ARMFastISel.cpp revision 47650ece374315ce4ff5e483f6165ae37752f230
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/Analysis.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/FunctionLoweringInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineConstantPool.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/GetElementPtrTypeIterator.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46using namespace llvm;
47
48static cl::opt<bool>
49EnableARMFastISel("arm-fast-isel",
50                    cl::desc("Turn on experimental ARM fast-isel support"),
51                    cl::init(false), cl::Hidden);
52
53namespace {
54
55class ARMFastISel : public FastISel {
56
57  typedef struct AddrBase {
58    unsigned Reg;
59    unsigned FrameIndex;
60  } AddrBase;
61
62  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
63  /// make the right decision when generating code for different targets.
64  const ARMSubtarget *Subtarget;
65  const TargetMachine &TM;
66  const TargetInstrInfo &TII;
67  const TargetLowering &TLI;
68  ARMFunctionInfo *AFI;
69
70  // Convenience variables to avoid some queries.
71  bool isThumb;
72  LLVMContext *Context;
73
74  public:
75    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
76    : FastISel(funcInfo),
77      TM(funcInfo.MF->getTarget()),
78      TII(*TM.getInstrInfo()),
79      TLI(*TM.getTargetLowering()) {
80      Subtarget = &TM.getSubtarget<ARMSubtarget>();
81      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
82      isThumb = AFI->isThumbFunction();
83      Context = &funcInfo.Fn->getContext();
84    }
85
86    // Code from FastISel.cpp.
87    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
88                                   const TargetRegisterClass *RC);
89    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
90                                    const TargetRegisterClass *RC,
91                                    unsigned Op0, bool Op0IsKill);
92    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
93                                     const TargetRegisterClass *RC,
94                                     unsigned Op0, bool Op0IsKill,
95                                     unsigned Op1, bool Op1IsKill);
96    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
97                                     const TargetRegisterClass *RC,
98                                     unsigned Op0, bool Op0IsKill,
99                                     uint64_t Imm);
100    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
101                                     const TargetRegisterClass *RC,
102                                     unsigned Op0, bool Op0IsKill,
103                                     const ConstantFP *FPImm);
104    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
105                                    const TargetRegisterClass *RC,
106                                    uint64_t Imm);
107    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
108                                      const TargetRegisterClass *RC,
109                                      unsigned Op0, bool Op0IsKill,
110                                      unsigned Op1, bool Op1IsKill,
111                                      uint64_t Imm);
112    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
113                                                unsigned Op0, bool Op0IsKill,
114                                                uint32_t Idx);
115
116    // Backend specific FastISel code.
117    virtual bool TargetSelectInstruction(const Instruction *I);
118    virtual unsigned TargetMaterializeConstant(const Constant *C);
119    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
120
121  #include "ARMGenFastISel.inc"
122
123    // Instruction selection routines.
124  private:
125    virtual bool SelectLoad(const Instruction *I);
126    virtual bool SelectStore(const Instruction *I);
127    virtual bool SelectBranch(const Instruction *I);
128    virtual bool SelectCmp(const Instruction *I);
129    virtual bool SelectFPExt(const Instruction *I);
130    virtual bool SelectFPTrunc(const Instruction *I);
131    virtual bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
132    virtual bool SelectSIToFP(const Instruction *I);
133    virtual bool SelectFPToSI(const Instruction *I);
134    virtual bool SelectSDiv(const Instruction *I);
135    virtual bool SelectSRem(const Instruction *I);
136    virtual bool SelectCall(const Instruction *I);
137    virtual bool SelectSelect(const Instruction *I);
138
139    // Utility routines.
140  private:
141    bool isTypeLegal(const Type *Ty, EVT &VT);
142    bool isLoadTypeLegal(const Type *Ty, EVT &VT);
143    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, AddrBase Base, int Offset);
144    bool ARMEmitStore(EVT VT, unsigned SrcReg, AddrBase Base, int Offset);
145    bool ARMComputeRegOffset(const Value *Obj, AddrBase &Base, int &Offset);
146    void ARMSimplifyRegOffset(AddrBase &Base, int &Offset, EVT VT);
147    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
148    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
149    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
150    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
151    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
152
153    // Call handling routines.
154  private:
155    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
156    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
157                         SmallVectorImpl<unsigned> &ArgRegs,
158                         SmallVectorImpl<EVT> &ArgVTs,
159                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
160                         SmallVectorImpl<unsigned> &RegArgs,
161                         CallingConv::ID CC,
162                         unsigned &NumBytes);
163    bool FinishCall(EVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
164                    const Instruction *I, CallingConv::ID CC,
165                    unsigned &NumBytes);
166    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
167
168    // OptionalDef handling routines.
169  private:
170    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
171    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
172};
173
174} // end anonymous namespace
175
176#include "ARMGenCallingConv.inc"
177
178// DefinesOptionalPredicate - This is different from DefinesPredicate in that
179// we don't care about implicit defs here, just places we'll need to add a
180// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
181bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
182  const TargetInstrDesc &TID = MI->getDesc();
183  if (!TID.hasOptionalDef())
184    return false;
185
186  // Look to see if our OptionalDef is defining CPSR or CCR.
187  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
188    const MachineOperand &MO = MI->getOperand(i);
189    if (!MO.isReg() || !MO.isDef()) continue;
190    if (MO.getReg() == ARM::CPSR)
191      *CPSR = true;
192  }
193  return true;
194}
195
196// If the machine is predicable go ahead and add the predicate operands, if
197// it needs default CC operands add those.
198const MachineInstrBuilder &
199ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
200  MachineInstr *MI = &*MIB;
201
202  // Do we use a predicate?
