AArch64ISelLowering.cpp revision 225ed7069caae9ece32d8bd3d15c6e41e21cc04b
1//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AArch64 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "aarch64-isel"
16#include "AArch64.h"
17#include "AArch64ISelLowering.h"
18#include "AArch64MachineFunctionInfo.h"
19#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "Utils/AArch64BaseInfo.h"
22#include "llvm/CodeGen/Analysis.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28#include "llvm/IR/CallingConv.h"
29
30using namespace llvm;
31
32static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
33  const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
34
35  if (Subtarget->isTargetLinux())
36    return new AArch64LinuxTargetObjectFile();
37  if (Subtarget->isTargetELF())
38    return new TargetLoweringObjectFileELF();
39  llvm_unreachable("unknown subtarget type");
40}
41
42
43AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
44  : TargetLowering(TM, createTLOF(TM)),
45    Subtarget(&TM.getSubtarget<AArch64Subtarget>()),
46    RegInfo(TM.getRegisterInfo()),
47    Itins(TM.getInstrItineraryData()) {
48
49  // SIMD compares set the entire lane's bits to 1
50  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
51
52  // Scalar register <-> type mapping
53  addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
54  addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
55  addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
56  addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
57  addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
58  addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
59
60  computeRegisterProperties();
61
62  // We combine OR nodes for bitfield and NEON BSL operations.
63  setTargetDAGCombine(ISD::OR);
64
65  setTargetDAGCombine(ISD::AND);
66  setTargetDAGCombine(ISD::SRA);
67
68  // AArch64 does not have i1 loads, or much of anything for i1 really.
69  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
70  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
71  setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
72
73  setStackPointerRegisterToSaveRestore(AArch64::XSP);
74  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
75  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
76  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
77
78  // We'll lower globals to wrappers for selection.
79  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
80  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
81
82  // A64 instructions have the comparison predicate attached to the user of the
83  // result, but having a separate comparison is valuable for matching.
84  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
85  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
86  setOperationAction(ISD::BR_CC, MVT::f32, Custom);
87  setOperationAction(ISD::BR_CC, MVT::f64, Custom);
88
89  setOperationAction(ISD::SELECT, MVT::i32, Custom);
90  setOperationAction(ISD::SELECT, MVT::i64, Custom);
91  setOperationAction(ISD::SELECT, MVT::f32, Custom);
92  setOperationAction(ISD::SELECT, MVT::f64, Custom);
93
94  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
95  setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
96  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
97  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
98
99  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
100
101  setOperationAction(ISD::SETCC, MVT::i32, Custom);
102  setOperationAction(ISD::SETCC, MVT::i64, Custom);
103  setOperationAction(ISD::SETCC, MVT::f32, Custom);
104  setOperationAction(ISD::SETCC, MVT::f64, Custom);
105
106  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
107  setOperationAction(ISD::JumpTable, MVT::i32, Custom);
108  setOperationAction(ISD::JumpTable, MVT::i64, Custom);
109
110  setOperationAction(ISD::VASTART, MVT::Other, Custom);
111  setOperationAction(ISD::VACOPY, MVT::Other, Custom);
112  setOperationAction(ISD::VAEND, MVT::Other, Expand);
113  setOperationAction(ISD::VAARG, MVT::Other, Expand);
114
115  setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
116
117  setOperationAction(ISD::ROTL, MVT::i32, Expand);
118  setOperationAction(ISD::ROTL, MVT::i64, Expand);
119
120  setOperationAction(ISD::UREM, MVT::i32, Expand);
121  setOperationAction(ISD::UREM, MVT::i64, Expand);
122  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
123  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
124
125  setOperationAction(ISD::SREM, MVT::i32, Expand);
126  setOperationAction(ISD::SREM, MVT::i64, Expand);
127  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
128  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
129
130  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
131  setOperationAction(ISD::CTPOP, MVT::i64, Expand);
132
133  // Legal floating-point operations.
134  setOperationAction(ISD::FABS, MVT::f32, Legal);
135  setOperationAction(ISD::FABS, MVT::f64, Legal);
136
137  setOperationAction(ISD::FCEIL, MVT::f32, Legal);
138  setOperationAction(ISD::FCEIL, MVT::f64, Legal);
139
140  setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
141  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
142
143  setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
144  setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
145
146  setOperationAction(ISD::FNEG, MVT::f32, Legal);
147  setOperationAction(ISD::FNEG, MVT::f64, Legal);
148
149  setOperationAction(ISD::FRINT, MVT::f32, Legal);
150  setOperationAction(ISD::FRINT, MVT::f64, Legal);
151
152  setOperationAction(ISD::FSQRT, MVT::f32, Legal);
153  setOperationAction(ISD::FSQRT, MVT::f64, Legal);
154
155  setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
156  setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
157
158  setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
159  setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
160  setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
161
162  // Illegal floating-point operations.
163  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
164  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
165
166  setOperationAction(ISD::FCOS, MVT::f32, Expand);
167  setOperationAction(ISD::FCOS, MVT::f64, Expand);
168
169  setOperationAction(ISD::FEXP, MVT::f32, Expand);
170  setOperationAction(ISD::FEXP, MVT::f64, Expand);
171
172  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
173  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
174
175  setOperationAction(ISD::FLOG, MVT::f32, Expand);
176  setOperationAction(ISD::FLOG, MVT::f64, Expand);
177
178  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
179  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
180
181  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
182  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
183
184  setOperationAction(ISD::FPOW, MVT::f32, Expand);
185  setOperationAction(ISD::FPOW, MVT::f64, Expand);
186
187  setOperationAction(ISD::FPOWI, MVT::f32, Expand);
188  setOperationAction(ISD::FPOWI, MVT::f64, Expand);
189
190  setOperationAction(ISD::FREM, MVT::f32, Expand);
191  setOperationAction(ISD::FREM, MVT::f64, Expand);
192
193  setOperationAction(ISD::FSIN, MVT::f32, Expand);
194  setOperationAction(ISD::FSIN, MVT::f64, Expand);
195
196  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
197  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
198
199  // Virtually no operation on f128 is legal, but LLVM can't expand them when
200  // there's a valid register class, so we need custom operations in most cases.
201  setOperationAction(ISD::FABS,       MVT::f128, Expand);
202  setOperationAction(ISD::FADD,       MVT::f128, Custom);
203  setOperationAction(ISD::FCOPYSIGN,  MVT::f128, Expand);
204  setOperationAction(ISD::FCOS,       MVT::f128, Expand);
205  setOperationAction(ISD::FDIV,       MVT::f128, Custom);
206  setOperationAction(ISD::FMA,        MVT::f128, Expand);
207  setOperationAction(ISD::FMUL,       MVT::f128, Custom);
208  setOperationAction(ISD::FNEG,       MVT::f128, Expand);
209  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Expand);
210  setOperationAction(ISD::FP_ROUND,   MVT::f128, Expand);
211  setOperationAction(ISD::FPOW,       MVT::f128, Expand);
212  setOperationAction(ISD::FREM,       MVT::f128, Expand);
213  setOperationAction(ISD::FRINT,      MVT::f128, Expand);
214  setOperationAction(ISD::FSIN,       MVT::f128, Expand);
215  setOperationAction(ISD::FSINCOS,    MVT::f128, Expand);
216  setOperationAction(ISD::FSQRT,      MVT::f128, Expand);
217  setOperationAction(ISD::FSUB,       MVT::f128, Custom);
218  setOperationAction(ISD::FTRUNC,     MVT::f128, Expand);
219  setOperationAction(ISD::SETCC,      MVT::f128, Custom);
220  setOperationAction(ISD::BR_CC,      MVT::f128, Custom);
221  setOperationAction(ISD::SELECT,     MVT::f128, Expand);
222  setOperationAction(ISD::SELECT_CC,  MVT::f128, Custom);
223  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Custom);
224
225  // Lowering for many of the conversions is actually specified by the non-f128
226  // type. The LowerXXX function will be trivial when f128 isn't involved.
227  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
228  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
229  setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
230  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
231  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
232  setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
233  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
234  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
235  setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
236  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
237  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
238  setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
239  setOperationAction(ISD::FP_ROUND,  MVT::f32, Custom);
240  setOperationAction(ISD::FP_ROUND,  MVT::f64, Custom);
241
242  // This prevents LLVM trying to compress double constants into a floating
243  // constant-pool entry and trying to load from there. It's of doubtful benefit
244  // for A64: we'd need LDR followed by FCVT, I believe.
245  setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
246  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
247  setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
248
249  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
250  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
251  setTruncStoreAction(MVT::f128, MVT::f16, Expand);
252  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
253  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
254  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
255
256  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
257  setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
258
259  setExceptionPointerRegister(AArch64::X0);
260  setExceptionSelectorRegister(AArch64::X1);
261}
262
263EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
264  // It's reasonably important that this value matches the "natural" legal
265  // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
266  // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
267  if (!VT.isVector()) return MVT::i32;
268  return VT.changeVectorElementTypeToInteger();
269}
270
271static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
272                                  unsigned &LdrOpc,
273                                  unsigned &StrOpc) {
274  static unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
275                                 AArch64::LDXR_word, AArch64::LDXR_dword};
276  static unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
277                                AArch64::LDAXR_word, AArch64::LDAXR_dword};
278  static unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
279                                  AArch64::STXR_word, AArch64::STXR_dword};
280  static unsigned StoreRels[] = {AArch64::STLXR_byte, AArch64::STLXR_hword,
281                                 AArch64::STLXR_word, AArch64::STLXR_dword};
282
283  unsigned *LoadOps, *StoreOps;
284  if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
285    LoadOps = LoadAcqs;
286  else
287    LoadOps = LoadBares;
288
289  if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
290    StoreOps = StoreRels;
291  else
292    StoreOps = StoreBares;
293
294  assert(isPowerOf2_32(Size) && Size <= 8 &&
295         "unsupported size for atomic binary op!");
296
297  LdrOpc = LoadOps[Log2_32(Size)];
298  StrOpc = StoreOps[Log2_32(Size)];
299}
300
301MachineBasicBlock *
302AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
303                                        unsigned Size,
304                                        unsigned BinOpcode) const {
305  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
306  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
307
308  const BasicBlock *LLVM_BB = BB->getBasicBlock();
309  MachineFunction *MF = BB->getParent();
310  MachineFunction::iterator It = BB;
311  ++It;
312
313  unsigned dest = MI->getOperand(0).getReg();
314  unsigned ptr = MI->getOperand(1).getReg();
315  unsigned incr = MI->getOperand(2).getReg();
316  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
317  DebugLoc dl = MI->getDebugLoc();
318
319  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
320
321  unsigned ldrOpc, strOpc;
322  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
323
324  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
325  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
326  MF->insert(It, loopMBB);
327  MF->insert(It, exitMBB);
328
329  // Transfer the remainder of BB and its successor edges to exitMBB.
330  exitMBB->splice(exitMBB->begin(), BB,
331                  llvm::next(MachineBasicBlock::iterator(MI)),
332                  BB->end());
333  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
334
335  const TargetRegisterClass *TRC
336    = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
337  unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
338
339  //  thisMBB:
340  //   ...
341  //   fallthrough --> loopMBB
342  BB->addSuccessor(loopMBB);
343
344  //  loopMBB:
345  //   ldxr dest, ptr
346  //   <binop> scratch, dest, incr
347  //   stxr stxr_status, scratch, ptr
348  //   cbnz stxr_status, loopMBB
349  //   fallthrough --> exitMBB
350  BB = loopMBB;
351  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
352  if (BinOpcode) {
353    // All arithmetic operations we'll be creating are designed to take an extra
354    // shift or extend operand, which we can conveniently set to zero.
355
356    // Operand order needs to go the other way for NAND.
357    if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
358      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
359        .addReg(incr).addReg(dest).addImm(0);
360    else
361      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
362        .addReg(dest).addReg(incr).addImm(0);
363  }
364
365  // From the stxr, the register is GPR32; from the cmp it's GPR32wsp
366  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
367  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
368
369  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
370  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
371    .addReg(stxr_status).addMBB(loopMBB);
372
373  BB->addSuccessor(loopMBB);
374  BB->addSuccessor(exitMBB);
375
376  //  exitMBB:
377  //   ...
