ARMFastISel.cpp revision 2b3b335f2d2886bbffa005998972de689a9f3e21
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMTargetMachine.h"
20#include "ARMSubtarget.h"
21#include "ARMConstantPoolValue.h"
22#include "MCTargetDesc/ARMAddressingModes.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Module.h"
29#include "llvm/Operator.h"
30#include "llvm/CodeGen/Analysis.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/FunctionLoweringInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineConstantPool.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineMemOperand.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48using namespace llvm;
49
50extern cl::opt<bool> EnableARMLongCalls;
51
52namespace {
53
54  // All possible address modes, plus some.
55  typedef struct Address {
56    enum {
57      RegBase,
58      FrameIndexBase
59    } BaseType;
60
61    union {
62      unsigned Reg;
63      int FI;
64    } Base;
65
66    int Offset;
67
68    // Innocuous defaults for our address.
69    Address()
70     : BaseType(RegBase), Offset(0) {
71       Base.Reg = 0;
72     }
73  } Address;
74
75class ARMFastISel : public FastISel {
76
77  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
78  /// make the right decision when generating code for different targets.
79  const ARMSubtarget *Subtarget;
80  const TargetMachine &TM;
81  const TargetInstrInfo &TII;
82  const TargetLowering &TLI;
83  ARMFunctionInfo *AFI;
84
85  // Convenience variables to avoid some queries.
86  bool isThumb2;
87  LLVMContext *Context;
88
89  public:
90    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
91    : FastISel(funcInfo),
92      TM(funcInfo.MF->getTarget()),
93      TII(*TM.getInstrInfo()),
94      TLI(*TM.getTargetLowering()) {
95      Subtarget = &TM.getSubtarget<ARMSubtarget>();
96      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
97      isThumb2 = AFI->isThumbFunction();
98      Context = &funcInfo.Fn->getContext();
99    }
100
101    // Code from FastISel.cpp.
102    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
103                                   const TargetRegisterClass *RC);
104    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
105                                    const TargetRegisterClass *RC,
106                                    unsigned Op0, bool Op0IsKill);
107    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
108                                     const TargetRegisterClass *RC,
109                                     unsigned Op0, bool Op0IsKill,
110                                     unsigned Op1, bool Op1IsKill);
111    virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
112                                      const TargetRegisterClass *RC,
113                                      unsigned Op0, bool Op0IsKill,
114                                      unsigned Op1, bool Op1IsKill,
115                                      unsigned Op2, bool Op2IsKill);
116    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
117                                     const TargetRegisterClass *RC,
118                                     unsigned Op0, bool Op0IsKill,
119                                     uint64_t Imm);
120    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
121                                     const TargetRegisterClass *RC,
122                                     unsigned Op0, bool Op0IsKill,
123                                     const ConstantFP *FPImm);
124    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
125                                      const TargetRegisterClass *RC,
126                                      unsigned Op0, bool Op0IsKill,
127                                      unsigned Op1, bool Op1IsKill,
128                                      uint64_t Imm);
129    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
130                                    const TargetRegisterClass *RC,
131                                    uint64_t Imm);
132    virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
133                                     const TargetRegisterClass *RC,
134                                     uint64_t Imm1, uint64_t Imm2);
135
136    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
137                                                unsigned Op0, bool Op0IsKill,
138                                                uint32_t Idx);
139
140    // Backend specific FastISel code.
141    virtual bool TargetSelectInstruction(const Instruction *I);
142    virtual unsigned TargetMaterializeConstant(const Constant *C);
143    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
144    virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
145                               const LoadInst *LI);
146
147  #include "ARMGenFastISel.inc"
148
149    // Instruction selection routines.
150  private:
151    bool SelectLoad(const Instruction *I);
152    bool SelectStore(const Instruction *I);
153    bool SelectBranch(const Instruction *I);
154    bool SelectIndirectBr(const Instruction *I);
155    bool SelectCmp(const Instruction *I);
156    bool SelectFPExt(const Instruction *I);
157    bool SelectFPTrunc(const Instruction *I);
158    bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
159    bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
160    bool SelectIToFP(const Instruction *I, bool isSigned);
161    bool SelectFPToI(const Instruction *I, bool isSigned);
162    bool SelectDiv(const Instruction *I, bool isSigned);
163    bool SelectRem(const Instruction *I, bool isSigned);
164    bool SelectCall(const Instruction *I, const char *IntrMemName);
165    bool SelectIntrinsicCall(const IntrinsicInst &I);
166    bool SelectSelect(const Instruction *I);
167    bool SelectRet(const Instruction *I);
168    bool SelectTrunc(const Instruction *I);
169    bool SelectIntExt(const Instruction *I);
170
171    // Utility routines.
172  private:
173    bool isTypeLegal(Type *Ty, MVT &VT);
174    bool isLoadTypeLegal(Type *Ty, MVT &VT);
175    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
176                    bool isZExt);
177    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
178                     unsigned Alignment = 0, bool isZExt = true,
179                     bool allocReg = true);
180
181    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
182                      unsigned Alignment = 0);
183    bool ARMComputeAddress(const Value *Obj, Address &Addr);
184    void ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3);
185    bool ARMIsMemCpySmall(uint64_t Len);
186    bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len);
187    unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt);
188    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
189    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
190    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
191    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
192    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
193    unsigned ARMSelectCallOp(const GlobalValue *GV);
194
195    // Call handling routines.
196  private:
197    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
198    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
199                         SmallVectorImpl<unsigned> &ArgRegs,
200                         SmallVectorImpl<MVT> &ArgVTs,
201                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
202                         SmallVectorImpl<unsigned> &RegArgs,
203                         CallingConv::ID CC,
204                         unsigned &NumBytes);
205    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
206                    const Instruction *I, CallingConv::ID CC,
207                    unsigned &NumBytes);
208    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
209
210    // OptionalDef handling routines.
211  private:
212    bool isARMNEONPred(const MachineInstr *MI);
213    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
214    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
215    void AddLoadStoreOperands(EVT VT, Address &Addr,
216                              const MachineInstrBuilder &MIB,
217                              unsigned Flags, bool useAM3);
218};
219
220} // end anonymous namespace
221
222#include "ARMGenCallingConv.inc"
223
224// DefinesOptionalPredicate - This is different from DefinesPredicate in that
225// we don't care about implicit defs here, just places we'll need to add a
226// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
227bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
228  if (!MI->hasOptionalDef())
229    return false;
230
231  // Look to see if our OptionalDef is defining CPSR or CCR.
232  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
233    const MachineOperand &MO = MI->getOperand(i);
234    if (!MO.isReg() || !MO.isDef()) continue;
235    if (MO.getReg() == ARM::CPSR)
236      *CPSR = true;
237  }
238  return true;
239}
240
241bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
242  const MCInstrDesc &MCID = MI->getDesc();
243
244  // If we're a thumb2 or not NEON function we were handled via isPredicable.
245  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
246       AFI->isThumb2Function())
247    return false;
248
249  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
250    if (MCID.OpInfo[i].isPredicate())
251      return true;
252
253  return false;
254}
255
256// If the machine is predicable go ahead and add the predicate operands, if
257// it needs default CC operands add those.
258// TODO: If we want to support thumb1 then we'll need to deal with optional
259// CPSR defs that need to be added before the remaining operands. See s_cc_out
260// for descriptions why.
261const MachineInstrBuilder &
262ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
263  MachineInstr *MI = &*MIB;
264
265  // Do we use a predicate? or...
266  // Are we NEON in ARM mode and have a predicate operand? If so, I know
267  // we're not predicable but add it anyways.
