JIT.cpp revision 858143816d43e58b17bfd11cb1b57afbd7f0f893
1//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tool implements a just-in-time compiler for LLVM, allowing direct
11// execution of LLVM bitcode in an efficient manner.
12//
13//===----------------------------------------------------------------------===//
14
15#include "JIT.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/Instructions.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/CodeGen/JITCodeEmitter.h"
23#include "llvm/CodeGen/MachineCodeInfo.h"
24#include "llvm/ExecutionEngine/GenericValue.h"
25#include "llvm/ExecutionEngine/JITEventListener.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Target/TargetJITInfo.h"
29#include "llvm/Support/Dwarf.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/ManagedStatic.h"
32#include "llvm/Support/MutexGuard.h"
33#include "llvm/Support/DynamicLibrary.h"
34#include "llvm/Config/config.h"
35
36using namespace llvm;
37
38#ifdef __APPLE__
39// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
40// of atexit). It passes the address of linker generated symbol __dso_handle
41// to the function.
42// This configuration change happened at version 5330.
43# include <AvailabilityMacros.h>
44# if defined(MAC_OS_X_VERSION_10_4) && \
45     ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
46      (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
47       __APPLE_CC__ >= 5330))
48#  ifndef HAVE___DSO_HANDLE
49#   define HAVE___DSO_HANDLE 1
50#  endif
51# endif
52#endif
53
54#if HAVE___DSO_HANDLE
55extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
56#endif
57
58namespace {
59
60static struct RegisterJIT {
61  RegisterJIT() { JIT::Register(); }
62} JITRegistrator;
63
64}
65
66extern "C" void LLVMLinkInJIT() {
67}
68
69// Determine whether we can register EH tables.
70#if (defined(__GNUC__) && !defined(__ARM_EABI__) && \
71     !defined(__USING_SJLJ_EXCEPTIONS__))
72#define HAVE_EHTABLE_SUPPORT 1
73#else
74#define HAVE_EHTABLE_SUPPORT 0
75#endif
76
77#if HAVE_EHTABLE_SUPPORT
78
79// libgcc defines the __register_frame function to dynamically register new
80// dwarf frames for exception handling. This functionality is not portable
81// across compilers and is only provided by GCC. We use the __register_frame
82// function here so that code generated by the JIT cooperates with the unwinding
83// runtime of libgcc. When JITting with exception handling enable, LLVM
84// generates dwarf frames and registers it to libgcc with __register_frame.
85//
86// The __register_frame function works with Linux.
87//
88// Unfortunately, this functionality seems to be in libgcc after the unwinding
89// library of libgcc for darwin was written. The code for darwin overwrites the
90// value updated by __register_frame with a value fetched with "keymgr".
91// "keymgr" is an obsolete functionality, which should be rewritten some day.
92// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
93// need a workaround in LLVM which uses the "keymgr" to dynamically modify the
94// values of an opaque key, used by libgcc to find dwarf tables.
95
96extern "C" void __register_frame(void*);
97extern "C" void __deregister_frame(void*);
98
99#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
100# define USE_KEYMGR 1
101#else
102# define USE_KEYMGR 0
103#endif
104
105#if USE_KEYMGR
106
107namespace {
108
109// LibgccObject - This is the structure defined in libgcc. There is no #include
110// provided for this structure, so we also define it here. libgcc calls it
111// "struct object". The structure is undocumented in libgcc.
112struct LibgccObject {
113  void *unused1;
114  void *unused2;
115  void *unused3;
116
117  /// frame - Pointer to the exception table.
118  void *frame;
119
120  /// encoding -  The encoding of the object?
121  union {
122    struct {
123      unsigned long sorted : 1;
124      unsigned long from_array : 1;
125      unsigned long mixed_encoding : 1;
126      unsigned long encoding : 8;
127      unsigned long count : 21;
128    } b;
129    size_t i;
130  } encoding;
131
132  /// fde_end - libgcc defines this field only if some macro is defined. We
133  /// include this field even if it may not there, to make libgcc happy.
134  char *fde_end;
135
136  /// next - At least we know it's a chained list!
137  struct LibgccObject *next;
138};
139
140// "kemgr" stuff. Apparently, all frame tables are stored there.
141extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
142extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
143#define KEYMGR_GCC3_DW2_OBJ_LIST        302     /* Dwarf2 object list  */
144
145/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
146/// probably contains all dwarf tables that are loaded.
