ARMFastISel.cpp revision 558cf007b5ed92324156b29861a0acbf95442278
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/Analysis.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/FunctionLoweringInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineConstantPool.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/GetElementPtrTypeIterator.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46using namespace llvm;
47
48static cl::opt<bool>
49EnableARMFastISel("arm-fast-isel",
50                    cl::desc("Turn on experimental ARM fast-isel support"),
51                    cl::init(false), cl::Hidden);
52
53namespace {
54
55class ARMFastISel : public FastISel {
56
57  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
58  /// make the right decision when generating code for different targets.
59  const ARMSubtarget *Subtarget;
60  const TargetMachine &TM;
61  const TargetInstrInfo &TII;
62  const TargetLowering &TLI;
63  ARMFunctionInfo *AFI;
64
65  // Convenience variables to avoid some queries.
66  bool isThumb;
67  LLVMContext *Context;
68
69  public:
70    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
71    : FastISel(funcInfo),
72      TM(funcInfo.MF->getTarget()),
73      TII(*TM.getInstrInfo()),
74      TLI(*TM.getTargetLowering()) {
75      Subtarget = &TM.getSubtarget<ARMSubtarget>();
76      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
77      isThumb = AFI->isThumbFunction();
78      Context = &funcInfo.Fn->getContext();
79    }
80
81    // Code from FastISel.cpp.
82    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
83                                   const TargetRegisterClass *RC);
84    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
85                                    const TargetRegisterClass *RC,
86                                    unsigned Op0, bool Op0IsKill);
87    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
88                                     const TargetRegisterClass *RC,
89                                     unsigned Op0, bool Op0IsKill,
90                                     unsigned Op1, bool Op1IsKill);
91    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
92                                     const TargetRegisterClass *RC,
93                                     unsigned Op0, bool Op0IsKill,
94                                     uint64_t Imm);
95    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
96                                     const TargetRegisterClass *RC,
97                                     unsigned Op0, bool Op0IsKill,
98                                     const ConstantFP *FPImm);
99    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
100                                    const TargetRegisterClass *RC,
101                                    uint64_t Imm);
102    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
103                                      const TargetRegisterClass *RC,
104                                      unsigned Op0, bool Op0IsKill,
105                                      unsigned Op1, bool Op1IsKill,
106                                      uint64_t Imm);
107    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
108                                                unsigned Op0, bool Op0IsKill,
109                                                uint32_t Idx);
110
111    // Backend specific FastISel code.
112    virtual bool TargetSelectInstruction(const Instruction *I);
113    virtual unsigned TargetMaterializeConstant(const Constant *C);
114    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
115
116  #include "ARMGenFastISel.inc"
117
118    // Instruction selection routines.
119  private:
120    virtual bool SelectLoad(const Instruction *I);
121    virtual bool SelectStore(const Instruction *I);
122    virtual bool SelectBranch(const Instruction *I);
123    virtual bool SelectCmp(const Instruction *I);
124    virtual bool SelectFPExt(const Instruction *I);
125    virtual bool SelectFPTrunc(const Instruction *I);
126    virtual bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
127    virtual bool SelectSIToFP(const Instruction *I);
128    virtual bool SelectFPToSI(const Instruction *I);
129    virtual bool SelectSDiv(const Instruction *I);
130    virtual bool SelectSRem(const Instruction *I);
131    virtual bool SelectCall(const Instruction *I);
132    virtual bool SelectSelect(const Instruction *I);
133
134    // Utility routines.
135  private:
136    bool isTypeLegal(const Type *Ty, EVT &VT);
137    bool isLoadTypeLegal(const Type *Ty, EVT &VT);
138    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, unsigned Reg, int Offset);
139    bool ARMEmitStore(EVT VT, unsigned SrcReg, unsigned Reg, int Offset);
140    bool ARMComputeRegOffset(const Value *Obj, unsigned &Reg, int &Offset);
141    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
142    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
143    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
144    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
145    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
146
147    // Call handling routines.
148  private:
149    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
150    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
151                         SmallVectorImpl<unsigned> &ArgRegs,
152                         SmallVectorImpl<EVT> &ArgVTs,
153                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
154                         SmallVectorImpl<unsigned> &RegArgs,
155                         CallingConv::ID CC,
156                         unsigned &NumBytes);
157    bool FinishCall(EVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
158                    const Instruction *I, CallingConv::ID CC,
159                    unsigned &NumBytes);
160    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
161
162    // OptionalDef handling routines.
