JIT.cpp revision 11acaa374cdcebb161bf0de5f244265d78a749c1
1//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tool implements a just-in-time compiler for LLVM, allowing direct
11// execution of LLVM bitcode in an efficient manner.
12//
13//===----------------------------------------------------------------------===//
14
15#include "JIT.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/Instructions.h"
21#include "llvm/ModuleProvider.h"
22#include "llvm/CodeGen/JITCodeEmitter.h"
23#include "llvm/CodeGen/MachineCodeInfo.h"
24#include "llvm/ExecutionEngine/GenericValue.h"
25#include "llvm/ExecutionEngine/JITEventListener.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Target/TargetJITInfo.h"
29#include "llvm/Support/Dwarf.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/MutexGuard.h"
32#include "llvm/System/DynamicLibrary.h"
33#include "llvm/Config/config.h"
34
35using namespace llvm;
36
37#ifdef __APPLE__
38// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
39// of atexit). It passes the address of linker generated symbol __dso_handle
40// to the function.
41// This configuration change happened at version 5330.
42# include <AvailabilityMacros.h>
43# if defined(MAC_OS_X_VERSION_10_4) && \
44     ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
45      (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
46       __APPLE_CC__ >= 5330))
47#  ifndef HAVE___DSO_HANDLE
48#   define HAVE___DSO_HANDLE 1
49#  endif
50# endif
51#endif
52
53#if HAVE___DSO_HANDLE
54extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
55#endif
56
57namespace {
58
59static struct RegisterJIT {
60  RegisterJIT() { JIT::Register(); }
61} JITRegistrator;
62
63}
64
65extern "C" void LLVMLinkInJIT() {
66}
67
68
69#if defined(__GNUC__) && !defined(__ARM__EABI__)
70
71// libgcc defines the __register_frame function to dynamically register new
72// dwarf frames for exception handling. This functionality is not portable
73// across compilers and is only provided by GCC. We use the __register_frame
74// function here so that code generated by the JIT cooperates with the unwinding
75// runtime of libgcc. When JITting with exception handling enable, LLVM
76// generates dwarf frames and registers it to libgcc with __register_frame.
77//
78// The __register_frame function works with Linux.
79//
80// Unfortunately, this functionality seems to be in libgcc after the unwinding
81// library of libgcc for darwin was written. The code for darwin overwrites the
82// value updated by __register_frame with a value fetched with "keymgr".
83// "keymgr" is an obsolete functionality, which should be rewritten some day.
84// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
85// need a workaround in LLVM which uses the "keymgr" to dynamically modify the
86// values of an opaque key, used by libgcc to find dwarf tables.
87
88extern "C" void __register_frame(void*);
89
90#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
91# define USE_KEYMGR 1
92#else
93# define USE_KEYMGR 0
94#endif
95
96#if USE_KEYMGR
97
98namespace {
99
100// LibgccObject - This is the structure defined in libgcc. There is no #include
101// provided for this structure, so we also define it here. libgcc calls it
102// "struct object". The structure is undocumented in libgcc.
103struct LibgccObject {
104  void *unused1;
105  void *unused2;
106  void *unused3;
107
108  /// frame - Pointer to the exception table.
109  void *frame;
110
111  /// encoding -  The encoding of the object?
112  union {
113    struct {
114      unsigned long sorted : 1;
115      unsigned long from_array : 1;
116      unsigned long mixed_encoding : 1;
117      unsigned long encoding : 8;
118      unsigned long count : 21;
119    } b;
120    size_t i;
121  } encoding;
122
123  /// fde_end - libgcc defines this field only if some macro is defined. We
124  /// include this field even if it may not there, to make libgcc happy.
125  char *fde_end;
126
127  /// next - At least we know it's a chained list!
128  struct LibgccObject *next;
129};
130
131// "kemgr" stuff. Apparently, all frame tables are stored there.
132extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
133extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
134#define KEYMGR_GCC3_DW2_OBJ_LIST        302     /* Dwarf2 object list  */
135
136/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
137/// probably contains all dwarf tables that are loaded.
138struct LibgccObjectInfo {
139
140  /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
141  ///
142  struct LibgccObject* seenObjects;
143
144  /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
145  ///
146  struct LibgccObject* unseenObjects;
147
148  unsigned unused[2];
149};
150
151/// darwin_register_frame - Since __register_frame does not work with darwin's
152/// libgcc,we provide our own function, which "tricks" libgcc by modifying the
153/// "Dwarf2 object list" key.