147struct LibgccObjectInfo {
148
149  /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
150  ///
151  struct LibgccObject* seenObjects;
152
153  /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
154  ///
155  struct LibgccObject* unseenObjects;
156
157  unsigned unused[2];
158};
159
160/// darwin_register_frame - Since __register_frame does not work with darwin's
161/// libgcc,we provide our own function, which "tricks" libgcc by modifying the
162/// "Dwarf2 object list" key.
163void DarwinRegisterFrame(void* FrameBegin) {
164  // Get the key.
165  LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
166    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
167  assert(LOI && "This should be preallocated by the runtime");
168
169  // Allocate a new LibgccObject to represent this frame. Deallocation of this
170  // object may be impossible: since darwin code in libgcc was written after
171  // the ability to dynamically register frames, things may crash if we
172  // deallocate it.
173  struct LibgccObject* ob = (struct LibgccObject*)
174    malloc(sizeof(struct LibgccObject));
175
176  // Do like libgcc for the values of the field.
177  ob->unused1 = (void *)-1;
178  ob->unused2 = 0;
179  ob->unused3 = 0;
180  ob->frame = FrameBegin;
181  ob->encoding.i = 0;
182  ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
183
184  // Put the info on both places, as libgcc uses the first or the second
185  // field. Note that we rely on having two pointers here. If fde_end was a
186  // char, things would get complicated.
187  ob->fde_end = (char*)LOI->unseenObjects;
188  ob->next = LOI->unseenObjects;
189
190  // Update the key's unseenObjects list.
191  LOI->unseenObjects = ob;
192
193  // Finally update the "key". Apparently, libgcc requires it.
194  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
195                                         LOI);
196
197}
198
199}
200#endif // __APPLE__
201#endif // HAVE_EHTABLE_SUPPORT
202
203/// createJIT - This is the factory method for creating a JIT for the current
204/// machine, it does not fall back to the interpreter.  This takes ownership
205/// of the module.
206ExecutionEngine *JIT::createJIT(Module *M,
207                                std::string *ErrorStr,
208                                JITMemoryManager *JMM,
209                                bool GVsWithCode,
210                                TargetMachine *TM) {
211  // Try to register the program as a source of symbols to resolve against.
212  //
213  // FIXME: Don't do this here.
214  sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
215
216  // If the target supports JIT code generation, create the JIT.
217  if (TargetJITInfo *TJ = TM->getJITInfo()) {
218    return new JIT(M, *TM, *TJ, JMM, GVsWithCode);
219  } else {
220    if (ErrorStr)
221      *ErrorStr = "target does not support JIT code generation";
222    return 0;
223  }
224}
225
226namespace {
227/// This class supports the global getPointerToNamedFunction(), which allows
228/// bugpoint or gdb users to search for a function by name without any context.
229class JitPool {
230  SmallPtrSet<JIT*, 1> JITs;  // Optimize for process containing just 1 JIT.
231  mutable sys::Mutex Lock;
232public:
233  void Add(JIT *jit) {
234    MutexGuard guard(Lock);
235    JITs.insert(jit);
236  }
237  void Remove(JIT *jit) {
238    MutexGuard guard(Lock);
239    JITs.erase(jit);
240  }
241  void *getPointerToNamedFunction(const char *Name) const {
242    MutexGuard guard(Lock);
243    assert(JITs.size() != 0 && "No Jit registered");
244    //search function in every instance of JIT
245    for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
246           end = JITs.end();
247         Jit != end; ++Jit) {
248      if (Function *F = (*Jit)->FindFunctionNamed(Name))
249        return (*Jit)->getPointerToFunction(F);
250    }
251    // The function is not available : fallback on the first created (will
252    // search in symbol of the current program/library)
253    return (*JITs.begin())->getPointerToNamedFunction(Name);
254  }
255};
256ManagedStatic<JitPool> AllJits;
257}
258extern "C" {
259  // getPointerToNamedFunction - This function is used as a global wrapper to
260  // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
261  // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
262  // need to resolve function(s) that are being mis-codegenerated, so we need to
263  // resolve their addresses at runtime, and this is the way to do it.
264  void *getPointerToNamedFunction(const char *Name) {
265    return AllJits->getPointerToNamedFunction(Name);
266  }
267}
268
269JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
270         JITMemoryManager *JMM, bool GVsWithCode)
271  : ExecutionEngine(M), TM(tm), TJI(tji), AllocateGVsWithCode(GVsWithCode),
272    isAlreadyCodeGenerating(false) {
273  setTargetData(TM.getTargetData());
274
275  jitstate = new JITState(M);
276
277  // Initialize JCE
278  JCE = createEmitter(*this, JMM, TM);
279
280  // Register in global list of all JITs.