163  private:
164    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
165    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
166};
167
168} // end anonymous namespace
169
170#include "ARMGenCallingConv.inc"
171
172// DefinesOptionalPredicate - This is different from DefinesPredicate in that
173// we don't care about implicit defs here, just places we'll need to add a
174// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
175bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
176  const TargetInstrDesc &TID = MI->getDesc();
177  if (!TID.hasOptionalDef())
178    return false;
179
180  // Look to see if our OptionalDef is defining CPSR or CCR.
181  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
182    const MachineOperand &MO = MI->getOperand(i);
183    if (!MO.isReg() || !MO.isDef()) continue;
184    if (MO.getReg() == ARM::CPSR)
185      *CPSR = true;
186  }
187  return true;
188}
189
190// If the machine is predicable go ahead and add the predicate operands, if
191// it needs default CC operands add those.
192const MachineInstrBuilder &
193ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
194  MachineInstr *MI = &*MIB;
195
196  // Do we use a predicate?
197  if (TII.isPredicable(MI))
198    AddDefaultPred(MIB);
199
200  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
201  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
202  bool CPSR = false;
203  if (DefinesOptionalPredicate(MI, &CPSR)) {
204    if (CPSR)
205      AddDefaultT1CC(MIB);
206    else
207      AddDefaultCC(MIB);
208  }
209  return MIB;
210}
211
212unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
213                                    const TargetRegisterClass* RC) {
214  unsigned ResultReg = createResultReg(RC);
215  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
216
217  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
218  return ResultReg;
219}
220
221unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
222                                     const TargetRegisterClass *RC,
223                                     unsigned Op0, bool Op0IsKill) {
224  unsigned ResultReg = createResultReg(RC);
225  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
226
227  if (II.getNumDefs() >= 1)
228    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
229                   .addReg(Op0, Op0IsKill * RegState::Kill));
230  else {
231    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
232                   .addReg(Op0, Op0IsKill * RegState::Kill));
233    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
234                   TII.get(TargetOpcode::COPY), ResultReg)
235                   .addReg(II.ImplicitDefs[0]));
236  }
237  return ResultReg;
238}
239
240unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
241                                      const TargetRegisterClass *RC,
242                                      unsigned Op0, bool Op0IsKill,
243                                      unsigned Op1, bool Op1IsKill) {
244  unsigned ResultReg = createResultReg(RC);
245  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
246
247  if (II.getNumDefs() >= 1)
248    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
249                   .addReg(Op0, Op0IsKill * RegState::Kill)
250                   .addReg(Op1, Op1IsKill * RegState::Kill));
251  else {
252    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
253                   .addReg(Op0, Op0IsKill * RegState::Kill)
254                   .addReg(Op1, Op1IsKill * RegState::Kill));
255    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
256                           TII.get(TargetOpcode::COPY), ResultReg)
257                   .addReg(II.ImplicitDefs[0]));
258  }
259  return ResultReg;
260}
261
262unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
263                                      const TargetRegisterClass *RC,
264                                      unsigned Op0, bool Op0IsKill,
265                                      uint64_t Imm) {
266  unsigned ResultReg = createResultReg(RC);
267  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
268
269  if (II.getNumDefs() >= 1)
270    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
271                   .addReg(Op0, Op0IsKill * RegState::Kill)
272                   .addImm(Imm));
273  else {
274    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
275                   .addReg(Op0, Op0IsKill * RegState::Kill)
276                   .addImm(Imm));
277    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
278                           TII.get(TargetOpcode::COPY), ResultReg)
279                   .addReg(II.ImplicitDefs[0]));
280  }
281  return ResultReg;
282}
283
284unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
285                                      const TargetRegisterClass *RC,
286                                      unsigned Op0, bool Op0IsKill,
287                                      const ConstantFP *FPImm) {
288  unsigned ResultReg = createResultReg(RC);
289  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
290
291  if (II.getNumDefs() >= 1)
292    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
293                   .addReg(Op0, Op0IsKill * RegState::Kill)
294                   .addFPImm(FPImm));
295  else {
296    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
297                   .addReg(Op0, Op0IsKill * RegState::Kill)
298                   .addFPImm(FPImm));
299    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
300                           TII.get(TargetOpcode::COPY), ResultReg)
301                   .addReg(II.ImplicitDefs[0]));
302  }
303  return ResultReg;
304}
305
306unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
307                                       const TargetRegisterClass *RC,
308                                       unsigned Op0, bool Op0IsKill,
