ARMFastISel.cpp revision 0ac754f6f43a0e5a56f712aebb663581ae512e4c
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "MCTargetDesc/ARMAddressingModes.h"
24#include "llvm/CallingConv.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Instructions.h"
28#include "llvm/IntrinsicInst.h"
29#include "llvm/Module.h"
30#include "llvm/Operator.h"
31#include "llvm/CodeGen/Analysis.h"
32#include "llvm/CodeGen/FastISel.h"
33#include "llvm/CodeGen/FunctionLoweringInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineConstantPool.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineMemOperand.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/Support/CallSite.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/GetElementPtrTypeIterator.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetLowering.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetOptions.h"
49using namespace llvm;
50
51static cl::opt<bool>
52DisableARMFastISel("disable-arm-fast-isel",
53                    cl::desc("Turn off experimental ARM fast-isel support"),
54                    cl::init(false), cl::Hidden);
55
56extern cl::opt<bool> EnableARMLongCalls;
57
58namespace {
59
60  // All possible address modes, plus some.
61  typedef struct Address {
62    enum {
63      RegBase,
64      FrameIndexBase
65    } BaseType;
66
67    union {
68      unsigned Reg;
69      int FI;
70    } Base;
71
72    int Offset;
73
74    // Innocuous defaults for our address.
75    Address()
76     : BaseType(RegBase), Offset(0) {
77       Base.Reg = 0;
78     }
79  } Address;
80
81class ARMFastISel : public FastISel {
82
83  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
84  /// make the right decision when generating code for different targets.
85  const ARMSubtarget *Subtarget;
86  const TargetMachine &TM;
87  const TargetInstrInfo &TII;
88  const TargetLowering &TLI;
89  ARMFunctionInfo *AFI;
90
91  // Convenience variables to avoid some queries.
92  bool isThumb2;
93  LLVMContext *Context;
94
95  public:
96    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
97    : FastISel(funcInfo),
98      TM(funcInfo.MF->getTarget()),
99      TII(*TM.getInstrInfo()),
100      TLI(*TM.getTargetLowering()) {
101      Subtarget = &TM.getSubtarget<ARMSubtarget>();
102      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
103      isThumb2 = AFI->isThumbFunction();
104      Context = &funcInfo.Fn->getContext();
105    }
106
107    // Code from FastISel.cpp.
108    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
109                                   const TargetRegisterClass *RC);
110    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
111                                    const TargetRegisterClass *RC,
112                                    unsigned Op0, bool Op0IsKill);
113    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
114                                     const TargetRegisterClass *RC,
115                                     unsigned Op0, bool Op0IsKill,
116                                     unsigned Op1, bool Op1IsKill);
117    virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
118                                      const TargetRegisterClass *RC,
119                                      unsigned Op0, bool Op0IsKill,
120                                      unsigned Op1, bool Op1IsKill,
121                                      unsigned Op2, bool Op2IsKill);
122    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
123                                     const TargetRegisterClass *RC,
124                                     unsigned Op0, bool Op0IsKill,
125                                     uint64_t Imm);
126    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
127                                     const TargetRegisterClass *RC,
128                                     unsigned Op0, bool Op0IsKill,
129                                     const ConstantFP *FPImm);
130    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
131                                      const TargetRegisterClass *RC,
132                                      unsigned Op0, bool Op0IsKill,
133                                      unsigned Op1, bool Op1IsKill,
134                                      uint64_t Imm);
135    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
136                                    const TargetRegisterClass *RC,
137                                    uint64_t Imm);
138    virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
139                                     const TargetRegisterClass *RC,
140                                     uint64_t Imm1, uint64_t Imm2);
141
142    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
143                                                unsigned Op0, bool Op0IsKill,
144                                                uint32_t Idx);
145
146    // Backend specific FastISel code.
147    virtual bool TargetSelectInstruction(const Instruction *I);
148    virtual unsigned TargetMaterializeConstant(const Constant *C);
149    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
150    virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
151                               const LoadInst *LI);
152
153  #include "ARMGenFastISel.inc"
154
155    // Instruction selection routines.
156  private:
157    bool SelectLoad(const Instruction *I);
158    bool SelectStore(const Instruction *I);
159    bool SelectBranch(const Instruction *I);
160    bool SelectIndirectBr(const Instruction *I);
161    bool SelectCmp(const Instruction *I);
162    bool SelectFPExt(const Instruction *I);
163    bool SelectFPTrunc(const Instruction *I);
164    bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
165    bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
166    bool SelectIToFP(const Instruction *I, bool isSigned);
167    bool SelectFPToI(const Instruction *I, bool isSigned);
168    bool SelectDiv(const Instruction *I, bool isSigned);
169    bool SelectRem(const Instruction *I, bool isSigned);
170    bool SelectCall(const Instruction *I, const char *IntrMemName);
171    bool SelectIntrinsicCall(const IntrinsicInst &I);
172    bool SelectSelect(const Instruction *I);
173    bool SelectRet(const Instruction *I);
174    bool SelectTrunc(const Instruction *I);
175    bool SelectIntExt(const Instruction *I);
176
177    // Utility routines.
178  private:
179    bool isTypeLegal(Type *Ty, MVT &VT);
180    bool isLoadTypeLegal(Type *Ty, MVT &VT);
181    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
182                    bool isZExt);
183    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
184                     unsigned Alignment = 0, bool isZExt = true,
185                     bool allocReg = true);
186
187    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
188                      unsigned Alignment = 0);
189    bool ARMComputeAddress(const Value *Obj, Address &Addr);
190    void ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3);
191    bool ARMIsMemCpySmall(uint64_t Len);
192    bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len);
193    unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt);
194    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
195    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
196    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
197    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
198    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
199    unsigned ARMSelectCallOp(const GlobalValue *GV);
200
201    // Call handling routines.
202  private:
203    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
204    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
205                         SmallVectorImpl<unsigned> &ArgRegs,
206                         SmallVectorImpl<MVT> &ArgVTs,
207                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
208                         SmallVectorImpl<unsigned> &RegArgs,
209                         CallingConv::ID CC,
210                         unsigned &NumBytes);
211    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
212                    const Instruction *I, CallingConv::ID CC,
213                    unsigned &NumBytes);
214    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
215
216    // OptionalDef handling routines.
217  private:
218    bool isARMNEONPred(const MachineInstr *MI);
219    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
220    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
221    void AddLoadStoreOperands(EVT VT, Address &Addr,
222                              const MachineInstrBuilder &MIB,
223                              unsigned Flags, bool useAM3);
224};
225
226} // end anonymous namespace
227
228#include "ARMGenCallingConv.inc"
229
230// DefinesOptionalPredicate - This is different from DefinesPredicate in that
231// we don't care about implicit defs here, just places we'll need to add a
232// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
233bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
234  if (!MI->hasOptionalDef())
235    return false;
236
237  // Look to see if our OptionalDef is defining CPSR or CCR.
238  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
239    const MachineOperand &MO = MI->getOperand(i);
240    if (!MO.isReg() || !MO.isDef()) continue;
241    if (MO.getReg() == ARM::CPSR)
242      *CPSR = true;
243  }
244  return true;
245}
246
247bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
248  const MCInstrDesc &MCID = MI->getDesc();
249
250  // If we're a thumb2 or not NEON function we were handled via isPredicable.
251  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
252       AFI->isThumb2Function())
253    return false;
254
255  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
256    if (MCID.OpInfo[i].isPredicate())
257      return true;
258
259  return false;
260}
261
262// If the machine is predicable go ahead and add the predicate operands, if
263// it needs default CC operands add those.
264// TODO: If we want to support thumb1 then we'll need to deal with optional
265// CPSR defs that need to be added before the remaining operands. See s_cc_out
266// for descriptions why.
267const MachineInstrBuilder &
268ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
269  MachineInstr *MI = &*MIB;
270
271  // Do we use a predicate? or...
272  // Are we NEON in ARM mode and have a predicate operand? If so, I know
273  // we're not predicable but add it anyways.
