JIT.cpp revision 83a82ac0b4dc6ea6b3e56f9e239a113eb5be5f38
1//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tool implements a just-in-time compiler for LLVM, allowing direct
11// execution of LLVM bitcode in an efficient manner.
12//
13//===----------------------------------------------------------------------===//
14
15#include "JIT.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/Instructions.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/CodeGen/JITCodeEmitter.h"
23#include "llvm/CodeGen/MachineCodeInfo.h"
24#include "llvm/ExecutionEngine/GenericValue.h"
25#include "llvm/ExecutionEngine/JITEventListener.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Target/TargetJITInfo.h"
29#include "llvm/Support/Dwarf.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/ManagedStatic.h"
32#include "llvm/Support/MutexGuard.h"
33#include "llvm/System/DynamicLibrary.h"
34#include "llvm/Config/config.h"
35
36using namespace llvm;
37
38#ifdef __APPLE__
39// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
40// of atexit). It passes the address of linker generated symbol __dso_handle
41// to the function.
42// This configuration change happened at version 5330.
43# include <AvailabilityMacros.h>
44# if defined(MAC_OS_X_VERSION_10_4) && \
45     ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
46      (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
47       __APPLE_CC__ >= 5330))
48#  ifndef HAVE___DSO_HANDLE
49#   define HAVE___DSO_HANDLE 1
50#  endif
51# endif
52#endif
53
54#if HAVE___DSO_HANDLE
55extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
56#endif
57
58namespace {
59
60static struct RegisterJIT {
61  RegisterJIT() { JIT::Register(); }
62} JITRegistrator;
63
64}
65
66extern "C" void LLVMLinkInJIT() {
67}
68
69
70#if defined(__GNUC__) && !defined(__ARM_EABI__) && !defined(__USING_SJLJ_EXCEPTIONS__)
71
72// libgcc defines the __register_frame function to dynamically register new
73// dwarf frames for exception handling. This functionality is not portable
74// across compilers and is only provided by GCC. We use the __register_frame
75// function here so that code generated by the JIT cooperates with the unwinding
76// runtime of libgcc. When JITting with exception handling enable, LLVM
77// generates dwarf frames and registers it to libgcc with __register_frame.
78//
79// The __register_frame function works with Linux.
80//
81// Unfortunately, this functionality seems to be in libgcc after the unwinding
82// library of libgcc for darwin was written. The code for darwin overwrites the
83// value updated by __register_frame with a value fetched with "keymgr".
84// "keymgr" is an obsolete functionality, which should be rewritten some day.
85// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
86// need a workaround in LLVM which uses the "keymgr" to dynamically modify the
87// values of an opaque key, used by libgcc to find dwarf tables.
88
89extern "C" void __register_frame(void*);
90
91#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
92# define USE_KEYMGR 1
93#else
94# define USE_KEYMGR 0
95#endif
96
97#if USE_KEYMGR
98
99namespace {
100
101// LibgccObject - This is the structure defined in libgcc. There is no #include
102// provided for this structure, so we also define it here. libgcc calls it
103// "struct object". The structure is undocumented in libgcc.
104struct LibgccObject {
105  void *unused1;
106  void *unused2;
107  void *unused3;
108
109  /// frame - Pointer to the exception table.
110  void *frame;
111
112  /// encoding -  The encoding of the object?
113  union {
114    struct {
115      unsigned long sorted : 1;
116      unsigned long from_array : 1;
117      unsigned long mixed_encoding : 1;
118      unsigned long encoding : 8;
119      unsigned long count : 21;
120    } b;
121    size_t i;
122  } encoding;
123
124  /// fde_end - libgcc defines this field only if some macro is defined. We
125  /// include this field even if it may not there, to make libgcc happy.
126  char *fde_end;
127
128  /// next - At least we know it's a chained list!
129  struct LibgccObject *next;
130};
131
132// "kemgr" stuff. Apparently, all frame tables are stored there.
133extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
134extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
135#define KEYMGR_GCC3_DW2_OBJ_LIST        302     /* Dwarf2 object list  */
136
137/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
138/// probably contains all dwarf tables that are loaded.
139struct LibgccObjectInfo {
140
141  /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
142  ///
143  struct LibgccObject* seenObjects;
144
145  /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
146  ///
147  struct LibgccObject* unseenObjects;
148
149  unsigned unused[2];
150};
151
152/// darwin_register_frame - Since __register_frame does not work with darwin's
153/// libgcc,we provide our own function, which "tricks" libgcc by modifying the
154/// "Dwarf2 object list" key.
155void DarwinRegisterFrame(void* FrameBegin) {
156  // Get the key.
157  LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
158    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
159  assert(LOI && "This should be preallocated by the runtime");
160
161  // Allocate a new LibgccObject to represent this frame. Deallocation of this
162  // object may be impossible: since darwin code in libgcc was written after
163  // the ability to dynamically register frames, things may crash if we
164  // deallocate it.
165  struct LibgccObject* ob = (struct LibgccObject*)
166    malloc(sizeof(struct LibgccObject));
167
168  // Do like libgcc for the values of the field.
169  ob->unused1 = (void *)-1;
170  ob->unused2 = 0;
171  ob->unused3 = 0;
172  ob->frame = FrameBegin;
173  ob->encoding.i = 0;
174  ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
175
176  // Put the info on both places, as libgcc uses the first or the second
177  // field. Note that we rely on having two pointers here. If fde_end was a
178  // char, things would get complicated.
179  ob->fde_end = (char*)LOI->unseenObjects;
180  ob->next = LOI->unseenObjects;
181
182  // Update the key's unseenObjects list.
183  LOI->unseenObjects = ob;
184
185  // Finally update the "key". Apparently, libgcc requires it.
186  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
187                                         LOI);
188
189}
190
191}
192#endif // __APPLE__
193#endif // __GNUC__
194
195/// createJIT - This is the factory method for creating a JIT for the current
196/// machine, it does not fall back to the interpreter.  This takes ownership
197/// of the module.
198ExecutionEngine *ExecutionEngine::createJIT(Module *M,
199                                            std::string *ErrorStr,
200                                            JITMemoryManager *JMM,
201                                            CodeGenOpt::Level OptLevel,
202                                            bool GVsWithCode,
203                                            CodeModel::Model CMM) {
204  // Use the defaults for extra parameters.  Users can use EngineBuilder to
205  // set them.
206  StringRef MArch = "";
207  StringRef MCPU = "";
208  SmallVector<std::string, 1> MAttrs;
209  return JIT::createJIT(M, ErrorStr, JMM, OptLevel, GVsWithCode, CMM,
210                        MArch, MCPU, MAttrs);
211}
212
213ExecutionEngine *JIT::createJIT(Module *M,
214                                std::string *ErrorStr,
215                                JITMemoryManager *JMM,
216                                CodeGenOpt::Level OptLevel,
217                                bool GVsWithCode,
218                                CodeModel::Model CMM,
219                                StringRef MArch,
220                                StringRef MCPU,
221                                const SmallVectorImpl<std::string>& MAttrs) {
222  // Try to register the program as a source of symbols to resolve against.
223  sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
224
225  // Pick a target either via -march or by guessing the native arch.
226  TargetMachine *TM = JIT::selectTarget(M, MArch, MCPU, MAttrs, ErrorStr);
227  if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
228  TM->setCodeModel(CMM);
229
230  // If the target supports JIT code generation, create a the JIT.
231  if (TargetJITInfo *TJ = TM->getJITInfo()) {
232    return new JIT(M, *TM, *TJ, JMM, OptLevel, GVsWithCode);
233  } else {
234    if (ErrorStr)
235      *ErrorStr = "target does not support JIT code generation";
236    return 0;
237  }
238}
239
240namespace {
241/// This class supports the global getPointerToNamedFunction(), which allows
242/// bugpoint or gdb users to search for a function by name without any context.
