < 256 &&
4532           "Unknown address space");
4533    SDValue Op1 = getValue(I.getArgOperand(0));
4534    SDValue Op2 = getValue(I.getArgOperand(1));
4535    SDValue Op3 = getValue(I.getArgOperand(2));
4536    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4537    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4538    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4539                               MachinePointerInfo(I.getArgOperand(0)),
4540                               MachinePointerInfo(I.getArgOperand(1))));
4541    return 0;
4542  }
4543  case Intrinsic::dbg_declare: {
4544    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4545    MDNode *Variable = DI.getVariable();
4546    const Value *Address = DI.getAddress();
4547    if (!Address || !DIVariable(Variable).Verify())
4548      return 0;
4549
4550    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4551    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4552    // absolute, but not relative, values are different depending on whether
4553    // debug info exists.
4554    ++SDNodeOrder;
4555
4556    // Check if address has undef value.
4557    if (isa<UndefValue>(Address) ||
4558        (Address->use_empty() && !isa<Argument>(Address))) {
4559      DEBUG(dbgs() << "Dropping debug info for " << DI);
4560      return 0;
4561    }
4562
4563    SDValue &N = NodeMap[Address];
4564    if (!N.getNode() && isa<Argument>(Address))
4565      // Check unused arguments map.
4566      N = UnusedArgNodeMap[Address];
4567    SDDbgValue *SDV;
4568    if (N.getNode()) {
4569      // Parameters are handled specially.
4570      bool isParameter =
4571        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4572      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4573        Address = BCI->getOperand(0);
4574      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4575
4576      if (isParameter && !AI) {
4577        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4578        if (FINode)
4579          // Byval parameter.  We have a frame index at this point.
4580          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4581                                0, dl, SDNodeOrder);
4582        else {
4583          // Address is an argument, so try to emit its dbg value using
4584          // virtual register info from the FuncInfo.ValueMap.
4585          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4586          return 0;
4587        }
4588      } else if (AI)
4589        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4590                              0, dl, SDNodeOrder);
4591      else {
4592        // Can't do anything with other non-AI cases yet.
4593        DEBUG(dbgs() << "Dropping debug info for " << DI);
4594        return 0;
4595      }
4596      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4597    } else {
4598      // If Address is an argument then try to emit its dbg value using
4599      // virtual register info from the FuncInfo.ValueMap.
4600      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4601        // If variable is pinned by a alloca in dominating bb then
4602        // use StaticAllocaMap.
4603        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4604          if (AI->getParent() != DI.getParent()) {
4605            DenseMap<const AllocaInst*, int>::iterator SI =
4606              FuncInfo.StaticAllocaMap.find(AI);
4607            if (SI != FuncInfo.StaticAllocaMap.end()) {
4608              SDV = DAG.getDbgValue(Variable, SI->second,
4609                                    0, dl, SDNodeOrder);
4610              DAG.AddDbgValue(SDV, 0, false);
4611              return 0;
4612            }
4613          }
4614        }
4615        DEBUG(dbgs() << "Dropping debug info for " << DI);
4616      }
4617    }
4618    return 0;
4619  }
4620  case Intrinsic::dbg_value: {
4621    const DbgValueInst &DI = cast<DbgValueInst>(I);
4622    if (!DIVariable(DI.getVariable()).Verify())
4623      return 0;
4624
4625    MDNode *Variable = DI.getVariable();
4626    uint64_t Offset = DI.getOffset();
4627    const Value *V = DI.getValue();
4628    if (!V)
4629      return 0;
4630
4631    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4632    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4633    // absolute, but not relative, values are different depending on whether
4634    // debug info exists.
4635    ++SDNodeOrder;
4636    SDDbgValue *SDV;
4637    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4638      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4639      DAG.AddDbgValue(SDV, 0, false);
4640    } else {
4641      // Do not use getValue() in here; we don't want to generate code at
4642      // this point if it hasn't been done yet.
4643      SDValue N = NodeMap[V];
4644      if (!N.getNode() && isa<Argument>(V))
4645        // Check unused arguments map.
4646        N = UnusedArgNodeMap[V];
4647      if (N.getNode()) {
4648        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4649          SDV = DAG.getDbgValue(Variable, N.getNode(),
4650                                N.getResNo(), Offset, dl, SDNodeOrder);
4651          DAG.AddDbgValue(SDV, N.getNode(), false);
4652        }
4653      } else if (!V->use_empty() ) {
4654        // Do not call getValue(V) yet, as we don't want to generate code.
4655        // Remember it for later.
4656        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4657        DanglingDebugInfoMap[V] = DDI;
4658      } else {
4659        // We may expand this to cover more cases.  One case where we have no
4660        // data available is an unreferenced parameter.
4661        DEBUG(dbgs() << "Dropping debug info for " << DI);
4662      }
4663    }
4664
4665    // Build a debug info table entry.
4666    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4667      V = BCI->getOperand(0);
4668    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4669    // Don't handle byval struct arguments or VLAs, for example.
4670    if (!AI)
4671      return 0;
4672    DenseMap<const AllocaInst*, int>::iterator SI =
4673      FuncInfo.StaticAllocaMap.find(AI);
4674    if (SI == FuncInfo.StaticAllocaMap.end())
4675      return 0; // VLAs.
4676    int FI = SI->second;
4677
4678    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4679    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4680      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4681    return 0;
4682  }
4683  case Intrinsic::eh_exception: {
4684    // Insert the EXCEPTIONADDR instruction.
4685    assert(FuncInfo.MBB->isLandingPad() &&
4686           "Call to eh.exception not in landing pad!");
4687    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4688    SDValue Ops[1];
4689    Ops[0] = DAG.getRoot();
4690    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4691    setValue(&I, Op);
4692    DAG.setRoot(Op.getValue(1));
4693    return 0;
4694  }
4695
4696  case Intrinsic::eh_selector: {
4697    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4698    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4699    if (CallMBB->isLandingPad())
4700      AddCatchInfo(I, &MMI, CallMBB);
4701    else {
4702#ifndef NDEBUG
4703      FuncInfo.CatchInfoLost.insert(&I);
4704#endif
4705      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4706      unsigned Reg = TLI.getExceptionSelectorRegister();
4707      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4708    }
4709
4710    // Insert the EHSELECTION instruction.
4711    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4712    SDValue Ops[2];
4713    Ops[0] = getValue(I.getArgOperand(0));
4714    Ops[1] = getRoot();
4715    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4716    DAG.setRoot(Op.getValue(1));
4717    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4718    return 0;
4719  }
4720
4721  case Intrinsic::eh_typeid_for: {
4722    // Find the type id for the given typeinfo.
4723    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4724    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4725    Res = DAG.getConstant(TypeID, MVT::i32);
4726    setValue(&I, Res);
4727    return 0;
4728  }
4729
4730  case Intrinsic::eh_return_i32:
4731  case Intrinsic::eh_return_i64:
4732    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4733    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4734                            MVT::Other,
4735                            getControlRoot(),
4736                            getValue(I.getArgOperand(0)),
4737                            getValue(I.getArgOperand(1))));
4738    return 0;
4739  case Intrinsic::eh_unwind_init:
4740    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4741    return 0;
4742  case Intrinsic::eh_dwarf_cfa: {
4743    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4744                                        TLI.getPointerTy());
4745    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4746                                 TLI.getPointerTy(),
4747                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4748                                             TLI.getPointerTy()),
4749                                 CfaArg);
4750    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4751                             TLI.getPointerTy(),
4752                             DAG.getConstant(0, TLI.getPointerTy()));
4753    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4754                             FA, Offset));
4755    return 0;
4756  }
4757  case Intrinsic::eh_sjlj_callsite: {
4758    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4759    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4760    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4761    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4762
4763    MMI.setCurrentCallSite(CI->getZExtValue());
4764    return 0;
4765  }
4766  case Intrinsic::eh_sjlj_functioncontext: {
4767    // Get and store the index of the function context.
4768    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4769    AllocaInst *FnCtx =
4770      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4771    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4772    MFI->setFunctionContextIndex(FI);
4773    return 0;
4774  }
4775  case Intrinsic::eh_sjlj_setjmp: {
4776    SDValue Ops[2];
4777    Ops[0] = getRoot();
4778    Ops[1] = getValue(I.getArgOperand(0));
4779    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4780                             DAG.getVTList(MVT::i32, MVT::Other),
4781                             Ops, 2);
4782    setValue(&I, Op.getValue(0));
4783    DAG.setRoot(Op.getValue(1));
4784    return 0;
4785  }
4786  case Intrinsic::eh_sjlj_longjmp: {
4787    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4788                            getRoot(), getValue(I.getArgOperand(0))));
4789    return 0;
4790  }
4791
4792  case Intrinsic::x86_mmx_pslli_w:
4793  case Intrinsic::x86_mmx_pslli_d:
4794  case Intrinsic::x86_mmx_pslli_q:
4795  case Intrinsic::x86_mmx_psrli_w:
4796  case Intrinsic::x86_mmx_psrli_d:
4797  case Intrinsic::x86_mmx_psrli_q:
4798  case Intrinsic::x86_mmx_psrai_w:
4799  case Intrinsic::x86_mmx_psrai_d: {
4800    SDValue ShAmt = getValue(I.getArgOperand(1));
4801    if (isa<ConstantSDNode>(ShAmt)) {
4802      visitTargetIntrinsic(I, Intrinsic);
4803      return 0;
4804    }
4805    unsigned NewIntrinsic = 0;
4806    EVT ShAmtVT = MVT::v2i32;
4807    switch (Intrinsic) {
4808    case Intrinsic::x86_mmx_pslli_w:
4809      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4810      break;
4811    case Intrinsic::x86_mmx_pslli_d:
4812      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4813      break;
4814    case Intrinsic::x86_mmx_pslli_q:
4815      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4816      break;
4817    case Intrinsic::x86_mmx_psrli_w:
4818      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4819      break;
4820    case Intrinsic::x86_mmx_psrli_d:
4821      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4822      break;
4823    case Intrinsic::x86_mmx_psrli_q:
4824      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4825      break;
4826    case Intrinsic::x86_mmx_psrai_w:
4827      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4828      break;
4829    case Intrinsic::x86_mmx_psrai_d:
4830      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4831      break;
4832    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4833    }
4834
4835    // The vector shift intrinsics with scalars uses 32b shift amounts but
4836    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4837    // to be zero.
