ARMFastISel.cpp revision 3574eca1b02600bac4e625297f4ecf745f4c4f32
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMTargetMachine.h"
20#include "ARMSubtarget.h"
21#include "ARMConstantPoolValue.h"
22#include "MCTargetDesc/ARMAddressingModes.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Module.h"
29#include "llvm/Operator.h"
30#include "llvm/CodeGen/Analysis.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/FunctionLoweringInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineConstantPool.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineMemOperand.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/DataLayout.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48using namespace llvm;
49
50extern cl::opt<bool> EnableARMLongCalls;
51
52namespace {
53
54  // All possible address modes, plus some.
55  typedef struct Address {
56    enum {
57      RegBase,
58      FrameIndexBase
59    } BaseType;
60
61    union {
62      unsigned Reg;
63      int FI;
64    } Base;
65
66    int Offset;
67
68    // Innocuous defaults for our address.
69    Address()
70     : BaseType(RegBase), Offset(0) {
71       Base.Reg = 0;
72     }
73  } Address;
74
75class ARMFastISel : public FastISel {
76
77  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
78  /// make the right decision when generating code for different targets.
79  const ARMSubtarget *Subtarget;
80  const TargetMachine &TM;
81  const TargetInstrInfo &TII;
82  const TargetLowering &TLI;
83  ARMFunctionInfo *AFI;
84
85  // Convenience variables to avoid some queries.
86  bool isThumb2;
87  LLVMContext *Context;
88
89  public:
90    explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
91                         const TargetLibraryInfo *libInfo)
92    : FastISel(funcInfo, libInfo),
93      TM(funcInfo.MF->getTarget()),
94      TII(*TM.getInstrInfo()),
95      TLI(*TM.getTargetLowering()) {
96      Subtarget = &TM.getSubtarget<ARMSubtarget>();
97      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
98      isThumb2 = AFI->isThumbFunction();
99      Context = &funcInfo.Fn->getContext();
100    }
101
102    // Code from FastISel.cpp.
103  private:
104    unsigned FastEmitInst_(unsigned MachineInstOpcode,
105                           const TargetRegisterClass *RC);
106    unsigned FastEmitInst_r(unsigned MachineInstOpcode,
107                            const TargetRegisterClass *RC,
108                            unsigned Op0, bool Op0IsKill);
109    unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
110                             const TargetRegisterClass *RC,
111                             unsigned Op0, bool Op0IsKill,
112                             unsigned Op1, bool Op1IsKill);
113    unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
114                              const TargetRegisterClass *RC,
115                              unsigned Op0, bool Op0IsKill,
116                              unsigned Op1, bool Op1IsKill,
117                              unsigned Op2, bool Op2IsKill);
118    unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
119                             const TargetRegisterClass *RC,
120                             unsigned Op0, bool Op0IsKill,
121                             uint64_t Imm);
122    unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
123                             const TargetRegisterClass *RC,
124                             unsigned Op0, bool Op0IsKill,
125                             const ConstantFP *FPImm);
126    unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
127                              const TargetRegisterClass *RC,
128                              unsigned Op0, bool Op0IsKill,
129                              unsigned Op1, bool Op1IsKill,
130                              uint64_t Imm);
131    unsigned FastEmitInst_i(unsigned MachineInstOpcode,
132                            const TargetRegisterClass *RC,
133                            uint64_t Imm);
134    unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
135                             const TargetRegisterClass *RC,
136                             uint64_t Imm1, uint64_t Imm2);
137
138    unsigned FastEmitInst_extractsubreg(MVT RetVT,
139                                        unsigned Op0, bool Op0IsKill,
140                                        uint32_t Idx);
141
142    // Backend specific FastISel code.
143  private:
144    virtual bool TargetSelectInstruction(const Instruction *I);
145    virtual unsigned TargetMaterializeConstant(const Constant *C);
146    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
147    virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
148                               const LoadInst *LI);
149  private:
150  #include "ARMGenFastISel.inc"
151
152    // Instruction selection routines.
153  private:
154    bool SelectLoad(const Instruction *I);
155    bool SelectStore(const Instruction *I);
156    bool SelectBranch(const Instruction *I);
157    bool SelectIndirectBr(const Instruction *I);
158    bool SelectCmp(const Instruction *I);
159    bool SelectFPExt(const Instruction *I);
160    bool SelectFPTrunc(const Instruction *I);
161    bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
162    bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
163    bool SelectIToFP(const Instruction *I, bool isSigned);
164    bool SelectFPToI(const Instruction *I, bool isSigned);
165    bool SelectDiv(const Instruction *I, bool isSigned);
166    bool SelectRem(const Instruction *I, bool isSigned);
167    bool SelectCall(const Instruction *I, const char *IntrMemName);
168    bool SelectIntrinsicCall(const IntrinsicInst &I);
169    bool SelectSelect(const Instruction *I);
170    bool SelectRet(const Instruction *I);
171    bool SelectTrunc(const Instruction *I);
172    bool SelectIntExt(const Instruction *I);
173    bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
174
175    // Utility routines.
176  private:
177    bool isTypeLegal(Type *Ty, MVT &VT);
178    bool isLoadTypeLegal(Type *Ty, MVT &VT);
179    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
180                    bool isZExt);
181    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
182                     unsigned Alignment = 0, bool isZExt = true,
183                     bool allocReg = true);
184    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
185                      unsigned Alignment = 0);
186    bool ARMComputeAddress(const Value *Obj, Address &Addr);
187    void ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3);
188    bool ARMIsMemCpySmall(uint64_t Len);
189    bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len);
190    unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt);
191    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
192    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
193    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
194    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
195    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
196    unsigned ARMSelectCallOp(bool UseReg);
197    unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, EVT VT);
198
199    // Call handling routines.
200  private:
201    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
202                                  bool Return,
203                                  bool isVarArg);
204    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
205                         SmallVectorImpl<unsigned> &ArgRegs,
206                         SmallVectorImpl<MVT> &ArgVTs,
207                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
208                         SmallVectorImpl<unsigned> &RegArgs,
209                         CallingConv::ID CC,
210                         unsigned &NumBytes,
211                         bool isVarArg);
212    unsigned getLibcallReg(const Twine &Name);
213    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
214                    const Instruction *I, CallingConv::ID CC,
215                    unsigned &NumBytes, bool isVarArg);
216    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
217
218    // OptionalDef handling routines.
219  private:
220    bool isARMNEONPred(const MachineInstr *MI);
221    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
222    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
223    void AddLoadStoreOperands(EVT VT, Address &Addr,
224                              const MachineInstrBuilder &MIB,
225                              unsigned Flags, bool useAM3);
226};
227
228} // end anonymous namespace
229
230#include "ARMGenCallingConv.inc"
231
232// DefinesOptionalPredicate - This is different from DefinesPredicate in that
233// we don't care about implicit defs here, just places we'll need to add a
234// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
235bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
236  if (!MI->hasOptionalDef())
237    return false;
238
239  // Look to see if our OptionalDef is defining CPSR or CCR.
240  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
241    const MachineOperand &MO = MI->getOperand(i);
242    if (!MO.isReg() || !MO.isDef()) continue;
243    if (MO.getReg() == ARM::CPSR)
244      *CPSR = true;
245  }
246  return true;
247}
248
249bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
250  const MCInstrDesc &MCID = MI->getDesc();
251
252  // If we're a thumb2 or not NEON function we were handled via isPredicable.
253  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
254       AFI->isThumb2Function())
255    return false;
256
257  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
258    if (MCID.OpInfo[i].isPredicate())
259      return true;
260
261  return false;
262}
263
264// If the machine is predicable go ahead and add the predicate operands, if
265// it needs default CC operands add those.
266// TODO: If we want to support thumb1 then we'll need to deal with optional
267// CPSR defs that need to be added before the remaining operands. See s_cc_out
268// for descriptions why.
269const MachineInstrBuilder &
270ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
271  MachineInstr *MI = &*MIB;
272
273  // Do we use a predicate? or...
274  // Are we NEON in ARM mode and have a predicate operand? If so, I know
275  // we're not predicable but add it anyways.
