AArch64ISelLowering.cpp revision a0ec3f9b7b826b9b40b80199923b664bad808cce
1//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AArch64 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "aarch64-isel"
16#include "AArch64.h"
17#include "AArch64ISelLowering.h"
18#include "AArch64MachineFunctionInfo.h"
19#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "Utils/AArch64BaseInfo.h"
22#include "llvm/CodeGen/Analysis.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28#include "llvm/IR/CallingConv.h"
29
30using namespace llvm;
31
32static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
33  const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
34
35  if (Subtarget->isTargetLinux())
36    return new AArch64LinuxTargetObjectFile();
37  if (Subtarget->isTargetELF())
38    return new TargetLoweringObjectFileELF();
39  llvm_unreachable("unknown subtarget type");
40}
41
42AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
43  : TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) {
44
45  // SIMD compares set the entire lane's bits to 1
46  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
47
48  // Scalar register <-> type mapping
49  addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
50  addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
51  addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
52  addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
53  addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
54  addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
55
56  computeRegisterProperties();
57
58  // We combine OR nodes for bitfield and NEON BSL operations.
59  setTargetDAGCombine(ISD::OR);
60
61  setTargetDAGCombine(ISD::AND);
62  setTargetDAGCombine(ISD::SRA);
63
64  // AArch64 does not have i1 loads, or much of anything for i1 really.
65  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
66  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
67  setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
68
69  setStackPointerRegisterToSaveRestore(AArch64::XSP);
70  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
71  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
72  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
73
74  // We'll lower globals to wrappers for selection.
75  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
76  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
77
78  // A64 instructions have the comparison predicate attached to the user of the
79  // result, but having a separate comparison is valuable for matching.
80  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
81  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
82  setOperationAction(ISD::BR_CC, MVT::f32, Custom);
83  setOperationAction(ISD::BR_CC, MVT::f64, Custom);
84
85  setOperationAction(ISD::SELECT, MVT::i32, Custom);
86  setOperationAction(ISD::SELECT, MVT::i64, Custom);
87  setOperationAction(ISD::SELECT, MVT::f32, Custom);
88  setOperationAction(ISD::SELECT, MVT::f64, Custom);
89
90  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
91  setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
92  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
93  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
94
95  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
96
97  setOperationAction(ISD::SETCC, MVT::i32, Custom);
98  setOperationAction(ISD::SETCC, MVT::i64, Custom);
99  setOperationAction(ISD::SETCC, MVT::f32, Custom);
100  setOperationAction(ISD::SETCC, MVT::f64, Custom);
101
102  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
103  setOperationAction(ISD::JumpTable, MVT::i32, Custom);
104  setOperationAction(ISD::JumpTable, MVT::i64, Custom);
105
106  setOperationAction(ISD::VASTART, MVT::Other, Custom);
107  setOperationAction(ISD::VACOPY, MVT::Other, Custom);
108  setOperationAction(ISD::VAEND, MVT::Other, Expand);
109  setOperationAction(ISD::VAARG, MVT::Other, Expand);
110
111  setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
112
113  setOperationAction(ISD::ROTL, MVT::i32, Expand);
114  setOperationAction(ISD::ROTL, MVT::i64, Expand);
115
116  setOperationAction(ISD::UREM, MVT::i32, Expand);
117  setOperationAction(ISD::UREM, MVT::i64, Expand);
118  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
119  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
120
121  setOperationAction(ISD::SREM, MVT::i32, Expand);
122  setOperationAction(ISD::SREM, MVT::i64, Expand);
123  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
124  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
125
126  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
127  setOperationAction(ISD::CTPOP, MVT::i64, Expand);
128
129  // Legal floating-point operations.
130  setOperationAction(ISD::FABS, MVT::f32, Legal);
131  setOperationAction(ISD::FABS, MVT::f64, Legal);
132
133  setOperationAction(ISD::FCEIL, MVT::f32, Legal);
134  setOperationAction(ISD::FCEIL, MVT::f64, Legal);
135
136  setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
137  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
138
139  setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
140  setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
141
142  setOperationAction(ISD::FNEG, MVT::f32, Legal);
143  setOperationAction(ISD::FNEG, MVT::f64, Legal);
144
145  setOperationAction(ISD::FRINT, MVT::f32, Legal);
146  setOperationAction(ISD::FRINT, MVT::f64, Legal);
147
148  setOperationAction(ISD::FSQRT, MVT::f32, Legal);
149  setOperationAction(ISD::FSQRT, MVT::f64, Legal);
150
151  setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
152  setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
153
154  setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
155  setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
156  setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
157
158  // Illegal floating-point operations.
159  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
160  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
161
162  setOperationAction(ISD::FCOS, MVT::f32, Expand);
163  setOperationAction(ISD::FCOS, MVT::f64, Expand);
164
165  setOperationAction(ISD::FEXP, MVT::f32, Expand);
166  setOperationAction(ISD::FEXP, MVT::f64, Expand);
167
168  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
169  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
170
171  setOperationAction(ISD::FLOG, MVT::f32, Expand);
172  setOperationAction(ISD::FLOG, MVT::f64, Expand);
173
174  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
175  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
176
177  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
178  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
179
180  setOperationAction(ISD::FPOW, MVT::f32, Expand);
181  setOperationAction(ISD::FPOW, MVT::f64, Expand);
182
183  setOperationAction(ISD::FPOWI, MVT::f32, Expand);
184  setOperationAction(ISD::FPOWI, MVT::f64, Expand);
185
186  setOperationAction(ISD::FREM, MVT::f32, Expand);
187  setOperationAction(ISD::FREM, MVT::f64, Expand);
188
189  setOperationAction(ISD::FSIN, MVT::f32, Expand);
190  setOperationAction(ISD::FSIN, MVT::f64, Expand);
191
192  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
193  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
194
195  // Virtually no operation on f128 is legal, but LLVM can't expand them when
196  // there's a valid register class, so we need custom operations in most cases.
197  setOperationAction(ISD::FABS,       MVT::f128, Expand);
198  setOperationAction(ISD::FADD,       MVT::f128, Custom);
199  setOperationAction(ISD::FCOPYSIGN,  MVT::f128, Expand);
200  setOperationAction(ISD::FCOS,       MVT::f128, Expand);
201  setOperationAction(ISD::FDIV,       MVT::f128, Custom);
202  setOperationAction(ISD::FMA,        MVT::f128, Expand);
203  setOperationAction(ISD::FMUL,       MVT::f128, Custom);
204  setOperationAction(ISD::FNEG,       MVT::f128, Expand);
205  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Expand);
206  setOperationAction(ISD::FP_ROUND,   MVT::f128, Expand);
207  setOperationAction(ISD::FPOW,       MVT::f128, Expand);
208  setOperationAction(ISD::FREM,       MVT::f128, Expand);
209  setOperationAction(ISD::FRINT,      MVT::f128, Expand);
210  setOperationAction(ISD::FSIN,       MVT::f128, Expand);
211  setOperationAction(ISD::FSINCOS,    MVT::f128, Expand);
212  setOperationAction(ISD::FSQRT,      MVT::f128, Expand);
213  setOperationAction(ISD::FSUB,       MVT::f128, Custom);
214  setOperationAction(ISD::FTRUNC,     MVT::f128, Expand);
215  setOperationAction(ISD::SETCC,      MVT::f128, Custom);
216  setOperationAction(ISD::BR_CC,      MVT::f128, Custom);
217  setOperationAction(ISD::SELECT,     MVT::f128, Expand);
218  setOperationAction(ISD::SELECT_CC,  MVT::f128, Custom);
219  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Custom);
220
221  // Lowering for many of the conversions is actually specified by the non-f128
222  // type. The LowerXXX function will be trivial when f128 isn't involved.
223  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
224  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
225  setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
226  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
227  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
228  setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
229  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
230  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
231  setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
232  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
233  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
234  setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
235  setOperationAction(ISD::FP_ROUND,  MVT::f32, Custom);
236  setOperationAction(ISD::FP_ROUND,  MVT::f64, Custom);
237
238  // This prevents LLVM trying to compress double constants into a floating
239  // constant-pool entry and trying to load from there. It's of doubtful benefit
240  // for A64: we'd need LDR followed by FCVT, I believe.
241  setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
242  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
243  setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
244
245  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
246  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
247  setTruncStoreAction(MVT::f128, MVT::f16, Expand);
248  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
249  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
250  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
251
252  setExceptionPointerRegister(AArch64::X0);
253  setExceptionSelectorRegister(AArch64::X1);
254}
255
256EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
257  // It's reasonably important that this value matches the "natural" legal
258  // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
259  // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
260  if (!VT.isVector()) return MVT::i32;
261  return VT.changeVectorElementTypeToInteger();
262}
263
264static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
265                                  unsigned &LdrOpc,
266                                  unsigned &StrOpc) {
267  static unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
268                                 AArch64::LDXR_word, AArch64::LDXR_dword};
269  static unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
270                                AArch64::LDAXR_word, AArch64::LDAXR_dword};
271  static unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
272                                  AArch64::STXR_word, AArch64::STXR_dword};
273  static unsigned StoreRels[] = {AArch64::STLXR_byte, AArch64::STLXR_hword,
274                                 AArch64::STLXR_word, AArch64::STLXR_dword};
275
276  unsigned *LoadOps, *StoreOps;
277  if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
278    LoadOps = LoadAcqs;
279  else
280    LoadOps = LoadBares;
281
282  if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
283    StoreOps = StoreRels;
284  else
285    StoreOps = StoreBares;
286
287  assert(isPowerOf2_32(Size) && Size <= 8 &&
288         "unsupported size for atomic binary op!");
289
290  LdrOpc = LoadOps[Log2_32(Size)];
291  StrOpc = StoreOps[Log2_32(Size)];
292}
293
294MachineBasicBlock *
295AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
296                                        unsigned Size,
297                                        unsigned BinOpcode) const {
298  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
299  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
300
301  const BasicBlock *LLVM_BB = BB->getBasicBlock();
302  MachineFunction *MF = BB->getParent();
303  MachineFunction::iterator It = BB;
304  ++It;
305
306  unsigned dest = MI->getOperand(0).getReg();
307  unsigned ptr = MI->getOperand(1).getReg();
308  unsigned incr = MI->getOperand(2).getReg();
309  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
310  DebugLoc dl = MI->getDebugLoc();
311
312  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
313
314  unsigned ldrOpc, strOpc;
315  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
316
317  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
318  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
319  MF->insert(It, loopMBB);
320  MF->insert(It, exitMBB);
321
322  // Transfer the remainder of BB and its successor edges to exitMBB.
323  exitMBB->splice(exitMBB->begin(), BB,
324                  llvm::next(MachineBasicBlock::iterator(MI)),
325                  BB->end());
326  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
327
328  const TargetRegisterClass *TRC
329    = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
330  unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
331
332  //  thisMBB:
333  //   ...
334  //   fallthrough --> loopMBB
335  BB->addSuccessor(loopMBB);
336
337  //  loopMBB:
338  //   ldxr dest, ptr
339  //   <binop> scratch, dest, incr
340  //   stxr stxr_status, scratch, ptr
341  //   cbnz stxr_status, loopMBB
342  //   fallthrough --> exitMBB
343  BB = loopMBB;
344  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
345  if (BinOpcode) {
346    // All arithmetic operations we'll be creating are designed to take an extra
347    // shift or extend operand, which we can conveniently set to zero.
348
349    // Operand order needs to go the other way for NAND.
350    if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
351      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
352        .addReg(incr).addReg(dest).addImm(0);
353    else
354      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
355        .addReg(dest).addReg(incr).addImm(0);
356  }
357
358  // From the stxr, the register is GPR32; from the cmp it's GPR32wsp
359  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
360  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
361
362  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
363  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
364    .addReg(stxr_status).addMBB(loopMBB);
365
366  BB->addSuccessor(loopMBB);
367  BB->addSuccessor(exitMBB);
368
369  //  exitMBB:
370  //   ...