309                                       unsigned Op1, bool Op1IsKill,
310                                       uint64_t Imm) {
311  unsigned ResultReg = createResultReg(RC);
312  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
313
314  if (II.getNumDefs() >= 1)
315    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
316                   .addReg(Op0, Op0IsKill * RegState::Kill)
317                   .addReg(Op1, Op1IsKill * RegState::Kill)
318                   .addImm(Imm));
319  else {
320    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
321                   .addReg(Op0, Op0IsKill * RegState::Kill)
322                   .addReg(Op1, Op1IsKill * RegState::Kill)
323                   .addImm(Imm));
324    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
325                           TII.get(TargetOpcode::COPY), ResultReg)
326                   .addReg(II.ImplicitDefs[0]));
327  }
328  return ResultReg;
329}
330
331unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
332                                     const TargetRegisterClass *RC,
333                                     uint64_t Imm) {
334  unsigned ResultReg = createResultReg(RC);
335  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
336
337  if (II.getNumDefs() >= 1)
338    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
339                   .addImm(Imm));
340  else {
341    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
342                   .addImm(Imm));
343    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
344                           TII.get(TargetOpcode::COPY), ResultReg)
345                   .addReg(II.ImplicitDefs[0]));
346  }
347  return ResultReg;
348}
349
350unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
351                                                 unsigned Op0, bool Op0IsKill,
352                                                 uint32_t Idx) {
353  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
354  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
355         "Cannot yet extract from physregs");
356  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
357                         DL, TII.get(TargetOpcode::COPY), ResultReg)
358                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
359  return ResultReg;
360}
361
362// TODO: Don't worry about 64-bit now, but when this is fixed remove the
363// checks from the various callers.
364unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
365  if (VT.getSimpleVT().SimpleTy == MVT::f64) return 0;
366
367  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
368  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
369                          TII.get(ARM::VMOVRS), MoveReg)
370                  .addReg(SrcReg));
371  return MoveReg;
372}
373
374unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
375  if (VT.getSimpleVT().SimpleTy == MVT::i64) return 0;
376
377  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
378  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
379                          TII.get(ARM::VMOVSR), MoveReg)
380                  .addReg(SrcReg));
381  return MoveReg;
382}
383
384// For double width floating point we need to materialize two constants
385// (the high and the low) into integer registers then use a move to get
386// the combined constant into an FP reg.
387unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
388  const APFloat Val = CFP->getValueAPF();
389  bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64;
390
391  // This checks to see if we can use VFP3 instructions to materialize
392  // a constant, otherwise we have to go through the constant pool.
393  if (TLI.isFPImmLegal(Val, VT)) {
394    unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
395    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
396    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
397                            DestReg)
398                    .addFPImm(CFP));
399    return DestReg;
400  }
401
402  // Require VFP2 for loading fp constants.
403  if (!Subtarget->hasVFP2()) return false;
404
405  // MachineConstantPool wants an explicit alignment.
406  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
407  if (Align == 0) {
408    // TODO: Figure out if this is correct.
409    Align = TD.getTypeAllocSize(CFP->getType());
410  }
411  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
412  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
413  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
414
415  // The extra reg is for addrmode5.
416  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
417                          DestReg)
418                  .addConstantPoolIndex(Idx)
419                  .addReg(0));
420  return DestReg;
421}
422
423unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
424
425  // For now 32-bit only.
426  if (VT.getSimpleVT().SimpleTy != MVT::i32) return false;
427
428  // MachineConstantPool wants an explicit alignment.
429  unsigned Align = TD.getPrefTypeAlignment(C->getType());
430  if (Align == 0) {
431    // TODO: Figure out if this is correct.
432    Align = TD.getTypeAllocSize(C->getType());
433  }
434  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
435  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
436
437  if (isThumb)
438    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
439                            TII.get(ARM::t2LDRpci), DestReg)
440                    .addConstantPoolIndex(Idx));
441  else
442    // The extra reg and immediate are for addrmode2.
443    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
444                            TII.get(ARM::LDRcp), DestReg)
445                    .addConstantPoolIndex(Idx)
446                    .addReg(0).addImm(0));
447
448  return DestReg;
449}
450
451unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
452  // For now 32-bit only.