281  AllJits->Add(this);
282
283  // Add target data
284  MutexGuard locked(lock);
285  FunctionPassManager &PM = jitstate->getPM(locked);
286  PM.add(new TargetData(*TM.getTargetData()));
287
288  // Turn the machine code intermediate representation into bytes in memory that
289  // may be executed.
290  if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
291    report_fatal_error("Target does not support machine code emission!");
292  }
293
294  // Register routine for informing unwinding runtime about new EH frames
295#if HAVE_EHTABLE_SUPPORT
296#if USE_KEYMGR
297  struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
298    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
299
300  // The key is created on demand, and libgcc creates it the first time an
301  // exception occurs. Since we need the key to register frames, we create
302  // it now.
303  if (!LOI)
304    LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
305  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
306  InstallExceptionTableRegister(DarwinRegisterFrame);
307  // Not sure about how to deregister on Darwin.
308#else
309  InstallExceptionTableRegister(__register_frame);
310  InstallExceptionTableDeregister(__deregister_frame);
311#endif // __APPLE__
312#endif // HAVE_EHTABLE_SUPPORT
313
314  // Initialize passes.
315  PM.doInitialization();
316}
317
318JIT::~JIT() {
319  // Unregister all exception tables registered by this JIT.
320  DeregisterAllTables();
321  // Cleanup.
322  AllJits->Remove(this);
323  delete jitstate;
324  delete JCE;
325  delete &TM;
326}
327
328/// addModule - Add a new Module to the JIT.  If we previously removed the last
329/// Module, we need re-initialize jitstate with a valid Module.
330void JIT::addModule(Module *M) {
331  MutexGuard locked(lock);
332
333  if (Modules.empty()) {
334    assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
335
336    jitstate = new JITState(M);
337
338    FunctionPassManager &PM = jitstate->getPM(locked);
339    PM.add(new TargetData(*TM.getTargetData()));
340
341    // Turn the machine code intermediate representation into bytes in memory
342    // that may be executed.
343    if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
344      report_fatal_error("Target does not support machine code emission!");
345    }
346
347    // Initialize passes.
348    PM.doInitialization();
349  }
350
351  ExecutionEngine::addModule(M);
352}
353
354/// removeModule - If we are removing the last Module, invalidate the jitstate
355/// since the PassManager it contains references a released Module.
356bool JIT::removeModule(Module *M) {
357  bool result = ExecutionEngine::removeModule(M);
358
359  MutexGuard locked(lock);
360
361  if (jitstate->getModule() == M) {
362    delete jitstate;
363    jitstate = 0;
364  }
365
366  if (!jitstate && !Modules.empty()) {
367    jitstate = new JITState(Modules[0]);
368
369    FunctionPassManager &PM = jitstate->getPM(locked);
370    PM.add(new TargetData(*TM.getTargetData()));
371
372    // Turn the machine code intermediate representation into bytes in memory
373    // that may be executed.
374    if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
375      report_fatal_error("Target does not support machine code emission!");
376    }
377
378    // Initialize passes.
379    PM.doInitialization();
380  }
381  return result;
382}
383
384/// run - Start execution with the specified function and arguments.
385///
386GenericValue JIT::runFunction(Function *F,
387                              const std::vector<GenericValue> &ArgValues) {
388  assert(F && "Function *F was null at entry to run()");
389
390  void *FPtr = getPointerToFunction(F);
391  assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
392  FunctionType *FTy = F->getFunctionType();
393  Type *RetTy = FTy->getReturnType();
394
395  assert((FTy->getNumParams() == ArgValues.size() ||
396          (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
397         "Wrong number of arguments passed into function!");
398  assert(FTy->getNumParams() == ArgValues.size() &&
399         "This doesn't support passing arguments through varargs (yet)!");
400
401  // Handle some common cases first.  These cases correspond to common `main'
402  // prototypes.
403  if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
404    switch (ArgValues.size()) {
405    case 3:
406      if (FTy->getParamType(0)->isIntegerTy(32) &&
407          FTy->getParamType(1)->isPointerTy() &&
408          FTy->getParamType(2)->isPointerTy()) {
409        int (*PF)(int, char **, const char **) =
410          (int(*)(int, char **, const char **))(intptr_t)FPtr;
411
412        // Call the function.