276  if (TII.isPredicable(MI) || isARMNEONPred(MI))
277    AddDefaultPred(MIB);
278
279  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
280  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
281  bool CPSR = false;
282  if (DefinesOptionalPredicate(MI, &CPSR)) {
283    if (CPSR)
284      AddDefaultT1CC(MIB);
285    else
286      AddDefaultCC(MIB);
287  }
288  return MIB;
289}
290
291unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
292                                    const TargetRegisterClass* RC) {
293  unsigned ResultReg = createResultReg(RC);
294  const MCInstrDesc &II = TII.get(MachineInstOpcode);
295
296  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
297  return ResultReg;
298}
299
300unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
301                                     const TargetRegisterClass *RC,
302                                     unsigned Op0, bool Op0IsKill) {
303  unsigned ResultReg = createResultReg(RC);
304  const MCInstrDesc &II = TII.get(MachineInstOpcode);
305
306  if (II.getNumDefs() >= 1) {
307    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
308                   .addReg(Op0, Op0IsKill * RegState::Kill));
309  } else {
310    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
311                   .addReg(Op0, Op0IsKill * RegState::Kill));
312    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
313                   TII.get(TargetOpcode::COPY), ResultReg)
314                   .addReg(II.ImplicitDefs[0]));
315  }
316  return ResultReg;
317}
318
319unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
320                                      const TargetRegisterClass *RC,
321                                      unsigned Op0, bool Op0IsKill,
322                                      unsigned Op1, bool Op1IsKill) {
323  unsigned ResultReg = createResultReg(RC);
324  const MCInstrDesc &II = TII.get(MachineInstOpcode);
325
326  if (II.getNumDefs() >= 1) {
327    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
328                   .addReg(Op0, Op0IsKill * RegState::Kill)
329                   .addReg(Op1, Op1IsKill * RegState::Kill));
330  } else {
331    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
332                   .addReg(Op0, Op0IsKill * RegState::Kill)
333                   .addReg(Op1, Op1IsKill * RegState::Kill));
334    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
335                           TII.get(TargetOpcode::COPY), ResultReg)
336                   .addReg(II.ImplicitDefs[0]));
337  }
338  return ResultReg;
339}
340
341unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
342                                       const TargetRegisterClass *RC,
343                                       unsigned Op0, bool Op0IsKill,
344                                       unsigned Op1, bool Op1IsKill,
345                                       unsigned Op2, bool Op2IsKill) {
346  unsigned ResultReg = createResultReg(RC);
347  const MCInstrDesc &II = TII.get(MachineInstOpcode);
348
349  if (II.getNumDefs() >= 1) {
350    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
351                   .addReg(Op0, Op0IsKill * RegState::Kill)
352                   .addReg(Op1, Op1IsKill * RegState::Kill)
353                   .addReg(Op2, Op2IsKill * RegState::Kill));
354  } else {
355    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
356                   .addReg(Op0, Op0IsKill * RegState::Kill)
357                   .addReg(Op1, Op1IsKill * RegState::Kill)
358                   .addReg(Op2, Op2IsKill * RegState::Kill));
359    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
360                           TII.get(TargetOpcode::COPY), ResultReg)
361                   .addReg(II.ImplicitDefs[0]));
362  }
363  return ResultReg;
364}
365
366unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
367                                      const TargetRegisterClass *RC,
368                                      unsigned Op0, bool Op0IsKill,
369                                      uint64_t Imm) {
370  unsigned ResultReg = createResultReg(RC);
371  const MCInstrDesc &II = TII.get(MachineInstOpcode);
372
373  if (II.getNumDefs() >= 1) {
374    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
375                   .addReg(Op0, Op0IsKill * RegState::Kill)
376                   .addImm(Imm));
377  } else {
378    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
379                   .addReg(Op0, Op0IsKill * RegState::Kill)
380                   .addImm(Imm));
381    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
382                           TII.get(TargetOpcode::COPY), ResultReg)
383                   .addReg(II.ImplicitDefs[0]));
384  }
385  return ResultReg;
386}
387
388unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
389                                      const TargetRegisterClass *RC,
390                                      unsigned Op0, bool Op0IsKill,
391                                      const ConstantFP *FPImm) {
392  unsigned ResultReg = createResultReg(RC);
393  const MCInstrDesc &II = TII.get(MachineInstOpcode);
394
395  if (II.getNumDefs() >= 1) {
396    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
397                   .addReg(Op0, Op0IsKill * RegState::Kill)
398                   .addFPImm(FPImm));
399  } else {
400    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
401                   .addReg(Op0, Op0IsKill * RegState::Kill)
402                   .addFPImm(FPImm));
403    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
404                           TII.get(TargetOpcode::COPY), ResultReg)
405                   .addReg(II.ImplicitDefs[0]));
406  }
407  return ResultReg;
408}
409
410unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
411                                       const TargetRegisterClass *RC,
412                                       unsigned Op0, bool Op0IsKill,
413                                       unsigned Op1, bool Op1IsKill,
414                                       uint64_t Imm) {
415  unsigned ResultReg = createResultReg(RC);
416  const MCInstrDesc &II = TII.get(MachineInstOpcode);
417
418  if (II.getNumDefs() >= 1) {
419    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
420                   .addReg(Op0, Op0IsKill * RegState::Kill)
421                   .addReg(Op1, Op1IsKill * RegState::Kill)
422                   .addImm(Imm));
423  } else {
424    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
425                   .addReg(Op0, Op0IsKill * RegState::Kill)
426                   .addReg(Op1, Op1IsKill * RegState::Kill)
427                   .addImm(Imm));
428    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
429                           TII.get(TargetOpcode::COPY), ResultReg)
430                   .addReg(II.ImplicitDefs[0]));
431  }
432  return ResultReg;
433}
434
435unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
436                                     const TargetRegisterClass *RC,
437                                     uint64_t Imm) {
438  unsigned ResultReg = createResultReg(RC);
439  const MCInstrDesc &II = TII.get(MachineInstOpcode);
440
441  if (II.getNumDefs() >= 1) {
442    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
443                   .addImm(Imm));
444  } else {
445    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
446                   .addImm(Imm));
447    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
448                           TII.get(TargetOpcode::COPY), ResultReg)
449                   .addReg(II.ImplicitDefs[0]));
450  }
451  return ResultReg;
452}
453
454unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
455                                      const TargetRegisterClass *RC,
456                                      uint64_t Imm1, uint64_t Imm2) {
457  unsigned ResultReg = createResultReg(RC);
458  const MCInstrDesc &II = TII.get(MachineInstOpcode);
459
460  if (II.getNumDefs() >= 1) {
461    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
462                    .addImm(Imm1).addImm(Imm2));
463  } else {
464    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
465                    .addImm(Imm1).addImm(Imm2));
466    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
467                            TII.get(TargetOpcode::COPY),
468                            ResultReg)
469                    .addReg(II.ImplicitDefs[0]));
470  }
471  return ResultReg;
472}
473
474unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
475                                                 unsigned Op0, bool Op0IsKill,
476                                                 uint32_t Idx) {
477  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
478  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
479         "Cannot yet extract from physregs");
480
481  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
482                          DL, TII.get(TargetOpcode::COPY), ResultReg)
483                  .addReg(Op0, getKillRegState(Op0IsKill), Idx));
484  return ResultReg;
485}
486
487// TODO: Don't worry about 64-bit now, but when this is fixed remove the
488// checks from the various callers.
489unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
490  if (VT == MVT::f64) return 0;
491
492  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
493  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
494                          TII.get(ARM::VMOVSR), MoveReg)
495                  .addReg(SrcReg));
496  return MoveReg;
497}
498
499unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
500  if (VT == MVT::i64) return 0;
501
502  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
503  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
504                          TII.get(ARM::VMOVRS), MoveReg)
505                  .addReg(SrcReg));
506  return MoveReg;
507}
508
509// For double width floating point we need to materialize two constants
510// (the high and the low) into integer registers then use a move to get
511// the combined constant into an FP reg.
512unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
513  const APFloat Val = CFP->getValueAPF();
514  bool is64bit = VT == MVT::f64;
515
516  // This checks to see if we can use VFP3 instructions to materialize
517  // a constant, otherwise we have to go through the constant pool.
518  if (TLI.isFPImmLegal(Val, VT)) {
519    int Imm;
520    unsigned Opc;
521    if (is64bit) {
522      Imm = ARM_AM::getFP64Imm(Val);
523      Opc = ARM::FCONSTD;
524    } else {
525      Imm = ARM_AM::getFP32Imm(Val);
526      Opc = ARM::FCONSTS;
527    }
528    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
529    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
530                            DestReg)
531                    .addImm(Imm));
532    return DestReg;
533  }
534
535  // Require VFP2 for loading fp constants.
536  if (!Subtarget->hasVFP2()) return false;
537
538  // MachineConstantPool wants an explicit alignment.
539  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
540  if (Align == 0) {
541    // TODO: Figure out if this is correct.
542    Align = TD.getTypeAllocSize(CFP->getType());
543  }
544  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
545  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
546  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
547
548  // The extra reg is for addrmode5.
549  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
550                          DestReg)
551                  .addConstantPoolIndex(Idx)
552                  .addReg(0));
553  return DestReg;
554}
555
556unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
557
558  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
559    return false;
560
561  // If we can do this in a single instruction without a constant pool entry
562  // do so now.
563  const ConstantInt *CI = cast<ConstantInt>(C);
564  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
565    unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
566    unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
567    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
568                            TII.get(Opc), ImmReg)
569                    .addImm(CI->getZExtValue()));
570    return ImmReg;
571  }
572
573  // Use MVN to emit negative constants.
574  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
575    unsigned Imm = (unsigned)~(CI->getSExtValue());
576    bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
577      (ARM_AM::getSOImmVal(Imm) != -1);
578    if (UseImm) {
579      unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
580      unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
581      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
582                              TII.get(Opc), ImmReg)
583                      .addImm(Imm));
584      return ImmReg;
585    }
586  }
587
588  // Load from constant pool.  For now 32-bit only.
589  if (VT != MVT::i32)
590    return false;
591
592  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
593
594  // MachineConstantPool wants an explicit alignment.
595  unsigned Align = TD.getPrefTypeAlignment(C->getType());
596  if (Align == 0) {
597    // TODO: Figure out if this is correct.
598    Align = TD.getTypeAllocSize(C->getType());
599  }
600  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
601
602  if (isThumb2)
603    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
604                            TII.get(ARM::t2LDRpci), DestReg)
605                    .addConstantPoolIndex(Idx));
606  else
607    // The extra immediate is for addrmode2.
608    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
609                            TII.get(ARM::LDRcp), DestReg)
610                    .addConstantPoolIndex(Idx)
611                    .addImm(0));
612
613  return DestReg;
614}
615
616unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
617  // For now 32-bit only.
618  if (VT != MVT::i32) return 0;
619
620  Reloc::Model RelocM = TM.getRelocationModel();
621  bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
622  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
623
624  // Use movw+movt when possible, it avoids constant pool entries.
625  // Darwin targets don't support movt with Reloc::Static, see
626  // ARMTargetLowering::LowerGlobalAddressDarwin.  Other targets only support
627  // static movt relocations.
628  if (Subtarget->useMovt() &&
629      Subtarget->isTargetDarwin() == (RelocM != Reloc::Static)) {
630    unsigned Opc;
631    switch (RelocM) {
632    case Reloc::PIC_:
633      Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
634      break;
635    case Reloc::DynamicNoPIC:
636      Opc = isThumb2 ? ARM::t2MOV_ga_dyn : ARM::MOV_ga_dyn;
637      break;
638    default:
639      Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
640      break;
641    }
642    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
643                            DestReg).addGlobalAddress(GV));
644  } else {
645    // MachineConstantPool wants an explicit alignment.
646    unsigned Align = TD.getPrefTypeAlignment(GV->getType());
647    if (Align == 0) {
648      // TODO: Figure out if this is correct.
649      Align = TD.getTypeAllocSize(GV->getType());
650    }
651
652    if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_)
653      return ARMLowerPICELF(GV, Align, VT);
654
655    // Grab index.
656    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
657      (Subtarget->isThumb() ? 4 : 8);
658    unsigned Id = AFI->createPICLabelUId();
659    ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
660                                                                ARMCP::CPValue,
661                                                                PCAdj);
662    unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
663
664    // Load value.
665    MachineInstrBuilder MIB;
666    if (isThumb2) {
667      unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
668      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
669        .addConstantPoolIndex(Idx);
670      if (RelocM == Reloc::PIC_)
671        MIB.addImm(Id);
672      AddOptionalDefs(MIB);
673    } else {
674      // The extra immediate is for addrmode2.
675      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
676                    DestReg)
677        .addConstantPoolIndex(Idx)
678        .addImm(0);
679      AddOptionalDefs(MIB);
680
681      if (RelocM == Reloc::PIC_) {
682        unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
683        unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
684
685        MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
686                                          DL, TII.get(Opc), NewDestReg)
687                                  .addReg(DestReg)
688                                  .addImm(Id);
689        AddOptionalDefs(MIB);
690        return NewDestReg;
691      }
692    }
693  }
694
695  if (IsIndirect) {
696    MachineInstrBuilder MIB;
697    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
698    if (isThumb2)
699      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
700                    TII.get(ARM::t2LDRi12), NewDestReg)
701            .addReg(DestReg)
702            .addImm(0);
703    else
704      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
705                    NewDestReg)
706            .addReg(DestReg)
707            .addImm(0);
708    DestReg = NewDestReg;
709    AddOptionalDefs(MIB);
710  }
711
712  return DestReg;
713}
714
715unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
716  EVT VT = TLI.getValueType(C->getType(), true);
717
718  // Only handle simple types.
719  if (!VT.isSimple()) return 0;
720
721  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
722    return ARMMaterializeFP(CFP, VT);
723  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
724    return ARMMaterializeGV(GV, VT);
725  else if (isa<ConstantInt>(C))
726    return ARMMaterializeInt(C, VT);
727
728  return 0;
729}
730
731// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
732
733unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
734  // Don't handle dynamic allocas.