378  BB = exitMBB;
379
380  MI->eraseFromParent();   // The instruction is gone now.
381
382  return BB;
383}
384
385MachineBasicBlock *
386AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
387                                              MachineBasicBlock *BB,
388                                              unsigned Size,
389                                              unsigned CmpOp,
390                                              A64CC::CondCodes Cond) const {
391  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
392
393  const BasicBlock *LLVM_BB = BB->getBasicBlock();
394  MachineFunction *MF = BB->getParent();
395  MachineFunction::iterator It = BB;
396  ++It;
397
398  unsigned dest = MI->getOperand(0).getReg();
399  unsigned ptr = MI->getOperand(1).getReg();
400  unsigned incr = MI->getOperand(2).getReg();
401  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
402
403  unsigned oldval = dest;
404  DebugLoc dl = MI->getDebugLoc();
405
406  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
407  const TargetRegisterClass *TRC, *TRCsp;
408  if (Size == 8) {
409    TRC = &AArch64::GPR64RegClass;
410    TRCsp = &AArch64::GPR64xspRegClass;
411  } else {
412    TRC = &AArch64::GPR32RegClass;
413    TRCsp = &AArch64::GPR32wspRegClass;
414  }
415
416  unsigned ldrOpc, strOpc;
417  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
418
419  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
420  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
421  MF->insert(It, loopMBB);
422  MF->insert(It, exitMBB);
423
424  // Transfer the remainder of BB and its successor edges to exitMBB.
425  exitMBB->splice(exitMBB->begin(), BB,
426                  llvm::next(MachineBasicBlock::iterator(MI)),
427                  BB->end());
428  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
429
430  unsigned scratch = MRI.createVirtualRegister(TRC);
431  MRI.constrainRegClass(scratch, TRCsp);
432
433  //  thisMBB:
434  //   ...
435  //   fallthrough --> loopMBB
436  BB->addSuccessor(loopMBB);
437
438  //  loopMBB:
439  //   ldxr dest, ptr
440  //   cmp incr, dest (, sign extend if necessary)
441  //   csel scratch, dest, incr, cond
442  //   stxr stxr_status, scratch, ptr
443  //   cbnz stxr_status, loopMBB
444  //   fallthrough --> exitMBB
445  BB = loopMBB;
446  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
447
448  // Build compare and cmov instructions.
449  MRI.constrainRegClass(incr, TRCsp);
450  BuildMI(BB, dl, TII->get(CmpOp))
451    .addReg(incr).addReg(oldval).addImm(0);
452
453  BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
454          scratch)
455    .addReg(oldval).addReg(incr).addImm(Cond);
456
457  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
458  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
459
460  BuildMI(BB, dl, TII->get(strOpc), stxr_status)
461    .addReg(scratch).addReg(ptr);
462  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
463    .addReg(stxr_status).addMBB(loopMBB);
464
465  BB->addSuccessor(loopMBB);
466  BB->addSuccessor(exitMBB);
467
468  //  exitMBB:
469  //   ...
470  BB = exitMBB;
471
472  MI->eraseFromParent();   // The instruction is gone now.
473
474  return BB;
475}
476
477MachineBasicBlock *
478AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
479                                         MachineBasicBlock *BB,
480                                         unsigned Size) const {
481  unsigned dest    = MI->getOperand(0).getReg();
482  unsigned ptr     = MI->getOperand(1).getReg();
483  unsigned oldval  = MI->getOperand(2).getReg();
484  unsigned newval  = MI->getOperand(3).getReg();
485  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
486  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
487  DebugLoc dl = MI->getDebugLoc();
488
489  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
490  const TargetRegisterClass *TRCsp;
491  TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
492
493  unsigned ldrOpc, strOpc;
494  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
495
496  MachineFunction *MF = BB->getParent();
497  const BasicBlock *LLVM_BB = BB->getBasicBlock();
498  MachineFunction::iterator It = BB;
499  ++It; // insert the new blocks after the current block
500
501  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
502  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
503  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
504  MF->insert(It, loop1MBB);
505  MF->insert(It, loop2MBB);
506  MF->insert(It, exitMBB);
507
508  // Transfer the remainder of BB and its successor edges to exitMBB.
509  exitMBB->splice(exitMBB->begin(), BB,
510                  llvm::next(MachineBasicBlock::iterator(MI)),
511                  BB->end());
512  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
513
514  //  thisMBB:
515  //   ...
516  //   fallthrough --> loop1MBB
517  BB->addSuccessor(loop1MBB);
518
519  // loop1MBB:
520  //   ldxr dest, [ptr]
521  //   cmp dest, oldval
522  //   b.ne exitMBB
523  BB = loop1MBB;
524  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
525
526  unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
527  MRI.constrainRegClass(dest, TRCsp);
528  BuildMI(BB, dl, TII->get(CmpOp))
529    .addReg(dest).addReg(oldval).addImm(0);
530  BuildMI(BB, dl, TII->get(AArch64::Bcc))
531    .addImm(A64CC::NE).addMBB(exitMBB);
532  BB->addSuccessor(loop2MBB);
533  BB->addSuccessor(exitMBB);
534
535  // loop2MBB:
536  //   strex stxr_status, newval, [ptr]
537  //   cbnz stxr_status, loop1MBB
538  BB = loop2MBB;
539  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
540  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
541
542  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
543  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
544    .addReg(stxr_status).addMBB(loop1MBB);
545  BB->addSuccessor(loop1MBB);
546  BB->addSuccessor(exitMBB);
547
548  //  exitMBB:
549  //   ...
550  BB = exitMBB;
551
552  MI->eraseFromParent();   // The instruction is gone now.
553
554  return BB;
555}
556
557MachineBasicBlock *
558AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
559                                    MachineBasicBlock *MBB) const {
560  // We materialise the F128CSEL pseudo-instruction using conditional branches
561  // and loads, giving an instruciton sequence like:
562  //     str q0, [sp]
563  //     b.ne IfTrue
564  //     b Finish
565  // IfTrue:
566  //     str q1, [sp]
567  // Finish:
568  //     ldr q0, [sp]
569  //
570  // Using virtual registers would probably not be beneficial since COPY
571  // instructions are expensive for f128 (there's no actual instruction to
572  // implement them).
573  //
574  // An alternative would be to do an integer-CSEL on some address. E.g.:
575  //     mov x0, sp
576  //     add x1, sp, #16
577  //     str q0, [x0]
578  //     str q1, [x1]
579  //     csel x0, x0, x1, ne
580  //     ldr q0, [x0]
581  //
582  // It's unclear which approach is actually optimal.
583  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
584  MachineFunction *MF = MBB->getParent();
585  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
586  DebugLoc DL = MI->getDebugLoc();
587  MachineFunction::iterator It = MBB;
588  ++It;
589
590  unsigned DestReg = MI->getOperand(0).getReg();
591  unsigned IfTrueReg = MI->getOperand(1).getReg();
592  unsigned IfFalseReg = MI->getOperand(2).getReg();
593  unsigned CondCode = MI->getOperand(3).getImm();
594  bool NZCVKilled = MI->getOperand(4).isKill();
595
596  MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
597  MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
598  MF->insert(It, TrueBB);
599  MF->insert(It, EndBB);
600
601  // Transfer rest of current basic-block to EndBB
602  EndBB->splice(EndBB->begin(), MBB,
603                llvm::next(MachineBasicBlock::iterator(MI)),
604                MBB->end());
605  EndBB->transferSuccessorsAndUpdatePHIs(MBB);
606
607  // We need somewhere to store the f128 value needed.
608  int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
609
610  //     [... start of incoming MBB ...]
611  //     str qIFFALSE, [sp]
612  //     b.cc IfTrue
613  //     b Done
614  BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
615    .addReg(IfFalseReg)
616    .addFrameIndex(ScratchFI)
617    .addImm(0);
618  BuildMI(MBB, DL, TII->get(AArch64::Bcc))
619    .addImm(CondCode)
620    .addMBB(TrueBB);
621  BuildMI(MBB, DL, TII->get(AArch64::Bimm))
622    .addMBB(EndBB);
623  MBB->addSuccessor(TrueBB);
624  MBB->addSuccessor(EndBB);
625
626  // IfTrue:
627  //     str qIFTRUE, [sp]
628  BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
629    .addReg(IfTrueReg)
630    .addFrameIndex(ScratchFI)
631    .addImm(0);
632
633  // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
634  // blocks.
635  TrueBB->addSuccessor(EndBB);
636
637  // Done:
638  //     ldr qDEST, [sp]
639  //     [... rest of incoming MBB ...]
640  if (!NZCVKilled)
641    EndBB->addLiveIn(AArch64::NZCV);
642  MachineInstr *StartOfEnd = EndBB->begin();
643  BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
644    .addFrameIndex(ScratchFI)
645    .addImm(0);
646
647  MI->eraseFromParent();
648  return EndBB;
649}
650
651MachineBasicBlock *
652AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
653                                                 MachineBasicBlock *MBB) const {
654  switch (MI->getOpcode()) {
655  default: llvm_unreachable("Unhandled instruction with custom inserter");
656  case AArch64::F128CSEL:
657    return EmitF128CSEL(MI, MBB);
658  case AArch64::ATOMIC_LOAD_ADD_I8:
659    return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
660  case AArch64::ATOMIC_LOAD_ADD_I16:
661    return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
662  case AArch64::ATOMIC_LOAD_ADD_I32:
663    return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
664  case AArch64::ATOMIC_LOAD_ADD_I64:
665    return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
666
667  case AArch64::ATOMIC_LOAD_SUB_I8:
668    return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
669  case AArch64::ATOMIC_LOAD_SUB_I16:
670    return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
671  case AArch64::ATOMIC_LOAD_SUB_I32:
672    return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
673  case AArch64::ATOMIC_LOAD_SUB_I64:
674    return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
675
676  case AArch64::ATOMIC_LOAD_AND_I8:
677    return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
678  case AArch64::ATOMIC_LOAD_AND_I16:
679    return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
680  case AArch64::ATOMIC_LOAD_AND_I32:
681    return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
682  case AArch64::ATOMIC_LOAD_AND_I64:
683    return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
684
685  case AArch64::ATOMIC_LOAD_OR_I8:
686    return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
687  case AArch64::ATOMIC_LOAD_OR_I16:
688    return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
689  case AArch64::ATOMIC_LOAD_OR_I32:
690    return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
691  case AArch64::ATOMIC_LOAD_OR_I64:
692    return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
693
694  case AArch64::ATOMIC_LOAD_XOR_I8:
695    return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
696  case AArch64::ATOMIC_LOAD_XOR_I16:
697    return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
698  case AArch64::ATOMIC_LOAD_XOR_I32:
699    return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
700  case AArch64::ATOMIC_LOAD_XOR_I64:
701    return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
702
703  case AArch64::ATOMIC_LOAD_NAND_I8:
704    return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
705  case AArch64::ATOMIC_LOAD_NAND_I16:
706    return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
707  case AArch64::ATOMIC_LOAD_NAND_I32:
708    return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
709  case AArch64::ATOMIC_LOAD_NAND_I64:
710    return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
711
712  case AArch64::ATOMIC_LOAD_MIN_I8:
713    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
714  case AArch64::ATOMIC_LOAD_MIN_I16:
715    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
716  case AArch64::ATOMIC_LOAD_MIN_I32:
717    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
718  case AArch64::ATOMIC_LOAD_MIN_I64:
719    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
720
721  case AArch64::ATOMIC_LOAD_MAX_I8:
722    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
723  case AArch64::ATOMIC_LOAD_MAX_I16:
724    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
725  case AArch64::ATOMIC_LOAD_MAX_I32:
726    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
727  case AArch64::ATOMIC_LOAD_MAX_I64:
728    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
729
730  case AArch64::ATOMIC_LOAD_UMIN_I8:
731    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
732  case AArch64::ATOMIC_LOAD_UMIN_I16:
733    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
734  case AArch64::ATOMIC_LOAD_UMIN_I32:
735    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
736  case AArch64::ATOMIC_LOAD_UMIN_I64:
737    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
738
739  case AArch64::ATOMIC_LOAD_UMAX_I8:
740    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
741  case AArch64::ATOMIC_LOAD_UMAX_I16:
742    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
743  case AArch64::ATOMIC_LOAD_UMAX_I32:
744    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
745  case AArch64::ATOMIC_LOAD_UMAX_I64:
746    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
747
748  case AArch64::ATOMIC_SWAP_I8:
749    return emitAtomicBinary(MI, MBB, 1, 0);
750  case AArch64::ATOMIC_SWAP_I16:
751    return emitAtomicBinary(MI, MBB, 2, 0);
752  case AArch64::ATOMIC_SWAP_I32:
753    return emitAtomicBinary(MI, MBB, 4, 0);
754  case AArch64::ATOMIC_SWAP_I64:
755    return emitAtomicBinary(MI, MBB, 8, 0);
756
757  case AArch64::ATOMIC_CMP_SWAP_I8:
758    return emitAtomicCmpSwap(MI, MBB, 1);
759  case AArch64::ATOMIC_CMP_SWAP_I16:
760    return emitAtomicCmpSwap(MI, MBB, 2);
761  case AArch64::ATOMIC_CMP_SWAP_I32:
762    return emitAtomicCmpSwap(MI, MBB, 4);
763  case AArch64::ATOMIC_CMP_SWAP_I64:
764    return emitAtomicCmpSwap(MI, MBB, 8);
765  }
766}
767
768
769const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
770  switch (Opcode) {
771  case AArch64ISD::BR_CC:          return "AArch64ISD::BR_CC";
772  case AArch64ISD::Call:           return "AArch64ISD::Call";
773  case AArch64ISD::FPMOV:          return "AArch64ISD::FPMOV";
774  case AArch64ISD::GOTLoad:        return "AArch64ISD::GOTLoad";
775  case AArch64ISD::BFI:            return "AArch64ISD::BFI";
776  case AArch64ISD::EXTR:           return "AArch64ISD::EXTR";
777  case AArch64ISD::Ret:            return "AArch64ISD::Ret";
778  case AArch64ISD::SBFX:           return "AArch64ISD::SBFX";
779  case AArch64ISD::SELECT_CC:      return "AArch64ISD::SELECT_CC";
780  case AArch64ISD::SETCC:          return "AArch64ISD::SETCC";
781  case AArch64ISD::TC_RETURN:      return "AArch64ISD::TC_RETURN";
782  case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
783  case AArch64ISD::TLSDESCCALL:    return "AArch64ISD::TLSDESCCALL";
784  case AArch64ISD::WrapperLarge:   return "AArch64ISD::WrapperLarge";
785  case AArch64ISD::WrapperSmall:   return "AArch64ISD::WrapperSmall";
786
787  default:                       return NULL;
788  }
789}
790
791static const uint16_t AArch64FPRArgRegs[] = {
792  AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
793  AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
794};
795static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
796
797static const uint16_t AArch64ArgRegs[] = {
798  AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
799  AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
800};
801static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
802
803static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
804                                 CCValAssign::LocInfo LocInfo,
805                                 ISD::ArgFlagsTy ArgFlags, CCState &State) {
806  // Mark all remaining general purpose registers as allocated. We don't
807  // backtrack: if (for example) an i128 gets put on the stack, no subsequent
808  // i64 will go in registers (C.11).