243class JitPool {
244  SmallPtrSet<JIT*, 1> JITs;  // Optimize for process containing just 1 JIT.
245  mutable sys::Mutex Lock;
246public:
247  void Add(JIT *jit) {
248    MutexGuard guard(Lock);
249    JITs.insert(jit);
250  }
251  void Remove(JIT *jit) {
252    MutexGuard guard(Lock);
253    JITs.erase(jit);
254  }
255  void *getPointerToNamedFunction(const char *Name) const {
256    MutexGuard guard(Lock);
257    assert(JITs.size() != 0 && "No Jit registered");
258    //search function in every instance of JIT
259    for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
260           end = JITs.end();
261         Jit != end; ++Jit) {
262      if (Function *F = (*Jit)->FindFunctionNamed(Name))
263        return (*Jit)->getPointerToFunction(F);
264    }
265    // The function is not available : fallback on the first created (will
266    // search in symbol of the current program/library)
267    return (*JITs.begin())->getPointerToNamedFunction(Name);
268  }
269};
270ManagedStatic<JitPool> AllJits;
271}
272extern "C" {
273  // getPointerToNamedFunction - This function is used as a global wrapper to
274  // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
275  // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
276  // need to resolve function(s) that are being mis-codegenerated, so we need to
277  // resolve their addresses at runtime, and this is the way to do it.
278  void *getPointerToNamedFunction(const char *Name) {
279    return AllJits->getPointerToNamedFunction(Name);
280  }
281}
282
283JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
284         JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode)
285  : ExecutionEngine(M), TM(tm), TJI(tji), AllocateGVsWithCode(GVsWithCode),
286    isAlreadyCodeGenerating(false) {
287  setTargetData(TM.getTargetData());
288
289  jitstate = new JITState(M);
290
291  // Initialize JCE
292  JCE = createEmitter(*this, JMM, TM);
293
294  // Register in global list of all JITs.
295  AllJits->Add(this);
296
297  // Add target data
298  MutexGuard locked(lock);
299  FunctionPassManager &PM = jitstate->getPM(locked);
300  PM.add(new TargetData(*TM.getTargetData()));
301
302  // Turn the machine code intermediate representation into bytes in memory that
303  // may be executed.
304  if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) {
305    report_fatal_error("Target does not support machine code emission!");
306  }
307
308  // Register routine for informing unwinding runtime about new EH frames
309#if defined(__GNUC__) && !defined(__ARM_EABI__) && !defined(__USING_SJLJ_EXCEPTIONS__)
310#if USE_KEYMGR
311  struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
312    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
313
314  // The key is created on demand, and libgcc creates it the first time an
315  // exception occurs. Since we need the key to register frames, we create
316  // it now.
317  if (!LOI)
318    LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
319  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
320  InstallExceptionTableRegister(DarwinRegisterFrame);
321#else
322  InstallExceptionTableRegister(__register_frame);
323#endif // __APPLE__
324#endif // __GNUC__
325
326  // Initialize passes.
327  PM.doInitialization();
328}
329
330JIT::~JIT() {
331  AllJits->Remove(this);
332  delete jitstate;
333  delete JCE;
334  delete &TM;
335}
336
337/// addModule - Add a new Module to the JIT.  If we previously removed the last
338/// Module, we need re-initialize jitstate with a valid Module.
339void JIT::addModule(Module *M) {
340  MutexGuard locked(lock);
341
342  if (Modules.empty()) {
343    assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
344
345    jitstate = new JITState(M);
346
347    FunctionPassManager &PM = jitstate->getPM(locked);
348    PM.add(new TargetData(*TM.getTargetData()));
349
350    // Turn the machine code intermediate representation into bytes in memory
351    // that may be executed.
352    if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
353      report_fatal_error("Target does not support machine code emission!");
354    }
355
356    // Initialize passes.
