ARMFastISel.cpp revision 52f6c03a450aeed93b97cad9e5373029ebcad5e7
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMBaseInstrInfo.h"
19#include "ARMCallingConv.h"
20#include "ARMRegisterInfo.h"
21#include "ARMTargetMachine.h"
22#include "ARMSubtarget.h"
23#include "ARMConstantPoolValue.h"
24#include "llvm/CallingConv.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Instructions.h"
28#include "llvm/IntrinsicInst.h"
29#include "llvm/Module.h"
30#include "llvm/Operator.h"
31#include "llvm/CodeGen/Analysis.h"
32#include "llvm/CodeGen/FastISel.h"
33#include "llvm/CodeGen/FunctionLoweringInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineConstantPool.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineMemOperand.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/CodeGen/PseudoSourceValue.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetMachine.h"
49#include "llvm/Target/TargetOptions.h"
50using namespace llvm;
51
52static cl::opt<bool>
53DisableARMFastISel("disable-arm-fast-isel",
54                    cl::desc("Turn off experimental ARM fast-isel support"),
55                    cl::init(false), cl::Hidden);
56
57extern cl::opt<bool> EnableARMLongCalls;
58
59namespace {
60
61  // All possible address modes, plus some.
62  typedef struct Address {
63    enum {
64      RegBase,
65      FrameIndexBase
66    } BaseType;
67
68    union {
69      unsigned Reg;
70      int FI;
71    } Base;
72
73    int Offset;
74    unsigned Scale;
75    unsigned PlusReg;
76
77    // Innocuous defaults for our address.
78    Address()
79     : BaseType(RegBase), Offset(0), Scale(0), PlusReg(0) {
80       Base.Reg = 0;
81     }
82  } Address;
83
84class ARMFastISel : public FastISel {
85
86  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
87  /// make the right decision when generating code for different targets.
88  const ARMSubtarget *Subtarget;
89  const TargetMachine &TM;
90  const TargetInstrInfo &TII;
91  const TargetLowering &TLI;
92  ARMFunctionInfo *AFI;
93
94  // Convenience variables to avoid some queries.
95  bool isThumb;
96  LLVMContext *Context;
97
98  public:
99    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
100    : FastISel(funcInfo),
101      TM(funcInfo.MF->getTarget()),
102      TII(*TM.getInstrInfo()),
103      TLI(*TM.getTargetLowering()) {
104      Subtarget = &TM.getSubtarget<ARMSubtarget>();
105      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
106      isThumb = AFI->isThumbFunction();
107      Context = &funcInfo.Fn->getContext();
108    }
109
110    // Code from FastISel.cpp.
111    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
112                                   const TargetRegisterClass *RC);
113    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
114                                    const TargetRegisterClass *RC,
115                                    unsigned Op0, bool Op0IsKill);
116    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
117                                     const TargetRegisterClass *RC,
118                                     unsigned Op0, bool Op0IsKill,
119                                     unsigned Op1, bool Op1IsKill);
120    virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
121                                      const TargetRegisterClass *RC,
122                                      unsigned Op0, bool Op0IsKill,
123                                      unsigned Op1, bool Op1IsKill,
124                                      unsigned Op2, bool Op2IsKill);
125    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
126                                     const TargetRegisterClass *RC,
127                                     unsigned Op0, bool Op0IsKill,
128                                     uint64_t Imm);
129    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
130                                     const TargetRegisterClass *RC,
131                                     unsigned Op0, bool Op0IsKill,
132                                     const ConstantFP *FPImm);
133    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
134                                      const TargetRegisterClass *RC,
135                                      unsigned Op0, bool Op0IsKill,
136                                      unsigned Op1, bool Op1IsKill,
137                                      uint64_t Imm);
138    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
139                                    const TargetRegisterClass *RC,
140                                    uint64_t Imm);
141    virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
142                                     const TargetRegisterClass *RC,
143                                     uint64_t Imm1, uint64_t Imm2);
144
145    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
146                                                unsigned Op0, bool Op0IsKill,
147                                                uint32_t Idx);
148
149    // Backend specific FastISel code.
150    virtual bool TargetSelectInstruction(const Instruction *I);
151    virtual unsigned TargetMaterializeConstant(const Constant *C);
152    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
153
154  #include "ARMGenFastISel.inc"
155
156    // Instruction selection routines.
157  private:
158    bool SelectLoad(const Instruction *I);
159    bool SelectStore(const Instruction *I);
160    bool SelectBranch(const Instruction *I);
161    bool SelectCmp(const Instruction *I);
162    bool SelectFPExt(const Instruction *I);
163    bool SelectFPTrunc(const Instruction *I);
164    bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
165    bool SelectSIToFP(const Instruction *I);
166    bool SelectFPToSI(const Instruction *I);
167    bool SelectSDiv(const Instruction *I);
168    bool SelectSRem(const Instruction *I);
169    bool SelectCall(const Instruction *I);
170    bool SelectSelect(const Instruction *I);
171    bool SelectRet(const Instruction *I);
172
173    // Utility routines.
174  private:
175    bool isTypeLegal(const Type *Ty, MVT &VT);
176    bool isLoadTypeLegal(const Type *Ty, MVT &VT);
177    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr);
178    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
179    bool ARMComputeAddress(const Value *Obj, Address &Addr);
180    void ARMSimplifyAddress(Address &Addr, EVT VT);
181    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
182    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
183    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
184    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
185    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
186    unsigned ARMSelectCallOp(const GlobalValue *GV);
187
188    // Call handling routines.
189  private:
190    bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
191                        unsigned &ResultReg);
192    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
193    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
194                         SmallVectorImpl<unsigned> &ArgRegs,
195                         SmallVectorImpl<MVT> &ArgVTs,
196                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
197                         SmallVectorImpl<unsigned> &RegArgs,
198                         CallingConv::ID CC,
199                         unsigned &NumBytes);
200    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
201                    const Instruction *I, CallingConv::ID CC,
202                    unsigned &NumBytes);
203    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
204
205    // OptionalDef handling routines.
206  private:
207    bool isARMNEONPred(const MachineInstr *MI);
208    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
209    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
210    void AddLoadStoreOperands(EVT VT, Address &Addr,
211                              const MachineInstrBuilder &MIB);
212};
213
214} // end anonymous namespace
215
216#include "ARMGenCallingConv.inc"
217
218// DefinesOptionalPredicate - This is different from DefinesPredicate in that
219// we don't care about implicit defs here, just places we'll need to add a
220// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
221bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
222  const TargetInstrDesc &TID = MI->getDesc();
223  if (!TID.hasOptionalDef())
224    return false;
225
226  // Look to see if our OptionalDef is defining CPSR or CCR.
227  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
228    const MachineOperand &MO = MI->getOperand(i);
229    if (!MO.isReg() || !MO.isDef()) continue;
230    if (MO.getReg() == ARM::CPSR)
231      *CPSR = true;
232  }
233  return true;
234}
235
236bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
237  const TargetInstrDesc &TID = MI->getDesc();
238
239  // If we're a thumb2 or not NEON function we were handled via isPredicable.
240  if ((TID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
241       AFI->isThumb2Function())
242    return false;
243
244  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i)
245    if (TID.OpInfo[i].isPredicate())
246      return true;
247
248  return false;
249}
250
251// If the machine is predicable go ahead and add the predicate operands, if
252// it needs default CC operands add those.
253// TODO: If we want to support thumb1 then we'll need to deal with optional
254// CPSR defs that need to be added before the remaining operands. See s_cc_out
255// for descriptions why.
256const MachineInstrBuilder &
257ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
258  MachineInstr *MI = &*MIB;
259
260  // Do we use a predicate? or...
261  // Are we NEON in ARM mode and have a predicate operand? If so, I know
262  // we're not predicable but add it anyways.