268  if (TII.isPredicable(MI) || isARMNEONPred(MI))
269    AddDefaultPred(MIB);
270
271  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
272  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
273  bool CPSR = false;
274  if (DefinesOptionalPredicate(MI, &CPSR)) {
275    if (CPSR)
276      AddDefaultT1CC(MIB);
277    else
278      AddDefaultCC(MIB);
279  }
280  return MIB;
281}
282
283unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
284                                    const TargetRegisterClass* RC) {
285  unsigned ResultReg = createResultReg(RC);
286  const MCInstrDesc &II = TII.get(MachineInstOpcode);
287
288  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
289  return ResultReg;
290}
291
292unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
293                                     const TargetRegisterClass *RC,
294                                     unsigned Op0, bool Op0IsKill) {
295  unsigned ResultReg = createResultReg(RC);
296  const MCInstrDesc &II = TII.get(MachineInstOpcode);
297
298  if (II.getNumDefs() >= 1) {
299    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
300                   .addReg(Op0, Op0IsKill * RegState::Kill));
301  } else {
302    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
303                   .addReg(Op0, Op0IsKill * RegState::Kill));
304    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
305                   TII.get(TargetOpcode::COPY), ResultReg)
306                   .addReg(II.ImplicitDefs[0]));
307  }
308  return ResultReg;
309}
310
311unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
312                                      const TargetRegisterClass *RC,
313                                      unsigned Op0, bool Op0IsKill,
314                                      unsigned Op1, bool Op1IsKill) {
315  unsigned ResultReg = createResultReg(RC);
316  const MCInstrDesc &II = TII.get(MachineInstOpcode);
317
318  if (II.getNumDefs() >= 1) {
319    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
320                   .addReg(Op0, Op0IsKill * RegState::Kill)
321                   .addReg(Op1, Op1IsKill * RegState::Kill));
322  } else {
323    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
324                   .addReg(Op0, Op0IsKill * RegState::Kill)
325                   .addReg(Op1, Op1IsKill * RegState::Kill));
326    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
327                           TII.get(TargetOpcode::COPY), ResultReg)
328                   .addReg(II.ImplicitDefs[0]));
329  }
330  return ResultReg;
331}
332
333unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
334                                       const TargetRegisterClass *RC,
335                                       unsigned Op0, bool Op0IsKill,
336                                       unsigned Op1, bool Op1IsKill,
337                                       unsigned Op2, bool Op2IsKill) {
338  unsigned ResultReg = createResultReg(RC);
339  const MCInstrDesc &II = TII.get(MachineInstOpcode);
340
341  if (II.getNumDefs() >= 1) {
342    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
343                   .addReg(Op0, Op0IsKill * RegState::Kill)
344                   .addReg(Op1, Op1IsKill * RegState::Kill)
345                   .addReg(Op2, Op2IsKill * RegState::Kill));
346  } else {
347    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
348                   .addReg(Op0, Op0IsKill * RegState::Kill)
349                   .addReg(Op1, Op1IsKill * RegState::Kill)
350                   .addReg(Op2, Op2IsKill * RegState::Kill));
351    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
352                           TII.get(TargetOpcode::COPY), ResultReg)
353                   .addReg(II.ImplicitDefs[0]));
354  }
355  return ResultReg;
356}
357
358unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
359                                      const TargetRegisterClass *RC,
360                                      unsigned Op0, bool Op0IsKill,
361                                      uint64_t Imm) {
362  unsigned ResultReg = createResultReg(RC);
363  const MCInstrDesc &II = TII.get(MachineInstOpcode);
364
365  if (II.getNumDefs() >= 1) {
366    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
367                   .addReg(Op0, Op0IsKill * RegState::Kill)
368                   .addImm(Imm));
369  } else {
370    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
371                   .addReg(Op0, Op0IsKill * RegState::Kill)
372                   .addImm(Imm));
373    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
374                           TII.get(TargetOpcode::COPY), ResultReg)
375                   .addReg(II.ImplicitDefs[0]));
376  }
377  return ResultReg;
378}
379
380unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
381                                      const TargetRegisterClass *RC,
382                                      unsigned Op0, bool Op0IsKill,
383                                      const ConstantFP *FPImm) {
384  unsigned ResultReg = createResultReg(RC);
385  const MCInstrDesc &II = TII.get(MachineInstOpcode);
386
387  if (II.getNumDefs() >= 1) {
388    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
389                   .addReg(Op0, Op0IsKill * RegState::Kill)
390                   .addFPImm(FPImm));
391  } else {
392    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
393                   .addReg(Op0, Op0IsKill * RegState::Kill)
394                   .addFPImm(FPImm));
395    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
396                           TII.get(TargetOpcode::COPY), ResultReg)
397                   .addReg(II.ImplicitDefs[0]));
398  }
399  return ResultReg;
400}
401
402unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
403                                       const TargetRegisterClass *RC,
404                                       unsigned Op0, bool Op0IsKill,
405                                       unsigned Op1, bool Op1IsKill,
406                                       uint64_t Imm) {
407  unsigned ResultReg = createResultReg(RC);
408  const MCInstrDesc &II = TII.get(MachineInstOpcode);
409
410  if (II.getNumDefs() >= 1) {
411    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
412                   .addReg(Op0, Op0IsKill * RegState::Kill)
413                   .addReg(Op1, Op1IsKill * RegState::Kill)
414                   .addImm(Imm));
415  } else {
416    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
417                   .addReg(Op0, Op0IsKill * RegState::Kill)
418                   .addReg(Op1, Op1IsKill * RegState::Kill)
419                   .addImm(Imm));
420    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
421                           TII.get(TargetOpcode::COPY), ResultReg)
422                   .addReg(II.ImplicitDefs[0]));
423  }
424  return ResultReg;
425}
426
427unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
428                                     const TargetRegisterClass *RC,
429                                     uint64_t Imm) {
430  unsigned ResultReg = createResultReg(RC);
431  const MCInstrDesc &II = TII.get(MachineInstOpcode);
432
433  if (II.getNumDefs() >= 1) {
434    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
435                   .addImm(Imm));
436  } else {
437    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
438                   .addImm(Imm));
439    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
440                           TII.get(TargetOpcode::COPY), ResultReg)
441                   .addReg(II.ImplicitDefs[0]));
442  }
443  return ResultReg;
444}
445
446unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
447                                      const TargetRegisterClass *RC,
448                                      uint64_t Imm1, uint64_t Imm2) {
449  unsigned ResultReg = createResultReg(RC);
450  const MCInstrDesc &II = TII.get(MachineInstOpcode);
451
452  if (II.getNumDefs() >= 1) {
453    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
454                    .addImm(Imm1).addImm(Imm2));
455  } else {
456    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
457                    .addImm(Imm1).addImm(Imm2));
458    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
459                            TII.get(TargetOpcode::COPY),
460                            ResultReg)
461                    .addReg(II.ImplicitDefs[0]));
462  }
463  return ResultReg;
464}
465
466unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
467                                                 unsigned Op0, bool Op0IsKill,
468                                                 uint32_t Idx) {
469  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
470  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
471         "Cannot yet extract from physregs");
472
473  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
474                          DL, TII.get(TargetOpcode::COPY), ResultReg)
475                  .addReg(Op0, getKillRegState(Op0IsKill), Idx));
476  return ResultReg;
477}
478
479// TODO: Don't worry about 64-bit now, but when this is fixed remove the
480// checks from the various callers.
481unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
482  if (VT == MVT::f64) return 0;
483
484  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
485  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
486                          TII.get(ARM::VMOVSR), MoveReg)
487                  .addReg(SrcReg));
488  return MoveReg;
489}
490
491unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
492  if (VT == MVT::i64) return 0;
493
494  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
495  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
496                          TII.get(ARM::VMOVRS), MoveReg)
497                  .addReg(SrcReg));
498  return MoveReg;
499}
500
501// For double width floating point we need to materialize two constants
502// (the high and the low) into integer registers then use a move to get
503// the combined constant into an FP reg.
504unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
505  const APFloat Val = CFP->getValueAPF();
506  bool is64bit = VT == MVT::f64;
507
508  // This checks to see if we can use VFP3 instructions to materialize
509  // a constant, otherwise we have to go through the constant pool.
510  if (TLI.isFPImmLegal(Val, VT)) {
511    int Imm;
512    unsigned Opc;
513    if (is64bit) {
514      Imm = ARM_AM::getFP64Imm(Val);
515      Opc = ARM::FCONSTD;
516    } else {
517      Imm = ARM_AM::getFP32Imm(Val);
518      Opc = ARM::FCONSTS;
519    }
520    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
521    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
522                            DestReg)
523                    .addImm(Imm));
524    return DestReg;
525  }
526
527  // Require VFP2 for loading fp constants.
528  if (!Subtarget->hasVFP2()) return false;
529
530  // MachineConstantPool wants an explicit alignment.
531  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
532  if (Align == 0) {
533    // TODO: Figure out if this is correct.
534    Align = TD.getTypeAllocSize(CFP->getType());
535  }
536  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
537  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
538  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
539
540  // The extra reg is for addrmode5.
541  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
542                          DestReg)
543                  .addConstantPoolIndex(Idx)
544                  .addReg(0));
545  return DestReg;
546}
547
548unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
549
550  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
551    return false;
552
553  // If we can do this in a single instruction without a constant pool entry
554  // do so now.
555  const ConstantInt *CI = cast<ConstantInt>(C);
556  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
557    unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
558    unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
559    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
560                            TII.get(Opc), ImmReg)
561                    .addImm(CI->getZExtValue()));
562    return ImmReg;
563  }
564
565  // Use MVN to emit negative constants.
566  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
567    unsigned Imm = (unsigned)~(CI->getSExtValue());
568    bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
569      (ARM_AM::getSOImmVal(Imm) != -1);
570    if (UseImm) {
571      unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
572      unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
573      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
574                              TII.get(Opc), ImmReg)
575                      .addImm(Imm));
576      return ImmReg;
577    }
578  }
579
580  // Load from constant pool.  For now 32-bit only.
581  if (VT != MVT::i32)
582    return false;
583
584  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
585
586  // MachineConstantPool wants an explicit alignment.
587  unsigned Align = TD.getPrefTypeAlignment(C->getType());
588  if (Align == 0) {
589    // TODO: Figure out if this is correct.
590    Align = TD.getTypeAllocSize(C->getType());
591  }
592  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
593
594  if (isThumb2)
595    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
596                            TII.get(ARM::t2LDRpci), DestReg)
597                    .addConstantPoolIndex(Idx));
598  else
599    // The extra immediate is for addrmode2.
600    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
601                            TII.get(ARM::LDRcp), DestReg)
602                    .addConstantPoolIndex(Idx)
603                    .addImm(0));
604
605  return DestReg;
606}
607
608unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
609  // For now 32-bit only.
610  if (VT != MVT::i32) return 0;
611
612  Reloc::Model RelocM = TM.getRelocationModel();
613
614  // TODO: Need more magic for ARM PIC.
615  if (!isThumb2 && (RelocM == Reloc::PIC_)) return 0;
616
617  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
618
619  // Use movw+movt when possible, it avoids constant pool entries.
620  // Darwin targets don't support movt with Reloc::Static, see
621  // ARMTargetLowering::LowerGlobalAddressDarwin.  Other targets only support
622  // static movt relocations.
623  if (Subtarget->useMovt() &&
624      Subtarget->isTargetDarwin() == (RelocM != Reloc::Static)) {
625    unsigned Opc;
626    switch (RelocM) {
627    case Reloc::PIC_:
628      Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
629      break;
630    case Reloc::DynamicNoPIC:
631      Opc = isThumb2 ? ARM::t2MOV_ga_dyn : ARM::MOV_ga_dyn;
632      break;
633    default:
634      Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
635      break;
636    }
637    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
638                            DestReg).addGlobalAddress(GV));
639  } else {
640    // MachineConstantPool wants an explicit alignment.
641    unsigned Align = TD.getPrefTypeAlignment(GV->getType());
642    if (Align == 0) {
643      // TODO: Figure out if this is correct.
644      Align = TD.getTypeAllocSize(GV->getType());
645    }
646
647    // Grab index.
648    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
649      (Subtarget->isThumb() ? 4 : 8);
650    unsigned Id = AFI->createPICLabelUId();
651    ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
652                                                                ARMCP::CPValue,
653                                                                PCAdj);
654    unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
655
656    // Load value.
657    MachineInstrBuilder MIB;
658    if (isThumb2) {
659      unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
660      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
661        .addConstantPoolIndex(Idx);
662      if (RelocM == Reloc::PIC_)
663        MIB.addImm(Id);
664    } else {
665      // The extra immediate is for addrmode2.