453  if (VT.getSimpleVT().SimpleTy != MVT::i32) return 0;
454
455  Reloc::Model RelocM = TM.getRelocationModel();
456
457  // TODO: No external globals for now.
458  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) return 0;
459
460  // TODO: Need more magic for ARM PIC.
461  if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
462
463  // MachineConstantPool wants an explicit alignment.
464  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
465  if (Align == 0) {
466    // TODO: Figure out if this is correct.
467    Align = TD.getTypeAllocSize(GV->getType());
468  }
469
470  // Grab index.
471  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
472  unsigned Id = AFI->createConstPoolEntryUId();
473  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id,
474                                                       ARMCP::CPValue, PCAdj);
475  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
476
477  // Load value.
478  MachineInstrBuilder MIB;
479  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
480  if (isThumb) {
481    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
482    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
483          .addConstantPoolIndex(Idx);
484    if (RelocM == Reloc::PIC_)
485      MIB.addImm(Id);
486  } else {
487    // The extra reg and immediate are for addrmode2.
488    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
489                  DestReg)
490          .addConstantPoolIndex(Idx)
491          .addReg(0).addImm(0);
492  }
493  AddOptionalDefs(MIB);
494  return DestReg;
495}
496
497unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
498  EVT VT = TLI.getValueType(C->getType(), true);
499
500  // Only handle simple types.
501  if (!VT.isSimple()) return 0;
502
503  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
504    return ARMMaterializeFP(CFP, VT);
505  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
506    return ARMMaterializeGV(GV, VT);
507  else if (isa<ConstantInt>(C))
508    return ARMMaterializeInt(C, VT);
509
510  return 0;
511}
512
513unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
514  // Don't handle dynamic allocas.
515  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
516
517  EVT VT;
518  if (!isTypeLegal(AI->getType(), VT)) return false;
519
520  DenseMap<const AllocaInst*, int>::iterator SI =
521    FuncInfo.StaticAllocaMap.find(AI);
522
523  // This will get lowered later into the correct offsets and registers
524  // via rewriteXFrameIndex.
525  if (SI != FuncInfo.StaticAllocaMap.end()) {
526    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
527    unsigned ResultReg = createResultReg(RC);
528    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
529    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
530                            TII.get(Opc), ResultReg)
531                            .addFrameIndex(SI->second)
532                            .addImm(0));
533    return ResultReg;
534  }
535
536  return 0;
537}
538
539bool ARMFastISel::isTypeLegal(const Type *Ty, EVT &VT) {
540  VT = TLI.getValueType(Ty, true);
541
542  // Only handle simple types.
543  if (VT == MVT::Other || !VT.isSimple()) return false;
544
545  // Handle all legal types, i.e. a register that will directly hold this
546  // value.
547  return TLI.isTypeLegal(VT);
548}
549
550bool ARMFastISel::isLoadTypeLegal(const Type *Ty, EVT &VT) {
551  if (isTypeLegal(Ty, VT)) return true;
552
553  // If this is a type than can be sign or zero-extended to a basic operation
554  // go ahead and accept it now.
555  if (VT == MVT::i8 || VT == MVT::i16)
556    return true;
557
558  return false;
559}
560
561// Computes the Reg+Offset to get to an object.
562bool ARMFastISel::ARMComputeRegOffset(const Value *Obj, unsigned &Reg,
563                                      int &Offset) {
564  // Some boilerplate from the X86 FastISel.
565  const User *U = NULL;
566  unsigned Opcode = Instruction::UserOp1;
567  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
568    // Don't walk into other basic blocks; it's possible we haven't
569    // visited them yet, so the instructions may not yet be assigned
570    // virtual registers.
571    if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB)
572      return false;
573    Opcode = I->getOpcode();
574    U = I;
575  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
576    Opcode = C->getOpcode();
577    U = C;
578  }
579
580  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
581    if (Ty->getAddressSpace() > 255)
582      // Fast instruction selection doesn't support the special
583      // address spaces.
584      return false;
585
586  switch (Opcode) {
587    default:
588    break;
589    case Instruction::BitCast: {
590      // Look through bitcasts.
591      return ARMComputeRegOffset(U->getOperand(0), Reg, Offset);
592    }
593    case Instruction::IntToPtr: {
594      // Look past no-op inttoptrs.