357    PM.doInitialization();
358  }
359
360  ExecutionEngine::addModule(M);
361}
362
363/// removeModule - If we are removing the last Module, invalidate the jitstate
364/// since the PassManager it contains references a released Module.
365bool JIT::removeModule(Module *M) {
366  bool result = ExecutionEngine::removeModule(M);
367
368  MutexGuard locked(lock);
369
370  if (jitstate->getModule() == M) {
371    delete jitstate;
372    jitstate = 0;
373  }
374
375  if (!jitstate && !Modules.empty()) {
376    jitstate = new JITState(Modules[0]);
377
378    FunctionPassManager &PM = jitstate->getPM(locked);
379    PM.add(new TargetData(*TM.getTargetData()));
380
381    // Turn the machine code intermediate representation into bytes in memory
382    // that may be executed.
383    if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
384      report_fatal_error("Target does not support machine code emission!");
385    }
386
387    // Initialize passes.
388    PM.doInitialization();
389  }
390  return result;
391}
392
393/// run - Start execution with the specified function and arguments.
394///
395GenericValue JIT::runFunction(Function *F,
396                              const std::vector<GenericValue> &ArgValues) {
397  assert(F && "Function *F was null at entry to run()");
398
399  void *FPtr = getPointerToFunction(F);
400  assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
401  const FunctionType *FTy = F->getFunctionType();
402  const Type *RetTy = FTy->getReturnType();
403
404  assert((FTy->getNumParams() == ArgValues.size() ||
405          (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
406         "Wrong number of arguments passed into function!");
407  assert(FTy->getNumParams() == ArgValues.size() &&
408         "This doesn't support passing arguments through varargs (yet)!");
409
410  // Handle some common cases first.  These cases correspond to common `main'
411  // prototypes.
412  if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
413    switch (ArgValues.size()) {
414    case 3:
415      if (FTy->getParamType(0)->isIntegerTy(32) &&
416          FTy->getParamType(1)->isPointerTy() &&
417          FTy->getParamType(2)->isPointerTy()) {
418        int (*PF)(int, char **, const char **) =
419          (int(*)(int, char **, const char **))(intptr_t)FPtr;
420
421        // Call the function.
422        GenericValue rv;
423        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
424                                 (char **)GVTOP(ArgValues[1]),
425                                 (const char **)GVTOP(ArgValues[2])));
426        return rv;
427      }
428      break;
429    case 2:
430      if (FTy->getParamType(0)->isIntegerTy(32) &&
431          FTy->getParamType(1)->isPointerTy()) {
432        int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
433
434        // Call the function.
435        GenericValue rv;
436        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
437                                 (char **)GVTOP(ArgValues[1])));
438        return rv;
439      }
440      break;
441    case 1:
442      if (FTy->getNumParams() == 1 &&
443          FTy->getParamType(0)->isIntegerTy(32)) {
444        GenericValue rv;
445        int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
446        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
447        return rv;
448      }
449      break;
450    }
451  }
452
453  // Handle cases where no arguments are passed first.
454  if (ArgValues.empty()) {
455    GenericValue rv;
456    switch (RetTy->getTypeID()) {
457    default: llvm_unreachable("Unknown return type for function call!");
458    case Type::IntegerTyID: {
459      unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
460      if (BitWidth == 1)
461        rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
462      else if (BitWidth <= 8)
463        rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
464      else if (BitWidth <= 16)
465        rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
466      else if (BitWidth <= 32)
467        rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
468      else if (BitWidth <= 64)
469        rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
470      else
471        llvm_unreachable("Integer types > 64 bits not supported");
472      return rv;
473    }
474    case Type::VoidTyID:
475      rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
476      return rv;
477    case Type::FloatTyID:
478      rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
479      return rv;
480    case Type::DoubleTyID:
481      rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
482      return rv;
483    case Type::X86_FP80TyID:
484    case Type::FP128TyID:
485    case Type::PPC_FP128TyID:
486      llvm_unreachable("long double not supported yet");
487      return rv;
488    case Type::PointerTyID:
489      return PTOGV(((void*(*)())(intptr_t)FPtr)());
490    }
491  }
492
493  // Okay, this is not one of our quick and easy cases.  Because we don't have a
494  // full FFI, we have to codegen a nullary stub function that just calls the
495  // function we are interested in, passing in constants for all of the
496  // arguments.  Make this function and return.