735  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
736
737  MVT VT;
738  if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
739
740  DenseMap<const AllocaInst*, int>::iterator SI =
741    FuncInfo.StaticAllocaMap.find(AI);
742
743  // This will get lowered later into the correct offsets and registers
744  // via rewriteXFrameIndex.
745  if (SI != FuncInfo.StaticAllocaMap.end()) {
746    const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
747    unsigned ResultReg = createResultReg(RC);
748    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
749    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
750                            TII.get(Opc), ResultReg)
751                            .addFrameIndex(SI->second)
752                            .addImm(0));
753    return ResultReg;
754  }
755
756  return 0;
757}
758
759bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
760  EVT evt = TLI.getValueType(Ty, true);
761
762  // Only handle simple types.
763  if (evt == MVT::Other || !evt.isSimple()) return false;
764  VT = evt.getSimpleVT();
765
766  // Handle all legal types, i.e. a register that will directly hold this
767  // value.
768  return TLI.isTypeLegal(VT);
769}
770
771bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
772  if (isTypeLegal(Ty, VT)) return true;
773
774  // If this is a type than can be sign or zero-extended to a basic operation
775  // go ahead and accept it now.
776  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
777    return true;
778
779  return false;
780}
781
782// Computes the address to get to an object.
783bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
784  // Some boilerplate from the X86 FastISel.
785  const User *U = NULL;
786  unsigned Opcode = Instruction::UserOp1;
787  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
788    // Don't walk into other basic blocks unless the object is an alloca from
789    // another block, otherwise it may not have a virtual register assigned.
790    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
791        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
792      Opcode = I->getOpcode();
793      U = I;
794    }
795  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
796    Opcode = C->getOpcode();
797    U = C;
798  }
799
800  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
801    if (Ty->getAddressSpace() > 255)
802      // Fast instruction selection doesn't support the special
803      // address spaces.
804      return false;
805
806  switch (Opcode) {
807    default:
808    break;
809    case Instruction::BitCast: {
810      // Look through bitcasts.
811      return ARMComputeAddress(U->getOperand(0), Addr);
812    }
813    case Instruction::IntToPtr: {
814      // Look past no-op inttoptrs.
815      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
816        return ARMComputeAddress(U->getOperand(0), Addr);
817      break;
818    }
819    case Instruction::PtrToInt: {
820      // Look past no-op ptrtoints.
821      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
822        return ARMComputeAddress(U->getOperand(0), Addr);
823      break;
824    }
825    case Instruction::GetElementPtr: {
826      Address SavedAddr = Addr;
827      int TmpOffset = Addr.Offset;
828
829      // Iterate through the GEP folding the constants into offsets where
830      // we can.
831      gep_type_iterator GTI = gep_type_begin(U);
832      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
833           i != e; ++i, ++GTI) {
834        const Value *Op = *i;
835        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
836          const StructLayout *SL = TD.getStructLayout(STy);
837          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
838          TmpOffset += SL->getElementOffset(Idx);
839        } else {
840          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
841          for (;;) {
842            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
843              // Constant-offset addressing.
844              TmpOffset += CI->getSExtValue() * S;
845              break;
846            }
847            if (isa<AddOperator>(Op) &&
848                (!isa<Instruction>(Op) ||
849                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
850                 == FuncInfo.MBB) &&
851                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
852              // An add (in the same block) with a constant operand. Fold the
853              // constant.
854              ConstantInt *CI =
855              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
856              TmpOffset += CI->getSExtValue() * S;
857              // Iterate on the other operand.
858              Op = cast<AddOperator>(Op)->getOperand(0);
859              continue;
860            }
861            // Unsupported
862            goto unsupported_gep;
863          }
864        }
865      }
866
867      // Try to grab the base operand now.
868      Addr.Offset = TmpOffset;
869      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
870
871      // We failed, restore everything and try the other options.
872      Addr = SavedAddr;
873
874      unsupported_gep:
875      break;
876    }
877    case Instruction::Alloca: {
878      const AllocaInst *AI = cast<AllocaInst>(Obj);
879      DenseMap<const AllocaInst*, int>::iterator SI =
880        FuncInfo.StaticAllocaMap.find(AI);
881      if (SI != FuncInfo.StaticAllocaMap.end()) {
882        Addr.BaseType = Address::FrameIndexBase;
883        Addr.Base.FI = SI->second;
884        return true;
885      }
886      break;
887    }
888  }
889
890  // Try to get this in a register if nothing else has worked.
891  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
892  return Addr.Base.Reg != 0;
893}
894
895void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3) {
896
897  assert(VT.isSimple() && "Non-simple types are invalid here!");
898
899  bool needsLowering = false;
900  switch (VT.getSimpleVT().SimpleTy) {
901    default: llvm_unreachable("Unhandled load/store type!");
902    case MVT::i1:
903    case MVT::i8:
904    case MVT::i16:
905    case MVT::i32:
906      if (!useAM3) {
907        // Integer loads/stores handle 12-bit offsets.
908        needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
909        // Handle negative offsets.
910        if (needsLowering && isThumb2)
911          needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
912                            Addr.Offset > -256);
913      } else {
914        // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
915        needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
916      }
917      break;
918    case MVT::f32:
919    case MVT::f64:
920      // Floating point operands handle 8-bit offsets.
921      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
922      break;
923  }
924
925  // If this is a stack pointer and the offset needs to be simplified then
926  // put the alloca address into a register, set the base type back to
927  // register and continue. This should almost never happen.
928  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
929    const TargetRegisterClass *RC = isThumb2 ?
930      (const TargetRegisterClass*)&ARM::tGPRRegClass :
931      (const TargetRegisterClass*)&ARM::GPRRegClass;
932    unsigned ResultReg = createResultReg(RC);
933    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
934    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
935                            TII.get(Opc), ResultReg)
936                            .addFrameIndex(Addr.Base.FI)
937                            .addImm(0));
938    Addr.Base.Reg = ResultReg;
939    Addr.BaseType = Address::RegBase;
940  }
941
942  // Since the offset is too large for the load/store instruction
943  // get the reg+offset into a register.
944  if (needsLowering) {
945    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
946                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
947    Addr.Offset = 0;
948  }
949}
950
951void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
952                                       const MachineInstrBuilder &MIB,
953                                       unsigned Flags, bool useAM3) {
954  // addrmode5 output depends on the selection dag addressing dividing the
955  // offset by 4 that it then later multiplies. Do this here as well.
956  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
957      VT.getSimpleVT().SimpleTy == MVT::f64)
958    Addr.Offset /= 4;
959
960  // Frame base works a bit differently. Handle it separately.
961  if (Addr.BaseType == Address::FrameIndexBase) {
962    int FI = Addr.Base.FI;
963    int Offset = Addr.Offset;
964    MachineMemOperand *MMO =
965          FuncInfo.MF->getMachineMemOperand(
966                                  MachinePointerInfo::getFixedStack(FI, Offset),
967                                  Flags,
968                                  MFI.getObjectSize(FI),
969                                  MFI.getObjectAlignment(FI));
970    // Now add the rest of the operands.
971    MIB.addFrameIndex(FI);
972
973    // ARM halfword load/stores and signed byte loads need an additional
974    // operand.
975    if (useAM3) {
976      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
977      MIB.addReg(0);
978      MIB.addImm(Imm);
979    } else {
980      MIB.addImm(Addr.Offset);
981    }
982    MIB.addMemOperand(MMO);
983  } else {
984    // Now add the rest of the operands.
985    MIB.addReg(Addr.Base.Reg);
986
987    // ARM halfword load/stores and signed byte loads need an additional
988    // operand.
989    if (useAM3) {
990      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
991      MIB.addReg(0);
992      MIB.addImm(Imm);
993    } else {
994      MIB.addImm(Addr.Offset);
995    }
996  }
997  AddOptionalDefs(MIB);
998}
999
1000bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
1001                              unsigned Alignment, bool isZExt, bool allocReg) {
1002  assert(VT.isSimple() && "Non-simple types are invalid here!");
1003  unsigned Opc;
1004  bool useAM3 = false;
1005  bool needVMOV = false;
1006  const TargetRegisterClass *RC;
1007  switch (VT.getSimpleVT().SimpleTy) {
1008    // This is mostly going to be Neon/vector support.
1009    default: return false;
1010    case MVT::i1:
1011    case MVT::i8:
1012      if (isThumb2) {
1013        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1014          Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
1015        else
1016          Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
1017      } else {
1018        if (isZExt) {
1019          Opc = ARM::LDRBi12;
1020        } else {
1021          Opc = ARM::LDRSB;
1022          useAM3 = true;
1023        }
1024      }
1025      RC = &ARM::GPRRegClass;
1026      break;
1027    case MVT::i16:
1028      if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1029        return false;
1030
1031      if (isThumb2) {
1032        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1033          Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
1034        else
1035          Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
1036      } else {
1037        Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1038        useAM3 = true;
1039      }
1040      RC = &ARM::GPRRegClass;
1041      break;
1042    case MVT::i32:
1043      if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1044        return false;
1045
1046      if (isThumb2) {
1047        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1048          Opc = ARM::t2LDRi8;
1049        else
1050          Opc = ARM::t2LDRi12;
1051      } else {
1052        Opc = ARM::LDRi12;
1053      }
1054      RC = &ARM::GPRRegClass;
1055      break;
1056    case MVT::f32:
1057      if (!Subtarget->hasVFP2()) return false;
1058      // Unaligned loads need special handling. Floats require word-alignment.
1059      if (Alignment && Alignment < 4) {
1060        needVMOV = true;
1061        VT = MVT::i32;
1062        Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1063        RC = &ARM::GPRRegClass;
1064      } else {
1065        Opc = ARM::VLDRS;
1066        RC = TLI.getRegClassFor(VT);
1067      }
1068      break;
1069    case MVT::f64:
1070      if (!Subtarget->hasVFP2()) return false;
1071      // FIXME: Unaligned loads need special handling.  Doublewords require
1072      // word-alignment.
1073      if (Alignment && Alignment < 4)
1074        return false;
1075
1076      Opc = ARM::VLDRD;
1077      RC = TLI.getRegClassFor(VT);
1078      break;
1079  }
1080  // Simplify this down to something we can handle.
1081  ARMSimplifyAddress(Addr, VT, useAM3);
1082
1083  // Create the base instruction, then add the operands.
1084  if (allocReg)
1085    ResultReg = createResultReg(RC);
1086  assert (ResultReg > 255 && "Expected an allocated virtual register.");
1087  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1088                                    TII.get(Opc), ResultReg);
1089  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1090
1091  // If we had an unaligned load of a float we've converted it to an regular
1092  // load.  Now we must move from the GRP to the FP register.
1093  if (needVMOV) {
1094    unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1095    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1096                            TII.get(ARM::VMOVSR), MoveReg)
1097                    .addReg(ResultReg));
1098    ResultReg = MoveReg;
1099  }
1100  return true;
1101}
1102
1103bool ARMFastISel::SelectLoad(const Instruction *I) {
1104  // Atomic loads need special handling.