371  BB = exitMBB;
372
373  MI->eraseFromParent();   // The instruction is gone now.
374
375  return BB;
376}
377
378MachineBasicBlock *
379AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
380                                              MachineBasicBlock *BB,
381                                              unsigned Size,
382                                              unsigned CmpOp,
383                                              A64CC::CondCodes Cond) const {
384  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
385
386  const BasicBlock *LLVM_BB = BB->getBasicBlock();
387  MachineFunction *MF = BB->getParent();
388  MachineFunction::iterator It = BB;
389  ++It;
390
391  unsigned dest = MI->getOperand(0).getReg();
392  unsigned ptr = MI->getOperand(1).getReg();
393  unsigned incr = MI->getOperand(2).getReg();
394  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
395
396  unsigned oldval = dest;
397  DebugLoc dl = MI->getDebugLoc();
398
399  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
400  const TargetRegisterClass *TRC, *TRCsp;
401  if (Size == 8) {
402    TRC = &AArch64::GPR64RegClass;
403    TRCsp = &AArch64::GPR64xspRegClass;
404  } else {
405    TRC = &AArch64::GPR32RegClass;
406    TRCsp = &AArch64::GPR32wspRegClass;
407  }
408
409  unsigned ldrOpc, strOpc;
410  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
411
412  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
413  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
414  MF->insert(It, loopMBB);
415  MF->insert(It, exitMBB);
416
417  // Transfer the remainder of BB and its successor edges to exitMBB.
418  exitMBB->splice(exitMBB->begin(), BB,
419                  llvm::next(MachineBasicBlock::iterator(MI)),
420                  BB->end());
421  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
422
423  unsigned scratch = MRI.createVirtualRegister(TRC);
424  MRI.constrainRegClass(scratch, TRCsp);
425
426  //  thisMBB:
427  //   ...
428  //   fallthrough --> loopMBB
429  BB->addSuccessor(loopMBB);
430
431  //  loopMBB:
432  //   ldxr dest, ptr
433  //   cmp incr, dest (, sign extend if necessary)
434  //   csel scratch, dest, incr, cond
435  //   stxr stxr_status, scratch, ptr
436  //   cbnz stxr_status, loopMBB
437  //   fallthrough --> exitMBB
438  BB = loopMBB;
439  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
440
441  // Build compare and cmov instructions.
442  MRI.constrainRegClass(incr, TRCsp);
443  BuildMI(BB, dl, TII->get(CmpOp))
444    .addReg(incr).addReg(oldval).addImm(0);
445
446  BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
447          scratch)
448    .addReg(oldval).addReg(incr).addImm(Cond);
449
450  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
451  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
452
453  BuildMI(BB, dl, TII->get(strOpc), stxr_status)
454    .addReg(scratch).addReg(ptr);
455  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
456    .addReg(stxr_status).addMBB(loopMBB);
457
458  BB->addSuccessor(loopMBB);
459  BB->addSuccessor(exitMBB);
460
461  //  exitMBB:
462  //   ...
463  BB = exitMBB;
464
465  MI->eraseFromParent();   // The instruction is gone now.
466
467  return BB;
468}
469
470MachineBasicBlock *
471AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
472                                         MachineBasicBlock *BB,
473                                         unsigned Size) const {
474  unsigned dest    = MI->getOperand(0).getReg();
475  unsigned ptr     = MI->getOperand(1).getReg();
476  unsigned oldval  = MI->getOperand(2).getReg();
477  unsigned newval  = MI->getOperand(3).getReg();
478  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
479  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
480  DebugLoc dl = MI->getDebugLoc();
481
482  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
483  const TargetRegisterClass *TRCsp;
484  TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
485
486  unsigned ldrOpc, strOpc;
487  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
488
489  MachineFunction *MF = BB->getParent();
490  const BasicBlock *LLVM_BB = BB->getBasicBlock();
491  MachineFunction::iterator It = BB;
492  ++It; // insert the new blocks after the current block
493
494  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
495  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
496  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
497  MF->insert(It, loop1MBB);
498  MF->insert(It, loop2MBB);
499  MF->insert(It, exitMBB);
500
501  // Transfer the remainder of BB and its successor edges to exitMBB.
502  exitMBB->splice(exitMBB->begin(), BB,
503                  llvm::next(MachineBasicBlock::iterator(MI)),
504                  BB->end());
505  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
506
507  //  thisMBB:
508  //   ...
509  //   fallthrough --> loop1MBB
510  BB->addSuccessor(loop1MBB);
511
512  // loop1MBB:
513  //   ldxr dest, [ptr]
514  //   cmp dest, oldval
515  //   b.ne exitMBB
516  BB = loop1MBB;
517  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
518
519  unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
520  MRI.constrainRegClass(dest, TRCsp);
521  BuildMI(BB, dl, TII->get(CmpOp))
522    .addReg(dest).addReg(oldval).addImm(0);
523  BuildMI(BB, dl, TII->get(AArch64::Bcc))
524    .addImm(A64CC::NE).addMBB(exitMBB);
525  BB->addSuccessor(loop2MBB);
526  BB->addSuccessor(exitMBB);
527
528  // loop2MBB:
529  //   strex stxr_status, newval, [ptr]
530  //   cbnz stxr_status, loop1MBB
531  BB = loop2MBB;
532  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
533  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
534
535  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
536  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
537    .addReg(stxr_status).addMBB(loop1MBB);
538  BB->addSuccessor(loop1MBB);
539  BB->addSuccessor(exitMBB);
540
541  //  exitMBB:
542  //   ...
543  BB = exitMBB;
544
545  MI->eraseFromParent();   // The instruction is gone now.
546
547  return BB;
548}
549
550MachineBasicBlock *
551AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
552                                    MachineBasicBlock *MBB) const {
553  // We materialise the F128CSEL pseudo-instruction using conditional branches
554  // and loads, giving an instruciton sequence like:
555  //     str q0, [sp]
556  //     b.ne IfTrue
557  //     b Finish
558  // IfTrue:
559  //     str q1, [sp]
560  // Finish:
561  //     ldr q0, [sp]
562  //
563  // Using virtual registers would probably not be beneficial since COPY
564  // instructions are expensive for f128 (there's no actual instruction to
565  // implement them).
566  //
567  // An alternative would be to do an integer-CSEL on some address. E.g.:
568  //     mov x0, sp
569  //     add x1, sp, #16
570  //     str q0, [x0]
571  //     str q1, [x1]
572  //     csel x0, x0, x1, ne
573  //     ldr q0, [x0]
574  //
575  // It's unclear which approach is actually optimal.
576  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
577  MachineFunction *MF = MBB->getParent();
578  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
579  DebugLoc DL = MI->getDebugLoc();
580  MachineFunction::iterator It = MBB;
581  ++It;
582
583  unsigned DestReg = MI->getOperand(0).getReg();
584  unsigned IfTrueReg = MI->getOperand(1).getReg();
585  unsigned IfFalseReg = MI->getOperand(2).getReg();
586  unsigned CondCode = MI->getOperand(3).getImm();
587  bool NZCVKilled = MI->getOperand(4).isKill();
588
589  MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
590  MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
591  MF->insert(It, TrueBB);
592  MF->insert(It, EndBB);
593
594  // Transfer rest of current basic-block to EndBB
595  EndBB->splice(EndBB->begin(), MBB,
596                llvm::next(MachineBasicBlock::iterator(MI)),
597                MBB->end());
598  EndBB->transferSuccessorsAndUpdatePHIs(MBB);
599
600  // We need somewhere to store the f128 value needed.
601  int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
602
603  //     [... start of incoming MBB ...]
604  //     str qIFFALSE, [sp]
605  //     b.cc IfTrue
606  //     b Done
607  BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
608    .addReg(IfFalseReg)
609    .addFrameIndex(ScratchFI)
610    .addImm(0);
611  BuildMI(MBB, DL, TII->get(AArch64::Bcc))
612    .addImm(CondCode)
613    .addMBB(TrueBB);
614  BuildMI(MBB, DL, TII->get(AArch64::Bimm))
615    .addMBB(EndBB);
616  MBB->addSuccessor(TrueBB);
617  MBB->addSuccessor(EndBB);
618
619  // IfTrue:
620  //     str qIFTRUE, [sp]
621  BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
622    .addReg(IfTrueReg)
623    .addFrameIndex(ScratchFI)
624    .addImm(0);
625
626  // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
627  // blocks.
628  TrueBB->addSuccessor(EndBB);
629
630  // Done:
631  //     ldr qDEST, [sp]
632  //     [... rest of incoming MBB ...]
633  if (!NZCVKilled)
634    EndBB->addLiveIn(AArch64::NZCV);
635  MachineInstr *StartOfEnd = EndBB->begin();
636  BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
637    .addFrameIndex(ScratchFI)
638    .addImm(0);
639
640  MI->eraseFromParent();
641  return EndBB;
642}
643
644MachineBasicBlock *
645AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
646                                                 MachineBasicBlock *MBB) const {
647  switch (MI->getOpcode()) {
648  default: llvm_unreachable("Unhandled instruction with custom inserter");
649  case AArch64::F128CSEL:
650    return EmitF128CSEL(MI, MBB);
651  case AArch64::ATOMIC_LOAD_ADD_I8:
652    return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
653  case AArch64::ATOMIC_LOAD_ADD_I16:
654    return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
655  case AArch64::ATOMIC_LOAD_ADD_I32:
656    return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
657  case AArch64::ATOMIC_LOAD_ADD_I64:
658    return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
659
660  case AArch64::ATOMIC_LOAD_SUB_I8:
661    return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
662  case AArch64::ATOMIC_LOAD_SUB_I16:
663    return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
664  case AArch64::ATOMIC_LOAD_SUB_I32:
665    return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
666  case AArch64::ATOMIC_LOAD_SUB_I64:
667    return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
668
669  case AArch64::ATOMIC_LOAD_AND_I8:
670    return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
671  case AArch64::ATOMIC_LOAD_AND_I16:
672    return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
673  case AArch64::ATOMIC_LOAD_AND_I32:
674    return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
675  case AArch64::ATOMIC_LOAD_AND_I64:
676    return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
677
678  case AArch64::ATOMIC_LOAD_OR_I8:
679    return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
680  case AArch64::ATOMIC_LOAD_OR_I16:
681    return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
682  case AArch64::ATOMIC_LOAD_OR_I32:
683    return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
684  case AArch64::ATOMIC_LOAD_OR_I64:
685    return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
686
687  case AArch64::ATOMIC_LOAD_XOR_I8:
688    return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
689  case AArch64::ATOMIC_LOAD_XOR_I16:
690    return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
691  case AArch64::ATOMIC_LOAD_XOR_I32:
692    return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
693  case AArch64::ATOMIC_LOAD_XOR_I64:
694    return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
695
696  case AArch64::ATOMIC_LOAD_NAND_I8:
697    return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
698  case AArch64::ATOMIC_LOAD_NAND_I16:
699    return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
700  case AArch64::ATOMIC_LOAD_NAND_I32:
701    return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
702  case AArch64::ATOMIC_LOAD_NAND_I64:
703    return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
704
705  case AArch64::ATOMIC_LOAD_MIN_I8:
706    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
707  case AArch64::ATOMIC_LOAD_MIN_I16:
708    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
709  case AArch64::ATOMIC_LOAD_MIN_I32:
710    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
711  case AArch64::ATOMIC_LOAD_MIN_I64:
712    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
713
714  case AArch64::ATOMIC_LOAD_MAX_I8:
715    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
716  case AArch64::ATOMIC_LOAD_MAX_I16:
717    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
718  case AArch64::ATOMIC_LOAD_MAX_I32:
719    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
720  case AArch64::ATOMIC_LOAD_MAX_I64:
721    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
722
723  case AArch64::ATOMIC_LOAD_UMIN_I8:
724    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
725  case AArch64::ATOMIC_LOAD_UMIN_I16:
726    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
727  case AArch64::ATOMIC_LOAD_UMIN_I32:
728    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
729  case AArch64::ATOMIC_LOAD_UMIN_I64:
730    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
731
732  case AArch64::ATOMIC_LOAD_UMAX_I8:
733    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
734  case AArch64::ATOMIC_LOAD_UMAX_I16:
735    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
736  case AArch64::ATOMIC_LOAD_UMAX_I32:
737    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
738  case AArch64::ATOMIC_LOAD_UMAX_I64:
739    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
740
741  case AArch64::ATOMIC_SWAP_I8:
742    return emitAtomicBinary(MI, MBB, 1, 0);
743  case AArch64::ATOMIC_SWAP_I16:
744    return emitAtomicBinary(MI, MBB, 2, 0);
745  case AArch64::ATOMIC_SWAP_I32:
746    return emitAtomicBinary(MI, MBB, 4, 0);
747  case AArch64::ATOMIC_SWAP_I64:
748    return emitAtomicBinary(MI, MBB, 8, 0);
749
750  case AArch64::ATOMIC_CMP_SWAP_I8:
751    return emitAtomicCmpSwap(MI, MBB, 1);
752  case AArch64::ATOMIC_CMP_SWAP_I16:
753    return emitAtomicCmpSwap(MI, MBB, 2);
754  case AArch64::ATOMIC_CMP_SWAP_I32:
755    return emitAtomicCmpSwap(MI, MBB, 4);
756  case AArch64::ATOMIC_CMP_SWAP_I64:
757    return emitAtomicCmpSwap(MI, MBB, 8);
758  }
759}
760
761
762const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
763  switch (Opcode) {
764  case AArch64ISD::BR_CC:          return "AArch64ISD::BR_CC";
765  case AArch64ISD::Call:           return "AArch64ISD::Call";
766  case AArch64ISD::FPMOV:          return "AArch64ISD::FPMOV";
767  case AArch64ISD::GOTLoad:        return "AArch64ISD::GOTLoad";
768  case AArch64ISD::BFI:            return "AArch64ISD::BFI";
769  case AArch64ISD::EXTR:           return "AArch64ISD::EXTR";
770  case AArch64ISD::Ret:            return "AArch64ISD::Ret";
771  case AArch64ISD::SBFX:           return "AArch64ISD::SBFX";
772  case AArch64ISD::SELECT_CC:      return "AArch64ISD::SELECT_CC";
773  case AArch64ISD::SETCC:          return "AArch64ISD::SETCC";
774  case AArch64ISD::TC_RETURN:      return "AArch64ISD::TC_RETURN";
775  case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
776  case AArch64ISD::TLSDESCCALL:    return "AArch64ISD::TLSDESCCALL";
777  case AArch64ISD::WrapperLarge:   return "AArch64ISD::WrapperLarge";
778  case AArch64ISD::WrapperSmall:   return "AArch64ISD::WrapperSmall";
779
780  default:                       return NULL;
781  }
782}
783
784static const uint16_t AArch64FPRArgRegs[] = {
785  AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
786  AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
787};
788static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
789
790static const uint16_t AArch64ArgRegs[] = {
791  AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
792  AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
793};
794static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
795
796static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
797                                 CCValAssign::LocInfo LocInfo,
798                                 ISD::ArgFlagsTy ArgFlags, CCState &State) {
799  // Mark all remaining general purpose registers as allocated. We don't
800  // backtrack: if (for example) an i128 gets put on the stack, no subsequent
801  // i64 will go in registers (C.11).