413        GenericValue rv;
414        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
415                                 (char **)GVTOP(ArgValues[1]),
416                                 (const char **)GVTOP(ArgValues[2])));
417        return rv;
418      }
419      break;
420    case 2:
421      if (FTy->getParamType(0)->isIntegerTy(32) &&
422          FTy->getParamType(1)->isPointerTy()) {
423        int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
424
425        // Call the function.
426        GenericValue rv;
427        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
428                                 (char **)GVTOP(ArgValues[1])));
429        return rv;
430      }
431      break;
432    case 1:
433      if (FTy->getNumParams() == 1 &&
434          FTy->getParamType(0)->isIntegerTy(32)) {
435        GenericValue rv;
436        int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
437        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
438        return rv;
439      }
440      break;
441    }
442  }
443
444  // Handle cases where no arguments are passed first.
445  if (ArgValues.empty()) {
446    GenericValue rv;
447    switch (RetTy->getTypeID()) {
448    default: llvm_unreachable("Unknown return type for function call!");
449    case Type::IntegerTyID: {
450      unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
451      if (BitWidth == 1)
452        rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
453      else if (BitWidth <= 8)
454        rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
455      else if (BitWidth <= 16)
456        rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
457      else if (BitWidth <= 32)
458        rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
459      else if (BitWidth <= 64)
460        rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
461      else
462        llvm_unreachable("Integer types > 64 bits not supported");
463      return rv;
464    }
465    case Type::VoidTyID:
466      rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
467      return rv;
468    case Type::FloatTyID:
469      rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
470      return rv;
471    case Type::DoubleTyID:
472      rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
473      return rv;
474    case Type::X86_FP80TyID:
475    case Type::FP128TyID:
476    case Type::PPC_FP128TyID:
477      llvm_unreachable("long double not supported yet");
478    case Type::PointerTyID:
479      return PTOGV(((void*(*)())(intptr_t)FPtr)());
480    }
481  }
482
483  // Okay, this is not one of our quick and easy cases.  Because we don't have a
484  // full FFI, we have to codegen a nullary stub function that just calls the
485  // function we are interested in, passing in constants for all of the
486  // arguments.  Make this function and return.
487
488  // First, create the function.
489  FunctionType *STy=FunctionType::get(RetTy, false);
490  Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
491                                    F->getParent());
492
493  // Insert a basic block.
494  BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
495
496  // Convert all of the GenericValue arguments over to constants.  Note that we
497  // currently don't support varargs.
498  SmallVector<Value*, 8> Args;
499  for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
500    Constant *C = 0;
501    Type *ArgTy = FTy->getParamType(i);
502    const GenericValue &AV = ArgValues[i];
503    switch (ArgTy->getTypeID()) {
504    default: llvm_unreachable("Unknown argument type for function call!");
505    case Type::IntegerTyID:
506        C = ConstantInt::get(F->getContext(), AV.IntVal);
507        break;
508    case Type::FloatTyID:
509        C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
510        break;
511    case Type::DoubleTyID:
512        C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
513        break;
514    case Type::PPC_FP128TyID:
515    case Type::X86_FP80TyID:
516    case Type::FP128TyID:
517        C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
518        break;
519    case Type::PointerTyID:
520      void *ArgPtr = GVTOP(AV);
521      if (sizeof(void*) == 4)
522        C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
523                             (int)(intptr_t)ArgPtr);
524      else
525        C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
526                             (intptr_t)ArgPtr);
527      // Cast the integer to pointer
528      C = ConstantExpr::getIntToPtr(C, ArgTy);
529      break;
530    }
531    Args.push_back(C);
532  }
533
534  CallInst *TheCall = CallInst::Create(F, Args, "", StubBB);
535  TheCall->setCallingConv(F->getCallingConv());
536  TheCall->setTailCall();
537  if (!TheCall->getType()->isVoidTy())
538    // Return result of the call.
539    ReturnInst::Create(F->getContext(), TheCall, StubBB);
540  else
541    ReturnInst::Create(F->getContext(), StubBB);           // Just return void.
542
543  // Finally, call our nullary stub function.
544  GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
545  // Erase it, since no other function can have a reference to it.
546  Stub->eraseFromParent();
547  // And return the result.