1105  if (cast<LoadInst>(I)->isAtomic())
1106    return false;
1107
1108  // Verify we have a legal type before going any further.
1109  MVT VT;
1110  if (!isLoadTypeLegal(I->getType(), VT))
1111    return false;
1112
1113  // See if we can handle this address.
1114  Address Addr;
1115  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1116
1117  unsigned ResultReg;
1118  if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1119    return false;
1120  UpdateValueMap(I, ResultReg);
1121  return true;
1122}
1123
1124bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
1125                               unsigned Alignment) {
1126  unsigned StrOpc;
1127  bool useAM3 = false;
1128  switch (VT.getSimpleVT().SimpleTy) {
1129    // This is mostly going to be Neon/vector support.
1130    default: return false;
1131    case MVT::i1: {
1132      unsigned Res = createResultReg(isThumb2 ?
1133        (const TargetRegisterClass*)&ARM::tGPRRegClass :
1134        (const TargetRegisterClass*)&ARM::GPRRegClass);
1135      unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1136      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1137                              TII.get(Opc), Res)
1138                      .addReg(SrcReg).addImm(1));
1139      SrcReg = Res;
1140    } // Fallthrough here.
1141    case MVT::i8:
1142      if (isThumb2) {
1143        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1144          StrOpc = ARM::t2STRBi8;
1145        else
1146          StrOpc = ARM::t2STRBi12;
1147      } else {
1148        StrOpc = ARM::STRBi12;
1149      }
1150      break;
1151    case MVT::i16:
1152      if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1153        return false;
1154
1155      if (isThumb2) {
1156        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1157          StrOpc = ARM::t2STRHi8;
1158        else
1159          StrOpc = ARM::t2STRHi12;
1160      } else {
1161        StrOpc = ARM::STRH;
1162        useAM3 = true;
1163      }
1164      break;
1165    case MVT::i32:
1166      if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1167        return false;
1168
1169      if (isThumb2) {
1170        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1171          StrOpc = ARM::t2STRi8;
1172        else
1173          StrOpc = ARM::t2STRi12;
1174      } else {
1175        StrOpc = ARM::STRi12;
1176      }
1177      break;
1178    case MVT::f32:
1179      if (!Subtarget->hasVFP2()) return false;
1180      // Unaligned stores need special handling. Floats require word-alignment.
1181      if (Alignment && Alignment < 4) {
1182        unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1183        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1184                                TII.get(ARM::VMOVRS), MoveReg)
1185                        .addReg(SrcReg));
1186        SrcReg = MoveReg;
1187        VT = MVT::i32;
1188        StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1189      } else {
1190        StrOpc = ARM::VSTRS;
1191      }
1192      break;
1193    case MVT::f64:
1194      if (!Subtarget->hasVFP2()) return false;
1195      // FIXME: Unaligned stores need special handling.  Doublewords require
1196      // word-alignment.
1197      if (Alignment && Alignment < 4)
1198          return false;
1199
1200      StrOpc = ARM::VSTRD;
1201      break;
1202  }
1203  // Simplify this down to something we can handle.
1204  ARMSimplifyAddress(Addr, VT, useAM3);
1205
1206  // Create the base instruction, then add the operands.
1207  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1208                                    TII.get(StrOpc))
1209                            .addReg(SrcReg);
1210  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1211  return true;
1212}
1213
1214bool ARMFastISel::SelectStore(const Instruction *I) {
1215  Value *Op0 = I->getOperand(0);
1216  unsigned SrcReg = 0;
1217
1218  // Atomic stores need special handling.
1219  if (cast<StoreInst>(I)->isAtomic())
1220    return false;
1221
1222  // Verify we have a legal type before going any further.
1223  MVT VT;
1224  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1225    return false;
1226
1227  // Get the value to be stored into a register.
1228  SrcReg = getRegForValue(Op0);
1229  if (SrcReg == 0) return false;
1230
1231  // See if we can handle this address.
1232  Address Addr;
1233  if (!ARMComputeAddress(I->getOperand(1), Addr))
1234    return false;
1235
1236  if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1237    return false;
1238  return true;
1239}
1240
1241static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1242  switch (Pred) {
1243    // Needs two compares...
1244    case CmpInst::FCMP_ONE:
1245    case CmpInst::FCMP_UEQ:
1246    default:
1247      // AL is our "false" for now. The other two need more compares.
1248      return ARMCC::AL;
1249    case CmpInst::ICMP_EQ:
1250    case CmpInst::FCMP_OEQ:
1251      return ARMCC::EQ;
1252    case CmpInst::ICMP_SGT:
1253    case CmpInst::FCMP_OGT:
1254      return ARMCC::GT;
1255    case CmpInst::ICMP_SGE:
1256    case CmpInst::FCMP_OGE:
1257      return ARMCC::GE;
1258    case CmpInst::ICMP_UGT:
1259    case CmpInst::FCMP_UGT:
1260      return ARMCC::HI;
1261    case CmpInst::FCMP_OLT:
1262      return ARMCC::MI;
1263    case CmpInst::ICMP_ULE:
1264    case CmpInst::FCMP_OLE:
1265      return ARMCC::LS;
1266    case CmpInst::FCMP_ORD:
1267      return ARMCC::VC;
1268    case CmpInst::FCMP_UNO:
1269      return ARMCC::VS;
1270    case CmpInst::FCMP_UGE:
1271      return ARMCC::PL;
1272    case CmpInst::ICMP_SLT:
1273    case CmpInst::FCMP_ULT:
1274      return ARMCC::LT;
1275    case CmpInst::ICMP_SLE:
1276    case CmpInst::FCMP_ULE:
1277      return ARMCC::LE;
1278    case CmpInst::FCMP_UNE:
1279    case CmpInst::ICMP_NE:
1280      return ARMCC::NE;
1281    case CmpInst::ICMP_UGE:
1282      return ARMCC::HS;
1283    case CmpInst::ICMP_ULT:
1284      return ARMCC::LO;
1285  }
1286}
1287
1288bool ARMFastISel::SelectBranch(const Instruction *I) {
1289  const BranchInst *BI = cast<BranchInst>(I);
1290  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1291  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1292
1293  // Simple branch support.
1294
1295  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1296  // behavior.
1297  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1298    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1299
1300      // Get the compare predicate.
1301      // Try to take advantage of fallthrough opportunities.
1302      CmpInst::Predicate Predicate = CI->getPredicate();
1303      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1304        std::swap(TBB, FBB);
1305        Predicate = CmpInst::getInversePredicate(Predicate);
1306      }
1307
1308      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1309
1310      // We may not handle every CC for now.
1311      if (ARMPred == ARMCC::AL) return false;
1312
1313      // Emit the compare.
1314      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1315        return false;
1316
1317      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1318      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1319      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1320      FastEmitBranch(FBB, DL);
1321      FuncInfo.MBB->addSuccessor(TBB);
1322      return true;
1323    }
1324  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1325    MVT SourceVT;
1326    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1327        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1328      unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1329      unsigned OpReg = getRegForValue(TI->getOperand(0));
1330      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1331                              TII.get(TstOpc))
1332                      .addReg(OpReg).addImm(1));
1333
1334      unsigned CCMode = ARMCC::NE;
1335      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1336        std::swap(TBB, FBB);
1337        CCMode = ARMCC::EQ;
1338      }
1339
1340      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1341      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1342      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1343
1344      FastEmitBranch(FBB, DL);
1345      FuncInfo.MBB->addSuccessor(TBB);
1346      return true;
1347    }
1348  } else if (const ConstantInt *CI =
1349             dyn_cast<ConstantInt>(BI->getCondition())) {
1350    uint64_t Imm = CI->getZExtValue();
1351    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1352    FastEmitBranch(Target, DL);
1353    return true;
1354  }
1355
1356  unsigned CmpReg = getRegForValue(BI->getCondition());
1357  if (CmpReg == 0) return false;
1358
1359  // We've been divorced from our compare!  Our block was split, and
1360  // now our compare lives in a predecessor block.  We musn't
1361  // re-compare here, as the children of the compare aren't guaranteed
1362  // live across the block boundary (we *could* check for this).
1363  // Regardless, the compare has been done in the predecessor block,
1364  // and it left a value for us in a virtual register.  Ergo, we test
1365  // the one-bit value left in the virtual register.
1366  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1367  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1368                  .addReg(CmpReg).addImm(1));
1369
1370  unsigned CCMode = ARMCC::NE;
1371  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1372    std::swap(TBB, FBB);
1373    CCMode = ARMCC::EQ;
1374  }
1375
1376  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1377  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1378                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1379  FastEmitBranch(FBB, DL);
1380  FuncInfo.MBB->addSuccessor(TBB);
1381  return true;
1382}
1383
1384bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1385  unsigned AddrReg = getRegForValue(I->getOperand(0));
1386  if (AddrReg == 0) return false;
1387
1388  unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1389  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
1390                  .addReg(AddrReg));
1391  return true;
1392}
1393
1394bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1395                             bool isZExt) {
1396  Type *Ty = Src1Value->getType();
1397  EVT SrcVT = TLI.getValueType(Ty, true);
1398  if (!SrcVT.isSimple()) return false;
1399
1400  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1401  if (isFloat && !Subtarget->hasVFP2())
1402    return false;
1403
1404  // Check to see if the 2nd operand is a constant that we can encode directly
1405  // in the compare.
1406  int Imm = 0;
1407  bool UseImm = false;
1408  bool isNegativeImm = false;
1409  // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1410  // Thus, Src1Value may be a ConstantInt, but we're missing it.
1411  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1412    if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1413        SrcVT == MVT::i1) {
1414      const APInt &CIVal = ConstInt->getValue();
1415      Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1416      // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1417      // then a cmn, because there is no way to represent 2147483648 as a
1418      // signed 32-bit int.
1419      if (Imm < 0 && Imm != (int)0x80000000) {
1420        isNegativeImm = true;
1421        Imm = -Imm;
1422      }
1423      UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1424        (ARM_AM::getSOImmVal(Imm) != -1);
1425    }
1426  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1427    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1428      if (ConstFP->isZero() && !ConstFP->isNegative())
1429        UseImm = true;
1430  }
1431
1432  unsigned CmpOpc;
1433  bool isICmp = true;
1434  bool needsExt = false;
1435  switch (SrcVT.getSimpleVT().SimpleTy) {
1436    default: return false;
1437    // TODO: Verify compares.
1438    case MVT::f32:
1439      isICmp = false;
1440      CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1441      break;
1442    case MVT::f64:
1443      isICmp = false;
1444      CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1445      break;
1446    case MVT::i1:
1447    case MVT::i8:
1448    case MVT::i16:
1449      needsExt = true;
1450    // Intentional fall-through.
1451    case MVT::i32:
1452      if (isThumb2) {
1453        if (!UseImm)
1454          CmpOpc = ARM::t2CMPrr;
1455        else
1456          CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1457      } else {
1458        if (!UseImm)
1459          CmpOpc = ARM::CMPrr;
1460        else
1461          CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1462      }
1463      break;
1464  }
1465
1466  unsigned SrcReg1 = getRegForValue(Src1Value);
1467  if (SrcReg1 == 0) return false;
1468
1469  unsigned SrcReg2 = 0;
1470  if (!UseImm) {
1471    SrcReg2 = getRegForValue(Src2Value);
1472    if (SrcReg2 == 0) return false;
1473  }
1474
1475  // We have i1, i8, or i16, we need to either zero extend or sign extend.