666      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
667                    DestReg)
668        .addConstantPoolIndex(Idx)
669        .addImm(0);
670    }
671    AddOptionalDefs(MIB);
672  }
673
674  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
675    MachineInstrBuilder MIB;
676    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
677    if (isThumb2)
678      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
679                    TII.get(ARM::t2LDRi12), NewDestReg)
680            .addReg(DestReg)
681            .addImm(0);
682    else
683      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
684                    NewDestReg)
685            .addReg(DestReg)
686            .addImm(0);
687    DestReg = NewDestReg;
688    AddOptionalDefs(MIB);
689  }
690
691  return DestReg;
692}
693
694unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
695  EVT VT = TLI.getValueType(C->getType(), true);
696
697  // Only handle simple types.
698  if (!VT.isSimple()) return 0;
699
700  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
701    return ARMMaterializeFP(CFP, VT);
702  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
703    return ARMMaterializeGV(GV, VT);
704  else if (isa<ConstantInt>(C))
705    return ARMMaterializeInt(C, VT);
706
707  return 0;
708}
709
710// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
711
712unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
713  // Don't handle dynamic allocas.
714  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
715
716  MVT VT;
717  if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
718
719  DenseMap<const AllocaInst*, int>::iterator SI =
720    FuncInfo.StaticAllocaMap.find(AI);
721
722  // This will get lowered later into the correct offsets and registers
723  // via rewriteXFrameIndex.
724  if (SI != FuncInfo.StaticAllocaMap.end()) {
725    const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
726    unsigned ResultReg = createResultReg(RC);
727    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
728    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
729                            TII.get(Opc), ResultReg)
730                            .addFrameIndex(SI->second)
731                            .addImm(0));
732    return ResultReg;
733  }
734
735  return 0;
736}
737
738bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
739  EVT evt = TLI.getValueType(Ty, true);
740
741  // Only handle simple types.
742  if (evt == MVT::Other || !evt.isSimple()) return false;
743  VT = evt.getSimpleVT();
744
745  // Handle all legal types, i.e. a register that will directly hold this
746  // value.
747  return TLI.isTypeLegal(VT);
748}
749
750bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
751  if (isTypeLegal(Ty, VT)) return true;
752
753  // If this is a type than can be sign or zero-extended to a basic operation
754  // go ahead and accept it now.
755  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
756    return true;
757
758  return false;
759}
760
761// Computes the address to get to an object.
762bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
763  // Some boilerplate from the X86 FastISel.
764  const User *U = NULL;
765  unsigned Opcode = Instruction::UserOp1;
766  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
767    // Don't walk into other basic blocks unless the object is an alloca from
768    // another block, otherwise it may not have a virtual register assigned.
769    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
770        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
771      Opcode = I->getOpcode();
772      U = I;
773    }
774  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
775    Opcode = C->getOpcode();
776    U = C;
777  }
778
779  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
780    if (Ty->getAddressSpace() > 255)
781      // Fast instruction selection doesn't support the special
782      // address spaces.
783      return false;
784
785  switch (Opcode) {
786    default:
787    break;
788    case Instruction::BitCast: {
789      // Look through bitcasts.
790      return ARMComputeAddress(U->getOperand(0), Addr);
791    }
792    case Instruction::IntToPtr: {
793      // Look past no-op inttoptrs.
794      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
795        return ARMComputeAddress(U->getOperand(0), Addr);
796      break;
797    }
798    case Instruction::PtrToInt: {
799      // Look past no-op ptrtoints.
800      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
801        return ARMComputeAddress(U->getOperand(0), Addr);
802      break;
803    }
804    case Instruction::GetElementPtr: {
805      Address SavedAddr = Addr;
806      int TmpOffset = Addr.Offset;
807
808      // Iterate through the GEP folding the constants into offsets where
809      // we can.
810      gep_type_iterator GTI = gep_type_begin(U);
811      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
812           i != e; ++i, ++GTI) {
813        const Value *Op = *i;
814        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
815          const StructLayout *SL = TD.getStructLayout(STy);
816          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
817          TmpOffset += SL->getElementOffset(Idx);
818        } else {
819          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
820          for (;;) {
821            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
822              // Constant-offset addressing.
823              TmpOffset += CI->getSExtValue() * S;
824              break;
825            }
826            if (isa<AddOperator>(Op) &&
827                (!isa<Instruction>(Op) ||
828                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
829                 == FuncInfo.MBB) &&
830                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
831              // An add (in the same block) with a constant operand. Fold the
832              // constant.
833              ConstantInt *CI =
834              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
835              TmpOffset += CI->getSExtValue() * S;
836              // Iterate on the other operand.
837              Op = cast<AddOperator>(Op)->getOperand(0);
838              continue;
839            }
840            // Unsupported
841            goto unsupported_gep;
842          }
843        }
844      }
845
846      // Try to grab the base operand now.
847      Addr.Offset = TmpOffset;
848      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
849
850      // We failed, restore everything and try the other options.
851      Addr = SavedAddr;
852
853      unsupported_gep:
854      break;
855    }
856    case Instruction::Alloca: {
857      const AllocaInst *AI = cast<AllocaInst>(Obj);
858      DenseMap<const AllocaInst*, int>::iterator SI =
859        FuncInfo.StaticAllocaMap.find(AI);
860      if (SI != FuncInfo.StaticAllocaMap.end()) {
861        Addr.BaseType = Address::FrameIndexBase;
862        Addr.Base.FI = SI->second;
863        return true;
864      }
865      break;
866    }
867  }
868
869  // Try to get this in a register if nothing else has worked.
870  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
871  return Addr.Base.Reg != 0;
872}
873
874void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3) {
875
876  assert(VT.isSimple() && "Non-simple types are invalid here!");
877
878  bool needsLowering = false;
879  switch (VT.getSimpleVT().SimpleTy) {
880    default: llvm_unreachable("Unhandled load/store type!");
881    case MVT::i1:
882    case MVT::i8:
883    case MVT::i16:
884    case MVT::i32:
885      if (!useAM3) {
886        // Integer loads/stores handle 12-bit offsets.
887        needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
888        // Handle negative offsets.
889        if (needsLowering && isThumb2)
890          needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
891                            Addr.Offset > -256);
892      } else {
893        // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
894        needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
895      }
896      break;
897    case MVT::f32:
898    case MVT::f64:
899      // Floating point operands handle 8-bit offsets.
900      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
901      break;
902  }
903
904  // If this is a stack pointer and the offset needs to be simplified then
905  // put the alloca address into a register, set the base type back to
906  // register and continue. This should almost never happen.
907  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
908    const TargetRegisterClass *RC = isThumb2 ?
909      (const TargetRegisterClass*)&ARM::tGPRRegClass :
910      (const TargetRegisterClass*)&ARM::GPRRegClass;
911    unsigned ResultReg = createResultReg(RC);
912    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
913    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
914                            TII.get(Opc), ResultReg)
915                            .addFrameIndex(Addr.Base.FI)
916                            .addImm(0));
917    Addr.Base.Reg = ResultReg;
918    Addr.BaseType = Address::RegBase;
919  }
920
921  // Since the offset is too large for the load/store instruction
922  // get the reg+offset into a register.
923  if (needsLowering) {
924    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
925                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
926    Addr.Offset = 0;
927  }
928}
929
930void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
931                                       const MachineInstrBuilder &MIB,
932                                       unsigned Flags, bool useAM3) {
933  // addrmode5 output depends on the selection dag addressing dividing the
934  // offset by 4 that it then later multiplies. Do this here as well.
935  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
936      VT.getSimpleVT().SimpleTy == MVT::f64)
937    Addr.Offset /= 4;
938
939  // Frame base works a bit differently. Handle it separately.
940  if (Addr.BaseType == Address::FrameIndexBase) {
941    int FI = Addr.Base.FI;
942    int Offset = Addr.Offset;
943    MachineMemOperand *MMO =
944          FuncInfo.MF->getMachineMemOperand(
945                                  MachinePointerInfo::getFixedStack(FI, Offset),
946                                  Flags,
947                                  MFI.getObjectSize(FI),
948                                  MFI.getObjectAlignment(FI));
949    // Now add the rest of the operands.
950    MIB.addFrameIndex(FI);
951
952    // ARM halfword load/stores and signed byte loads need an additional
953    // operand.
954    if (useAM3) {
955      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
956      MIB.addReg(0);
957      MIB.addImm(Imm);
958    } else {
959      MIB.addImm(Addr.Offset);
960    }
961    MIB.addMemOperand(MMO);
962  } else {
963    // Now add the rest of the operands.
964    MIB.addReg(Addr.Base.Reg);
965
966    // ARM halfword load/stores and signed byte loads need an additional
967    // operand.
968    if (useAM3) {
969      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
970      MIB.addReg(0);
971      MIB.addImm(Imm);
972    } else {
973      MIB.addImm(Addr.Offset);
974    }
975  }
976  AddOptionalDefs(MIB);
977}
978
979bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
980                              unsigned Alignment, bool isZExt, bool allocReg) {
981  assert(VT.isSimple() && "Non-simple types are invalid here!");
982  unsigned Opc;
983  bool useAM3 = false;
984  bool needVMOV = false;
985  const TargetRegisterClass *RC;
986  switch (VT.getSimpleVT().SimpleTy) {
987    // This is mostly going to be Neon/vector support.
988    default: return false;
989    case MVT::i1:
990    case MVT::i8:
991      if (isThumb2) {
992        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
993          Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
994        else
995          Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
996      } else {
997        if (isZExt) {
998          Opc = ARM::LDRBi12;
999        } else {
1000          Opc = ARM::LDRSB;
1001          useAM3 = true;
1002        }
1003      }
1004      RC = &ARM::GPRRegClass;
1005      break;
1006    case MVT::i16:
1007      if (isThumb2) {
1008        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1009          Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
1010        else
1011          Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
1012      } else {
1013        Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1014        useAM3 = true;
1015      }
1016      RC = &ARM::GPRRegClass;
1017      break;
1018    case MVT::i32:
1019      if (isThumb2) {
1020        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1021          Opc = ARM::t2LDRi8;
1022        else
1023          Opc = ARM::t2LDRi12;
1024      } else {
1025        Opc = ARM::LDRi12;
1026      }
1027      RC = &ARM::GPRRegClass;
1028      break;
1029    case MVT::f32:
1030      if (!Subtarget->hasVFP2()) return false;
1031      // Unaligned loads need special handling. Floats require word-alignment.