4838    // We must do this early because v2i32 is not a legal type.
4839    DebugLoc dl = getCurDebugLoc();
4840    SDValue ShOps[2];
4841    ShOps[0] = ShAmt;
4842    ShOps[1] = DAG.getConstant(0, MVT::i32);
4843    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4844    EVT DestVT = TLI.getValueType(I.getType());
4845    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4846    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4847                       DAG.getConstant(NewIntrinsic, MVT::i32),
4848                       getValue(I.getArgOperand(0)), ShAmt);
4849    setValue(&I, Res);
4850    return 0;
4851  }
4852  case Intrinsic::convertff:
4853  case Intrinsic::convertfsi:
4854  case Intrinsic::convertfui:
4855  case Intrinsic::convertsif:
4856  case Intrinsic::convertuif:
4857  case Intrinsic::convertss:
4858  case Intrinsic::convertsu:
4859  case Intrinsic::convertus:
4860  case Intrinsic::convertuu: {
4861    ISD::CvtCode Code = ISD::CVT_INVALID;
4862    switch (Intrinsic) {
4863    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4864    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4865    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4866    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4867    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4868    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4869    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4870    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4871    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4872    }
4873    EVT DestVT = TLI.getValueType(I.getType());
4874    const Value *Op1 = I.getArgOperand(0);
4875    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4876                               DAG.getValueType(DestVT),
4877                               DAG.getValueType(getValue(Op1).getValueType()),
4878                               getValue(I.getArgOperand(1)),
4879                               getValue(I.getArgOperand(2)),
4880                               Code);
4881    setValue(&I, Res);
4882    return 0;
4883  }
4884  case Intrinsic::sqrt:
4885    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4886                             getValue(I.getArgOperand(0)).getValueType(),
4887                             getValue(I.getArgOperand(0))));
4888    return 0;
4889  case Intrinsic::powi:
4890    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4891                            getValue(I.getArgOperand(1)), DAG));
4892    return 0;
4893  case Intrinsic::sin:
4894    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4895                             getValue(I.getArgOperand(0)).getValueType(),
4896                             getValue(I.getArgOperand(0))));
4897    return 0;
4898  case Intrinsic::cos:
4899    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4900                             getValue(I.getArgOperand(0)).getValueType(),
4901                             getValue(I.getArgOperand(0))));
4902    return 0;
4903  case Intrinsic::log:
4904    visitLog(I);
4905    return 0;
4906  case Intrinsic::log2:
4907    visitLog2(I);
4908    return 0;
4909  case Intrinsic::log10:
4910    visitLog10(I);
4911    return 0;
4912  case Intrinsic::exp:
4913    visitExp(I);
4914    return 0;
4915  case Intrinsic::exp2:
4916    visitExp2(I);
4917    return 0;
4918  case Intrinsic::pow:
4919    visitPow(I);
4920    return 0;
4921  case Intrinsic::fma:
4922    setValue(&I, DAG.getNode(ISD::FMA, dl,
4923                             getValue(I.getArgOperand(0)).getValueType(),
4924                             getValue(I.getArgOperand(0)),
4925                             getValue(I.getArgOperand(1)),
4926                             getValue(I.getArgOperand(2))));
4927    return 0;
4928  case Intrinsic::convert_to_fp16:
4929    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4930                             MVT::i16, getValue(I.getArgOperand(0))));
4931    return 0;
4932  case Intrinsic::convert_from_fp16:
4933    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4934                             MVT::f32, getValue(I.getArgOperand(0))));
4935    return 0;
4936  case Intrinsic::pcmarker: {
4937    SDValue Tmp = getValue(I.getArgOperand(0));
4938    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4939    return 0;
4940  }
4941  case Intrinsic::readcyclecounter: {
4942    SDValue Op = getRoot();
4943    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4944                      DAG.getVTList(MVT::i64, MVT::Other),
4945                      &Op, 1);
4946    setValue(&I, Res);
4947    DAG.setRoot(Res.getValue(1));
4948    return 0;
4949  }
4950  case Intrinsic::bswap:
4951    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4952                             getValue(I.getArgOperand(0)).getValueType(),
4953                             getValue(I.getArgOperand(0))));
4954    return 0;
4955  case Intrinsic::cttz: {
4956    SDValue Arg = getValue(I.getArgOperand(0));
4957    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4958    EVT Ty = Arg.getValueType();
4959    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4960                             dl, Ty, Arg));
4961    return 0;
4962  }
4963  case Intrinsic::ctlz: {
4964    SDValue Arg = getValue(I.getArgOperand(0));
4965    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4966    EVT Ty = Arg.getValueType();
4967    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4968                             dl, Ty, Arg));
4969    return 0;
4970  }
4971  case Intrinsic::ctpop: {
4972    SDValue Arg = getValue(I.getArgOperand(0));
4973    EVT Ty = Arg.getValueType();
4974    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4975    return 0;
4976  }
4977  case Intrinsic::stacksave: {
4978    SDValue Op = getRoot();
4979    Res = DAG.getNode(ISD::STACKSAVE, dl,
4980                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4981    setValue(&I, Res);
4982    DAG.setRoot(Res.getValue(1));
4983    return 0;
4984  }
4985  case Intrinsic::stackrestore: {
4986    Res = getValue(I.getArgOperand(0));
4987    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4988    return 0;
4989  }
4990  case Intrinsic::stackprotector: {
4991    // Emit code into the DAG to store the stack guard onto the stack.
4992    MachineFunction &MF = DAG.getMachineFunction();
4993    MachineFrameInfo *MFI = MF.getFrameInfo();
4994    EVT PtrTy = TLI.getPointerTy();
4995
4996    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4997    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4998
4999    int FI = FuncInfo.StaticAllocaMap[Slot];
5000    MFI->setStackProtectorIndex(FI);
5001
5002    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5003
5004    // Store the stack protector onto the stack.
5005    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
5006                       MachinePointerInfo::getFixedStack(FI),
5007                       true, false, 0);
5008    setValue(&I, Res);
5009    DAG.setRoot(Res);
5010    return 0;
5011  }
5012  case Intrinsic::objectsize: {
5013    // If we don't know by now, we're never going to know.
5014    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5015
5016    assert(CI && "Non-constant type in __builtin_object_size?");
5017
5018    SDValue Arg = getValue(I.getCalledValue());
5019    EVT Ty = Arg.getValueType();
5020
5021    if (CI->isZero())
5022      Res = DAG.getConstant(-1ULL, Ty);
5023    else
5024      Res = DAG.getConstant(0, Ty);
5025
5026    setValue(&I, Res);
5027    return 0;
5028  }
5029  case Intrinsic::var_annotation:
5030    // Discard annotate attributes
5031    return 0;
5032
5033  case Intrinsic::init_trampoline: {
5034    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5035
5036    SDValue Ops[6];
5037    Ops[0] = getRoot();
5038    Ops[1] = getValue(I.getArgOperand(0));
5039    Ops[2] = getValue(I.getArgOperand(1));
5040    Ops[3] = getValue(I.getArgOperand(2));
5041    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5042    Ops[5] = DAG.getSrcValue(F);
5043
5044    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5045
5046    DAG.setRoot(Res);
5047    return 0;
5048  }
5049  case Intrinsic::adjust_trampoline: {
5050    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5051                             TLI.getPointerTy(),
5052                             getValue(I.getArgOperand(0))));
5053    return 0;
5054  }
5055  case Intrinsic::gcroot:
5056    if (GFI) {
5057      const Value *Alloca = I.getArgOperand(0);
5058      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5059
5060      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5061      GFI->addStackRoot(FI->getIndex(), TypeMap);
5062    }
5063    return 0;
5064  case Intrinsic::gcread:
5065  case Intrinsic::gcwrite:
5066    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5067    return 0;
5068  case Intrinsic::flt_rounds:
5069    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5070    return 0;
5071
5072  case Intrinsic::expect: {
5073    // Just replace __builtin_expect(exp, c) with EXP.
5074    setValue(&I, getValue(I.getArgOperand(0)));
5075    return 0;
5076  }
5077
5078  case Intrinsic::trap: {
5079    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5080    if (TrapFuncName.empty()) {
5081      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5082      return 0;
5083    }
5084    TargetLowering::ArgListTy Args;
5085    std::pair<SDValue, SDValue> Result =
5086      TLI.LowerCallTo(getRoot(), I.getType(),
5087                 false, false, false, false, 0, CallingConv::C,
5088                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
5089                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5090                 Args, DAG, getCurDebugLoc());
5091    DAG.setRoot(Result.second);
5092    return 0;
5093  }
5094  case Intrinsic::uadd_with_overflow:
5095    return implVisitAluOverflow(I, ISD::UADDO);
5096  case Intrinsic::sadd_with_overflow:
5097    return implVisitAluOverflow(I, ISD::SADDO);
5098  case Intrinsic::usub_with_overflow:
5099    return implVisitAluOverflow(I, ISD::USUBO);
5100  case Intrinsic::ssub_with_overflow:
5101    return implVisitAluOverflow(I, ISD::SSUBO);
5102  case Intrinsic::umul_with_overflow:
5103    return implVisitAluOverflow(I, ISD::UMULO);
5104  case Intrinsic::smul_with_overflow:
5105    return implVisitAluOverflow(I, ISD::SMULO);
5106
5107  case Intrinsic::prefetch: {
5108    SDValue Ops[5];
5109    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5110    Ops[0] = getRoot();
5111    Ops[1] = getValue(I.getArgOperand(0));
5112    Ops[2] = getValue(I.getArgOperand(1));
5113    Ops[3] = getValue(I.getArgOperand(2));
5114    Ops[4] = getValue(I.getArgOperand(3));
5115    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5116                                        DAG.getVTList(MVT::Other),
5117                                        &Ops[0], 5,
5118                                        EVT::getIntegerVT(*Context, 8),
5119                                        MachinePointerInfo(I.getArgOperand(0)),
5120                                        0, /* align */
5121                                        false, /* volatile */
5122                                        rw==0, /* read */
5123                                        rw==1)); /* write */
5124    return 0;
5125  }
5126
5127  case Intrinsic::invariant_start:
5128  case Intrinsic::lifetime_start:
5129    // Discard region information.