802  for (unsigned i = 0; i < NumArgRegs; ++i)
803    State.AllocateReg(AArch64ArgRegs[i]);
804
805  return false;
806}
807
808#include "AArch64GenCallingConv.inc"
809
810CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
811
812  switch(CC) {
813  default: llvm_unreachable("Unsupported calling convention");
814  case CallingConv::Fast:
815  case CallingConv::C:
816    return CC_A64_APCS;
817  }
818}
819
820void
821AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
822                                           SDLoc DL, SDValue &Chain) const {
823  MachineFunction &MF = DAG.getMachineFunction();
824  MachineFrameInfo *MFI = MF.getFrameInfo();
825  AArch64MachineFunctionInfo *FuncInfo
826    = MF.getInfo<AArch64MachineFunctionInfo>();
827
828  SmallVector<SDValue, 8> MemOps;
829
830  unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
831                                                         NumArgRegs);
832  unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
833                                                         NumFPRArgRegs);
834
835  unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
836  int GPRIdx = 0;
837  if (GPRSaveSize != 0) {
838    GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
839
840    SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
841
842    for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
843      unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
844      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
845      SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
846                                   MachinePointerInfo::getStack(i * 8),
847                                   false, false, 0);
848      MemOps.push_back(Store);
849      FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
850                        DAG.getConstant(8, getPointerTy()));
851    }
852  }
853
854  unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
855  int FPRIdx = 0;
856  if (FPRSaveSize != 0) {
857    FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
858
859    SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
860
861    for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
862      unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
863                                   &AArch64::FPR128RegClass);
864      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
865      SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
866                                   MachinePointerInfo::getStack(i * 16),
867                                   false, false, 0);
868      MemOps.push_back(Store);
869      FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
870                        DAG.getConstant(16, getPointerTy()));
871    }
872  }
873
874  int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true);
875
876  FuncInfo->setVariadicStackIdx(StackIdx);
877  FuncInfo->setVariadicGPRIdx(GPRIdx);
878  FuncInfo->setVariadicGPRSize(GPRSaveSize);
879  FuncInfo->setVariadicFPRIdx(FPRIdx);
880  FuncInfo->setVariadicFPRSize(FPRSaveSize);
881
882  if (!MemOps.empty()) {
883    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
884                        MemOps.size());
885  }
886}
887
888
889SDValue
890AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
891                                      CallingConv::ID CallConv, bool isVarArg,
892                                      const SmallVectorImpl<ISD::InputArg> &Ins,
893                                      SDLoc dl, SelectionDAG &DAG,
894                                      SmallVectorImpl<SDValue> &InVals) const {
895  MachineFunction &MF = DAG.getMachineFunction();
896  AArch64MachineFunctionInfo *FuncInfo
897    = MF.getInfo<AArch64MachineFunctionInfo>();
898  MachineFrameInfo *MFI = MF.getFrameInfo();
899  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
900
901  SmallVector<CCValAssign, 16> ArgLocs;
902  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
903                 getTargetMachine(), ArgLocs, *DAG.getContext());
904  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
905
906  SmallVector<SDValue, 16> ArgValues;
907
908  SDValue ArgValue;
909  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
910    CCValAssign &VA = ArgLocs[i];
911    ISD::ArgFlagsTy Flags = Ins[i].Flags;
912
913    if (Flags.isByVal()) {
914      // Byval is used for small structs and HFAs in the PCS, but the system
915      // should work in a non-compliant manner for larger structs.
916      EVT PtrTy = getPointerTy();
917      int Size = Flags.getByValSize();
918      unsigned NumRegs = (Size + 7) / 8;
919
920      unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
921                                                 VA.getLocMemOffset(),
922                                                 false);
923      SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
924      InVals.push_back(FrameIdxN);
925
926      continue;
927    } else if (VA.isRegLoc()) {
928      MVT RegVT = VA.getLocVT();
929      const TargetRegisterClass *RC = getRegClassFor(RegVT);
930      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
931
932      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
933    } else { // VA.isRegLoc()
934      assert(VA.isMemLoc());
935
936      int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
937                                      VA.getLocMemOffset(), true);
938
939      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
940      ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
941                             MachinePointerInfo::getFixedStack(FI),
942                             false, false, false, 0);
943
944
945    }
946
947    switch (VA.getLocInfo()) {
948    default: llvm_unreachable("Unknown loc info!");
949    case CCValAssign::Full: break;
950    case CCValAssign::BCvt:
951      ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
952      break;
953    case CCValAssign::SExt:
954    case CCValAssign::ZExt:
955    case CCValAssign::AExt: {
956      unsigned DestSize = VA.getValVT().getSizeInBits();
957      unsigned DestSubReg;
958
959      switch (DestSize) {
960      case 8: DestSubReg = AArch64::sub_8; break;
961      case 16: DestSubReg = AArch64::sub_16; break;
962      case 32: DestSubReg = AArch64::sub_32; break;
963      case 64: DestSubReg = AArch64::sub_64; break;
964      default: llvm_unreachable("Unexpected argument promotion");
965      }
966
967      ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
968                                   VA.getValVT(), ArgValue,
969                                   DAG.getTargetConstant(DestSubReg, MVT::i32)),
970                         0);
971      break;
972    }
973    }
974
975    InVals.push_back(ArgValue);
976  }
977
978  if (isVarArg)
979    SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
980
981  unsigned StackArgSize = CCInfo.getNextStackOffset();
982  if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
983    // This is a non-standard ABI so by fiat I say we're allowed to make full
984    // use of the stack area to be popped, which must be aligned to 16 bytes in
985    // any case:
986    StackArgSize = RoundUpToAlignment(StackArgSize, 16);
987
988    // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
989    // a multiple of 16.
990    FuncInfo->setArgumentStackToRestore(StackArgSize);
991
992    // This realignment carries over to the available bytes below. Our own
993    // callers will guarantee the space is free by giving an aligned value to
994    // CALLSEQ_START.
995  }
996  // Even if we're not expected to free up the space, it's useful to know how
997  // much is there while considering tail calls (because we can reuse it).
998  FuncInfo->setBytesInStackArgArea(StackArgSize);
999
1000  return Chain;
1001}
1002
1003SDValue
1004AArch64TargetLowering::LowerReturn(SDValue Chain,
1005                                   CallingConv::ID CallConv, bool isVarArg,
1006                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
1007                                   const SmallVectorImpl<SDValue> &OutVals,
1008                                   SDLoc dl, SelectionDAG &DAG) const {
1009  // CCValAssign - represent the assignment of the return value to a location.
1010  SmallVector<CCValAssign, 16> RVLocs;
1011
1012  // CCState - Info about the registers and stack slots.
1013  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1014                 getTargetMachine(), RVLocs, *DAG.getContext());
1015
1016  // Analyze outgoing return values.
1017  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
1018
1019  SDValue Flag;
1020  SmallVector<SDValue, 4> RetOps(1, Chain);
1021
1022  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1023    // PCS: "If the type, T, of the result of a function is such that
1024    // void func(T arg) would require that arg be passed as a value in a
1025    // register (or set of registers) according to the rules in 5.4, then the
1026    // result is returned in the same registers as would be used for such an
1027    // argument.
1028    //
1029    // Otherwise, the caller shall reserve a block of memory of sufficient
1030    // size and alignment to hold the result. The address of the memory block
1031    // shall be passed as an additional argument to the function in x8."
1032    //
1033    // This is implemented in two places. The register-return values are dealt
1034    // with here, more complex returns are passed as an sret parameter, which
1035    // means we don't have to worry about it during actual return.
1036    CCValAssign &VA = RVLocs[i];
1037    assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
1038
1039
1040    SDValue Arg = OutVals[i];
1041
1042    // There's no convenient note in the ABI about this as there is for normal
1043    // arguments, but it says return values are passed in the same registers as
1044    // an argument would be. I believe that includes the comments about
1045    // unspecified higher bits, putting the burden of widening on the *caller*
1046    // for return values.
1047    switch (VA.getLocInfo()) {
1048    default: llvm_unreachable("Unknown loc info");
1049    case CCValAssign::Full: break;
1050    case CCValAssign::SExt:
1051    case CCValAssign::ZExt:
1052    case CCValAssign::AExt:
1053      // Floating-point values should only be extended when they're going into
1054      // memory, which can't happen here so an integer extend is acceptable.
1055      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1056      break;
1057    case CCValAssign::BCvt:
1058      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1059      break;
1060    }
1061
1062    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1063    Flag = Chain.getValue(1);
1064    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1065  }
1066
1067  RetOps[0] = Chain;  // Update chain.
1068
1069  // Add the flag if we have it.
1070  if (Flag.getNode())
1071    RetOps.push_back(Flag);
1072
1073  return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other,
1074                     &RetOps[0], RetOps.size());
1075}
1076
1077SDValue
1078AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
1079                                 SmallVectorImpl<SDValue> &InVals) const {
1080  SelectionDAG &DAG                     = CLI.DAG;
1081  SDLoc &dl                             = CLI.DL;
1082  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1083  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1084  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1085  SDValue Chain                         = CLI.Chain;
1086  SDValue Callee                        = CLI.Callee;
1087  bool &IsTailCall                      = CLI.IsTailCall;
1088  CallingConv::ID CallConv              = CLI.CallConv;
1089  bool IsVarArg                         = CLI.IsVarArg;
1090
1091  MachineFunction &MF = DAG.getMachineFunction();
1092  AArch64MachineFunctionInfo *FuncInfo
1093    = MF.getInfo<AArch64MachineFunctionInfo>();
1094  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1095  bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
1096  bool IsSibCall = false;
1097
1098  if (IsTailCall) {
1099    IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1100                    IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1101                                                   Outs, OutVals, Ins, DAG);
1102
1103    // A sibling call is one where we're under the usual C ABI and not planning
1104    // to change that but can still do a tail call:
1105    if (!TailCallOpt && IsTailCall)
1106      IsSibCall = true;
1107  }
1108
1109  SmallVector<CCValAssign, 16> ArgLocs;
1110  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1111                 getTargetMachine(), ArgLocs, *DAG.getContext());
1112  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1113
1114  // On AArch64 (and all other architectures I'm aware of) the most this has to
1115  // do is adjust the stack pointer.