497
498  // First, create the function.
499  FunctionType *STy=FunctionType::get(RetTy, false);
500  Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
501                                    F->getParent());
502
503  // Insert a basic block.
504  BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
505
506  // Convert all of the GenericValue arguments over to constants.  Note that we
507  // currently don't support varargs.
508  SmallVector<Value*, 8> Args;
509  for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
510    Constant *C = 0;
511    const Type *ArgTy = FTy->getParamType(i);
512    const GenericValue &AV = ArgValues[i];
513    switch (ArgTy->getTypeID()) {
514    default: llvm_unreachable("Unknown argument type for function call!");
515    case Type::IntegerTyID:
516        C = ConstantInt::get(F->getContext(), AV.IntVal);
517        break;
518    case Type::FloatTyID:
519        C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
520        break;
521    case Type::DoubleTyID:
522        C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
523        break;
524    case Type::PPC_FP128TyID:
525    case Type::X86_FP80TyID:
526    case Type::FP128TyID:
527        C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
528        break;
529    case Type::PointerTyID:
530      void *ArgPtr = GVTOP(AV);
531      if (sizeof(void*) == 4)
532        C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
533                             (int)(intptr_t)ArgPtr);
534      else
535        C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
536                             (intptr_t)ArgPtr);
537      // Cast the integer to pointer
538      C = ConstantExpr::getIntToPtr(C, ArgTy);
539      break;
540    }
541    Args.push_back(C);
542  }
543
544  CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(),
545                                       "", StubBB);
546  TheCall->setCallingConv(F->getCallingConv());
547  TheCall->setTailCall();
548  if (!TheCall->getType()->isVoidTy())
549    // Return result of the call.
550    ReturnInst::Create(F->getContext(), TheCall, StubBB);
551  else
552    ReturnInst::Create(F->getContext(), StubBB);           // Just return void.
553
554  // Finally, call our nullary stub function.
555  GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
556  // Erase it, since no other function can have a reference to it.
557  Stub->eraseFromParent();
558  // And return the result.
559  return Result;
560}
561
562void JIT::RegisterJITEventListener(JITEventListener *L) {
563  if (L == NULL)
564    return;
565  MutexGuard locked(lock);
566  EventListeners.push_back(L);
567}
568void JIT::UnregisterJITEventListener(JITEventListener *L) {
569  if (L == NULL)
570    return;
571  MutexGuard locked(lock);
572  std::vector<JITEventListener*>::reverse_iterator I=
573      std::find(EventListeners.rbegin(), EventListeners.rend(), L);
574  if (I != EventListeners.rend()) {
575    std::swap(*I, EventListeners.back());
576    EventListeners.pop_back();
577  }
578}
579void JIT::NotifyFunctionEmitted(
580    const Function &F,
581    void *Code, size_t Size,
582    const JITEvent_EmittedFunctionDetails &Details) {
583  MutexGuard locked(lock);
584  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
585    EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
586  }
587}
588
589void JIT::NotifyFreeingMachineCode(void *OldPtr) {
590  MutexGuard locked(lock);
591  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
592    EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
593  }
594}
595
596/// runJITOnFunction - Run the FunctionPassManager full of
597/// just-in-time compilation passes on F, hopefully filling in
598/// GlobalAddress[F] with the address of F's machine code.