154void DarwinRegisterFrame(void* FrameBegin) {
155  // Get the key.
156  LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
157    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
158  assert(LOI && "This should be preallocated by the runtime");
159
160  // Allocate a new LibgccObject to represent this frame. Deallocation of this
161  // object may be impossible: since darwin code in libgcc was written after
162  // the ability to dynamically register frames, things may crash if we
163  // deallocate it.
164  struct LibgccObject* ob = (struct LibgccObject*)
165    malloc(sizeof(struct LibgccObject));
166
167  // Do like libgcc for the values of the field.
168  ob->unused1 = (void *)-1;
169  ob->unused2 = 0;
170  ob->unused3 = 0;
171  ob->frame = FrameBegin;
172  ob->encoding.i = 0;
173  ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
174
175  // Put the info on both places, as libgcc uses the first or the the second
176  // field. Note that we rely on having two pointers here. If fde_end was a
177  // char, things would get complicated.
178  ob->fde_end = (char*)LOI->unseenObjects;
179  ob->next = LOI->unseenObjects;
180
181  // Update the key's unseenObjects list.
182  LOI->unseenObjects = ob;
183
184  // Finally update the "key". Apparently, libgcc requires it.
185  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
186                                         LOI);
187
188}
189
190}
191#endif // __APPLE__
192#endif // __GNUC__
193
194/// createJIT - This is the factory method for creating a JIT for the current
195/// machine, it does not fall back to the interpreter.  This takes ownership
196/// of the module provider.
197ExecutionEngine *ExecutionEngine::createJIT(ModuleProvider *MP,
198                                            std::string *ErrorStr,
199                                            JITMemoryManager *JMM,
200                                            CodeGenOpt::Level OptLevel,
201                                            bool GVsWithCode,
202					    CodeModel::Model CMM) {
203  return JIT::createJIT(MP, ErrorStr, JMM, OptLevel, GVsWithCode, CMM);
204}
205
206ExecutionEngine *JIT::createJIT(ModuleProvider *MP,
207                                std::string *ErrorStr,
208                                JITMemoryManager *JMM,
209                                CodeGenOpt::Level OptLevel,
210                                bool GVsWithCode,
211                                CodeModel::Model CMM) {
212  // Make sure we can resolve symbols in the program as well. The zero arg
213  // to the function tells DynamicLibrary to load the program, not a library.
214  if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
215    return 0;
216
217  // Pick a target either via -march or by guessing the native arch.
218  TargetMachine *TM = JIT::selectTarget(MP, ErrorStr);
219  if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
220  TM->setCodeModel(CMM);
221
222  // If the target supports JIT code generation, create a the JIT.
223  if (TargetJITInfo *TJ = TM->getJITInfo()) {
224    return new JIT(MP, *TM, *TJ, JMM, OptLevel, GVsWithCode);
225  } else {
226    if (ErrorStr)
227      *ErrorStr = "target does not support JIT code generation";
228    return 0;
229  }
230}
231
232JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji,
233         JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode)
234  : ExecutionEngine(MP), TM(tm), TJI(tji), AllocateGVsWithCode(GVsWithCode) {
235  setTargetData(TM.getTargetData());
236
237  jitstate = new JITState(MP);
238
239  // Initialize JCE
240  JCE = createEmitter(*this, JMM, TM);
241
242  // Add target data
243  MutexGuard locked(lock);
244  FunctionPassManager &PM = jitstate->getPM(locked);
245  PM.add(new TargetData(*TM.getTargetData()));
246
247  // Turn the machine code intermediate representation into bytes in memory that
248  // may be executed.
249  if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) {
250    llvm_report_error("Target does not support machine code emission!");
251  }
252
253  // Register routine for informing unwinding runtime about new EH frames
254#if defined(__GNUC__) && !defined(__ARM_EABI__)
255#if USE_KEYMGR
256  struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
257    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
258
259  // The key is created on demand, and libgcc creates it the first time an
260  // exception occurs. Since we need the key to register frames, we create
261  // it now.
262  if (!LOI)
263    LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
264  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
265  InstallExceptionTableRegister(DarwinRegisterFrame);
266#else
267  InstallExceptionTableRegister(__register_frame);
268#endif // __APPLE__
269#endif // __GNUC__
270
271  // Initialize passes.