548  return Result;
549}
550
551void JIT::RegisterJITEventListener(JITEventListener *L) {
552  if (L == NULL)
553    return;
554  MutexGuard locked(lock);
555  EventListeners.push_back(L);
556}
557void JIT::UnregisterJITEventListener(JITEventListener *L) {
558  if (L == NULL)
559    return;
560  MutexGuard locked(lock);
561  std::vector<JITEventListener*>::reverse_iterator I=
562      std::find(EventListeners.rbegin(), EventListeners.rend(), L);
563  if (I != EventListeners.rend()) {
564    std::swap(*I, EventListeners.back());
565    EventListeners.pop_back();
566  }
567}
568void JIT::NotifyFunctionEmitted(
569    const Function &F,
570    void *Code, size_t Size,
571    const JITEvent_EmittedFunctionDetails &Details) {
572  MutexGuard locked(lock);
573  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
574    EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
575  }
576}
577
578void JIT::NotifyFreeingMachineCode(void *OldPtr) {
579  MutexGuard locked(lock);
580  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
581    EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
582  }
583}
584
585/// runJITOnFunction - Run the FunctionPassManager full of
586/// just-in-time compilation passes on F, hopefully filling in
587/// GlobalAddress[F] with the address of F's machine code.
588///
589void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
590  MutexGuard locked(lock);
591
592  class MCIListener : public JITEventListener {
593    MachineCodeInfo *const MCI;
594   public:
595    MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
596    virtual void NotifyFunctionEmitted(const Function &,
597                                       void *Code, size_t Size,
598                                       const EmittedFunctionDetails &) {
599      MCI->setAddress(Code);
600      MCI->setSize(Size);
601    }
602  };
603  MCIListener MCIL(MCI);
604  if (MCI)
605    RegisterJITEventListener(&MCIL);
606
607  runJITOnFunctionUnlocked(F, locked);
608
609  if (MCI)
610    UnregisterJITEventListener(&MCIL);
611}
612
613void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
614  assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
615
616  jitTheFunction(F, locked);
617
618  // If the function referred to another function that had not yet been
619  // read from bitcode, and we are jitting non-lazily, emit it now.
620  while (!jitstate->getPendingFunctions(locked).empty()) {
621    Function *PF = jitstate->getPendingFunctions(locked).back();
622    jitstate->getPendingFunctions(locked).pop_back();
623
624    assert(!PF->hasAvailableExternallyLinkage() &&
625           "Externally-defined function should not be in pending list.");
626
627    jitTheFunction(PF, locked);
628
629    // Now that the function has been jitted, ask the JITEmitter to rewrite
630    // the stub with real address of the function.
631    updateFunctionStub(PF);
632  }
633}
634
635void JIT::jitTheFunction(Function *F, const MutexGuard &locked) {
636  isAlreadyCodeGenerating = true;
637  jitstate->getPM(locked).run(*F);
638  isAlreadyCodeGenerating = false;
639
640  // clear basic block addresses after this function is done
641  getBasicBlockAddressMap(locked).clear();
642}
643
644/// getPointerToFunction - This method is used to get the address of the
645/// specified function, compiling it if necessary.
646///
647void *JIT::getPointerToFunction(Function *F) {
648
649  if (void *Addr = getPointerToGlobalIfAvailable(F))
650    return Addr;   // Check if function already code gen'd
651
652  MutexGuard locked(lock);
653
654  // Now that this thread owns the lock, make sure we read in the function if it
655  // exists in this Module.
656  std::string ErrorMsg;
657  if (F->Materialize(&ErrorMsg)) {
658    report_fatal_error("Error reading function '" + F->getName()+
659                      "' from bitcode file: " + ErrorMsg);
660  }
661
662  // ... and check if another thread has already code gen'd the function.
663  if (void *Addr = getPointerToGlobalIfAvailable(F))
664    return Addr;
665
666  if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
667    bool AbortOnFailure = !F->hasExternalWeakLinkage();
668    void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
669    addGlobalMapping(F, Addr);
670    return Addr;
671  }
672
673  runJITOnFunctionUnlocked(F, locked);
674
675  void *Addr = getPointerToGlobalIfAvailable(F);
676  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
677  return Addr;
678}
679
680void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
681  MutexGuard locked(lock);
682
683  BasicBlockAddressMapTy::iterator I =
684    getBasicBlockAddressMap(locked).find(BB);
685  if (I == getBasicBlockAddressMap(locked).end()) {
686    getBasicBlockAddressMap(locked)[BB] = Addr;
687  } else {
688    // ignore repeats: some BBs can be split into few MBBs?