1116  unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
1117  if (IsSibCall) {
1118    // Since we're not changing the ABI to make this a tail call, the memory
1119    // operands are already available in the caller's incoming argument space.
1120    NumBytes = 0;
1121  }
1122
1123  // FPDiff is the byte offset of the call's argument area from the callee's.
1124  // Stores to callee stack arguments will be placed in FixedStackSlots offset
1125  // by this amount for a tail call. In a sibling call it must be 0 because the
1126  // caller will deallocate the entire stack and the callee still expects its
1127  // arguments to begin at SP+0. Completely unused for non-tail calls.
1128  int FPDiff = 0;
1129
1130  if (IsTailCall && !IsSibCall) {
1131    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1132
1133    // FPDiff will be negative if this tail call requires more space than we
1134    // would automatically have in our incoming argument space. Positive if we
1135    // can actually shrink the stack.
1136    FPDiff = NumReusableBytes - NumBytes;
1137
1138    // The stack pointer must be 16-byte aligned at all times it's used for a
1139    // memory operation, which in practice means at *all* times and in
1140    // particular across call boundaries. Therefore our own arguments started at
1141    // a 16-byte aligned SP and the delta applied for the tail call should
1142    // satisfy the same constraint.
1143    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
1144  }
1145
1146  if (!IsSibCall)
1147    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
1148                                 dl);
1149
1150  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
1151                                        getPointerTy());
1152
1153  SmallVector<SDValue, 8> MemOpChains;
1154  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1155
1156  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1157    CCValAssign &VA = ArgLocs[i];
1158    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1159    SDValue Arg = OutVals[i];
1160
1161    // Callee does the actual widening, so all extensions just use an implicit
1162    // definition of the rest of the Loc. Aesthetically, this would be nicer as
1163    // an ANY_EXTEND, but that isn't valid for floating-point types and this
1164    // alternative works on integer types too.
1165    switch (VA.getLocInfo()) {
1166    default: llvm_unreachable("Unknown loc info!");
1167    case CCValAssign::Full: break;
1168    case CCValAssign::SExt:
1169    case CCValAssign::ZExt:
1170    case CCValAssign::AExt: {
1171      unsigned SrcSize = VA.getValVT().getSizeInBits();
1172      unsigned SrcSubReg;
1173
1174      switch (SrcSize) {
1175      case 8: SrcSubReg = AArch64::sub_8; break;
1176      case 16: SrcSubReg = AArch64::sub_16; break;
1177      case 32: SrcSubReg = AArch64::sub_32; break;
1178      case 64: SrcSubReg = AArch64::sub_64; break;
1179      default: llvm_unreachable("Unexpected argument promotion");
1180      }
1181
1182      Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
1183                                    VA.getLocVT(),
1184                                    DAG.getUNDEF(VA.getLocVT()),
1185                                    Arg,
1186                                    DAG.getTargetConstant(SrcSubReg, MVT::i32)),
1187                    0);
1188
1189      break;
1190    }
1191    case CCValAssign::BCvt:
1192      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1193      break;
1194    }
1195
1196    if (VA.isRegLoc()) {
1197      // A normal register (sub-) argument. For now we just note it down because
1198      // we want to copy things into registers as late as possible to avoid
1199      // register-pressure (and possibly worse).
1200      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1201      continue;
1202    }
1203
1204    assert(VA.isMemLoc() && "unexpected argument location");
1205
1206    SDValue DstAddr;
1207    MachinePointerInfo DstInfo;
1208    if (IsTailCall) {
1209      uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
1210                                          VA.getLocVT().getSizeInBits();
1211      OpSize = (OpSize + 7) / 8;
1212      int32_t Offset = VA.getLocMemOffset() + FPDiff;
1213      int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
1214
1215      DstAddr = DAG.getFrameIndex(FI, getPointerTy());
1216      DstInfo = MachinePointerInfo::getFixedStack(FI);
1217
1218      // Make sure any stack arguments overlapping with where we're storing are
1219      // loaded before this eventual operation. Otherwise they'll be clobbered.
1220      Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
1221    } else {
1222      SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset());
1223
1224      DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1225      DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
1226    }
1227
1228    if (Flags.isByVal()) {
1229      SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
1230      SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
1231                                  Flags.getByValAlign(),
1232                                  /*isVolatile = */ false,
1233                                  /*alwaysInline = */ false,
1234                                  DstInfo, MachinePointerInfo(0));
1235      MemOpChains.push_back(Cpy);
1236    } else {
1237      // Normal stack argument, put it where it's needed.
1238      SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
1239                                   false, false, 0);
1240      MemOpChains.push_back(Store);
1241    }
1242  }
1243
1244  // The loads and stores generated above shouldn't clash with each
1245  // other. Combining them with this TokenFactor notes that fact for the rest of
1246  // the backend.
1247  if (!MemOpChains.empty())
1248    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1249                        &MemOpChains[0], MemOpChains.size());
1250
1251  // Most of the rest of the instructions need to be glued together; we don't
1252  // want assignments to actual registers used by a call to be rearranged by a
1253  // well-meaning scheduler.
1254  SDValue InFlag;
1255
1256  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1257    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1258                             RegsToPass[i].second, InFlag);
1259    InFlag = Chain.getValue(1);
1260  }
1261
1262  // The linker is responsible for inserting veneers when necessary to put a
1263  // function call destination in range, so we don't need to bother with a
1264  // wrapper here.
1265  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1266    const GlobalValue *GV = G->getGlobal();
1267    Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
1268  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1269    const char *Sym = S->getSymbol();
1270    Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1271  }
1272
1273  // We don't usually want to end the call-sequence here because we would tidy
1274  // the frame up *after* the call, however in the ABI-changing tail-call case
1275  // we've carefully laid out the parameters so that when sp is reset they'll be
1276  // in the correct location.
1277  if (IsTailCall && !IsSibCall) {
1278    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1279                               DAG.getIntPtrConstant(0, true), InFlag, dl);
1280    InFlag = Chain.getValue(1);
1281  }
1282
1283  // We produce the following DAG scheme for the actual call instruction:
1284  //     (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
1285  //
1286  // Most arguments aren't going to be used and just keep the values live as
1287  // far as LLVM is concerned. It's expected to be selected as simply "bl
1288  // callee" (for a direct, non-tail call).
1289  std::vector<SDValue> Ops;
1290  Ops.push_back(Chain);
1291  Ops.push_back(Callee);
1292
1293  if (IsTailCall) {
1294    // Each tail call may have to adjust the stack by a different amount, so
1295    // this information must travel along with the operation for eventual
1296    // consumption by emitEpilogue.
1297    Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
1298  }
1299
1300  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1301    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1302                                  RegsToPass[i].second.getValueType()));
1303
1304
1305  // Add a register mask operand representing the call-preserved registers. This
1306  // is used later in codegen to constrain register-allocation.
1307  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1308  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1309  assert(Mask && "Missing call preserved mask for calling convention");
1310  Ops.push_back(DAG.getRegisterMask(Mask));
1311
1312  // If we needed glue, put it in as the last argument.
1313  if (InFlag.getNode())
1314    Ops.push_back(InFlag);
1315
1316  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1317
1318  if (IsTailCall) {
1319    return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1320  }
1321
1322  Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size());
1323  InFlag = Chain.getValue(1);
1324
1325  // Now we can reclaim the stack, just as well do it before working out where
1326  // our return value is.
1327  if (!IsSibCall) {
1328    uint64_t CalleePopBytes
1329      = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
1330
1331    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1332                               DAG.getIntPtrConstant(CalleePopBytes, true),
1333                               InFlag, dl);
1334    InFlag = Chain.getValue(1);
1335  }
1336
1337  return LowerCallResult(Chain, InFlag, CallConv,
1338                         IsVarArg, Ins, dl, DAG, InVals);
1339}
1340
1341SDValue
1342AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1343                                      CallingConv::ID CallConv, bool IsVarArg,
1344                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1345                                      SDLoc dl, SelectionDAG &DAG,
1346                                      SmallVectorImpl<SDValue> &InVals) const {
1347  // Assign locations to each value returned by this call.
1348  SmallVector<CCValAssign, 16> RVLocs;
1349  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1350                 getTargetMachine(), RVLocs, *DAG.getContext());
1351  CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
1352
1353  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1354    CCValAssign VA = RVLocs[i];
1355
1356    // Return values that are too big to fit into registers should use an sret
1357    // pointer, so this can be a lot simpler than the main argument code.
1358    assert(VA.isRegLoc() && "Memory locations not expected for call return");
1359
1360    SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1361                                     InFlag);
1362    Chain = Val.getValue(1);
1363    InFlag = Val.getValue(2);
1364
1365    switch (VA.getLocInfo()) {
1366    default: llvm_unreachable("Unknown loc info!");
1367    case CCValAssign::Full: break;
1368    case CCValAssign::BCvt:
1369      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1370      break;
1371    case CCValAssign::ZExt:
1372    case CCValAssign::SExt:
1373    case CCValAssign::AExt:
1374      // Floating-point arguments only get extended/truncated if they're going
1375      // in memory, so using the integer operation is acceptable here.
1376      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
1377      break;
1378    }
1379
1380    InVals.push_back(Val);
1381  }
1382
1383  return Chain;
1384}
1385
1386bool
1387AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1388                                    CallingConv::ID CalleeCC,
1389                                    bool IsVarArg,
1390                                    bool IsCalleeStructRet,
1391                                    bool IsCallerStructRet,
1392                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1393                                    const SmallVectorImpl<SDValue> &OutVals,
1394                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1395                                    SelectionDAG& DAG) const {
1396
1397  // For CallingConv::C this function knows whether the ABI needs
1398  // changing. That's not true for other conventions so they will have to opt in
1399  // manually.
1400  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1401    return false;
1402
1403  const MachineFunction &MF = DAG.getMachineFunction();
1404  const Function *CallerF = MF.getFunction();
1405  CallingConv::ID CallerCC = CallerF->getCallingConv();
1406  bool CCMatch = CallerCC == CalleeCC;
1407
1408  // Byval parameters hand the function a pointer directly into the stack area
1409  // we want to reuse during a tail call. Working around this *is* possible (see
1410  // X86) but less efficient and uglier in LowerCall.
1411  for (Function::const_arg_iterator i = CallerF->arg_begin(),
1412         e = CallerF->arg_end(); i != e; ++i)
1413    if (i->hasByValAttr())
1414      return false;
1415
1416  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
1417    if (IsTailCallConvention(CalleeCC) && CCMatch)
1418      return true;
1419    return false;
1420  }
1421
1422  // Now we search for cases where we can use a tail call without changing the
1423  // ABI. Sibcall is used in some places (particularly gcc) to refer to this
1424  // concept.
1425
1426  // I want anyone implementing a new calling convention to think long and hard
1427  // about this assert.
1428  assert((!IsVarArg || CalleeCC == CallingConv::C)
1429         && "Unexpected variadic calling convention");
1430
1431  if (IsVarArg && !Outs.empty()) {
1432    // At least two cases here: if caller is fastcc then we can't have any
1433    // memory arguments (we'd be expected to clean up the stack afterwards). If
1434    // caller is C then we could potentially use its argument area.
1435
1436    // FIXME: for now we take the most conservative of these in both cases:
1437    // disallow all variadic memory operands.
1438    SmallVector<CCValAssign, 16> ArgLocs;
1439    CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1440                   getTargetMachine(), ArgLocs, *DAG.getContext());
1441
1442    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1443    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
1444      if (!ArgLocs[i].isRegLoc())
1445        return false;
1446  }
1447
1448  // If the calling conventions do not match, then we'd better make sure the
1449  // results are returned in the same way as what the caller expects.