1476  if (needsExt) {
1477    SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1478    if (SrcReg1 == 0) return false;
1479    if (!UseImm) {
1480      SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1481      if (SrcReg2 == 0) return false;
1482    }
1483  }
1484
1485  if (!UseImm) {
1486    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1487                            TII.get(CmpOpc))
1488                    .addReg(SrcReg1).addReg(SrcReg2));
1489  } else {
1490    MachineInstrBuilder MIB;
1491    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1492      .addReg(SrcReg1);
1493
1494    // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1495    if (isICmp)
1496      MIB.addImm(Imm);
1497    AddOptionalDefs(MIB);
1498  }
1499
1500  // For floating point we need to move the result to a comparison register
1501  // that we can then use for branches.
1502  if (Ty->isFloatTy() || Ty->isDoubleTy())
1503    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1504                            TII.get(ARM::FMSTAT)));
1505  return true;
1506}
1507
1508bool ARMFastISel::SelectCmp(const Instruction *I) {
1509  const CmpInst *CI = cast<CmpInst>(I);
1510
1511  // Get the compare predicate.
1512  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1513
1514  // We may not handle every CC for now.
1515  if (ARMPred == ARMCC::AL) return false;
1516
1517  // Emit the compare.
1518  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1519    return false;
1520
1521  // Now set a register based on the comparison. Explicitly set the predicates
1522  // here.
1523  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1524  const TargetRegisterClass *RC = isThumb2 ?
1525    (const TargetRegisterClass*)&ARM::rGPRRegClass :
1526    (const TargetRegisterClass*)&ARM::GPRRegClass;
1527  unsigned DestReg = createResultReg(RC);
1528  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1529  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1530  // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1531  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1532          .addReg(ZeroReg).addImm(1)
1533          .addImm(ARMPred).addReg(ARM::CPSR);
1534
1535  UpdateValueMap(I, DestReg);
1536  return true;
1537}
1538
1539bool ARMFastISel::SelectFPExt(const Instruction *I) {
1540  // Make sure we have VFP and that we're extending float to double.
1541  if (!Subtarget->hasVFP2()) return false;
1542
1543  Value *V = I->getOperand(0);
1544  if (!I->getType()->isDoubleTy() ||
1545      !V->getType()->isFloatTy()) return false;
1546
1547  unsigned Op = getRegForValue(V);
1548  if (Op == 0) return false;
1549
1550  unsigned Result = createResultReg(&ARM::DPRRegClass);
1551  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1552                          TII.get(ARM::VCVTDS), Result)
1553                  .addReg(Op));
1554  UpdateValueMap(I, Result);
1555  return true;
1556}
1557
1558bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1559  // Make sure we have VFP and that we're truncating double to float.
1560  if (!Subtarget->hasVFP2()) return false;
1561
1562  Value *V = I->getOperand(0);
1563  if (!(I->getType()->isFloatTy() &&
1564        V->getType()->isDoubleTy())) return false;
1565
1566  unsigned Op = getRegForValue(V);
1567  if (Op == 0) return false;
1568
1569  unsigned Result = createResultReg(&ARM::SPRRegClass);
1570  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1571                          TII.get(ARM::VCVTSD), Result)
1572                  .addReg(Op));
1573  UpdateValueMap(I, Result);
1574  return true;
1575}
1576
1577bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1578  // Make sure we have VFP.
1579  if (!Subtarget->hasVFP2()) return false;
1580
1581  MVT DstVT;
1582  Type *Ty = I->getType();
1583  if (!isTypeLegal(Ty, DstVT))
1584    return false;
1585
1586  Value *Src = I->getOperand(0);
1587  EVT SrcVT = TLI.getValueType(Src->getType(), true);
1588  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1589    return false;
1590
1591  unsigned SrcReg = getRegForValue(Src);
1592  if (SrcReg == 0) return false;
1593
1594  // Handle sign-extension.
1595  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1596    EVT DestVT = MVT::i32;
1597    SrcReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT,
1598                                       /*isZExt*/!isSigned);
1599    if (SrcReg == 0) return false;
1600  }
1601
1602  // The conversion routine works on fp-reg to fp-reg and the operand above
1603  // was an integer, move it to the fp registers if possible.
1604  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1605  if (FP == 0) return false;
1606
1607  unsigned Opc;
1608  if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1609  else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1610  else return false;
1611
1612  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1613  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1614                          ResultReg)
1615                  .addReg(FP));
1616  UpdateValueMap(I, ResultReg);
1617  return true;
1618}
1619
1620bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1621  // Make sure we have VFP.
1622  if (!Subtarget->hasVFP2()) return false;
1623
1624  MVT DstVT;
1625  Type *RetTy = I->getType();
1626  if (!isTypeLegal(RetTy, DstVT))
1627    return false;
1628
1629  unsigned Op = getRegForValue(I->getOperand(0));
1630  if (Op == 0) return false;
1631
1632  unsigned Opc;
1633  Type *OpTy = I->getOperand(0)->getType();
1634  if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1635  else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1636  else return false;
1637
1638  // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1639  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1640  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1641                          ResultReg)
1642                  .addReg(Op));
1643
1644  // This result needs to be in an integer register, but the conversion only
1645  // takes place in fp-regs.
1646  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1647  if (IntReg == 0) return false;
1648
1649  UpdateValueMap(I, IntReg);
1650  return true;
1651}
1652
1653bool ARMFastISel::SelectSelect(const Instruction *I) {
1654  MVT VT;
1655  if (!isTypeLegal(I->getType(), VT))
1656    return false;
1657
1658  // Things need to be register sized for register moves.
1659  if (VT != MVT::i32) return false;
1660  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1661
1662  unsigned CondReg = getRegForValue(I->getOperand(0));
1663  if (CondReg == 0) return false;
1664  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1665  if (Op1Reg == 0) return false;
1666
1667  // Check to see if we can use an immediate in the conditional move.
1668  int Imm = 0;
1669  bool UseImm = false;
1670  bool isNegativeImm = false;
1671  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1672    assert (VT == MVT::i32 && "Expecting an i32.");
1673    Imm = (int)ConstInt->getValue().getZExtValue();
1674    if (Imm < 0) {
1675      isNegativeImm = true;
1676      Imm = ~Imm;
1677    }
1678    UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1679      (ARM_AM::getSOImmVal(Imm) != -1);
1680  }
1681
1682  unsigned Op2Reg = 0;
1683  if (!UseImm) {
1684    Op2Reg = getRegForValue(I->getOperand(2));
1685    if (Op2Reg == 0) return false;
1686  }
1687
1688  unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1689  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1690                  .addReg(CondReg).addImm(0));
1691
1692  unsigned MovCCOpc;
1693  if (!UseImm) {
1694    MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1695  } else {
1696    if (!isNegativeImm) {
1697      MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1698    } else {
1699      MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1700    }
1701  }
1702  unsigned ResultReg = createResultReg(RC);
1703  if (!UseImm)
1704    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1705    .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
1706  else
1707    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1708    .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
1709  UpdateValueMap(I, ResultReg);
1710  return true;
1711}
1712
1713bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1714  MVT VT;
1715  Type *Ty = I->getType();
1716  if (!isTypeLegal(Ty, VT))
1717    return false;
1718
1719  // If we have integer div support we should have selected this automagically.
1720  // In case we have a real miss go ahead and return false and we'll pick
1721  // it up later.
1722  if (Subtarget->hasDivide()) return false;
1723
1724  // Otherwise emit a libcall.
1725  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1726  if (VT == MVT::i8)
1727    LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1728  else if (VT == MVT::i16)
1729    LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1730  else if (VT == MVT::i32)
1731    LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1732  else if (VT == MVT::i64)
1733    LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1734  else if (VT == MVT::i128)
1735    LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1736  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1737
1738  return ARMEmitLibcall(I, LC);
1739}
1740
1741bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1742  MVT VT;
1743  Type *Ty = I->getType();
1744  if (!isTypeLegal(Ty, VT))
1745    return false;
1746
1747  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1748  if (VT == MVT::i8)
1749    LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1750  else if (VT == MVT::i16)
1751    LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1752  else if (VT == MVT::i32)
1753    LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1754  else if (VT == MVT::i64)
1755    LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1756  else if (VT == MVT::i128)
1757    LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1758  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1759
1760  return ARMEmitLibcall(I, LC);
1761}
1762
1763bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1764  EVT DestVT  = TLI.getValueType(I->getType(), true);
1765
1766  // We can get here in the case when we have a binary operation on a non-legal
1767  // type and the target independent selector doesn't know how to handle it.
1768  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1769    return false;
1770
1771  unsigned Opc;
1772  switch (ISDOpcode) {
1773    default: return false;
1774    case ISD::ADD:
1775      Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1776      break;
1777    case ISD::OR:
1778      Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1779      break;
1780    case ISD::SUB:
1781      Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1782      break;
1783  }
1784
1785  unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1786  if (SrcReg1 == 0) return false;
1787
1788  // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1789  // in the instruction, rather then materializing the value in a register.
1790  unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1791  if (SrcReg2 == 0) return false;
1792
1793  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1794  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1795                          TII.get(Opc), ResultReg)
1796                  .addReg(SrcReg1).addReg(SrcReg2));
1797  UpdateValueMap(I, ResultReg);
1798  return true;
1799}
1800
1801bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1802  EVT VT  = TLI.getValueType(I->getType(), true);
1803
1804  // We can get here in the case when we want to use NEON for our fp
1805  // operations, but can't figure out how to. Just use the vfp instructions
1806  // if we have them.
1807  // FIXME: It'd be nice to use NEON instructions.
1808  Type *Ty = I->getType();
1809  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1810  if (isFloat && !Subtarget->hasVFP2())
1811    return false;
1812
1813  unsigned Opc;
1814  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1815  switch (ISDOpcode) {
1816    default: return false;
1817    case ISD::FADD:
1818      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1819      break;
1820    case ISD::FSUB:
1821      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1822      break;
1823    case ISD::FMUL:
1824      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1825      break;
1826  }
1827  unsigned Op1 = getRegForValue(I->getOperand(0));
1828  if (Op1 == 0) return false;
1829
1830  unsigned Op2 = getRegForValue(I->getOperand(1));
1831  if (Op2 == 0) return false;
1832
1833  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1834  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1835                          TII.get(Opc), ResultReg)
1836                  .addReg(Op1).addReg(Op2));
1837  UpdateValueMap(I, ResultReg);
1838  return true;
1839}
1840
1841// Call Handling Code
1842
1843// This is largely taken directly from CCAssignFnForNode
1844// TODO: We may not support all of this.