809  for (unsigned i = 0; i < NumArgRegs; ++i)
810    State.AllocateReg(AArch64ArgRegs[i]);
811
812  return false;
813}
814
815#include "AArch64GenCallingConv.inc"
816
817CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
818
819  switch(CC) {
820  default: llvm_unreachable("Unsupported calling convention");
821  case CallingConv::Fast:
822  case CallingConv::C:
823    return CC_A64_APCS;
824  }
825}
826
827void
828AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
829                                           DebugLoc DL, SDValue &Chain) const {
830  MachineFunction &MF = DAG.getMachineFunction();
831  MachineFrameInfo *MFI = MF.getFrameInfo();
832  AArch64MachineFunctionInfo *FuncInfo
833    = MF.getInfo<AArch64MachineFunctionInfo>();
834
835  SmallVector<SDValue, 8> MemOps;
836
837  unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
838                                                         NumArgRegs);
839  unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
840                                                         NumFPRArgRegs);
841
842  unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
843  int GPRIdx = 0;
844  if (GPRSaveSize != 0) {
845    GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
846
847    SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
848
849    for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
850      unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
851      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
852      SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
853                                   MachinePointerInfo::getStack(i * 8),
854                                   false, false, 0);
855      MemOps.push_back(Store);
856      FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
857                        DAG.getConstant(8, getPointerTy()));
858    }
859  }
860
861  unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
862  int FPRIdx = 0;
863  if (FPRSaveSize != 0) {
864    FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
865
866    SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
867
868    for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
869      unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
870                                   &AArch64::FPR128RegClass);
871      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
872      SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
873                                   MachinePointerInfo::getStack(i * 16),
874                                   false, false, 0);
875      MemOps.push_back(Store);
876      FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
877                        DAG.getConstant(16, getPointerTy()));
878    }
879  }
880
881  int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true);
882
883  FuncInfo->setVariadicStackIdx(StackIdx);
884  FuncInfo->setVariadicGPRIdx(GPRIdx);
885  FuncInfo->setVariadicGPRSize(GPRSaveSize);
886  FuncInfo->setVariadicFPRIdx(FPRIdx);
887  FuncInfo->setVariadicFPRSize(FPRSaveSize);
888
889  if (!MemOps.empty()) {
890    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
891                        MemOps.size());
892  }
893}
894
895
896SDValue
897AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
898                                      CallingConv::ID CallConv, bool isVarArg,
899                                      const SmallVectorImpl<ISD::InputArg> &Ins,
900                                      DebugLoc dl, SelectionDAG &DAG,
901                                      SmallVectorImpl<SDValue> &InVals) const {
902  MachineFunction &MF = DAG.getMachineFunction();
903  AArch64MachineFunctionInfo *FuncInfo
904    = MF.getInfo<AArch64MachineFunctionInfo>();
905  MachineFrameInfo *MFI = MF.getFrameInfo();
906  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
907
908  SmallVector<CCValAssign, 16> ArgLocs;
909  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
910                 getTargetMachine(), ArgLocs, *DAG.getContext());
911  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
912
913  SmallVector<SDValue, 16> ArgValues;
914
915  SDValue ArgValue;
916  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
917    CCValAssign &VA = ArgLocs[i];
918    ISD::ArgFlagsTy Flags = Ins[i].Flags;
919
920    if (Flags.isByVal()) {
921      // Byval is used for small structs and HFAs in the PCS, but the system
922      // should work in a non-compliant manner for larger structs.
923      EVT PtrTy = getPointerTy();
924      int Size = Flags.getByValSize();
925      unsigned NumRegs = (Size + 7) / 8;
926
927      unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
928                                                 VA.getLocMemOffset(),
929                                                 false);
930      SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
931      InVals.push_back(FrameIdxN);
932
933      continue;
934    } else if (VA.isRegLoc()) {
935      MVT RegVT = VA.getLocVT();
936      const TargetRegisterClass *RC = getRegClassFor(RegVT);
937      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
938
939      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
940    } else { // VA.isRegLoc()
941      assert(VA.isMemLoc());
942
943      int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
944                                      VA.getLocMemOffset(), true);
945
946      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
947      ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
948                             MachinePointerInfo::getFixedStack(FI),
949                             false, false, false, 0);
950
951
952    }
953
954    switch (VA.getLocInfo()) {
955    default: llvm_unreachable("Unknown loc info!");
956    case CCValAssign::Full: break;
957    case CCValAssign::BCvt:
958      ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
959      break;
960    case CCValAssign::SExt:
961    case CCValAssign::ZExt:
962    case CCValAssign::AExt: {
963      unsigned DestSize = VA.getValVT().getSizeInBits();
964      unsigned DestSubReg;
965
966      switch (DestSize) {
967      case 8: DestSubReg = AArch64::sub_8; break;
968      case 16: DestSubReg = AArch64::sub_16; break;
969      case 32: DestSubReg = AArch64::sub_32; break;
970      case 64: DestSubReg = AArch64::sub_64; break;
971      default: llvm_unreachable("Unexpected argument promotion");
972      }
973
974      ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
975                                   VA.getValVT(), ArgValue,
976                                   DAG.getTargetConstant(DestSubReg, MVT::i32)),
977                         0);
978      break;
979    }
980    }
981
982    InVals.push_back(ArgValue);
983  }
984
985  if (isVarArg)
986    SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
987
988  unsigned StackArgSize = CCInfo.getNextStackOffset();
989  if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
990    // This is a non-standard ABI so by fiat I say we're allowed to make full
991    // use of the stack area to be popped, which must be aligned to 16 bytes in
992    // any case:
993    StackArgSize = RoundUpToAlignment(StackArgSize, 16);
994
995    // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
996    // a multiple of 16.
997    FuncInfo->setArgumentStackToRestore(StackArgSize);
998
999    // This realignment carries over to the available bytes below. Our own
1000    // callers will guarantee the space is free by giving an aligned value to
1001    // CALLSEQ_START.
1002  }
1003  // Even if we're not expected to free up the space, it's useful to know how
1004  // much is there while considering tail calls (because we can reuse it).
1005  FuncInfo->setBytesInStackArgArea(StackArgSize);
1006
1007  return Chain;
1008}
1009
1010SDValue
1011AArch64TargetLowering::LowerReturn(SDValue Chain,
1012                                   CallingConv::ID CallConv, bool isVarArg,
1013                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
1014                                   const SmallVectorImpl<SDValue> &OutVals,
1015                                   DebugLoc dl, SelectionDAG &DAG) const {
1016  // CCValAssign - represent the assignment of the return value to a location.
1017  SmallVector<CCValAssign, 16> RVLocs;
1018
1019  // CCState - Info about the registers and stack slots.
1020  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1021                 getTargetMachine(), RVLocs, *DAG.getContext());
1022
1023  // Analyze outgoing return values.
1024  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
1025
1026  SDValue Flag;
1027  SmallVector<SDValue, 4> RetOps(1, Chain);
1028
1029  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1030    // PCS: "If the type, T, of the result of a function is such that
1031    // void func(T arg) would require that arg be passed as a value in a
1032    // register (or set of registers) according to the rules in 5.4, then the
1033    // result is returned in the same registers as would be used for such an
1034    // argument.
1035    //
1036    // Otherwise, the caller shall reserve a block of memory of sufficient
1037    // size and alignment to hold the result. The address of the memory block
1038    // shall be passed as an additional argument to the function in x8."
1039    //
1040    // This is implemented in two places. The register-return values are dealt
1041    // with here, more complex returns are passed as an sret parameter, which
1042    // means we don't have to worry about it during actual return.
1043    CCValAssign &VA = RVLocs[i];
1044    assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
1045
1046
1047    SDValue Arg = OutVals[i];
1048
1049    // There's no convenient note in the ABI about this as there is for normal
1050    // arguments, but it says return values are passed in the same registers as
1051    // an argument would be. I believe that includes the comments about
1052    // unspecified higher bits, putting the burden of widening on the *caller*
1053    // for return values.
1054    switch (VA.getLocInfo()) {
1055    default: llvm_unreachable("Unknown loc info");
1056    case CCValAssign::Full: break;
1057    case CCValAssign::SExt:
1058    case CCValAssign::ZExt:
1059    case CCValAssign::AExt:
1060      // Floating-point values should only be extended when they're going into
1061      // memory, which can't happen here so an integer extend is acceptable.
1062      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1063      break;
1064    case CCValAssign::BCvt:
1065      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1066      break;
1067    }
1068
1069    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1070    Flag = Chain.getValue(1);
1071    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1072  }
1073
1074  RetOps[0] = Chain;  // Update chain.
1075
1076  // Add the flag if we have it.
1077  if (Flag.getNode())
1078    RetOps.push_back(Flag);
1079
1080  return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other,
1081                     &RetOps[0], RetOps.size());
1082}
1083
1084SDValue
1085AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
1086                                 SmallVectorImpl<SDValue> &InVals) const {
1087  SelectionDAG &DAG                     = CLI.DAG;
1088  DebugLoc &dl                          = CLI.DL;
1089  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
1090  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
1091  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
1092  SDValue Chain                         = CLI.Chain;
1093  SDValue Callee                        = CLI.Callee;
1094  bool &IsTailCall                      = CLI.IsTailCall;
1095  CallingConv::ID CallConv              = CLI.CallConv;
1096  bool IsVarArg                         = CLI.IsVarArg;
1097
1098  MachineFunction &MF = DAG.getMachineFunction();
1099  AArch64MachineFunctionInfo *FuncInfo
1100    = MF.getInfo<AArch64MachineFunctionInfo>();
1101  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1102  bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
1103  bool IsSibCall = false;
1104
1105  if (IsTailCall) {
1106    IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1107                    IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1108                                                   Outs, OutVals, Ins, DAG);
1109
1110    // A sibling call is one where we're under the usual C ABI and not planning
1111    // to change that but can still do a tail call:
1112    if (!TailCallOpt && IsTailCall)
1113      IsSibCall = true;
1114  }
1115
1116  SmallVector<CCValAssign, 16> ArgLocs;
1117  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1118                 getTargetMachine(), ArgLocs, *DAG.getContext());
1119  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1120
1121  // On AArch64 (and all other architectures I'm aware of) the most this has to
1122  // do is adjust the stack pointer.