1450  if (!CCMatch) {
1451    SmallVector<CCValAssign, 16> RVLocs1;
1452    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1453                    getTargetMachine(), RVLocs1, *DAG.getContext());
1454    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
1455
1456    SmallVector<CCValAssign, 16> RVLocs2;
1457    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1458                    getTargetMachine(), RVLocs2, *DAG.getContext());
1459    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
1460
1461    if (RVLocs1.size() != RVLocs2.size())
1462      return false;
1463    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1464      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1465        return false;
1466      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1467        return false;
1468      if (RVLocs1[i].isRegLoc()) {
1469        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1470          return false;
1471      } else {
1472        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1473          return false;
1474      }
1475    }
1476  }
1477
1478  // Nothing more to check if the callee is taking no arguments
1479  if (Outs.empty())
1480    return true;
1481
1482  SmallVector<CCValAssign, 16> ArgLocs;
1483  CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1484                 getTargetMachine(), ArgLocs, *DAG.getContext());
1485
1486  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1487
1488  const AArch64MachineFunctionInfo *FuncInfo
1489    = MF.getInfo<AArch64MachineFunctionInfo>();
1490
1491  // If the stack arguments for this call would fit into our own save area then
1492  // the call can be made tail.
1493  return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
1494}
1495
1496bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
1497                                                   bool TailCallOpt) const {
1498  return CallCC == CallingConv::Fast && TailCallOpt;
1499}
1500
1501bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
1502  return CallCC == CallingConv::Fast;
1503}
1504
1505SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
1506                                                   SelectionDAG &DAG,
1507                                                   MachineFrameInfo *MFI,
1508                                                   int ClobberedFI) const {
1509  SmallVector<SDValue, 8> ArgChains;
1510  int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
1511  int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
1512
1513  // Include the original chain at the beginning of the list. When this is
1514  // used by target LowerCall hooks, this helps legalize find the
1515  // CALLSEQ_BEGIN node.
1516  ArgChains.push_back(Chain);
1517
1518  // Add a chain value for each stack argument corresponding
1519  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1520         UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
1521    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
1522      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
1523        if (FI->getIndex() < 0) {
1524          int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
1525          int64_t InLastByte = InFirstByte;
1526          InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
1527
1528          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1529              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1530            ArgChains.push_back(SDValue(L, 1));
1531        }
1532
1533   // Build a tokenfactor for all the chains.
1534   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other,
1535                      &ArgChains[0], ArgChains.size());
1536}
1537
1538static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
1539  switch (CC) {
1540  case ISD::SETEQ:  return A64CC::EQ;
1541  case ISD::SETGT:  return A64CC::GT;
1542  case ISD::SETGE:  return A64CC::GE;
1543  case ISD::SETLT:  return A64CC::LT;
1544  case ISD::SETLE:  return A64CC::LE;
1545  case ISD::SETNE:  return A64CC::NE;
1546  case ISD::SETUGT: return A64CC::HI;
1547  case ISD::SETUGE: return A64CC::HS;
1548  case ISD::SETULT: return A64CC::LO;
1549  case ISD::SETULE: return A64CC::LS;
1550  default: llvm_unreachable("Unexpected condition code");
1551  }
1552}
1553
1554bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
1555  // icmp is implemented using adds/subs immediate, which take an unsigned
1556  // 12-bit immediate, optionally shifted left by 12 bits.
1557
1558  // Symmetric by using adds/subs
1559  if (Val < 0)
1560    Val = -Val;
1561
1562  return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
1563}
1564
1565SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
1566                                        ISD::CondCode CC, SDValue &A64cc,
1567                                        SelectionDAG &DAG, SDLoc &dl) const {
1568  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1569    int64_t C = 0;
1570    EVT VT = RHSC->getValueType(0);
1571    bool knownInvalid = false;
1572
1573    // I'm not convinced the rest of LLVM handles these edge cases properly, but
1574    // we can at least get it right.
1575    if (isSignedIntSetCC(CC)) {
1576      C = RHSC->getSExtValue();
1577    } else if (RHSC->getZExtValue() > INT64_MAX) {
1578      // A 64-bit constant not representable by a signed 64-bit integer is far
1579      // too big to fit into a SUBS immediate anyway.
1580      knownInvalid = true;
1581    } else {
1582      C = RHSC->getZExtValue();
1583    }
1584
1585    if (!knownInvalid && !isLegalICmpImmediate(C)) {
1586      // Constant does not fit, try adjusting it by one?
1587      switch (CC) {
1588      default: break;
1589      case ISD::SETLT:
1590      case ISD::SETGE:
1591        if (isLegalICmpImmediate(C-1)) {
1592          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1593          RHS = DAG.getConstant(C-1, VT);
1594        }
1595        break;
1596      case ISD::SETULT:
1597      case ISD::SETUGE:
1598        if (isLegalICmpImmediate(C-1)) {
1599          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1600          RHS = DAG.getConstant(C-1, VT);
1601        }
1602        break;
1603      case ISD::SETLE:
1604      case ISD::SETGT:
1605        if (isLegalICmpImmediate(C+1)) {
1606          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1607          RHS = DAG.getConstant(C+1, VT);
1608        }
1609        break;
1610      case ISD::SETULE:
1611      case ISD::SETUGT:
1612        if (isLegalICmpImmediate(C+1)) {
1613          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1614          RHS = DAG.getConstant(C+1, VT);
1615        }
1616        break;
1617      }
1618    }
1619  }
1620
1621  A64CC::CondCodes CondCode = IntCCToA64CC(CC);
1622  A64cc = DAG.getConstant(CondCode, MVT::i32);
1623  return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1624                     DAG.getCondCode(CC));
1625}
1626
1627static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
1628                                    A64CC::CondCodes &Alternative) {
1629  A64CC::CondCodes CondCode = A64CC::Invalid;
1630  Alternative = A64CC::Invalid;
1631
1632  switch (CC) {
1633  default: llvm_unreachable("Unknown FP condition!");
1634  case ISD::SETEQ:
1635  case ISD::SETOEQ: CondCode = A64CC::EQ; break;
1636  case ISD::SETGT:
1637  case ISD::SETOGT: CondCode = A64CC::GT; break;
1638  case ISD::SETGE:
1639  case ISD::SETOGE: CondCode = A64CC::GE; break;
1640  case ISD::SETOLT: CondCode = A64CC::MI; break;
1641  case ISD::SETOLE: CondCode = A64CC::LS; break;
1642  case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
1643  case ISD::SETO:   CondCode = A64CC::VC; break;
1644  case ISD::SETUO:  CondCode = A64CC::VS; break;
1645  case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
1646  case ISD::SETUGT: CondCode = A64CC::HI; break;
1647  case ISD::SETUGE: CondCode = A64CC::PL; break;
1648  case ISD::SETLT:
1649  case ISD::SETULT: CondCode = A64CC::LT; break;
1650  case ISD::SETLE:
1651  case ISD::SETULE: CondCode = A64CC::LE; break;
1652  case ISD::SETNE:
1653  case ISD::SETUNE: CondCode = A64CC::NE; break;
1654  }
1655  return CondCode;
1656}
1657
1658SDValue
1659AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1660  SDLoc DL(Op);
1661  EVT PtrVT = getPointerTy();
1662  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1663
1664  switch(getTargetMachine().getCodeModel()) {
1665  case CodeModel::Small:
1666    // The most efficient code is PC-relative anyway for the small memory model,
1667    // so we don't need to worry about relocation model.
1668    return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
1669                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
1670                                                 AArch64II::MO_NO_FLAG),
1671                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
1672                                                 AArch64II::MO_LO12),
1673                       DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
1674  case CodeModel::Large:
1675    return DAG.getNode(
1676      AArch64ISD::WrapperLarge, DL, PtrVT,
1677      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3),
1678      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
1679      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
1680      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
1681  default:
1682    llvm_unreachable("Only small and large code models supported now");
1683  }
1684}
1685
1686
1687// (BRCOND chain, val, dest)
1688SDValue
1689AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1690  SDLoc dl(Op);
1691  SDValue Chain = Op.getOperand(0);
1692  SDValue TheBit = Op.getOperand(1);
1693  SDValue DestBB = Op.getOperand(2);
1694
1695  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
1696  // that as the consumer we are responsible for ignoring rubbish in higher
1697  // bits.
1698  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
1699                       DAG.getConstant(1, MVT::i32));
1700
1701  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
1702                               DAG.getConstant(0, TheBit.getValueType()),
1703                               DAG.getCondCode(ISD::SETNE));
1704
1705  return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
1706                     A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
1707                     DestBB);
1708}
1709
1710// (BR_CC chain, condcode, lhs, rhs, dest)
1711SDValue
1712AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1713  SDLoc dl(Op);
1714  SDValue Chain = Op.getOperand(0);
1715  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1716  SDValue LHS = Op.getOperand(2);
1717  SDValue RHS = Op.getOperand(3);
1718  SDValue DestBB = Op.getOperand(4);
1719
1720  if (LHS.getValueType() == MVT::f128) {
1721    // f128 comparisons are lowered to runtime calls by a routine which sets
1722    // LHS, RHS and CC appropriately for the rest of this function to continue.
1723    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
1724
1725    // If softenSetCCOperands returned a scalar, we need to compare the result
1726    // against zero to select between true and false values.
1727    if (RHS.getNode() == 0) {
1728      RHS = DAG.getConstant(0, LHS.getValueType());
1729      CC = ISD::SETNE;
1730    }
1731  }
1732
1733  if (LHS.getValueType().isInteger()) {
1734    SDValue A64cc;
1735
1736    // Integers are handled in a separate function because the combinations of
1737    // immediates and tests can get hairy and we may want to fiddle things.
1738    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
1739
1740    return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1741                       Chain, CmpOp, A64cc, DestBB);
1742  }
1743
1744  // Note that some LLVM floating-point CondCodes can't be lowered to a single
1745  // conditional branch, hence FPCCToA64CC can set a second test, where either
1746  // passing is sufficient.
1747  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
1748  CondCode = FPCCToA64CC(CC, Alternative);
1749  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
1750  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1751                              DAG.getCondCode(CC));
1752  SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1753                                 Chain, SetCC, A64cc, DestBB);
1754
1755  if (Alternative != A64CC::Invalid) {
1756    A64cc = DAG.getConstant(Alternative, MVT::i32);
1757    A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1758                           A64BR_CC, SetCC, A64cc, DestBB);
1759
1760  }
1761
1762  return A64BR_CC;
1763}
1764
1765SDValue
1766AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
1767                                       RTLIB::Libcall Call) const {
1768  ArgListTy Args;
1769  ArgListEntry Entry;
1770  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
1771    EVT ArgVT = Op.getOperand(i).getValueType();
1772    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1773    Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
1774    Entry.isSExt = false;
1775    Entry.isZExt = false;
1776    Args.push_back(Entry);
1777  }
1778  SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
1779
1780  Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
1781
1782  // By default, the input chain to this libcall is the entry node of the
1783  // function. If the libcall is going to be emitted as a tail call then
1784  // isUsedByReturnOnly will change it to the right chain if the return
1785  // node which is being folded has a non-entry input chain.
1786  SDValue InChain = DAG.getEntryNode();
1787
1788  // isTailCall may be true since the callee does not reference caller stack
1789  // frame. Check if it's in the right position.
1790  SDValue TCChain = InChain;
1791  bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
1792  if (isTailCall)
1793    InChain = TCChain;
1794
1795  TargetLowering::
1796  CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
1797                    0, getLibcallCallingConv(Call), isTailCall,
1798                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1799                    Callee, Args, DAG, SDLoc(Op));
1800  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
1801
1802  if (!CallInfo.second.getNode())
1803    // It's a tailcall, return the chain (which is the DAG root).