1032      if (Alignment && Alignment < 4) {
1033        needVMOV = true;
1034        VT = MVT::i32;
1035        Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1036        RC = &ARM::GPRRegClass;
1037      } else {
1038        Opc = ARM::VLDRS;
1039        RC = TLI.getRegClassFor(VT);
1040      }
1041      break;
1042    case MVT::f64:
1043      if (!Subtarget->hasVFP2()) return false;
1044      // FIXME: Unaligned loads need special handling.  Doublewords require
1045      // word-alignment.
1046      if (Alignment && Alignment < 4)
1047        return false;
1048
1049      Opc = ARM::VLDRD;
1050      RC = TLI.getRegClassFor(VT);
1051      break;
1052  }
1053  // Simplify this down to something we can handle.
1054  ARMSimplifyAddress(Addr, VT, useAM3);
1055
1056  // Create the base instruction, then add the operands.
1057  if (allocReg)
1058    ResultReg = createResultReg(RC);
1059  assert (ResultReg > 255 && "Expected an allocated virtual register.");
1060  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1061                                    TII.get(Opc), ResultReg);
1062  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1063
1064  // If we had an unaligned load of a float we've converted it to an regular
1065  // load.  Now we must move from the GRP to the FP register.
1066  if (needVMOV) {
1067    unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1068    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1069                            TII.get(ARM::VMOVSR), MoveReg)
1070                    .addReg(ResultReg));
1071    ResultReg = MoveReg;
1072  }
1073  return true;
1074}
1075
1076bool ARMFastISel::SelectLoad(const Instruction *I) {
1077  // Atomic loads need special handling.
1078  if (cast<LoadInst>(I)->isAtomic())
1079    return false;
1080
1081  // Verify we have a legal type before going any further.
1082  MVT VT;
1083  if (!isLoadTypeLegal(I->getType(), VT))
1084    return false;
1085
1086  // See if we can handle this address.
1087  Address Addr;
1088  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1089
1090  unsigned ResultReg;
1091  if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1092    return false;
1093  UpdateValueMap(I, ResultReg);
1094  return true;
1095}
1096
1097bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
1098                               unsigned Alignment) {
1099  unsigned StrOpc;
1100  bool useAM3 = false;
1101  switch (VT.getSimpleVT().SimpleTy) {
1102    // This is mostly going to be Neon/vector support.
1103    default: return false;
1104    case MVT::i1: {
1105      unsigned Res = createResultReg(isThumb2 ?
1106        (const TargetRegisterClass*)&ARM::tGPRRegClass :
1107        (const TargetRegisterClass*)&ARM::GPRRegClass);
1108      unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1109      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1110                              TII.get(Opc), Res)
1111                      .addReg(SrcReg).addImm(1));
1112      SrcReg = Res;
1113    } // Fallthrough here.
1114    case MVT::i8:
1115      if (isThumb2) {
1116        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1117          StrOpc = ARM::t2STRBi8;
1118        else
1119          StrOpc = ARM::t2STRBi12;
1120      } else {
1121        StrOpc = ARM::STRBi12;
1122      }
1123      break;
1124    case MVT::i16:
1125      if (isThumb2) {
1126        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1127          StrOpc = ARM::t2STRHi8;
1128        else
1129          StrOpc = ARM::t2STRHi12;
1130      } else {
1131        StrOpc = ARM::STRH;
1132        useAM3 = true;
1133      }
1134      break;
1135    case MVT::i32:
1136      if (isThumb2) {
1137        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1138          StrOpc = ARM::t2STRi8;
1139        else
1140          StrOpc = ARM::t2STRi12;
1141      } else {
1142        StrOpc = ARM::STRi12;
1143      }
1144      break;
1145    case MVT::f32:
1146      if (!Subtarget->hasVFP2()) return false;
1147      // Unaligned stores need special handling. Floats require word-alignment.
1148      if (Alignment && Alignment < 4) {
1149        unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1150        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1151                                TII.get(ARM::VMOVRS), MoveReg)
1152                        .addReg(SrcReg));
1153        SrcReg = MoveReg;
1154        VT = MVT::i32;
1155        StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1156      } else {
1157        StrOpc = ARM::VSTRS;
1158      }
1159      break;
1160    case MVT::f64:
1161      if (!Subtarget->hasVFP2()) return false;
1162      // FIXME: Unaligned stores need special handling.  Doublewords require
1163      // word-alignment.
1164      if (Alignment && Alignment < 4)
1165          return false;
1166
1167      StrOpc = ARM::VSTRD;
1168      break;
1169  }
1170  // Simplify this down to something we can handle.
1171  ARMSimplifyAddress(Addr, VT, useAM3);
1172
1173  // Create the base instruction, then add the operands.
1174  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1175                                    TII.get(StrOpc))
1176                            .addReg(SrcReg);
1177  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1178  return true;
1179}
1180
1181bool ARMFastISel::SelectStore(const Instruction *I) {
1182  Value *Op0 = I->getOperand(0);
1183  unsigned SrcReg = 0;
1184
1185  // Atomic stores need special handling.
1186  if (cast<StoreInst>(I)->isAtomic())
1187    return false;
1188
1189  // Verify we have a legal type before going any further.
1190  MVT VT;
1191  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1192    return false;
1193
1194  // Get the value to be stored into a register.
1195  SrcReg = getRegForValue(Op0);
1196  if (SrcReg == 0) return false;
1197
1198  // See if we can handle this address.
1199  Address Addr;
1200  if (!ARMComputeAddress(I->getOperand(1), Addr))
1201    return false;
1202
1203  if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1204    return false;
1205  return true;
1206}
1207
1208static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1209  switch (Pred) {
1210    // Needs two compares...
1211    case CmpInst::FCMP_ONE:
1212    case CmpInst::FCMP_UEQ:
1213    default:
1214      // AL is our "false" for now. The other two need more compares.
1215      return ARMCC::AL;
1216    case CmpInst::ICMP_EQ:
1217    case CmpInst::FCMP_OEQ:
1218      return ARMCC::EQ;
1219    case CmpInst::ICMP_SGT:
1220    case CmpInst::FCMP_OGT:
1221      return ARMCC::GT;
1222    case CmpInst::ICMP_SGE:
1223    case CmpInst::FCMP_OGE:
1224      return ARMCC::GE;
1225    case CmpInst::ICMP_UGT:
1226    case CmpInst::FCMP_UGT:
1227      return ARMCC::HI;
1228    case CmpInst::FCMP_OLT:
1229      return ARMCC::MI;
1230    case CmpInst::ICMP_ULE:
1231    case CmpInst::FCMP_OLE:
1232      return ARMCC::LS;
1233    case CmpInst::FCMP_ORD:
1234      return ARMCC::VC;
1235    case CmpInst::FCMP_UNO:
1236      return ARMCC::VS;
1237    case CmpInst::FCMP_UGE:
1238      return ARMCC::PL;
1239    case CmpInst::ICMP_SLT:
1240    case CmpInst::FCMP_ULT:
1241      return ARMCC::LT;
1242    case CmpInst::ICMP_SLE:
1243    case CmpInst::FCMP_ULE:
1244      return ARMCC::LE;
1245    case CmpInst::FCMP_UNE:
1246    case CmpInst::ICMP_NE:
1247      return ARMCC::NE;
1248    case CmpInst::ICMP_UGE:
1249      return ARMCC::HS;
1250    case CmpInst::ICMP_ULT:
1251      return ARMCC::LO;
1252  }
1253}
1254
1255bool ARMFastISel::SelectBranch(const Instruction *I) {
1256  const BranchInst *BI = cast<BranchInst>(I);
1257  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1258  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1259
1260  // Simple branch support.
1261
1262  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1263  // behavior.
1264  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1265    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1266
1267      // Get the compare predicate.
1268      // Try to take advantage of fallthrough opportunities.
1269      CmpInst::Predicate Predicate = CI->getPredicate();
1270      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1271        std::swap(TBB, FBB);
1272        Predicate = CmpInst::getInversePredicate(Predicate);
1273      }
1274
1275      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1276
1277      // We may not handle every CC for now.
1278      if (ARMPred == ARMCC::AL) return false;
1279
1280      // Emit the compare.
1281      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1282        return false;
1283
1284      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1285      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1286      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1287      FastEmitBranch(FBB, DL);
1288      FuncInfo.MBB->addSuccessor(TBB);
1289      return true;
1290    }
1291  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1292    MVT SourceVT;
1293    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1294        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1295      unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1296      unsigned OpReg = getRegForValue(TI->getOperand(0));
1297      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1298                              TII.get(TstOpc))
1299                      .addReg(OpReg).addImm(1));
1300
1301      unsigned CCMode = ARMCC::NE;
1302      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1303        std::swap(TBB, FBB);
1304        CCMode = ARMCC::EQ;
1305      }
1306
1307      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1308      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1309      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1310
1311      FastEmitBranch(FBB, DL);
1312      FuncInfo.MBB->addSuccessor(TBB);
1313      return true;
1314    }
1315  } else if (const ConstantInt *CI =
1316             dyn_cast<ConstantInt>(BI->getCondition())) {
1317    uint64_t Imm = CI->getZExtValue();
1318    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1319    FastEmitBranch(Target, DL);
1320    return true;
1321  }
1322
1323  unsigned CmpReg = getRegForValue(BI->getCondition());
1324  if (CmpReg == 0) return false;
1325
1326  // We've been divorced from our compare!  Our block was split, and
1327  // now our compare lives in a predecessor block.  We musn't
1328  // re-compare here, as the children of the compare aren't guaranteed
1329  // live across the block boundary (we *could* check for this).
1330  // Regardless, the compare has been done in the predecessor block,
1331  // and it left a value for us in a virtual register.  Ergo, we test
1332  // the one-bit value left in the virtual register.
1333  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1334  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1335                  .addReg(CmpReg).addImm(1));
1336
1337  unsigned CCMode = ARMCC::NE;
1338  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1339    std::swap(TBB, FBB);
1340    CCMode = ARMCC::EQ;
1341  }
1342
1343  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1344  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1345                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1346  FastEmitBranch(FBB, DL);
1347  FuncInfo.MBB->addSuccessor(TBB);
1348  return true;
1349}
1350
1351bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1352  unsigned AddrReg = getRegForValue(I->getOperand(0));
1353  if (AddrReg == 0) return false;
1354
1355  unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1356  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
1357                  .addReg(AddrReg));
1358  return true;
1359}
1360
1361bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1362                             bool isZExt) {
1363  Type *Ty = Src1Value->getType();
1364  EVT SrcVT = TLI.getValueType(Ty, true);
1365  if (!SrcVT.isSimple()) return false;
1366
1367  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1368  if (isFloat && !Subtarget->hasVFP2())
1369    return false;
1370
1371  // Check to see if the 2nd operand is a constant that we can encode directly
1372  // in the compare.