599///
600void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
601  MutexGuard locked(lock);
602
603  class MCIListener : public JITEventListener {
604    MachineCodeInfo *const MCI;
605   public:
606    MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
607    virtual void NotifyFunctionEmitted(const Function &,
608                                       void *Code, size_t Size,
609                                       const EmittedFunctionDetails &) {
610      MCI->setAddress(Code);
611      MCI->setSize(Size);
612    }
613  };
614  MCIListener MCIL(MCI);
615  if (MCI)
616    RegisterJITEventListener(&MCIL);
617
618  runJITOnFunctionUnlocked(F, locked);
619
620  if (MCI)
621    UnregisterJITEventListener(&MCIL);
622}
623
624void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
625  assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
626
627  jitTheFunction(F, locked);
628
629  // If the function referred to another function that had not yet been
630  // read from bitcode, and we are jitting non-lazily, emit it now.
631  while (!jitstate->getPendingFunctions(locked).empty()) {
632    Function *PF = jitstate->getPendingFunctions(locked).back();
633    jitstate->getPendingFunctions(locked).pop_back();
634
635    assert(!PF->hasAvailableExternallyLinkage() &&
636           "Externally-defined function should not be in pending list.");
637
638    jitTheFunction(PF, locked);
639
640    // Now that the function has been jitted, ask the JITEmitter to rewrite
641    // the stub with real address of the function.
642    updateFunctionStub(PF);
643  }
644}
645
646void JIT::jitTheFunction(Function *F, const MutexGuard &locked) {
647  isAlreadyCodeGenerating = true;
648  jitstate->getPM(locked).run(*F);
649  isAlreadyCodeGenerating = false;
650
651  // clear basic block addresses after this function is done
652  getBasicBlockAddressMap(locked).clear();
653}
654
655/// getPointerToFunction - This method is used to get the address of the
656/// specified function, compiling it if neccesary.
657///
658void *JIT::getPointerToFunction(Function *F) {
659
660  if (void *Addr = getPointerToGlobalIfAvailable(F))
661    return Addr;   // Check if function already code gen'd
662
663  MutexGuard locked(lock);
664
665  // Now that this thread owns the lock, make sure we read in the function if it
666  // exists in this Module.
667  std::string ErrorMsg;
668  if (F->Materialize(&ErrorMsg)) {
669    report_fatal_error("Error reading function '" + F->getName()+
670                      "' from bitcode file: " + ErrorMsg);
671  }
672
673  // ... and check if another thread has already code gen'd the function.
674  if (void *Addr = getPointerToGlobalIfAvailable(F))
675    return Addr;
676
677  if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
678    bool AbortOnFailure = !F->hasExternalWeakLinkage();
679    void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
680    addGlobalMapping(F, Addr);
681    return Addr;
682  }
683
684  runJITOnFunctionUnlocked(F, locked);
685
686  void *Addr = getPointerToGlobalIfAvailable(F);
687  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
688  return Addr;
689}
690
691void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
692  MutexGuard locked(lock);
693
694  BasicBlockAddressMapTy::iterator I =
695    getBasicBlockAddressMap(locked).find(BB);
696  if (I == getBasicBlockAddressMap(locked).end()) {
697    getBasicBlockAddressMap(locked)[BB] = Addr;
698  } else {
699    // ignore repeats: some BBs can be split into few MBBs?
700  }
701}
702
703void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
704  MutexGuard locked(lock);
705  getBasicBlockAddressMap(locked).erase(BB);
706}
707
708void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
709  // make sure it's function is compiled by JIT
710  (void)getPointerToFunction(BB->getParent());
711
712  // resolve basic block address
713  MutexGuard locked(lock);
714
715  BasicBlockAddressMapTy::iterator I =
716    getBasicBlockAddressMap(locked).find(BB);
717  if (I != getBasicBlockAddressMap(locked).end()) {
718    return I->second;
719  } else {
720    assert(0 && "JIT does not have BB address for address-of-label, was"
721           " it eliminated by optimizer?");
722    return 0;
723  }
724}
725
726/// getOrEmitGlobalVariable - Return the address of the specified global
727/// variable, possibly emitting it to memory if needed.  This is used by the
728/// Emitter.