1123  unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
1124  if (IsSibCall) {
1125    // Since we're not changing the ABI to make this a tail call, the memory
1126    // operands are already available in the caller's incoming argument space.
1127    NumBytes = 0;
1128  }
1129
1130  // FPDiff is the byte offset of the call's argument area from the callee's.
1131  // Stores to callee stack arguments will be placed in FixedStackSlots offset
1132  // by this amount for a tail call. In a sibling call it must be 0 because the
1133  // caller will deallocate the entire stack and the callee still expects its
1134  // arguments to begin at SP+0. Completely unused for non-tail calls.
1135  int FPDiff = 0;
1136
1137  if (IsTailCall && !IsSibCall) {
1138    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1139
1140    // FPDiff will be negative if this tail call requires more space than we
1141    // would automatically have in our incoming argument space. Positive if we
1142    // can actually shrink the stack.
1143    FPDiff = NumReusableBytes - NumBytes;
1144
1145    // The stack pointer must be 16-byte aligned at all times it's used for a
1146    // memory operation, which in practice means at *all* times and in
1147    // particular across call boundaries. Therefore our own arguments started at
1148    // a 16-byte aligned SP and the delta applied for the tail call should
1149    // satisfy the same constraint.
1150    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
1151  }
1152
1153  if (!IsSibCall)
1154    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1155
1156  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
1157                                        getPointerTy());
1158
1159  SmallVector<SDValue, 8> MemOpChains;
1160  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1161
1162  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1163    CCValAssign &VA = ArgLocs[i];
1164    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1165    SDValue Arg = OutVals[i];
1166
1167    // Callee does the actual widening, so all extensions just use an implicit
1168    // definition of the rest of the Loc. Aesthetically, this would be nicer as
1169    // an ANY_EXTEND, but that isn't valid for floating-point types and this
1170    // alternative works on integer types too.
1171    switch (VA.getLocInfo()) {
1172    default: llvm_unreachable("Unknown loc info!");
1173    case CCValAssign::Full: break;
1174    case CCValAssign::SExt:
1175    case CCValAssign::ZExt:
1176    case CCValAssign::AExt: {
1177      unsigned SrcSize = VA.getValVT().getSizeInBits();
1178      unsigned SrcSubReg;
1179
1180      switch (SrcSize) {
1181      case 8: SrcSubReg = AArch64::sub_8; break;
1182      case 16: SrcSubReg = AArch64::sub_16; break;
1183      case 32: SrcSubReg = AArch64::sub_32; break;
1184      case 64: SrcSubReg = AArch64::sub_64; break;
1185      default: llvm_unreachable("Unexpected argument promotion");
1186      }
1187
1188      Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
1189                                    VA.getLocVT(),
1190                                    DAG.getUNDEF(VA.getLocVT()),
1191                                    Arg,
1192                                    DAG.getTargetConstant(SrcSubReg, MVT::i32)),
1193                    0);
1194
1195      break;
1196    }
1197    case CCValAssign::BCvt:
1198      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1199      break;
1200    }
1201
1202    if (VA.isRegLoc()) {
1203      // A normal register (sub-) argument. For now we just note it down because
1204      // we want to copy things into registers as late as possible to avoid
1205      // register-pressure (and possibly worse).
1206      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1207      continue;
1208    }
1209
1210    assert(VA.isMemLoc() && "unexpected argument location");
1211
1212    SDValue DstAddr;
1213    MachinePointerInfo DstInfo;
1214    if (IsTailCall) {
1215      uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
1216                                          VA.getLocVT().getSizeInBits();
1217      OpSize = (OpSize + 7) / 8;
1218      int32_t Offset = VA.getLocMemOffset() + FPDiff;
1219      int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
1220
1221      DstAddr = DAG.getFrameIndex(FI, getPointerTy());
1222      DstInfo = MachinePointerInfo::getFixedStack(FI);
1223
1224      // Make sure any stack arguments overlapping with where we're storing are
1225      // loaded before this eventual operation. Otherwise they'll be clobbered.
1226      Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
1227    } else {
1228      SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset());
1229
1230      DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1231      DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
1232    }
1233
1234    if (Flags.isByVal()) {
1235      SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
1236      SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
1237                                  Flags.getByValAlign(),
1238                                  /*isVolatile = */ false,
1239                                  /*alwaysInline = */ false,
1240                                  DstInfo, MachinePointerInfo(0));
1241      MemOpChains.push_back(Cpy);
1242    } else {
1243      // Normal stack argument, put it where it's needed.
1244      SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
1245                                   false, false, 0);
1246      MemOpChains.push_back(Store);
1247    }
1248  }
1249
1250  // The loads and stores generated above shouldn't clash with each
1251  // other. Combining them with this TokenFactor notes that fact for the rest of
1252  // the backend.
1253  if (!MemOpChains.empty())
1254    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1255                        &MemOpChains[0], MemOpChains.size());
1256
1257  // Most of the rest of the instructions need to be glued together; we don't
1258  // want assignments to actual registers used by a call to be rearranged by a
1259  // well-meaning scheduler.
1260  SDValue InFlag;
1261
1262  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1263    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1264                             RegsToPass[i].second, InFlag);
1265    InFlag = Chain.getValue(1);
1266  }
1267
1268  // The linker is responsible for inserting veneers when necessary to put a
1269  // function call destination in range, so we don't need to bother with a
1270  // wrapper here.
1271  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1272    const GlobalValue *GV = G->getGlobal();
1273    Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
1274  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1275    const char *Sym = S->getSymbol();
1276    Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1277  }
1278
1279  // We don't usually want to end the call-sequence here because we would tidy
1280  // the frame up *after* the call, however in the ABI-changing tail-call case
1281  // we've carefully laid out the parameters so that when sp is reset they'll be
1282  // in the correct location.
1283  if (IsTailCall && !IsSibCall) {
1284    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1285                               DAG.getIntPtrConstant(0, true), InFlag);
1286    InFlag = Chain.getValue(1);
1287  }
1288
1289  // We produce the following DAG scheme for the actual call instruction:
1290  //     (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
1291  //
1292  // Most arguments aren't going to be used and just keep the values live as
1293  // far as LLVM is concerned. It's expected to be selected as simply "bl
1294  // callee" (for a direct, non-tail call).
1295  std::vector<SDValue> Ops;
1296  Ops.push_back(Chain);
1297  Ops.push_back(Callee);
1298
1299  if (IsTailCall) {
1300    // Each tail call may have to adjust the stack by a different amount, so
1301    // this information must travel along with the operation for eventual
1302    // consumption by emitEpilogue.
1303    Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
1304  }
1305
1306  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1307    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1308                                  RegsToPass[i].second.getValueType()));
1309
1310
1311  // Add a register mask operand representing the call-preserved registers. This
1312  // is used later in codegen to constrain register-allocation.
1313  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1314  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1315  assert(Mask && "Missing call preserved mask for calling convention");
1316  Ops.push_back(DAG.getRegisterMask(Mask));
1317
1318  // If we needed glue, put it in as the last argument.
1319  if (InFlag.getNode())
1320    Ops.push_back(InFlag);
1321
1322  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1323
1324  if (IsTailCall) {
1325    return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1326  }
1327
1328  Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size());
1329  InFlag = Chain.getValue(1);
1330
1331  // Now we can reclaim the stack, just as well do it before working out where
1332  // our return value is.
1333  if (!IsSibCall) {
1334    uint64_t CalleePopBytes
1335      = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
1336
1337    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1338                               DAG.getIntPtrConstant(CalleePopBytes, true),
1339                               InFlag);
1340    InFlag = Chain.getValue(1);
1341  }
1342
1343  return LowerCallResult(Chain, InFlag, CallConv,
1344                         IsVarArg, Ins, dl, DAG, InVals);
1345}
1346
1347SDValue
1348AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1349                                      CallingConv::ID CallConv, bool IsVarArg,
1350                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1351                                      DebugLoc dl, SelectionDAG &DAG,
1352                                      SmallVectorImpl<SDValue> &InVals) const {
1353  // Assign locations to each value returned by this call.
1354  SmallVector<CCValAssign, 16> RVLocs;
1355  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1356                 getTargetMachine(), RVLocs, *DAG.getContext());
1357  CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
1358
1359  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1360    CCValAssign VA = RVLocs[i];
1361
1362    // Return values that are too big to fit into registers should use an sret
1363    // pointer, so this can be a lot simpler than the main argument code.
1364    assert(VA.isRegLoc() && "Memory locations not expected for call return");
1365
1366    SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1367                                     InFlag);
1368    Chain = Val.getValue(1);
1369    InFlag = Val.getValue(2);
1370
1371    switch (VA.getLocInfo()) {
1372    default: llvm_unreachable("Unknown loc info!");
1373    case CCValAssign::Full: break;
1374    case CCValAssign::BCvt:
1375      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1376      break;
1377    case CCValAssign::ZExt:
1378    case CCValAssign::SExt:
1379    case CCValAssign::AExt:
1380      // Floating-point arguments only get extended/truncated if they're going
1381      // in memory, so using the integer operation is acceptable here.
1382      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
1383      break;
1384    }
1385
1386    InVals.push_back(Val);
1387  }
1388
1389  return Chain;
1390}
1391
1392bool
1393AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1394                                    CallingConv::ID CalleeCC,
1395                                    bool IsVarArg,
1396                                    bool IsCalleeStructRet,
1397                                    bool IsCallerStructRet,
1398                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1399                                    const SmallVectorImpl<SDValue> &OutVals,
1400                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1401                                    SelectionDAG& DAG) const {
1402
1403  // For CallingConv::C this function knows whether the ABI needs
1404  // changing. That's not true for other conventions so they will have to opt in
1405  // manually.
1406  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1407    return false;
1408
1409  const MachineFunction &MF = DAG.getMachineFunction();
1410  const Function *CallerF = MF.getFunction();
1411  CallingConv::ID CallerCC = CallerF->getCallingConv();
1412  bool CCMatch = CallerCC == CalleeCC;
1413
1414  // Byval parameters hand the function a pointer directly into the stack area
1415  // we want to reuse during a tail call. Working around this *is* possible (see
1416  // X86) but less efficient and uglier in LowerCall.
1417  for (Function::const_arg_iterator i = CallerF->arg_begin(),
1418         e = CallerF->arg_end(); i != e; ++i)
1419    if (i->hasByValAttr())
1420      return false;
1421
1422  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
1423    if (IsTailCallConvention(CalleeCC) && CCMatch)
1424      return true;
1425    return false;
1426  }
1427
1428  // Now we search for cases where we can use a tail call without changing the
1429  // ABI. Sibcall is used in some places (particularly gcc) to refer to this
1430  // concept.
1431
1432  // I want anyone implementing a new calling convention to think long and hard
1433  // about this assert.
1434  assert((!IsVarArg || CalleeCC == CallingConv::C)
1435         && "Unexpected variadic calling convention");
1436
1437  if (IsVarArg && !Outs.empty()) {
1438    // At least two cases here: if caller is fastcc then we can't have any
1439    // memory arguments (we'd be expected to clean up the stack afterwards). If
1440    // caller is C then we could potentially use its argument area.
1441
1442    // FIXME: for now we take the most conservative of these in both cases:
1443    // disallow all variadic memory operands.
1444    SmallVector<CCValAssign, 16> ArgLocs;
1445    CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1446                   getTargetMachine(), ArgLocs, *DAG.getContext());
1447
1448    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1449    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
1450      if (!ArgLocs[i].isRegLoc())
1451        return false;
1452  }
1453
1454  // If the calling conventions do not match, then we'd better make sure the
1455  // results are returned in the same way as what the caller expects.