263  if (TII.isPredicable(MI) || isARMNEONPred(MI))
264    AddDefaultPred(MIB);
265
266  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
267  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
268  bool CPSR = false;
269  if (DefinesOptionalPredicate(MI, &CPSR)) {
270    if (CPSR)
271      AddDefaultT1CC(MIB);
272    else
273      AddDefaultCC(MIB);
274  }
275  return MIB;
276}
277
278unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
279                                    const TargetRegisterClass* RC) {
280  unsigned ResultReg = createResultReg(RC);
281  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
282
283  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
284  return ResultReg;
285}
286
287unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
288                                     const TargetRegisterClass *RC,
289                                     unsigned Op0, bool Op0IsKill) {
290  unsigned ResultReg = createResultReg(RC);
291  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
292
293  if (II.getNumDefs() >= 1)
294    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
295                   .addReg(Op0, Op0IsKill * RegState::Kill));
296  else {
297    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
298                   .addReg(Op0, Op0IsKill * RegState::Kill));
299    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
300                   TII.get(TargetOpcode::COPY), ResultReg)
301                   .addReg(II.ImplicitDefs[0]));
302  }
303  return ResultReg;
304}
305
306unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
307                                      const TargetRegisterClass *RC,
308                                      unsigned Op0, bool Op0IsKill,
309                                      unsigned Op1, bool Op1IsKill) {
310  unsigned ResultReg = createResultReg(RC);
311  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
312
313  if (II.getNumDefs() >= 1)
314    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
315                   .addReg(Op0, Op0IsKill * RegState::Kill)
316                   .addReg(Op1, Op1IsKill * RegState::Kill));
317  else {
318    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
319                   .addReg(Op0, Op0IsKill * RegState::Kill)
320                   .addReg(Op1, Op1IsKill * RegState::Kill));
321    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
322                           TII.get(TargetOpcode::COPY), ResultReg)
323                   .addReg(II.ImplicitDefs[0]));
324  }
325  return ResultReg;
326}
327
328unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
329                                       const TargetRegisterClass *RC,
330                                       unsigned Op0, bool Op0IsKill,
331                                       unsigned Op1, bool Op1IsKill,
332                                       unsigned Op2, bool Op2IsKill) {
333  unsigned ResultReg = createResultReg(RC);
334  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
335
336  if (II.getNumDefs() >= 1)
337    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
338                   .addReg(Op0, Op0IsKill * RegState::Kill)
339                   .addReg(Op1, Op1IsKill * RegState::Kill)
340                   .addReg(Op2, Op2IsKill * RegState::Kill));
341  else {
342    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
343                   .addReg(Op0, Op0IsKill * RegState::Kill)
344                   .addReg(Op1, Op1IsKill * RegState::Kill)
345                   .addReg(Op2, Op2IsKill * RegState::Kill));
346    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
347                           TII.get(TargetOpcode::COPY), ResultReg)
348                   .addReg(II.ImplicitDefs[0]));
349  }
350  return ResultReg;
351}
352
353unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
354                                      const TargetRegisterClass *RC,
355                                      unsigned Op0, bool Op0IsKill,
356                                      uint64_t Imm) {
357  unsigned ResultReg = createResultReg(RC);
358  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
359
360  if (II.getNumDefs() >= 1)
361    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
362                   .addReg(Op0, Op0IsKill * RegState::Kill)
363                   .addImm(Imm));
364  else {
365    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
366                   .addReg(Op0, Op0IsKill * RegState::Kill)
367                   .addImm(Imm));
368    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
369                           TII.get(TargetOpcode::COPY), ResultReg)
370                   .addReg(II.ImplicitDefs[0]));
371  }
372  return ResultReg;
373}
374
375unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
376                                      const TargetRegisterClass *RC,
377                                      unsigned Op0, bool Op0IsKill,
378                                      const ConstantFP *FPImm) {
379  unsigned ResultReg = createResultReg(RC);
380  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
381
382  if (II.getNumDefs() >= 1)
383    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
384                   .addReg(Op0, Op0IsKill * RegState::Kill)
385                   .addFPImm(FPImm));
386  else {
387    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
388                   .addReg(Op0, Op0IsKill * RegState::Kill)
389                   .addFPImm(FPImm));
390    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
391                           TII.get(TargetOpcode::COPY), ResultReg)
392                   .addReg(II.ImplicitDefs[0]));
393  }
394  return ResultReg;
395}
396
397unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
398                                       const TargetRegisterClass *RC,
399                                       unsigned Op0, bool Op0IsKill,
400                                       unsigned Op1, bool Op1IsKill,
401                                       uint64_t Imm) {
402  unsigned ResultReg = createResultReg(RC);
403  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
404
405  if (II.getNumDefs() >= 1)
406    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
407                   .addReg(Op0, Op0IsKill * RegState::Kill)
408                   .addReg(Op1, Op1IsKill * RegState::Kill)
409                   .addImm(Imm));
410  else {
411    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
412                   .addReg(Op0, Op0IsKill * RegState::Kill)
413                   .addReg(Op1, Op1IsKill * RegState::Kill)
414                   .addImm(Imm));
415    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
416                           TII.get(TargetOpcode::COPY), ResultReg)
417                   .addReg(II.ImplicitDefs[0]));
418  }
419  return ResultReg;
420}
421
422unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
423                                     const TargetRegisterClass *RC,
424                                     uint64_t Imm) {
425  unsigned ResultReg = createResultReg(RC);
426  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
427
428  if (II.getNumDefs() >= 1)
429    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
430                   .addImm(Imm));
431  else {
432    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
433                   .addImm(Imm));
434    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
435                           TII.get(TargetOpcode::COPY), ResultReg)
436                   .addReg(II.ImplicitDefs[0]));
437  }
438  return ResultReg;
439}
440
441unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
442                                      const TargetRegisterClass *RC,
443                                      uint64_t Imm1, uint64_t Imm2) {
444  unsigned ResultReg = createResultReg(RC);
445  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
446
447  if (II.getNumDefs() >= 1)
448    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
449                    .addImm(Imm1).addImm(Imm2));
450  else {
451    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
452                    .addImm(Imm1).addImm(Imm2));
453    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
454                            TII.get(TargetOpcode::COPY),
455                            ResultReg)
456                    .addReg(II.ImplicitDefs[0]));
457  }
458  return ResultReg;
459}
460
461unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
462                                                 unsigned Op0, bool Op0IsKill,
463                                                 uint32_t Idx) {
464  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
465  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
466         "Cannot yet extract from physregs");
467  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
468                         DL, TII.get(TargetOpcode::COPY), ResultReg)
469                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
470  return ResultReg;
471}
472
473// TODO: Don't worry about 64-bit now, but when this is fixed remove the
474// checks from the various callers.
475unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
476  if (VT == MVT::f64) return 0;
477
478  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
479  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
480                          TII.get(ARM::VMOVRS), MoveReg)
481                  .addReg(SrcReg));
482  return MoveReg;
483}
484
485unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
486  if (VT == MVT::i64) return 0;
487
488  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
489  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
490                          TII.get(ARM::VMOVSR), MoveReg)
491                  .addReg(SrcReg));
492  return MoveReg;
493}
494
495// For double width floating point we need to materialize two constants
496// (the high and the low) into integer registers then use a move to get
497// the combined constant into an FP reg.
498unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
499  const APFloat Val = CFP->getValueAPF();
500  bool is64bit = VT == MVT::f64;
501
502  // This checks to see if we can use VFP3 instructions to materialize
503  // a constant, otherwise we have to go through the constant pool.
504  if (TLI.isFPImmLegal(Val, VT)) {
505    unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
506    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
507    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
508                            DestReg)
509                    .addFPImm(CFP));
510    return DestReg;
511  }
512
513  // Require VFP2 for loading fp constants.