274  if (TII.isPredicable(MI) || isARMNEONPred(MI))
275    AddDefaultPred(MIB);
276
277  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
278  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
279  bool CPSR = false;
280  if (DefinesOptionalPredicate(MI, &CPSR)) {
281    if (CPSR)
282      AddDefaultT1CC(MIB);
283    else
284      AddDefaultCC(MIB);
285  }
286  return MIB;
287}
288
289unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
290                                    const TargetRegisterClass* RC) {
291  unsigned ResultReg = createResultReg(RC);
292  const MCInstrDesc &II = TII.get(MachineInstOpcode);
293
294  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
295  return ResultReg;
296}
297
298unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
299                                     const TargetRegisterClass *RC,
300                                     unsigned Op0, bool Op0IsKill) {
301  unsigned ResultReg = createResultReg(RC);
302  const MCInstrDesc &II = TII.get(MachineInstOpcode);
303
304  if (II.getNumDefs() >= 1) {
305    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
306                   .addReg(Op0, Op0IsKill * RegState::Kill));
307  } else {
308    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
309                   .addReg(Op0, Op0IsKill * RegState::Kill));
310    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
311                   TII.get(TargetOpcode::COPY), ResultReg)
312                   .addReg(II.ImplicitDefs[0]));
313  }
314  return ResultReg;
315}
316
317unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
318                                      const TargetRegisterClass *RC,
319                                      unsigned Op0, bool Op0IsKill,
320                                      unsigned Op1, bool Op1IsKill) {
321  unsigned ResultReg = createResultReg(RC);
322  const MCInstrDesc &II = TII.get(MachineInstOpcode);
323
324  if (II.getNumDefs() >= 1) {
325    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
326                   .addReg(Op0, Op0IsKill * RegState::Kill)
327                   .addReg(Op1, Op1IsKill * RegState::Kill));
328  } else {
329    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
330                   .addReg(Op0, Op0IsKill * RegState::Kill)
331                   .addReg(Op1, Op1IsKill * RegState::Kill));
332    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
333                           TII.get(TargetOpcode::COPY), ResultReg)
334                   .addReg(II.ImplicitDefs[0]));
335  }
336  return ResultReg;
337}
338
339unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
340                                       const TargetRegisterClass *RC,
341                                       unsigned Op0, bool Op0IsKill,
342                                       unsigned Op1, bool Op1IsKill,
343                                       unsigned Op2, bool Op2IsKill) {
344  unsigned ResultReg = createResultReg(RC);
345  const MCInstrDesc &II = TII.get(MachineInstOpcode);
346
347  if (II.getNumDefs() >= 1) {
348    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
349                   .addReg(Op0, Op0IsKill * RegState::Kill)
350                   .addReg(Op1, Op1IsKill * RegState::Kill)
351                   .addReg(Op2, Op2IsKill * RegState::Kill));
352  } else {
353    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
354                   .addReg(Op0, Op0IsKill * RegState::Kill)
355                   .addReg(Op1, Op1IsKill * RegState::Kill)
356                   .addReg(Op2, Op2IsKill * RegState::Kill));
357    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
358                           TII.get(TargetOpcode::COPY), ResultReg)
359                   .addReg(II.ImplicitDefs[0]));
360  }
361  return ResultReg;
362}
363
364unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
365                                      const TargetRegisterClass *RC,
366                                      unsigned Op0, bool Op0IsKill,
367                                      uint64_t Imm) {
368  unsigned ResultReg = createResultReg(RC);
369  const MCInstrDesc &II = TII.get(MachineInstOpcode);
370
371  if (II.getNumDefs() >= 1) {
372    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
373                   .addReg(Op0, Op0IsKill * RegState::Kill)
374                   .addImm(Imm));
375  } else {
376    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
377                   .addReg(Op0, Op0IsKill * RegState::Kill)
378                   .addImm(Imm));
379    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
380                           TII.get(TargetOpcode::COPY), ResultReg)
381                   .addReg(II.ImplicitDefs[0]));
382  }
383  return ResultReg;
384}
385
386unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
387                                      const TargetRegisterClass *RC,
388                                      unsigned Op0, bool Op0IsKill,
389                                      const ConstantFP *FPImm) {
390  unsigned ResultReg = createResultReg(RC);
391  const MCInstrDesc &II = TII.get(MachineInstOpcode);
392
393  if (II.getNumDefs() >= 1) {
394    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
395                   .addReg(Op0, Op0IsKill * RegState::Kill)
396                   .addFPImm(FPImm));
397  } else {
398    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
399                   .addReg(Op0, Op0IsKill * RegState::Kill)
400                   .addFPImm(FPImm));
401    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
402                           TII.get(TargetOpcode::COPY), ResultReg)
403                   .addReg(II.ImplicitDefs[0]));
404  }
405  return ResultReg;
406}
407
408unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
409                                       const TargetRegisterClass *RC,
410                                       unsigned Op0, bool Op0IsKill,
411                                       unsigned Op1, bool Op1IsKill,
412                                       uint64_t Imm) {
413  unsigned ResultReg = createResultReg(RC);
414  const MCInstrDesc &II = TII.get(MachineInstOpcode);
415
416  if (II.getNumDefs() >= 1) {
417    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
418                   .addReg(Op0, Op0IsKill * RegState::Kill)
419                   .addReg(Op1, Op1IsKill * RegState::Kill)
420                   .addImm(Imm));
421  } else {
422    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
423                   .addReg(Op0, Op0IsKill * RegState::Kill)
424                   .addReg(Op1, Op1IsKill * RegState::Kill)
425                   .addImm(Imm));
426    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
427                           TII.get(TargetOpcode::COPY), ResultReg)
428                   .addReg(II.ImplicitDefs[0]));
429  }
430  return ResultReg;
431}
432
433unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
434                                     const TargetRegisterClass *RC,
435                                     uint64_t Imm) {
436  unsigned ResultReg = createResultReg(RC);
437  const MCInstrDesc &II = TII.get(MachineInstOpcode);
438
439  if (II.getNumDefs() >= 1) {
440    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
441                   .addImm(Imm));
442  } else {
443    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
444                   .addImm(Imm));
445    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
446                           TII.get(TargetOpcode::COPY), ResultReg)
447                   .addReg(II.ImplicitDefs[0]));
448  }
449  return ResultReg;
450}
451
452unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
453                                      const TargetRegisterClass *RC,
454                                      uint64_t Imm1, uint64_t Imm2) {
455  unsigned ResultReg = createResultReg(RC);
456  const MCInstrDesc &II = TII.get(MachineInstOpcode);
457
458  if (II.getNumDefs() >= 1) {
459    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
460                    .addImm(Imm1).addImm(Imm2));
461  } else {
462    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
463                    .addImm(Imm1).addImm(Imm2));
464    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
465                            TII.get(TargetOpcode::COPY),
466                            ResultReg)
467                    .addReg(II.ImplicitDefs[0]));
468  }
469  return ResultReg;
470}
471
472unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
473                                                 unsigned Op0, bool Op0IsKill,
474                                                 uint32_t Idx) {
475  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
476  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
477         "Cannot yet extract from physregs");
478
479  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
480                          DL, TII.get(TargetOpcode::COPY), ResultReg)
481                  .addReg(Op0, getKillRegState(Op0IsKill), Idx));
482  return ResultReg;
483}
484
485// TODO: Don't worry about 64-bit now, but when this is fixed remove the
486// checks from the various callers.
487unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
488  if (VT == MVT::f64) return 0;
489
490  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
491  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
492                          TII.get(ARM::VMOVSR), MoveReg)
493                  .addReg(SrcReg));
494  return MoveReg;
495}
496
497unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
498  if (VT == MVT::i64) return 0;
499
500  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
501  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
502                          TII.get(ARM::VMOVRS), MoveReg)
503                  .addReg(SrcReg));
504  return MoveReg;
505}
506
507// For double width floating point we need to materialize two constants
508// (the high and the low) into integer registers then use a move to get
509// the combined constant into an FP reg.
510unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
511  const APFloat Val = CFP->getValueAPF();
512  bool is64bit = VT == MVT::f64;
513
514  // This checks to see if we can use VFP3 instructions to materialize
515  // a constant, otherwise we have to go through the constant pool.
516  if (TLI.isFPImmLegal(Val, VT)) {
517    int Imm;
518    unsigned Opc;
519    if (is64bit) {
520      Imm = ARM_AM::getFP64Imm(Val);
521      Opc = ARM::FCONSTD;
522    } else {
523      Imm = ARM_AM::getFP32Imm(Val);
524      Opc = ARM::FCONSTS;
525    }
526    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
527    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
528                            DestReg)
529                    .addImm(Imm));
530    return DestReg;
531  }
532
533  // Require VFP2 for loading fp constants.
534  if (!Subtarget->hasVFP2()) return false;
535
536  // MachineConstantPool wants an explicit alignment.
537  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
538  if (Align == 0) {
539    // TODO: Figure out if this is correct.
540    Align = TD.getTypeAllocSize(CFP->getType());
541  }
542  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
543  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
544  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
545
546  // The extra reg is for addrmode5.
547  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
548                          DestReg)
549                  .addConstantPoolIndex(Idx)
550                  .addReg(0));
551  return DestReg;
552}
553
554unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
555
556  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
557    return false;
558
559  // If we can do this in a single instruction without a constant pool entry
560  // do so now.
561  const ConstantInt *CI = cast<ConstantInt>(C);
562  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
563    unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
564    unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
565    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
566                            TII.get(Opc), ImmReg)
567                    .addImm(CI->getZExtValue()));
568    return ImmReg;
569  }
570
571  // Use MVN to emit negative constants.
572  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
573    unsigned Imm = (unsigned)~(CI->getSExtValue());
574    bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
575      (ARM_AM::getSOImmVal(Imm) != -1);
576    if (UseImm) {
577      unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
578      unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
579      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
580                              TII.get(Opc), ImmReg)
581                      .addImm(Imm));
582      return ImmReg;
583    }
584  }
585
586  // Load from constant pool.  For now 32-bit only.
587  if (VT != MVT::i32)
588    return false;
589
590  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
591
592  // MachineConstantPool wants an explicit alignment.
593  unsigned Align = TD.getPrefTypeAlignment(C->getType());
594  if (Align == 0) {
595    // TODO: Figure out if this is correct.
596    Align = TD.getTypeAllocSize(C->getType());
597  }
598  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
599
600  if (isThumb2)
601    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
602                            TII.get(ARM::t2LDRpci), DestReg)
603                    .addConstantPoolIndex(Idx));
604  else
605    // The extra immediate is for addrmode2.
606    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
607                            TII.get(ARM::LDRcp), DestReg)
608                    .addConstantPoolIndex(Idx)
609                    .addImm(0));
610
611  return DestReg;
612}
613
614unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
615  // For now 32-bit only.
616  if (VT != MVT::i32) return 0;
617
618  Reloc::Model RelocM = TM.getRelocationModel();
619
620  // TODO: Need more magic for ARM PIC.
621  if (!isThumb2 && (RelocM == Reloc::PIC_)) return 0;
622
623  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
624
625  // Use movw+movt when possible, it avoids constant pool entries.
626  // Darwin targets don't support movt with Reloc::Static, see
627  // ARMTargetLowering::LowerGlobalAddressDarwin.  Other targets only support
628  // static movt relocations.
629  if (Subtarget->useMovt() &&
630      Subtarget->isTargetDarwin() == (RelocM != Reloc::Static)) {
631    unsigned Opc;
632    switch (RelocM) {
633    case Reloc::PIC_:
634      Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
635      break;
636    case Reloc::DynamicNoPIC:
637      Opc = isThumb2 ? ARM::t2MOV_ga_dyn : ARM::MOV_ga_dyn;
638      break;
639    default:
640      Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
641      break;
642    }
643    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
644                            DestReg).addGlobalAddress(GV));
645  } else {
646    // MachineConstantPool wants an explicit alignment.
647    unsigned Align = TD.getPrefTypeAlignment(GV->getType());
648    if (Align == 0) {
649      // TODO: Figure out if this is correct.
650      Align = TD.getTypeAllocSize(GV->getType());
651    }
652
653    // Grab index.