5130    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5131    return 0;
5132  case Intrinsic::invariant_end:
5133  case Intrinsic::lifetime_end:
5134    // Discard region information.
5135    return 0;
5136  }
5137}
5138
5139void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5140                                      bool isTailCall,
5141                                      MachineBasicBlock *LandingPad) {
5142  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5143  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5144  Type *RetTy = FTy->getReturnType();
5145  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5146  MCSymbol *BeginLabel = 0;
5147
5148  TargetLowering::ArgListTy Args;
5149  TargetLowering::ArgListEntry Entry;
5150  Args.reserve(CS.arg_size());
5151
5152  // Check whether the function can return without sret-demotion.
5153  SmallVector<ISD::OutputArg, 4> Outs;
5154  SmallVector<uint64_t, 4> Offsets;
5155  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5156                Outs, TLI, &Offsets);
5157
5158  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5159					   DAG.getMachineFunction(),
5160					   FTy->isVarArg(), Outs,
5161					   FTy->getContext());
5162
5163  SDValue DemoteStackSlot;
5164  int DemoteStackIdx = -100;
5165
5166  if (!CanLowerReturn) {
5167    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5168                      FTy->getReturnType());
5169    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5170                      FTy->getReturnType());
5171    MachineFunction &MF = DAG.getMachineFunction();
5172    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5173    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5174
5175    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5176    Entry.Node = DemoteStackSlot;
5177    Entry.Ty = StackSlotPtrType;
5178    Entry.isSExt = false;
5179    Entry.isZExt = false;
5180    Entry.isInReg = false;
5181    Entry.isSRet = true;
5182    Entry.isNest = false;
5183    Entry.isByVal = false;
5184    Entry.Alignment = Align;
5185    Args.push_back(Entry);
5186    RetTy = Type::getVoidTy(FTy->getContext());
5187  }
5188
5189  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5190       i != e; ++i) {
5191    const Value *V = *i;
5192
5193    // Skip empty types
5194    if (V->getType()->isEmptyTy())
5195      continue;
5196
5197    SDValue ArgNode = getValue(V);
5198    Entry.Node = ArgNode; Entry.Ty = V->getType();
5199
5200    unsigned attrInd = i - CS.arg_begin() + 1;
5201    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5202    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5203    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5204    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5205    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5206    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5207    Entry.Alignment = CS.getParamAlignment(attrInd);
5208    Args.push_back(Entry);
5209  }
5210
5211  if (LandingPad) {
5212    // Insert a label before the invoke call to mark the try range.  This can be
5213    // used to detect deletion of the invoke via the MachineModuleInfo.
5214    BeginLabel = MMI.getContext().CreateTempSymbol();
5215
5216    // For SjLj, keep track of which landing pads go with which invokes
5217    // so as to maintain the ordering of pads in the LSDA.
5218    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5219    if (CallSiteIndex) {
5220      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5221      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5222
5223      // Now that the call site is handled, stop tracking it.
5224      MMI.setCurrentCallSite(0);
5225    }
5226
5227    // Both PendingLoads and PendingExports must be flushed here;
5228    // this call might not return.
5229    (void)getRoot();
5230    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5231  }
5232
5233  // Check if target-independent constraints permit a tail call here.
5234  // Target-dependent constraints are checked within TLI.LowerCallTo.
5235  if (isTailCall &&
5236      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5237    isTailCall = false;
5238
5239  // If there's a possibility that fast-isel has already selected some amount
5240  // of the current basic block, don't emit a tail call.
5241  if (isTailCall && TM.Options.EnableFastISel)
5242    isTailCall = false;
5243
5244  std::pair<SDValue,SDValue> Result =
5245    TLI.LowerCallTo(getRoot(), RetTy,
5246                    CS.paramHasAttr(0, Attribute::SExt),
5247                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5248                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5249                    CS.getCallingConv(),
5250                    isTailCall,
5251                    !CS.getInstruction()->use_empty(),
5252                    Callee, Args, DAG, getCurDebugLoc());
5253  assert((isTailCall || Result.second.getNode()) &&
5254         "Non-null chain expected with non-tail call!");
5255  assert((Result.second.getNode() || !Result.first.getNode()) &&
5256         "Null value expected with tail call!");
5257  if (Result.first.getNode()) {
5258    setValue(CS.getInstruction(), Result.first);
5259  } else if (!CanLowerReturn && Result.second.getNode()) {
5260    // The instruction result is the result of loading from the
5261    // hidden sret parameter.
5262    SmallVector<EVT, 1> PVTs;
5263    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5264
5265    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5266    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5267    EVT PtrVT = PVTs[0];
5268    unsigned NumValues = Outs.size();
5269    SmallVector<SDValue, 4> Values(NumValues);
5270    SmallVector<SDValue, 4> Chains(NumValues);
5271
5272    for (unsigned i = 0; i < NumValues; ++i) {
5273      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5274                                DemoteStackSlot,
5275                                DAG.getConstant(Offsets[i], PtrVT));
5276      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5277                              Add,
5278                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5279                              false, false, false, 1);
5280      Values[i] = L;
5281      Chains[i] = L.getValue(1);
5282    }
5283
5284    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5285                                MVT::Other, &Chains[0], NumValues);
5286    PendingLoads.push_back(Chain);
5287
5288    // Collect the legal value parts into potentially illegal values
5289    // that correspond to the original function's return values.
5290    SmallVector<EVT, 4> RetTys;
5291    RetTy = FTy->getReturnType();
5292    ComputeValueVTs(TLI, RetTy, RetTys);
5293    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5294    SmallVector<SDValue, 4> ReturnValues;
5295    unsigned CurReg = 0;
5296    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5297      EVT VT = RetTys[I];
5298      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5299      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5300
5301      SDValue ReturnValue =
5302        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5303                         RegisterVT, VT, AssertOp);
5304      ReturnValues.push_back(ReturnValue);
5305      CurReg += NumRegs;
5306    }
5307
5308    setValue(CS.getInstruction(),
5309             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5310                         DAG.getVTList(&RetTys[0], RetTys.size()),
5311                         &ReturnValues[0], ReturnValues.size()));
5312  }
5313
5314  // Assign order to nodes here. If the call does not produce a result, it won't
5315  // be mapped to a SDNode and visit() will not assign it an order number.
5316  if (!Result.second.getNode()) {
5317    // As a special case, a null chain means that a tail call has been emitted and
5318    // the DAG root is already updated.
5319    HasTailCall = true;
5320    ++SDNodeOrder;
5321    AssignOrderingToNode(DAG.getRoot().getNode());
5322  } else {
5323    DAG.setRoot(Result.second);
5324    ++SDNodeOrder;
5325    AssignOrderingToNode(Result.second.getNode());
5326  }
5327
5328  if (LandingPad) {
5329    // Insert a label at the end of the invoke call to mark the try range.  This
5330    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5331    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5332    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5333
5334    // Inform MachineModuleInfo of range.
5335    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5336  }
5337}
5338
5339/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5340/// value is equal or not-equal to zero.
5341static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5342  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5343       UI != E; ++UI) {
5344    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5345      if (IC->isEquality())
5346        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5347          if (C->isNullValue())
5348            continue;
5349    // Unknown instruction.
5350    return false;
5351  }
5352  return true;
5353}
5354
5355static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5356                             Type *LoadTy,
5357                             SelectionDAGBuilder &Builder) {
5358
5359  // Check to see if this load can be trivially constant folded, e.g. if the
5360  // input is from a string literal.
5361  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5362    // Cast pointer to the type we really want to load.
5363    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5364                                         PointerType::getUnqual(LoadTy));
5365
5366    if (const Constant *LoadCst =
5367          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5368                                       Builder.TD))
5369      return Builder.getValue(LoadCst);
5370  }
5371
5372  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5373  // still constant memory, the input chain can be the entry node.
5374  SDValue Root;
5375  bool ConstantMemory = false;
5376
5377  // Do not serialize (non-volatile) loads of constant memory with anything.
5378  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5379    Root = Builder.DAG.getEntryNode();
5380    ConstantMemory = true;
5381  } else {
5382    // Do not serialize non-volatile loads against each other.
5383    Root = Builder.DAG.getRoot();
5384  }
5385
5386  SDValue Ptr = Builder.getValue(PtrVal);
5387  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5388                                        Ptr, MachinePointerInfo(PtrVal),
5389                                        false /*volatile*/,
5390                                        false /*nontemporal*/,
5391                                        false /*isinvariant*/, 1 /* align=1 */);
5392
5393  if (!ConstantMemory)
5394    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5395  return LoadVal;
5396}
5397
5398
5399/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5400/// If so, return true and lower it, otherwise return false and it will be
5401/// lowered like a normal call.