272  PM.doInitialization();
273}
274
275JIT::~JIT() {
276  delete jitstate;
277  delete JCE;
278  delete &TM;
279}
280
281/// addModuleProvider - Add a new ModuleProvider to the JIT.  If we previously
282/// removed the last ModuleProvider, we need re-initialize jitstate with a valid
283/// ModuleProvider.
284void JIT::addModuleProvider(ModuleProvider *MP) {
285  MutexGuard locked(lock);
286
287  if (Modules.empty()) {
288    assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
289
290    jitstate = new JITState(MP);
291
292    FunctionPassManager &PM = jitstate->getPM(locked);
293    PM.add(new TargetData(*TM.getTargetData()));
294
295    // Turn the machine code intermediate representation into bytes in memory
296    // that may be executed.
297    if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
298      llvm_report_error("Target does not support machine code emission!");
299    }
300
301    // Initialize passes.
302    PM.doInitialization();
303  }
304
305  ExecutionEngine::addModuleProvider(MP);
306}
307
308/// removeModuleProvider - If we are removing the last ModuleProvider,
309/// invalidate the jitstate since the PassManager it contains references a
310/// released ModuleProvider.
311Module *JIT::removeModuleProvider(ModuleProvider *MP, std::string *E) {
312  Module *result = ExecutionEngine::removeModuleProvider(MP, E);
313
314  MutexGuard locked(lock);
315
316  if (jitstate->getMP() == MP) {
317    delete jitstate;
318    jitstate = 0;
319  }
320
321  if (!jitstate && !Modules.empty()) {
322    jitstate = new JITState(Modules[0]);
323
324    FunctionPassManager &PM = jitstate->getPM(locked);
325    PM.add(new TargetData(*TM.getTargetData()));
326
327    // Turn the machine code intermediate representation into bytes in memory
328    // that may be executed.
329    if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
330      llvm_report_error("Target does not support machine code emission!");
331    }
332
333    // Initialize passes.
334    PM.doInitialization();
335  }
336  return result;
337}
338
339/// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
340/// and deletes the ModuleProvider and owned Module.  Avoids materializing
341/// the underlying module.
342void JIT::deleteModuleProvider(ModuleProvider *MP, std::string *E) {
343  ExecutionEngine::deleteModuleProvider(MP, E);
344
345  MutexGuard locked(lock);
346
347  if (jitstate->getMP() == MP) {
348    delete jitstate;
349    jitstate = 0;
350  }
351
352  if (!jitstate && !Modules.empty()) {
353    jitstate = new JITState(Modules[0]);
354
355    FunctionPassManager &PM = jitstate->getPM(locked);
356    PM.add(new TargetData(*TM.getTargetData()));
357
358    // Turn the machine code intermediate representation into bytes in memory
359    // that may be executed.
360    if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
361      llvm_report_error("Target does not support machine code emission!");
362    }
363
364    // Initialize passes.
365    PM.doInitialization();
366  }
367}
368
369/// materializeFunction - make sure the given function is fully read.  If the
370/// module is corrupt, this returns true and fills in the optional string with
371/// information about the problem.  If successful, this returns false.
372bool JIT::materializeFunction(Function *F, std::string *ErrInfo) {
373  // Read in the function if it exists in this Module.
374  if (F->hasNotBeenReadFromBitcode()) {
375    // Determine the module provider this function is provided by.
376    Module *M = F->getParent();
377    ModuleProvider *MP = 0;
378    for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
379      if (Modules[i]->getModule() == M) {
380        MP = Modules[i];
381        break;
382      }
383    }
384    if (MP)
385      return MP->materializeFunction(F, ErrInfo);
386
387    if (ErrInfo)
388      *ErrInfo = "Function isn't in a module we know about!";
389    return true;
390  }
391  // Succeed if the function is already read.
392  return false;
393}
394
395/// run - Start execution with the specified function and arguments.
396///
397GenericValue JIT::runFunction(Function *F,
398                              const std::vector<GenericValue> &ArgValues) {
399  assert(F && "Function *F was null at entry to run()");
400
401  void *FPtr = getPointerToFunction(F);
402  assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
403  const FunctionType *FTy = F->getFunctionType();
404  const Type *RetTy = FTy->getReturnType();
405
406  assert((FTy->getNumParams() == ArgValues.size() ||
407          (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
408         "Wrong number of arguments passed into function!");
409  assert(FTy->getNumParams() == ArgValues.size() &&
410         "This doesn't support passing arguments through varargs (yet)!");
411
412  // Handle some common cases first.  These cases correspond to common `main'
413  // prototypes.