1456  if (!CCMatch) {
1457    SmallVector<CCValAssign, 16> RVLocs1;
1458    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1459                    getTargetMachine(), RVLocs1, *DAG.getContext());
1460    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
1461
1462    SmallVector<CCValAssign, 16> RVLocs2;
1463    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1464                    getTargetMachine(), RVLocs2, *DAG.getContext());
1465    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
1466
1467    if (RVLocs1.size() != RVLocs2.size())
1468      return false;
1469    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1470      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1471        return false;
1472      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1473        return false;
1474      if (RVLocs1[i].isRegLoc()) {
1475        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1476          return false;
1477      } else {
1478        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1479          return false;
1480      }
1481    }
1482  }
1483
1484  // Nothing more to check if the callee is taking no arguments
1485  if (Outs.empty())
1486    return true;
1487
1488  SmallVector<CCValAssign, 16> ArgLocs;
1489  CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1490                 getTargetMachine(), ArgLocs, *DAG.getContext());
1491
1492  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1493
1494  const AArch64MachineFunctionInfo *FuncInfo
1495    = MF.getInfo<AArch64MachineFunctionInfo>();
1496
1497  // If the stack arguments for this call would fit into our own save area then
1498  // the call can be made tail.
1499  return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
1500}
1501
1502bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
1503                                                   bool TailCallOpt) const {
1504  return CallCC == CallingConv::Fast && TailCallOpt;
1505}
1506
1507bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
1508  return CallCC == CallingConv::Fast;
1509}
1510
1511SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
1512                                                   SelectionDAG &DAG,
1513                                                   MachineFrameInfo *MFI,
1514                                                   int ClobberedFI) const {
1515  SmallVector<SDValue, 8> ArgChains;
1516  int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
1517  int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
1518
1519  // Include the original chain at the beginning of the list. When this is
1520  // used by target LowerCall hooks, this helps legalize find the
1521  // CALLSEQ_BEGIN node.
1522  ArgChains.push_back(Chain);
1523
1524  // Add a chain value for each stack argument corresponding
1525  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1526         UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
1527    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
1528      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
1529        if (FI->getIndex() < 0) {
1530          int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
1531          int64_t InLastByte = InFirstByte;
1532          InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
1533
1534          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1535              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1536            ArgChains.push_back(SDValue(L, 1));
1537        }
1538
1539   // Build a tokenfactor for all the chains.
1540   return DAG.getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
1541                      &ArgChains[0], ArgChains.size());
1542}
1543
1544static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
1545  switch (CC) {
1546  case ISD::SETEQ:  return A64CC::EQ;
1547  case ISD::SETGT:  return A64CC::GT;
1548  case ISD::SETGE:  return A64CC::GE;
1549  case ISD::SETLT:  return A64CC::LT;
1550  case ISD::SETLE:  return A64CC::LE;
1551  case ISD::SETNE:  return A64CC::NE;
1552  case ISD::SETUGT: return A64CC::HI;
1553  case ISD::SETUGE: return A64CC::HS;
1554  case ISD::SETULT: return A64CC::LO;
1555  case ISD::SETULE: return A64CC::LS;
1556  default: llvm_unreachable("Unexpected condition code");
1557  }
1558}
1559
1560bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
1561  // icmp is implemented using adds/subs immediate, which take an unsigned
1562  // 12-bit immediate, optionally shifted left by 12 bits.
1563
1564  // Symmetric by using adds/subs
1565  if (Val < 0)
1566    Val = -Val;
1567
1568  return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
1569}
1570
1571SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
1572                                        ISD::CondCode CC, SDValue &A64cc,
1573                                        SelectionDAG &DAG, DebugLoc &dl) const {
1574  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1575    int64_t C = 0;
1576    EVT VT = RHSC->getValueType(0);
1577    bool knownInvalid = false;
1578
1579    // I'm not convinced the rest of LLVM handles these edge cases properly, but
1580    // we can at least get it right.
1581    if (isSignedIntSetCC(CC)) {
1582      C = RHSC->getSExtValue();
1583    } else if (RHSC->getZExtValue() > INT64_MAX) {
1584      // A 64-bit constant not representable by a signed 64-bit integer is far
1585      // too big to fit into a SUBS immediate anyway.
1586      knownInvalid = true;
1587    } else {
1588      C = RHSC->getZExtValue();
1589    }
1590
1591    if (!knownInvalid && !isLegalICmpImmediate(C)) {
1592      // Constant does not fit, try adjusting it by one?
1593      switch (CC) {
1594      default: break;
1595      case ISD::SETLT:
1596      case ISD::SETGE:
1597        if (isLegalICmpImmediate(C-1)) {
1598          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1599          RHS = DAG.getConstant(C-1, VT);
1600        }
1601        break;
1602      case ISD::SETULT:
1603      case ISD::SETUGE:
1604        if (isLegalICmpImmediate(C-1)) {
1605          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1606          RHS = DAG.getConstant(C-1, VT);
1607        }
1608        break;
1609      case ISD::SETLE:
1610      case ISD::SETGT:
1611        if (isLegalICmpImmediate(C+1)) {
1612          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1613          RHS = DAG.getConstant(C+1, VT);
1614        }
1615        break;
1616      case ISD::SETULE:
1617      case ISD::SETUGT:
1618        if (isLegalICmpImmediate(C+1)) {
1619          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1620          RHS = DAG.getConstant(C+1, VT);
1621        }
1622        break;
1623      }
1624    }
1625  }
1626
1627  A64CC::CondCodes CondCode = IntCCToA64CC(CC);
1628  A64cc = DAG.getConstant(CondCode, MVT::i32);
1629  return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1630                     DAG.getCondCode(CC));
1631}
1632
1633static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
1634                                    A64CC::CondCodes &Alternative) {
1635  A64CC::CondCodes CondCode = A64CC::Invalid;
1636  Alternative = A64CC::Invalid;
1637
1638  switch (CC) {
1639  default: llvm_unreachable("Unknown FP condition!");
1640  case ISD::SETEQ:
1641  case ISD::SETOEQ: CondCode = A64CC::EQ; break;
1642  case ISD::SETGT:
1643  case ISD::SETOGT: CondCode = A64CC::GT; break;
1644  case ISD::SETGE:
1645  case ISD::SETOGE: CondCode = A64CC::GE; break;
1646  case ISD::SETOLT: CondCode = A64CC::MI; break;
1647  case ISD::SETOLE: CondCode = A64CC::LS; break;
1648  case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
1649  case ISD::SETO:   CondCode = A64CC::VC; break;
1650  case ISD::SETUO:  CondCode = A64CC::VS; break;
1651  case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
1652  case ISD::SETUGT: CondCode = A64CC::HI; break;
1653  case ISD::SETUGE: CondCode = A64CC::PL; break;
1654  case ISD::SETLT:
1655  case ISD::SETULT: CondCode = A64CC::LT; break;
1656  case ISD::SETLE:
1657  case ISD::SETULE: CondCode = A64CC::LE; break;
1658  case ISD::SETNE:
1659  case ISD::SETUNE: CondCode = A64CC::NE; break;
1660  }
1661  return CondCode;
1662}
1663
1664SDValue
1665AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1666  DebugLoc DL = Op.getDebugLoc();
1667  EVT PtrVT = getPointerTy();
1668  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1669
1670  switch(getTargetMachine().getCodeModel()) {
1671  case CodeModel::Small:
1672    // The most efficient code is PC-relative anyway for the small memory model,
1673    // so we don't need to worry about relocation model.
1674    return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
1675                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
1676                                                 AArch64II::MO_NO_FLAG),
1677                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
1678                                                 AArch64II::MO_LO12),
1679                       DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
1680  case CodeModel::Large:
1681    return DAG.getNode(
1682      AArch64ISD::WrapperLarge, DL, PtrVT,
1683      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3),
1684      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
1685      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
1686      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
1687  default:
1688    llvm_unreachable("Only small and large code models supported now");
1689  }
1690}
1691
1692
1693// (BRCOND chain, val, dest)
1694SDValue
1695AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1696  DebugLoc dl = Op.getDebugLoc();
1697  SDValue Chain = Op.getOperand(0);
1698  SDValue TheBit = Op.getOperand(1);
1699  SDValue DestBB = Op.getOperand(2);
1700
1701  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
1702  // that as the consumer we are responsible for ignoring rubbish in higher
1703  // bits.
1704  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
1705                       DAG.getConstant(1, MVT::i32));
1706
1707  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
1708                               DAG.getConstant(0, TheBit.getValueType()),
1709                               DAG.getCondCode(ISD::SETNE));
1710
1711  return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
1712                     A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
1713                     DestBB);
1714}
1715
1716// (BR_CC chain, condcode, lhs, rhs, dest)
1717SDValue
1718AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1719  DebugLoc dl = Op.getDebugLoc();
1720  SDValue Chain = Op.getOperand(0);
1721  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1722  SDValue LHS = Op.getOperand(2);
1723  SDValue RHS = Op.getOperand(3);
1724  SDValue DestBB = Op.getOperand(4);
1725
1726  if (LHS.getValueType() == MVT::f128) {
1727    // f128 comparisons are lowered to runtime calls by a routine which sets
1728    // LHS, RHS and CC appropriately for the rest of this function to continue.
1729    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
1730
1731    // If softenSetCCOperands returned a scalar, we need to compare the result
1732    // against zero to select between true and false values.
1733    if (RHS.getNode() == 0) {
1734      RHS = DAG.getConstant(0, LHS.getValueType());
1735      CC = ISD::SETNE;
1736    }
1737  }
1738
1739  if (LHS.getValueType().isInteger()) {
1740    SDValue A64cc;
1741
1742    // Integers are handled in a separate function because the combinations of
1743    // immediates and tests can get hairy and we may want to fiddle things.
1744    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
1745
1746    return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1747                       Chain, CmpOp, A64cc, DestBB);
1748  }
1749
1750  // Note that some LLVM floating-point CondCodes can't be lowered to a single
1751  // conditional branch, hence FPCCToA64CC can set a second test, where either
1752  // passing is sufficient.
1753  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
1754  CondCode = FPCCToA64CC(CC, Alternative);
1755  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
1756  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1757                              DAG.getCondCode(CC));
1758  SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1759                                 Chain, SetCC, A64cc, DestBB);
1760
1761  if (Alternative != A64CC::Invalid) {
1762    A64cc = DAG.getConstant(Alternative, MVT::i32);
1763    A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1764                           A64BR_CC, SetCC, A64cc, DestBB);
1765
1766  }
1767
1768  return A64BR_CC;
1769}
1770
1771SDValue
1772AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
1773                                       RTLIB::Libcall Call) const {
1774  ArgListTy Args;
1775  ArgListEntry Entry;
1776  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
1777    EVT ArgVT = Op.getOperand(i).getValueType();
1778    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1779    Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
1780    Entry.isSExt = false;
1781    Entry.isZExt = false;
1782    Args.push_back(Entry);
1783  }
1784  SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
1785
1786  Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
1787
1788  // By default, the input chain to this libcall is the entry node of the
1789  // function. If the libcall is going to be emitted as a tail call then
1790  // isUsedByReturnOnly will change it to the right chain if the return
1791  // node which is being folded has a non-entry input chain.
1792  SDValue InChain = DAG.getEntryNode();
1793
1794  // isTailCall may be true since the callee does not reference caller stack
1795  // frame. Check if it's in the right position.
1796  SDValue TCChain = InChain;
1797  bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
1798  if (isTailCall)
1799    InChain = TCChain;
1800
1801  TargetLowering::
1802  CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
1803                    0, getLibcallCallingConv(Call), isTailCall,
1804                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1805                    Callee, Args, DAG, Op->getDebugLoc());
1806  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
1807
1808  if (!CallInfo.second.getNode())
1809    // It's a tailcall, return the chain (which is the DAG root).