5402bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5403  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5404  if (I.getNumArgOperands() != 3)
5405    return false;
5406
5407  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5408  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5409      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5410      !I.getType()->isIntegerTy())
5411    return false;
5412
5413  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5414
5415  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5416  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5417  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5418    bool ActuallyDoIt = true;
5419    MVT LoadVT;
5420    Type *LoadTy;
5421    switch (Size->getZExtValue()) {
5422    default:
5423      LoadVT = MVT::Other;
5424      LoadTy = 0;
5425      ActuallyDoIt = false;
5426      break;
5427    case 2:
5428      LoadVT = MVT::i16;
5429      LoadTy = Type::getInt16Ty(Size->getContext());
5430      break;
5431    case 4:
5432      LoadVT = MVT::i32;
5433      LoadTy = Type::getInt32Ty(Size->getContext());
5434      break;
5435    case 8:
5436      LoadVT = MVT::i64;
5437      LoadTy = Type::getInt64Ty(Size->getContext());
5438      break;
5439        /*
5440    case 16:
5441      LoadVT = MVT::v4i32;
5442      LoadTy = Type::getInt32Ty(Size->getContext());
5443      LoadTy = VectorType::get(LoadTy, 4);
5444      break;
5445         */
5446    }
5447
5448    // This turns into unaligned loads.  We only do this if the target natively
5449    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5450    // we'll only produce a small number of byte loads.
5451
5452    // Require that we can find a legal MVT, and only do this if the target
5453    // supports unaligned loads of that type.  Expanding into byte loads would
5454    // bloat the code.
5455    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5456      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5457      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5458      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5459        ActuallyDoIt = false;
5460    }
5461
5462    if (ActuallyDoIt) {
5463      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5464      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5465
5466      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5467                                 ISD::SETNE);
5468      EVT CallVT = TLI.getValueType(I.getType(), true);
5469      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5470      return true;
5471    }
5472  }
5473
5474
5475  return false;
5476}
5477
5478
5479void SelectionDAGBuilder::visitCall(const CallInst &I) {
5480  // Handle inline assembly differently.
5481  if (isa<InlineAsm>(I.getCalledValue())) {
5482    visitInlineAsm(&I);
5483    return;
5484  }
5485
5486  // See if any floating point values are being passed to this function. This is
5487  // used to emit an undefined reference to fltused on Windows.
5488  FunctionType *FT =
5489    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5490  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5491  if (FT->isVarArg() &&
5492      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5493    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5494      Type* T = I.getArgOperand(i)->getType();
5495      for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5496           i != e; ++i) {
5497        if (!i->isFloatingPointTy()) continue;
5498        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5499        break;
5500      }
5501    }
5502  }
5503
5504  const char *RenameFn = 0;
5505  if (Function *F = I.getCalledFunction()) {
5506    if (F->isDeclaration()) {
5507      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5508        if (unsigned IID = II->getIntrinsicID(F)) {
5509          RenameFn = visitIntrinsicCall(I, IID);
5510          if (!RenameFn)
5511            return;
5512        }
5513      }
5514      if (unsigned IID = F->getIntrinsicID()) {
5515        RenameFn = visitIntrinsicCall(I, IID);
5516        if (!RenameFn)
5517          return;
5518      }
5519    }
5520
5521    // Check for well-known libc/libm calls.  If the function is internal, it
5522    // can't be a library call.
5523    if (!F->hasLocalLinkage() && F->hasName()) {
5524      StringRef Name = F->getName();
5525      if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") ||
5526          (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") ||
5527          (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) {
5528        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5529            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5530            I.getType() == I.getArgOperand(0)->getType() &&
5531            I.getType() == I.getArgOperand(1)->getType()) {
5532          SDValue LHS = getValue(I.getArgOperand(0));
5533          SDValue RHS = getValue(I.getArgOperand(1));
5534          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5535                                   LHS.getValueType(), LHS, RHS));
5536          return;
5537        }
5538      } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") ||
5539                 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") ||
5540                 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) {
5541        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5542            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5543            I.getType() == I.getArgOperand(0)->getType()) {
5544          SDValue Tmp = getValue(I.getArgOperand(0));
5545          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5546                                   Tmp.getValueType(), Tmp));
5547          return;
5548        }
5549      } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") ||
5550                 (LibInfo->has(LibFunc::sinf) && Name == "sinf") ||
5551                 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) {
5552        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5553            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5554            I.getType() == I.getArgOperand(0)->getType() &&
5555            I.onlyReadsMemory()) {
5556          SDValue Tmp = getValue(I.getArgOperand(0));
5557          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5558                                   Tmp.getValueType(), Tmp));
5559          return;
5560        }
5561      } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") ||
5562                 (LibInfo->has(LibFunc::cosf) && Name == "cosf") ||
5563                 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) {
5564        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5565            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5566            I.getType() == I.getArgOperand(0)->getType() &&
5567            I.onlyReadsMemory()) {
5568          SDValue Tmp = getValue(I.getArgOperand(0));
5569          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5570                                   Tmp.getValueType(), Tmp));
5571          return;
5572        }
5573      } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") ||
5574                 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") ||
5575                 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) {
5576        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5577            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5578            I.getType() == I.getArgOperand(0)->getType() &&
5579            I.onlyReadsMemory()) {
5580          SDValue Tmp = getValue(I.getArgOperand(0));
5581          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5582                                   Tmp.getValueType(), Tmp));
5583          return;
5584        }
5585      } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") ||
5586                 (LibInfo->has(LibFunc::floorf) && Name == "floorf") ||
5587                 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) {
5588        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5589            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5590            I.getType() == I.getArgOperand(0)->getType()) {
5591          SDValue Tmp = getValue(I.getArgOperand(0));
5592          setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(),
5593                                   Tmp.getValueType(), Tmp));
5594          return;
5595        }
5596      } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") ||
5597                 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") ||
5598                 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) {
5599        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5600            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5601            I.getType() == I.getArgOperand(0)->getType()) {
5602          SDValue Tmp = getValue(I.getArgOperand(0));
5603          setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(),
5604                                   Tmp.getValueType(), Tmp));
5605          return;
5606        }
5607      } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") ||
5608                 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") ||
5609                 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) {
5610        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5611            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5612            I.getType() == I.getArgOperand(0)->getType()) {
5613          SDValue Tmp = getValue(I.getArgOperand(0));
5614          setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(),
5615                                   Tmp.getValueType(), Tmp));
5616          return;
5617        }
5618      } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") ||
5619                 (LibInfo->has(LibFunc::rintf) && Name == "rintf") ||
5620                 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) {
5621        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5622            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5623            I.getType() == I.getArgOperand(0)->getType()) {
5624          SDValue Tmp = getValue(I.getArgOperand(0));
5625          setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(),
5626                                   Tmp.getValueType(), Tmp));
5627          return;
5628        }
5629      } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") ||
5630                 (LibInfo->has(LibFunc::truncf) && Name == "truncf") ||
5631                 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) {
5632        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5633            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5634            I.getType() == I.getArgOperand(0)->getType()) {
5635          SDValue Tmp = getValue(I.getArgOperand(0));
5636          setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(),
5637                                   Tmp.getValueType(), Tmp));
5638          return;
5639        }
5640      } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") ||
5641                 (LibInfo->has(LibFunc::log2f) && Name == "log2f") ||
5642                 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) {
5643        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5644            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5645            I.getType() == I.getArgOperand(0)->getType()) {
5646          SDValue Tmp = getValue(I.getArgOperand(0));
5647          setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(),
5648                                   Tmp.getValueType(), Tmp));
5649          return;
5650        }
5651      } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") ||
5652                 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") ||
5653                 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) {
5654        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5655            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5656            I.getType() == I.getArgOperand(0)->getType()) {
5657          SDValue Tmp = getValue(I.getArgOperand(0));
5658          setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(),
5659                                   Tmp.getValueType(), Tmp));
5660          return;
5661        }
5662      } else if (Name == "memcmp") {
5663        if (visitMemCmpCall(I))
5664          return;
5665      }
5666    }
5667  }
5668
5669  SDValue Callee;
5670  if (!RenameFn)
5671    Callee = getValue(I.getCalledValue());
5672  else
5673    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5674
5675  // Check if we can potentially perform a tail call. More detailed checking is
5676  // be done within LowerCallTo, after more information about the call is known.
5677  LowerCallTo(&I, Callee, I.isTailCall());
5678}
5679
5680namespace {
5681
5682/// AsmOperandInfo - This contains information for each constraint that we are
5683/// lowering.
5684class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5685public:
5686  /// CallOperand - If this is the result output operand or a clobber
5687  /// this is null, otherwise it is the incoming operand to the CallInst.
5688  /// This gets modified as the asm is processed.
5689  SDValue CallOperand;
5690
5691  /// AssignedRegs - If this is a register or register class operand, this
5692  /// contains the set of register corresponding to the operand.
5693  RegsForValue AssignedRegs;
5694
5695  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5696    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5697  }
5698
5699  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5700  /// busy in OutputRegs/InputRegs.
5701  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5702                         std::set<unsigned> &OutputRegs,
5703                         std::set<unsigned> &InputRegs,
5704                         const TargetRegisterInfo &TRI) const {
5705    if (isOutReg) {
5706      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5707        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5708    }
5709    if (isInReg) {
5710      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5711        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5712    }
5713  }
5714
5715  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5716  /// corresponds to.  If there is no Value* for this operand, it returns
5717  /// MVT::Other.
5718  EVT getCallOperandValEVT(LLVMContext &Context,
5719                           const TargetLowering &TLI,
5720                           const TargetData *TD) const {
5721    if (CallOperandVal == 0) return MVT::Other;
5722
5723    if (isa<BasicBlock>(CallOperandVal))
5724      return TLI.getPointerTy();
5725
5726    llvm::Type *OpTy = CallOperandVal->getType();
5727
5728    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5729    // If this is an indirect operand, the operand is a pointer to the
5730    // accessed type.