414  if (RetTy == Type::getInt32Ty(F->getContext()) || RetTy->isVoidTy()) {
415    switch (ArgValues.size()) {
416    case 3:
417      if (FTy->getParamType(0)->isInteger(32) &&
418          isa<PointerType>(FTy->getParamType(1)) &&
419          isa<PointerType>(FTy->getParamType(2))) {
420        int (*PF)(int, char **, const char **) =
421          (int(*)(int, char **, const char **))(intptr_t)FPtr;
422
423        // Call the function.
424        GenericValue rv;
425        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
426                                 (char **)GVTOP(ArgValues[1]),
427                                 (const char **)GVTOP(ArgValues[2])));
428        return rv;
429      }
430      break;
431    case 2:
432      if (FTy->getParamType(0)->isInteger(32) &&
433          isa<PointerType>(FTy->getParamType(1))) {
434        int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
435
436        // Call the function.
437        GenericValue rv;
438        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
439                                 (char **)GVTOP(ArgValues[1])));
440        return rv;
441      }
442      break;
443    case 1:
444      if (FTy->getNumParams() == 1 &&
445          FTy->getParamType(0)->isInteger(32)) {
446        GenericValue rv;
447        int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
448        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
449        return rv;
450      }
451      break;
452    }
453  }
454
455  // Handle cases where no arguments are passed first.
456  if (ArgValues.empty()) {
457    GenericValue rv;
458    switch (RetTy->getTypeID()) {
459    default: llvm_unreachable("Unknown return type for function call!");
460    case Type::IntegerTyID: {
461      unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
462      if (BitWidth == 1)
463        rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
464      else if (BitWidth <= 8)
465        rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
466      else if (BitWidth <= 16)
467        rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
468      else if (BitWidth <= 32)
469        rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
470      else if (BitWidth <= 64)
471        rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
472      else
473        llvm_unreachable("Integer types > 64 bits not supported");
474      return rv;
475    }
476    case Type::VoidTyID:
477      rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
478      return rv;
479    case Type::FloatTyID:
480      rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
481      return rv;
482    case Type::DoubleTyID:
483      rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
484      return rv;
485    case Type::X86_FP80TyID:
486    case Type::FP128TyID:
487    case Type::PPC_FP128TyID:
488      llvm_unreachable("long double not supported yet");
489      return rv;
490    case Type::PointerTyID:
491      return PTOGV(((void*(*)())(intptr_t)FPtr)());
492    }
493  }
494
495  // Okay, this is not one of our quick and easy cases.  Because we don't have a
496  // full FFI, we have to codegen a nullary stub function that just calls the
497  // function we are interested in, passing in constants for all of the
498  // arguments.  Make this function and return.
499
500  // First, create the function.
501  FunctionType *STy=FunctionType::get(RetTy, false);
502  Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
503                                    F->getParent());
504
505  // Insert a basic block.
506  BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
507
508  // Convert all of the GenericValue arguments over to constants.  Note that we
509  // currently don't support varargs.
510  SmallVector<Value*, 8> Args;
511  for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
512    Constant *C = 0;
513    const Type *ArgTy = FTy->getParamType(i);
514    const GenericValue &AV = ArgValues[i];
515    switch (ArgTy->getTypeID()) {
516    default: llvm_unreachable("Unknown argument type for function call!");
517    case Type::IntegerTyID:
518        C = ConstantInt::get(F->getContext(), AV.IntVal);
519        break;
520    case Type::FloatTyID:
521        C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
522        break;
523    case Type::DoubleTyID:
524        C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
525        break;
526    case Type::PPC_FP128TyID:
527    case Type::X86_FP80TyID:
528    case Type::FP128TyID:
529        C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
530        break;
531    case Type::PointerTyID:
532      void *ArgPtr = GVTOP(AV);
533      if (sizeof(void*) == 4)
534        C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
535                             (int)(intptr_t)ArgPtr);
536      else
537        C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
538                             (intptr_t)ArgPtr);
539      // Cast the integer to pointer
540      C = ConstantExpr::getIntToPtr(C, ArgTy);
541      break;
542    }
543    Args.push_back(C);
544  }
545
546  CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(),
547                                       "", StubBB);
548  TheCall->setCallingConv(F->getCallingConv());
549  TheCall->setTailCall();
550  if (!TheCall->getType()->isVoidTy())
551    // Return result of the call.