1373  int Imm = 0;
1374  bool UseImm = false;
1375  bool isNegativeImm = false;
1376  // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1377  // Thus, Src1Value may be a ConstantInt, but we're missing it.
1378  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1379    if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1380        SrcVT == MVT::i1) {
1381      const APInt &CIVal = ConstInt->getValue();
1382      Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1383      // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1384      // then a cmn, because there is no way to represent 2147483648 as a
1385      // signed 32-bit int.
1386      if (Imm < 0 && Imm != (int)0x80000000) {
1387        isNegativeImm = true;
1388        Imm = -Imm;
1389      }
1390      UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1391        (ARM_AM::getSOImmVal(Imm) != -1);
1392    }
1393  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1394    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1395      if (ConstFP->isZero() && !ConstFP->isNegative())
1396        UseImm = true;
1397  }
1398
1399  unsigned CmpOpc;
1400  bool isICmp = true;
1401  bool needsExt = false;
1402  switch (SrcVT.getSimpleVT().SimpleTy) {
1403    default: return false;
1404    // TODO: Verify compares.
1405    case MVT::f32:
1406      isICmp = false;
1407      CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1408      break;
1409    case MVT::f64:
1410      isICmp = false;
1411      CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1412      break;
1413    case MVT::i1:
1414    case MVT::i8:
1415    case MVT::i16:
1416      needsExt = true;
1417    // Intentional fall-through.
1418    case MVT::i32:
1419      if (isThumb2) {
1420        if (!UseImm)
1421          CmpOpc = ARM::t2CMPrr;
1422        else
1423          CmpOpc = isNegativeImm ? ARM::t2CMNzri : ARM::t2CMPri;
1424      } else {
1425        if (!UseImm)
1426          CmpOpc = ARM::CMPrr;
1427        else
1428          CmpOpc = isNegativeImm ? ARM::CMNzri : ARM::CMPri;
1429      }
1430      break;
1431  }
1432
1433  unsigned SrcReg1 = getRegForValue(Src1Value);
1434  if (SrcReg1 == 0) return false;
1435
1436  unsigned SrcReg2 = 0;
1437  if (!UseImm) {
1438    SrcReg2 = getRegForValue(Src2Value);
1439    if (SrcReg2 == 0) return false;
1440  }
1441
1442  // We have i1, i8, or i16, we need to either zero extend or sign extend.
1443  if (needsExt) {
1444    SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1445    if (SrcReg1 == 0) return false;
1446    if (!UseImm) {
1447      SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1448      if (SrcReg2 == 0) return false;
1449    }
1450  }
1451
1452  if (!UseImm) {
1453    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1454                            TII.get(CmpOpc))
1455                    .addReg(SrcReg1).addReg(SrcReg2));
1456  } else {
1457    MachineInstrBuilder MIB;
1458    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1459      .addReg(SrcReg1);
1460
1461    // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1462    if (isICmp)
1463      MIB.addImm(Imm);
1464    AddOptionalDefs(MIB);
1465  }
1466
1467  // For floating point we need to move the result to a comparison register
1468  // that we can then use for branches.
1469  if (Ty->isFloatTy() || Ty->isDoubleTy())
1470    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1471                            TII.get(ARM::FMSTAT)));
1472  return true;
1473}
1474
1475bool ARMFastISel::SelectCmp(const Instruction *I) {
1476  const CmpInst *CI = cast<CmpInst>(I);
1477
1478  // Get the compare predicate.
1479  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1480
1481  // We may not handle every CC for now.
1482  if (ARMPred == ARMCC::AL) return false;
1483
1484  // Emit the compare.
1485  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1486    return false;
1487
1488  // Now set a register based on the comparison. Explicitly set the predicates
1489  // here.
1490  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1491  const TargetRegisterClass *RC = isThumb2 ?
1492    (const TargetRegisterClass*)&ARM::rGPRRegClass :
1493    (const TargetRegisterClass*)&ARM::GPRRegClass;
1494  unsigned DestReg = createResultReg(RC);
1495  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1496  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1497  // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1498  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1499          .addReg(ZeroReg).addImm(1)
1500          .addImm(ARMPred).addReg(ARM::CPSR);
1501
1502  UpdateValueMap(I, DestReg);
1503  return true;
1504}
1505
1506bool ARMFastISel::SelectFPExt(const Instruction *I) {
1507  // Make sure we have VFP and that we're extending float to double.
1508  if (!Subtarget->hasVFP2()) return false;
1509
1510  Value *V = I->getOperand(0);
1511  if (!I->getType()->isDoubleTy() ||
1512      !V->getType()->isFloatTy()) return false;
1513
1514  unsigned Op = getRegForValue(V);
1515  if (Op == 0) return false;
1516
1517  unsigned Result = createResultReg(&ARM::DPRRegClass);
1518  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1519                          TII.get(ARM::VCVTDS), Result)
1520                  .addReg(Op));
1521  UpdateValueMap(I, Result);
1522  return true;
1523}
1524
1525bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1526  // Make sure we have VFP and that we're truncating double to float.
1527  if (!Subtarget->hasVFP2()) return false;
1528
1529  Value *V = I->getOperand(0);
1530  if (!(I->getType()->isFloatTy() &&
1531        V->getType()->isDoubleTy())) return false;
1532
1533  unsigned Op = getRegForValue(V);
1534  if (Op == 0) return false;
1535
1536  unsigned Result = createResultReg(&ARM::SPRRegClass);
1537  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1538                          TII.get(ARM::VCVTSD), Result)
1539                  .addReg(Op));
1540  UpdateValueMap(I, Result);
1541  return true;
1542}
1543
1544bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1545  // Make sure we have VFP.
1546  if (!Subtarget->hasVFP2()) return false;
1547
1548  MVT DstVT;
1549  Type *Ty = I->getType();
1550  if (!isTypeLegal(Ty, DstVT))
1551    return false;
1552
1553  Value *Src = I->getOperand(0);
1554  EVT SrcVT = TLI.getValueType(Src->getType(), true);
1555  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1556    return false;
1557
1558  unsigned SrcReg = getRegForValue(Src);
1559  if (SrcReg == 0) return false;
1560
1561  // Handle sign-extension.
1562  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1563    EVT DestVT = MVT::i32;
1564    SrcReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT,
1565                                       /*isZExt*/!isSigned);
1566    if (SrcReg == 0) return false;
1567  }
1568
1569  // The conversion routine works on fp-reg to fp-reg and the operand above
1570  // was an integer, move it to the fp registers if possible.
1571  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1572  if (FP == 0) return false;
1573
1574  unsigned Opc;
1575  if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1576  else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1577  else return false;
1578
1579  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1580  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1581                          ResultReg)
1582                  .addReg(FP));
1583  UpdateValueMap(I, ResultReg);
1584  return true;
1585}
1586
1587bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1588  // Make sure we have VFP.
1589  if (!Subtarget->hasVFP2()) return false;
1590
1591  MVT DstVT;
1592  Type *RetTy = I->getType();
1593  if (!isTypeLegal(RetTy, DstVT))
1594    return false;
1595
1596  unsigned Op = getRegForValue(I->getOperand(0));
1597  if (Op == 0) return false;
1598
1599  unsigned Opc;
1600  Type *OpTy = I->getOperand(0)->getType();
1601  if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1602  else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1603  else return false;
1604
1605  // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1606  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1607  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1608                          ResultReg)
1609                  .addReg(Op));
1610
1611  // This result needs to be in an integer register, but the conversion only
1612  // takes place in fp-regs.
1613  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1614  if (IntReg == 0) return false;
1615
1616  UpdateValueMap(I, IntReg);
1617  return true;
1618}
1619
1620bool ARMFastISel::SelectSelect(const Instruction *I) {
1621  MVT VT;
1622  if (!isTypeLegal(I->getType(), VT))
1623    return false;
1624
1625  // Things need to be register sized for register moves.
1626  if (VT != MVT::i32) return false;
1627  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1628
1629  unsigned CondReg = getRegForValue(I->getOperand(0));
1630  if (CondReg == 0) return false;
1631  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1632  if (Op1Reg == 0) return false;
1633
1634  // Check to see if we can use an immediate in the conditional move.
1635  int Imm = 0;
1636  bool UseImm = false;
1637  bool isNegativeImm = false;
1638  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1639    assert (VT == MVT::i32 && "Expecting an i32.");
1640    Imm = (int)ConstInt->getValue().getZExtValue();
1641    if (Imm < 0) {
1642      isNegativeImm = true;
1643      Imm = ~Imm;
1644    }
1645    UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1646      (ARM_AM::getSOImmVal(Imm) != -1);
1647  }
1648
1649  unsigned Op2Reg = 0;
1650  if (!UseImm) {
1651    Op2Reg = getRegForValue(I->getOperand(2));
1652    if (Op2Reg == 0) return false;
1653  }
1654
1655  unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1656  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1657                  .addReg(CondReg).addImm(0));
1658
1659  unsigned MovCCOpc;
1660  if (!UseImm) {
1661    MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1662  } else {
1663    if (!isNegativeImm) {
1664      MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1665    } else {
1666      MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1667    }
1668  }
1669  unsigned ResultReg = createResultReg(RC);
1670  if (!UseImm)
1671    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1672    .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
1673  else
1674    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1675    .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
1676  UpdateValueMap(I, ResultReg);
1677  return true;
1678}
1679
1680bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1681  MVT VT;
1682  Type *Ty = I->getType();
1683  if (!isTypeLegal(Ty, VT))
1684    return false;
1685
1686  // If we have integer div support we should have selected this automagically.
1687  // In case we have a real miss go ahead and return false and we'll pick
1688  // it up later.
1689  if (Subtarget->hasDivide()) return false;
1690
1691  // Otherwise emit a libcall.