203  if (TII.isPredicable(MI))
204    AddDefaultPred(MIB);
205
206  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
207  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
208  bool CPSR = false;
209  if (DefinesOptionalPredicate(MI, &CPSR)) {
210    if (CPSR)
211      AddDefaultT1CC(MIB);
212    else
213      AddDefaultCC(MIB);
214  }
215  return MIB;
216}
217
218unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
219                                    const TargetRegisterClass* RC) {
220  unsigned ResultReg = createResultReg(RC);
221  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
222
223  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
224  return ResultReg;
225}
226
227unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
228                                     const TargetRegisterClass *RC,
229                                     unsigned Op0, bool Op0IsKill) {
230  unsigned ResultReg = createResultReg(RC);
231  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
232
233  if (II.getNumDefs() >= 1)
234    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
235                   .addReg(Op0, Op0IsKill * RegState::Kill));
236  else {
237    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
238                   .addReg(Op0, Op0IsKill * RegState::Kill));
239    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
240                   TII.get(TargetOpcode::COPY), ResultReg)
241                   .addReg(II.ImplicitDefs[0]));
242  }
243  return ResultReg;
244}
245
246unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
247                                      const TargetRegisterClass *RC,
248                                      unsigned Op0, bool Op0IsKill,
249                                      unsigned Op1, bool Op1IsKill) {
250  unsigned ResultReg = createResultReg(RC);
251  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
252
253  if (II.getNumDefs() >= 1)
254    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
255                   .addReg(Op0, Op0IsKill * RegState::Kill)
256                   .addReg(Op1, Op1IsKill * RegState::Kill));
257  else {
258    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
259                   .addReg(Op0, Op0IsKill * RegState::Kill)
260                   .addReg(Op1, Op1IsKill * RegState::Kill));
261    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
262                           TII.get(TargetOpcode::COPY), ResultReg)
263                   .addReg(II.ImplicitDefs[0]));
264  }
265  return ResultReg;
266}
267
268unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
269                                      const TargetRegisterClass *RC,
270                                      unsigned Op0, bool Op0IsKill,
271                                      uint64_t Imm) {
272  unsigned ResultReg = createResultReg(RC);
273  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
274
275  if (II.getNumDefs() >= 1)
276    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
277                   .addReg(Op0, Op0IsKill * RegState::Kill)
278                   .addImm(Imm));
279  else {
280    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
281                   .addReg(Op0, Op0IsKill * RegState::Kill)
282                   .addImm(Imm));
283    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
284                           TII.get(TargetOpcode::COPY), ResultReg)
285                   .addReg(II.ImplicitDefs[0]));
286  }
287  return ResultReg;
288}
289
290unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
291                                      const TargetRegisterClass *RC,
292                                      unsigned Op0, bool Op0IsKill,
293                                      const ConstantFP *FPImm) {
294  unsigned ResultReg = createResultReg(RC);
295  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
296
297  if (II.getNumDefs() >= 1)
298    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
299                   .addReg(Op0, Op0IsKill * RegState::Kill)
300                   .addFPImm(FPImm));
301  else {
302    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
303                   .addReg(Op0, Op0IsKill * RegState::Kill)
304                   .addFPImm(FPImm));
305    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
306                           TII.get(TargetOpcode::COPY), ResultReg)
307                   .addReg(II.ImplicitDefs[0]));
308  }
309  return ResultReg;
310}
311
312unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
313                                       const TargetRegisterClass *RC,
314                                       unsigned Op0, bool Op0IsKill,
315                                       unsigned Op1, bool Op1IsKill,
316                                       uint64_t Imm) {
317  unsigned ResultReg = createResultReg(RC);
318  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
319
320  if (II.getNumDefs() >= 1)
321    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
322                   .addReg(Op0, Op0IsKill * RegState::Kill)
323                   .addReg(Op1, Op1IsKill * RegState::Kill)
324                   .addImm(Imm));
325  else {
326    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
327                   .addReg(Op0, Op0IsKill * RegState::Kill)
328                   .addReg(Op1, Op1IsKill * RegState::Kill)
329                   .addImm(Imm));
330    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
331                           TII.get(TargetOpcode::COPY), ResultReg)
332                   .addReg(II.ImplicitDefs[0]));
333  }
334  return ResultReg;
335}
336
337unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
338                                     const TargetRegisterClass *RC,
339                                     uint64_t Imm) {
340  unsigned ResultReg = createResultReg(RC);
341  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
342
343  if (II.getNumDefs() >= 1)
344    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
345                   .addImm(Imm));
346  else {
347    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
348                   .addImm(Imm));
349    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
350                           TII.get(TargetOpcode::COPY), ResultReg)
351                   .addReg(II.ImplicitDefs[0]));
352  }
353  return ResultReg;
354}
355
356unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
357                                                 unsigned Op0, bool Op0IsKill,
358                                                 uint32_t Idx) {
359  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
360  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
361         "Cannot yet extract from physregs");
362  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
363                         DL, TII.get(TargetOpcode::COPY), ResultReg)
364                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
365  return ResultReg;
366}
367
368// TODO: Don't worry about 64-bit now, but when this is fixed remove the
369// checks from the various callers.
370unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
371  if (VT.getSimpleVT().SimpleTy == MVT::f64) return 0;
372
373  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
374  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
375                          TII.get(ARM::VMOVRS), MoveReg)
376                  .addReg(SrcReg));
377  return MoveReg;
378}
379
380unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
381  if (VT.getSimpleVT().SimpleTy == MVT::i64) return 0;
382
383  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
384  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
385                          TII.get(ARM::VMOVSR), MoveReg)
386                  .addReg(SrcReg));
387  return MoveReg;
388}
389
390// For double width floating point we need to materialize two constants
391// (the high and the low) into integer registers then use a move to get
392// the combined constant into an FP reg.
393unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
394  const APFloat Val = CFP->getValueAPF();
395  bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64;
396
397  // This checks to see if we can use VFP3 instructions to materialize
398  // a constant, otherwise we have to go through the constant pool.
399  if (TLI.isFPImmLegal(Val, VT)) {
400    unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
401    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
402    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
403                            DestReg)
404                    .addFPImm(CFP));
405    return DestReg;
406  }
407
408  // Require VFP2 for loading fp constants.
409  if (!Subtarget->hasVFP2()) return false;
410
411  // MachineConstantPool wants an explicit alignment.
412  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
413  if (Align == 0) {
414    // TODO: Figure out if this is correct.
415    Align = TD.getTypeAllocSize(CFP->getType());
416  }
417  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
418  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
419  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
420
421  // The extra reg is for addrmode5.
422  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
423                          DestReg)
424                  .addConstantPoolIndex(Idx)
425                  .addReg(0));
426  return DestReg;
427}
428
429unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
430
431  // For now 32-bit only.
432  if (VT.getSimpleVT().SimpleTy != MVT::i32) return false;
433
434  // MachineConstantPool wants an explicit alignment.
435  unsigned Align = TD.getPrefTypeAlignment(C->getType());
436  if (Align == 0) {
437    // TODO: Figure out if this is correct.
438    Align = TD.getTypeAllocSize(C->getType());
439  }
440  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
441  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
442
443  if (isThumb)
444    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
445                            TII.get(ARM::t2LDRpci), DestReg)
446                    .addConstantPoolIndex(Idx));
447  else
448    // The extra reg and immediate are for addrmode2.