552    ReturnInst::Create(F->getContext(), TheCall, StubBB);
553  else
554    ReturnInst::Create(F->getContext(), StubBB);           // Just return void.
555
556  // Finally, return the value returned by our nullary stub function.
557  return runFunction(Stub, std::vector<GenericValue>());
558}
559
560void JIT::RegisterJITEventListener(JITEventListener *L) {
561  if (L == NULL)
562    return;
563  MutexGuard locked(lock);
564  EventListeners.push_back(L);
565}
566void JIT::UnregisterJITEventListener(JITEventListener *L) {
567  if (L == NULL)
568    return;
569  MutexGuard locked(lock);
570  std::vector<JITEventListener*>::reverse_iterator I=
571      std::find(EventListeners.rbegin(), EventListeners.rend(), L);
572  if (I != EventListeners.rend()) {
573    std::swap(*I, EventListeners.back());
574    EventListeners.pop_back();
575  }
576}
577void JIT::NotifyFunctionEmitted(
578    const Function &F,
579    void *Code, size_t Size,
580    const JITEvent_EmittedFunctionDetails &Details) {
581  MutexGuard locked(lock);
582  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
583    EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
584  }
585}
586
587void JIT::NotifyFreeingMachineCode(void *OldPtr) {
588  MutexGuard locked(lock);
589  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
590    EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
591  }
592}
593
594/// runJITOnFunction - Run the FunctionPassManager full of
595/// just-in-time compilation passes on F, hopefully filling in
596/// GlobalAddress[F] with the address of F's machine code.
597///
598void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
599  MutexGuard locked(lock);
600
601  class MCIListener : public JITEventListener {
602    MachineCodeInfo *const MCI;
603   public:
604    MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
605    virtual void NotifyFunctionEmitted(const Function &,
606                                       void *Code, size_t Size,
607                                       const EmittedFunctionDetails &) {
608      MCI->setAddress(Code);
609      MCI->setSize(Size);
610    }
611  };
612  MCIListener MCIL(MCI);
613  if (MCI)
614    RegisterJITEventListener(&MCIL);
615
616  runJITOnFunctionUnlocked(F, locked);
617
618  if (MCI)
619    UnregisterJITEventListener(&MCIL);
620}
621
622void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
623  static bool isAlreadyCodeGenerating = false;
624  assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
625
626  // JIT the function
627  isAlreadyCodeGenerating = true;
628  jitstate->getPM(locked).run(*F);
629  isAlreadyCodeGenerating = false;
630
631  // If the function referred to another function that had not yet been
632  // read from bitcode, and we are jitting non-lazily, emit it now.
633  while (!jitstate->getPendingFunctions(locked).empty()) {
634    Function *PF = jitstate->getPendingFunctions(locked).back();
635    jitstate->getPendingFunctions(locked).pop_back();
636
637    assert(!PF->hasAvailableExternallyLinkage() &&
638           "Externally-defined function should not be in pending list.");
639
640    // JIT the function
641    isAlreadyCodeGenerating = true;
642    jitstate->getPM(locked).run(*PF);
643    isAlreadyCodeGenerating = false;
644
645    // Now that the function has been jitted, ask the JITEmitter to rewrite
646    // the stub with real address of the function.
647    updateFunctionStub(PF);
648  }
649}
650
651/// getPointerToFunction - This method is used to get the address of the
652/// specified function, compiling it if neccesary.
653///
654void *JIT::getPointerToFunction(Function *F) {
655
656  if (void *Addr = getPointerToGlobalIfAvailable(F))
657    return Addr;   // Check if function already code gen'd
658
659  MutexGuard locked(lock);
660
661  // Now that this thread owns the lock, make sure we read in the function if it
662  // exists in this Module.
663  std::string ErrorMsg;
664  if (materializeFunction(F, &ErrorMsg)) {
665    llvm_report_error("Error reading function '" + F->getName()+
666                      "' from bitcode file: " + ErrorMsg);
667  }
668
669  // ... and check if another thread has already code gen'd the function.