654    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
655      (Subtarget->isThumb() ? 4 : 8);
656    unsigned Id = AFI->createPICLabelUId();
657    ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
658                                                                ARMCP::CPValue,
659                                                                PCAdj);
660    unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
661
662    // Load value.
663    MachineInstrBuilder MIB;
664    if (isThumb2) {
665      unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
666      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
667        .addConstantPoolIndex(Idx);
668      if (RelocM == Reloc::PIC_)
669        MIB.addImm(Id);
670    } else {
671      // The extra immediate is for addrmode2.
672      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
673                    DestReg)
674        .addConstantPoolIndex(Idx)
675        .addImm(0);
676    }
677    AddOptionalDefs(MIB);
678  }
679
680  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
681    MachineInstrBuilder MIB;
682    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
683    if (isThumb2)
684      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
685                    TII.get(ARM::t2LDRi12), NewDestReg)
686            .addReg(DestReg)
687            .addImm(0);
688    else
689      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
690                    NewDestReg)
691            .addReg(DestReg)
692            .addImm(0);
693    DestReg = NewDestReg;
694    AddOptionalDefs(MIB);
695  }
696
697  return DestReg;
698}
699
700unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
701  EVT VT = TLI.getValueType(C->getType(), true);
702
703  // Only handle simple types.
704  if (!VT.isSimple()) return 0;
705
706  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
707    return ARMMaterializeFP(CFP, VT);
708  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
709    return ARMMaterializeGV(GV, VT);
710  else if (isa<ConstantInt>(C))
711    return ARMMaterializeInt(C, VT);
712
713  return 0;
714}
715
716// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
717
718unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
719  // Don't handle dynamic allocas.
720  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
721
722  MVT VT;
723  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
724
725  DenseMap<const AllocaInst*, int>::iterator SI =
726    FuncInfo.StaticAllocaMap.find(AI);
727
728  // This will get lowered later into the correct offsets and registers
729  // via rewriteXFrameIndex.
730  if (SI != FuncInfo.StaticAllocaMap.end()) {
731    const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
732    unsigned ResultReg = createResultReg(RC);
733    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
734    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
735                            TII.get(Opc), ResultReg)
736                            .addFrameIndex(SI->second)
737                            .addImm(0));
738    return ResultReg;
739  }
740
741  return 0;
742}
743
744bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
745  EVT evt = TLI.getValueType(Ty, true);
746
747  // Only handle simple types.
748  if (evt == MVT::Other || !evt.isSimple()) return false;
749  VT = evt.getSimpleVT();
750
751  // Handle all legal types, i.e. a register that will directly hold this
752  // value.
753  return TLI.isTypeLegal(VT);
754}
755
756bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
757  if (isTypeLegal(Ty, VT)) return true;
758
759  // If this is a type than can be sign or zero-extended to a basic operation
760  // go ahead and accept it now.
761  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
762    return true;
763
764  return false;
765}
766
767// Computes the address to get to an object.
768bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
769  // Some boilerplate from the X86 FastISel.
770  const User *U = NULL;
771  unsigned Opcode = Instruction::UserOp1;
772  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
773    // Don't walk into other basic blocks unless the object is an alloca from
774    // another block, otherwise it may not have a virtual register assigned.
775    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
776        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
777      Opcode = I->getOpcode();
778      U = I;
779    }
780  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
781    Opcode = C->getOpcode();
782    U = C;
783  }
784
785  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
786    if (Ty->getAddressSpace() > 255)
787      // Fast instruction selection doesn't support the special
788      // address spaces.
789      return false;
790
791  switch (Opcode) {
792    default:
793    break;
794    case Instruction::BitCast: {
795      // Look through bitcasts.
796      return ARMComputeAddress(U->getOperand(0), Addr);
797    }
798    case Instruction::IntToPtr: {
799      // Look past no-op inttoptrs.
800      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
801        return ARMComputeAddress(U->getOperand(0), Addr);
802      break;
803    }
804    case Instruction::PtrToInt: {
805      // Look past no-op ptrtoints.
806      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
807        return ARMComputeAddress(U->getOperand(0), Addr);
808      break;
809    }
810    case Instruction::GetElementPtr: {
811      Address SavedAddr = Addr;
812      int TmpOffset = Addr.Offset;
813
814      // Iterate through the GEP folding the constants into offsets where
815      // we can.
816      gep_type_iterator GTI = gep_type_begin(U);
817      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
818           i != e; ++i, ++GTI) {
819        const Value *Op = *i;
820        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
821          const StructLayout *SL = TD.getStructLayout(STy);
822          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
823          TmpOffset += SL->getElementOffset(Idx);
824        } else {
825          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
826          for (;;) {
827            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
828              // Constant-offset addressing.
829              TmpOffset += CI->getSExtValue() * S;
830              break;
831            }
832            if (isa<AddOperator>(Op) &&
833                (!isa<Instruction>(Op) ||
834                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
835                 == FuncInfo.MBB) &&
836                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
837              // An add (in the same block) with a constant operand. Fold the
838              // constant.
839              ConstantInt *CI =
840              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
841              TmpOffset += CI->getSExtValue() * S;
842              // Iterate on the other operand.
843              Op = cast<AddOperator>(Op)->getOperand(0);
844              continue;
845            }
846            // Unsupported
847            goto unsupported_gep;
848          }
849        }
850      }
851
852      // Try to grab the base operand now.
853      Addr.Offset = TmpOffset;
854      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
855
856      // We failed, restore everything and try the other options.
857      Addr = SavedAddr;
858
859      unsupported_gep:
860      break;
861    }
862    case Instruction::Alloca: {
863      const AllocaInst *AI = cast<AllocaInst>(Obj);
864      DenseMap<const AllocaInst*, int>::iterator SI =
865        FuncInfo.StaticAllocaMap.find(AI);
866      if (SI != FuncInfo.StaticAllocaMap.end()) {
867        Addr.BaseType = Address::FrameIndexBase;
868        Addr.Base.FI = SI->second;
869        return true;
870      }
871      break;
872    }
873  }
874
875  // Try to get this in a register if nothing else has worked.
876  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
877  return Addr.Base.Reg != 0;
878}
879
880void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3) {
881
882  assert(VT.isSimple() && "Non-simple types are invalid here!");
883
884  bool needsLowering = false;
885  switch (VT.getSimpleVT().SimpleTy) {
886    default: llvm_unreachable("Unhandled load/store type!");
887    case MVT::i1:
888    case MVT::i8:
889    case MVT::i16:
890    case MVT::i32:
891      if (!useAM3) {
892        // Integer loads/stores handle 12-bit offsets.
893        needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
894        // Handle negative offsets.
895        if (needsLowering && isThumb2)
896          needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
897                            Addr.Offset > -256);
898      } else {
899        // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
900        needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
901      }
902      break;
903    case MVT::f32:
904    case MVT::f64:
905      // Floating point operands handle 8-bit offsets.
906      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
907      break;
908  }
909
910  // If this is a stack pointer and the offset needs to be simplified then
911  // put the alloca address into a register, set the base type back to
912  // register and continue. This should almost never happen.
913  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
914    const TargetRegisterClass *RC = isThumb2 ? ARM::tGPRRegisterClass
915                                             : ARM::GPRRegisterClass;
916    unsigned ResultReg = createResultReg(RC);
917    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
918    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
919                            TII.get(Opc), ResultReg)
920                            .addFrameIndex(Addr.Base.FI)
921                            .addImm(0));
922    Addr.Base.Reg = ResultReg;
923    Addr.BaseType = Address::RegBase;
924  }
925
926  // Since the offset is too large for the load/store instruction
927  // get the reg+offset into a register.
928  if (needsLowering) {
929    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
930                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
931    Addr.Offset = 0;
932  }
933}
934
935void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
936                                       const MachineInstrBuilder &MIB,
937                                       unsigned Flags, bool useAM3) {
938  // addrmode5 output depends on the selection dag addressing dividing the
939  // offset by 4 that it then later multiplies. Do this here as well.
940  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
941      VT.getSimpleVT().SimpleTy == MVT::f64)
942    Addr.Offset /= 4;
943
944  // Frame base works a bit differently. Handle it separately.
945  if (Addr.BaseType == Address::FrameIndexBase) {
946    int FI = Addr.Base.FI;
947    int Offset = Addr.Offset;
948    MachineMemOperand *MMO =
949          FuncInfo.MF->getMachineMemOperand(
950                                  MachinePointerInfo::getFixedStack(FI, Offset),
951                                  Flags,
952                                  MFI.getObjectSize(FI),
953                                  MFI.getObjectAlignment(FI));
954    // Now add the rest of the operands.
955    MIB.addFrameIndex(FI);
956
957    // ARM halfword load/stores and signed byte loads need an additional
958    // operand.
959    if (useAM3) {
960      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
961      MIB.addReg(0);
962      MIB.addImm(Imm);
963    } else {
964      MIB.addImm(Addr.Offset);
965    }
966    MIB.addMemOperand(MMO);
967  } else {
968    // Now add the rest of the operands.
969    MIB.addReg(Addr.Base.Reg);
970
971    // ARM halfword load/stores and signed byte loads need an additional
972    // operand.
973    if (useAM3) {
974      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
975      MIB.addReg(0);
976      MIB.addImm(Imm);
977    } else {
978      MIB.addImm(Addr.Offset);
979    }
980  }
981  AddOptionalDefs(MIB);
982}
983
984bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
985                              unsigned Alignment, bool isZExt, bool allocReg) {
986  assert(VT.isSimple() && "Non-simple types are invalid here!");
987  unsigned Opc;
988  bool useAM3 = false;
989  bool needVMOV = false;
990  const TargetRegisterClass *RC;
991  switch (VT.getSimpleVT().SimpleTy) {
992    // This is mostly going to be Neon/vector support.