449    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
450                            TII.get(ARM::LDRcp), DestReg)
451                    .addConstantPoolIndex(Idx)
452                    .addReg(0).addImm(0));
453
454  return DestReg;
455}
456
457unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
458  // For now 32-bit only.
459  if (VT.getSimpleVT().SimpleTy != MVT::i32) return 0;
460
461  Reloc::Model RelocM = TM.getRelocationModel();
462
463  // TODO: No external globals for now.
464  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) return 0;
465
466  // TODO: Need more magic for ARM PIC.
467  if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
468
469  // MachineConstantPool wants an explicit alignment.
470  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
471  if (Align == 0) {
472    // TODO: Figure out if this is correct.
473    Align = TD.getTypeAllocSize(GV->getType());
474  }
475
476  // Grab index.
477  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
478  unsigned Id = AFI->createConstPoolEntryUId();
479  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id,
480                                                       ARMCP::CPValue, PCAdj);
481  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
482
483  // Load value.
484  MachineInstrBuilder MIB;
485  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
486  if (isThumb) {
487    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
488    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
489          .addConstantPoolIndex(Idx);
490    if (RelocM == Reloc::PIC_)
491      MIB.addImm(Id);
492  } else {
493    // The extra reg and immediate are for addrmode2.
494    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
495                  DestReg)
496          .addConstantPoolIndex(Idx)
497          .addReg(0).addImm(0);
498  }
499  AddOptionalDefs(MIB);
500  return DestReg;
501}
502
503unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
504  EVT VT = TLI.getValueType(C->getType(), true);
505
506  // Only handle simple types.
507  if (!VT.isSimple()) return 0;
508
509  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
510    return ARMMaterializeFP(CFP, VT);
511  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
512    return ARMMaterializeGV(GV, VT);
513  else if (isa<ConstantInt>(C))
514    return ARMMaterializeInt(C, VT);
515
516  return 0;
517}
518
519unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
520  // Don't handle dynamic allocas.
521  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
522
523  EVT VT;
524  if (!isTypeLegal(AI->getType(), VT)) return false;
525
526  DenseMap<const AllocaInst*, int>::iterator SI =
527    FuncInfo.StaticAllocaMap.find(AI);
528
529  // This will get lowered later into the correct offsets and registers
530  // via rewriteXFrameIndex.
531  if (SI != FuncInfo.StaticAllocaMap.end()) {
532    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
533    unsigned ResultReg = createResultReg(RC);
534    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
535    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
536                            TII.get(Opc), ResultReg)
537                            .addFrameIndex(SI->second)
538                            .addImm(0));
539    return ResultReg;
540  }
541
542  return 0;
543}
544
545bool ARMFastISel::isTypeLegal(const Type *Ty, EVT &VT) {
546  VT = TLI.getValueType(Ty, true);
547
548  // Only handle simple types.
549  if (VT == MVT::Other || !VT.isSimple()) return false;
550
551  // Handle all legal types, i.e. a register that will directly hold this
552  // value.
553  return TLI.isTypeLegal(VT);
554}
555
556bool ARMFastISel::isLoadTypeLegal(const Type *Ty, EVT &VT) {
557  if (isTypeLegal(Ty, VT)) return true;
558
559  // If this is a type than can be sign or zero-extended to a basic operation
560  // go ahead and accept it now.
561  if (VT == MVT::i8 || VT == MVT::i16)
562    return true;
563
564  return false;
565}
566
567// Computes the Reg+Offset to get to an object.
568bool ARMFastISel::ARMComputeRegOffset(const Value *Obj, AddrBase &Base,
569                                      int &Offset) {
570  // Some boilerplate from the X86 FastISel.
571  const User *U = NULL;
572  unsigned Opcode = Instruction::UserOp1;
573  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
574    // Don't walk into other basic blocks; it's possible we haven't
575    // visited them yet, so the instructions may not yet be assigned
576    // virtual registers.
577    if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB)
578      return false;
579    Opcode = I->getOpcode();
580    U = I;
581  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
582    Opcode = C->getOpcode();
583    U = C;
584  }
585
586  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
587    if (Ty->getAddressSpace() > 255)
588      // Fast instruction selection doesn't support the special
589      // address spaces.
590      return false;
591
592  switch (Opcode) {
593    default:
594    break;
595    case Instruction::BitCast: {
596      // Look through bitcasts.
597      return ARMComputeRegOffset(U->getOperand(0), Base, Offset);
598    }
599    case Instruction::IntToPtr: {
600      // Look past no-op inttoptrs.
601      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
602        return ARMComputeRegOffset(U->getOperand(0), Base, Offset);
603      break;
604    }
605    case Instruction::PtrToInt: {
606      // Look past no-op ptrtoints.
607      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
608        return ARMComputeRegOffset(U->getOperand(0), Base, Offset);
609      break;
610    }
611    case Instruction::GetElementPtr: {
612      int SavedOffset = Offset;
613      AddrBase SavedBase = Base;
614      int TmpOffset = Offset;
615
616      // Iterate through the GEP folding the constants into offsets where
617      // we can.
618      gep_type_iterator GTI = gep_type_begin(U);
619      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
620           i != e; ++i, ++GTI) {
621        const Value *Op = *i;
622        if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
623          const StructLayout *SL = TD.getStructLayout(STy);
624          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
625          TmpOffset += SL->getElementOffset(Idx);
626        } else {
627          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
628          SmallVector<const Value *, 4> Worklist;
629          Worklist.push_back(Op);
630          do {
631            Op = Worklist.pop_back_val();
632            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
633              // Constant-offset addressing.
634              TmpOffset += CI->getSExtValue() * S;
635            } else if (0 && isa<AddOperator>(Op) &&
636                       isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
637              // An add with a constant operand. Fold the constant.
638              ConstantInt *CI =
639                cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
640              TmpOffset += CI->getSExtValue() * S;
641              // Add the other operand back to the work list.
642              Worklist.push_back(cast<AddOperator>(Op)->getOperand(0));
643            } else
644              goto unsupported_gep;
645          } while (!Worklist.empty());
646        }
647      }
648
649      // Try to grab the base operand now.
650      Offset = TmpOffset;
651      if (ARMComputeRegOffset(U->getOperand(0), Base, Offset)) return true;
652
653      // We failed, restore everything and try the other options.