595      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
596        return ARMComputeRegOffset(U->getOperand(0), Reg, Offset);
597      break;
598    }
599    case Instruction::PtrToInt: {
600      // Look past no-op ptrtoints.
601      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
602        return ARMComputeRegOffset(U->getOperand(0), Reg, Offset);
603      break;
604    }
605    case Instruction::Alloca: {
606      const AllocaInst *AI = cast<AllocaInst>(Obj);
607      DenseMap<const AllocaInst*, int>::iterator SI =
608        FuncInfo.StaticAllocaMap.find(AI);
609      if (SI != FuncInfo.StaticAllocaMap.end()) {
610        Reg = ARM::SP;
611        Offset = SI->second;
612        return true;
613      }
614      // Don't handle dynamic allocas.
615      assert(!FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Obj)) &&
616             "Alloca should have been handled earlier!");
617      return false;
618    }
619  }
620
621  // FIXME: Handle global variables.
622  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
623    (void)GV;
624    return false;
625  }
626
627  // Try to get this in a register if nothing else has worked.
628  Reg = getRegForValue(Obj);
629  if (Reg == 0) return false;
630
631  // Since the offset may be too large for the load instruction
632  // get the reg+offset into a register.
633  // TODO: Verify the additions work, otherwise we'll need to add the
634  // offset instead of 0 to the instructions and do all sorts of operand
635  // munging.
636  // TODO: Optimize this somewhat.
637  if (Offset != 0) {
638    ARMCC::CondCodes Pred = ARMCC::AL;
639    unsigned PredReg = 0;
640
641    if (!isThumb)
642      emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
643                              Reg, Reg, Offset, Pred, PredReg,
644                              static_cast<const ARMBaseInstrInfo&>(TII));
645    else {
646      assert(AFI->isThumb2Function());
647      emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
648                             Reg, Reg, Offset, Pred, PredReg,
649                             static_cast<const ARMBaseInstrInfo&>(TII));
650    }
651  }
652  return true;
653}
654
655bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg,
656                              unsigned Reg, int Offset) {
657
658  assert(VT.isSimple() && "Non-simple types are invalid here!");
659  unsigned Opc;
660  TargetRegisterClass *RC;
661  bool isFloat = false;
662  switch (VT.getSimpleVT().SimpleTy) {
663    default:
664      // This is mostly going to be Neon/vector support.
665      return false;
666    case MVT::i16:
667      Opc = isThumb ? ARM::t2LDRHi8 : ARM::LDRH;
668      RC = ARM::GPRRegisterClass;
669      VT = MVT::i32;
670      break;
671    case MVT::i8:
672      Opc = isThumb ? ARM::t2LDRBi8 : ARM::LDRB;
673      RC = ARM::GPRRegisterClass;
674      VT = MVT::i32;
675      break;
676    case MVT::i32:
677      Opc = isThumb ? ARM::t2LDRi8 : ARM::LDR;
678      RC = ARM::GPRRegisterClass;
679      break;
680    case MVT::f32:
681      Opc = ARM::VLDRS;
682      RC = TLI.getRegClassFor(VT);
683      isFloat = true;
684      break;
685    case MVT::f64:
686      Opc = ARM::VLDRD;
687      RC = TLI.getRegClassFor(VT);
688      isFloat = true;
689      break;
690  }
691
692  ResultReg = createResultReg(RC);
693
694  // For now with the additions above the offset should be zero - thus we
695  // can always fit into an i8.
696  assert((Reg == ARM::SP || Offset == 0) &&
697          "Offset not zero and not a stack load!");
698
699  if (Reg == ARM::SP)
700    TII.loadRegFromStackSlot(*FuncInfo.MBB, *FuncInfo.InsertPt,
701                             ResultReg, Offset, RC,
702                             TM.getRegisterInfo());
703  // The thumb and floating point instructions both take 2 operands, ARM takes
704  // another register.
705  else if (isFloat || isThumb)
706    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
707                            TII.get(Opc), ResultReg)
708                    .addReg(Reg).addImm(Offset));
709  else
710    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
711                            TII.get(Opc), ResultReg)
712                    .addReg(Reg).addReg(0).addImm(Offset));
713  return true;
714}
715
716bool ARMFastISel::SelectLoad(const Instruction *I) {
717  // Verify we have a legal type before going any further.