1810    return DAG.getRoot();
1811
1812  return CallInfo.first;
1813}
1814
1815SDValue
1816AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
1817  if (Op.getOperand(0).getValueType() != MVT::f128) {
1818    // It's legal except when f128 is involved
1819    return Op;
1820  }
1821
1822  RTLIB::Libcall LC;
1823  LC  = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1824
1825  SDValue SrcVal = Op.getOperand(0);
1826  return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1827                     /*isSigned*/ false, Op.getDebugLoc());
1828}
1829
1830SDValue
1831AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
1832  assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1833
1834  RTLIB::Libcall LC;
1835  LC  = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1836
1837  return LowerF128ToCall(Op, DAG, LC);
1838}
1839
1840SDValue
1841AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1842                                      bool IsSigned) const {
1843  if (Op.getOperand(0).getValueType() != MVT::f128) {
1844    // It's legal except when f128 is involved
1845    return Op;
1846  }
1847
1848  RTLIB::Libcall LC;
1849  if (IsSigned)
1850    LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1851  else
1852    LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1853
1854  return LowerF128ToCall(Op, DAG, LC);
1855}
1856
1857SDValue
1858AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op,
1859                                                  SelectionDAG &DAG) const {
1860  assert(getTargetMachine().getCodeModel() == CodeModel::Large);
1861  assert(getTargetMachine().getRelocationModel() == Reloc::Static);
1862
1863  EVT PtrVT = getPointerTy();
1864  DebugLoc dl = Op.getDebugLoc();
1865  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
1866  const GlobalValue *GV = GN->getGlobal();
1867
1868  SDValue GlobalAddr = DAG.getNode(
1869      AArch64ISD::WrapperLarge, dl, PtrVT,
1870      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3),
1871      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
1872      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
1873      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
1874
1875  if (GN->getOffset() != 0)
1876    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
1877                       DAG.getConstant(GN->getOffset(), PtrVT));
1878
1879  return GlobalAddr;
1880}
1881
1882SDValue
1883AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op,
1884                                                  SelectionDAG &DAG) const {
1885  assert(getTargetMachine().getCodeModel() == CodeModel::Small);
1886
1887  EVT PtrVT = getPointerTy();
1888  DebugLoc dl = Op.getDebugLoc();
1889  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
1890  const GlobalValue *GV = GN->getGlobal();
1891  unsigned Alignment = GV->getAlignment();
1892  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1893  if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) {
1894    // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate
1895    // to zero when they remain undefined. In PIC mode the GOT can take care of
1896    // this, but in absolute mode we use a constant pool load.
1897    SDValue PoolAddr;
1898    PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
1899                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
1900                                                     AArch64II::MO_NO_FLAG),
1901                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
1902                                                     AArch64II::MO_LO12),
1903                           DAG.getConstant(8, MVT::i32));
1904    SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr,
1905                                     MachinePointerInfo::getConstantPool(),
1906                                     /*isVolatile=*/ false,
1907                                     /*isNonTemporal=*/ true,
1908                                     /*isInvariant=*/ true, 8);
1909    if (GN->getOffset() != 0)
1910      return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
1911                         DAG.getConstant(GN->getOffset(), PtrVT));
1912
1913    return GlobalAddr;
1914  }
1915
1916  if (Alignment == 0) {
1917    const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
1918    if (GVPtrTy->getElementType()->isSized()) {
1919      Alignment
1920        = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
1921    } else {
1922      // Be conservative if we can't guess, not that it really matters:
1923      // functions and labels aren't valid for loads, and the methods used to
1924      // actually calculate an address work with any alignment.
1925      Alignment = 1;
1926    }
1927  }
1928
1929  unsigned char HiFixup, LoFixup;
1930  bool UseGOT = Subtarget->GVIsIndirectSymbol(GV, RelocM);
1931
1932  if (UseGOT) {
1933    HiFixup = AArch64II::MO_GOT;
1934    LoFixup = AArch64II::MO_GOT_LO12;
1935    Alignment = 8;
1936  } else {
1937    HiFixup = AArch64II::MO_NO_FLAG;
1938    LoFixup = AArch64II::MO_LO12;
1939  }
1940
1941  // AArch64's small model demands the following sequence:
1942  // ADRP x0, somewhere
1943  // ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
1944  SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
1945                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1946                                                             HiFixup),
1947                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1948                                                             LoFixup),
1949                                  DAG.getConstant(Alignment, MVT::i32));
1950
1951  if (UseGOT) {
1952    GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
1953                            GlobalRef);
1954  }
1955
1956  if (GN->getOffset() != 0)
1957    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
1958                       DAG.getConstant(GN->getOffset(), PtrVT));
1959
1960  return GlobalRef;
1961}
1962
1963SDValue
1964AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
1965                                             SelectionDAG &DAG) const {
1966  // TableGen doesn't have easy access to the CodeModel or RelocationModel, so
1967  // we make those distinctions here.
1968
1969  switch (getTargetMachine().getCodeModel()) {
1970  case CodeModel::Small:
1971    return LowerGlobalAddressELFSmall(Op, DAG);
1972  case CodeModel::Large:
1973    return LowerGlobalAddressELFLarge(Op, DAG);
1974  default:
1975    llvm_unreachable("Only small and large code models supported now");
1976  }
1977}
1978
1979SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
1980                                                SDValue DescAddr,
1981                                                DebugLoc DL,
1982                                                SelectionDAG &DAG) const {
1983  EVT PtrVT = getPointerTy();
1984
1985  // The function we need to call is simply the first entry in the GOT for this
1986  // descriptor, load it in preparation.
1987  SDValue Func, Chain;
1988  Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
1989                     DescAddr);
1990
1991  // The function takes only one argument: the address of the descriptor itself
1992  // in X0.
1993  SDValue Glue;
1994  Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
1995  Glue = Chain.getValue(1);
1996
1997  // Finally, there's a special calling-convention which means that the lookup
1998  // must preserve all registers (except X0, obviously).
1999  const TargetRegisterInfo *TRI  = getTargetMachine().getRegisterInfo();
2000  const AArch64RegisterInfo *A64RI
2001    = static_cast<const AArch64RegisterInfo *>(TRI);
2002  const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
2003
2004  // We're now ready to populate the argument list, as with a normal call:
2005  std::vector<SDValue> Ops;
2006  Ops.push_back(Chain);
2007  Ops.push_back(Func);
2008  Ops.push_back(SymAddr);
2009  Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
2010  Ops.push_back(DAG.getRegisterMask(Mask));
2011  Ops.push_back(Glue);
2012
2013  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2014  Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0],
2015                      Ops.size());
2016  Glue = Chain.getValue(1);
2017
2018  // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
2019  // back to the generic handling code.
2020  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
2021}
2022
2023SDValue
2024AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
2025                                             SelectionDAG &DAG) const {
2026  assert(Subtarget->isTargetELF() &&
2027         "TLS not implemented for non-ELF targets");
2028  assert(getTargetMachine().getCodeModel() == CodeModel::Small
2029         && "TLS only supported in small memory model");
2030  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2031
2032  TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
2033
2034  SDValue TPOff;
2035  EVT PtrVT = getPointerTy();
2036  DebugLoc DL = Op.getDebugLoc();
2037  const GlobalValue *GV = GA->getGlobal();
2038
2039  SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
2040
2041  if (Model == TLSModel::InitialExec) {
2042    TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2043                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2044                                                   AArch64II::MO_GOTTPREL),
2045                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2046                                                   AArch64II::MO_GOTTPREL_LO12),
2047                        DAG.getConstant(8, MVT::i32));
2048    TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2049                        TPOff);
2050  } else if (Model == TLSModel::LocalExec) {
2051    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2052                                               AArch64II::MO_TPREL_G1);
2053    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2054                                               AArch64II::MO_TPREL_G0_NC);
2055
2056    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2057                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2058    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2059                                       TPOff, LoVar,
2060                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2061  } else if (Model == TLSModel::GeneralDynamic) {
2062    // Accesses used in this sequence go via the TLS descriptor which lives in
2063    // the GOT. Prepare an address we can use to handle this.
2064    SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2065                                                AArch64II::MO_TLSDESC);
2066    SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2067                                                AArch64II::MO_TLSDESC_LO12);
2068    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2069                                   HiDesc, LoDesc,
2070                                   DAG.getConstant(8, MVT::i32));
2071    SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
2072
2073    TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2074  } else if (Model == TLSModel::LocalDynamic) {
2075    // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2076    // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2077    // the beginning of the module's TLS region, followed by a DTPREL offset
2078    // calculation.
2079
2080    // These accesses will need deduplicating if there's more than one.
2081    AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
2082      .getInfo<AArch64MachineFunctionInfo>();
2083    MFI->incNumLocalDynamicTLSAccesses();
2084
2085
2086    // Get the location of _TLS_MODULE_BASE_:
2087    SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2088                                                AArch64II::MO_TLSDESC);
2089    SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2090                                                AArch64II::MO_TLSDESC_LO12);
2091    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2092                                   HiDesc, LoDesc,
2093                                   DAG.getConstant(8, MVT::i32));
2094    SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
2095
2096    ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2097
2098    // Get the variable's offset from _TLS_MODULE_BASE_
2099    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2100                                               AArch64II::MO_DTPREL_G1);
2101    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2102                                               AArch64II::MO_DTPREL_G0_NC);
2103
2104    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2105                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2106    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2107                                       TPOff, LoVar,
2108                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2109  } else
2110      llvm_unreachable("Unsupported TLS access model");
2111
2112
2113  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
2114}
2115
2116SDValue
2117AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2118                                      bool IsSigned) const {
2119  if (Op.getValueType() != MVT::f128) {
2120    // Legal for everything except f128.
2121    return Op;
2122  }
2123
2124  RTLIB::Libcall LC;
2125  if (IsSigned)
2126    LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2127  else
2128    LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2129
2130  return LowerF128ToCall(Op, DAG, LC);
2131}
2132
2133
2134SDValue
2135AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2136  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2137  DebugLoc dl = JT->getDebugLoc();
2138  EVT PtrVT = getPointerTy();
2139
2140  // When compiling PIC, jump tables get put in the code section so a static
2141  // relocation-style is acceptable for both cases.
2142  switch (getTargetMachine().getCodeModel()) {
2143  case CodeModel::Small:
2144    return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2145                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT),
2146                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2147                                              AArch64II::MO_LO12),
2148                       DAG.getConstant(1, MVT::i32));
2149  case CodeModel::Large:
2150    return DAG.getNode(
2151      AArch64ISD::WrapperLarge, dl, PtrVT,
2152      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3),
2153      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC),
2154      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC),
2155      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC));
2156  default:
2157    llvm_unreachable("Only small and large code models supported now");
2158  }
2159}
2160
2161// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
2162SDValue
2163AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2164  DebugLoc dl = Op.getDebugLoc();
2165  SDValue LHS = Op.getOperand(0);
2166  SDValue RHS = Op.getOperand(1);
2167  SDValue IfTrue = Op.getOperand(2);
2168  SDValue IfFalse = Op.getOperand(3);
2169  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2170
2171  if (LHS.getValueType() == MVT::f128) {
2172    // f128 comparisons are lowered to libcalls, but slot in nicely here
2173    // afterwards.
2174    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2175
2176    // If softenSetCCOperands returned a scalar, we need to compare the result
2177    // against zero to select between true and false values.
2178    if (RHS.getNode() == 0) {
2179      RHS = DAG.getConstant(0, LHS.getValueType());
2180      CC = ISD::SETNE;
2181    }
2182  }
2183
2184  if (LHS.getValueType().isInteger()) {
2185    SDValue A64cc;
2186
2187    // Integers are handled in a separate function because the combinations of
2188    // immediates and tests can get hairy and we may want to fiddle things.
2189    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2190
2191    return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2192                       CmpOp, IfTrue, IfFalse, A64cc);
2193  }
2194
2195  // Note that some LLVM floating-point CondCodes can't be lowered to a single
2196  // conditional branch, hence FPCCToA64CC can set a second test, where either
2197  // passing is sufficient.
2198  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2199  CondCode = FPCCToA64CC(CC, Alternative);
2200  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2201  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2202                              DAG.getCondCode(CC));
2203  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
2204                                     Op.getValueType(),
2205                                     SetCC, IfTrue, IfFalse, A64cc);
2206
2207  if (Alternative != A64CC::Invalid) {
2208    A64cc = DAG.getConstant(Alternative, MVT::i32);
2209    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2210                               SetCC, IfTrue, A64SELECT_CC, A64cc);
2211
2212  }
2213
2214  return A64SELECT_CC;
2215}
2216
2217// (SELECT testbit, iftrue, iffalse)
2218SDValue
2219AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2220  DebugLoc dl = Op.getDebugLoc();
2221  SDValue TheBit = Op.getOperand(0);
2222  SDValue IfTrue = Op.getOperand(1);
2223  SDValue IfFalse = Op.getOperand(2);
2224
2225  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
2226  // that as the consumer we are responsible for ignoring rubbish in higher
2227  // bits.