514  if (!Subtarget->hasVFP2()) return false;
515
516  // MachineConstantPool wants an explicit alignment.
517  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
518  if (Align == 0) {
519    // TODO: Figure out if this is correct.
520    Align = TD.getTypeAllocSize(CFP->getType());
521  }
522  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
523  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
524  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
525
526  // The extra reg is for addrmode5.
527  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
528                          DestReg)
529                  .addConstantPoolIndex(Idx)
530                  .addReg(0));
531  return DestReg;
532}
533
534unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
535
536  // For now 32-bit only.
537  if (VT != MVT::i32) return false;
538
539  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
540
541  // If we can do this in a single instruction without a constant pool entry
542  // do so now.
543  const ConstantInt *CI = cast<ConstantInt>(C);
544  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getSExtValue())) {
545    unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16;
546    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
547                            TII.get(Opc), DestReg)
548                    .addImm(CI->getSExtValue()));
549    return DestReg;
550  }
551
552  // MachineConstantPool wants an explicit alignment.
553  unsigned Align = TD.getPrefTypeAlignment(C->getType());
554  if (Align == 0) {
555    // TODO: Figure out if this is correct.
556    Align = TD.getTypeAllocSize(C->getType());
557  }
558  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
559
560  if (isThumb)
561    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
562                            TII.get(ARM::t2LDRpci), DestReg)
563                    .addConstantPoolIndex(Idx));
564  else
565    // The extra immediate is for addrmode2.
566    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
567                            TII.get(ARM::LDRcp), DestReg)
568                    .addConstantPoolIndex(Idx)
569                    .addImm(0));
570
571  return DestReg;
572}
573
574unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
575  // For now 32-bit only.
576  if (VT != MVT::i32) return 0;
577
578  Reloc::Model RelocM = TM.getRelocationModel();
579
580  // TODO: No external globals for now.
581  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) return 0;
582
583  // TODO: Need more magic for ARM PIC.
584  if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
585
586  // MachineConstantPool wants an explicit alignment.
587  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
588  if (Align == 0) {
589    // TODO: Figure out if this is correct.
590    Align = TD.getTypeAllocSize(GV->getType());
591  }
592
593  // Grab index.
594  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
595  unsigned Id = AFI->createPICLabelUId();
596  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id,
597                                                       ARMCP::CPValue, PCAdj);
598  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
599
600  // Load value.
601  MachineInstrBuilder MIB;
602  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
603  if (isThumb) {
604    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
605    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
606          .addConstantPoolIndex(Idx);
607    if (RelocM == Reloc::PIC_)
608      MIB.addImm(Id);
609  } else {
610    // The extra immediate is for addrmode2.
611    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
612                  DestReg)
613          .addConstantPoolIndex(Idx)
614          .addImm(0);
615  }
616  AddOptionalDefs(MIB);
617  return DestReg;
618}
619
620unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
621  EVT VT = TLI.getValueType(C->getType(), true);
622
623  // Only handle simple types.
624  if (!VT.isSimple()) return 0;
625
626  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
627    return ARMMaterializeFP(CFP, VT);
628  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
629    return ARMMaterializeGV(GV, VT);
630  else if (isa<ConstantInt>(C))
631    return ARMMaterializeInt(C, VT);
632
633  return 0;
634}
635
636unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
637  // Don't handle dynamic allocas.
638  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
639
640  MVT VT;
641  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
642
643  DenseMap<const AllocaInst*, int>::iterator SI =
644    FuncInfo.StaticAllocaMap.find(AI);
645
646  // This will get lowered later into the correct offsets and registers
647  // via rewriteXFrameIndex.
648  if (SI != FuncInfo.StaticAllocaMap.end()) {
649    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
650    unsigned ResultReg = createResultReg(RC);
651    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
652    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
653                            TII.get(Opc), ResultReg)
654                            .addFrameIndex(SI->second)
655                            .addImm(0));
656    return ResultReg;
657  }
658
659  return 0;
660}
661
662bool ARMFastISel::isTypeLegal(const Type *Ty, MVT &VT) {
663  EVT evt = TLI.getValueType(Ty, true);
664
665  // Only handle simple types.
666  if (evt == MVT::Other || !evt.isSimple()) return false;
667  VT = evt.getSimpleVT();
668
669  // Handle all legal types, i.e. a register that will directly hold this
670  // value.
671  return TLI.isTypeLegal(VT);
672}
673
674bool ARMFastISel::isLoadTypeLegal(const Type *Ty, MVT &VT) {
675  if (isTypeLegal(Ty, VT)) return true;
676
677  // If this is a type than can be sign or zero-extended to a basic operation
678  // go ahead and accept it now.
679  if (VT == MVT::i8 || VT == MVT::i16)
680    return true;
681
682  return false;
683}
684
685// Computes the address to get to an object.
686bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
687  // Some boilerplate from the X86 FastISel.
688  const User *U = NULL;
689  unsigned Opcode = Instruction::UserOp1;
690  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
691    // Don't walk into other basic blocks unless the object is an alloca from
692    // another block, otherwise it may not have a virtual register assigned.
693    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
694        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
695      Opcode = I->getOpcode();
696      U = I;
697    }
698  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
699    Opcode = C->getOpcode();
700    U = C;
701  }
702
703  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
704    if (Ty->getAddressSpace() > 255)
705      // Fast instruction selection doesn't support the special
706      // address spaces.
707      return false;
708
709  switch (Opcode) {
710    default:
711    break;
712    case Instruction::BitCast: {
713      // Look through bitcasts.
714      return ARMComputeAddress(U->getOperand(0), Addr);
715    }
716    case Instruction::IntToPtr: {
717      // Look past no-op inttoptrs.
718      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
719        return ARMComputeAddress(U->getOperand(0), Addr);
720      break;
721    }
722    case Instruction::PtrToInt: {
723      // Look past no-op ptrtoints.
724      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
725        return ARMComputeAddress(U->getOperand(0), Addr);
726      break;
727    }
728    case Instruction::GetElementPtr: {
729      Address SavedAddr = Addr;
730      int TmpOffset = Addr.Offset;
731
732      // Iterate through the GEP folding the constants into offsets where
733      // we can.
734      gep_type_iterator GTI = gep_type_begin(U);
735      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
736           i != e; ++i, ++GTI) {
737        const Value *Op = *i;
738        if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
739          const StructLayout *SL = TD.getStructLayout(STy);
740          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
741          TmpOffset += SL->getElementOffset(Idx);
742        } else {
743          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
744          for (;;) {
745            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
746              // Constant-offset addressing.
747              TmpOffset += CI->getSExtValue() * S;
748              break;
749            }
750            if (isa<AddOperator>(Op) &&
751                (!isa<Instruction>(Op) ||
752                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
753                 == FuncInfo.MBB) &&
754                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
755              // An add (in the same block) with a constant operand. Fold the
756              // constant.
757              ConstantInt *CI =
758              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
759              TmpOffset += CI->getSExtValue() * S;
760              // Iterate on the other operand.
761              Op = cast<AddOperator>(Op)->getOperand(0);
762              continue;
763            }
764            // Unsupported
765            goto unsupported_gep;
766          }
767        }
768      }
769
770      // Try to grab the base operand now.
771      Addr.Offset = TmpOffset;
772      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
773
774      // We failed, restore everything and try the other options.
775      Addr = SavedAddr;
776
777      unsupported_gep:
778      break;
779    }
780    case Instruction::Alloca: {
781      const AllocaInst *AI = cast<AllocaInst>(Obj);
782      DenseMap<const AllocaInst*, int>::iterator SI =
783        FuncInfo.StaticAllocaMap.find(AI);
784      if (SI != FuncInfo.StaticAllocaMap.end()) {
785        Addr.BaseType = Address::FrameIndexBase;
786        Addr.Base.FI = SI->second;
787        return true;
788      }
789      break;
790    }
791  }
792
793  // Materialize the global variable's address into a reg which can
794  // then be used later to load the variable.