654      Offset = SavedOffset;
655      Base = SavedBase;
656
657      unsupported_gep:
658      break;
659    }
660    case Instruction::Alloca: {
661      // TODO: Fix this to do intermediate loads, etc.
662      if (Offset != 0) return false;
663
664      const AllocaInst *AI = cast<AllocaInst>(Obj);
665      DenseMap<const AllocaInst*, int>::iterator SI =
666        FuncInfo.StaticAllocaMap.find(AI);
667      if (SI != FuncInfo.StaticAllocaMap.end()) {
668        Base.Reg = ARM::SP;
669        Base.FrameIndex = SI->second;
670        return true;
671      }
672      // Don't handle dynamic allocas.
673      assert(!FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Obj)) &&
674             "Alloca should have been handled earlier!");
675      return false;
676    }
677  }
678
679  // Materialize the global variable's address into a reg which can
680  // then be used later to load the variable.
681  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
682    unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
683    if (Tmp == 0) return false;
684
685    Base.Reg = Tmp;
686    return true;
687  }
688
689  // Try to get this in a register if nothing else has worked.
690  if (Base.Reg == 0) Base.Reg = getRegForValue(Obj);
691  return Base.Reg != 0;
692}
693
694void ARMFastISel::ARMSimplifyRegOffset(AddrBase &Base, int &Offset, EVT VT) {
695
696  // Since the offset may be too large for the load instruction
697  // get the reg+offset into a register.
698  if (Base.Reg != ARM::SP && Offset != 0) {
699    ARMCC::CondCodes Pred = ARMCC::AL;
700    unsigned PredReg = 0;
701
702    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
703      ARM::GPRRegisterClass;
704    unsigned BaseReg = createResultReg(RC);
705
706    if (!isThumb)
707      emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
708                              BaseReg, Base.Reg, Offset, Pred, PredReg,
709                              static_cast<const ARMBaseInstrInfo&>(TII));
710    else {
711      assert(AFI->isThumb2Function());
712      emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
713                             BaseReg, Base.Reg, Offset, Pred, PredReg,
714                             static_cast<const ARMBaseInstrInfo&>(TII));
715    }
716    Offset = 0;
717    Base.Reg = BaseReg;
718  }
719}
720
721bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg,
722                              AddrBase Base, int Offset) {
723
724  assert(VT.isSimple() && "Non-simple types are invalid here!");
725  unsigned Opc;
726  TargetRegisterClass *RC;
727  bool isFloat = false;
728  switch (VT.getSimpleVT().SimpleTy) {
729    default:
730      // This is mostly going to be Neon/vector support.
731      return false;
732    case MVT::i16:
733      Opc = isThumb ? ARM::t2LDRHi8 : ARM::LDRH;
734      RC = ARM::GPRRegisterClass;
735      VT = MVT::i32;
736      break;
737    case MVT::i8:
738      Opc = isThumb ? ARM::t2LDRBi8 : ARM::LDRB;
739      RC = ARM::GPRRegisterClass;
740      VT = MVT::i32;
741      break;
742    case MVT::i32:
743      Opc = isThumb ? ARM::t2LDRi8 : ARM::LDR;
744      RC = ARM::GPRRegisterClass;
745      break;
746    case MVT::f32:
747      Opc = ARM::VLDRS;
748      RC = TLI.getRegClassFor(VT);
749      isFloat = true;
750      break;
751    case MVT::f64:
752      Opc = ARM::VLDRD;
753      RC = TLI.getRegClassFor(VT);
754      isFloat = true;
755      break;
756  }
757
758  ResultReg = createResultReg(RC);
759
760  // For now with the additions above the offset should be zero - thus we
761  // can always fit into an i8.
762  assert((Base.Reg == ARM::SP || Offset == 0) &&
763          "Offset not zero and not a stack load!");
764
765  if (Base.Reg == ARM::SP && Offset == 0)
766    TII.loadRegFromStackSlot(*FuncInfo.MBB, *FuncInfo.InsertPt,
767                             ResultReg, Base.FrameIndex, RC,
768                             TM.getRegisterInfo());
769  // The thumb and floating point instructions both take 2 operands, ARM takes
770  // another register.
771  else if (isFloat || isThumb)
772    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
773                            TII.get(Opc), ResultReg)
774                    .addReg(Base.Reg).addImm(Offset));
775  else
776    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
777                            TII.get(Opc), ResultReg)
778                    .addReg(Base.Reg).addReg(0).addImm(Offset));
779  return true;
780}
781
782bool ARMFastISel::SelectLoad(const Instruction *I) {
783  // Verify we have a legal type before going any further.
784  EVT VT;
785  if (!isLoadTypeLegal(I->getType(), VT))
786    return false;
787
788  // Our register and offset with innocuous defaults.
789  AddrBase Base = { 0, 0 };
790  int Offset = 0;
791
792  // See if we can handle this as Reg + Offset
793  if (!ARMComputeRegOffset(I->getOperand(0), Base, Offset))
794    return false;
795
796  ARMSimplifyRegOffset(Base, Offset, VT);
797
798  unsigned ResultReg;
799  if (!ARMEmitLoad(VT, ResultReg, Base, Offset)) return false;
800
801  UpdateValueMap(I, ResultReg);
802  return true;
803}
804
805bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg,
806                               AddrBase Base, int Offset) {
807  unsigned StrOpc;
808  bool isFloat = false;
809  // VT is set here only for use in the alloca stores below - those are promoted
810  // to reg size always.
811  switch (VT.getSimpleVT().SimpleTy) {
812    default: return false;
813    case MVT::i1:
814    case MVT::i8:
815      VT = MVT::i32;
816      StrOpc = isThumb ? ARM::t2STRBi8 : ARM::STRB;
817      break;
818    case MVT::i16:
819      VT = MVT::i32;
820      StrOpc = isThumb ? ARM::t2STRHi8 : ARM::STRH;
821      break;
822    case MVT::i32:
823      StrOpc = isThumb ? ARM::t2STRi8 : ARM::STR;
824      break;
825    case MVT::f32:
826      if (!Subtarget->hasVFP2()) return false;
827      StrOpc = ARM::VSTRS;
828      isFloat = true;
829      break;
830    case MVT::f64:
831      if (!Subtarget->hasVFP2()) return false;
832      StrOpc = ARM::VSTRD;
833      isFloat = true;
834      break;
835  }
836
837  if (Base.Reg == ARM::SP && Offset == 0)
838    TII.storeRegToStackSlot(*FuncInfo.MBB, *FuncInfo.InsertPt,
839                            SrcReg, true /*isKill*/, Base.FrameIndex,
840                            TLI.getRegClassFor(VT), TM.getRegisterInfo());
841  // The thumb addressing mode has operands swapped from the arm addressing
842  // mode, the floating point one only has two operands.