2228  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
2229                       DAG.getConstant(1, MVT::i32));
2230  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
2231                               DAG.getConstant(0, TheBit.getValueType()),
2232                               DAG.getCondCode(ISD::SETNE));
2233
2234  return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2235                     A64CMP, IfTrue, IfFalse,
2236                     DAG.getConstant(A64CC::NE, MVT::i32));
2237}
2238
2239// (SETCC lhs, rhs, condcode)
2240SDValue
2241AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2242  DebugLoc dl = Op.getDebugLoc();
2243  SDValue LHS = Op.getOperand(0);
2244  SDValue RHS = Op.getOperand(1);
2245  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2246  EVT VT = Op.getValueType();
2247
2248  if (LHS.getValueType() == MVT::f128) {
2249    // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
2250    // for the rest of the function (some i32 or i64 values).
2251    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2252
2253    // If softenSetCCOperands returned a scalar, use it.
2254    if (RHS.getNode() == 0) {
2255      assert(LHS.getValueType() == Op.getValueType() &&
2256             "Unexpected setcc expansion!");
2257      return LHS;
2258    }
2259  }
2260
2261  if (LHS.getValueType().isInteger()) {
2262    SDValue A64cc;
2263
2264    // Integers are handled in a separate function because the combinations of
2265    // immediates and tests can get hairy and we may want to fiddle things.
2266    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2267
2268    return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2269                       CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2270                       A64cc);
2271  }
2272
2273  // Note that some LLVM floating-point CondCodes can't be lowered to a single
2274  // conditional branch, hence FPCCToA64CC can set a second test, where either
2275  // passing is sufficient.
2276  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2277  CondCode = FPCCToA64CC(CC, Alternative);
2278  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2279  SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2280                              DAG.getCondCode(CC));
2281  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2282                                     CmpOp, DAG.getConstant(1, VT),
2283                                     DAG.getConstant(0, VT), A64cc);
2284
2285  if (Alternative != A64CC::Invalid) {
2286    A64cc = DAG.getConstant(Alternative, MVT::i32);
2287    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
2288                               DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
2289  }
2290
2291  return A64SELECT_CC;
2292}
2293
2294SDValue
2295AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2296  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2297  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2298
2299  // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
2300  // rather than just 8.
2301  return DAG.getMemcpy(Op.getOperand(0), Op.getDebugLoc(),
2302                       Op.getOperand(1), Op.getOperand(2),
2303                       DAG.getConstant(32, MVT::i32), 8, false, false,
2304                       MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
2305}
2306
2307SDValue
2308AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2309  // The layout of the va_list struct is specified in the AArch64 Procedure Call
2310  // Standard, section B.3.
2311  MachineFunction &MF = DAG.getMachineFunction();
2312  AArch64MachineFunctionInfo *FuncInfo
2313    = MF.getInfo<AArch64MachineFunctionInfo>();
2314  DebugLoc DL = Op.getDebugLoc();
2315
2316  SDValue Chain = Op.getOperand(0);
2317  SDValue VAList = Op.getOperand(1);
2318  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2319  SmallVector<SDValue, 4> MemOps;
2320
2321  // void *__stack at offset 0
2322  SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
2323                                    getPointerTy());
2324  MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
2325                                MachinePointerInfo(SV), false, false, 0));
2326
2327  // void *__gr_top at offset 8
2328  int GPRSize = FuncInfo->getVariadicGPRSize();
2329  if (GPRSize > 0) {
2330    SDValue GRTop, GRTopAddr;
2331
2332    GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2333                            DAG.getConstant(8, getPointerTy()));
2334
2335    GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
2336    GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
2337                        DAG.getConstant(GPRSize, getPointerTy()));
2338
2339    MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
2340                                  MachinePointerInfo(SV, 8),
2341                                  false, false, 0));
2342  }
2343
2344  // void *__vr_top at offset 16
2345  int FPRSize = FuncInfo->getVariadicFPRSize();
2346  if (FPRSize > 0) {
2347    SDValue VRTop, VRTopAddr;
2348    VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2349                            DAG.getConstant(16, getPointerTy()));
2350
2351    VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
2352    VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
2353                        DAG.getConstant(FPRSize, getPointerTy()));
2354
2355    MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
2356                                  MachinePointerInfo(SV, 16),
2357                                  false, false, 0));
2358  }
2359
2360  // int __gr_offs at offset 24
2361  SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2362                                   DAG.getConstant(24, getPointerTy()));
2363  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
2364                                GROffsAddr, MachinePointerInfo(SV, 24),
2365                                false, false, 0));
2366
2367  // int __vr_offs at offset 28
2368  SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2369                                   DAG.getConstant(28, getPointerTy()));
2370  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
2371                                VROffsAddr, MachinePointerInfo(SV, 28),
2372                                false, false, 0));
2373
2374  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
2375                     MemOps.size());
2376}
2377
2378SDValue
2379AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2380  switch (Op.getOpcode()) {
2381  default: llvm_unreachable("Don't know how to custom lower this!");
2382  case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
2383  case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
2384  case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
2385  case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
2386  case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
2387  case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
2388  case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
2389  case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
2390  case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
2391  case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
2392
2393  case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2394  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
2395  case ISD::BR_CC: return LowerBR_CC(Op, DAG);
2396  case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
2397  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2398  case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2399  case ISD::SELECT: return LowerSELECT(Op, DAG);
2400  case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
2401  case ISD::SETCC: return LowerSETCC(Op, DAG);
2402  case ISD::VACOPY: return LowerVACOPY(Op, DAG);
2403  case ISD::VASTART: return LowerVASTART(Op, DAG);
2404  }
2405
2406  return SDValue();
2407}
2408
2409static SDValue PerformANDCombine(SDNode *N,
2410                                 TargetLowering::DAGCombinerInfo &DCI) {
2411
2412  SelectionDAG &DAG = DCI.DAG;
2413  DebugLoc DL = N->getDebugLoc();
2414  EVT VT = N->getValueType(0);
2415
2416  // We're looking for an SRA/SHL pair which form an SBFX.
2417
2418  if (VT != MVT::i32 && VT != MVT::i64)
2419    return SDValue();
2420
2421  if (!isa<ConstantSDNode>(N->getOperand(1)))
2422    return SDValue();
2423
2424  uint64_t TruncMask = N->getConstantOperandVal(1);
2425  if (!isMask_64(TruncMask))
2426    return SDValue();
2427
2428  uint64_t Width = CountPopulation_64(TruncMask);
2429  SDValue Shift = N->getOperand(0);
2430
2431  if (Shift.getOpcode() != ISD::SRL)
2432    return SDValue();
2433
2434  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
2435    return SDValue();
2436  uint64_t LSB = Shift->getConstantOperandVal(1);
2437
2438  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
2439    return SDValue();
2440
2441  return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
2442                     DAG.getConstant(LSB, MVT::i64),
2443                     DAG.getConstant(LSB + Width - 1, MVT::i64));
2444}
2445
2446/// For a true bitfield insert, the bits getting into that contiguous mask
2447/// should come from the low part of an existing value: they must be formed from
2448/// a compatible SHL operation (unless they're already low). This function
2449/// checks that condition and returns the least-significant bit that's
2450/// intended. If the operation not a field preparation, -1 is returned.
2451static int32_t getLSBForBFI(SelectionDAG &DAG, DebugLoc DL, EVT VT,
2452                            SDValue &MaskedVal, uint64_t Mask) {
2453  if (!isShiftedMask_64(Mask))
2454    return -1;
2455
2456  // Now we need to alter MaskedVal so that it is an appropriate input for a BFI
2457  // instruction. BFI will do a left-shift by LSB before applying the mask we've
2458  // spotted, so in general we should pre-emptively "undo" that by making sure
2459  // the incoming bits have had a right-shift applied to them.
2460  //
2461  // This right shift, however, will combine with existing left/right shifts. In
2462  // the simplest case of a completely straight bitfield operation, it will be
2463  // expected to completely cancel out with an existing SHL. More complicated
2464  // cases (e.g. bitfield to bitfield copy) may still need a real shift before
2465  // the BFI.
2466
2467  uint64_t LSB = CountTrailingZeros_64(Mask);
2468  int64_t ShiftRightRequired = LSB;
2469  if (MaskedVal.getOpcode() == ISD::SHL &&
2470      isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
2471    ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
2472    MaskedVal = MaskedVal.getOperand(0);
2473  } else if (MaskedVal.getOpcode() == ISD::SRL &&
2474             isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
2475    ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
2476    MaskedVal = MaskedVal.getOperand(0);
2477  }
2478
2479  if (ShiftRightRequired > 0)
2480    MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
2481                            DAG.getConstant(ShiftRightRequired, MVT::i64));
2482  else if (ShiftRightRequired < 0) {
2483    // We could actually end up with a residual left shift, for example with
2484    // "struc.bitfield = val << 1".
2485    MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
2486                            DAG.getConstant(-ShiftRightRequired, MVT::i64));
2487  }
2488
2489  return LSB;
2490}
2491
2492/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
2493/// a mask and an extension. Returns true if a BFI was found and provides
2494/// information on its surroundings.
2495static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
2496                          bool &Extended) {
2497  Extended = false;
2498  if (N.getOpcode() == ISD::ZERO_EXTEND) {
2499    Extended = true;
2500    N = N.getOperand(0);
2501  }
2502
2503  if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
2504    Mask = N->getConstantOperandVal(1);
2505    N = N.getOperand(0);
2506  } else {
2507    // Mask is the whole width.
2508    Mask = -1ULL >> (64 - N.getValueType().getSizeInBits());
2509  }
2510
2511  if (N.getOpcode() == AArch64ISD::BFI) {
2512    BFI = N;
2513    return true;
2514  }
2515
2516  return false;
2517}
2518
2519/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
2520/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
2521/// can often be further combined with a larger mask. Ultimately, we want mask
2522/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
2523static SDValue tryCombineToBFI(SDNode *N,
2524                               TargetLowering::DAGCombinerInfo &DCI,
2525                               const AArch64Subtarget *Subtarget) {
2526  SelectionDAG &DAG = DCI.DAG;
2527  DebugLoc DL = N->getDebugLoc();
2528  EVT VT = N->getValueType(0);
2529
2530  assert(N->getOpcode() == ISD::OR && "Unexpected root");
2531
2532  // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
2533  // abandon the effort.
2534  SDValue LHS = N->getOperand(0);
2535  if (LHS.getOpcode() != ISD::AND)
2536    return SDValue();
2537
2538  uint64_t LHSMask;
2539  if (isa<ConstantSDNode>(LHS.getOperand(1)))
2540    LHSMask = LHS->getConstantOperandVal(1);
2541  else
2542    return SDValue();
2543
2544  // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
2545  // is or abandon the effort.
2546  SDValue RHS = N->getOperand(1);
2547  if (RHS.getOpcode() != ISD::AND)
2548    return SDValue();
2549
2550  uint64_t RHSMask;
2551  if (isa<ConstantSDNode>(RHS.getOperand(1)))
2552    RHSMask = RHS->getConstantOperandVal(1);
2553  else
2554    return SDValue();
2555
2556  // Can't do anything if the masks are incompatible.
2557  if (LHSMask & RHSMask)
2558    return SDValue();
2559
2560  // Now we need one of the masks to be a contiguous field. Without loss of
2561  // generality that should be the RHS one.
2562  SDValue Bitfield = LHS.getOperand(0);
2563  if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
2564    // We know that LHS is a candidate new value, and RHS isn't already a better
2565    // one.
2566    std::swap(LHS, RHS);
2567    std::swap(LHSMask, RHSMask);
2568  }
2569
2570  // We've done our best to put the right operands in the right places, all we
2571  // can do now is check whether a BFI exists.
2572  Bitfield = RHS.getOperand(0);
2573  int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
2574  if (LSB == -1)
2575    return SDValue();
2576
2577  uint32_t Width = CountPopulation_64(RHSMask);
2578  assert(Width && "Expected non-zero bitfield width");
2579
2580  SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
2581                            LHS.getOperand(0), Bitfield,
2582                            DAG.getConstant(LSB, MVT::i64),
2583                            DAG.getConstant(Width, MVT::i64));
2584
2585  // Mask is trivial
2586  if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits())))
2587    return BFI;
2588
2589  return DAG.getNode(ISD::AND, DL, VT, BFI,
2590                     DAG.getConstant(LHSMask | RHSMask, VT));
2591}
2592
2593/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
2594/// original input. This is surprisingly common because SROA splits things up
2595/// into i8 chunks, so the originally detected MaskedBFI may actually only act
2596/// on the low (say) byte of a word. This is then orred into the rest of the
2597/// word afterwards.