1804    return DAG.getRoot();
1805
1806  return CallInfo.first;
1807}
1808
1809SDValue
1810AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
1811  if (Op.getOperand(0).getValueType() != MVT::f128) {
1812    // It's legal except when f128 is involved
1813    return Op;
1814  }
1815
1816  RTLIB::Libcall LC;
1817  LC  = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1818
1819  SDValue SrcVal = Op.getOperand(0);
1820  return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1821                     /*isSigned*/ false, SDLoc(Op));
1822}
1823
1824SDValue
1825AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
1826  assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1827
1828  RTLIB::Libcall LC;
1829  LC  = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1830
1831  return LowerF128ToCall(Op, DAG, LC);
1832}
1833
1834SDValue
1835AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1836                                      bool IsSigned) const {
1837  if (Op.getOperand(0).getValueType() != MVT::f128) {
1838    // It's legal except when f128 is involved
1839    return Op;
1840  }
1841
1842  RTLIB::Libcall LC;
1843  if (IsSigned)
1844    LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1845  else
1846    LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1847
1848  return LowerF128ToCall(Op, DAG, LC);
1849}
1850
1851SDValue
1852AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op,
1853                                                  SelectionDAG &DAG) const {
1854  assert(getTargetMachine().getCodeModel() == CodeModel::Large);
1855  assert(getTargetMachine().getRelocationModel() == Reloc::Static);
1856
1857  EVT PtrVT = getPointerTy();
1858  SDLoc dl(Op);
1859  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
1860  const GlobalValue *GV = GN->getGlobal();
1861
1862  SDValue GlobalAddr = DAG.getNode(
1863      AArch64ISD::WrapperLarge, dl, PtrVT,
1864      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3),
1865      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
1866      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
1867      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
1868
1869  if (GN->getOffset() != 0)
1870    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
1871                       DAG.getConstant(GN->getOffset(), PtrVT));
1872
1873  return GlobalAddr;
1874}
1875
1876SDValue
1877AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op,
1878                                                  SelectionDAG &DAG) const {
1879  assert(getTargetMachine().getCodeModel() == CodeModel::Small);
1880
1881  EVT PtrVT = getPointerTy();
1882  SDLoc dl(Op);
1883  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
1884  const GlobalValue *GV = GN->getGlobal();
1885  unsigned Alignment = GV->getAlignment();
1886  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1887  if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) {
1888    // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate
1889    // to zero when they remain undefined. In PIC mode the GOT can take care of
1890    // this, but in absolute mode we use a constant pool load.
1891    SDValue PoolAddr;
1892    PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
1893                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
1894                                                     AArch64II::MO_NO_FLAG),
1895                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
1896                                                     AArch64II::MO_LO12),
1897                           DAG.getConstant(8, MVT::i32));
1898    SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr,
1899                                     MachinePointerInfo::getConstantPool(),
1900                                     /*isVolatile=*/ false,
1901                                     /*isNonTemporal=*/ true,
1902                                     /*isInvariant=*/ true, 8);
1903    if (GN->getOffset() != 0)
1904      return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
1905                         DAG.getConstant(GN->getOffset(), PtrVT));
1906
1907    return GlobalAddr;
1908  }
1909
1910  if (Alignment == 0) {
1911    const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
1912    if (GVPtrTy->getElementType()->isSized()) {
1913      Alignment
1914        = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
1915    } else {
1916      // Be conservative if we can't guess, not that it really matters:
1917      // functions and labels aren't valid for loads, and the methods used to
1918      // actually calculate an address work with any alignment.
1919      Alignment = 1;
1920    }
1921  }
1922
1923  unsigned char HiFixup, LoFixup;
1924  bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM);
1925
1926  if (UseGOT) {
1927    HiFixup = AArch64II::MO_GOT;
1928    LoFixup = AArch64II::MO_GOT_LO12;
1929    Alignment = 8;
1930  } else {
1931    HiFixup = AArch64II::MO_NO_FLAG;
1932    LoFixup = AArch64II::MO_LO12;
1933  }
1934
1935  // AArch64's small model demands the following sequence:
1936  // ADRP x0, somewhere
1937  // ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
1938  SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
1939                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1940                                                             HiFixup),
1941                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1942                                                             LoFixup),
1943                                  DAG.getConstant(Alignment, MVT::i32));
1944
1945  if (UseGOT) {
1946    GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
1947                            GlobalRef);
1948  }
1949
1950  if (GN->getOffset() != 0)
1951    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
1952                       DAG.getConstant(GN->getOffset(), PtrVT));
1953
1954  return GlobalRef;
1955}
1956
1957SDValue
1958AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
1959                                             SelectionDAG &DAG) const {
1960  // TableGen doesn't have easy access to the CodeModel or RelocationModel, so
1961  // we make those distinctions here.
1962
1963  switch (getTargetMachine().getCodeModel()) {
1964  case CodeModel::Small:
1965    return LowerGlobalAddressELFSmall(Op, DAG);
1966  case CodeModel::Large:
1967    return LowerGlobalAddressELFLarge(Op, DAG);
1968  default:
1969    llvm_unreachable("Only small and large code models supported now");
1970  }
1971}
1972
1973SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
1974                                                SDValue DescAddr,
1975                                                SDLoc DL,
1976                                                SelectionDAG &DAG) const {
1977  EVT PtrVT = getPointerTy();
1978
1979  // The function we need to call is simply the first entry in the GOT for this
1980  // descriptor, load it in preparation.
1981  SDValue Func, Chain;
1982  Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
1983                     DescAddr);
1984
1985  // The function takes only one argument: the address of the descriptor itself
1986  // in X0.
1987  SDValue Glue;
1988  Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
1989  Glue = Chain.getValue(1);
1990
1991  // Finally, there's a special calling-convention which means that the lookup
1992  // must preserve all registers (except X0, obviously).
1993  const TargetRegisterInfo *TRI  = getTargetMachine().getRegisterInfo();
1994  const AArch64RegisterInfo *A64RI
1995    = static_cast<const AArch64RegisterInfo *>(TRI);
1996  const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
1997
1998  // We're now ready to populate the argument list, as with a normal call:
1999  std::vector<SDValue> Ops;
2000  Ops.push_back(Chain);
2001  Ops.push_back(Func);
2002  Ops.push_back(SymAddr);
2003  Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
2004  Ops.push_back(DAG.getRegisterMask(Mask));
2005  Ops.push_back(Glue);
2006
2007  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2008  Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0],
2009                      Ops.size());
2010  Glue = Chain.getValue(1);
2011
2012  // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
2013  // back to the generic handling code.
2014  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
2015}
2016
2017SDValue
2018AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
2019                                             SelectionDAG &DAG) const {
2020  assert(getSubtarget()->isTargetELF() &&
2021         "TLS not implemented for non-ELF targets");
2022  assert(getTargetMachine().getCodeModel() == CodeModel::Small
2023         && "TLS only supported in small memory model");
2024  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2025
2026  TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
2027
2028  SDValue TPOff;
2029  EVT PtrVT = getPointerTy();
2030  SDLoc DL(Op);
2031  const GlobalValue *GV = GA->getGlobal();
2032
2033  SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
2034
2035  if (Model == TLSModel::InitialExec) {
2036    TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2037                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2038                                                   AArch64II::MO_GOTTPREL),
2039                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2040                                                   AArch64II::MO_GOTTPREL_LO12),
2041                        DAG.getConstant(8, MVT::i32));
2042    TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2043                        TPOff);
2044  } else if (Model == TLSModel::LocalExec) {
2045    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2046                                               AArch64II::MO_TPREL_G1);
2047    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2048                                               AArch64II::MO_TPREL_G0_NC);
2049
2050    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2051                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2052    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2053                                       TPOff, LoVar,
2054                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2055  } else if (Model == TLSModel::GeneralDynamic) {
2056    // Accesses used in this sequence go via the TLS descriptor which lives in
2057    // the GOT. Prepare an address we can use to handle this.
2058    SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2059                                                AArch64II::MO_TLSDESC);
2060    SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2061                                                AArch64II::MO_TLSDESC_LO12);
2062    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2063                                   HiDesc, LoDesc,
2064                                   DAG.getConstant(8, MVT::i32));
2065    SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
2066
2067    TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2068  } else if (Model == TLSModel::LocalDynamic) {
2069    // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2070    // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2071    // the beginning of the module's TLS region, followed by a DTPREL offset
2072    // calculation.
2073
2074    // These accesses will need deduplicating if there's more than one.
2075    AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
2076      .getInfo<AArch64MachineFunctionInfo>();
2077    MFI->incNumLocalDynamicTLSAccesses();
2078
2079
2080    // Get the location of _TLS_MODULE_BASE_:
2081    SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2082                                                AArch64II::MO_TLSDESC);
2083    SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2084                                                AArch64II::MO_TLSDESC_LO12);
2085    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2086                                   HiDesc, LoDesc,
2087                                   DAG.getConstant(8, MVT::i32));
2088    SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
2089
2090    ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2091
2092    // Get the variable's offset from _TLS_MODULE_BASE_
2093    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2094                                               AArch64II::MO_DTPREL_G1);
2095    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2096                                               AArch64II::MO_DTPREL_G0_NC);
2097
2098    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2099                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2100    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2101                                       TPOff, LoVar,
2102                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2103  } else
2104      llvm_unreachable("Unsupported TLS access model");
2105
2106
2107  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
2108}
2109
2110SDValue
2111AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2112                                      bool IsSigned) const {
2113  if (Op.getValueType() != MVT::f128) {
2114    // Legal for everything except f128.
2115    return Op;
2116  }
2117
2118  RTLIB::Libcall LC;
2119  if (IsSigned)
2120    LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2121  else
2122    LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2123
2124  return LowerF128ToCall(Op, DAG, LC);
2125}
2126
2127
2128SDValue
2129AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2130  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2131  SDLoc dl(JT);
2132  EVT PtrVT = getPointerTy();
2133
2134  // When compiling PIC, jump tables get put in the code section so a static
2135  // relocation-style is acceptable for both cases.
2136  switch (getTargetMachine().getCodeModel()) {
2137  case CodeModel::Small:
2138    return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2139                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT),
2140                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2141                                              AArch64II::MO_LO12),
2142                       DAG.getConstant(1, MVT::i32));
2143  case CodeModel::Large:
2144    return DAG.getNode(
2145      AArch64ISD::WrapperLarge, dl, PtrVT,
2146      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3),
2147      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC),
2148      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC),
2149      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC));
2150  default:
2151    llvm_unreachable("Only small and large code models supported now");
2152  }
2153}
2154
2155// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
2156SDValue
2157AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2158  SDLoc dl(Op);
2159  SDValue LHS = Op.getOperand(0);
2160  SDValue RHS = Op.getOperand(1);
2161  SDValue IfTrue = Op.getOperand(2);
2162  SDValue IfFalse = Op.getOperand(3);
2163  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2164
2165  if (LHS.getValueType() == MVT::f128) {
2166    // f128 comparisons are lowered to libcalls, but slot in nicely here
2167    // afterwards.
2168    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2169
2170    // If softenSetCCOperands returned a scalar, we need to compare the result
2171    // against zero to select between true and false values.
2172    if (RHS.getNode() == 0) {
2173      RHS = DAG.getConstant(0, LHS.getValueType());
2174      CC = ISD::SETNE;
2175    }
2176  }
2177
2178  if (LHS.getValueType().isInteger()) {
2179    SDValue A64cc;
2180
2181    // Integers are handled in a separate function because the combinations of
2182    // immediates and tests can get hairy and we may want to fiddle things.
2183    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2184
2185    return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2186                       CmpOp, IfTrue, IfFalse, A64cc);
2187  }
2188
2189  // Note that some LLVM floating-point CondCodes can't be lowered to a single
2190  // conditional branch, hence FPCCToA64CC can set a second test, where either
2191  // passing is sufficient.
2192  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2193  CondCode = FPCCToA64CC(CC, Alternative);
2194  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2195  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2196                              DAG.getCondCode(CC));
2197  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
2198                                     Op.getValueType(),
2199                                     SetCC, IfTrue, IfFalse, A64cc);
2200
2201  if (Alternative != A64CC::Invalid) {
2202    A64cc = DAG.getConstant(Alternative, MVT::i32);
2203    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2204                               SetCC, IfTrue, A64SELECT_CC, A64cc);
2205
2206  }
2207
2208  return A64SELECT_CC;
2209}
2210
2211// (SELECT testbit, iftrue, iffalse)
2212SDValue
2213AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2214  SDLoc dl(Op);
2215  SDValue TheBit = Op.getOperand(0);
2216  SDValue IfTrue = Op.getOperand(1);
2217  SDValue IfFalse = Op.getOperand(2);
2218
2219  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
2220  // that as the consumer we are responsible for ignoring rubbish in higher
2221  // bits.
2222  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
2223                       DAG.getConstant(1, MVT::i32));
2224  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
2225                               DAG.getConstant(0, TheBit.getValueType()),
2226                               DAG.getCondCode(ISD::SETNE));
2227
2228  return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2229                     A64CMP, IfTrue, IfFalse,
2230                     DAG.getConstant(A64CC::NE, MVT::i32));
2231}
2232
2233// (SETCC lhs, rhs, condcode)
2234SDValue
2235AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2236  SDLoc dl(Op);
2237  SDValue LHS = Op.getOperand(0);
2238  SDValue RHS = Op.getOperand(1);
2239  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2240  EVT VT = Op.getValueType();
2241
2242  if (LHS.getValueType() == MVT::f128) {
2243    // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
2244    // for the rest of the function (some i32 or i64 values).