5731    if (isIndirect) {
5732      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5733      if (!PtrTy)
5734        report_fatal_error("Indirect operand for inline asm not a pointer!");
5735      OpTy = PtrTy->getElementType();
5736    }
5737
5738    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5739    if (StructType *STy = dyn_cast<StructType>(OpTy))
5740      if (STy->getNumElements() == 1)
5741        OpTy = STy->getElementType(0);
5742
5743    // If OpTy is not a single value, it may be a struct/union that we
5744    // can tile with integers.
5745    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5746      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5747      switch (BitSize) {
5748      default: break;
5749      case 1:
5750      case 8:
5751      case 16:
5752      case 32:
5753      case 64:
5754      case 128:
5755        OpTy = IntegerType::get(Context, BitSize);
5756        break;
5757      }
5758    }
5759
5760    return TLI.getValueType(OpTy, true);
5761  }
5762
5763private:
5764  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5765  /// specified set.
5766  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5767                                const TargetRegisterInfo &TRI) {
5768    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5769    Regs.insert(Reg);
5770    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5771      for (; *Aliases; ++Aliases)
5772        Regs.insert(*Aliases);
5773  }
5774};
5775
5776typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5777
5778} // end anonymous namespace
5779
5780/// GetRegistersForValue - Assign registers (virtual or physical) for the
5781/// specified operand.  We prefer to assign virtual registers, to allow the
5782/// register allocator to handle the assignment process.  However, if the asm
5783/// uses features that we can't model on machineinstrs, we have SDISel do the
5784/// allocation.  This produces generally horrible, but correct, code.
5785///
5786///   OpInfo describes the operand.
5787///   Input and OutputRegs are the set of already allocated physical registers.
5788///
5789static void GetRegistersForValue(SelectionDAG &DAG,
5790                                 const TargetLowering &TLI,
5791                                 DebugLoc DL,
5792                                 SDISelAsmOperandInfo &OpInfo,
5793                                 std::set<unsigned> &OutputRegs,
5794                                 std::set<unsigned> &InputRegs) {
5795  LLVMContext &Context = *DAG.getContext();
5796
5797  // Compute whether this value requires an input register, an output register,
5798  // or both.
5799  bool isOutReg = false;
5800  bool isInReg = false;
5801  switch (OpInfo.Type) {
5802  case InlineAsm::isOutput:
5803    isOutReg = true;
5804
5805    // If there is an input constraint that matches this, we need to reserve
5806    // the input register so no other inputs allocate to it.
5807    isInReg = OpInfo.hasMatchingInput();
5808    break;
5809  case InlineAsm::isInput:
5810    isInReg = true;
5811    isOutReg = false;
5812    break;
5813  case InlineAsm::isClobber:
5814    isOutReg = true;
5815    isInReg = true;
5816    break;
5817  }
5818
5819
5820  MachineFunction &MF = DAG.getMachineFunction();
5821  SmallVector<unsigned, 4> Regs;
5822
5823  // If this is a constraint for a single physreg, or a constraint for a
5824  // register class, find it.
5825  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5826    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5827                                     OpInfo.ConstraintVT);
5828
5829  unsigned NumRegs = 1;
5830  if (OpInfo.ConstraintVT != MVT::Other) {
5831    // If this is a FP input in an integer register (or visa versa) insert a bit
5832    // cast of the input value.  More generally, handle any case where the input
5833    // value disagrees with the register class we plan to stick this in.
5834    if (OpInfo.Type == InlineAsm::isInput &&
5835        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5836      // Try to convert to the first EVT that the reg class contains.  If the
5837      // types are identical size, use a bitcast to convert (e.g. two differing
5838      // vector types).
5839      EVT RegVT = *PhysReg.second->vt_begin();
5840      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5841        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5842                                         RegVT, OpInfo.CallOperand);
5843        OpInfo.ConstraintVT = RegVT;
5844      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5845        // If the input is a FP value and we want it in FP registers, do a
5846        // bitcast to the corresponding integer type.  This turns an f64 value
5847        // into i64, which can be passed with two i32 values on a 32-bit
5848        // machine.
5849        RegVT = EVT::getIntegerVT(Context,
5850                                  OpInfo.ConstraintVT.getSizeInBits());
5851        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5852                                         RegVT, OpInfo.CallOperand);
5853        OpInfo.ConstraintVT = RegVT;
5854      }
5855    }
5856
5857    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5858  }
5859
5860  EVT RegVT;
5861  EVT ValueVT = OpInfo.ConstraintVT;
5862
5863  // If this is a constraint for a specific physical register, like {r17},
5864  // assign it now.
5865  if (unsigned AssignedReg = PhysReg.first) {
5866    const TargetRegisterClass *RC = PhysReg.second;
5867    if (OpInfo.ConstraintVT == MVT::Other)
5868      ValueVT = *RC->vt_begin();
5869
5870    // Get the actual register value type.  This is important, because the user
5871    // may have asked for (e.g.) the AX register in i32 type.  We need to
5872    // remember that AX is actually i16 to get the right extension.
5873    RegVT = *RC->vt_begin();
5874
5875    // This is a explicit reference to a physical register.
5876    Regs.push_back(AssignedReg);
5877
5878    // If this is an expanded reference, add the rest of the regs to Regs.
5879    if (NumRegs != 1) {
5880      TargetRegisterClass::iterator I = RC->begin();
5881      for (; *I != AssignedReg; ++I)
5882        assert(I != RC->end() && "Didn't find reg!");
5883
5884      // Already added the first reg.
5885      --NumRegs; ++I;
5886      for (; NumRegs; --NumRegs, ++I) {
5887        assert(I != RC->end() && "Ran out of registers to allocate!");
5888        Regs.push_back(*I);
5889      }
5890    }
5891
5892    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5893    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5894    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5895    return;
5896  }
5897
5898  // Otherwise, if this was a reference to an LLVM register class, create vregs
5899  // for this reference.
5900  if (const TargetRegisterClass *RC = PhysReg.second) {
5901    RegVT = *RC->vt_begin();
5902    if (OpInfo.ConstraintVT == MVT::Other)
5903      ValueVT = RegVT;
5904
5905    // Create the appropriate number of virtual registers.
5906    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5907    for (; NumRegs; --NumRegs)
5908      Regs.push_back(RegInfo.createVirtualRegister(RC));
5909
5910    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5911    return;
5912  }
5913
5914  // Otherwise, we couldn't allocate enough registers for this.
5915}
5916
5917/// visitInlineAsm - Handle a call to an InlineAsm object.
5918///
5919void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5920  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5921
5922  /// ConstraintOperands - Information about all of the constraints.
5923  SDISelAsmOperandInfoVector ConstraintOperands;
5924
5925  std::set<unsigned> OutputRegs, InputRegs;
5926
5927  TargetLowering::AsmOperandInfoVector
5928    TargetConstraints = TLI.ParseConstraints(CS);
5929
5930  bool hasMemory = false;
5931
5932  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5933  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5934  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5935    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5936    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5937
5938    EVT OpVT = MVT::Other;
5939
5940    // Compute the value type for each operand.
5941    switch (OpInfo.Type) {
5942    case InlineAsm::isOutput:
5943      // Indirect outputs just consume an argument.
5944      if (OpInfo.isIndirect) {
5945        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5946        break;
5947      }
5948
5949      // The return value of the call is this value.  As such, there is no
5950      // corresponding argument.
5951      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5952      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5953        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5954      } else {
5955        assert(ResNo == 0 && "Asm only has one result!");
5956        OpVT = TLI.getValueType(CS.getType());
5957      }
5958      ++ResNo;
5959      break;
5960    case InlineAsm::isInput:
5961      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5962      break;
5963    case InlineAsm::isClobber:
5964      // Nothing to do.
5965      break;
5966    }
5967
5968    // If this is an input or an indirect output, process the call argument.
5969    // BasicBlocks are labels, currently appearing only in asm's.
5970    if (OpInfo.CallOperandVal) {
5971      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5972        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5973      } else {
5974        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5975      }
5976
5977      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5978    }
5979
5980    OpInfo.ConstraintVT = OpVT;
5981
5982    // Indirect operand accesses access memory.
5983    if (OpInfo.isIndirect)
5984      hasMemory = true;
5985    else {
5986      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5987        TargetLowering::ConstraintType
5988          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5989        if (CType == TargetLowering::C_Memory) {
5990          hasMemory = true;
5991          break;
5992        }
5993      }
5994    }
5995  }
5996
5997  SDValue Chain, Flag;
5998
5999  // We won't need to flush pending loads if this asm doesn't touch
6000  // memory and is nonvolatile.
6001  if (hasMemory || IA->hasSideEffects())
6002    Chain = getRoot();
6003  else
6004    Chain = DAG.getRoot();
6005
6006  // Second pass over the constraints: compute which constraint option to use
6007  // and assign registers to constraints that want a specific physreg.
6008  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6009    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6010
6011    // If this is an output operand with a matching input operand, look up the
6012    // matching input. If their types mismatch, e.g. one is an integer, the
6013    // other is floating point, or their sizes are different, flag it as an
6014    // error.
6015    if (OpInfo.hasMatchingInput()) {
6016      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6017
6018      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6019	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6020	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6021                                           OpInfo.ConstraintVT);
6022	std::pair<unsigned, const TargetRegisterClass*> InputRC =
6023	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
6024                                           Input.ConstraintVT);
6025        if ((OpInfo.ConstraintVT.isInteger() !=
6026             Input.ConstraintVT.isInteger()) ||
6027            (MatchRC.second != InputRC.second)) {
6028          report_fatal_error("Unsupported asm: input constraint"
6029                             " with a matching output constraint of"
6030                             " incompatible type!");
6031        }
6032        Input.ConstraintVT = OpInfo.ConstraintVT;
6033      }
6034    }
6035
6036    // Compute the constraint code and ConstraintType to use.