993    default: return false;
994    case MVT::i1:
995    case MVT::i8:
996      if (isThumb2) {
997        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
998          Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
999        else
1000          Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
1001      } else {
1002        if (isZExt) {
1003          Opc = ARM::LDRBi12;
1004        } else {
1005          Opc = ARM::LDRSB;
1006          useAM3 = true;
1007        }
1008      }
1009      RC = ARM::GPRRegisterClass;
1010      break;
1011    case MVT::i16:
1012      if (isThumb2) {
1013        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1014          Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
1015        else
1016          Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
1017      } else {
1018        Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1019        useAM3 = true;
1020      }
1021      RC = ARM::GPRRegisterClass;
1022      break;
1023    case MVT::i32:
1024      if (isThumb2) {
1025        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1026          Opc = ARM::t2LDRi8;
1027        else
1028          Opc = ARM::t2LDRi12;
1029      } else {
1030        Opc = ARM::LDRi12;
1031      }
1032      RC = ARM::GPRRegisterClass;
1033      break;
1034    case MVT::f32:
1035      if (!Subtarget->hasVFP2()) return false;
1036      // Unaligned loads need special handling. Floats require word-alignment.
1037      if (Alignment && Alignment < 4) {
1038        needVMOV = true;
1039        VT = MVT::i32;
1040        Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1041        RC = ARM::GPRRegisterClass;
1042      } else {
1043        Opc = ARM::VLDRS;
1044        RC = TLI.getRegClassFor(VT);
1045      }
1046      break;
1047    case MVT::f64:
1048      if (!Subtarget->hasVFP2()) return false;
1049      // FIXME: Unaligned loads need special handling.  Doublewords require
1050      // word-alignment.
1051      if (Alignment && Alignment < 4)
1052        return false;
1053
1054      Opc = ARM::VLDRD;
1055      RC = TLI.getRegClassFor(VT);
1056      break;
1057  }
1058  // Simplify this down to something we can handle.
1059  ARMSimplifyAddress(Addr, VT, useAM3);
1060
1061  // Create the base instruction, then add the operands.
1062  if (allocReg)
1063    ResultReg = createResultReg(RC);
1064  assert (ResultReg > 255 && "Expected an allocated virtual register.");
1065  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1066                                    TII.get(Opc), ResultReg);
1067  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1068
1069  // If we had an unaligned load of a float we've converted it to an regular
1070  // load.  Now we must move from the GRP to the FP register.
1071  if (needVMOV) {
1072    unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1073    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1074                            TII.get(ARM::VMOVSR), MoveReg)
1075                    .addReg(ResultReg));
1076    ResultReg = MoveReg;
1077  }
1078  return true;
1079}
1080
1081bool ARMFastISel::SelectLoad(const Instruction *I) {
1082  // Atomic loads need special handling.
1083  if (cast<LoadInst>(I)->isAtomic())
1084    return false;
1085
1086  // Verify we have a legal type before going any further.
1087  MVT VT;
1088  if (!isLoadTypeLegal(I->getType(), VT))
1089    return false;
1090
1091  // See if we can handle this address.
1092  Address Addr;
1093  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1094
1095  unsigned ResultReg;
1096  if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1097    return false;
1098  UpdateValueMap(I, ResultReg);
1099  return true;
1100}
1101
1102bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
1103                               unsigned Alignment) {
1104  unsigned StrOpc;
1105  bool useAM3 = false;
1106  switch (VT.getSimpleVT().SimpleTy) {
1107    // This is mostly going to be Neon/vector support.
1108    default: return false;
1109    case MVT::i1: {
1110      unsigned Res = createResultReg(isThumb2 ? ARM::tGPRRegisterClass :
1111                                               ARM::GPRRegisterClass);
1112      unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1113      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1114                              TII.get(Opc), Res)
1115                      .addReg(SrcReg).addImm(1));
1116      SrcReg = Res;
1117    } // Fallthrough here.
1118    case MVT::i8:
1119      if (isThumb2) {
1120        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1121          StrOpc = ARM::t2STRBi8;
1122        else
1123          StrOpc = ARM::t2STRBi12;
1124      } else {
1125        StrOpc = ARM::STRBi12;
1126      }
1127      break;
1128    case MVT::i16:
1129      if (isThumb2) {
1130        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1131          StrOpc = ARM::t2STRHi8;
1132        else
1133          StrOpc = ARM::t2STRHi12;
1134      } else {
1135        StrOpc = ARM::STRH;
1136        useAM3 = true;
1137      }
1138      break;
1139    case MVT::i32:
1140      if (isThumb2) {
1141        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1142          StrOpc = ARM::t2STRi8;
1143        else
1144          StrOpc = ARM::t2STRi12;
1145      } else {
1146        StrOpc = ARM::STRi12;
1147      }
1148      break;
1149    case MVT::f32:
1150      if (!Subtarget->hasVFP2()) return false;
1151      // Unaligned stores need special handling. Floats require word-alignment.
1152      if (Alignment && Alignment < 4) {
1153        unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1154        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1155                                TII.get(ARM::VMOVRS), MoveReg)
1156                        .addReg(SrcReg));
1157        SrcReg = MoveReg;
1158        VT = MVT::i32;
1159        StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1160      } else {
1161        StrOpc = ARM::VSTRS;
1162      }
1163      break;
1164    case MVT::f64:
1165      if (!Subtarget->hasVFP2()) return false;
1166      // FIXME: Unaligned stores need special handling.  Doublewords require
1167      // word-alignment.
1168      if (Alignment && Alignment < 4)
1169          return false;
1170
1171      StrOpc = ARM::VSTRD;
1172      break;
1173  }
1174  // Simplify this down to something we can handle.
1175  ARMSimplifyAddress(Addr, VT, useAM3);
1176
1177  // Create the base instruction, then add the operands.
1178  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1179                                    TII.get(StrOpc))
1180                            .addReg(SrcReg);
1181  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1182  return true;
1183}
1184
1185bool ARMFastISel::SelectStore(const Instruction *I) {
1186  Value *Op0 = I->getOperand(0);
1187  unsigned SrcReg = 0;
1188
1189  // Atomic stores need special handling.
1190  if (cast<StoreInst>(I)->isAtomic())
1191    return false;
1192
1193  // Verify we have a legal type before going any further.
1194  MVT VT;
1195  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1196    return false;
1197
1198  // Get the value to be stored into a register.
1199  SrcReg = getRegForValue(Op0);
1200  if (SrcReg == 0) return false;
1201
1202  // See if we can handle this address.
1203  Address Addr;
1204  if (!ARMComputeAddress(I->getOperand(1), Addr))
1205    return false;
1206
1207  if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1208    return false;
1209  return true;
1210}
1211
1212static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1213  switch (Pred) {
1214    // Needs two compares...
1215    case CmpInst::FCMP_ONE:
1216    case CmpInst::FCMP_UEQ:
1217    default:
1218      // AL is our "false" for now. The other two need more compares.
1219      return ARMCC::AL;
1220    case CmpInst::ICMP_EQ:
1221    case CmpInst::FCMP_OEQ:
1222      return ARMCC::EQ;
1223    case CmpInst::ICMP_SGT:
1224    case CmpInst::FCMP_OGT:
1225      return ARMCC::GT;
1226    case CmpInst::ICMP_SGE:
1227    case CmpInst::FCMP_OGE:
1228      return ARMCC::GE;
1229    case CmpInst::ICMP_UGT:
1230    case CmpInst::FCMP_UGT:
1231      return ARMCC::HI;
1232    case CmpInst::FCMP_OLT:
1233      return ARMCC::MI;
1234    case CmpInst::ICMP_ULE:
1235    case CmpInst::FCMP_OLE:
1236      return ARMCC::LS;
1237    case CmpInst::FCMP_ORD:
1238      return ARMCC::VC;
1239    case CmpInst::FCMP_UNO:
1240      return ARMCC::VS;
1241    case CmpInst::FCMP_UGE:
1242      return ARMCC::PL;
1243    case CmpInst::ICMP_SLT:
1244    case CmpInst::FCMP_ULT:
1245      return ARMCC::LT;
1246    case CmpInst::ICMP_SLE:
1247    case CmpInst::FCMP_ULE:
1248      return ARMCC::LE;
1249    case CmpInst::FCMP_UNE:
1250    case CmpInst::ICMP_NE:
1251      return ARMCC::NE;
1252    case CmpInst::ICMP_UGE:
1253      return ARMCC::HS;
1254    case CmpInst::ICMP_ULT:
1255      return ARMCC::LO;
1256  }
1257}
1258
1259bool ARMFastISel::SelectBranch(const Instruction *I) {
1260  const BranchInst *BI = cast<BranchInst>(I);
1261  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1262  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1263
1264  // Simple branch support.
1265
1266  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1267  // behavior.
1268  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1269    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1270
1271      // Get the compare predicate.
1272      // Try to take advantage of fallthrough opportunities.
1273      CmpInst::Predicate Predicate = CI->getPredicate();
1274      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1275        std::swap(TBB, FBB);
1276        Predicate = CmpInst::getInversePredicate(Predicate);
1277      }
1278
1279      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1280
1281      // We may not handle every CC for now.
1282      if (ARMPred == ARMCC::AL) return false;
1283
1284      // Emit the compare.
1285      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1286        return false;
1287
1288      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1289      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1290      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1291      FastEmitBranch(FBB, DL);
1292      FuncInfo.MBB->addSuccessor(TBB);
1293      return true;
1294    }
1295  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1296    MVT SourceVT;
1297    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1298        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1299      unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1300      unsigned OpReg = getRegForValue(TI->getOperand(0));
1301      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1302                              TII.get(TstOpc))
1303                      .addReg(OpReg).addImm(1));
1304
1305      unsigned CCMode = ARMCC::NE;
1306      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1307        std::swap(TBB, FBB);
1308        CCMode = ARMCC::EQ;
1309      }
1310
1311      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1312      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1313      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1314
1315      FastEmitBranch(FBB, DL);
1316      FuncInfo.MBB->addSuccessor(TBB);
1317      return true;
1318    }
1319  } else if (const ConstantInt *CI =
1320             dyn_cast<ConstantInt>(BI->getCondition())) {
1321    uint64_t Imm = CI->getZExtValue();
1322    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1323    FastEmitBranch(Target, DL);
1324    return true;
1325  }
1326
1327  unsigned CmpReg = getRegForValue(BI->getCondition());
1328  if (CmpReg == 0) return false;
1329
1330  // We've been divorced from our compare!  Our block was split, and
1331  // now our compare lives in a predecessor block.  We musn't
1332  // re-compare here, as the children of the compare aren't guaranteed
1333  // live across the block boundary (we *could* check for this).