1845CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1846                                           bool Return,
1847                                           bool isVarArg) {
1848  switch (CC) {
1849  default:
1850    llvm_unreachable("Unsupported calling convention");
1851  case CallingConv::Fast:
1852    if (Subtarget->hasVFP2() && !isVarArg) {
1853      if (!Subtarget->isAAPCS_ABI())
1854        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1855      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1856      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1857    }
1858    // Fallthrough
1859  case CallingConv::C:
1860    // Use target triple & subtarget features to do actual dispatch.
1861    if (Subtarget->isAAPCS_ABI()) {
1862      if (Subtarget->hasVFP2() &&
1863          TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1864        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1865      else
1866        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1867    } else
1868        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1869  case CallingConv::ARM_AAPCS_VFP:
1870    if (!isVarArg)
1871      return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1872    // Fall through to soft float variant, variadic functions don't
1873    // use hard floating point ABI.
1874  case CallingConv::ARM_AAPCS:
1875    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1876  case CallingConv::ARM_APCS:
1877    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1878  case CallingConv::GHC:
1879    if (Return)
1880      llvm_unreachable("Can't return in GHC call convention");
1881    else
1882      return CC_ARM_APCS_GHC;
1883  }
1884}
1885
1886bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1887                                  SmallVectorImpl<unsigned> &ArgRegs,
1888                                  SmallVectorImpl<MVT> &ArgVTs,
1889                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1890                                  SmallVectorImpl<unsigned> &RegArgs,
1891                                  CallingConv::ID CC,
1892                                  unsigned &NumBytes,
1893                                  bool isVarArg) {
1894  SmallVector<CCValAssign, 16> ArgLocs;
1895  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
1896  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1897                             CCAssignFnForCall(CC, false, isVarArg));
1898
1899  // Check that we can handle all of the arguments. If we can't, then bail out
1900  // now before we add code to the MBB.
1901  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1902    CCValAssign &VA = ArgLocs[i];
1903    MVT ArgVT = ArgVTs[VA.getValNo()];
1904
1905    // We don't handle NEON/vector parameters yet.
1906    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1907      return false;
1908
1909    // Now copy/store arg to correct locations.
1910    if (VA.isRegLoc() && !VA.needsCustom()) {
1911      continue;
1912    } else if (VA.needsCustom()) {
1913      // TODO: We need custom lowering for vector (v2f64) args.
1914      if (VA.getLocVT() != MVT::f64 ||
1915          // TODO: Only handle register args for now.
1916          !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1917        return false;
1918    } else {
1919      switch (static_cast<EVT>(ArgVT).getSimpleVT().SimpleTy) {
1920      default:
1921        return false;
1922      case MVT::i1:
1923      case MVT::i8:
1924      case MVT::i16:
1925      case MVT::i32:
1926        break;
1927      case MVT::f32:
1928        if (!Subtarget->hasVFP2())
1929          return false;
1930        break;
1931      case MVT::f64:
1932        if (!Subtarget->hasVFP2())
1933          return false;
1934        break;
1935      }
1936    }
1937  }
1938
1939  // At the point, we are able to handle the call's arguments in fast isel.
1940
1941  // Get a count of how many bytes are to be pushed on the stack.
1942  NumBytes = CCInfo.getNextStackOffset();
1943
1944  // Issue CALLSEQ_START
1945  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1946  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1947                          TII.get(AdjStackDown))
1948                  .addImm(NumBytes));
1949
1950  // Process the args.
1951  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1952    CCValAssign &VA = ArgLocs[i];
1953    unsigned Arg = ArgRegs[VA.getValNo()];
1954    MVT ArgVT = ArgVTs[VA.getValNo()];
1955
1956    assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1957           "We don't handle NEON/vector parameters yet.");
1958
1959    // Handle arg promotion, etc.
1960    switch (VA.getLocInfo()) {
1961      case CCValAssign::Full: break;
1962      case CCValAssign::SExt: {
1963        MVT DestVT = VA.getLocVT();
1964        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1965        assert (Arg != 0 && "Failed to emit a sext");
1966        ArgVT = DestVT;
1967        break;
1968      }
1969      case CCValAssign::AExt:
1970        // Intentional fall-through.  Handle AExt and ZExt.
1971      case CCValAssign::ZExt: {
1972        MVT DestVT = VA.getLocVT();
1973        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1974        assert (Arg != 0 && "Failed to emit a sext");
1975        ArgVT = DestVT;
1976        break;
1977      }
1978      case CCValAssign::BCvt: {
1979        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1980                                 /*TODO: Kill=*/false);
1981        assert(BC != 0 && "Failed to emit a bitcast!");
1982        Arg = BC;
1983        ArgVT = VA.getLocVT();
1984        break;
1985      }
1986      default: llvm_unreachable("Unknown arg promotion!");
1987    }
1988
1989    // Now copy/store arg to correct locations.
1990    if (VA.isRegLoc() && !VA.needsCustom()) {
1991      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1992              VA.getLocReg())
1993        .addReg(Arg);
1994      RegArgs.push_back(VA.getLocReg());
1995    } else if (VA.needsCustom()) {
1996      // TODO: We need custom lowering for vector (v2f64) args.
1997      assert(VA.getLocVT() == MVT::f64 &&
1998             "Custom lowering for v2f64 args not available");
1999
2000      CCValAssign &NextVA = ArgLocs[++i];
2001
2002      assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2003             "We only handle register args!");
2004
2005      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2006                              TII.get(ARM::VMOVRRD), VA.getLocReg())
2007                      .addReg(NextVA.getLocReg(), RegState::Define)
2008                      .addReg(Arg));
2009      RegArgs.push_back(VA.getLocReg());
2010      RegArgs.push_back(NextVA.getLocReg());
2011    } else {
2012      assert(VA.isMemLoc());
2013      // Need to store on the stack.
2014      Address Addr;
2015      Addr.BaseType = Address::RegBase;
2016      Addr.Base.Reg = ARM::SP;
2017      Addr.Offset = VA.getLocMemOffset();
2018
2019      bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2020      assert(EmitRet && "Could not emit a store for argument!");
2021    }
2022  }
2023
2024  return true;
2025}
2026
2027bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
2028                             const Instruction *I, CallingConv::ID CC,
2029                             unsigned &NumBytes, bool isVarArg) {
2030  // Issue CALLSEQ_END
2031  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2032  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2033                          TII.get(AdjStackUp))
2034                  .addImm(NumBytes).addImm(0));
2035
2036  // Now the return value.
2037  if (RetVT != MVT::isVoid) {
2038    SmallVector<CCValAssign, 16> RVLocs;
2039    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
2040    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2041
2042    // Copy all of the result registers out of their specified physreg.
2043    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2044      // For this move we copy into two registers and then move into the
2045      // double fp reg we want.
2046      EVT DestVT = RVLocs[0].getValVT();
2047      const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2048      unsigned ResultReg = createResultReg(DstRC);
2049      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2050                              TII.get(ARM::VMOVDRR), ResultReg)
2051                      .addReg(RVLocs[0].getLocReg())
2052                      .addReg(RVLocs[1].getLocReg()));
2053
2054      UsedRegs.push_back(RVLocs[0].getLocReg());
2055      UsedRegs.push_back(RVLocs[1].getLocReg());
2056
2057      // Finally update the result.
2058      UpdateValueMap(I, ResultReg);
2059    } else {
2060      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2061      EVT CopyVT = RVLocs[0].getValVT();
2062
2063      // Special handling for extended integers.
2064      if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2065        CopyVT = MVT::i32;
2066
2067      const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2068
2069      unsigned ResultReg = createResultReg(DstRC);
2070      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2071              ResultReg).addReg(RVLocs[0].getLocReg());
2072      UsedRegs.push_back(RVLocs[0].getLocReg());
2073
2074      // Finally update the result.
2075      UpdateValueMap(I, ResultReg);
2076    }
2077  }
2078
2079  return true;
2080}
2081
2082bool ARMFastISel::SelectRet(const Instruction *I) {
2083  const ReturnInst *Ret = cast<ReturnInst>(I);
2084  const Function &F = *I->getParent()->getParent();
2085
2086  if (!FuncInfo.CanLowerReturn)
2087    return false;
2088
2089  CallingConv::ID CC = F.getCallingConv();
2090  if (Ret->getNumOperands() > 0) {
2091    SmallVector<ISD::OutputArg, 4> Outs;
2092    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
2093                  Outs, TLI);
2094
2095    // Analyze operands of the call, assigning locations to each operand.
2096    SmallVector<CCValAssign, 16> ValLocs;
2097    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
2098    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2099                                                 F.isVarArg()));
2100
2101    const Value *RV = Ret->getOperand(0);
2102    unsigned Reg = getRegForValue(RV);
2103    if (Reg == 0)
2104      return false;
2105
2106    // Only handle a single return value for now.
2107    if (ValLocs.size() != 1)
2108      return false;
2109
2110    CCValAssign &VA = ValLocs[0];
2111
2112    // Don't bother handling odd stuff for now.
2113    if (VA.getLocInfo() != CCValAssign::Full)
2114      return false;
2115    // Only handle register returns for now.
2116    if (!VA.isRegLoc())
2117      return false;
2118
2119    unsigned SrcReg = Reg + VA.getValNo();
2120    EVT RVVT = TLI.getValueType(RV->getType());
2121    EVT DestVT = VA.getValVT();
2122    // Special handling for extended integers.
2123    if (RVVT != DestVT) {
2124      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2125        return false;
2126
2127      assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2128
2129      // Perform extension if flagged as either zext or sext.  Otherwise, do
2130      // nothing.
2131      if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2132        SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2133        if (SrcReg == 0) return false;
2134      }
2135    }
2136
2137    // Make the copy.
2138    unsigned DstReg = VA.getLocReg();
2139    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2140    // Avoid a cross-class copy. This is very unlikely.
2141    if (!SrcRC->contains(DstReg))
2142      return false;
2143    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2144            DstReg).addReg(SrcReg);
2145
2146    // Mark the register as live out of the function.
2147    MRI.addLiveOut(VA.getLocReg());
2148  }
2149
2150  unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2151  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2152                          TII.get(RetOpc)));
2153  return true;
2154}
2155
2156unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2157  if (UseReg)
2158    return isThumb2 ? ARM::tBLXr : ARM::BLX;
2159  else
2160    return isThumb2 ? ARM::tBL : ARM::BL;
2161}
2162
2163unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2164  GlobalValue *GV = new GlobalVariable(Type::getInt32Ty(*Context), false,
2165                                       GlobalValue::ExternalLinkage, 0, Name);
2166  return ARMMaterializeGV(GV, TLI.getValueType(GV->getType()));
2167}
2168
2169// A quick function that will emit a call for a named libcall in F with the
2170// vector of passed arguments for the Instruction in I. We can assume that we
2171// can emit a call for any libcall we can produce. This is an abridged version
2172// of the full call infrastructure since we won't need to worry about things
2173// like computed function pointers or strange arguments at call sites.
2174// TODO: Try to unify this and the normal call bits for ARM, then try to unify
2175// with X86.
2176bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2177  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2178
2179  // Handle *simple* calls for now.