6037    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6038
6039    // If this is a memory input, and if the operand is not indirect, do what we
6040    // need to to provide an address for the memory input.
6041    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6042        !OpInfo.isIndirect) {
6043      assert((OpInfo.isMultipleAlternative ||
6044              (OpInfo.Type == InlineAsm::isInput)) &&
6045             "Can only indirectify direct input operands!");
6046
6047      // Memory operands really want the address of the value.  If we don't have
6048      // an indirect input, put it in the constpool if we can, otherwise spill
6049      // it to a stack slot.
6050      // TODO: This isn't quite right. We need to handle these according to
6051      // the addressing mode that the constraint wants. Also, this may take
6052      // an additional register for the computation and we don't want that
6053      // either.
6054
6055      // If the operand is a float, integer, or vector constant, spill to a
6056      // constant pool entry to get its address.
6057      const Value *OpVal = OpInfo.CallOperandVal;
6058      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6059          isa<ConstantVector>(OpVal)) {
6060        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6061                                                 TLI.getPointerTy());
6062      } else {
6063        // Otherwise, create a stack slot and emit a store to it before the
6064        // asm.
6065        Type *Ty = OpVal->getType();
6066        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
6067        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
6068        MachineFunction &MF = DAG.getMachineFunction();
6069        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6070        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6071        Chain = DAG.getStore(Chain, getCurDebugLoc(),
6072                             OpInfo.CallOperand, StackSlot,
6073                             MachinePointerInfo::getFixedStack(SSFI),
6074                             false, false, 0);
6075        OpInfo.CallOperand = StackSlot;
6076      }
6077
6078      // There is no longer a Value* corresponding to this operand.
6079      OpInfo.CallOperandVal = 0;
6080
6081      // It is now an indirect operand.
6082      OpInfo.isIndirect = true;
6083    }
6084
6085    // If this constraint is for a specific register, allocate it before
6086    // anything else.
6087    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6088      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6089                           InputRegs);
6090  }
6091
6092  // Second pass - Loop over all of the operands, assigning virtual or physregs
6093  // to register class operands.
6094  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6095    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6096
6097    // C_Register operands have already been allocated, Other/Memory don't need
6098    // to be.
6099    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6100      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6101                           InputRegs);
6102  }
6103
6104  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6105  std::vector<SDValue> AsmNodeOperands;
6106  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6107  AsmNodeOperands.push_back(
6108          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6109                                      TLI.getPointerTy()));
6110
6111  // If we have a !srcloc metadata node associated with it, we want to attach
6112  // this to the ultimately generated inline asm machineinstr.  To do this, we
6113  // pass in the third operand as this (potentially null) inline asm MDNode.
6114  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6115  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6116
6117  // Remember the HasSideEffect and AlignStack bits as operand 3.
6118  unsigned ExtraInfo = 0;
6119  if (IA->hasSideEffects())
6120    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6121  if (IA->isAlignStack())
6122    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6123  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6124                                                  TLI.getPointerTy()));
6125
6126  // Loop over all of the inputs, copying the operand values into the
6127  // appropriate registers and processing the output regs.
6128  RegsForValue RetValRegs;
6129
6130  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6131  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6132
6133  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6134    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6135
6136    switch (OpInfo.Type) {
6137    case InlineAsm::isOutput: {
6138      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6139          OpInfo.ConstraintType != TargetLowering::C_Register) {
6140        // Memory output, or 'other' output (e.g. 'X' constraint).
6141        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6142
6143        // Add information to the INLINEASM node to know about this output.
6144        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6145        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6146                                                        TLI.getPointerTy()));
6147        AsmNodeOperands.push_back(OpInfo.CallOperand);
6148        break;
6149      }
6150
6151      // Otherwise, this is a register or register class output.
6152
6153      // Copy the output from the appropriate register.  Find a register that
6154      // we can use.
6155      if (OpInfo.AssignedRegs.Regs.empty()) {
6156        LLVMContext &Ctx = *DAG.getContext();
6157        Ctx.emitError(CS.getInstruction(),
6158                      "couldn't allocate output register for constraint '" +
6159                           Twine(OpInfo.ConstraintCode) + "'");
6160        break;
6161      }
6162
6163      // If this is an indirect operand, store through the pointer after the
6164      // asm.
6165      if (OpInfo.isIndirect) {
6166        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6167                                                      OpInfo.CallOperandVal));
6168      } else {
6169        // This is the result value of the call.
6170        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6171        // Concatenate this output onto the outputs list.
6172        RetValRegs.append(OpInfo.AssignedRegs);
6173      }
6174
6175      // Add information to the INLINEASM node to know that this register is
6176      // set.
6177      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6178                                           InlineAsm::Kind_RegDefEarlyClobber :
6179                                               InlineAsm::Kind_RegDef,
6180                                               false,
6181                                               0,
6182                                               DAG,
6183                                               AsmNodeOperands);
6184      break;
6185    }
6186    case InlineAsm::isInput: {
6187      SDValue InOperandVal = OpInfo.CallOperand;
6188
6189      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6190        // If this is required to match an output register we have already set,
6191        // just use its register.
6192        unsigned OperandNo = OpInfo.getMatchedOperand();
6193
6194        // Scan until we find the definition we already emitted of this operand.
6195        // When we find it, create a RegsForValue operand.
6196        unsigned CurOp = InlineAsm::Op_FirstOperand;
6197        for (; OperandNo; --OperandNo) {
6198          // Advance to the next operand.
6199          unsigned OpFlag =
6200            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6201          assert((InlineAsm::isRegDefKind(OpFlag) ||
6202                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6203                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6204          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6205        }
6206
6207        unsigned OpFlag =
6208          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6209        if (InlineAsm::isRegDefKind(OpFlag) ||
6210            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6211          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6212          if (OpInfo.isIndirect) {
6213            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6214            LLVMContext &Ctx = *DAG.getContext();
6215            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6216                          " don't know how to handle tied "
6217                          "indirect register inputs");
6218          }
6219
6220          RegsForValue MatchedRegs;
6221          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6222          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6223          MatchedRegs.RegVTs.push_back(RegVT);
6224          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6225          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6226               i != e; ++i)
6227            MatchedRegs.Regs.push_back
6228              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6229
6230          // Use the produced MatchedRegs object to
6231          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6232                                    Chain, &Flag);
6233          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6234                                           true, OpInfo.getMatchedOperand(),
6235                                           DAG, AsmNodeOperands);
6236          break;
6237        }
6238
6239        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6240        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6241               "Unexpected number of operands");
6242        // Add information to the INLINEASM node to know about this input.
6243        // See InlineAsm.h isUseOperandTiedToDef.
6244        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6245                                                    OpInfo.getMatchedOperand());
6246        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6247                                                        TLI.getPointerTy()));
6248        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6249        break;
6250      }
6251
6252      // Treat indirect 'X' constraint as memory.
6253      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6254          OpInfo.isIndirect)
6255        OpInfo.ConstraintType = TargetLowering::C_Memory;
6256
6257      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6258        std::vector<SDValue> Ops;
6259        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6260                                         Ops, DAG);
6261        if (Ops.empty()) {
6262          LLVMContext &Ctx = *DAG.getContext();
6263          Ctx.emitError(CS.getInstruction(),
6264                        "invalid operand for inline asm constraint '" +
6265                        Twine(OpInfo.ConstraintCode) + "'");
6266          break;
6267        }
6268
6269        // Add information to the INLINEASM node to know about this input.
6270        unsigned ResOpType =
6271          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6272        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6273                                                        TLI.getPointerTy()));
6274        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6275        break;
6276      }
6277
6278      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6279        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6280        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6281               "Memory operands expect pointer values");
6282
6283        // Add information to the INLINEASM node to know about this input.
6284        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6285        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6286                                                        TLI.getPointerTy()));
6287        AsmNodeOperands.push_back(InOperandVal);
6288        break;
6289      }
6290
6291      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6292              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6293             "Unknown constraint type!");
6294      assert(!OpInfo.isIndirect &&
6295             "Don't know how to handle indirect register inputs yet!");
6296
6297      // Copy the input into the appropriate registers.
6298      if (OpInfo.AssignedRegs.Regs.empty()) {
6299        LLVMContext &Ctx = *DAG.getContext();
6300        Ctx.emitError(CS.getInstruction(),
6301                      "couldn't allocate input reg for constraint '" +
6302                           Twine(OpInfo.ConstraintCode) + "'");
6303        break;
6304      }
6305
6306      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6307                                        Chain, &Flag);
6308
6309      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6310                                               DAG, AsmNodeOperands);
6311      break;
6312    }
6313    case InlineAsm::isClobber: {
6314      // Add the clobbered value to the operand list, so that the register
6315      // allocator is aware that the physreg got clobbered.
6316      if (!OpInfo.AssignedRegs.Regs.empty())
6317        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6318                                                 false, 0, DAG,
6319                                                 AsmNodeOperands);
6320      break;
6321    }
6322    }
6323  }
6324
6325  // Finish up input operands.  Set the input chain and add the flag last.
6326  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6327  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6328
6329  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6330                      DAG.getVTList(MVT::Other, MVT::Glue),
6331                      &AsmNodeOperands[0], AsmNodeOperands.size());
6332  Flag = Chain.getValue(1);
6333
6334  // If this asm returns a register value, copy the result from that register
6335  // and set it as the value of the call.
6336  if (!RetValRegs.Regs.empty()) {
6337    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6338                                             Chain, &Flag);
6339
6340    // FIXME: Why don't we do this for inline asms with MRVs?
6341    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6342      EVT ResultType = TLI.getValueType(CS.getType());
6343
6344      // If any of the results of the inline asm is a vector, it may have the
6345      // wrong width/num elts.  This can happen for register classes that can
6346      // contain multiple different value types.  The preg or vreg allocated may
6347      // not have the same VT as was expected.  Convert it to the right type
6348      // with bit_convert.