795  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
796    unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
797    if (Tmp == 0) return false;
798
799    Addr.Base.Reg = Tmp;
800    return true;
801  }
802
803  // Try to get this in a register if nothing else has worked.
804  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
805  return Addr.Base.Reg != 0;
806}
807
808void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) {
809
810  assert(VT.isSimple() && "Non-simple types are invalid here!");
811
812  bool needsLowering = false;
813  switch (VT.getSimpleVT().SimpleTy) {
814    default:
815      assert(false && "Unhandled load/store type!");
816    case MVT::i1:
817    case MVT::i8:
818    case MVT::i16:
819    case MVT::i32:
820      // Integer loads/stores handle 12-bit offsets.
821      needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
822      break;
823    case MVT::f32:
824    case MVT::f64:
825      // Floating point operands handle 8-bit offsets.
826      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
827      break;
828  }
829
830  // If this is a stack pointer and the offset needs to be simplified then
831  // put the alloca address into a register, set the base type back to
832  // register and continue. This should almost never happen.
833  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
834    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
835                              ARM::GPRRegisterClass;
836    unsigned ResultReg = createResultReg(RC);
837    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
838    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
839                            TII.get(Opc), ResultReg)
840                            .addFrameIndex(Addr.Base.FI)
841                            .addImm(0));
842    Addr.Base.Reg = ResultReg;
843    Addr.BaseType = Address::RegBase;
844  }
845
846  // Since the offset is too large for the load/store instruction
847  // get the reg+offset into a register.
848  if (needsLowering) {
849    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
850                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
851    Addr.Offset = 0;
852  }
853}
854
855void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
856                                       const MachineInstrBuilder &MIB) {
857  // addrmode5 output depends on the selection dag addressing dividing the
858  // offset by 4 that it then later multiplies. Do this here as well.
859  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
860      VT.getSimpleVT().SimpleTy == MVT::f64)
861    Addr.Offset /= 4;
862
863  // Frame base works a bit differently. Handle it separately.
864  if (Addr.BaseType == Address::FrameIndexBase) {
865    int FI = Addr.Base.FI;
866    int Offset = Addr.Offset;
867    MachineMemOperand *MMO =
868          FuncInfo.MF->getMachineMemOperand(
869                                  MachinePointerInfo::getFixedStack(FI, Offset),
870                                  MachineMemOperand::MOLoad,
871                                  MFI.getObjectSize(FI),
872                                  MFI.getObjectAlignment(FI));
873    // Now add the rest of the operands.
874    MIB.addFrameIndex(FI);
875
876    // ARM halfword load/stores need an additional operand.
877    if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
878
879    MIB.addImm(Addr.Offset);
880    MIB.addMemOperand(MMO);
881  } else {
882    // Now add the rest of the operands.
883    MIB.addReg(Addr.Base.Reg);
884
885    // ARM halfword load/stores need an additional operand.
886    if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
887
888    MIB.addImm(Addr.Offset);
889  }
890  AddOptionalDefs(MIB);
891}
892
893bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) {
894
895  assert(VT.isSimple() && "Non-simple types are invalid here!");
896  unsigned Opc;
897  TargetRegisterClass *RC;
898  switch (VT.getSimpleVT().SimpleTy) {
899    // This is mostly going to be Neon/vector support.
900    default: return false;
901    case MVT::i16:
902      Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
903      RC = ARM::GPRRegisterClass;
904      break;
905    case MVT::i8:
906      Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
907      RC = ARM::GPRRegisterClass;
908      break;
909    case MVT::i32:
910      Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
911      RC = ARM::GPRRegisterClass;
912      break;
913    case MVT::f32:
914      Opc = ARM::VLDRS;
915      RC = TLI.getRegClassFor(VT);
916      break;
917    case MVT::f64:
918      Opc = ARM::VLDRD;
919      RC = TLI.getRegClassFor(VT);
920      break;
921  }
922  // Simplify this down to something we can handle.
923  ARMSimplifyAddress(Addr, VT);
924
925  // Create the base instruction, then add the operands.
926  ResultReg = createResultReg(RC);
927  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
928                                    TII.get(Opc), ResultReg);
929  AddLoadStoreOperands(VT, Addr, MIB);
930  return true;
931}
932
933bool ARMFastISel::SelectLoad(const Instruction *I) {
934  // Verify we have a legal type before going any further.
935  MVT VT;
936  if (!isLoadTypeLegal(I->getType(), VT))
937    return false;
938
939  // See if we can handle this address.
940  Address Addr;
941  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
942
943  unsigned ResultReg;
944  if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
945  UpdateValueMap(I, ResultReg);
946  return true;
947}
948
949bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
950  unsigned StrOpc;
951  switch (VT.getSimpleVT().SimpleTy) {
952    // This is mostly going to be Neon/vector support.
953    default: return false;
954    case MVT::i1: {
955      unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass :
956                                               ARM::GPRRegisterClass);
957      unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
958      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
959                              TII.get(Opc), Res)
960                      .addReg(SrcReg).addImm(1));
961      SrcReg = Res;
962    } // Fallthrough here.
963    case MVT::i8:
964      StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
965      break;
966    case MVT::i16:
967      StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
968      break;
969    case MVT::i32:
970      StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
971      break;
972    case MVT::f32:
973      if (!Subtarget->hasVFP2()) return false;
974      StrOpc = ARM::VSTRS;
975      break;
976    case MVT::f64:
977      if (!Subtarget->hasVFP2()) return false;
978      StrOpc = ARM::VSTRD;
979      break;
980  }
981  // Simplify this down to something we can handle.
982  ARMSimplifyAddress(Addr, VT);
983
984  // Create the base instruction, then add the operands.
985  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
986                                    TII.get(StrOpc))
987                            .addReg(SrcReg, getKillRegState(true));
988  AddLoadStoreOperands(VT, Addr, MIB);
989  return true;
990}
991
992bool ARMFastISel::SelectStore(const Instruction *I) {
993  Value *Op0 = I->getOperand(0);
994  unsigned SrcReg = 0;
995
996  // Verify we have a legal type before going any further.
997  MVT VT;
998  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
999    return false;
1000
1001  // Get the value to be stored into a register.
1002  SrcReg = getRegForValue(Op0);
1003  if (SrcReg == 0) return false;
1004
1005  // See if we can handle this address.
1006  Address Addr;
1007  if (!ARMComputeAddress(I->getOperand(1), Addr))
1008    return false;
1009
1010  if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
1011  return true;
1012}
1013
1014static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1015  switch (Pred) {
1016    // Needs two compares...
1017    case CmpInst::FCMP_ONE:
1018    case CmpInst::FCMP_UEQ:
1019    default:
1020      // AL is our "false" for now. The other two need more compares.