718  EVT VT;
719  if (!isLoadTypeLegal(I->getType(), VT))
720    return false;
721
722  // Our register and offset with innocuous defaults.
723  unsigned Reg = 0;
724  int Offset = 0;
725
726  // See if we can handle this as Reg + Offset
727  if (!ARMComputeRegOffset(I->getOperand(0), Reg, Offset))
728    return false;
729
730  unsigned ResultReg;
731  if (!ARMEmitLoad(VT, ResultReg, Reg, Offset /* 0 */)) return false;
732
733  UpdateValueMap(I, ResultReg);
734  return true;
735}
736
737bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg,
738                               unsigned DstReg, int Offset) {
739  unsigned StrOpc;
740  bool isFloat = false;
741  // VT is set here only for use in the alloca stores below - those are promoted
742  // to reg size always.
743  switch (VT.getSimpleVT().SimpleTy) {
744    default: return false;
745    case MVT::i1:
746    case MVT::i8:
747      VT = MVT::i32;
748      StrOpc = isThumb ? ARM::t2STRBi8 : ARM::STRB;
749      break;
750    case MVT::i16:
751      VT = MVT::i32;
752      StrOpc = isThumb ? ARM::t2STRHi8 : ARM::STRH;
753      break;
754    case MVT::i32: StrOpc = isThumb ? ARM::t2STRi8 : ARM::STR; break;
755    case MVT::f32:
756      if (!Subtarget->hasVFP2()) return false;
757      StrOpc = ARM::VSTRS;
758      isFloat = true;
759      break;
760    case MVT::f64:
761      if (!Subtarget->hasVFP2()) return false;
762      StrOpc = ARM::VSTRD;
763      isFloat = true;
764      break;
765  }
766
767  if (DstReg == ARM::SP)
768    TII.storeRegToStackSlot(*FuncInfo.MBB, *FuncInfo.InsertPt,
769                            SrcReg, true /*isKill*/, Offset,
770                            TLI.getRegClassFor(VT), TM.getRegisterInfo());
771  // The thumb addressing mode has operands swapped from the arm addressing
772  // mode, the floating point one only has two operands.
773  if (isFloat || isThumb)
774    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
775                            TII.get(StrOpc))
776                    .addReg(SrcReg).addReg(DstReg).addImm(Offset));
777  else
778    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
779                            TII.get(StrOpc))
780                    .addReg(SrcReg).addReg(DstReg).addReg(0).addImm(Offset));
781
782  return true;
783}
784
785bool ARMFastISel::SelectStore(const Instruction *I) {
786  Value *Op0 = I->getOperand(0);
787  unsigned SrcReg = 0;
788
789  // Yay type legalization
790  EVT VT;
791  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
792    return false;
793
794  // Get the value to be stored into a register.
795  SrcReg = getRegForValue(Op0);
796  if (SrcReg == 0)
797    return false;
798
799  // Our register and offset with innocuous defaults.
800  unsigned Reg = 0;
801  int Offset = 0;
802
803  // See if we can handle this as Reg + Offset
804  if (!ARMComputeRegOffset(I->getOperand(1), Reg, Offset))
805    return false;
806
807  if (!ARMEmitStore(VT, SrcReg, Reg, Offset /* 0 */)) return false;
808
809  return true;
810}
811
812static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
813  switch (Pred) {
814    // Needs two compares...
815    case CmpInst::FCMP_ONE:
816    case CmpInst::FCMP_UEQ:
817    default:
818      assert(false && "Unhandled CmpInst::Predicate!");
819      return ARMCC::AL;
820    case CmpInst::ICMP_EQ:
821    case CmpInst::FCMP_OEQ:
822      return ARMCC::EQ;
823    case CmpInst::ICMP_SGT:
824    case CmpInst::FCMP_OGT:
825      return ARMCC::GT;
826    case CmpInst::ICMP_SGE:
827    case CmpInst::FCMP_OGE:
828      return ARMCC::GE;
829    case CmpInst::ICMP_UGT:
830    case CmpInst::FCMP_UGT:
831      return ARMCC::HI;
832    case CmpInst::FCMP_OLT:
833      return ARMCC::MI;
834    case CmpInst::ICMP_ULE:
835    case CmpInst::FCMP_OLE:
836      return ARMCC::LS;
837    case CmpInst::FCMP_ORD:
838      return ARMCC::VC;
839    case CmpInst::FCMP_UNO:
840      return ARMCC::VS;
841    case CmpInst::FCMP_UGE:
842      return ARMCC::PL;
843    case CmpInst::ICMP_SLT:
844    case CmpInst::FCMP_ULT:
845      return ARMCC::LT;
846    case CmpInst::ICMP_SLE:
847    case CmpInst::FCMP_ULE:
848      return ARMCC::LE;
849    case CmpInst::FCMP_UNE:
850    case CmpInst::ICMP_NE:
851      return ARMCC::NE;
852    case CmpInst::ICMP_UGE:
853      return ARMCC::HS;
854    case CmpInst::ICMP_ULT:
855      return ARMCC::LO;
856  }
857}
858
859bool ARMFastISel::SelectBranch(const Instruction *I) {
860  const BranchInst *BI = cast<BranchInst>(I);
861  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
862  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
863
864  // Simple branch support.