843  else if (isFloat || isThumb)
844    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
845                            TII.get(StrOpc))
846                    .addReg(SrcReg).addReg(Base.Reg).addImm(Offset));
847  else
848    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
849                            TII.get(StrOpc))
850                    .addReg(SrcReg).addReg(Base.Reg).addReg(0).addImm(Offset));
851
852  return true;
853}
854
855bool ARMFastISel::SelectStore(const Instruction *I) {
856  Value *Op0 = I->getOperand(0);
857  unsigned SrcReg = 0;
858
859  // Yay type legalization
860  EVT VT;
861  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
862    return false;
863
864  // Get the value to be stored into a register.
865  SrcReg = getRegForValue(Op0);
866  if (SrcReg == 0)
867    return false;
868
869  // Our register and offset with innocuous defaults.
870  AddrBase Base = { 0, 0 };
871  int Offset = 0;
872
873  // See if we can handle this as Reg + Offset
874  if (!ARMComputeRegOffset(I->getOperand(1), Base, Offset))
875    return false;
876
877  ARMSimplifyRegOffset(Base, Offset, VT);
878
879  if (!ARMEmitStore(VT, SrcReg, Base, Offset)) return false;
880
881  return true;
882}
883
884static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
885  switch (Pred) {
886    // Needs two compares...
887    case CmpInst::FCMP_ONE:
888    case CmpInst::FCMP_UEQ:
889    default:
890      assert(false && "Unhandled CmpInst::Predicate!");
891      return ARMCC::AL;
892    case CmpInst::ICMP_EQ:
893    case CmpInst::FCMP_OEQ:
894      return ARMCC::EQ;
895    case CmpInst::ICMP_SGT:
896    case CmpInst::FCMP_OGT:
897      return ARMCC::GT;
898    case CmpInst::ICMP_SGE:
899    case CmpInst::FCMP_OGE:
900      return ARMCC::GE;
901    case CmpInst::ICMP_UGT:
902    case CmpInst::FCMP_UGT:
903      return ARMCC::HI;
904    case CmpInst::FCMP_OLT:
905      return ARMCC::MI;
906    case CmpInst::ICMP_ULE:
907    case CmpInst::FCMP_OLE:
908      return ARMCC::LS;
909    case CmpInst::FCMP_ORD:
910      return ARMCC::VC;
911    case CmpInst::FCMP_UNO:
912      return ARMCC::VS;
913    case CmpInst::FCMP_UGE:
914      return ARMCC::PL;
915    case CmpInst::ICMP_SLT:
916    case CmpInst::FCMP_ULT:
917      return ARMCC::LT;
918    case CmpInst::ICMP_SLE:
919    case CmpInst::FCMP_ULE:
920      return ARMCC::LE;
921    case CmpInst::FCMP_UNE:
922    case CmpInst::ICMP_NE:
923      return ARMCC::NE;
924    case CmpInst::ICMP_UGE:
925      return ARMCC::HS;
926    case CmpInst::ICMP_ULT:
927      return ARMCC::LO;
928  }
929}
930
931bool ARMFastISel::SelectBranch(const Instruction *I) {
932  const BranchInst *BI = cast<BranchInst>(I);
933  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
934  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
935
936  // Simple branch support.
937  // TODO: Try to avoid the re-computation in some places.
938  unsigned CondReg = getRegForValue(BI->getCondition());
939  if (CondReg == 0) return false;
940
941  // Re-set the flags just in case.
942  unsigned CmpOpc = isThumb ? ARM::t2CMPri : ARM::CMPri;
943  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
944                  .addReg(CondReg).addImm(1));
945
946  unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
947  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
948                  .addMBB(TBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
949  FastEmitBranch(FBB, DL);
950  FuncInfo.MBB->addSuccessor(TBB);
951  return true;
952}
953
954bool ARMFastISel::SelectCmp(const Instruction *I) {
955  const CmpInst *CI = cast<CmpInst>(I);
956
957  EVT VT;
958  const Type *Ty = CI->getOperand(0)->getType();
959  if (!isTypeLegal(Ty, VT))
960    return false;
961
962  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
963  if (isFloat && !Subtarget->hasVFP2())
964    return false;
965
966  unsigned CmpOpc;
967  unsigned CondReg;
968  switch (VT.getSimpleVT().SimpleTy) {
969    default: return false;
970    // TODO: Verify compares.
971    case MVT::f32:
972      CmpOpc = ARM::VCMPES;
973      CondReg = ARM::FPSCR;
974      break;
975    case MVT::f64:
976      CmpOpc = ARM::VCMPED;
977      CondReg = ARM::FPSCR;
978      break;
979    case MVT::i32:
980      CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
981      CondReg = ARM::CPSR;
982      break;
983  }
984
985  // Get the compare predicate.
986  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
987
988  // We may not handle every CC for now.
989  if (ARMPred == ARMCC::AL) return false;
990
991  unsigned Arg1 = getRegForValue(CI->getOperand(0));
992  if (Arg1 == 0) return false;
993
994  unsigned Arg2 = getRegForValue(CI->getOperand(1));
995  if (Arg2 == 0) return false;
996
997  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
998                  .addReg(Arg1).addReg(Arg2));
999
1000  // For floating point we need to move the result to a comparison register
1001  // that we can then use for branches.
1002  if (isFloat)
1003    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1004                            TII.get(ARM::FMSTAT)));
1005
1006  // Now set a register based on the comparison. Explicitly set the predicates
1007  // here.
1008  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1009  TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1010                                    : ARM::GPRRegisterClass;
1011  unsigned DestReg = createResultReg(RC);
1012  Constant *Zero
1013    = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1014  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1015  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1016          .addReg(ZeroReg).addImm(1)
1017          .addImm(ARMPred).addReg(CondReg);
1018
1019  UpdateValueMap(I, DestReg);
1020  return true;
1021}
1022
1023bool ARMFastISel::SelectFPExt(const Instruction *I) {
1024  // Make sure we have VFP and that we're extending float to double.