1692  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1693  if (VT == MVT::i8)
1694    LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1695  else if (VT == MVT::i16)
1696    LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1697  else if (VT == MVT::i32)
1698    LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1699  else if (VT == MVT::i64)
1700    LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1701  else if (VT == MVT::i128)
1702    LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1703  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1704
1705  return ARMEmitLibcall(I, LC);
1706}
1707
1708bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1709  MVT VT;
1710  Type *Ty = I->getType();
1711  if (!isTypeLegal(Ty, VT))
1712    return false;
1713
1714  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1715  if (VT == MVT::i8)
1716    LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1717  else if (VT == MVT::i16)
1718    LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1719  else if (VT == MVT::i32)
1720    LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1721  else if (VT == MVT::i64)
1722    LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1723  else if (VT == MVT::i128)
1724    LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1725  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1726
1727  return ARMEmitLibcall(I, LC);
1728}
1729
1730bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1731  EVT DestVT  = TLI.getValueType(I->getType(), true);
1732
1733  // We can get here in the case when we have a binary operation on a non-legal
1734  // type and the target independent selector doesn't know how to handle it.
1735  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1736    return false;
1737
1738  unsigned Opc;
1739  switch (ISDOpcode) {
1740    default: return false;
1741    case ISD::ADD:
1742      Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1743      break;
1744    case ISD::OR:
1745      Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1746      break;
1747    case ISD::SUB:
1748      Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1749      break;
1750  }
1751
1752  unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1753  if (SrcReg1 == 0) return false;
1754
1755  // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1756  // in the instruction, rather then materializing the value in a register.
1757  unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1758  if (SrcReg2 == 0) return false;
1759
1760  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1761  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1762                          TII.get(Opc), ResultReg)
1763                  .addReg(SrcReg1).addReg(SrcReg2));
1764  UpdateValueMap(I, ResultReg);
1765  return true;
1766}
1767
1768bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1769  EVT VT  = TLI.getValueType(I->getType(), true);
1770
1771  // We can get here in the case when we want to use NEON for our fp
1772  // operations, but can't figure out how to. Just use the vfp instructions
1773  // if we have them.
1774  // FIXME: It'd be nice to use NEON instructions.
1775  Type *Ty = I->getType();
1776  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1777  if (isFloat && !Subtarget->hasVFP2())
1778    return false;
1779
1780  unsigned Opc;
1781  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1782  switch (ISDOpcode) {
1783    default: return false;
1784    case ISD::FADD:
1785      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1786      break;
1787    case ISD::FSUB:
1788      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1789      break;
1790    case ISD::FMUL:
1791      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1792      break;
1793  }
1794  unsigned Op1 = getRegForValue(I->getOperand(0));
1795  if (Op1 == 0) return false;
1796
1797  unsigned Op2 = getRegForValue(I->getOperand(1));
1798  if (Op2 == 0) return false;
1799
1800  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1801  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1802                          TII.get(Opc), ResultReg)
1803                  .addReg(Op1).addReg(Op2));
1804  UpdateValueMap(I, ResultReg);
1805  return true;
1806}
1807
1808// Call Handling Code
1809
1810// This is largely taken directly from CCAssignFnForNode - we don't support
1811// varargs in FastISel so that part has been removed.
1812// TODO: We may not support all of this.
1813CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1814  switch (CC) {
1815  default:
1816    llvm_unreachable("Unsupported calling convention");
1817  case CallingConv::Fast:
1818    // Ignore fastcc. Silence compiler warnings.
1819    (void)RetFastCC_ARM_APCS;
1820    (void)FastCC_ARM_APCS;
1821    // Fallthrough
1822  case CallingConv::C:
1823    // Use target triple & subtarget features to do actual dispatch.
1824    if (Subtarget->isAAPCS_ABI()) {
1825      if (Subtarget->hasVFP2() &&
1826          TM.Options.FloatABIType == FloatABI::Hard)
1827        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1828      else
1829        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1830    } else
1831        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1832  case CallingConv::ARM_AAPCS_VFP:
1833    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1834  case CallingConv::ARM_AAPCS:
1835    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1836  case CallingConv::ARM_APCS:
1837    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1838  }
1839}
1840
1841bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1842                                  SmallVectorImpl<unsigned> &ArgRegs,
1843                                  SmallVectorImpl<MVT> &ArgVTs,
1844                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1845                                  SmallVectorImpl<unsigned> &RegArgs,
1846                                  CallingConv::ID CC,
1847                                  unsigned &NumBytes) {
1848  SmallVector<CCValAssign, 16> ArgLocs;
1849  CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
1850  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1851
1852  // Check that we can handle all of the arguments. If we can't, then bail out
1853  // now before we add code to the MBB.
1854  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1855    CCValAssign &VA = ArgLocs[i];
1856    MVT ArgVT = ArgVTs[VA.getValNo()];
1857
1858    // We don't handle NEON/vector parameters yet.
1859    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1860      return false;
1861
1862    // Now copy/store arg to correct locations.
1863    if (VA.isRegLoc() && !VA.needsCustom()) {
1864      continue;
1865    } else if (VA.needsCustom()) {
1866      // TODO: We need custom lowering for vector (v2f64) args.
1867      if (VA.getLocVT() != MVT::f64 ||
1868          // TODO: Only handle register args for now.
1869          !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1870        return false;
1871    } else {
1872      switch (static_cast<EVT>(ArgVT).getSimpleVT().SimpleTy) {
1873      default:
1874        return false;
1875      case MVT::i1:
1876      case MVT::i8:
1877      case MVT::i16:
1878      case MVT::i32:
1879        break;
1880      case MVT::f32:
1881        if (!Subtarget->hasVFP2())
1882          return false;
1883        break;
1884      case MVT::f64:
1885        if (!Subtarget->hasVFP2())
1886          return false;
1887        break;
1888      }
1889    }
1890  }
1891
1892  // At the point, we are able to handle the call's arguments in fast isel.
1893
1894  // Get a count of how many bytes are to be pushed on the stack.
1895  NumBytes = CCInfo.getNextStackOffset();
1896
1897  // Issue CALLSEQ_START
1898  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1899  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1900                          TII.get(AdjStackDown))
1901                  .addImm(NumBytes));
1902
1903  // Process the args.
1904  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1905    CCValAssign &VA = ArgLocs[i];
1906    unsigned Arg = ArgRegs[VA.getValNo()];
1907    MVT ArgVT = ArgVTs[VA.getValNo()];
1908
1909    assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1910           "We don't handle NEON/vector parameters yet.");
1911
1912    // Handle arg promotion, etc.
1913    switch (VA.getLocInfo()) {
1914      case CCValAssign::Full: break;
1915      case CCValAssign::SExt: {
1916        MVT DestVT = VA.getLocVT();
1917        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1918        assert (Arg != 0 && "Failed to emit a sext");
1919        ArgVT = DestVT;
1920        break;
1921      }
1922      case CCValAssign::AExt:
1923        // Intentional fall-through.  Handle AExt and ZExt.
1924      case CCValAssign::ZExt: {
1925        MVT DestVT = VA.getLocVT();
1926        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1927        assert (Arg != 0 && "Failed to emit a sext");
1928        ArgVT = DestVT;
1929        break;
1930      }
1931      case CCValAssign::BCvt: {
1932        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1933                                 /*TODO: Kill=*/false);
1934        assert(BC != 0 && "Failed to emit a bitcast!");
1935        Arg = BC;
1936        ArgVT = VA.getLocVT();
1937        break;
1938      }
1939      default: llvm_unreachable("Unknown arg promotion!");
1940    }
1941
1942    // Now copy/store arg to correct locations.
1943    if (VA.isRegLoc() && !VA.needsCustom()) {
1944      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1945              VA.getLocReg())
1946        .addReg(Arg);
1947      RegArgs.push_back(VA.getLocReg());
1948    } else if (VA.needsCustom()) {
1949      // TODO: We need custom lowering for vector (v2f64) args.
1950      assert(VA.getLocVT() == MVT::f64 &&
1951             "Custom lowering for v2f64 args not available");
1952
1953      CCValAssign &NextVA = ArgLocs[++i];
1954
1955      assert(VA.isRegLoc() && NextVA.isRegLoc() &&
1956             "We only handle register args!");
1957
1958      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1959                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1960                      .addReg(NextVA.getLocReg(), RegState::Define)
1961                      .addReg(Arg));
1962      RegArgs.push_back(VA.getLocReg());
1963      RegArgs.push_back(NextVA.getLocReg());
1964    } else {
1965      assert(VA.isMemLoc());
1966      // Need to store on the stack.
1967      Address Addr;
1968      Addr.BaseType = Address::RegBase;
1969      Addr.Base.Reg = ARM::SP;
1970      Addr.Offset = VA.getLocMemOffset();
1971
1972      bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
1973      assert(EmitRet && "Could not emit a store for argument!");
1974    }
1975  }
1976
1977  return true;
1978}
1979
1980bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1981                             const Instruction *I, CallingConv::ID CC,
1982                             unsigned &NumBytes) {
1983  // Issue CALLSEQ_END
1984  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1985  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1986                          TII.get(AdjStackUp))
1987                  .addImm(NumBytes).addImm(0));
1988
1989  // Now the return value.
1990  if (RetVT != MVT::isVoid) {
1991    SmallVector<CCValAssign, 16> RVLocs;
1992    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
1993    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1994
1995    // Copy all of the result registers out of their specified physreg.
1996    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1997      // For this move we copy into two registers and then move into the
1998      // double fp reg we want.
1999      EVT DestVT = RVLocs[0].getValVT();
2000      const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2001      unsigned ResultReg = createResultReg(DstRC);
2002      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2003                              TII.get(ARM::VMOVDRR), ResultReg)
2004                      .addReg(RVLocs[0].getLocReg())
2005                      .addReg(RVLocs[1].getLocReg()));
2006
2007      UsedRegs.push_back(RVLocs[0].getLocReg());
2008      UsedRegs.push_back(RVLocs[1].getLocReg());
2009
2010      // Finally update the result.
2011      UpdateValueMap(I, ResultReg);
2012    } else {
2013      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2014      EVT CopyVT = RVLocs[0].getValVT();
2015
2016      // Special handling for extended integers.