1334  // Regardless, the compare has been done in the predecessor block,
1335  // and it left a value for us in a virtual register.  Ergo, we test
1336  // the one-bit value left in the virtual register.
1337  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1338  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1339                  .addReg(CmpReg).addImm(1));
1340
1341  unsigned CCMode = ARMCC::NE;
1342  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1343    std::swap(TBB, FBB);
1344    CCMode = ARMCC::EQ;
1345  }
1346
1347  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1348  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1349                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1350  FastEmitBranch(FBB, DL);
1351  FuncInfo.MBB->addSuccessor(TBB);
1352  return true;
1353}
1354
1355bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1356  unsigned AddrReg = getRegForValue(I->getOperand(0));
1357  if (AddrReg == 0) return false;
1358
1359  unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1360  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
1361                  .addReg(AddrReg));
1362  return true;
1363}
1364
1365bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1366                             bool isZExt) {
1367  Type *Ty = Src1Value->getType();
1368  EVT SrcVT = TLI.getValueType(Ty, true);
1369  if (!SrcVT.isSimple()) return false;
1370
1371  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1372  if (isFloat && !Subtarget->hasVFP2())
1373    return false;
1374
1375  // Check to see if the 2nd operand is a constant that we can encode directly
1376  // in the compare.
1377  int Imm = 0;
1378  bool UseImm = false;
1379  bool isNegativeImm = false;
1380  // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1381  // Thus, Src1Value may be a ConstantInt, but we're missing it.
1382  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1383    if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1384        SrcVT == MVT::i1) {
1385      const APInt &CIVal = ConstInt->getValue();
1386      Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1387      // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1388      // then a cmn, because there is no way to represent 2147483648 as a
1389      // signed 32-bit int.
1390      if (Imm < 0 && Imm != (int)0x80000000) {
1391        isNegativeImm = true;
1392        Imm = -Imm;
1393      }
1394      UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1395        (ARM_AM::getSOImmVal(Imm) != -1);
1396    }
1397  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1398    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1399      if (ConstFP->isZero() && !ConstFP->isNegative())
1400        UseImm = true;
1401  }
1402
1403  unsigned CmpOpc;
1404  bool isICmp = true;
1405  bool needsExt = false;
1406  switch (SrcVT.getSimpleVT().SimpleTy) {
1407    default: return false;
1408    // TODO: Verify compares.
1409    case MVT::f32:
1410      isICmp = false;
1411      CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1412      break;
1413    case MVT::f64:
1414      isICmp = false;
1415      CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1416      break;
1417    case MVT::i1:
1418    case MVT::i8:
1419    case MVT::i16:
1420      needsExt = true;
1421    // Intentional fall-through.
1422    case MVT::i32:
1423      if (isThumb2) {
1424        if (!UseImm)
1425          CmpOpc = ARM::t2CMPrr;
1426        else
1427          CmpOpc = isNegativeImm ? ARM::t2CMNzri : ARM::t2CMPri;
1428      } else {
1429        if (!UseImm)
1430          CmpOpc = ARM::CMPrr;
1431        else
1432          CmpOpc = isNegativeImm ? ARM::CMNzri : ARM::CMPri;
1433      }
1434      break;
1435  }
1436
1437  unsigned SrcReg1 = getRegForValue(Src1Value);
1438  if (SrcReg1 == 0) return false;
1439
1440  unsigned SrcReg2 = 0;
1441  if (!UseImm) {
1442    SrcReg2 = getRegForValue(Src2Value);
1443    if (SrcReg2 == 0) return false;
1444  }
1445
1446  // We have i1, i8, or i16, we need to either zero extend or sign extend.
1447  if (needsExt) {
1448    SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1449    if (SrcReg1 == 0) return false;
1450    if (!UseImm) {
1451      SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1452      if (SrcReg2 == 0) return false;
1453    }
1454  }
1455
1456  if (!UseImm) {
1457    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1458                            TII.get(CmpOpc))
1459                    .addReg(SrcReg1).addReg(SrcReg2));
1460  } else {
1461    MachineInstrBuilder MIB;
1462    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1463      .addReg(SrcReg1);
1464
1465    // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1466    if (isICmp)
1467      MIB.addImm(Imm);
1468    AddOptionalDefs(MIB);
1469  }
1470
1471  // For floating point we need to move the result to a comparison register
1472  // that we can then use for branches.
1473  if (Ty->isFloatTy() || Ty->isDoubleTy())
1474    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1475                            TII.get(ARM::FMSTAT)));
1476  return true;
1477}
1478
1479bool ARMFastISel::SelectCmp(const Instruction *I) {
1480  const CmpInst *CI = cast<CmpInst>(I);
1481
1482  // Get the compare predicate.
1483  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1484
1485  // We may not handle every CC for now.
1486  if (ARMPred == ARMCC::AL) return false;
1487
1488  // Emit the compare.
1489  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1490    return false;
1491
1492  // Now set a register based on the comparison. Explicitly set the predicates
1493  // here.
1494  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1495  const TargetRegisterClass *RC = isThumb2 ? ARM::rGPRRegisterClass
1496                                           : ARM::GPRRegisterClass;
1497  unsigned DestReg = createResultReg(RC);
1498  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1499  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1500  // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1501  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1502          .addReg(ZeroReg).addImm(1)
1503          .addImm(ARMPred).addReg(ARM::CPSR);
1504
1505  UpdateValueMap(I, DestReg);
1506  return true;
1507}
1508
1509bool ARMFastISel::SelectFPExt(const Instruction *I) {
1510  // Make sure we have VFP and that we're extending float to double.
1511  if (!Subtarget->hasVFP2()) return false;
1512
1513  Value *V = I->getOperand(0);
1514  if (!I->getType()->isDoubleTy() ||
1515      !V->getType()->isFloatTy()) return false;
1516
1517  unsigned Op = getRegForValue(V);
1518  if (Op == 0) return false;
1519
1520  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1521  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1522                          TII.get(ARM::VCVTDS), Result)
1523                  .addReg(Op));
1524  UpdateValueMap(I, Result);
1525  return true;
1526}
1527
1528bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1529  // Make sure we have VFP and that we're truncating double to float.
1530  if (!Subtarget->hasVFP2()) return false;
1531
1532  Value *V = I->getOperand(0);
1533  if (!(I->getType()->isFloatTy() &&
1534        V->getType()->isDoubleTy())) return false;
1535
1536  unsigned Op = getRegForValue(V);
1537  if (Op == 0) return false;
1538
1539  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1540  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1541                          TII.get(ARM::VCVTSD), Result)
1542                  .addReg(Op));
1543  UpdateValueMap(I, Result);
1544  return true;
1545}
1546
1547bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1548  // Make sure we have VFP.
1549  if (!Subtarget->hasVFP2()) return false;
1550
1551  MVT DstVT;
1552  Type *Ty = I->getType();
1553  if (!isTypeLegal(Ty, DstVT))
1554    return false;
1555
1556  Value *Src = I->getOperand(0);
1557  EVT SrcVT = TLI.getValueType(Src->getType(), true);
1558  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1559    return false;
1560
1561  unsigned SrcReg = getRegForValue(Src);
1562  if (SrcReg == 0) return false;
1563
1564  // Handle sign-extension.
1565  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1566    EVT DestVT = MVT::i32;
1567    SrcReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT,
1568                                       /*isZExt*/!isSigned);
1569    if (SrcReg == 0) return false;
1570  }
1571
1572  // The conversion routine works on fp-reg to fp-reg and the operand above
1573  // was an integer, move it to the fp registers if possible.
1574  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1575  if (FP == 0) return false;
1576
1577  unsigned Opc;
1578  if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1579  else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1580  else return false;
1581
1582  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1583  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1584                          ResultReg)
1585                  .addReg(FP));
1586  UpdateValueMap(I, ResultReg);
1587  return true;
1588}
1589
1590bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1591  // Make sure we have VFP.
1592  if (!Subtarget->hasVFP2()) return false;
1593
1594  MVT DstVT;
1595  Type *RetTy = I->getType();
1596  if (!isTypeLegal(RetTy, DstVT))
1597    return false;
1598
1599  unsigned Op = getRegForValue(I->getOperand(0));
1600  if (Op == 0) return false;
1601
1602  unsigned Opc;
1603  Type *OpTy = I->getOperand(0)->getType();
1604  if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1605  else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1606  else return false;
1607
1608  // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1609  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1610  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1611                          ResultReg)
1612                  .addReg(Op));
1613
1614  // This result needs to be in an integer register, but the conversion only
1615  // takes place in fp-regs.
1616  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1617  if (IntReg == 0) return false;
1618
1619  UpdateValueMap(I, IntReg);
1620  return true;
1621}
1622
1623bool ARMFastISel::SelectSelect(const Instruction *I) {
1624  MVT VT;
1625  if (!isTypeLegal(I->getType(), VT))
1626    return false;
1627
1628  // Things need to be register sized for register moves.
1629  if (VT != MVT::i32) return false;
1630  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1631
1632  unsigned CondReg = getRegForValue(I->getOperand(0));
1633  if (CondReg == 0) return false;
1634  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1635  if (Op1Reg == 0) return false;
1636
1637  // Check to see if we can use an immediate in the conditional move.