729void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
730  MutexGuard locked(lock);
731
732  void *Ptr = getPointerToGlobalIfAvailable(GV);
733  if (Ptr) return Ptr;
734
735  // If the global is external, just remember the address.
736  if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
737#if HAVE___DSO_HANDLE
738    if (GV->getName() == "__dso_handle")
739      return (void*)&__dso_handle;
740#endif
741    Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
742    if (Ptr == 0) {
743      report_fatal_error("Could not resolve external global address: "
744                        +GV->getName());
745    }
746    addGlobalMapping(GV, Ptr);
747  } else {
748    // If the global hasn't been emitted to memory yet, allocate space and
749    // emit it into memory.
750    Ptr = getMemoryForGV(GV);
751    addGlobalMapping(GV, Ptr);
752    EmitGlobalVariable(GV);  // Initialize the variable.
753  }
754  return Ptr;
755}
756
757/// recompileAndRelinkFunction - This method is used to force a function
758/// which has already been compiled, to be compiled again, possibly
759/// after it has been modified. Then the entry to the old copy is overwritten
760/// with a branch to the new copy. If there was no old copy, this acts
761/// just like JIT::getPointerToFunction().
762///
763void *JIT::recompileAndRelinkFunction(Function *F) {
764  void *OldAddr = getPointerToGlobalIfAvailable(F);
765
766  // If it's not already compiled there is no reason to patch it up.
767  if (OldAddr == 0) { return getPointerToFunction(F); }
768
769  // Delete the old function mapping.
770  addGlobalMapping(F, 0);
771
772  // Recodegen the function
773  runJITOnFunction(F);
774
775  // Update state, forward the old function to the new function.
776  void *Addr = getPointerToGlobalIfAvailable(F);
777  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
778  TJI.replaceMachineCodeForFunction(OldAddr, Addr);
779  return Addr;
780}
781
782/// getMemoryForGV - This method abstracts memory allocation of global
783/// variable so that the JIT can allocate thread local variables depending
784/// on the target.
785///
786char* JIT::getMemoryForGV(const GlobalVariable* GV) {
787  char *Ptr;
788
789  // GlobalVariable's which are not "constant" will cause trouble in a server
790  // situation. It's returned in the same block of memory as code which may
791  // not be writable.
792  if (isGVCompilationDisabled() && !GV->isConstant()) {
793    report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
794  }
795
796  // Some applications require globals and code to live together, so they may
797  // be allocated into the same buffer, but in general globals are allocated
798  // through the memory manager which puts them near the code but not in the
799  // same buffer.
800  const Type *GlobalType = GV->getType()->getElementType();
801  size_t S = getTargetData()->getTypeAllocSize(GlobalType);
802  size_t A = getTargetData()->getPreferredAlignment(GV);
803  if (GV->isThreadLocal()) {
804    MutexGuard locked(lock);
805    Ptr = TJI.allocateThreadLocalMemory(S);
806  } else if (TJI.allocateSeparateGVMemory()) {
807    if (A <= 8) {
808      Ptr = (char*)malloc(S);
809    } else {
810      // Allocate S+A bytes of memory, then use an aligned pointer within that
811      // space.
812      Ptr = (char*)malloc(S+A);
813      unsigned MisAligned = ((intptr_t)Ptr & (A-1));
814      Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
815    }
816  } else if (AllocateGVsWithCode) {
817    Ptr = (char*)JCE->allocateSpace(S, A);
818  } else {
819    Ptr = (char*)JCE->allocateGlobal(S, A);
820  }
821  return Ptr;
822}
823
824void JIT::addPendingFunction(Function *F) {
825  MutexGuard locked(lock);
826  jitstate->getPendingFunctions(locked).push_back(F);
827}
828
829
830JITEventListener::~JITEventListener() {}
831