1025  if (!Subtarget->hasVFP2()) return false;
1026
1027  Value *V = I->getOperand(0);
1028  if (!I->getType()->isDoubleTy() ||
1029      !V->getType()->isFloatTy()) return false;
1030
1031  unsigned Op = getRegForValue(V);
1032  if (Op == 0) return false;
1033
1034  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1035  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1036                          TII.get(ARM::VCVTDS), Result)
1037                  .addReg(Op));
1038  UpdateValueMap(I, Result);
1039  return true;
1040}
1041
1042bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1043  // Make sure we have VFP and that we're truncating double to float.
1044  if (!Subtarget->hasVFP2()) return false;
1045
1046  Value *V = I->getOperand(0);
1047  if (!(I->getType()->isFloatTy() &&
1048        V->getType()->isDoubleTy())) return false;
1049
1050  unsigned Op = getRegForValue(V);
1051  if (Op == 0) return false;
1052
1053  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1054  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1055                          TII.get(ARM::VCVTSD), Result)
1056                  .addReg(Op));
1057  UpdateValueMap(I, Result);
1058  return true;
1059}
1060
1061bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1062  // Make sure we have VFP.
1063  if (!Subtarget->hasVFP2()) return false;
1064
1065  EVT DstVT;
1066  const Type *Ty = I->getType();
1067  if (!isTypeLegal(Ty, DstVT))
1068    return false;
1069
1070  unsigned Op = getRegForValue(I->getOperand(0));
1071  if (Op == 0) return false;
1072
1073  // The conversion routine works on fp-reg to fp-reg and the operand above
1074  // was an integer, move it to the fp registers if possible.
1075  unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1076  if (FP == 0) return false;
1077
1078  unsigned Opc;
1079  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1080  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1081  else return 0;
1082
1083  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1084  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1085                          ResultReg)
1086                  .addReg(FP));
1087  UpdateValueMap(I, ResultReg);
1088  return true;
1089}
1090
1091bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1092  // Make sure we have VFP.
1093  if (!Subtarget->hasVFP2()) return false;
1094
1095  EVT DstVT;
1096  const Type *RetTy = I->getType();
1097  if (!isTypeLegal(RetTy, DstVT))
1098    return false;
1099
1100  unsigned Op = getRegForValue(I->getOperand(0));
1101  if (Op == 0) return false;
1102
1103  unsigned Opc;
1104  const Type *OpTy = I->getOperand(0)->getType();
1105  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1106  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1107  else return 0;
1108
1109  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1110  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1111  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1112                          ResultReg)
1113                  .addReg(Op));
1114
1115  // This result needs to be in an integer register, but the conversion only
1116  // takes place in fp-regs.
1117  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1118  if (IntReg == 0) return false;
1119
1120  UpdateValueMap(I, IntReg);
1121  return true;
1122}
1123
1124bool ARMFastISel::SelectSelect(const Instruction *I) {
1125  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1126  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1127    return false;
1128
1129  // Things need to be register sized for register moves.
1130  if (VT.getSimpleVT().SimpleTy != MVT::i32) return false;
1131  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1132
1133  unsigned CondReg = getRegForValue(I->getOperand(0));
1134  if (CondReg == 0) return false;
1135  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1136  if (Op1Reg == 0) return false;
1137  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1138  if (Op2Reg == 0) return false;
1139
1140  unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1141  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1142                  .addReg(CondReg).addImm(1));
1143  unsigned ResultReg = createResultReg(RC);
1144  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1145  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1146    .addReg(Op1Reg).addReg(Op2Reg)
1147    .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1148  UpdateValueMap(I, ResultReg);
1149  return true;
1150}
1151
1152bool ARMFastISel::SelectSDiv(const Instruction *I) {
1153  EVT VT;
1154  const Type *Ty = I->getType();
1155  if (!isTypeLegal(Ty, VT))
1156    return false;
1157
1158  // If we have integer div support we should have selected this automagically.
1159  // In case we have a real miss go ahead and return false and we'll pick
1160  // it up later.
1161  if (Subtarget->hasDivide()) return false;
1162
1163  // Otherwise emit a libcall.
1164  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1165  if (VT == MVT::i8)
1166    LC = RTLIB::SDIV_I8;
1167  else if (VT == MVT::i16)
1168    LC = RTLIB::SDIV_I16;
1169  else if (VT == MVT::i32)
1170    LC = RTLIB::SDIV_I32;
1171  else if (VT == MVT::i64)
1172    LC = RTLIB::SDIV_I64;
1173  else if (VT == MVT::i128)
1174    LC = RTLIB::SDIV_I128;
1175  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1176
1177  return ARMEmitLibcall(I, LC);
1178}
1179
1180bool ARMFastISel::SelectSRem(const Instruction *I) {
1181  EVT VT;
1182  const Type *Ty = I->getType();
1183  if (!isTypeLegal(Ty, VT))
1184    return false;
1185
1186  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1187  if (VT == MVT::i8)
1188    LC = RTLIB::SREM_I8;
1189  else if (VT == MVT::i16)
1190    LC = RTLIB::SREM_I16;
1191  else if (VT == MVT::i32)
1192    LC = RTLIB::SREM_I32;
1193  else if (VT == MVT::i64)
1194    LC = RTLIB::SREM_I64;
1195  else if (VT == MVT::i128)
1196    LC = RTLIB::SREM_I128;
1197  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1198
1199  return ARMEmitLibcall(I, LC);
1200}
1201
1202bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1203  EVT VT  = TLI.getValueType(I->getType(), true);
1204
1205  // We can get here in the case when we want to use NEON for our fp
1206  // operations, but can't figure out how to. Just use the vfp instructions
1207  // if we have them.
1208  // FIXME: It'd be nice to use NEON instructions.
1209  const Type *Ty = I->getType();
1210  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1211  if (isFloat && !Subtarget->hasVFP2())
1212    return false;
1213
1214  unsigned Op1 = getRegForValue(I->getOperand(0));
1215  if (Op1 == 0) return false;
1216
1217  unsigned Op2 = getRegForValue(I->getOperand(1));
1218  if (Op2 == 0) return false;
1219
1220  unsigned Opc;
1221  bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64 ||
1222                 VT.getSimpleVT().SimpleTy == MVT::i64;
1223  switch (ISDOpcode) {
1224    default: return false;
1225    case ISD::FADD:
1226      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1227      break;
1228    case ISD::FSUB:
1229      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1230      break;
1231    case ISD::FMUL:
1232      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1233      break;
1234  }
1235  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1236  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1237                          TII.get(Opc), ResultReg)
1238                  .addReg(Op1).addReg(Op2));
1239  UpdateValueMap(I, ResultReg);
1240  return true;
1241}
1242
1243// Call Handling Code
1244
1245// This is largely taken directly from CCAssignFnForNode - we don't support
1246// varargs in FastISel so that part has been removed.