2017      if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2018        CopyVT = MVT::i32;
2019
2020      const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2021
2022      unsigned ResultReg = createResultReg(DstRC);
2023      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2024              ResultReg).addReg(RVLocs[0].getLocReg());
2025      UsedRegs.push_back(RVLocs[0].getLocReg());
2026
2027      // Finally update the result.
2028      UpdateValueMap(I, ResultReg);
2029    }
2030  }
2031
2032  return true;
2033}
2034
2035bool ARMFastISel::SelectRet(const Instruction *I) {
2036  const ReturnInst *Ret = cast<ReturnInst>(I);
2037  const Function &F = *I->getParent()->getParent();
2038
2039  if (!FuncInfo.CanLowerReturn)
2040    return false;
2041
2042  if (F.isVarArg())
2043    return false;
2044
2045  CallingConv::ID CC = F.getCallingConv();
2046  if (Ret->getNumOperands() > 0) {
2047    SmallVector<ISD::OutputArg, 4> Outs;
2048    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
2049                  Outs, TLI);
2050
2051    // Analyze operands of the call, assigning locations to each operand.
2052    SmallVector<CCValAssign, 16> ValLocs;
2053    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
2054    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
2055
2056    const Value *RV = Ret->getOperand(0);
2057    unsigned Reg = getRegForValue(RV);
2058    if (Reg == 0)
2059      return false;
2060
2061    // Only handle a single return value for now.
2062    if (ValLocs.size() != 1)
2063      return false;
2064
2065    CCValAssign &VA = ValLocs[0];
2066
2067    // Don't bother handling odd stuff for now.
2068    if (VA.getLocInfo() != CCValAssign::Full)
2069      return false;
2070    // Only handle register returns for now.
2071    if (!VA.isRegLoc())
2072      return false;
2073
2074    unsigned SrcReg = Reg + VA.getValNo();
2075    EVT RVVT = TLI.getValueType(RV->getType());
2076    EVT DestVT = VA.getValVT();
2077    // Special handling for extended integers.
2078    if (RVVT != DestVT) {
2079      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2080        return false;
2081
2082      assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2083
2084      // Perform extension if flagged as either zext or sext.  Otherwise, do
2085      // nothing.
2086      if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2087        SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2088        if (SrcReg == 0) return false;
2089      }
2090    }
2091
2092    // Make the copy.
2093    unsigned DstReg = VA.getLocReg();
2094    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2095    // Avoid a cross-class copy. This is very unlikely.
2096    if (!SrcRC->contains(DstReg))
2097      return false;
2098    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2099            DstReg).addReg(SrcReg);
2100
2101    // Mark the register as live out of the function.
2102    MRI.addLiveOut(VA.getLocReg());
2103  }
2104
2105  unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2106  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2107                          TII.get(RetOpc)));
2108  return true;
2109}
2110
2111unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
2112  return isThumb2 ? ARM::tBL : ARM::BL;
2113}
2114
2115// A quick function that will emit a call for a named libcall in F with the
2116// vector of passed arguments for the Instruction in I. We can assume that we
2117// can emit a call for any libcall we can produce. This is an abridged version
2118// of the full call infrastructure since we won't need to worry about things
2119// like computed function pointers or strange arguments at call sites.
2120// TODO: Try to unify this and the normal call bits for ARM, then try to unify
2121// with X86.
2122bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2123  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2124
2125  // Handle *simple* calls for now.
2126  Type *RetTy = I->getType();
2127  MVT RetVT;
2128  if (RetTy->isVoidTy())
2129    RetVT = MVT::isVoid;
2130  else if (!isTypeLegal(RetTy, RetVT))
2131    return false;
2132
2133  // TODO: For now if we have long calls specified we don't handle the call.
2134  if (EnableARMLongCalls) return false;
2135
2136  // Can't handle non-double multi-reg retvals.
2137  if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2138    SmallVector<CCValAssign, 16> RVLocs;
2139    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
2140    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
2141    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2142      return false;
2143  }
2144
2145  // Set up the argument vectors.
2146  SmallVector<Value*, 8> Args;
2147  SmallVector<unsigned, 8> ArgRegs;
2148  SmallVector<MVT, 8> ArgVTs;
2149  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2150  Args.reserve(I->getNumOperands());
2151  ArgRegs.reserve(I->getNumOperands());
2152  ArgVTs.reserve(I->getNumOperands());
2153  ArgFlags.reserve(I->getNumOperands());
2154  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2155    Value *Op = I->getOperand(i);
2156    unsigned Arg = getRegForValue(Op);
2157    if (Arg == 0) return false;
2158
2159    Type *ArgTy = Op->getType();
2160    MVT ArgVT;
2161    if (!isTypeLegal(ArgTy, ArgVT)) return false;
2162
2163    ISD::ArgFlagsTy Flags;
2164    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2165    Flags.setOrigAlign(OriginalAlignment);
2166
2167    Args.push_back(Op);
2168    ArgRegs.push_back(Arg);
2169    ArgVTs.push_back(ArgVT);
2170    ArgFlags.push_back(Flags);
2171  }
2172
2173  // Handle the arguments now that we've gotten them.
2174  SmallVector<unsigned, 4> RegArgs;
2175  unsigned NumBytes;
2176  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
2177    return false;
2178
2179  // Issue the call.
2180  MachineInstrBuilder MIB;
2181  unsigned CallOpc = ARMSelectCallOp(NULL);
2182  if (isThumb2)
2183    // Explicitly adding the predicate here.
2184    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2185                         TII.get(CallOpc)))
2186                         .addExternalSymbol(TLI.getLibcallName(Call));
2187  else
2188    // Explicitly adding the predicate here.
2189    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2190                         TII.get(CallOpc))
2191          .addExternalSymbol(TLI.getLibcallName(Call)));
2192
2193  // Add implicit physical register uses to the call.
2194  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2195    MIB.addReg(RegArgs[i]);
2196
2197  // Add a register mask with the call-preserved registers.
2198  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2199  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2200
2201  // Finish off the call including any return values.
2202  SmallVector<unsigned, 4> UsedRegs;
2203  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
2204
2205  // Set all unused physreg defs as dead.
2206  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2207
2208  return true;
2209}
2210
2211bool ARMFastISel::SelectCall(const Instruction *I,
2212                             const char *IntrMemName = 0) {
2213  const CallInst *CI = cast<CallInst>(I);
2214  const Value *Callee = CI->getCalledValue();
2215
2216  // Can't handle inline asm.
2217  if (isa<InlineAsm>(Callee)) return false;
2218
2219  // Only handle global variable Callees.
2220  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2221  if (!GV)
2222    return false;
2223
2224  // Check the calling convention.
2225  ImmutableCallSite CS(CI);
2226  CallingConv::ID CC = CS.getCallingConv();
2227
2228  // TODO: Avoid some calling conventions?
2229
2230  // Let SDISel handle vararg functions.
2231  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2232  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2233  if (FTy->isVarArg())
2234    return false;
2235
2236  // Handle *simple* calls for now.
2237  Type *RetTy = I->getType();
2238  MVT RetVT;
2239  if (RetTy->isVoidTy())
2240    RetVT = MVT::isVoid;
2241  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2242           RetVT != MVT::i8  && RetVT != MVT::i1)
2243    return false;
2244
2245  // TODO: For now if we have long calls specified we don't handle the call.
2246  if (EnableARMLongCalls) return false;
2247
2248  // Can't handle non-double multi-reg retvals.
2249  if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2250      RetVT != MVT::i16 && RetVT != MVT::i32) {
2251    SmallVector<CCValAssign, 16> RVLocs;
2252    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
2253    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
2254    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2255      return false;
2256  }
2257
2258  // Set up the argument vectors.
2259  SmallVector<Value*, 8> Args;
2260  SmallVector<unsigned, 8> ArgRegs;
2261  SmallVector<MVT, 8> ArgVTs;
2262  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2263  unsigned arg_size = CS.arg_size();
2264  Args.reserve(arg_size);
2265  ArgRegs.reserve(arg_size);
2266  ArgVTs.reserve(arg_size);
2267  ArgFlags.reserve(arg_size);
2268  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2269       i != e; ++i) {
2270    // If we're lowering a memory intrinsic instead of a regular call, skip the
2271    // last two arguments, which shouldn't be passed to the underlying function.
2272    if (IntrMemName && e-i <= 2)
2273      break;
2274
2275    ISD::ArgFlagsTy Flags;
2276    unsigned AttrInd = i - CS.arg_begin() + 1;
2277    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2278      Flags.setSExt();
2279    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2280      Flags.setZExt();
2281
2282    // FIXME: Only handle *easy* calls for now.
2283    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2284        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2285        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2286        CS.paramHasAttr(AttrInd, Attribute::ByVal))
2287      return false;
2288
2289    Type *ArgTy = (*i)->getType();
2290    MVT ArgVT;
2291    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2292        ArgVT != MVT::i1)
2293      return false;
2294
2295    unsigned Arg = getRegForValue(*i);
2296    if (Arg == 0)
2297      return false;
2298
2299    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2300    Flags.setOrigAlign(OriginalAlignment);
2301
2302    Args.push_back(*i);
2303    ArgRegs.push_back(Arg);
2304    ArgVTs.push_back(ArgVT);
2305    ArgFlags.push_back(Flags);
2306  }
2307
2308  // Handle the arguments now that we've gotten them.
2309  SmallVector<unsigned, 4> RegArgs;
2310  unsigned NumBytes;
2311  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
2312    return false;
2313
2314  // Issue the call.
2315  MachineInstrBuilder MIB;
2316  unsigned CallOpc = ARMSelectCallOp(GV);
2317  // Explicitly adding the predicate here.
2318  if(isThumb2) {
2319    // Explicitly adding the predicate here.
2320    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2321                                 TII.get(CallOpc)));
2322    if (!IntrMemName)
2323      MIB.addGlobalAddress(GV, 0, 0);
2324    else
2325      MIB.addExternalSymbol(IntrMemName, 0);
2326  } else {
2327    if (!IntrMemName)
2328      // Explicitly adding the predicate here.
2329      MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2330                                   TII.get(CallOpc))
2331            .addGlobalAddress(GV, 0, 0));
2332    else
2333      MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2334                                   TII.get(CallOpc))
2335            .addExternalSymbol(IntrMemName, 0));
2336  }
2337
2338  // Add implicit physical register uses to the call.