2245    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2246
2247    // If softenSetCCOperands returned a scalar, use it.
2248    if (RHS.getNode() == 0) {
2249      assert(LHS.getValueType() == Op.getValueType() &&
2250             "Unexpected setcc expansion!");
2251      return LHS;
2252    }
2253  }
2254
2255  if (LHS.getValueType().isInteger()) {
2256    SDValue A64cc;
2257
2258    // Integers are handled in a separate function because the combinations of
2259    // immediates and tests can get hairy and we may want to fiddle things.
2260    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2261
2262    return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2263                       CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2264                       A64cc);
2265  }
2266
2267  // Note that some LLVM floating-point CondCodes can't be lowered to a single
2268  // conditional branch, hence FPCCToA64CC can set a second test, where either
2269  // passing is sufficient.
2270  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2271  CondCode = FPCCToA64CC(CC, Alternative);
2272  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2273  SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2274                              DAG.getCondCode(CC));
2275  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2276                                     CmpOp, DAG.getConstant(1, VT),
2277                                     DAG.getConstant(0, VT), A64cc);
2278
2279  if (Alternative != A64CC::Invalid) {
2280    A64cc = DAG.getConstant(Alternative, MVT::i32);
2281    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
2282                               DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
2283  }
2284
2285  return A64SELECT_CC;
2286}
2287
2288SDValue
2289AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2290  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2291  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2292
2293  // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
2294  // rather than just 8.
2295  return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op),
2296                       Op.getOperand(1), Op.getOperand(2),
2297                       DAG.getConstant(32, MVT::i32), 8, false, false,
2298                       MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
2299}
2300
2301SDValue
2302AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2303  // The layout of the va_list struct is specified in the AArch64 Procedure Call
2304  // Standard, section B.3.
2305  MachineFunction &MF = DAG.getMachineFunction();
2306  AArch64MachineFunctionInfo *FuncInfo
2307    = MF.getInfo<AArch64MachineFunctionInfo>();
2308  SDLoc DL(Op);
2309
2310  SDValue Chain = Op.getOperand(0);
2311  SDValue VAList = Op.getOperand(1);
2312  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2313  SmallVector<SDValue, 4> MemOps;
2314
2315  // void *__stack at offset 0
2316  SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
2317                                    getPointerTy());
2318  MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
2319                                MachinePointerInfo(SV), false, false, 0));
2320
2321  // void *__gr_top at offset 8
2322  int GPRSize = FuncInfo->getVariadicGPRSize();
2323  if (GPRSize > 0) {
2324    SDValue GRTop, GRTopAddr;
2325
2326    GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2327                            DAG.getConstant(8, getPointerTy()));
2328
2329    GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
2330    GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
2331                        DAG.getConstant(GPRSize, getPointerTy()));
2332
2333    MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
2334                                  MachinePointerInfo(SV, 8),
2335                                  false, false, 0));
2336  }
2337
2338  // void *__vr_top at offset 16
2339  int FPRSize = FuncInfo->getVariadicFPRSize();
2340  if (FPRSize > 0) {
2341    SDValue VRTop, VRTopAddr;
2342    VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2343                            DAG.getConstant(16, getPointerTy()));
2344
2345    VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
2346    VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
2347                        DAG.getConstant(FPRSize, getPointerTy()));
2348
2349    MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
2350                                  MachinePointerInfo(SV, 16),
2351                                  false, false, 0));
2352  }
2353
2354  // int __gr_offs at offset 24
2355  SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2356                                   DAG.getConstant(24, getPointerTy()));
2357  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
2358                                GROffsAddr, MachinePointerInfo(SV, 24),
2359                                false, false, 0));
2360
2361  // int __vr_offs at offset 28
2362  SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2363                                   DAG.getConstant(28, getPointerTy()));
2364  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
2365                                VROffsAddr, MachinePointerInfo(SV, 28),
2366                                false, false, 0));
2367
2368  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
2369                     MemOps.size());
2370}
2371
2372SDValue
2373AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2374  switch (Op.getOpcode()) {
2375  default: llvm_unreachable("Don't know how to custom lower this!");
2376  case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
2377  case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
2378  case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
2379  case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
2380  case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
2381  case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
2382  case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
2383  case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
2384  case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
2385  case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
2386
2387  case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2388  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
2389  case ISD::BR_CC: return LowerBR_CC(Op, DAG);
2390  case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
2391  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2392  case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2393  case ISD::SELECT: return LowerSELECT(Op, DAG);
2394  case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
2395  case ISD::SETCC: return LowerSETCC(Op, DAG);
2396  case ISD::VACOPY: return LowerVACOPY(Op, DAG);
2397  case ISD::VASTART: return LowerVASTART(Op, DAG);
2398  }
2399
2400  return SDValue();
2401}
2402
2403static SDValue PerformANDCombine(SDNode *N,
2404                                 TargetLowering::DAGCombinerInfo &DCI) {
2405
2406  SelectionDAG &DAG = DCI.DAG;
2407  SDLoc DL(N);
2408  EVT VT = N->getValueType(0);
2409
2410  // We're looking for an SRA/SHL pair which form an SBFX.
2411
2412  if (VT != MVT::i32 && VT != MVT::i64)
2413    return SDValue();
2414
2415  if (!isa<ConstantSDNode>(N->getOperand(1)))
2416    return SDValue();
2417
2418  uint64_t TruncMask = N->getConstantOperandVal(1);
2419  if (!isMask_64(TruncMask))
2420    return SDValue();
2421
2422  uint64_t Width = CountPopulation_64(TruncMask);
2423  SDValue Shift = N->getOperand(0);
2424
2425  if (Shift.getOpcode() != ISD::SRL)
2426    return SDValue();
2427
2428  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
2429    return SDValue();
2430  uint64_t LSB = Shift->getConstantOperandVal(1);
2431
2432  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
2433    return SDValue();
2434
2435  return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
2436                     DAG.getConstant(LSB, MVT::i64),
2437                     DAG.getConstant(LSB + Width - 1, MVT::i64));
2438}
2439
2440/// For a true bitfield insert, the bits getting into that contiguous mask
2441/// should come from the low part of an existing value: they must be formed from
2442/// a compatible SHL operation (unless they're already low). This function
2443/// checks that condition and returns the least-significant bit that's
2444/// intended. If the operation not a field preparation, -1 is returned.
2445static int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT,
2446                            SDValue &MaskedVal, uint64_t Mask) {
2447  if (!isShiftedMask_64(Mask))
2448    return -1;
2449
2450  // Now we need to alter MaskedVal so that it is an appropriate input for a BFI
2451  // instruction. BFI will do a left-shift by LSB before applying the mask we've
2452  // spotted, so in general we should pre-emptively "undo" that by making sure
2453  // the incoming bits have had a right-shift applied to them.
2454  //
2455  // This right shift, however, will combine with existing left/right shifts. In
2456  // the simplest case of a completely straight bitfield operation, it will be
2457  // expected to completely cancel out with an existing SHL. More complicated
2458  // cases (e.g. bitfield to bitfield copy) may still need a real shift before
2459  // the BFI.
2460
2461  uint64_t LSB = countTrailingZeros(Mask);
2462  int64_t ShiftRightRequired = LSB;
2463  if (MaskedVal.getOpcode() == ISD::SHL &&
2464      isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
2465    ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
2466    MaskedVal = MaskedVal.getOperand(0);
2467  } else if (MaskedVal.getOpcode() == ISD::SRL &&
2468             isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
2469    ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
2470    MaskedVal = MaskedVal.getOperand(0);
2471  }
2472
2473  if (ShiftRightRequired > 0)
2474    MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
2475                            DAG.getConstant(ShiftRightRequired, MVT::i64));
2476  else if (ShiftRightRequired < 0) {
2477    // We could actually end up with a residual left shift, for example with
2478    // "struc.bitfield = val << 1".
2479    MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
2480                            DAG.getConstant(-ShiftRightRequired, MVT::i64));
2481  }
2482
2483  return LSB;
2484}
2485
2486/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
2487/// a mask and an extension. Returns true if a BFI was found and provides
2488/// information on its surroundings.
2489static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
2490                          bool &Extended) {
2491  Extended = false;
2492  if (N.getOpcode() == ISD::ZERO_EXTEND) {
2493    Extended = true;
2494    N = N.getOperand(0);
2495  }
2496
2497  if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
2498    Mask = N->getConstantOperandVal(1);
2499    N = N.getOperand(0);
2500  } else {
2501    // Mask is the whole width.
2502    Mask = -1ULL >> (64 - N.getValueType().getSizeInBits());
2503  }
2504
2505  if (N.getOpcode() == AArch64ISD::BFI) {
2506    BFI = N;
2507    return true;
2508  }
2509
2510  return false;
2511}
2512
2513/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
2514/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
2515/// can often be further combined with a larger mask. Ultimately, we want mask
2516/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
2517static SDValue tryCombineToBFI(SDNode *N,
2518                               TargetLowering::DAGCombinerInfo &DCI,
2519                               const AArch64Subtarget *Subtarget) {
2520  SelectionDAG &DAG = DCI.DAG;
2521  SDLoc DL(N);
2522  EVT VT = N->getValueType(0);
2523
2524  assert(N->getOpcode() == ISD::OR && "Unexpected root");
2525
2526  // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
2527  // abandon the effort.
2528  SDValue LHS = N->getOperand(0);
2529  if (LHS.getOpcode() != ISD::AND)
2530    return SDValue();
2531
2532  uint64_t LHSMask;
2533  if (isa<ConstantSDNode>(LHS.getOperand(1)))
2534    LHSMask = LHS->getConstantOperandVal(1);
2535  else
2536    return SDValue();
2537
2538  // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
2539  // is or abandon the effort.
2540  SDValue RHS = N->getOperand(1);
2541  if (RHS.getOpcode() != ISD::AND)
2542    return SDValue();
2543
2544  uint64_t RHSMask;
2545  if (isa<ConstantSDNode>(RHS.getOperand(1)))
2546    RHSMask = RHS->getConstantOperandVal(1);
2547  else
2548    return SDValue();
2549
2550  // Can't do anything if the masks are incompatible.
2551  if (LHSMask & RHSMask)
2552    return SDValue();
2553
2554  // Now we need one of the masks to be a contiguous field. Without loss of
2555  // generality that should be the RHS one.
2556  SDValue Bitfield = LHS.getOperand(0);
2557  if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
2558    // We know that LHS is a candidate new value, and RHS isn't already a better
2559    // one.
2560    std::swap(LHS, RHS);
2561    std::swap(LHSMask, RHSMask);
2562  }
2563
2564  // We've done our best to put the right operands in the right places, all we
2565  // can do now is check whether a BFI exists.
2566  Bitfield = RHS.getOperand(0);
2567  int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
2568  if (LSB == -1)
2569    return SDValue();
2570
2571  uint32_t Width = CountPopulation_64(RHSMask);
2572  assert(Width && "Expected non-zero bitfield width");
2573
2574  SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
2575                            LHS.getOperand(0), Bitfield,
2576                            DAG.getConstant(LSB, MVT::i64),
2577                            DAG.getConstant(Width, MVT::i64));
2578
2579  // Mask is trivial
2580  if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits())))
2581    return BFI;
2582
2583  return DAG.getNode(ISD::AND, DL, VT, BFI,
2584                     DAG.getConstant(LHSMask | RHSMask, VT));
2585}
2586
2587/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
2588/// original input. This is surprisingly common because SROA splits things up
2589/// into i8 chunks, so the originally detected MaskedBFI may actually only act
2590/// on the low (say) byte of a word. This is then orred into the rest of the
2591/// word afterwards.
2592///
2593/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
2594///
2595/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
2596/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
2597/// involved.
2598static SDValue tryCombineToLargerBFI(SDNode *N,
2599                                     TargetLowering::DAGCombinerInfo &DCI,
2600                                     const AArch64Subtarget *Subtarget) {
2601  SelectionDAG &DAG = DCI.DAG;
2602  SDLoc DL(N);
2603  EVT VT = N->getValueType(0);
2604
2605  // First job is to hunt for a MaskedBFI on either the left or right. Swap
2606  // operands if it's actually on the right.