1021      return ARMCC::AL;
1022    case CmpInst::ICMP_EQ:
1023    case CmpInst::FCMP_OEQ:
1024      return ARMCC::EQ;
1025    case CmpInst::ICMP_SGT:
1026    case CmpInst::FCMP_OGT:
1027      return ARMCC::GT;
1028    case CmpInst::ICMP_SGE:
1029    case CmpInst::FCMP_OGE:
1030      return ARMCC::GE;
1031    case CmpInst::ICMP_UGT:
1032    case CmpInst::FCMP_UGT:
1033      return ARMCC::HI;
1034    case CmpInst::FCMP_OLT:
1035      return ARMCC::MI;
1036    case CmpInst::ICMP_ULE:
1037    case CmpInst::FCMP_OLE:
1038      return ARMCC::LS;
1039    case CmpInst::FCMP_ORD:
1040      return ARMCC::VC;
1041    case CmpInst::FCMP_UNO:
1042      return ARMCC::VS;
1043    case CmpInst::FCMP_UGE:
1044      return ARMCC::PL;
1045    case CmpInst::ICMP_SLT:
1046    case CmpInst::FCMP_ULT:
1047      return ARMCC::LT;
1048    case CmpInst::ICMP_SLE:
1049    case CmpInst::FCMP_ULE:
1050      return ARMCC::LE;
1051    case CmpInst::FCMP_UNE:
1052    case CmpInst::ICMP_NE:
1053      return ARMCC::NE;
1054    case CmpInst::ICMP_UGE:
1055      return ARMCC::HS;
1056    case CmpInst::ICMP_ULT:
1057      return ARMCC::LO;
1058  }
1059}
1060
1061bool ARMFastISel::SelectBranch(const Instruction *I) {
1062  const BranchInst *BI = cast<BranchInst>(I);
1063  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1064  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1065
1066  // Simple branch support.
1067
1068  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1069  // behavior.
1070  // TODO: Factor this out.
1071  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1072    MVT SourceVT;
1073    const Type *Ty = CI->getOperand(0)->getType();
1074    if (CI->hasOneUse() && (CI->getParent() == I->getParent())
1075        && isTypeLegal(Ty, SourceVT)) {
1076      bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1077      if (isFloat && !Subtarget->hasVFP2())
1078        return false;
1079
1080      unsigned CmpOpc;
1081      switch (SourceVT.SimpleTy) {
1082        default: return false;
1083        // TODO: Verify compares.
1084        case MVT::f32:
1085          CmpOpc = ARM::VCMPES;
1086          break;
1087        case MVT::f64:
1088          CmpOpc = ARM::VCMPED;
1089          break;
1090        case MVT::i32:
1091          CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1092          break;
1093      }
1094
1095      // Get the compare predicate.
1096      // Try to take advantage of fallthrough opportunities.
1097      CmpInst::Predicate Predicate = CI->getPredicate();
1098      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1099        std::swap(TBB, FBB);
1100        Predicate = CmpInst::getInversePredicate(Predicate);
1101      }
1102
1103      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1104
1105      // We may not handle every CC for now.
1106      if (ARMPred == ARMCC::AL) return false;
1107
1108      unsigned Arg1 = getRegForValue(CI->getOperand(0));
1109      if (Arg1 == 0) return false;
1110
1111      unsigned Arg2 = getRegForValue(CI->getOperand(1));
1112      if (Arg2 == 0) return false;
1113
1114      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1115                              TII.get(CmpOpc))
1116                      .addReg(Arg1).addReg(Arg2));
1117
1118      // For floating point we need to move the result to a comparison register
1119      // that we can then use for branches.
1120      if (isFloat)
1121        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1122                                TII.get(ARM::FMSTAT)));
1123
1124      unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1125      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1126      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1127      FastEmitBranch(FBB, DL);
1128      FuncInfo.MBB->addSuccessor(TBB);
1129      return true;
1130    }
1131  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1132    MVT SourceVT;
1133    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1134        (isTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1135      unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1136      unsigned OpReg = getRegForValue(TI->getOperand(0));
1137      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1138                              TII.get(TstOpc))
1139                      .addReg(OpReg).addImm(1));
1140
1141      unsigned CCMode = ARMCC::NE;
1142      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1143        std::swap(TBB, FBB);
1144        CCMode = ARMCC::EQ;
1145      }
1146
1147      unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1148      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1149      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1150
1151      FastEmitBranch(FBB, DL);
1152      FuncInfo.MBB->addSuccessor(TBB);
1153      return true;
1154    }
1155  }
1156
1157  unsigned CmpReg = getRegForValue(BI->getCondition());
1158  if (CmpReg == 0) return false;
1159
1160  // We've been divorced from our compare!  Our block was split, and
1161  // now our compare lives in a predecessor block.  We musn't
1162  // re-compare here, as the children of the compare aren't guaranteed
1163  // live across the block boundary (we *could* check for this).
1164  // Regardless, the compare has been done in the predecessor block,
1165  // and it left a value for us in a virtual register.  Ergo, we test
1166  // the one-bit value left in the virtual register.
1167  unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1168  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1169                  .addReg(CmpReg).addImm(1));
1170
1171  unsigned CCMode = ARMCC::NE;
1172  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1173    std::swap(TBB, FBB);
1174    CCMode = ARMCC::EQ;
1175  }
1176
1177  unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1178  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1179                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1180  FastEmitBranch(FBB, DL);
1181  FuncInfo.MBB->addSuccessor(TBB);
1182  return true;
1183}
1184
1185bool ARMFastISel::SelectCmp(const Instruction *I) {
1186  const CmpInst *CI = cast<CmpInst>(I);
1187
1188  MVT VT;
1189  const Type *Ty = CI->getOperand(0)->getType();
1190  if (!isTypeLegal(Ty, VT))
1191    return false;
1192
1193  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1194  if (isFloat && !Subtarget->hasVFP2())
1195    return false;
1196
1197  unsigned CmpOpc;
1198  unsigned CondReg;
1199  switch (VT.SimpleTy) {
1200    default: return false;
1201    // TODO: Verify compares.
1202    case MVT::f32:
1203      CmpOpc = ARM::VCMPES;
1204      CondReg = ARM::FPSCR;
1205      break;
1206    case MVT::f64:
1207      CmpOpc = ARM::VCMPED;
1208      CondReg = ARM::FPSCR;
1209      break;
1210    case MVT::i32:
1211      CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1212      CondReg = ARM::CPSR;
1213      break;
1214  }
1215
1216  // Get the compare predicate.
1217  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1218
1219  // We may not handle every CC for now.
1220  if (ARMPred == ARMCC::AL) return false;
1221
1222  unsigned Arg1 = getRegForValue(CI->getOperand(0));
1223  if (Arg1 == 0) return false;
1224
1225  unsigned Arg2 = getRegForValue(CI->getOperand(1));
1226  if (Arg2 == 0) return false;
1227
1228  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1229                  .addReg(Arg1).addReg(Arg2));
1230
1231  // For floating point we need to move the result to a comparison register
1232  // that we can then use for branches.
1233  if (isFloat)
1234    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1235                            TII.get(ARM::FMSTAT)));
1236
1237  // Now set a register based on the comparison. Explicitly set the predicates
1238  // here.
1239  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1240  TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1241                                    : ARM::GPRRegisterClass;
1242  unsigned DestReg = createResultReg(RC);
1243  Constant *Zero
1244    = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1245  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1246  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1247          .addReg(ZeroReg).addImm(1)
1248          .addImm(ARMPred).addReg(CondReg);
1249
1250  UpdateValueMap(I, DestReg);
1251  return true;
1252}
1253
1254bool ARMFastISel::SelectFPExt(const Instruction *I) {
1255  // Make sure we have VFP and that we're extending float to double.
1256  if (!Subtarget->hasVFP2()) return false;
1257
1258  Value *V = I->getOperand(0);
1259  if (!I->getType()->isDoubleTy() ||
1260      !V->getType()->isFloatTy()) return false;
1261
1262  unsigned Op = getRegForValue(V);
1263  if (Op == 0) return false;
1264
1265  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1266  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1267                          TII.get(ARM::VCVTDS), Result)
1268                  .addReg(Op));
1269  UpdateValueMap(I, Result);
1270  return true;
1271}
1272
1273bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1274  // Make sure we have VFP and that we're truncating double to float.
1275  if (!Subtarget->hasVFP2()) return false;
1276
1277  Value *V = I->getOperand(0);
1278  if (!(I->getType()->isFloatTy() &&
1279        V->getType()->isDoubleTy())) return false;
1280
1281  unsigned Op = getRegForValue(V);
1282  if (Op == 0) return false;
1283
1284  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1285  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1286                          TII.get(ARM::VCVTSD), Result)
1287                  .addReg(Op));
1288  UpdateValueMap(I, Result);
1289  return true;
1290}
1291
1292bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1293  // Make sure we have VFP.