1638  int Imm = 0;
1639  bool UseImm = false;
1640  bool isNegativeImm = false;
1641  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1642    assert (VT == MVT::i32 && "Expecting an i32.");
1643    Imm = (int)ConstInt->getValue().getZExtValue();
1644    if (Imm < 0) {
1645      isNegativeImm = true;
1646      Imm = ~Imm;
1647    }
1648    UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1649      (ARM_AM::getSOImmVal(Imm) != -1);
1650  }
1651
1652  unsigned Op2Reg = 0;
1653  if (!UseImm) {
1654    Op2Reg = getRegForValue(I->getOperand(2));
1655    if (Op2Reg == 0) return false;
1656  }
1657
1658  unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1659  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1660                  .addReg(CondReg).addImm(0));
1661
1662  unsigned MovCCOpc;
1663  if (!UseImm) {
1664    MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1665  } else {
1666    if (!isNegativeImm) {
1667      MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1668    } else {
1669      MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1670    }
1671  }
1672  unsigned ResultReg = createResultReg(RC);
1673  if (!UseImm)
1674    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1675    .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
1676  else
1677    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1678    .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
1679  UpdateValueMap(I, ResultReg);
1680  return true;
1681}
1682
1683bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1684  MVT VT;
1685  Type *Ty = I->getType();
1686  if (!isTypeLegal(Ty, VT))
1687    return false;
1688
1689  // If we have integer div support we should have selected this automagically.
1690  // In case we have a real miss go ahead and return false and we'll pick
1691  // it up later.
1692  if (Subtarget->hasDivide()) return false;
1693
1694  // Otherwise emit a libcall.
1695  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1696  if (VT == MVT::i8)
1697    LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1698  else if (VT == MVT::i16)
1699    LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1700  else if (VT == MVT::i32)
1701    LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1702  else if (VT == MVT::i64)
1703    LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1704  else if (VT == MVT::i128)
1705    LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1706  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1707
1708  return ARMEmitLibcall(I, LC);
1709}
1710
1711bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1712  MVT VT;
1713  Type *Ty = I->getType();
1714  if (!isTypeLegal(Ty, VT))
1715    return false;
1716
1717  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1718  if (VT == MVT::i8)
1719    LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1720  else if (VT == MVT::i16)
1721    LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1722  else if (VT == MVT::i32)
1723    LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1724  else if (VT == MVT::i64)
1725    LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1726  else if (VT == MVT::i128)
1727    LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1728  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1729
1730  return ARMEmitLibcall(I, LC);
1731}
1732
1733bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1734  EVT DestVT  = TLI.getValueType(I->getType(), true);
1735
1736  // We can get here in the case when we have a binary operation on a non-legal
1737  // type and the target independent selector doesn't know how to handle it.
1738  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1739    return false;
1740
1741  unsigned Opc;
1742  switch (ISDOpcode) {
1743    default: return false;
1744    case ISD::ADD:
1745      Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1746      break;
1747    case ISD::OR:
1748      Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1749      break;
1750    case ISD::SUB:
1751      Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1752      break;
1753  }
1754
1755  unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1756  if (SrcReg1 == 0) return false;
1757
1758  // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1759  // in the instruction, rather then materializing the value in a register.
1760  unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1761  if (SrcReg2 == 0) return false;
1762
1763  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1764  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1765                          TII.get(Opc), ResultReg)
1766                  .addReg(SrcReg1).addReg(SrcReg2));
1767  UpdateValueMap(I, ResultReg);
1768  return true;
1769}
1770
1771bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1772  EVT VT  = TLI.getValueType(I->getType(), true);
1773
1774  // We can get here in the case when we want to use NEON for our fp
1775  // operations, but can't figure out how to. Just use the vfp instructions
1776  // if we have them.
1777  // FIXME: It'd be nice to use NEON instructions.
1778  Type *Ty = I->getType();
1779  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1780  if (isFloat && !Subtarget->hasVFP2())
1781    return false;
1782
1783  unsigned Opc;
1784  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1785  switch (ISDOpcode) {
1786    default: return false;
1787    case ISD::FADD:
1788      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1789      break;
1790    case ISD::FSUB:
1791      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1792      break;
1793    case ISD::FMUL:
1794      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1795      break;
1796  }
1797  unsigned Op1 = getRegForValue(I->getOperand(0));
1798  if (Op1 == 0) return false;
1799
1800  unsigned Op2 = getRegForValue(I->getOperand(1));
1801  if (Op2 == 0) return false;
1802
1803  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1804  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1805                          TII.get(Opc), ResultReg)
1806                  .addReg(Op1).addReg(Op2));
1807  UpdateValueMap(I, ResultReg);
1808  return true;
1809}
1810
1811// Call Handling Code
1812
1813// This is largely taken directly from CCAssignFnForNode - we don't support
1814// varargs in FastISel so that part has been removed.
1815// TODO: We may not support all of this.
1816CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1817  switch (CC) {
1818  default:
1819    llvm_unreachable("Unsupported calling convention");
1820  case CallingConv::Fast:
1821    // Ignore fastcc. Silence compiler warnings.
1822    (void)RetFastCC_ARM_APCS;
1823    (void)FastCC_ARM_APCS;
1824    // Fallthrough
1825  case CallingConv::C:
1826    // Use target triple & subtarget features to do actual dispatch.
1827    if (Subtarget->isAAPCS_ABI()) {
1828      if (Subtarget->hasVFP2() &&
1829          TM.Options.FloatABIType == FloatABI::Hard)
1830        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1831      else
1832        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1833    } else
1834        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1835  case CallingConv::ARM_AAPCS_VFP:
1836    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1837  case CallingConv::ARM_AAPCS:
1838    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1839  case CallingConv::ARM_APCS:
1840    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1841  }
1842}
1843
1844bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1845                                  SmallVectorImpl<unsigned> &ArgRegs,
1846                                  SmallVectorImpl<MVT> &ArgVTs,
1847                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1848                                  SmallVectorImpl<unsigned> &RegArgs,
1849                                  CallingConv::ID CC,
1850                                  unsigned &NumBytes) {
1851  SmallVector<CCValAssign, 16> ArgLocs;
1852  CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
1853  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1854
1855  // Get a count of how many bytes are to be pushed on the stack.
1856  NumBytes = CCInfo.getNextStackOffset();
1857
1858  // Issue CALLSEQ_START
1859  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1860  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1861                          TII.get(AdjStackDown))
1862                  .addImm(NumBytes));
1863
1864  // Process the args.
1865  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1866    CCValAssign &VA = ArgLocs[i];
1867    unsigned Arg = ArgRegs[VA.getValNo()];
1868    MVT ArgVT = ArgVTs[VA.getValNo()];
1869
1870    // We don't handle NEON/vector parameters yet.
1871    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1872      return false;
1873
1874    // Handle arg promotion, etc.
1875    switch (VA.getLocInfo()) {
1876      case CCValAssign::Full: break;
1877      case CCValAssign::SExt: {
1878        MVT DestVT = VA.getLocVT();
1879        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1880        assert (Arg != 0 && "Failed to emit a sext");
1881        ArgVT = DestVT;
1882        break;
1883      }
1884      case CCValAssign::AExt:
1885        // Intentional fall-through.  Handle AExt and ZExt.
1886      case CCValAssign::ZExt: {
1887        MVT DestVT = VA.getLocVT();
1888        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1889        assert (Arg != 0 && "Failed to emit a sext");
1890        ArgVT = DestVT;
1891        break;
1892      }
1893      case CCValAssign::BCvt: {
1894        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1895                                 /*TODO: Kill=*/false);
1896        assert(BC != 0 && "Failed to emit a bitcast!");
1897        Arg = BC;
1898        ArgVT = VA.getLocVT();
1899        break;
1900      }
1901      default: llvm_unreachable("Unknown arg promotion!");
1902    }
1903
1904    // Now copy/store arg to correct locations.
1905    if (VA.isRegLoc() && !VA.needsCustom()) {
1906      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1907              VA.getLocReg())
1908        .addReg(Arg);
1909      RegArgs.push_back(VA.getLocReg());
1910    } else if (VA.needsCustom()) {
1911      // TODO: We need custom lowering for vector (v2f64) args.
1912      if (VA.getLocVT() != MVT::f64) return false;
1913
1914      CCValAssign &NextVA = ArgLocs[++i];
1915
1916      // TODO: Only handle register args for now.
1917      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1918
1919      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1920                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1921                      .addReg(NextVA.getLocReg(), RegState::Define)
1922                      .addReg(Arg));
1923      RegArgs.push_back(VA.getLocReg());
1924      RegArgs.push_back(NextVA.getLocReg());
1925    } else {
1926      assert(VA.isMemLoc());
1927      // Need to store on the stack.
1928      Address Addr;
1929      Addr.BaseType = Address::RegBase;
1930      Addr.Base.Reg = ARM::SP;
1931      Addr.Offset = VA.getLocMemOffset();
1932
1933      if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1934    }
1935  }
1936  return true;
1937}
1938
1939bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1940                             const Instruction *I, CallingConv::ID CC,
1941                             unsigned &NumBytes) {
1942  // Issue CALLSEQ_END
1943  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1944  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1945                          TII.get(AdjStackUp))
1946                  .addImm(NumBytes).addImm(0));
1947
1948  // Now the return value.
1949  if (RetVT != MVT::isVoid) {
1950    SmallVector<CCValAssign, 16> RVLocs;
1951    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
1952    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1953
1954    // Copy all of the result registers out of their specified physreg.
1955    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1956      // For this move we copy into two registers and then move into the
1957      // double fp reg we want.
1958      EVT DestVT = RVLocs[0].getValVT();
1959      const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1960      unsigned ResultReg = createResultReg(DstRC);
1961      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1962                              TII.get(ARM::VMOVDRR), ResultReg)
1963                      .addReg(RVLocs[0].getLocReg())
1964                      .addReg(RVLocs[1].getLocReg()));
1965
1966      UsedRegs.push_back(RVLocs[0].getLocReg());
1967      UsedRegs.push_back(RVLocs[1].getLocReg());
1968
1969      // Finally update the result.
1970      UpdateValueMap(I, ResultReg);
1971    } else {
1972      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1973      EVT CopyVT = RVLocs[0].getValVT();
1974
1975      // Special handling for extended integers.
1976      if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1977        CopyVT = MVT::i32;
1978
1979      const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1980
1981      unsigned ResultReg = createResultReg(DstRC);
1982      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1983              ResultReg).addReg(RVLocs[0].getLocReg());
1984      UsedRegs.push_back(RVLocs[0].getLocReg());
1985
1986      // Finally update the result.