2180  Type *RetTy = I->getType();
2181  MVT RetVT;
2182  if (RetTy->isVoidTy())
2183    RetVT = MVT::isVoid;
2184  else if (!isTypeLegal(RetTy, RetVT))
2185    return false;
2186
2187  // Can't handle non-double multi-reg retvals.
2188  if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2189    SmallVector<CCValAssign, 16> RVLocs;
2190    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
2191    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2192    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2193      return false;
2194  }
2195
2196  // Set up the argument vectors.
2197  SmallVector<Value*, 8> Args;
2198  SmallVector<unsigned, 8> ArgRegs;
2199  SmallVector<MVT, 8> ArgVTs;
2200  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2201  Args.reserve(I->getNumOperands());
2202  ArgRegs.reserve(I->getNumOperands());
2203  ArgVTs.reserve(I->getNumOperands());
2204  ArgFlags.reserve(I->getNumOperands());
2205  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2206    Value *Op = I->getOperand(i);
2207    unsigned Arg = getRegForValue(Op);
2208    if (Arg == 0) return false;
2209
2210    Type *ArgTy = Op->getType();
2211    MVT ArgVT;
2212    if (!isTypeLegal(ArgTy, ArgVT)) return false;
2213
2214    ISD::ArgFlagsTy Flags;
2215    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2216    Flags.setOrigAlign(OriginalAlignment);
2217
2218    Args.push_back(Op);
2219    ArgRegs.push_back(Arg);
2220    ArgVTs.push_back(ArgVT);
2221    ArgFlags.push_back(Flags);
2222  }
2223
2224  // Handle the arguments now that we've gotten them.
2225  SmallVector<unsigned, 4> RegArgs;
2226  unsigned NumBytes;
2227  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2228                       RegArgs, CC, NumBytes, false))
2229    return false;
2230
2231  unsigned CalleeReg = 0;
2232  if (EnableARMLongCalls) {
2233    CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2234    if (CalleeReg == 0) return false;
2235  }
2236
2237  // Issue the call.
2238  unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls);
2239  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2240                                    DL, TII.get(CallOpc));
2241  // BL / BLX don't take a predicate, but tBL / tBLX do.
2242  if (isThumb2)
2243    AddDefaultPred(MIB);
2244  if (EnableARMLongCalls)
2245    MIB.addReg(CalleeReg);
2246  else
2247    MIB.addExternalSymbol(TLI.getLibcallName(Call));
2248
2249  // Add implicit physical register uses to the call.
2250  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2251    MIB.addReg(RegArgs[i], RegState::Implicit);
2252
2253  // Add a register mask with the call-preserved registers.
2254  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2255  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2256
2257  // Finish off the call including any return values.
2258  SmallVector<unsigned, 4> UsedRegs;
2259  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2260
2261  // Set all unused physreg defs as dead.
2262  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2263
2264  return true;
2265}
2266
2267bool ARMFastISel::SelectCall(const Instruction *I,
2268                             const char *IntrMemName = 0) {
2269  const CallInst *CI = cast<CallInst>(I);
2270  const Value *Callee = CI->getCalledValue();
2271
2272  // Can't handle inline asm.
2273  if (isa<InlineAsm>(Callee)) return false;
2274
2275  // Check the calling convention.
2276  ImmutableCallSite CS(CI);
2277  CallingConv::ID CC = CS.getCallingConv();
2278
2279  // TODO: Avoid some calling conventions?
2280
2281  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2282  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2283  bool isVarArg = FTy->isVarArg();
2284
2285  // Handle *simple* calls for now.
2286  Type *RetTy = I->getType();
2287  MVT RetVT;
2288  if (RetTy->isVoidTy())
2289    RetVT = MVT::isVoid;
2290  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2291           RetVT != MVT::i8  && RetVT != MVT::i1)
2292    return false;
2293
2294  // Can't handle non-double multi-reg retvals.
2295  if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2296      RetVT != MVT::i16 && RetVT != MVT::i32) {
2297    SmallVector<CCValAssign, 16> RVLocs;
2298    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
2299    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2300    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2301      return false;
2302  }
2303
2304  // Set up the argument vectors.
2305  SmallVector<Value*, 8> Args;
2306  SmallVector<unsigned, 8> ArgRegs;
2307  SmallVector<MVT, 8> ArgVTs;
2308  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2309  unsigned arg_size = CS.arg_size();
2310  Args.reserve(arg_size);
2311  ArgRegs.reserve(arg_size);
2312  ArgVTs.reserve(arg_size);
2313  ArgFlags.reserve(arg_size);
2314  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2315       i != e; ++i) {
2316    // If we're lowering a memory intrinsic instead of a regular call, skip the
2317    // last two arguments, which shouldn't be passed to the underlying function.
2318    if (IntrMemName && e-i <= 2)
2319      break;
2320
2321    ISD::ArgFlagsTy Flags;
2322    unsigned AttrInd = i - CS.arg_begin() + 1;
2323    if (CS.paramHasSExtAttr(AttrInd))
2324      Flags.setSExt();
2325    if (CS.paramHasZExtAttr(AttrInd))
2326      Flags.setZExt();
2327
2328    // FIXME: Only handle *easy* calls for now.
2329    if (CS.paramHasInRegAttr(AttrInd) ||
2330        CS.paramHasStructRetAttr(AttrInd) ||
2331        CS.paramHasNestAttr(AttrInd) ||
2332        CS.paramHasByValAttr(AttrInd))
2333      return false;
2334
2335    Type *ArgTy = (*i)->getType();
2336    MVT ArgVT;
2337    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2338        ArgVT != MVT::i1)
2339      return false;
2340
2341    unsigned Arg = getRegForValue(*i);
2342    if (Arg == 0)
2343      return false;
2344
2345    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2346    Flags.setOrigAlign(OriginalAlignment);
2347
2348    Args.push_back(*i);
2349    ArgRegs.push_back(Arg);
2350    ArgVTs.push_back(ArgVT);
2351    ArgFlags.push_back(Flags);
2352  }
2353
2354  // Handle the arguments now that we've gotten them.
2355  SmallVector<unsigned, 4> RegArgs;
2356  unsigned NumBytes;
2357  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2358                       RegArgs, CC, NumBytes, isVarArg))
2359    return false;
2360
2361  bool UseReg = false;
2362  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2363  if (!GV || EnableARMLongCalls) UseReg = true;
2364
2365  unsigned CalleeReg = 0;
2366  if (UseReg) {
2367    if (IntrMemName)
2368      CalleeReg = getLibcallReg(IntrMemName);
2369    else
2370      CalleeReg = getRegForValue(Callee);
2371
2372    if (CalleeReg == 0) return false;
2373  }
2374
2375  // Issue the call.
2376  unsigned CallOpc = ARMSelectCallOp(UseReg);
2377  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2378                                    DL, TII.get(CallOpc));
2379
2380  // ARM calls don't take a predicate, but tBL / tBLX do.
2381  if(isThumb2)
2382    AddDefaultPred(MIB);
2383  if (UseReg)
2384    MIB.addReg(CalleeReg);
2385  else if (!IntrMemName)
2386    MIB.addGlobalAddress(GV, 0, 0);
2387  else
2388    MIB.addExternalSymbol(IntrMemName, 0);
2389
2390  // Add implicit physical register uses to the call.
2391  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2392    MIB.addReg(RegArgs[i], RegState::Implicit);
2393
2394  // Add a register mask with the call-preserved registers.
2395  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2396  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2397
2398  // Finish off the call including any return values.
2399  SmallVector<unsigned, 4> UsedRegs;
2400  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2401    return false;
2402
2403  // Set all unused physreg defs as dead.
2404  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2405
2406  return true;
2407}
2408
2409bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2410  return Len <= 16;
2411}
2412
2413bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2414                                        uint64_t Len) {
2415  // Make sure we don't bloat code by inlining very large memcpy's.
2416  if (!ARMIsMemCpySmall(Len))
2417    return false;
2418
2419  // We don't care about alignment here since we just emit integer accesses.
2420  while (Len) {
2421    MVT VT;
2422    if (Len >= 4)
2423      VT = MVT::i32;
2424    else if (Len >= 2)
2425      VT = MVT::i16;
2426    else {
2427      assert(Len == 1);
2428      VT = MVT::i8;
2429    }
2430
2431    bool RV;
2432    unsigned ResultReg;
2433    RV = ARMEmitLoad(VT, ResultReg, Src);
2434    assert (RV == true && "Should be able to handle this load.");
2435    RV = ARMEmitStore(VT, ResultReg, Dest);
2436    assert (RV == true && "Should be able to handle this store.");
2437    (void)RV;
2438
2439    unsigned Size = VT.getSizeInBits()/8;
2440    Len -= Size;
2441    Dest.Offset += Size;
2442    Src.Offset += Size;
2443  }
2444
2445  return true;
2446}
2447
2448bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2449  // FIXME: Handle more intrinsics.
2450  switch (I.getIntrinsicID()) {
2451  default: return false;
2452  case Intrinsic::frameaddress: {
2453    MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
2454    MFI->setFrameAddressIsTaken(true);
2455
2456    unsigned LdrOpc;
2457    const TargetRegisterClass *RC;
2458    if (isThumb2) {
2459      LdrOpc =  ARM::t2LDRi12;
2460      RC = (const TargetRegisterClass*)&ARM::tGPRRegClass;
2461    } else {
2462      LdrOpc =  ARM::LDRi12;
2463      RC = (const TargetRegisterClass*)&ARM::GPRRegClass;
2464    }
2465
2466    const ARMBaseRegisterInfo *RegInfo =
2467          static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo());
2468    unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2469    unsigned SrcReg = FramePtr;
2470
2471    // Recursively load frame address
2472    // ldr r0 [fp]
2473    // ldr r0 [r0]
2474    // ldr r0 [r0]
2475    // ...
2476    unsigned DestReg;
2477    unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2478    while (Depth--) {
2479      DestReg = createResultReg(RC);
2480      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2481                              TII.get(LdrOpc), DestReg)
2482                      .addReg(SrcReg).addImm(0));
2483      SrcReg = DestReg;
2484    }
2485    UpdateValueMap(&I, SrcReg);
2486    return true;
2487  }
2488  case Intrinsic::memcpy:
2489  case Intrinsic::memmove: {
2490    const MemTransferInst &MTI = cast<MemTransferInst>(I);
2491    // Don't handle volatile.
2492    if (MTI.isVolatile())
2493      return false;
2494
2495    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2496    // we would emit dead code because we don't currently handle memmoves.
2497    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2498    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2499      // Small memcpy's are common enough that we want to do them without a call
2500      // if possible.
2501      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2502      if (ARMIsMemCpySmall(Len)) {
2503        Address Dest, Src;
2504        if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2505            !ARMComputeAddress(MTI.getRawSource(), Src))
2506          return false;
2507        if (ARMTryEmitSmallMemCpy(Dest, Src, Len))
2508          return true;
2509      }
2510    }
2511
2512    if (!MTI.getLength()->getType()->isIntegerTy(32))
2513      return false;
2514
2515    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2516      return false;
2517
2518    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2519    return SelectCall(&I, IntrMemName);
2520  }
2521  case Intrinsic::memset: {
2522    const MemSetInst &MSI = cast<MemSetInst>(I);
2523    // Don't handle volatile.