1294  if (!Subtarget->hasVFP2()) return false;
1295
1296  MVT DstVT;
1297  const Type *Ty = I->getType();
1298  if (!isTypeLegal(Ty, DstVT))
1299    return false;
1300
1301  unsigned Op = getRegForValue(I->getOperand(0));
1302  if (Op == 0) return false;
1303
1304  // The conversion routine works on fp-reg to fp-reg and the operand above
1305  // was an integer, move it to the fp registers if possible.
1306  unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1307  if (FP == 0) return false;
1308
1309  unsigned Opc;
1310  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1311  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1312  else return 0;
1313
1314  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1315  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1316                          ResultReg)
1317                  .addReg(FP));
1318  UpdateValueMap(I, ResultReg);
1319  return true;
1320}
1321
1322bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1323  // Make sure we have VFP.
1324  if (!Subtarget->hasVFP2()) return false;
1325
1326  MVT DstVT;
1327  const Type *RetTy = I->getType();
1328  if (!isTypeLegal(RetTy, DstVT))
1329    return false;
1330
1331  unsigned Op = getRegForValue(I->getOperand(0));
1332  if (Op == 0) return false;
1333
1334  unsigned Opc;
1335  const Type *OpTy = I->getOperand(0)->getType();
1336  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1337  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1338  else return 0;
1339
1340  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1341  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1342  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1343                          ResultReg)
1344                  .addReg(Op));
1345
1346  // This result needs to be in an integer register, but the conversion only
1347  // takes place in fp-regs.
1348  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1349  if (IntReg == 0) return false;
1350
1351  UpdateValueMap(I, IntReg);
1352  return true;
1353}
1354
1355bool ARMFastISel::SelectSelect(const Instruction *I) {
1356  MVT VT;
1357  if (!isTypeLegal(I->getType(), VT))
1358    return false;
1359
1360  // Things need to be register sized for register moves.
1361  if (VT != MVT::i32) return false;
1362  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1363
1364  unsigned CondReg = getRegForValue(I->getOperand(0));
1365  if (CondReg == 0) return false;
1366  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1367  if (Op1Reg == 0) return false;
1368  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1369  if (Op2Reg == 0) return false;
1370
1371  unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1372  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1373                  .addReg(CondReg).addImm(1));
1374  unsigned ResultReg = createResultReg(RC);
1375  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1376  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1377    .addReg(Op1Reg).addReg(Op2Reg)
1378    .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1379  UpdateValueMap(I, ResultReg);
1380  return true;
1381}
1382
1383bool ARMFastISel::SelectSDiv(const Instruction *I) {
1384  MVT VT;
1385  const Type *Ty = I->getType();
1386  if (!isTypeLegal(Ty, VT))
1387    return false;
1388
1389  // If we have integer div support we should have selected this automagically.
1390  // In case we have a real miss go ahead and return false and we'll pick
1391  // it up later.
1392  if (Subtarget->hasDivide()) return false;
1393
1394  // Otherwise emit a libcall.
1395  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1396  if (VT == MVT::i8)
1397    LC = RTLIB::SDIV_I8;
1398  else if (VT == MVT::i16)
1399    LC = RTLIB::SDIV_I16;
1400  else if (VT == MVT::i32)
1401    LC = RTLIB::SDIV_I32;
1402  else if (VT == MVT::i64)
1403    LC = RTLIB::SDIV_I64;
1404  else if (VT == MVT::i128)
1405    LC = RTLIB::SDIV_I128;
1406  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1407
1408  return ARMEmitLibcall(I, LC);
1409}
1410
1411bool ARMFastISel::SelectSRem(const Instruction *I) {
1412  MVT VT;
1413  const Type *Ty = I->getType();
1414  if (!isTypeLegal(Ty, VT))
1415    return false;
1416
1417  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1418  if (VT == MVT::i8)
1419    LC = RTLIB::SREM_I8;
1420  else if (VT == MVT::i16)
1421    LC = RTLIB::SREM_I16;
1422  else if (VT == MVT::i32)
1423    LC = RTLIB::SREM_I32;
1424  else if (VT == MVT::i64)
1425    LC = RTLIB::SREM_I64;
1426  else if (VT == MVT::i128)
1427    LC = RTLIB::SREM_I128;
1428  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1429
1430  return ARMEmitLibcall(I, LC);
1431}
1432
1433bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1434  EVT VT  = TLI.getValueType(I->getType(), true);
1435
1436  // We can get here in the case when we want to use NEON for our fp
1437  // operations, but can't figure out how to. Just use the vfp instructions
1438  // if we have them.
1439  // FIXME: It'd be nice to use NEON instructions.
1440  const Type *Ty = I->getType();
1441  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1442  if (isFloat && !Subtarget->hasVFP2())
1443    return false;
1444
1445  unsigned Op1 = getRegForValue(I->getOperand(0));
1446  if (Op1 == 0) return false;
1447
1448  unsigned Op2 = getRegForValue(I->getOperand(1));
1449  if (Op2 == 0) return false;
1450
1451  unsigned Opc;
1452  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1453  switch (ISDOpcode) {
1454    default: return false;
1455    case ISD::FADD:
1456      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1457      break;
1458    case ISD::FSUB:
1459      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1460      break;
1461    case ISD::FMUL:
1462      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1463      break;
1464  }
1465  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1466  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1467                          TII.get(Opc), ResultReg)
1468                  .addReg(Op1).addReg(Op2));
1469  UpdateValueMap(I, ResultReg);
1470  return true;
1471}
1472
1473// Call Handling Code
1474
1475bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1476                                 EVT SrcVT, unsigned &ResultReg) {
1477  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1478                           Src, /*TODO: Kill=*/false);
1479
1480  if (RR != 0) {
1481    ResultReg = RR;
1482    return true;
1483  } else
1484    return false;
1485}
1486
1487// This is largely taken directly from CCAssignFnForNode - we don't support
1488// varargs in FastISel so that part has been removed.
1489// TODO: We may not support all of this.
1490CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1491  switch (CC) {
1492  default:
1493    llvm_unreachable("Unsupported calling convention");
1494  case CallingConv::Fast:
1495    // Ignore fastcc. Silence compiler warnings.
1496    (void)RetFastCC_ARM_APCS;
1497    (void)FastCC_ARM_APCS;
1498    // Fallthrough
1499  case CallingConv::C:
1500    // Use target triple & subtarget features to do actual dispatch.
1501    if (Subtarget->isAAPCS_ABI()) {
1502      if (Subtarget->hasVFP2() &&
1503          FloatABIType == FloatABI::Hard)
1504        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1505      else
1506        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1507    } else
1508        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1509  case CallingConv::ARM_AAPCS_VFP:
1510    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1511  case CallingConv::ARM_AAPCS:
1512    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1513  case CallingConv::ARM_APCS:
1514    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1515  }
1516}
1517
1518bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1519                                  SmallVectorImpl<unsigned> &ArgRegs,
1520                                  SmallVectorImpl<MVT> &ArgVTs,
1521                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1522                                  SmallVectorImpl<unsigned> &RegArgs,
1523                                  CallingConv::ID CC,
1524                                  unsigned &NumBytes) {
1525  SmallVector<CCValAssign, 16> ArgLocs;
1526  CCState CCInfo(CC, false, TM, ArgLocs, *Context);
1527  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1528
1529  // Get a count of how many bytes are to be pushed on the stack.
1530  NumBytes = CCInfo.getNextStackOffset();
1531
1532  // Issue CALLSEQ_START
1533  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1534  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1535                          TII.get(AdjStackDown))
1536                  .addImm(NumBytes));
1537
1538  // Process the args.