6349      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6350        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6351                          ResultType, Val);
6352
6353      } else if (ResultType != Val.getValueType() &&
6354                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6355        // If a result value was tied to an input value, the computed result may
6356        // have a wider width than the expected result.  Extract the relevant
6357        // portion.
6358        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6359      }
6360
6361      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6362    }
6363
6364    setValue(CS.getInstruction(), Val);
6365    // Don't need to use this as a chain in this case.
6366    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6367      return;
6368  }
6369
6370  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6371
6372  // Process indirect outputs, first output all of the flagged copies out of
6373  // physregs.
6374  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6375    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6376    const Value *Ptr = IndirectStoresToEmit[i].second;
6377    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6378                                             Chain, &Flag);
6379    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6380  }
6381
6382  // Emit the non-flagged stores from the physregs.
6383  SmallVector<SDValue, 8> OutChains;
6384  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6385    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6386                               StoresToEmit[i].first,
6387                               getValue(StoresToEmit[i].second),
6388                               MachinePointerInfo(StoresToEmit[i].second),
6389                               false, false, 0);
6390    OutChains.push_back(Val);
6391  }
6392
6393  if (!OutChains.empty())
6394    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6395                        &OutChains[0], OutChains.size());
6396
6397  DAG.setRoot(Chain);
6398}
6399
6400void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6401  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6402                          MVT::Other, getRoot(),
6403                          getValue(I.getArgOperand(0)),
6404                          DAG.getSrcValue(I.getArgOperand(0))));
6405}
6406
6407void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6408  const TargetData &TD = *TLI.getTargetData();
6409  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6410                           getRoot(), getValue(I.getOperand(0)),
6411                           DAG.getSrcValue(I.getOperand(0)),
6412                           TD.getABITypeAlignment(I.getType()));
6413  setValue(&I, V);
6414  DAG.setRoot(V.getValue(1));
6415}
6416
6417void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6418  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6419                          MVT::Other, getRoot(),
6420                          getValue(I.getArgOperand(0)),
6421                          DAG.getSrcValue(I.getArgOperand(0))));
6422}
6423
6424void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6425  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6426                          MVT::Other, getRoot(),
6427                          getValue(I.getArgOperand(0)),
6428                          getValue(I.getArgOperand(1)),
6429                          DAG.getSrcValue(I.getArgOperand(0)),
6430                          DAG.getSrcValue(I.getArgOperand(1))));
6431}
6432
6433/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6434/// implementation, which just calls LowerCall.
6435/// FIXME: When all targets are
6436/// migrated to using LowerCall, this hook should be integrated into SDISel.
6437std::pair<SDValue, SDValue>
6438TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6439                            bool RetSExt, bool RetZExt, bool isVarArg,
6440                            bool isInreg, unsigned NumFixedArgs,
6441                            CallingConv::ID CallConv, bool isTailCall,
6442                            bool isReturnValueUsed,
6443                            SDValue Callee,
6444                            ArgListTy &Args, SelectionDAG &DAG,
6445                            DebugLoc dl) const {
6446  // Handle all of the outgoing arguments.
6447  SmallVector<ISD::OutputArg, 32> Outs;
6448  SmallVector<SDValue, 32> OutVals;
6449  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6450    SmallVector<EVT, 4> ValueVTs;
6451    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6452    for (unsigned Value = 0, NumValues = ValueVTs.size();
6453         Value != NumValues; ++Value) {
6454      EVT VT = ValueVTs[Value];
6455      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6456      SDValue Op = SDValue(Args[i].Node.getNode(),
6457                           Args[i].Node.getResNo() + Value);
6458      ISD::ArgFlagsTy Flags;
6459      unsigned OriginalAlignment =
6460        getTargetData()->getABITypeAlignment(ArgTy);
6461
6462      if (Args[i].isZExt)
6463        Flags.setZExt();
6464      if (Args[i].isSExt)
6465        Flags.setSExt();
6466      if (Args[i].isInReg)
6467        Flags.setInReg();
6468      if (Args[i].isSRet)
6469        Flags.setSRet();
6470      if (Args[i].isByVal) {
6471        Flags.setByVal();
6472        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6473        Type *ElementTy = Ty->getElementType();
6474        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6475        // For ByVal, alignment should come from FE.  BE will guess if this
6476        // info is not there but there are cases it cannot get right.
6477        unsigned FrameAlign;
6478        if (Args[i].Alignment)
6479          FrameAlign = Args[i].Alignment;
6480        else
6481          FrameAlign = getByValTypeAlignment(ElementTy);
6482        Flags.setByValAlign(FrameAlign);
6483      }
6484      if (Args[i].isNest)
6485        Flags.setNest();
6486      Flags.setOrigAlign(OriginalAlignment);
6487
6488      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6489      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6490      SmallVector<SDValue, 4> Parts(NumParts);
6491      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6492
6493      if (Args[i].isSExt)
6494        ExtendKind = ISD::SIGN_EXTEND;
6495      else if (Args[i].isZExt)
6496        ExtendKind = ISD::ZERO_EXTEND;
6497
6498      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6499                     PartVT, ExtendKind);
6500
6501      for (unsigned j = 0; j != NumParts; ++j) {
6502        // if it isn't first piece, alignment must be 1
6503        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6504                               i < NumFixedArgs);
6505        if (NumParts > 1 && j == 0)
6506          MyFlags.Flags.setSplit();
6507        else if (j != 0)
6508          MyFlags.Flags.setOrigAlign(1);
6509
6510        Outs.push_back(MyFlags);
6511        OutVals.push_back(Parts[j]);
6512      }
6513    }
6514  }
6515
6516  // Handle the incoming return values from the call.
6517  SmallVector<ISD::InputArg, 32> Ins;
6518  SmallVector<EVT, 4> RetTys;
6519  ComputeValueVTs(*this, RetTy, RetTys);
6520  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6521    EVT VT = RetTys[I];
6522    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6523    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6524    for (unsigned i = 0; i != NumRegs; ++i) {
6525      ISD::InputArg MyFlags;
6526      MyFlags.VT = RegisterVT.getSimpleVT();
6527      MyFlags.Used = isReturnValueUsed;
6528      if (RetSExt)
6529        MyFlags.Flags.setSExt();
6530      if (RetZExt)
6531        MyFlags.Flags.setZExt();
6532      if (isInreg)
6533        MyFlags.Flags.setInReg();
6534      Ins.push_back(MyFlags);
6535    }
6536  }
6537
6538  SmallVector<SDValue, 4> InVals;
6539  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6540                    Outs, OutVals, Ins, dl, DAG, InVals);
6541
6542  // Verify that the target's LowerCall behaved as expected.
6543  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6544         "LowerCall didn't return a valid chain!");
6545  assert((!isTailCall || InVals.empty()) &&
6546         "LowerCall emitted a return value for a tail call!");
6547  assert((isTailCall || InVals.size() == Ins.size()) &&
6548         "LowerCall didn't emit the correct number of values!");
6549
6550  // For a tail call, the return value is merely live-out and there aren't
6551  // any nodes in the DAG representing it. Return a special value to
6552  // indicate that a tail call has been emitted and no more Instructions
6553  // should be processed in the current block.
6554  if (isTailCall) {
6555    DAG.setRoot(Chain);
6556    return std::make_pair(SDValue(), SDValue());
6557  }
6558
6559  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6560          assert(InVals[i].getNode() &&
6561                 "LowerCall emitted a null value!");
6562          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6563                 "LowerCall emitted a value with the wrong type!");
6564        });
6565
6566  // Collect the legal value parts into potentially illegal values
6567  // that correspond to the original function's return values.
6568  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6569  if (RetSExt)
6570    AssertOp = ISD::AssertSext;
6571  else if (RetZExt)
6572    AssertOp = ISD::AssertZext;
6573  SmallVector<SDValue, 4> ReturnValues;
6574  unsigned CurReg = 0;
6575  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6576    EVT VT = RetTys[I];
6577    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6578    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6579
6580    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6581                                            NumRegs, RegisterVT, VT,
6582                                            AssertOp));
6583    CurReg += NumRegs;
6584  }
6585
6586  // For a function returning void, there is no return value. We can't create
6587  // such a node, so we just return a null return value in that case. In
6588  // that case, nothing will actually look at the value.
6589  if (ReturnValues.empty())
6590    return std::make_pair(SDValue(), Chain);
6591
6592  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6593                            DAG.getVTList(&RetTys[0], RetTys.size()),
6594                            &ReturnValues[0], ReturnValues.size());
6595  return std::make_pair(Res, Chain);
6596}
6597
6598void TargetLowering::LowerOperationWrapper(SDNode *N,
6599                                           SmallVectorImpl<SDValue> &Results,
6600                                           SelectionDAG &DAG) const {
6601  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6602  if (Res.getNode())
6603    Results.push_back(Res);
6604}
6605
6606SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6607  llvm_unreachable("LowerOperation not implemented for this target!");
6608  return SDValue();
6609}
6610
6611void
6612SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6613  SDValue Op = getNonRegisterValue(V);
6614  assert((Op.getOpcode() != ISD::CopyFromReg ||
6615          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6616         "Copy from a reg to the same reg!");
6617  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6618
6619  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6620  SDValue Chain = DAG.getEntryNode();
6621  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6622  PendingExports.push_back(Chain);
6623}
6624
6625#include "llvm/CodeGen/SelectionDAGISel.h"
6626
6627/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6628/// entry block, return true.  This includes arguments used by switches, since
6629/// the switch may expand into multiple basic blocks.
6630static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6631  // With FastISel active, we may be splitting blocks, so force creation
6632  // of virtual registers for all non-dead arguments.
6633  if (FastISel)
6634    return A->use_empty();
6635
6636  const BasicBlock *Entry = A->getParent()->begin();
6637  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6638       UI != E; ++UI) {
6639    const User *U = *UI;
6640    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6641      return false;  // Use not in entry block.