2598///
2599/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
2600///
2601/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
2602/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
2603/// involved.
2604static SDValue tryCombineToLargerBFI(SDNode *N,
2605                                     TargetLowering::DAGCombinerInfo &DCI,
2606                                     const AArch64Subtarget *Subtarget) {
2607  SelectionDAG &DAG = DCI.DAG;
2608  DebugLoc DL = N->getDebugLoc();
2609  EVT VT = N->getValueType(0);
2610
2611  // First job is to hunt for a MaskedBFI on either the left or right. Swap
2612  // operands if it's actually on the right.
2613  SDValue BFI;
2614  SDValue PossExtraMask;
2615  uint64_t ExistingMask = 0;
2616  bool Extended = false;
2617  if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
2618    PossExtraMask = N->getOperand(1);
2619  else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
2620    PossExtraMask = N->getOperand(0);
2621  else
2622    return SDValue();
2623
2624  // We can only combine a BFI with another compatible mask.
2625  if (PossExtraMask.getOpcode() != ISD::AND ||
2626      !isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
2627    return SDValue();
2628
2629  uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
2630
2631  // Masks must be compatible.
2632  if (ExtraMask & ExistingMask)
2633    return SDValue();
2634
2635  SDValue OldBFIVal = BFI.getOperand(0);
2636  SDValue NewBFIVal = BFI.getOperand(1);
2637  if (Extended) {
2638    // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
2639    // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
2640    // need to be made compatible.
2641    assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
2642           && "Invalid types for BFI");
2643    OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
2644    NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
2645  }
2646
2647  // We need the MaskedBFI to be combined with a mask of the *same* value.
2648  if (PossExtraMask.getOperand(0) != OldBFIVal)
2649    return SDValue();
2650
2651  BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
2652                    OldBFIVal, NewBFIVal,
2653                    BFI.getOperand(2), BFI.getOperand(3));
2654
2655  // If the masking is trivial, we don't need to create it.
2656  if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits())))
2657    return BFI;
2658
2659  return DAG.getNode(ISD::AND, DL, VT, BFI,
2660                     DAG.getConstant(ExtraMask | ExistingMask, VT));
2661}
2662
2663/// An EXTR instruction is made up of two shifts, ORed together. This helper
2664/// searches for and classifies those shifts.
2665static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
2666                         bool &FromHi) {
2667  if (N.getOpcode() == ISD::SHL)
2668    FromHi = false;
2669  else if (N.getOpcode() == ISD::SRL)
2670    FromHi = true;
2671  else
2672    return false;
2673
2674  if (!isa<ConstantSDNode>(N.getOperand(1)))
2675    return false;
2676
2677  ShiftAmount = N->getConstantOperandVal(1);
2678  Src = N->getOperand(0);
2679  return true;
2680}
2681
2682/// EXTR instruction extracts a contiguous chunk of bits from two existing
2683/// registers viewed as a high/low pair. This function looks for the pattern:
2684/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
2685/// EXTR. Can't quite be done in TableGen because the two immediates aren't
2686/// independent.
2687static SDValue tryCombineToEXTR(SDNode *N,
2688                                TargetLowering::DAGCombinerInfo &DCI) {
2689  SelectionDAG &DAG = DCI.DAG;
2690  DebugLoc DL = N->getDebugLoc();
2691  EVT VT = N->getValueType(0);
2692
2693  assert(N->getOpcode() == ISD::OR && "Unexpected root");
2694
2695  if (VT != MVT::i32 && VT != MVT::i64)
2696    return SDValue();
2697
2698  SDValue LHS;
2699  uint32_t ShiftLHS = 0;
2700  bool LHSFromHi = 0;
2701  if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
2702    return SDValue();
2703
2704  SDValue RHS;
2705  uint32_t ShiftRHS = 0;
2706  bool RHSFromHi = 0;
2707  if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
2708    return SDValue();
2709
2710  // If they're both trying to come from the high part of the register, they're
2711  // not really an EXTR.
2712  if (LHSFromHi == RHSFromHi)
2713    return SDValue();
2714
2715  if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
2716    return SDValue();
2717
2718  if (LHSFromHi) {
2719    std::swap(LHS, RHS);
2720    std::swap(ShiftLHS, ShiftRHS);
2721  }
2722
2723  return DAG.getNode(AArch64ISD::EXTR, DL, VT,
2724                     LHS, RHS,
2725                     DAG.getConstant(ShiftRHS, MVT::i64));
2726}
2727
2728/// Target-specific dag combine xforms for ISD::OR
2729static SDValue PerformORCombine(SDNode *N,
2730                                TargetLowering::DAGCombinerInfo &DCI,
2731                                const AArch64Subtarget *Subtarget) {
2732
2733  SelectionDAG &DAG = DCI.DAG;
2734  EVT VT = N->getValueType(0);
2735
2736  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
2737    return SDValue();
2738
2739  // Attempt to recognise bitfield-insert operations.
2740  SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
2741  if (Res.getNode())
2742    return Res;
2743
2744  // Attempt to combine an existing MaskedBFI operation into one with a larger
2745  // mask.
2746  Res = tryCombineToLargerBFI(N, DCI, Subtarget);
2747  if (Res.getNode())
2748    return Res;
2749
2750  Res = tryCombineToEXTR(N, DCI);
2751  if (Res.getNode())
2752    return Res;
2753
2754  return SDValue();
2755}
2756
2757/// Target-specific dag combine xforms for ISD::SRA
2758static SDValue PerformSRACombine(SDNode *N,
2759                                 TargetLowering::DAGCombinerInfo &DCI) {
2760
2761  SelectionDAG &DAG = DCI.DAG;
2762  DebugLoc DL = N->getDebugLoc();
2763  EVT VT = N->getValueType(0);
2764
2765  // We're looking for an SRA/SHL pair which form an SBFX.
2766
2767  if (VT != MVT::i32 && VT != MVT::i64)
2768    return SDValue();
2769
2770  if (!isa<ConstantSDNode>(N->getOperand(1)))
2771    return SDValue();
2772
2773  uint64_t ExtraSignBits = N->getConstantOperandVal(1);
2774  SDValue Shift = N->getOperand(0);
2775
2776  if (Shift.getOpcode() != ISD::SHL)
2777    return SDValue();
2778
2779  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
2780    return SDValue();
2781
2782  uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
2783  uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
2784  uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
2785
2786  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
2787    return SDValue();
2788
2789  return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
2790                     DAG.getConstant(LSB, MVT::i64),
2791                     DAG.getConstant(LSB + Width - 1, MVT::i64));
2792}
2793
2794
2795SDValue
2796AArch64TargetLowering::PerformDAGCombine(SDNode *N,
2797                                         DAGCombinerInfo &DCI) const {
2798  switch (N->getOpcode()) {
2799  default: break;
2800  case ISD::AND: return PerformANDCombine(N, DCI);
2801  case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
2802  case ISD::SRA: return PerformSRACombine(N, DCI);
2803  }
2804  return SDValue();
2805}
2806
2807AArch64TargetLowering::ConstraintType
2808AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
2809  if (Constraint.size() == 1) {
2810    switch (Constraint[0]) {
2811    default: break;
2812    case 'w': // An FP/SIMD vector register
2813      return C_RegisterClass;
2814    case 'I': // Constant that can be used with an ADD instruction
2815    case 'J': // Constant that can be used with a SUB instruction
2816    case 'K': // Constant that can be used with a 32-bit logical instruction
2817    case 'L': // Constant that can be used with a 64-bit logical instruction
2818    case 'M': // Constant that can be used as a 32-bit MOV immediate
2819    case 'N': // Constant that can be used as a 64-bit MOV immediate
2820    case 'Y': // Floating point constant zero
2821    case 'Z': // Integer constant zero
2822      return C_Other;
2823    case 'Q': // A memory reference with base register and no offset
2824      return C_Memory;
2825    case 'S': // A symbolic address
2826      return C_Other;
2827    }
2828  }
2829
2830  // FIXME: Ump, Utf, Usa, Ush
2831  // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
2832  //      whatever they may be
2833  // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
2834  // Usa: An absolute symbolic address
2835  // Ush: The high part (bits 32:12) of a pc-relative symbolic address
2836  assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
2837         && Constraint != "Ush" && "Unimplemented constraints");
2838
2839  return TargetLowering::getConstraintType(Constraint);
2840}
2841
2842TargetLowering::ConstraintWeight
2843AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
2844                                                const char *Constraint) const {
2845
2846  llvm_unreachable("Constraint weight unimplemented");
2847}
2848
2849void
2850AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2851                                                    std::string &Constraint,
2852                                                    std::vector<SDValue> &Ops,
2853                                                    SelectionDAG &DAG) const {
2854  SDValue Result(0, 0);
2855
2856  // Only length 1 constraints are C_Other.
2857  if (Constraint.size() != 1) return;
2858
2859  // Only C_Other constraints get lowered like this. That means constants for us
2860  // so return early if there's no hope the constraint can be lowered.
2861
2862  switch(Constraint[0]) {
2863  default: break;
2864  case 'I': case 'J': case 'K': case 'L':
2865  case 'M': case 'N': case 'Z': {
2866    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2867    if (!C)
2868      return;
2869
2870    uint64_t CVal = C->getZExtValue();
2871    uint32_t Bits;
2872
2873    switch (Constraint[0]) {
2874    default:
2875      // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
2876      // is a peculiarly useless SUB constraint.
2877      llvm_unreachable("Unimplemented C_Other constraint");
2878    case 'I':
2879      if (CVal <= 0xfff)
2880        break;
2881      return;
2882    case 'K':
2883      if (A64Imms::isLogicalImm(32, CVal, Bits))
2884        break;
2885      return;
2886    case 'L':
2887      if (A64Imms::isLogicalImm(64, CVal, Bits))
2888        break;
2889      return;
2890    case 'Z':
2891      if (CVal == 0)
2892        break;
2893      return;
2894    }
2895
2896    Result = DAG.getTargetConstant(CVal, Op.getValueType());
2897    break;
2898  }
2899  case 'S': {
2900    // An absolute symbolic address or label reference.
2901    if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
2902      Result = DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getDebugLoc(),
2903                                          GA->getValueType(0));
2904    } else if (const BlockAddressSDNode *BA
2905                 = dyn_cast<BlockAddressSDNode>(Op)) {
2906      Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
2907                                         BA->getValueType(0));
2908    } else if (const ExternalSymbolSDNode *ES
2909                 = dyn_cast<ExternalSymbolSDNode>(Op)) {
2910      Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
2911                                           ES->getValueType(0));
2912    } else
2913      return;
2914    break;
2915  }
2916  case 'Y':
2917    if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2918      if (CFP->isExactlyValue(0.0)) {
2919        Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
2920        break;
2921      }
2922    }
2923    return;
2924  }
2925
2926  if (Result.getNode()) {
2927    Ops.push_back(Result);
2928    return;
2929  }
2930
2931  // It's an unknown constraint for us. Let generic code have a go.
2932  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2933}
2934
2935std::pair<unsigned, const TargetRegisterClass*>
2936AArch64TargetLowering::getRegForInlineAsmConstraint(
2937                                                  const std::string &Constraint,
2938                                                  EVT VT) const {
2939  if (Constraint.size() == 1) {
2940    switch (Constraint[0]) {
2941    case 'r':
2942      if (VT.getSizeInBits() <= 32)
2943        return std::make_pair(0U, &AArch64::GPR32RegClass);
2944      else if (VT == MVT::i64)
2945        return std::make_pair(0U, &AArch64::GPR64RegClass);
2946      break;
2947    case 'w':
2948      if (VT == MVT::f16)
2949        return std::make_pair(0U, &AArch64::FPR16RegClass);
2950      else if (VT == MVT::f32)
2951        return std::make_pair(0U, &AArch64::FPR32RegClass);
2952      else if (VT == MVT::f64)
2953        return std::make_pair(0U, &AArch64::FPR64RegClass);
2954      else if (VT.getSizeInBits() == 64)
2955        return std::make_pair(0U, &AArch64::VPR64RegClass);
2956      else if (VT == MVT::f128)
2957        return std::make_pair(0U, &AArch64::FPR128RegClass);
2958      else if (VT.getSizeInBits() == 128)
2959        return std::make_pair(0U, &AArch64::VPR128RegClass);
2960      break;
2961    }
2962  }
2963
2964  // Use the default implementation in TargetLowering to convert the register
2965  // constraint into a member of a register class.
2966  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2967}
2968