1539  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1540    CCValAssign &VA = ArgLocs[i];
1541    unsigned Arg = ArgRegs[VA.getValNo()];
1542    MVT ArgVT = ArgVTs[VA.getValNo()];
1543
1544    // We don't handle NEON/vector parameters yet.
1545    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1546      return false;
1547
1548    // Handle arg promotion, etc.
1549    switch (VA.getLocInfo()) {
1550      case CCValAssign::Full: break;
1551      case CCValAssign::SExt: {
1552        bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1553                                         Arg, ArgVT, Arg);
1554        assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
1555        Emitted = true;
1556        ArgVT = VA.getLocVT();
1557        break;
1558      }
1559      case CCValAssign::ZExt: {
1560        bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1561                                         Arg, ArgVT, Arg);
1562        assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
1563        Emitted = true;
1564        ArgVT = VA.getLocVT();
1565        break;
1566      }
1567      case CCValAssign::AExt: {
1568        bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1569                                         Arg, ArgVT, Arg);
1570        if (!Emitted)
1571          Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1572                                      Arg, ArgVT, Arg);
1573        if (!Emitted)
1574          Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1575                                      Arg, ArgVT, Arg);
1576
1577        assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
1578        ArgVT = VA.getLocVT();
1579        break;
1580      }
1581      case CCValAssign::BCvt: {
1582        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1583                                 /*TODO: Kill=*/false);
1584        assert(BC != 0 && "Failed to emit a bitcast!");
1585        Arg = BC;
1586        ArgVT = VA.getLocVT();
1587        break;
1588      }
1589      default: llvm_unreachable("Unknown arg promotion!");
1590    }
1591
1592    // Now copy/store arg to correct locations.
1593    if (VA.isRegLoc() && !VA.needsCustom()) {
1594      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1595              VA.getLocReg())
1596      .addReg(Arg);
1597      RegArgs.push_back(VA.getLocReg());
1598    } else if (VA.needsCustom()) {
1599      // TODO: We need custom lowering for vector (v2f64) args.
1600      if (VA.getLocVT() != MVT::f64) return false;
1601
1602      CCValAssign &NextVA = ArgLocs[++i];
1603
1604      // TODO: Only handle register args for now.
1605      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1606
1607      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1608                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1609                      .addReg(NextVA.getLocReg(), RegState::Define)
1610                      .addReg(Arg));
1611      RegArgs.push_back(VA.getLocReg());
1612      RegArgs.push_back(NextVA.getLocReg());
1613    } else {
1614      assert(VA.isMemLoc());
1615      // Need to store on the stack.
1616      Address Addr;
1617      Addr.BaseType = Address::RegBase;
1618      Addr.Base.Reg = ARM::SP;
1619      Addr.Offset = VA.getLocMemOffset();
1620
1621      if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1622    }
1623  }
1624  return true;
1625}
1626
1627bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1628                             const Instruction *I, CallingConv::ID CC,
1629                             unsigned &NumBytes) {
1630  // Issue CALLSEQ_END
1631  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1632  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1633                          TII.get(AdjStackUp))
1634                  .addImm(NumBytes).addImm(0));
1635
1636  // Now the return value.
1637  if (RetVT != MVT::isVoid) {
1638    SmallVector<CCValAssign, 16> RVLocs;
1639    CCState CCInfo(CC, false, TM, RVLocs, *Context);
1640    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1641
1642    // Copy all of the result registers out of their specified physreg.
1643    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1644      // For this move we copy into two registers and then move into the
1645      // double fp reg we want.
1646      EVT DestVT = RVLocs[0].getValVT();
1647      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1648      unsigned ResultReg = createResultReg(DstRC);
1649      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1650                              TII.get(ARM::VMOVDRR), ResultReg)
1651                      .addReg(RVLocs[0].getLocReg())
1652                      .addReg(RVLocs[1].getLocReg()));
1653
1654      UsedRegs.push_back(RVLocs[0].getLocReg());
1655      UsedRegs.push_back(RVLocs[1].getLocReg());
1656
1657      // Finally update the result.
1658      UpdateValueMap(I, ResultReg);
1659    } else {
1660      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1661      EVT CopyVT = RVLocs[0].getValVT();
1662      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1663
1664      unsigned ResultReg = createResultReg(DstRC);
1665      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1666              ResultReg).addReg(RVLocs[0].getLocReg());
1667      UsedRegs.push_back(RVLocs[0].getLocReg());
1668
1669      // Finally update the result.
1670      UpdateValueMap(I, ResultReg);
1671    }
1672  }
1673
1674  return true;
1675}
1676
1677bool ARMFastISel::SelectRet(const Instruction *I) {
1678  const ReturnInst *Ret = cast<ReturnInst>(I);
1679  const Function &F = *I->getParent()->getParent();
1680
1681  if (!FuncInfo.CanLowerReturn)
1682    return false;
1683
1684  if (F.isVarArg())
1685    return false;
1686
1687  CallingConv::ID CC = F.getCallingConv();
1688  if (Ret->getNumOperands() > 0) {
1689    SmallVector<ISD::OutputArg, 4> Outs;
1690    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1691                  Outs, TLI);
1692
1693    // Analyze operands of the call, assigning locations to each operand.
1694    SmallVector<CCValAssign, 16> ValLocs;
1695    CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
1696    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1697
1698    const Value *RV = Ret->getOperand(0);
1699    unsigned Reg = getRegForValue(RV);
1700    if (Reg == 0)
1701      return false;
1702
1703    // Only handle a single return value for now.
1704    if (ValLocs.size() != 1)
1705      return false;
1706
1707    CCValAssign &VA = ValLocs[0];
1708
1709    // Don't bother handling odd stuff for now.
1710    if (VA.getLocInfo() != CCValAssign::Full)
1711      return false;
1712    // Only handle register returns for now.
1713    if (!VA.isRegLoc())
1714      return false;
1715    // TODO: For now, don't try to handle cases where getLocInfo()
1716    // says Full but the types don't match.
1717    if (TLI.getValueType(RV->getType()) != VA.getValVT())
1718      return false;
1719
1720    // Make the copy.
1721    unsigned SrcReg = Reg + VA.getValNo();
1722    unsigned DstReg = VA.getLocReg();
1723    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1724    // Avoid a cross-class copy. This is very unlikely.
1725    if (!SrcRC->contains(DstReg))
1726      return false;
1727    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1728            DstReg).addReg(SrcReg);
1729
1730    // Mark the register as live out of the function.
1731    MRI.addLiveOut(VA.getLocReg());
1732  }
1733
1734  unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
1735  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1736                          TII.get(RetOpc)));
1737  return true;
1738}
1739
1740unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
1741
1742  // Darwin needs the r9 versions of the opcodes.
1743  bool isDarwin = Subtarget->isTargetDarwin();
1744  if (isThumb) {
1745    return isDarwin ? ARM::tBLr9 : ARM::tBL;
1746  } else  {
1747    return isDarwin ? ARM::BLr9 : ARM::BL;
1748  }
1749}
1750
1751// A quick function that will emit a call for a named libcall in F with the
1752// vector of passed arguments for the Instruction in I. We can assume that we
1753// can emit a call for any libcall we can produce. This is an abridged version
1754// of the full call infrastructure since we won't need to worry about things
1755// like computed function pointers or strange arguments at call sites.
1756// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1757// with X86.
1758bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1759  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1760
1761  // Handle *simple* calls for now.
1762  const Type *RetTy = I->getType();
1763  MVT RetVT;
1764  if (RetTy->isVoidTy())
1765    RetVT = MVT::isVoid;
1766  else if (!isTypeLegal(RetTy, RetVT))
1767    return false;
1768
1769  // TODO: For now if we have long calls specified we don't handle the call.