689  }
690}
691
692void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
693  MutexGuard locked(lock);
694  getBasicBlockAddressMap(locked).erase(BB);
695}
696
697void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
698  // make sure it's function is compiled by JIT
699  (void)getPointerToFunction(BB->getParent());
700
701  // resolve basic block address
702  MutexGuard locked(lock);
703
704  BasicBlockAddressMapTy::iterator I =
705    getBasicBlockAddressMap(locked).find(BB);
706  if (I != getBasicBlockAddressMap(locked).end()) {
707    return I->second;
708  } else {
709    llvm_unreachable("JIT does not have BB address for address-of-label, was"
710                     " it eliminated by optimizer?");
711  }
712}
713
714/// getOrEmitGlobalVariable - Return the address of the specified global
715/// variable, possibly emitting it to memory if needed.  This is used by the
716/// Emitter.
717void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
718  MutexGuard locked(lock);
719
720  void *Ptr = getPointerToGlobalIfAvailable(GV);
721  if (Ptr) return Ptr;
722
723  // If the global is external, just remember the address.
724  if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
725#if HAVE___DSO_HANDLE
726    if (GV->getName() == "__dso_handle")
727      return (void*)&__dso_handle;
728#endif
729    Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
730    if (Ptr == 0) {
731      report_fatal_error("Could not resolve external global address: "
732                        +GV->getName());
733    }
734    addGlobalMapping(GV, Ptr);
735  } else {
736    // If the global hasn't been emitted to memory yet, allocate space and
737    // emit it into memory.
738    Ptr = getMemoryForGV(GV);
739    addGlobalMapping(GV, Ptr);
740    EmitGlobalVariable(GV);  // Initialize the variable.
741  }
742  return Ptr;
743}
744
745/// recompileAndRelinkFunction - This method is used to force a function
746/// which has already been compiled, to be compiled again, possibly
747/// after it has been modified. Then the entry to the old copy is overwritten
748/// with a branch to the new copy. If there was no old copy, this acts
749/// just like JIT::getPointerToFunction().
750///
751void *JIT::recompileAndRelinkFunction(Function *F) {
752  void *OldAddr = getPointerToGlobalIfAvailable(F);
753
754  // If it's not already compiled there is no reason to patch it up.
755  if (OldAddr == 0) { return getPointerToFunction(F); }
756
757  // Delete the old function mapping.
758  addGlobalMapping(F, 0);
759
760  // Recodegen the function
761  runJITOnFunction(F);
762
763  // Update state, forward the old function to the new function.
764  void *Addr = getPointerToGlobalIfAvailable(F);
765  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
766  TJI.replaceMachineCodeForFunction(OldAddr, Addr);
767  return Addr;
768}
769
770/// getMemoryForGV - This method abstracts memory allocation of global
771/// variable so that the JIT can allocate thread local variables depending
772/// on the target.
773///
774char* JIT::getMemoryForGV(const GlobalVariable* GV) {
775  char *Ptr;
776
777  // GlobalVariable's which are not "constant" will cause trouble in a server
778  // situation. It's returned in the same block of memory as code which may
779  // not be writable.
780  if (isGVCompilationDisabled() && !GV->isConstant()) {
781    report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
782  }
783
784  // Some applications require globals and code to live together, so they may
785  // be allocated into the same buffer, but in general globals are allocated
786  // through the memory manager which puts them near the code but not in the
787  // same buffer.
788  Type *GlobalType = GV->getType()->getElementType();
789  size_t S = getTargetData()->getTypeAllocSize(GlobalType);
790  size_t A = getTargetData()->getPreferredAlignment(GV);
791  if (GV->isThreadLocal()) {
792    MutexGuard locked(lock);
793    Ptr = TJI.allocateThreadLocalMemory(S);
794  } else if (TJI.allocateSeparateGVMemory()) {
795    if (A <= 8) {
796      Ptr = (char*)malloc(S);
797    } else {
798      // Allocate S+A bytes of memory, then use an aligned pointer within that
799      // space.
800      Ptr = (char*)malloc(S+A);
801      unsigned MisAligned = ((intptr_t)Ptr & (A-1));
802      Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
803    }
804  } else if (AllocateGVsWithCode) {
805    Ptr = (char*)JCE->allocateSpace(S, A);
806  } else {
807    Ptr = (char*)JCE->allocateGlobal(S, A);
808  }
809  return Ptr;
810}
811
812void JIT::addPendingFunction(Function *F) {
813  MutexGuard locked(lock);
814  jitstate->getPendingFunctions(locked).push_back(F);
815}
816
817
818JITEventListener::~JITEventListener() {}
819