865  // TODO: Try to avoid the re-computation in some places.
866  unsigned CondReg = getRegForValue(BI->getCondition());
867  if (CondReg == 0) return false;
868
869  // Re-set the flags just in case.
870  unsigned CmpOpc = isThumb ? ARM::t2CMPri : ARM::CMPri;
871  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
872                  .addReg(CondReg).addImm(1));
873
874  unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
875  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
876                  .addMBB(TBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
877  FastEmitBranch(FBB, DL);
878  FuncInfo.MBB->addSuccessor(TBB);
879  return true;
880}
881
882bool ARMFastISel::SelectCmp(const Instruction *I) {
883  const CmpInst *CI = cast<CmpInst>(I);
884
885  EVT VT;
886  const Type *Ty = CI->getOperand(0)->getType();
887  if (!isTypeLegal(Ty, VT))
888    return false;
889
890  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
891  if (isFloat && !Subtarget->hasVFP2())
892    return false;
893
894  unsigned CmpOpc;
895  unsigned CondReg;
896  switch (VT.getSimpleVT().SimpleTy) {
897    default: return false;
898    // TODO: Verify compares.
899    case MVT::f32:
900      CmpOpc = ARM::VCMPES;
901      CondReg = ARM::FPSCR;
902      break;
903    case MVT::f64:
904      CmpOpc = ARM::VCMPED;
905      CondReg = ARM::FPSCR;
906      break;
907    case MVT::i32:
908      CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
909      CondReg = ARM::CPSR;
910      break;
911  }
912
913  // Get the compare predicate.
914  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
915
916  // We may not handle every CC for now.
917  if (ARMPred == ARMCC::AL) return false;
918
919  unsigned Arg1 = getRegForValue(CI->getOperand(0));
920  if (Arg1 == 0) return false;
921
922  unsigned Arg2 = getRegForValue(CI->getOperand(1));
923  if (Arg2 == 0) return false;
924
925  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
926                  .addReg(Arg1).addReg(Arg2));
927
928  // For floating point we need to move the result to a comparison register
929  // that we can then use for branches.
930  if (isFloat)
931    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
932                            TII.get(ARM::FMSTAT)));
933
934  // Now set a register based on the comparison. Explicitly set the predicates
935  // here.
936  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
937  TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
938                                    : ARM::GPRRegisterClass;
939  unsigned DestReg = createResultReg(RC);
940  Constant *Zero
941    = ConstantInt::get(Type::getInt32Ty(*Context), 0);
942  unsigned ZeroReg = TargetMaterializeConstant(Zero);
943  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
944          .addReg(ZeroReg).addImm(1)
945          .addImm(ARMPred).addReg(CondReg);
946
947  UpdateValueMap(I, DestReg);
948  return true;
949}
950
951bool ARMFastISel::SelectFPExt(const Instruction *I) {
952  // Make sure we have VFP and that we're extending float to double.
953  if (!Subtarget->hasVFP2()) return false;
954
955  Value *V = I->getOperand(0);
956  if (!I->getType()->isDoubleTy() ||
957      !V->getType()->isFloatTy()) return false;
958
959  unsigned Op = getRegForValue(V);
960  if (Op == 0) return false;
961
962  unsigned Result = createResultReg(ARM::DPRRegisterClass);
963  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
964                          TII.get(ARM::VCVTDS), Result)
965                  .addReg(Op));
966  UpdateValueMap(I, Result);
967  return true;
968}
969
970bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
971  // Make sure we have VFP and that we're truncating double to float.