1770  if (EnableARMLongCalls) return false;
1771
1772  // Set up the argument vectors.
1773  SmallVector<Value*, 8> Args;
1774  SmallVector<unsigned, 8> ArgRegs;
1775  SmallVector<MVT, 8> ArgVTs;
1776  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1777  Args.reserve(I->getNumOperands());
1778  ArgRegs.reserve(I->getNumOperands());
1779  ArgVTs.reserve(I->getNumOperands());
1780  ArgFlags.reserve(I->getNumOperands());
1781  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1782    Value *Op = I->getOperand(i);
1783    unsigned Arg = getRegForValue(Op);
1784    if (Arg == 0) return false;
1785
1786    const Type *ArgTy = Op->getType();
1787    MVT ArgVT;
1788    if (!isTypeLegal(ArgTy, ArgVT)) return false;
1789
1790    ISD::ArgFlagsTy Flags;
1791    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1792    Flags.setOrigAlign(OriginalAlignment);
1793
1794    Args.push_back(Op);
1795    ArgRegs.push_back(Arg);
1796    ArgVTs.push_back(ArgVT);
1797    ArgFlags.push_back(Flags);
1798  }
1799
1800  // Handle the arguments now that we've gotten them.
1801  SmallVector<unsigned, 4> RegArgs;
1802  unsigned NumBytes;
1803  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1804    return false;
1805
1806  // Issue the call, BLr9 for darwin, BL otherwise.
1807  // TODO: Turn this into the table of arm call ops.
1808  MachineInstrBuilder MIB;
1809  unsigned CallOpc = ARMSelectCallOp(NULL);
1810  if(isThumb)
1811    // Explicitly adding the predicate here.
1812    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1813                         TII.get(CallOpc)))
1814                         .addExternalSymbol(TLI.getLibcallName(Call));
1815  else
1816    // Explicitly adding the predicate here.
1817    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1818                         TII.get(CallOpc))
1819          .addExternalSymbol(TLI.getLibcallName(Call)));
1820
1821  // Add implicit physical register uses to the call.
1822  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1823    MIB.addReg(RegArgs[i]);
1824
1825  // Finish off the call including any return values.
1826  SmallVector<unsigned, 4> UsedRegs;
1827  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1828
1829  // Set all unused physreg defs as dead.
1830  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1831
1832  return true;
1833}
1834
1835bool ARMFastISel::SelectCall(const Instruction *I) {
1836  const CallInst *CI = cast<CallInst>(I);
1837  const Value *Callee = CI->getCalledValue();
1838
1839  // Can't handle inline asm or worry about intrinsics yet.
1840  if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1841
1842  // Only handle global variable Callees.
1843  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1844  if (!GV)
1845    return false;
1846
1847  // Check the calling convention.
1848  ImmutableCallSite CS(CI);
1849  CallingConv::ID CC = CS.getCallingConv();
1850
1851  // TODO: Avoid some calling conventions?
1852
1853  // Let SDISel handle vararg functions.
1854  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1855  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1856  if (FTy->isVarArg())
1857    return false;
1858
1859  // Handle *simple* calls for now.
1860  const Type *RetTy = I->getType();
1861  MVT RetVT;
1862  if (RetTy->isVoidTy())
1863    RetVT = MVT::isVoid;
1864  else if (!isTypeLegal(RetTy, RetVT))
1865    return false;
1866
1867  // TODO: For now if we have long calls specified we don't handle the call.
1868  if (EnableARMLongCalls) return false;
1869
1870  // Set up the argument vectors.
1871  SmallVector<Value*, 8> Args;
1872  SmallVector<unsigned, 8> ArgRegs;
1873  SmallVector<MVT, 8> ArgVTs;
1874  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1875  Args.reserve(CS.arg_size());
1876  ArgRegs.reserve(CS.arg_size());
1877  ArgVTs.reserve(CS.arg_size());
1878  ArgFlags.reserve(CS.arg_size());
1879  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1880       i != e; ++i) {
1881    unsigned Arg = getRegForValue(*i);
1882
1883    if (Arg == 0)
1884      return false;
1885    ISD::ArgFlagsTy Flags;
1886    unsigned AttrInd = i - CS.arg_begin() + 1;
1887    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1888      Flags.setSExt();
1889    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1890      Flags.setZExt();
1891
1892         // FIXME: Only handle *easy* calls for now.
1893    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1894        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1895        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1896        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1897      return false;
1898
1899    const Type *ArgTy = (*i)->getType();
1900    MVT ArgVT;
1901    if (!isTypeLegal(ArgTy, ArgVT))
1902      return false;
1903    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1904    Flags.setOrigAlign(OriginalAlignment);
1905
1906    Args.push_back(*i);
1907    ArgRegs.push_back(Arg);
1908    ArgVTs.push_back(ArgVT);
1909    ArgFlags.push_back(Flags);
1910  }
1911
1912  // Handle the arguments now that we've gotten them.
1913  SmallVector<unsigned, 4> RegArgs;
1914  unsigned NumBytes;
1915  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1916    return false;
1917
1918  // Issue the call, BLr9 for darwin, BL otherwise.
1919  // TODO: Turn this into the table of arm call ops.
1920  MachineInstrBuilder MIB;
1921  unsigned CallOpc = ARMSelectCallOp(GV);
1922  // Explicitly adding the predicate here.
1923  if(isThumb)
1924    // Explicitly adding the predicate here.
1925    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1926                         TII.get(CallOpc)))
1927          .addGlobalAddress(GV, 0, 0);
1928  else
1929    // Explicitly adding the predicate here.
1930    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1931                         TII.get(CallOpc))
1932          .addGlobalAddress(GV, 0, 0));
1933
1934  // Add implicit physical register uses to the call.
1935  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1936    MIB.addReg(RegArgs[i]);
1937
1938  // Finish off the call including any return values.
1939  SmallVector<unsigned, 4> UsedRegs;
1940  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1941
1942  // Set all unused physreg defs as dead.
1943  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1944
1945  return true;
1946
1947}
1948
1949// TODO: SoftFP support.
1950bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
1951
1952  switch (I->getOpcode()) {
1953    case Instruction::Load:
1954      return SelectLoad(I);
1955    case Instruction::Store:
1956      return SelectStore(I);
1957    case Instruction::Br:
1958      return SelectBranch(I);
1959    case Instruction::ICmp:
1960    case Instruction::FCmp:
1961      return SelectCmp(I);
1962    case Instruction::FPExt:
1963      return SelectFPExt(I);
1964    case Instruction::FPTrunc:
1965      return SelectFPTrunc(I);
1966    case Instruction::SIToFP:
1967      return SelectSIToFP(I);
1968    case Instruction::FPToSI:
1969      return SelectFPToSI(I);
1970    case Instruction::FAdd:
1971      return SelectBinaryOp(I, ISD::FADD);
1972    case Instruction::FSub:
1973      return SelectBinaryOp(I, ISD::FSUB);
1974    case Instruction::FMul:
1975      return SelectBinaryOp(I, ISD::FMUL);
1976    case Instruction::SDiv:
1977      return SelectSDiv(I);
1978    case Instruction::SRem:
1979      return SelectSRem(I);
1980    case Instruction::Call:
1981      return SelectCall(I);
1982    case Instruction::Select:
1983      return SelectSelect(I);
1984    case Instruction::Ret:
1985      return SelectRet(I);
1986    default: break;
1987  }
1988  return false;
1989}
1990
1991namespace llvm {
1992  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
1993    // Completely untested on non-darwin.
1994    const TargetMachine &TM = funcInfo.MF->getTarget();
1995
1996    // Darwin and thumb1 only for now.
1997    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
1998    if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
1999        !DisableARMFastISel)
2000      return new ARMFastISel(funcInfo);
2001    return 0;
2002  }
2003}
2004