670  if (void *Addr = getPointerToGlobalIfAvailable(F))
671    return Addr;
672
673  if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
674    bool AbortOnFailure = !F->hasExternalWeakLinkage();
675    void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
676    addGlobalMapping(F, Addr);
677    return Addr;
678  }
679
680  runJITOnFunctionUnlocked(F, locked);
681
682  void *Addr = getPointerToGlobalIfAvailable(F);
683  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
684  return Addr;
685}
686
687/// getOrEmitGlobalVariable - Return the address of the specified global
688/// variable, possibly emitting it to memory if needed.  This is used by the
689/// Emitter.
690void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
691  MutexGuard locked(lock);
692
693  void *Ptr = getPointerToGlobalIfAvailable(GV);
694  if (Ptr) return Ptr;
695
696  // If the global is external, just remember the address.
697  if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
698#if HAVE___DSO_HANDLE
699    if (GV->getName() == "__dso_handle")
700      return (void*)&__dso_handle;
701#endif
702    Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
703    if (Ptr == 0) {
704      llvm_report_error("Could not resolve external global address: "
705                        +GV->getName());
706    }
707    addGlobalMapping(GV, Ptr);
708  } else {
709    // If the global hasn't been emitted to memory yet, allocate space and
710    // emit it into memory.
711    Ptr = getMemoryForGV(GV);
712    addGlobalMapping(GV, Ptr);
713    EmitGlobalVariable(GV);  // Initialize the variable.
714  }
715  return Ptr;
716}
717
718/// recompileAndRelinkFunction - This method is used to force a function
719/// which has already been compiled, to be compiled again, possibly
720/// after it has been modified. Then the entry to the old copy is overwritten
721/// with a branch to the new copy. If there was no old copy, this acts
722/// just like JIT::getPointerToFunction().
723///
724void *JIT::recompileAndRelinkFunction(Function *F) {
725  void *OldAddr = getPointerToGlobalIfAvailable(F);
726
727  // If it's not already compiled there is no reason to patch it up.
728  if (OldAddr == 0) { return getPointerToFunction(F); }
729
730  // Delete the old function mapping.
731  addGlobalMapping(F, 0);
732
733  // Recodegen the function
734  runJITOnFunction(F);
735
736  // Update state, forward the old function to the new function.
737  void *Addr = getPointerToGlobalIfAvailable(F);
738  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
739  TJI.replaceMachineCodeForFunction(OldAddr, Addr);
740  return Addr;
741}
742
743/// getMemoryForGV - This method abstracts memory allocation of global
744/// variable so that the JIT can allocate thread local variables depending
745/// on the target.
746///
747char* JIT::getMemoryForGV(const GlobalVariable* GV) {
748  char *Ptr;
749
750  // GlobalVariable's which are not "constant" will cause trouble in a server
751  // situation. It's returned in the same block of memory as code which may
752  // not be writable.
753  if (isGVCompilationDisabled() && !GV->isConstant()) {
754    llvm_report_error("Compilation of non-internal GlobalValue is disabled!");
755  }
756
757  // Some applications require globals and code to live together, so they may
758  // be allocated into the same buffer, but in general globals are allocated
759  // through the memory manager which puts them near the code but not in the
760  // same buffer.
761  const Type *GlobalType = GV->getType()->getElementType();
762  size_t S = getTargetData()->getTypeAllocSize(GlobalType);
763  size_t A = getTargetData()->getPreferredAlignment(GV);
764  if (GV->isThreadLocal()) {
765    MutexGuard locked(lock);
766    Ptr = TJI.allocateThreadLocalMemory(S);
767  } else if (TJI.allocateSeparateGVMemory()) {
768    if (A <= 8) {
769      Ptr = (char*)malloc(S);
770    } else {
771      // Allocate S+A bytes of memory, then use an aligned pointer within that
772      // space.
773      Ptr = (char*)malloc(S+A);
774      unsigned MisAligned = ((intptr_t)Ptr & (A-1));
775      Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
776    }
777  } else if (AllocateGVsWithCode) {
778    Ptr = (char*)JCE->allocateSpace(S, A);
779  } else {
780    Ptr = (char*)JCE->allocateGlobal(S, A);
781  }
782  return Ptr;
783}
784
785void JIT::addPendingFunction(Function *F) {
786  MutexGuard locked(lock);
787  jitstate->getPendingFunctions(locked).push_back(F);
788}
789
790
791JITEventListener::~JITEventListener() {}
792