2607  SDValue BFI;
2608  SDValue PossExtraMask;
2609  uint64_t ExistingMask = 0;
2610  bool Extended = false;
2611  if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
2612    PossExtraMask = N->getOperand(1);
2613  else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
2614    PossExtraMask = N->getOperand(0);
2615  else
2616    return SDValue();
2617
2618  // We can only combine a BFI with another compatible mask.
2619  if (PossExtraMask.getOpcode() != ISD::AND ||
2620      !isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
2621    return SDValue();
2622
2623  uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
2624
2625  // Masks must be compatible.
2626  if (ExtraMask & ExistingMask)
2627    return SDValue();
2628
2629  SDValue OldBFIVal = BFI.getOperand(0);
2630  SDValue NewBFIVal = BFI.getOperand(1);
2631  if (Extended) {
2632    // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
2633    // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
2634    // need to be made compatible.
2635    assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
2636           && "Invalid types for BFI");
2637    OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
2638    NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
2639  }
2640
2641  // We need the MaskedBFI to be combined with a mask of the *same* value.
2642  if (PossExtraMask.getOperand(0) != OldBFIVal)
2643    return SDValue();
2644
2645  BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
2646                    OldBFIVal, NewBFIVal,
2647                    BFI.getOperand(2), BFI.getOperand(3));
2648
2649  // If the masking is trivial, we don't need to create it.
2650  if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits())))
2651    return BFI;
2652
2653  return DAG.getNode(ISD::AND, DL, VT, BFI,
2654                     DAG.getConstant(ExtraMask | ExistingMask, VT));
2655}
2656
2657/// An EXTR instruction is made up of two shifts, ORed together. This helper
2658/// searches for and classifies those shifts.
2659static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
2660                         bool &FromHi) {
2661  if (N.getOpcode() == ISD::SHL)
2662    FromHi = false;
2663  else if (N.getOpcode() == ISD::SRL)
2664    FromHi = true;
2665  else
2666    return false;
2667
2668  if (!isa<ConstantSDNode>(N.getOperand(1)))
2669    return false;
2670
2671  ShiftAmount = N->getConstantOperandVal(1);
2672  Src = N->getOperand(0);
2673  return true;
2674}
2675
2676/// EXTR instruction extracts a contiguous chunk of bits from two existing
2677/// registers viewed as a high/low pair. This function looks for the pattern:
2678/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
2679/// EXTR. Can't quite be done in TableGen because the two immediates aren't
2680/// independent.
2681static SDValue tryCombineToEXTR(SDNode *N,
2682                                TargetLowering::DAGCombinerInfo &DCI) {
2683  SelectionDAG &DAG = DCI.DAG;
2684  SDLoc DL(N);
2685  EVT VT = N->getValueType(0);
2686
2687  assert(N->getOpcode() == ISD::OR && "Unexpected root");
2688
2689  if (VT != MVT::i32 && VT != MVT::i64)
2690    return SDValue();
2691
2692  SDValue LHS;
2693  uint32_t ShiftLHS = 0;
2694  bool LHSFromHi = 0;
2695  if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
2696    return SDValue();
2697
2698  SDValue RHS;
2699  uint32_t ShiftRHS = 0;
2700  bool RHSFromHi = 0;
2701  if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
2702    return SDValue();
2703
2704  // If they're both trying to come from the high part of the register, they're
2705  // not really an EXTR.
2706  if (LHSFromHi == RHSFromHi)
2707    return SDValue();
2708
2709  if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
2710    return SDValue();
2711
2712  if (LHSFromHi) {
2713    std::swap(LHS, RHS);
2714    std::swap(ShiftLHS, ShiftRHS);
2715  }
2716
2717  return DAG.getNode(AArch64ISD::EXTR, DL, VT,
2718                     LHS, RHS,
2719                     DAG.getConstant(ShiftRHS, MVT::i64));
2720}
2721
2722/// Target-specific dag combine xforms for ISD::OR
2723static SDValue PerformORCombine(SDNode *N,
2724                                TargetLowering::DAGCombinerInfo &DCI,
2725                                const AArch64Subtarget *Subtarget) {
2726
2727  SelectionDAG &DAG = DCI.DAG;
2728  EVT VT = N->getValueType(0);
2729
2730  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
2731    return SDValue();
2732
2733  // Attempt to recognise bitfield-insert operations.
2734  SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
2735  if (Res.getNode())
2736    return Res;
2737
2738  // Attempt to combine an existing MaskedBFI operation into one with a larger
2739  // mask.
2740  Res = tryCombineToLargerBFI(N, DCI, Subtarget);
2741  if (Res.getNode())
2742    return Res;
2743
2744  Res = tryCombineToEXTR(N, DCI);
2745  if (Res.getNode())
2746    return Res;
2747
2748  return SDValue();
2749}
2750
2751/// Target-specific dag combine xforms for ISD::SRA
2752static SDValue PerformSRACombine(SDNode *N,
2753                                 TargetLowering::DAGCombinerInfo &DCI) {
2754
2755  SelectionDAG &DAG = DCI.DAG;
2756  SDLoc DL(N);
2757  EVT VT = N->getValueType(0);
2758
2759  // We're looking for an SRA/SHL pair which form an SBFX.
2760
2761  if (VT != MVT::i32 && VT != MVT::i64)
2762    return SDValue();
2763
2764  if (!isa<ConstantSDNode>(N->getOperand(1)))
2765    return SDValue();
2766
2767  uint64_t ExtraSignBits = N->getConstantOperandVal(1);
2768  SDValue Shift = N->getOperand(0);
2769
2770  if (Shift.getOpcode() != ISD::SHL)
2771    return SDValue();
2772
2773  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
2774    return SDValue();
2775
2776  uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
2777  uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
2778  uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
2779
2780  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
2781    return SDValue();
2782
2783  return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
2784                     DAG.getConstant(LSB, MVT::i64),
2785                     DAG.getConstant(LSB + Width - 1, MVT::i64));
2786}
2787
2788
2789SDValue
2790AArch64TargetLowering::PerformDAGCombine(SDNode *N,
2791                                         DAGCombinerInfo &DCI) const {
2792  switch (N->getOpcode()) {
2793  default: break;
2794  case ISD::AND: return PerformANDCombine(N, DCI);
2795  case ISD::OR: return PerformORCombine(N, DCI, getSubtarget());
2796  case ISD::SRA: return PerformSRACombine(N, DCI);
2797  }
2798  return SDValue();
2799}
2800
2801bool
2802AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
2803  VT = VT.getScalarType();
2804
2805  if (!VT.isSimple())
2806    return false;
2807
2808  switch (VT.getSimpleVT().SimpleTy) {
2809  case MVT::f16:
2810  case MVT::f32:
2811  case MVT::f64:
2812    return true;
2813  case MVT::f128:
2814    return false;
2815  default:
2816    break;
2817  }
2818
2819  return false;
2820}
2821
2822AArch64TargetLowering::ConstraintType
2823AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
2824  if (Constraint.size() == 1) {
2825    switch (Constraint[0]) {
2826    default: break;
2827    case 'w': // An FP/SIMD vector register
2828      return C_RegisterClass;
2829    case 'I': // Constant that can be used with an ADD instruction
2830    case 'J': // Constant that can be used with a SUB instruction
2831    case 'K': // Constant that can be used with a 32-bit logical instruction
2832    case 'L': // Constant that can be used with a 64-bit logical instruction
2833    case 'M': // Constant that can be used as a 32-bit MOV immediate
2834    case 'N': // Constant that can be used as a 64-bit MOV immediate
2835    case 'Y': // Floating point constant zero
2836    case 'Z': // Integer constant zero
2837      return C_Other;
2838    case 'Q': // A memory reference with base register and no offset
2839      return C_Memory;
2840    case 'S': // A symbolic address
2841      return C_Other;
2842    }
2843  }
2844
2845  // FIXME: Ump, Utf, Usa, Ush
2846  // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
2847  //      whatever they may be
2848  // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
2849  // Usa: An absolute symbolic address
2850  // Ush: The high part (bits 32:12) of a pc-relative symbolic address
2851  assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
2852         && Constraint != "Ush" && "Unimplemented constraints");
2853
2854  return TargetLowering::getConstraintType(Constraint);
2855}
2856
2857TargetLowering::ConstraintWeight
2858AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
2859                                                const char *Constraint) const {
2860
2861  llvm_unreachable("Constraint weight unimplemented");
2862}
2863
2864void
2865AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2866                                                    std::string &Constraint,
2867                                                    std::vector<SDValue> &Ops,
2868                                                    SelectionDAG &DAG) const {
2869  SDValue Result(0, 0);
2870
2871  // Only length 1 constraints are C_Other.
2872  if (Constraint.size() != 1) return;
2873
2874  // Only C_Other constraints get lowered like this. That means constants for us
2875  // so return early if there's no hope the constraint can be lowered.
2876
2877  switch(Constraint[0]) {
2878  default: break;
2879  case 'I': case 'J': case 'K': case 'L':
2880  case 'M': case 'N': case 'Z': {
2881    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2882    if (!C)
2883      return;
2884
2885    uint64_t CVal = C->getZExtValue();
2886    uint32_t Bits;
2887
2888    switch (Constraint[0]) {
2889    default:
2890      // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
2891      // is a peculiarly useless SUB constraint.
2892      llvm_unreachable("Unimplemented C_Other constraint");
2893    case 'I':
2894      if (CVal <= 0xfff)
2895        break;
2896      return;
2897    case 'K':
2898      if (A64Imms::isLogicalImm(32, CVal, Bits))
2899        break;
2900      return;
2901    case 'L':
2902      if (A64Imms::isLogicalImm(64, CVal, Bits))
2903        break;
2904      return;
2905    case 'Z':
2906      if (CVal == 0)
2907        break;
2908      return;
2909    }
2910
2911    Result = DAG.getTargetConstant(CVal, Op.getValueType());
2912    break;
2913  }
2914  case 'S': {
2915    // An absolute symbolic address or label reference.
2916    if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
2917      Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
2918                                          GA->getValueType(0));
2919    } else if (const BlockAddressSDNode *BA
2920                 = dyn_cast<BlockAddressSDNode>(Op)) {
2921      Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
2922                                         BA->getValueType(0));
2923    } else if (const ExternalSymbolSDNode *ES
2924                 = dyn_cast<ExternalSymbolSDNode>(Op)) {
2925      Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
2926                                           ES->getValueType(0));
2927    } else
2928      return;
2929    break;
2930  }
2931  case 'Y':
2932    if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2933      if (CFP->isExactlyValue(0.0)) {
2934        Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
2935        break;
2936      }
2937    }
2938    return;
2939  }
2940
2941  if (Result.getNode()) {
2942    Ops.push_back(Result);
2943    return;
2944  }
2945
2946  // It's an unknown constraint for us. Let generic code have a go.
2947  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2948}
2949
2950std::pair<unsigned, const TargetRegisterClass*>
2951AArch64TargetLowering::getRegForInlineAsmConstraint(
2952                                                  const std::string &Constraint,
2953                                                  MVT VT) const {
2954  if (Constraint.size() == 1) {
2955    switch (Constraint[0]) {
2956    case 'r':
2957      if (VT.getSizeInBits() <= 32)
2958        return std::make_pair(0U, &AArch64::GPR32RegClass);
2959      else if (VT == MVT::i64)
2960        return std::make_pair(0U, &AArch64::GPR64RegClass);
2961      break;
2962    case 'w':
2963      if (VT == MVT::f16)
2964        return std::make_pair(0U, &AArch64::FPR16RegClass);
2965      else if (VT == MVT::f32)
2966        return std::make_pair(0U, &AArch64::FPR32RegClass);
2967      else if (VT == MVT::f64)
2968        return std::make_pair(0U, &AArch64::FPR64RegClass);
2969      else if (VT.getSizeInBits() == 64)
2970        return std::make_pair(0U, &AArch64::VPR64RegClass);
2971      else if (VT == MVT::f128)
2972        return std::make_pair(0U, &AArch64::FPR128RegClass);
2973      else if (VT.getSizeInBits() == 128)
2974        return std::make_pair(0U, &AArch64::VPR128RegClass);
2975      break;
2976    }
2977  }
2978
2979  // Use the default implementation in TargetLowering to convert the register
2980  // constraint into a member of a register class.
2981  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2982}
2983