1247// TODO: We may not support all of this.
1248CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1249  switch (CC) {
1250  default:
1251    llvm_unreachable("Unsupported calling convention");
1252  case CallingConv::C:
1253  case CallingConv::Fast:
1254    // Use target triple & subtarget features to do actual dispatch.
1255    if (Subtarget->isAAPCS_ABI()) {
1256      if (Subtarget->hasVFP2() &&
1257          FloatABIType == FloatABI::Hard)
1258        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1259      else
1260        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1261    } else
1262        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1263  case CallingConv::ARM_AAPCS_VFP:
1264    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1265  case CallingConv::ARM_AAPCS:
1266    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1267  case CallingConv::ARM_APCS:
1268    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1269  }
1270}
1271
1272bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1273                                  SmallVectorImpl<unsigned> &ArgRegs,
1274                                  SmallVectorImpl<EVT> &ArgVTs,
1275                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1276                                  SmallVectorImpl<unsigned> &RegArgs,
1277                                  CallingConv::ID CC,
1278                                  unsigned &NumBytes) {
1279  SmallVector<CCValAssign, 16> ArgLocs;
1280  CCState CCInfo(CC, false, TM, ArgLocs, *Context);
1281  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1282
1283  // Get a count of how many bytes are to be pushed on the stack.
1284  NumBytes = CCInfo.getNextStackOffset();
1285
1286  // Issue CALLSEQ_START
1287  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1288  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1289                          TII.get(AdjStackDown))
1290                  .addImm(NumBytes));
1291
1292  // Process the args.
1293  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1294    CCValAssign &VA = ArgLocs[i];
1295    unsigned Arg = ArgRegs[VA.getValNo()];
1296    EVT ArgVT = ArgVTs[VA.getValNo()];
1297
1298    // Handle arg promotion, etc.
1299    switch (VA.getLocInfo()) {
1300      case CCValAssign::Full: break;
1301      default:
1302      // TODO: Handle arg promotion.
1303      return false;
1304    }
1305
1306    // Now copy/store arg to correct locations.
1307    // TODO: We need custom lowering for f64 args.
1308    if (VA.isRegLoc() && !VA.needsCustom()) {
1309      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1310              VA.getLocReg())
1311      .addReg(Arg);
1312      RegArgs.push_back(VA.getLocReg());
1313    } else {
1314      // Need to store
1315      return false;
1316    }
1317  }
1318
1319  return true;
1320}
1321
1322bool ARMFastISel::FinishCall(EVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1323                             const Instruction *I, CallingConv::ID CC,
1324                             unsigned &NumBytes) {
1325  // Issue CALLSEQ_END
1326  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1327  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1328                          TII.get(AdjStackUp))
1329                  .addImm(NumBytes).addImm(0));
1330
1331  // Now the return value.
1332  if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
1333    SmallVector<CCValAssign, 16> RVLocs;
1334    CCState CCInfo(CC, false, TM, RVLocs, *Context);
1335    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1336
1337    // Copy all of the result registers out of their specified physreg.
1338    if (RVLocs.size() == 2 && RetVT.getSimpleVT().SimpleTy == MVT::f64) {
1339      // For this move we copy into two registers and then move into the
1340      // double fp reg we want.
1341      // TODO: Are the copies necessary?
1342      TargetRegisterClass *CopyRC = TLI.getRegClassFor(MVT::i32);
1343      unsigned Copy1 = createResultReg(CopyRC);
1344      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1345              Copy1).addReg(RVLocs[0].getLocReg());
1346      UsedRegs.push_back(RVLocs[0].getLocReg());
1347
1348      unsigned Copy2 = createResultReg(CopyRC);
1349      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1350              Copy2).addReg(RVLocs[1].getLocReg());
1351      UsedRegs.push_back(RVLocs[1].getLocReg());
1352
1353      EVT DestVT = RVLocs[0].getValVT();
1354      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1355      unsigned ResultReg = createResultReg(DstRC);
1356      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1357                              TII.get(ARM::VMOVDRR), ResultReg)
1358                      .addReg(Copy1).addReg(Copy2));
1359
1360      // Finally update the result.
1361      UpdateValueMap(I, ResultReg);
1362    } else {
1363      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1364      EVT CopyVT = RVLocs[0].getValVT();
1365      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1366
1367      unsigned ResultReg = createResultReg(DstRC);
1368      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1369              ResultReg).addReg(RVLocs[0].getLocReg());
1370      UsedRegs.push_back(RVLocs[0].getLocReg());
1371
1372      // Finally update the result.
1373      UpdateValueMap(I, ResultReg);
1374    }
1375  }
1376
1377  return true;
1378}
1379
1380// A quick function that will emit a call for a named libcall in F with the
1381// vector of passed arguments for the Instruction in I. We can assume that we
1382// can emit a call for any libcall we can produce. This is an abridged version
1383// of the full call infrastructure since we won't need to worry about things
1384// like computed function pointers or strange arguments at call sites.
1385// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1386// with X86.
1387bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1388  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1389
1390  // Handle *simple* calls for now.
1391  const Type *RetTy = I->getType();
1392  EVT RetVT;
1393  if (RetTy->isVoidTy())
1394    RetVT = MVT::isVoid;
1395  else if (!isTypeLegal(RetTy, RetVT))
1396    return false;
1397
1398  // For now we're using BLX etc on the assumption that we have v5t ops.
1399  if (!Subtarget->hasV5TOps()) return false;
1400
1401  // Set up the argument vectors.
1402  SmallVector<Value*, 8> Args;
1403  SmallVector<unsigned, 8> ArgRegs;
1404  SmallVector<EVT, 8> ArgVTs;
1405  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1406  Args.reserve(I->getNumOperands());
1407  ArgRegs.reserve(I->getNumOperands());
1408  ArgVTs.reserve(I->getNumOperands());
1409  ArgFlags.reserve(I->getNumOperands());
1410  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1411    Value *Op = I->getOperand(i);
1412    unsigned Arg = getRegForValue(Op);
1413    if (Arg == 0) return false;
1414
1415    const Type *ArgTy = Op->getType();
1416    EVT ArgVT;
1417    if (!isTypeLegal(ArgTy, ArgVT)) return false;
1418
1419    ISD::ArgFlagsTy Flags;
1420    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1421    Flags.setOrigAlign(OriginalAlignment);
1422
1423    Args.push_back(Op);
1424    ArgRegs.push_back(Arg);
1425    ArgVTs.push_back(ArgVT);
1426    ArgFlags.push_back(Flags);
1427  }
1428
1429  // Handle the arguments now that we've gotten them.