6642  }
6643  return true;
6644}
6645
6646void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6647  // If this is the entry block, emit arguments.
6648  const Function &F = *LLVMBB->getParent();
6649  SelectionDAG &DAG = SDB->DAG;
6650  DebugLoc dl = SDB->getCurDebugLoc();
6651  const TargetData *TD = TLI.getTargetData();
6652  SmallVector<ISD::InputArg, 16> Ins;
6653
6654  // Check whether the function can return without sret-demotion.
6655  SmallVector<ISD::OutputArg, 4> Outs;
6656  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6657                Outs, TLI);
6658
6659  if (!FuncInfo->CanLowerReturn) {
6660    // Put in an sret pointer parameter before all the other parameters.
6661    SmallVector<EVT, 1> ValueVTs;
6662    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6663
6664    // NOTE: Assuming that a pointer will never break down to more than one VT
6665    // or one register.
6666    ISD::ArgFlagsTy Flags;
6667    Flags.setSRet();
6668    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6669    ISD::InputArg RetArg(Flags, RegisterVT, true);
6670    Ins.push_back(RetArg);
6671  }
6672
6673  // Set up the incoming argument description vector.
6674  unsigned Idx = 1;
6675  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6676       I != E; ++I, ++Idx) {
6677    SmallVector<EVT, 4> ValueVTs;
6678    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6679    bool isArgValueUsed = !I->use_empty();
6680    for (unsigned Value = 0, NumValues = ValueVTs.size();
6681         Value != NumValues; ++Value) {
6682      EVT VT = ValueVTs[Value];
6683      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6684      ISD::ArgFlagsTy Flags;
6685      unsigned OriginalAlignment =
6686        TD->getABITypeAlignment(ArgTy);
6687
6688      if (F.paramHasAttr(Idx, Attribute::ZExt))
6689        Flags.setZExt();
6690      if (F.paramHasAttr(Idx, Attribute::SExt))
6691        Flags.setSExt();
6692      if (F.paramHasAttr(Idx, Attribute::InReg))
6693        Flags.setInReg();
6694      if (F.paramHasAttr(Idx, Attribute::StructRet))
6695        Flags.setSRet();
6696      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6697        Flags.setByVal();
6698        PointerType *Ty = cast<PointerType>(I->getType());
6699        Type *ElementTy = Ty->getElementType();
6700        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6701        // For ByVal, alignment should be passed from FE.  BE will guess if
6702        // this info is not there but there are cases it cannot get right.
6703        unsigned FrameAlign;
6704        if (F.getParamAlignment(Idx))
6705          FrameAlign = F.getParamAlignment(Idx);
6706        else
6707          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6708        Flags.setByValAlign(FrameAlign);
6709      }
6710      if (F.paramHasAttr(Idx, Attribute::Nest))
6711        Flags.setNest();
6712      Flags.setOrigAlign(OriginalAlignment);
6713
6714      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6715      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6716      for (unsigned i = 0; i != NumRegs; ++i) {
6717        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6718        if (NumRegs > 1 && i == 0)
6719          MyFlags.Flags.setSplit();
6720        // if it isn't first piece, alignment must be 1
6721        else if (i > 0)
6722          MyFlags.Flags.setOrigAlign(1);
6723        Ins.push_back(MyFlags);
6724      }
6725    }
6726  }
6727
6728  // Call the target to set up the argument values.
6729  SmallVector<SDValue, 8> InVals;
6730  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6731                                             F.isVarArg(), Ins,
6732                                             dl, DAG, InVals);
6733
6734  // Verify that the target's LowerFormalArguments behaved as expected.
6735  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6736         "LowerFormalArguments didn't return a valid chain!");
6737  assert(InVals.size() == Ins.size() &&
6738         "LowerFormalArguments didn't emit the correct number of values!");
6739  DEBUG({
6740      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6741        assert(InVals[i].getNode() &&
6742               "LowerFormalArguments emitted a null value!");
6743        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6744               "LowerFormalArguments emitted a value with the wrong type!");
6745      }
6746    });
6747
6748  // Update the DAG with the new chain value resulting from argument lowering.
6749  DAG.setRoot(NewRoot);
6750
6751  // Set up the argument values.
6752  unsigned i = 0;
6753  Idx = 1;
6754  if (!FuncInfo->CanLowerReturn) {
6755    // Create a virtual register for the sret pointer, and put in a copy
6756    // from the sret argument into it.
6757    SmallVector<EVT, 1> ValueVTs;
6758    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6759    EVT VT = ValueVTs[0];
6760    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6761    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6762    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6763                                        RegVT, VT, AssertOp);
6764
6765    MachineFunction& MF = SDB->DAG.getMachineFunction();
6766    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6767    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6768    FuncInfo->DemoteRegister = SRetReg;
6769    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6770                                    SRetReg, ArgValue);
6771    DAG.setRoot(NewRoot);
6772
6773    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6774    // Idx indexes LLVM arguments.  Don't touch it.
6775    ++i;
6776  }
6777
6778  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6779      ++I, ++Idx) {
6780    SmallVector<SDValue, 4> ArgValues;
6781    SmallVector<EVT, 4> ValueVTs;
6782    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6783    unsigned NumValues = ValueVTs.size();
6784
6785    // If this argument is unused then remember its value. It is used to generate
6786    // debugging information.
6787    if (I->use_empty() && NumValues)
6788      SDB->setUnusedArgValue(I, InVals[i]);
6789
6790    for (unsigned Val = 0; Val != NumValues; ++Val) {
6791      EVT VT = ValueVTs[Val];
6792      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6793      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6794
6795      if (!I->use_empty()) {
6796        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6797        if (F.paramHasAttr(Idx, Attribute::SExt))
6798          AssertOp = ISD::AssertSext;
6799        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6800          AssertOp = ISD::AssertZext;
6801
6802        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6803                                             NumParts, PartVT, VT,
6804                                             AssertOp));
6805      }
6806
6807      i += NumParts;
6808    }
6809
6810    // We don't need to do anything else for unused arguments.
6811    if (ArgValues.empty())
6812      continue;
6813
6814    // Note down frame index.
6815    if (FrameIndexSDNode *FI =
6816	dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6817      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6818
6819    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6820                                     SDB->getCurDebugLoc());
6821
6822    SDB->setValue(I, Res);
6823    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6824      if (LoadSDNode *LNode =
6825          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6826        if (FrameIndexSDNode *FI =
6827            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6828        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6829    }
6830
6831    // If this argument is live outside of the entry block, insert a copy from
6832    // wherever we got it to the vreg that other BB's will reference it as.
6833    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6834      // If we can, though, try to skip creating an unnecessary vreg.
6835      // FIXME: This isn't very clean... it would be nice to make this more
6836      // general.  It's also subtly incompatible with the hacks FastISel
6837      // uses with vregs.
6838      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6839      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6840        FuncInfo->ValueMap[I] = Reg;
6841        continue;
6842      }
6843    }
6844    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6845      FuncInfo->InitializeRegForValue(I);
6846      SDB->CopyToExportRegsIfNeeded(I);
6847    }
6848  }
6849
6850  assert(i == InVals.size() && "Argument register count mismatch!");
6851
6852  // Finally, if the target has anything special to do, allow it to do so.
6853  // FIXME: this should insert code into the DAG!
6854  EmitFunctionEntryCode();
6855}
6856
6857/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6858/// ensure constants are generated when needed.  Remember the virtual registers
6859/// that need to be added to the Machine PHI nodes as input.  We cannot just
6860/// directly add them, because expansion might result in multiple MBB's for one
6861/// BB.  As such, the start of the BB might correspond to a different MBB than
6862/// the end.
6863///
6864void
6865SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6866  const TerminatorInst *TI = LLVMBB->getTerminator();
6867
6868  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6869
6870  // Check successor nodes' PHI nodes that expect a constant to be available
6871  // from this block.
6872  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6873    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6874    if (!isa<PHINode>(SuccBB->begin())) continue;
6875    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6876
6877    // If this terminator has multiple identical successors (common for
6878    // switches), only handle each succ once.
6879    if (!SuccsHandled.insert(SuccMBB)) continue;
6880
6881    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6882
6883    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6884    // nodes and Machine PHI nodes, but the incoming operands have not been
6885    // emitted yet.
6886    for (BasicBlock::const_iterator I = SuccBB->begin();
6887         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6888      // Ignore dead phi's.
6889      if (PN->use_empty()) continue;
6890
6891      // Skip empty types
6892      if (PN->getType()->isEmptyTy())
6893        continue;
6894
6895      unsigned Reg;
6896      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6897
6898      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6899        unsigned &RegOut = ConstantsOut[C];
6900        if (RegOut == 0) {
6901          RegOut = FuncInfo.CreateRegs(C->getType());
6902          CopyValueToVirtualRegister(C, RegOut);
6903        }
6904        Reg = RegOut;
6905      } else {
6906        DenseMap<const Value *, unsigned>::iterator I =
6907          FuncInfo.ValueMap.find(PHIOp);
6908        if (I != FuncInfo.ValueMap.end())
6909          Reg = I->second;
6910        else {
6911          assert(isa<AllocaInst>(PHIOp) &&
6912                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6913                 "Didn't codegen value into a register!??");
6914          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6915          CopyValueToVirtualRegister(PHIOp, Reg);
6916        }
6917      }
6918
6919      // Remember that this register needs to added to the machine PHI node as
6920      // the input for this MBB.
6921      SmallVector<EVT, 4> ValueVTs;
6922      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6923      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6924        EVT VT = ValueVTs[vti];
6925        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6926        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6927          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6928        Reg += NumRegisters;
6929      }
6930    }
6931  }
6932  ConstantsOut.clear();
6933}
6934