1987      UpdateValueMap(I, ResultReg);
1988    }
1989  }
1990
1991  return true;
1992}
1993
1994bool ARMFastISel::SelectRet(const Instruction *I) {
1995  const ReturnInst *Ret = cast<ReturnInst>(I);
1996  const Function &F = *I->getParent()->getParent();
1997
1998  if (!FuncInfo.CanLowerReturn)
1999    return false;
2000
2001  if (F.isVarArg())
2002    return false;
2003
2004  CallingConv::ID CC = F.getCallingConv();
2005  if (Ret->getNumOperands() > 0) {
2006    SmallVector<ISD::OutputArg, 4> Outs;
2007    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
2008                  Outs, TLI);
2009
2010    // Analyze operands of the call, assigning locations to each operand.
2011    SmallVector<CCValAssign, 16> ValLocs;
2012    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
2013    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
2014
2015    const Value *RV = Ret->getOperand(0);
2016    unsigned Reg = getRegForValue(RV);
2017    if (Reg == 0)
2018      return false;
2019
2020    // Only handle a single return value for now.
2021    if (ValLocs.size() != 1)
2022      return false;
2023
2024    CCValAssign &VA = ValLocs[0];
2025
2026    // Don't bother handling odd stuff for now.
2027    if (VA.getLocInfo() != CCValAssign::Full)
2028      return false;
2029    // Only handle register returns for now.
2030    if (!VA.isRegLoc())
2031      return false;
2032
2033    unsigned SrcReg = Reg + VA.getValNo();
2034    EVT RVVT = TLI.getValueType(RV->getType());
2035    EVT DestVT = VA.getValVT();
2036    // Special handling for extended integers.
2037    if (RVVT != DestVT) {
2038      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2039        return false;
2040
2041      assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2042
2043      // Perform extension if flagged as either zext or sext.  Otherwise, do
2044      // nothing.
2045      if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2046        SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2047        if (SrcReg == 0) return false;
2048      }
2049    }
2050
2051    // Make the copy.
2052    unsigned DstReg = VA.getLocReg();
2053    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2054    // Avoid a cross-class copy. This is very unlikely.
2055    if (!SrcRC->contains(DstReg))
2056      return false;
2057    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2058            DstReg).addReg(SrcReg);
2059
2060    // Mark the register as live out of the function.
2061    MRI.addLiveOut(VA.getLocReg());
2062  }
2063
2064  unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2065  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2066                          TII.get(RetOpc)));
2067  return true;
2068}
2069
2070unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
2071
2072  // iOS needs the r9 versions of the opcodes.
2073  bool isiOS = Subtarget->isTargetIOS();
2074  if (isThumb2) {
2075    return isiOS ? ARM::tBLr9 : ARM::tBL;
2076  } else  {
2077    return isiOS ? ARM::BLr9 : ARM::BL;
2078  }
2079}
2080
2081// A quick function that will emit a call for a named libcall in F with the
2082// vector of passed arguments for the Instruction in I. We can assume that we
2083// can emit a call for any libcall we can produce. This is an abridged version
2084// of the full call infrastructure since we won't need to worry about things
2085// like computed function pointers or strange arguments at call sites.
2086// TODO: Try to unify this and the normal call bits for ARM, then try to unify
2087// with X86.
2088bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2089  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2090
2091  // Handle *simple* calls for now.
2092  Type *RetTy = I->getType();
2093  MVT RetVT;
2094  if (RetTy->isVoidTy())
2095    RetVT = MVT::isVoid;
2096  else if (!isTypeLegal(RetTy, RetVT))
2097    return false;
2098
2099  // TODO: For now if we have long calls specified we don't handle the call.
2100  if (EnableARMLongCalls) return false;
2101
2102  // Set up the argument vectors.
2103  SmallVector<Value*, 8> Args;
2104  SmallVector<unsigned, 8> ArgRegs;
2105  SmallVector<MVT, 8> ArgVTs;
2106  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2107  Args.reserve(I->getNumOperands());
2108  ArgRegs.reserve(I->getNumOperands());
2109  ArgVTs.reserve(I->getNumOperands());
2110  ArgFlags.reserve(I->getNumOperands());
2111  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2112    Value *Op = I->getOperand(i);
2113    unsigned Arg = getRegForValue(Op);
2114    if (Arg == 0) return false;
2115
2116    Type *ArgTy = Op->getType();
2117    MVT ArgVT;
2118    if (!isTypeLegal(ArgTy, ArgVT)) return false;
2119
2120    ISD::ArgFlagsTy Flags;
2121    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2122    Flags.setOrigAlign(OriginalAlignment);
2123
2124    Args.push_back(Op);
2125    ArgRegs.push_back(Arg);
2126    ArgVTs.push_back(ArgVT);
2127    ArgFlags.push_back(Flags);
2128  }
2129
2130  // Handle the arguments now that we've gotten them.
2131  SmallVector<unsigned, 4> RegArgs;
2132  unsigned NumBytes;
2133  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
2134    return false;
2135
2136  // Issue the call, BLr9 for iOS, BL otherwise.
2137  // TODO: Turn this into the table of arm call ops.
2138  MachineInstrBuilder MIB;
2139  unsigned CallOpc = ARMSelectCallOp(NULL);
2140  if(isThumb2)
2141    // Explicitly adding the predicate here.
2142    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2143                         TII.get(CallOpc)))
2144                         .addExternalSymbol(TLI.getLibcallName(Call));
2145  else
2146    // Explicitly adding the predicate here.
2147    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2148                         TII.get(CallOpc))
2149          .addExternalSymbol(TLI.getLibcallName(Call)));
2150
2151  // Add implicit physical register uses to the call.
2152  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2153    MIB.addReg(RegArgs[i]);
2154
2155  // Add a register mask with the call-preserved registers.
2156  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2157  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2158
2159  // Finish off the call including any return values.
2160  SmallVector<unsigned, 4> UsedRegs;
2161  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
2162
2163  // Set all unused physreg defs as dead.
2164  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2165
2166  return true;
2167}
2168
2169bool ARMFastISel::SelectCall(const Instruction *I,
2170                             const char *IntrMemName = 0) {
2171  const CallInst *CI = cast<CallInst>(I);
2172  const Value *Callee = CI->getCalledValue();
2173
2174  // Can't handle inline asm.
2175  if (isa<InlineAsm>(Callee)) return false;
2176
2177  // Only handle global variable Callees.
2178  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2179  if (!GV)
2180    return false;
2181
2182  // Check the calling convention.
2183  ImmutableCallSite CS(CI);
2184  CallingConv::ID CC = CS.getCallingConv();
2185
2186  // TODO: Avoid some calling conventions?
2187
2188  // Let SDISel handle vararg functions.
2189  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2190  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2191  if (FTy->isVarArg())
2192    return false;
2193
2194  // Handle *simple* calls for now.
2195  Type *RetTy = I->getType();
2196  MVT RetVT;
2197  if (RetTy->isVoidTy())
2198    RetVT = MVT::isVoid;
2199  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2200           RetVT != MVT::i8  && RetVT != MVT::i1)
2201    return false;
2202
2203  // TODO: For now if we have long calls specified we don't handle the call.
2204  if (EnableARMLongCalls) return false;
2205
2206  // Set up the argument vectors.
2207  SmallVector<Value*, 8> Args;
2208  SmallVector<unsigned, 8> ArgRegs;
2209  SmallVector<MVT, 8> ArgVTs;
2210  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2211  unsigned arg_size = CS.arg_size();
2212  Args.reserve(arg_size);
2213  ArgRegs.reserve(arg_size);
2214  ArgVTs.reserve(arg_size);
2215  ArgFlags.reserve(arg_size);
2216  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2217       i != e; ++i) {
2218    // If we're lowering a memory intrinsic instead of a regular call, skip the
2219    // last two arguments, which shouldn't be passed to the underlying function.
2220    if (IntrMemName && e-i <= 2)
2221      break;
2222
2223    ISD::ArgFlagsTy Flags;
2224    unsigned AttrInd = i - CS.arg_begin() + 1;
2225    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2226      Flags.setSExt();
2227    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2228      Flags.setZExt();
2229
2230    // FIXME: Only handle *easy* calls for now.
2231    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2232        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2233        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2234        CS.paramHasAttr(AttrInd, Attribute::ByVal))
2235      return false;
2236
2237    Type *ArgTy = (*i)->getType();
2238    MVT ArgVT;
2239    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2240        ArgVT != MVT::i1)
2241      return false;
2242
2243    unsigned Arg = getRegForValue(*i);
2244    if (Arg == 0)
2245      return false;
2246
2247    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2248    Flags.setOrigAlign(OriginalAlignment);
2249
2250    Args.push_back(*i);
2251    ArgRegs.push_back(Arg);
2252    ArgVTs.push_back(ArgVT);
2253    ArgFlags.push_back(Flags);
2254  }
2255
2256  // Handle the arguments now that we've gotten them.
2257  SmallVector<unsigned, 4> RegArgs;
2258  unsigned NumBytes;
2259  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
2260    return false;
2261
2262  // Issue the call, BLr9 for iOS, BL otherwise.
2263  // TODO: Turn this into the table of arm call ops.
2264  MachineInstrBuilder MIB;
2265  unsigned CallOpc = ARMSelectCallOp(GV);
2266  // Explicitly adding the predicate here.
2267  if(isThumb2) {
2268    // Explicitly adding the predicate here.
2269    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2270                                 TII.get(CallOpc)));
2271    if (!IntrMemName)
2272      MIB.addGlobalAddress(GV, 0, 0);
2273    else
2274      MIB.addExternalSymbol(IntrMemName, 0);
2275  } else {
2276    if (!IntrMemName)
2277      // Explicitly adding the predicate here.
2278      MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2279                                   TII.get(CallOpc))
2280            .addGlobalAddress(GV, 0, 0));
2281    else
2282      MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2283                                   TII.get(CallOpc))
2284            .addExternalSymbol(IntrMemName, 0));
2285  }
2286
2287  // Add implicit physical register uses to the call.
2288  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2289    MIB.addReg(RegArgs[i]);
2290
2291  // Add a register mask with the call-preserved registers.
2292  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2293  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2294
2295  // Finish off the call including any return values.