2524    if (MSI.isVolatile())
2525      return false;
2526
2527    if (!MSI.getLength()->getType()->isIntegerTy(32))
2528      return false;
2529
2530    if (MSI.getDestAddressSpace() > 255)
2531      return false;
2532
2533    return SelectCall(&I, "memset");
2534  }
2535  case Intrinsic::trap: {
2536    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::TRAP));
2537    return true;
2538  }
2539  }
2540}
2541
2542bool ARMFastISel::SelectTrunc(const Instruction *I) {
2543  // The high bits for a type smaller than the register size are assumed to be
2544  // undefined.
2545  Value *Op = I->getOperand(0);
2546
2547  EVT SrcVT, DestVT;
2548  SrcVT = TLI.getValueType(Op->getType(), true);
2549  DestVT = TLI.getValueType(I->getType(), true);
2550
2551  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2552    return false;
2553  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2554    return false;
2555
2556  unsigned SrcReg = getRegForValue(Op);
2557  if (!SrcReg) return false;
2558
2559  // Because the high bits are undefined, a truncate doesn't generate
2560  // any code.
2561  UpdateValueMap(I, SrcReg);
2562  return true;
2563}
2564
2565unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT,
2566                                    bool isZExt) {
2567  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2568    return 0;
2569
2570  unsigned Opc;
2571  bool isBoolZext = false;
2572  if (!SrcVT.isSimple()) return 0;
2573  switch (SrcVT.getSimpleVT().SimpleTy) {
2574  default: return 0;
2575  case MVT::i16:
2576    if (!Subtarget->hasV6Ops()) return 0;
2577    if (isZExt)
2578      Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH;
2579    else
2580      Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
2581    break;
2582  case MVT::i8:
2583    if (!Subtarget->hasV6Ops()) return 0;
2584    if (isZExt)
2585      Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB;
2586    else
2587      Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
2588    break;
2589  case MVT::i1:
2590    if (isZExt) {
2591      Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
2592      isBoolZext = true;
2593      break;
2594    }
2595    return 0;
2596  }
2597
2598  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2599  MachineInstrBuilder MIB;
2600  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
2601        .addReg(SrcReg);
2602  if (isBoolZext)
2603    MIB.addImm(1);
2604  else
2605    MIB.addImm(0);
2606  AddOptionalDefs(MIB);
2607  return ResultReg;
2608}
2609
2610bool ARMFastISel::SelectIntExt(const Instruction *I) {
2611  // On ARM, in general, integer casts don't involve legal types; this code
2612  // handles promotable integers.
2613  Type *DestTy = I->getType();
2614  Value *Src = I->getOperand(0);
2615  Type *SrcTy = Src->getType();
2616
2617  EVT SrcVT, DestVT;
2618  SrcVT = TLI.getValueType(SrcTy, true);
2619  DestVT = TLI.getValueType(DestTy, true);
2620
2621  bool isZExt = isa<ZExtInst>(I);
2622  unsigned SrcReg = getRegForValue(Src);
2623  if (!SrcReg) return false;
2624
2625  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2626  if (ResultReg == 0) return false;
2627  UpdateValueMap(I, ResultReg);
2628  return true;
2629}
2630
2631bool ARMFastISel::SelectShift(const Instruction *I,
2632                              ARM_AM::ShiftOpc ShiftTy) {
2633  // We handle thumb2 mode by target independent selector
2634  // or SelectionDAG ISel.
2635  if (isThumb2)
2636    return false;
2637
2638  // Only handle i32 now.
2639  EVT DestVT = TLI.getValueType(I->getType(), true);
2640  if (DestVT != MVT::i32)
2641    return false;
2642
2643  unsigned Opc = ARM::MOVsr;
2644  unsigned ShiftImm;
2645  Value *Src2Value = I->getOperand(1);
2646  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2647    ShiftImm = CI->getZExtValue();
2648
2649    // Fall back to selection DAG isel if the shift amount
2650    // is zero or greater than the width of the value type.
2651    if (ShiftImm == 0 || ShiftImm >=32)
2652      return false;
2653
2654    Opc = ARM::MOVsi;
2655  }
2656
2657  Value *Src1Value = I->getOperand(0);
2658  unsigned Reg1 = getRegForValue(Src1Value);
2659  if (Reg1 == 0) return false;
2660
2661  unsigned Reg2 = 0;
2662  if (Opc == ARM::MOVsr) {
2663    Reg2 = getRegForValue(Src2Value);
2664    if (Reg2 == 0) return false;
2665  }
2666
2667  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2668  if(ResultReg == 0) return false;
2669
2670  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2671                                    TII.get(Opc), ResultReg)
2672                            .addReg(Reg1);
2673
2674  if (Opc == ARM::MOVsi)
2675    MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2676  else if (Opc == ARM::MOVsr) {
2677    MIB.addReg(Reg2);
2678    MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2679  }
2680
2681  AddOptionalDefs(MIB);
2682  UpdateValueMap(I, ResultReg);
2683  return true;
2684}
2685
2686// TODO: SoftFP support.
2687bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2688
2689  switch (I->getOpcode()) {
2690    case Instruction::Load:
2691      return SelectLoad(I);
2692    case Instruction::Store:
2693      return SelectStore(I);
2694    case Instruction::Br:
2695      return SelectBranch(I);
2696    case Instruction::IndirectBr:
2697      return SelectIndirectBr(I);
2698    case Instruction::ICmp:
2699    case Instruction::FCmp:
2700      return SelectCmp(I);
2701    case Instruction::FPExt:
2702      return SelectFPExt(I);
2703    case Instruction::FPTrunc:
2704      return SelectFPTrunc(I);
2705    case Instruction::SIToFP:
2706      return SelectIToFP(I, /*isSigned*/ true);
2707    case Instruction::UIToFP:
2708      return SelectIToFP(I, /*isSigned*/ false);
2709    case Instruction::FPToSI:
2710      return SelectFPToI(I, /*isSigned*/ true);
2711    case Instruction::FPToUI:
2712      return SelectFPToI(I, /*isSigned*/ false);
2713    case Instruction::Add:
2714      return SelectBinaryIntOp(I, ISD::ADD);
2715    case Instruction::Or:
2716      return SelectBinaryIntOp(I, ISD::OR);
2717    case Instruction::Sub:
2718      return SelectBinaryIntOp(I, ISD::SUB);
2719    case Instruction::FAdd:
2720      return SelectBinaryFPOp(I, ISD::FADD);
2721    case Instruction::FSub:
2722      return SelectBinaryFPOp(I, ISD::FSUB);
2723    case Instruction::FMul:
2724      return SelectBinaryFPOp(I, ISD::FMUL);
2725    case Instruction::SDiv:
2726      return SelectDiv(I, /*isSigned*/ true);
2727    case Instruction::UDiv:
2728      return SelectDiv(I, /*isSigned*/ false);
2729    case Instruction::SRem:
2730      return SelectRem(I, /*isSigned*/ true);
2731    case Instruction::URem:
2732      return SelectRem(I, /*isSigned*/ false);
2733    case Instruction::Call:
2734      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2735        return SelectIntrinsicCall(*II);
2736      return SelectCall(I);
2737    case Instruction::Select:
2738      return SelectSelect(I);
2739    case Instruction::Ret:
2740      return SelectRet(I);
2741    case Instruction::Trunc:
2742      return SelectTrunc(I);
2743    case Instruction::ZExt:
2744    case Instruction::SExt:
2745      return SelectIntExt(I);
2746    case Instruction::Shl:
2747      return SelectShift(I, ARM_AM::lsl);
2748    case Instruction::LShr:
2749      return SelectShift(I, ARM_AM::lsr);
2750    case Instruction::AShr:
2751      return SelectShift(I, ARM_AM::asr);
2752    default: break;
2753  }
2754  return false;
2755}
2756
2757/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
2758/// vreg is being provided by the specified load instruction.  If possible,
2759/// try to fold the load as an operand to the instruction, returning true if
2760/// successful.
2761bool ARMFastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
2762                                const LoadInst *LI) {
2763  // Verify we have a legal type before going any further.
2764  MVT VT;
2765  if (!isLoadTypeLegal(LI->getType(), VT))
2766    return false;
2767
2768  // Combine load followed by zero- or sign-extend.
2769  // ldrb r1, [r0]       ldrb r1, [r0]
2770  // uxtb r2, r1     =>
2771  // mov  r3, r2         mov  r3, r1
2772  bool isZExt = true;
2773  switch(MI->getOpcode()) {
2774    default: return false;
2775    case ARM::SXTH:
2776    case ARM::t2SXTH:
2777      isZExt = false;
2778    case ARM::UXTH:
2779    case ARM::t2UXTH:
2780      if (VT != MVT::i16)
2781        return false;
2782    break;
2783    case ARM::SXTB:
2784    case ARM::t2SXTB:
2785      isZExt = false;
2786    case ARM::UXTB:
2787    case ARM::t2UXTB:
2788      if (VT != MVT::i8)
2789        return false;
2790    break;
2791  }
2792  // See if we can handle this address.
2793  Address Addr;
2794  if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2795
2796  unsigned ResultReg = MI->getOperand(0).getReg();
2797  if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2798    return false;
2799  MI->eraseFromParent();
2800  return true;
2801}
2802
2803unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
2804                                     unsigned Align, EVT VT) {
2805  bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2806  ARMConstantPoolConstant *CPV =
2807    ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2808  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
2809
2810  unsigned Opc;
2811  unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT));
2812  // Load value.
2813  if (isThumb2) {
2814    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2815                            TII.get(ARM::t2LDRpci), DestReg1)
2816                    .addConstantPoolIndex(Idx));
2817    Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs;
2818  } else {
2819    // The extra immediate is for addrmode2.
2820    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2821                            DL, TII.get(ARM::LDRcp), DestReg1)
2822                    .addConstantPoolIndex(Idx).addImm(0));
2823    Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs;
2824  }
2825
2826  unsigned GlobalBaseReg = AFI->getGlobalBaseReg();
2827  if (GlobalBaseReg == 0) {
2828    GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT));
2829    AFI->setGlobalBaseReg(GlobalBaseReg);
2830  }
2831
2832  unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT));
2833  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2834                                    DL, TII.get(Opc), DestReg2)
2835                            .addReg(DestReg1)
2836                            .addReg(GlobalBaseReg);
2837  if (!UseGOTOFF)
2838    MIB.addImm(0);
2839  AddOptionalDefs(MIB);
2840
2841  return DestReg2;
2842}
2843
2844namespace llvm {
2845  FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
2846                                const TargetLibraryInfo *libInfo) {
2847    // Completely untested on non-iOS.
2848    const TargetMachine &TM = funcInfo.MF->getTarget();
2849
2850    // Darwin and thumb1 only for now.
2851    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2852    if (Subtarget->isTargetIOS() && !Subtarget->isThumb1Only())
2853      return new ARMFastISel(funcInfo, libInfo);
2854    return 0;
2855  }
2856}
2857