1430  SmallVector<unsigned, 4> RegArgs;
1431  unsigned NumBytes;
1432  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1433    return false;
1434
1435  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1436  // TODO: Turn this into the table of arm call ops.
1437  MachineInstrBuilder MIB;
1438  unsigned CallOpc;
1439  if(isThumb)
1440    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1441  else
1442    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1443  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1444        .addExternalSymbol(TLI.getLibcallName(Call));
1445
1446  // Add implicit physical register uses to the call.
1447  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1448    MIB.addReg(RegArgs[i]);
1449
1450  // Finish off the call including any return values.
1451  SmallVector<unsigned, 4> UsedRegs;
1452  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1453
1454  // Set all unused physreg defs as dead.
1455  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1456
1457  return true;
1458}
1459
1460bool ARMFastISel::SelectCall(const Instruction *I) {
1461  const CallInst *CI = cast<CallInst>(I);
1462  const Value *Callee = CI->getCalledValue();
1463
1464  // Can't handle inline asm or worry about intrinsics yet.
1465  if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1466
1467  // Only handle global variable Callees that are direct calls.
1468  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1469  if (!GV || Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()))
1470    return false;
1471
1472  // Check the calling convention.
1473  ImmutableCallSite CS(CI);
1474  CallingConv::ID CC = CS.getCallingConv();
1475  // TODO: Avoid some calling conventions?
1476  if (CC != CallingConv::C) {
1477    // errs() << "Can't handle calling convention: " << CC << "\n";
1478    return false;
1479  }
1480
1481  // Let SDISel handle vararg functions.
1482  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1483  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1484  if (FTy->isVarArg())
1485    return false;
1486
1487  // Handle *simple* calls for now.
1488  const Type *RetTy = I->getType();
1489  EVT RetVT;
1490  if (RetTy->isVoidTy())
1491    RetVT = MVT::isVoid;
1492  else if (!isTypeLegal(RetTy, RetVT))
1493    return false;
1494
1495  // For now we're using BLX etc on the assumption that we have v5t ops.
1496  // TODO: Maybe?
1497  if (!Subtarget->hasV5TOps()) return false;
1498
1499  // Set up the argument vectors.
1500  SmallVector<Value*, 8> Args;
1501  SmallVector<unsigned, 8> ArgRegs;
1502  SmallVector<EVT, 8> ArgVTs;
1503  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1504  Args.reserve(CS.arg_size());
1505  ArgRegs.reserve(CS.arg_size());
1506  ArgVTs.reserve(CS.arg_size());
1507  ArgFlags.reserve(CS.arg_size());
1508  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1509       i != e; ++i) {
1510    unsigned Arg = getRegForValue(*i);
1511
1512    if (Arg == 0)
1513      return false;
1514    ISD::ArgFlagsTy Flags;
1515    unsigned AttrInd = i - CS.arg_begin() + 1;
1516    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1517      Flags.setSExt();
1518    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1519      Flags.setZExt();
1520
1521         // FIXME: Only handle *easy* calls for now.
1522    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1523        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1524        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1525        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1526      return false;
1527
1528    const Type *ArgTy = (*i)->getType();
1529    EVT ArgVT;
1530    if (!isTypeLegal(ArgTy, ArgVT))
1531      return false;
1532    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1533    Flags.setOrigAlign(OriginalAlignment);
1534
1535    Args.push_back(*i);
1536    ArgRegs.push_back(Arg);
1537    ArgVTs.push_back(ArgVT);
1538    ArgFlags.push_back(Flags);
1539  }
1540
1541  // Handle the arguments now that we've gotten them.
1542  SmallVector<unsigned, 4> RegArgs;
1543  unsigned NumBytes;
1544  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1545    return false;
1546
1547  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1548  // TODO: Turn this into the table of arm call ops.
1549  MachineInstrBuilder MIB;
1550  unsigned CallOpc;
1551  if(isThumb)
1552    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1553  else
1554    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1555  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1556              .addGlobalAddress(GV, 0, 0);
1557
1558  // Add implicit physical register uses to the call.
1559  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1560    MIB.addReg(RegArgs[i]);
1561
1562  // Finish off the call including any return values.
1563  SmallVector<unsigned, 4> UsedRegs;
1564  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1565
1566  // Set all unused physreg defs as dead.
1567  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1568
1569  return true;
1570
1571}
1572
1573// TODO: SoftFP support.
1574bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
1575  // No Thumb-1 for now.
1576  if (isThumb && !AFI->isThumb2Function()) return false;
1577
1578  switch (I->getOpcode()) {
1579    case Instruction::Load:
1580      return SelectLoad(I);
1581    case Instruction::Store:
1582      return SelectStore(I);
1583    case Instruction::Br:
1584      return SelectBranch(I);
1585    case Instruction::ICmp:
1586    case Instruction::FCmp:
1587      return SelectCmp(I);
1588    case Instruction::FPExt:
1589      return SelectFPExt(I);
1590    case Instruction::FPTrunc:
1591      return SelectFPTrunc(I);
1592    case Instruction::SIToFP:
1593      return SelectSIToFP(I);
1594    case Instruction::FPToSI:
1595      return SelectFPToSI(I);
1596    case Instruction::FAdd:
1597      return SelectBinaryOp(I, ISD::FADD);
1598    case Instruction::FSub:
1599      return SelectBinaryOp(I, ISD::FSUB);
1600    case Instruction::FMul:
1601      return SelectBinaryOp(I, ISD::FMUL);
1602    case Instruction::SDiv:
1603      return SelectSDiv(I);
1604    case Instruction::SRem:
1605      return SelectSRem(I);
1606    case Instruction::Call:
1607      return SelectCall(I);
1608    case Instruction::Select:
1609      return SelectSelect(I);
1610    default: break;
1611  }
1612  return false;
1613}
1614
1615namespace llvm {
1616  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
1617    // Completely untested on non-darwin.
1618    const TargetMachine &TM = funcInfo.MF->getTarget();
1619    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
1620    if (Subtarget->isTargetDarwin() && EnableARMFastISel)
1621      return new ARMFastISel(funcInfo);
1622    return 0;
1623  }
1624}
1625