2339  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2340    MIB.addReg(RegArgs[i]);
2341
2342  // Add a register mask with the call-preserved registers.
2343  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2344  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2345
2346  // Finish off the call including any return values.
2347  SmallVector<unsigned, 4> UsedRegs;
2348  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
2349
2350  // Set all unused physreg defs as dead.
2351  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2352
2353  return true;
2354}
2355
2356bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2357  return Len <= 16;
2358}
2359
2360bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2361                                        uint64_t Len) {
2362  // Make sure we don't bloat code by inlining very large memcpy's.
2363  if (!ARMIsMemCpySmall(Len))
2364    return false;
2365
2366  // We don't care about alignment here since we just emit integer accesses.
2367  while (Len) {
2368    MVT VT;
2369    if (Len >= 4)
2370      VT = MVT::i32;
2371    else if (Len >= 2)
2372      VT = MVT::i16;
2373    else {
2374      assert(Len == 1);
2375      VT = MVT::i8;
2376    }
2377
2378    bool RV;
2379    unsigned ResultReg;
2380    RV = ARMEmitLoad(VT, ResultReg, Src);
2381    assert (RV == true && "Should be able to handle this load.");
2382    RV = ARMEmitStore(VT, ResultReg, Dest);
2383    assert (RV == true && "Should be able to handle this store.");
2384    (void)RV;
2385
2386    unsigned Size = VT.getSizeInBits()/8;
2387    Len -= Size;
2388    Dest.Offset += Size;
2389    Src.Offset += Size;
2390  }
2391
2392  return true;
2393}
2394
2395bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2396  // FIXME: Handle more intrinsics.
2397  switch (I.getIntrinsicID()) {
2398  default: return false;
2399  case Intrinsic::memcpy:
2400  case Intrinsic::memmove: {
2401    const MemTransferInst &MTI = cast<MemTransferInst>(I);
2402    // Don't handle volatile.
2403    if (MTI.isVolatile())
2404      return false;
2405
2406    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2407    // we would emit dead code because we don't currently handle memmoves.
2408    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2409    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2410      // Small memcpy's are common enough that we want to do them without a call
2411      // if possible.
2412      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2413      if (ARMIsMemCpySmall(Len)) {
2414        Address Dest, Src;
2415        if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2416            !ARMComputeAddress(MTI.getRawSource(), Src))
2417          return false;
2418        if (ARMTryEmitSmallMemCpy(Dest, Src, Len))
2419          return true;
2420      }
2421    }
2422
2423    if (!MTI.getLength()->getType()->isIntegerTy(32))
2424      return false;
2425
2426    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2427      return false;
2428
2429    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2430    return SelectCall(&I, IntrMemName);
2431  }
2432  case Intrinsic::memset: {
2433    const MemSetInst &MSI = cast<MemSetInst>(I);
2434    // Don't handle volatile.
2435    if (MSI.isVolatile())
2436      return false;
2437
2438    if (!MSI.getLength()->getType()->isIntegerTy(32))
2439      return false;
2440
2441    if (MSI.getDestAddressSpace() > 255)
2442      return false;
2443
2444    return SelectCall(&I, "memset");
2445  }
2446  }
2447}
2448
2449bool ARMFastISel::SelectTrunc(const Instruction *I) {
2450  // The high bits for a type smaller than the register size are assumed to be
2451  // undefined.
2452  Value *Op = I->getOperand(0);
2453
2454  EVT SrcVT, DestVT;
2455  SrcVT = TLI.getValueType(Op->getType(), true);
2456  DestVT = TLI.getValueType(I->getType(), true);
2457
2458  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2459    return false;
2460  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2461    return false;
2462
2463  unsigned SrcReg = getRegForValue(Op);
2464  if (!SrcReg) return false;
2465
2466  // Because the high bits are undefined, a truncate doesn't generate
2467  // any code.
2468  UpdateValueMap(I, SrcReg);
2469  return true;
2470}
2471
2472unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT,
2473                                    bool isZExt) {
2474  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2475    return 0;
2476
2477  unsigned Opc;
2478  bool isBoolZext = false;
2479  if (!SrcVT.isSimple()) return 0;
2480  switch (SrcVT.getSimpleVT().SimpleTy) {
2481  default: return 0;
2482  case MVT::i16:
2483    if (!Subtarget->hasV6Ops()) return 0;
2484    if (isZExt)
2485      Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH;
2486    else
2487      Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
2488    break;
2489  case MVT::i8:
2490    if (!Subtarget->hasV6Ops()) return 0;
2491    if (isZExt)
2492      Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB;
2493    else
2494      Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
2495    break;
2496  case MVT::i1:
2497    if (isZExt) {
2498      Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
2499      isBoolZext = true;
2500      break;
2501    }
2502    return 0;
2503  }
2504
2505  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2506  MachineInstrBuilder MIB;
2507  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
2508        .addReg(SrcReg);
2509  if (isBoolZext)
2510    MIB.addImm(1);
2511  else
2512    MIB.addImm(0);
2513  AddOptionalDefs(MIB);
2514  return ResultReg;
2515}
2516
2517bool ARMFastISel::SelectIntExt(const Instruction *I) {
2518  // On ARM, in general, integer casts don't involve legal types; this code
2519  // handles promotable integers.
2520  Type *DestTy = I->getType();
2521  Value *Src = I->getOperand(0);
2522  Type *SrcTy = Src->getType();
2523
2524  EVT SrcVT, DestVT;
2525  SrcVT = TLI.getValueType(SrcTy, true);
2526  DestVT = TLI.getValueType(DestTy, true);
2527
2528  bool isZExt = isa<ZExtInst>(I);
2529  unsigned SrcReg = getRegForValue(Src);
2530  if (!SrcReg) return false;
2531
2532  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2533  if (ResultReg == 0) return false;
2534  UpdateValueMap(I, ResultReg);
2535  return true;
2536}
2537
2538// TODO: SoftFP support.
2539bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2540
2541  switch (I->getOpcode()) {
2542    case Instruction::Load:
2543      return SelectLoad(I);
2544    case Instruction::Store:
2545      return SelectStore(I);
2546    case Instruction::Br:
2547      return SelectBranch(I);
2548    case Instruction::IndirectBr:
2549      return SelectIndirectBr(I);
2550    case Instruction::ICmp:
2551    case Instruction::FCmp:
2552      return SelectCmp(I);
2553    case Instruction::FPExt:
2554      return SelectFPExt(I);
2555    case Instruction::FPTrunc:
2556      return SelectFPTrunc(I);
2557    case Instruction::SIToFP:
2558      return SelectIToFP(I, /*isSigned*/ true);
2559    case Instruction::UIToFP:
2560      return SelectIToFP(I, /*isSigned*/ false);
2561    case Instruction::FPToSI:
2562      return SelectFPToI(I, /*isSigned*/ true);
2563    case Instruction::FPToUI:
2564      return SelectFPToI(I, /*isSigned*/ false);
2565    case Instruction::Add:
2566      return SelectBinaryIntOp(I, ISD::ADD);
2567    case Instruction::Or:
2568      return SelectBinaryIntOp(I, ISD::OR);
2569    case Instruction::Sub:
2570      return SelectBinaryIntOp(I, ISD::SUB);
2571    case Instruction::FAdd:
2572      return SelectBinaryFPOp(I, ISD::FADD);
2573    case Instruction::FSub:
2574      return SelectBinaryFPOp(I, ISD::FSUB);
2575    case Instruction::FMul:
2576      return SelectBinaryFPOp(I, ISD::FMUL);
2577    case Instruction::SDiv:
2578      return SelectDiv(I, /*isSigned*/ true);
2579    case Instruction::UDiv:
2580      return SelectDiv(I, /*isSigned*/ false);
2581    case Instruction::SRem:
2582      return SelectRem(I, /*isSigned*/ true);
2583    case Instruction::URem:
2584      return SelectRem(I, /*isSigned*/ false);
2585    case Instruction::Call:
2586      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2587        return SelectIntrinsicCall(*II);
2588      return SelectCall(I);
2589    case Instruction::Select:
2590      return SelectSelect(I);
2591    case Instruction::Ret:
2592      return SelectRet(I);
2593    case Instruction::Trunc:
2594      return SelectTrunc(I);
2595    case Instruction::ZExt:
2596    case Instruction::SExt:
2597      return SelectIntExt(I);
2598    default: break;
2599  }
2600  return false;
2601}
2602
2603/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
2604/// vreg is being provided by the specified load instruction.  If possible,
2605/// try to fold the load as an operand to the instruction, returning true if
2606/// successful.
2607bool ARMFastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
2608                                const LoadInst *LI) {
2609  // Verify we have a legal type before going any further.
2610  MVT VT;
2611  if (!isLoadTypeLegal(LI->getType(), VT))
2612    return false;
2613
2614  // Combine load followed by zero- or sign-extend.
2615  // ldrb r1, [r0]       ldrb r1, [r0]
2616  // uxtb r2, r1     =>
2617  // mov  r3, r2         mov  r3, r1
2618  bool isZExt = true;
2619  switch(MI->getOpcode()) {
2620    default: return false;
2621    case ARM::SXTH:
2622    case ARM::t2SXTH:
2623      isZExt = false;
2624    case ARM::UXTH:
2625    case ARM::t2UXTH:
2626      if (VT != MVT::i16)
2627        return false;
2628    break;
2629    case ARM::SXTB:
2630    case ARM::t2SXTB:
2631      isZExt = false;
2632    case ARM::UXTB:
2633    case ARM::t2UXTB:
2634      if (VT != MVT::i8)
2635        return false;
2636    break;
2637  }
2638  // See if we can handle this address.
2639  Address Addr;
2640  if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2641
2642  unsigned ResultReg = MI->getOperand(0).getReg();
2643  if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2644    return false;
2645  MI->eraseFromParent();
2646  return true;
2647}
2648
2649namespace llvm {
2650  FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
2651    // Completely untested on non-iOS.
2652    const TargetMachine &TM = funcInfo.MF->getTarget();
2653
2654    // Darwin and thumb1 only for now.
2655    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2656    if (Subtarget->isTargetIOS() && !Subtarget->isThumb1Only())
2657      return new ARMFastISel(funcInfo);
2658    return 0;
2659  }
2660}
2661