2296  SmallVector<unsigned, 4> UsedRegs;
2297  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
2298
2299  // Set all unused physreg defs as dead.
2300  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2301
2302  return true;
2303}
2304
2305bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2306  return Len <= 16;
2307}
2308
2309bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len) {
2310  // Make sure we don't bloat code by inlining very large memcpy's.
2311  if (!ARMIsMemCpySmall(Len))
2312    return false;
2313
2314  // We don't care about alignment here since we just emit integer accesses.
2315  while (Len) {
2316    MVT VT;
2317    if (Len >= 4)
2318      VT = MVT::i32;
2319    else if (Len >= 2)
2320      VT = MVT::i16;
2321    else {
2322      assert(Len == 1);
2323      VT = MVT::i8;
2324    }
2325
2326    bool RV;
2327    unsigned ResultReg;
2328    RV = ARMEmitLoad(VT, ResultReg, Src);
2329    assert (RV == true && "Should be able to handle this load.");
2330    RV = ARMEmitStore(VT, ResultReg, Dest);
2331    assert (RV == true && "Should be able to handle this store.");
2332    (void)RV;
2333
2334    unsigned Size = VT.getSizeInBits()/8;
2335    Len -= Size;
2336    Dest.Offset += Size;
2337    Src.Offset += Size;
2338  }
2339
2340  return true;
2341}
2342
2343bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2344  // FIXME: Handle more intrinsics.
2345  switch (I.getIntrinsicID()) {
2346  default: return false;
2347  case Intrinsic::memcpy:
2348  case Intrinsic::memmove: {
2349    const MemTransferInst &MTI = cast<MemTransferInst>(I);
2350    // Don't handle volatile.
2351    if (MTI.isVolatile())
2352      return false;
2353
2354    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2355    // we would emit dead code because we don't currently handle memmoves.
2356    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2357    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2358      // Small memcpy's are common enough that we want to do them without a call
2359      // if possible.
2360      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2361      if (ARMIsMemCpySmall(Len)) {
2362        Address Dest, Src;
2363        if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2364            !ARMComputeAddress(MTI.getRawSource(), Src))
2365          return false;
2366        if (ARMTryEmitSmallMemCpy(Dest, Src, Len))
2367          return true;
2368      }
2369    }
2370
2371    if (!MTI.getLength()->getType()->isIntegerTy(32))
2372      return false;
2373
2374    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2375      return false;
2376
2377    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2378    return SelectCall(&I, IntrMemName);
2379  }
2380  case Intrinsic::memset: {
2381    const MemSetInst &MSI = cast<MemSetInst>(I);
2382    // Don't handle volatile.
2383    if (MSI.isVolatile())
2384      return false;
2385
2386    if (!MSI.getLength()->getType()->isIntegerTy(32))
2387      return false;
2388
2389    if (MSI.getDestAddressSpace() > 255)
2390      return false;
2391
2392    return SelectCall(&I, "memset");
2393  }
2394  }
2395}
2396
2397bool ARMFastISel::SelectTrunc(const Instruction *I) {
2398  // The high bits for a type smaller than the register size are assumed to be
2399  // undefined.
2400  Value *Op = I->getOperand(0);
2401
2402  EVT SrcVT, DestVT;
2403  SrcVT = TLI.getValueType(Op->getType(), true);
2404  DestVT = TLI.getValueType(I->getType(), true);
2405
2406  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2407    return false;
2408  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2409    return false;
2410
2411  unsigned SrcReg = getRegForValue(Op);
2412  if (!SrcReg) return false;
2413
2414  // Because the high bits are undefined, a truncate doesn't generate
2415  // any code.
2416  UpdateValueMap(I, SrcReg);
2417  return true;
2418}
2419
2420unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT,
2421                                    bool isZExt) {
2422  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2423    return 0;
2424
2425  unsigned Opc;
2426  bool isBoolZext = false;
2427  if (!SrcVT.isSimple()) return 0;
2428  switch (SrcVT.getSimpleVT().SimpleTy) {
2429  default: return 0;
2430  case MVT::i16:
2431    if (!Subtarget->hasV6Ops()) return 0;
2432    if (isZExt)
2433      Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH;
2434    else
2435      Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
2436    break;
2437  case MVT::i8:
2438    if (!Subtarget->hasV6Ops()) return 0;
2439    if (isZExt)
2440      Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB;
2441    else
2442      Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
2443    break;
2444  case MVT::i1:
2445    if (isZExt) {
2446      Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
2447      isBoolZext = true;
2448      break;
2449    }
2450    return 0;
2451  }
2452
2453  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2454  MachineInstrBuilder MIB;
2455  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
2456        .addReg(SrcReg);
2457  if (isBoolZext)
2458    MIB.addImm(1);
2459  else
2460    MIB.addImm(0);
2461  AddOptionalDefs(MIB);
2462  return ResultReg;
2463}
2464
2465bool ARMFastISel::SelectIntExt(const Instruction *I) {
2466  // On ARM, in general, integer casts don't involve legal types; this code
2467  // handles promotable integers.
2468  Type *DestTy = I->getType();
2469  Value *Src = I->getOperand(0);
2470  Type *SrcTy = Src->getType();
2471
2472  EVT SrcVT, DestVT;
2473  SrcVT = TLI.getValueType(SrcTy, true);
2474  DestVT = TLI.getValueType(DestTy, true);
2475
2476  bool isZExt = isa<ZExtInst>(I);
2477  unsigned SrcReg = getRegForValue(Src);
2478  if (!SrcReg) return false;
2479
2480  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2481  if (ResultReg == 0) return false;
2482  UpdateValueMap(I, ResultReg);
2483  return true;
2484}
2485
2486// TODO: SoftFP support.
2487bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2488
2489  switch (I->getOpcode()) {
2490    case Instruction::Load:
2491      return SelectLoad(I);
2492    case Instruction::Store:
2493      return SelectStore(I);
2494    case Instruction::Br:
2495      return SelectBranch(I);
2496    case Instruction::IndirectBr:
2497      return SelectIndirectBr(I);
2498    case Instruction::ICmp:
2499    case Instruction::FCmp:
2500      return SelectCmp(I);
2501    case Instruction::FPExt:
2502      return SelectFPExt(I);
2503    case Instruction::FPTrunc:
2504      return SelectFPTrunc(I);
2505    case Instruction::SIToFP:
2506      return SelectIToFP(I, /*isSigned*/ true);
2507    case Instruction::UIToFP:
2508      return SelectIToFP(I, /*isSigned*/ false);
2509    case Instruction::FPToSI:
2510      return SelectFPToI(I, /*isSigned*/ true);
2511    case Instruction::FPToUI:
2512      return SelectFPToI(I, /*isSigned*/ false);
2513    case Instruction::Add:
2514      return SelectBinaryIntOp(I, ISD::ADD);
2515    case Instruction::Or:
2516      return SelectBinaryIntOp(I, ISD::OR);
2517    case Instruction::Sub:
2518      return SelectBinaryIntOp(I, ISD::SUB);
2519    case Instruction::FAdd:
2520      return SelectBinaryFPOp(I, ISD::FADD);
2521    case Instruction::FSub:
2522      return SelectBinaryFPOp(I, ISD::FSUB);
2523    case Instruction::FMul:
2524      return SelectBinaryFPOp(I, ISD::FMUL);
2525    case Instruction::SDiv:
2526      return SelectDiv(I, /*isSigned*/ true);
2527    case Instruction::UDiv:
2528      return SelectDiv(I, /*isSigned*/ false);
2529    case Instruction::SRem:
2530      return SelectRem(I, /*isSigned*/ true);
2531    case Instruction::URem:
2532      return SelectRem(I, /*isSigned*/ false);
2533    case Instruction::Call:
2534      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2535        return SelectIntrinsicCall(*II);
2536      return SelectCall(I);
2537    case Instruction::Select:
2538      return SelectSelect(I);
2539    case Instruction::Ret:
2540      return SelectRet(I);
2541    case Instruction::Trunc:
2542      return SelectTrunc(I);
2543    case Instruction::ZExt:
2544    case Instruction::SExt:
2545      return SelectIntExt(I);
2546    default: break;
2547  }
2548  return false;
2549}
2550
2551/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
2552/// vreg is being provided by the specified load instruction.  If possible,
2553/// try to fold the load as an operand to the instruction, returning true if
2554/// successful.
2555bool ARMFastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
2556                                const LoadInst *LI) {
2557  // Verify we have a legal type before going any further.
2558  MVT VT;
2559  if (!isLoadTypeLegal(LI->getType(), VT))
2560    return false;
2561
2562  // Combine load followed by zero- or sign-extend.
2563  // ldrb r1, [r0]       ldrb r1, [r0]
2564  // uxtb r2, r1     =>
2565  // mov  r3, r2         mov  r3, r1
2566  bool isZExt = true;
2567  switch(MI->getOpcode()) {
2568    default: return false;
2569    case ARM::SXTH:
2570    case ARM::t2SXTH:
2571      isZExt = false;
2572    case ARM::UXTH:
2573    case ARM::t2UXTH:
2574      if (VT != MVT::i16)
2575        return false;
2576    break;
2577    case ARM::SXTB:
2578    case ARM::t2SXTB:
2579      isZExt = false;
2580    case ARM::UXTB:
2581    case ARM::t2UXTB:
2582      if (VT != MVT::i8)
2583        return false;
2584    break;
2585  }
2586  // See if we can handle this address.
2587  Address Addr;
2588  if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2589
2590  unsigned ResultReg = MI->getOperand(0).getReg();
2591  if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2592    return false;
2593  MI->eraseFromParent();
2594  return true;
2595}
2596
2597namespace llvm {
2598  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
2599    // Completely untested on non-iOS.
2600    const TargetMachine &TM = funcInfo.MF->getTarget();
2601
2602    // Darwin and thumb1 only for now.
2603    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2604    if (Subtarget->isTargetIOS() && !Subtarget->isThumb1Only() &&
2605        !DisableARMFastISel)
2606      return new ARMFastISel(funcInfo);
2607    return 0;
2608  }
2609}
2610