972  if (!Subtarget->hasVFP2()) return false;
973
974  Value *V = I->getOperand(0);
975  if (!(I->getType()->isFloatTy() &&
976        V->getType()->isDoubleTy())) return false;
977
978  unsigned Op = getRegForValue(V);
979  if (Op == 0) return false;
980
981  unsigned Result = createResultReg(ARM::SPRRegisterClass);
982  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
983                          TII.get(ARM::VCVTSD), Result)
984                  .addReg(Op));
985  UpdateValueMap(I, Result);
986  return true;
987}
988
989bool ARMFastISel::SelectSIToFP(const Instruction *I) {
990  // Make sure we have VFP.
991  if (!Subtarget->hasVFP2()) return false;
992
993  EVT DstVT;
994  const Type *Ty = I->getType();
995  if (!isTypeLegal(Ty, DstVT))
996    return false;
997
998  unsigned Op = getRegForValue(I->getOperand(0));
999  if (Op == 0) return false;
1000
1001  // The conversion routine works on fp-reg to fp-reg and the operand above
1002  // was an integer, move it to the fp registers if possible.
1003  unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1004  if (FP == 0) return false;
1005
1006  unsigned Opc;
1007  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1008  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1009  else return 0;
1010
1011  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1012  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1013                          ResultReg)
1014                  .addReg(FP));
1015  UpdateValueMap(I, ResultReg);
1016  return true;
1017}
1018
1019bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1020  // Make sure we have VFP.
1021  if (!Subtarget->hasVFP2()) return false;
1022
1023  EVT DstVT;
1024  const Type *RetTy = I->getType();
1025  if (!isTypeLegal(RetTy, DstVT))
1026    return false;
1027
1028  unsigned Op = getRegForValue(I->getOperand(0));
1029  if (Op == 0) return false;
1030
1031  unsigned Opc;
1032  const Type *OpTy = I->getOperand(0)->getType();
1033  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1034  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1035  else return 0;
1036
1037  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1038  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1039  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1040                          ResultReg)
1041                  .addReg(Op));
1042
1043  // This result needs to be in an integer register, but the conversion only
1044  // takes place in fp-regs.
1045  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1046  if (IntReg == 0) return false;
1047
1048  UpdateValueMap(I, IntReg);
1049  return true;
1050}
1051
1052bool ARMFastISel::SelectSelect(const Instruction *I) {
1053  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1054  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1055    return false;
1056
1057  // Things need to be register sized for register moves.
1058  if (VT.getSimpleVT().SimpleTy != MVT::i32) return false;
1059  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1060
1061  unsigned CondReg = getRegForValue(I->getOperand(0));
1062  if (CondReg == 0) return false;
1063  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1064  if (Op1Reg == 0) return false;
1065  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1066  if (Op2Reg == 0) return false;
1067
1068  unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1069  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1070                  .addReg(CondReg).addImm(1));
1071  unsigned ResultReg = createResultReg(RC);
1072  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1073  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1074    .addReg(Op1Reg).addReg(Op2Reg)
1075    .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1076  UpdateValueMap(I, ResultReg);
1077  return true;
1078}
1079
1080bool ARMFastISel::SelectSDiv(const Instruction *I) {
1081  EVT VT;
1082  const Type *Ty = I->getType();
1083  if (!isTypeLegal(Ty, VT))
1084    return false;
1085
1086  // If we have integer div support we should have selected this automagically.
1087  // In case we have a real miss go ahead and return false and we'll pick
1088  // it up later.
1089  if (Subtarget->hasDivide()) return false;
1090
1091  // Otherwise emit a libcall.
1092  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1093  if (VT == MVT::i8)
1094    LC = RTLIB::SDIV_I8;
1095  else if (VT == MVT::i16)
1096    LC = RTLIB::SDIV_I16;
1097  else if (VT == MVT::i32)
1098    LC = RTLIB::SDIV_I32;
1099  else if (VT == MVT::i64)
1100    LC = RTLIB::SDIV_I64;
1101  else if (VT == MVT::i128)
1102    LC = RTLIB::SDIV_I128;
1103  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1104
1105  return ARMEmitLibcall(I, LC);
1106}
1107
1108bool ARMFastISel::SelectSRem(const Instruction *I) {
1109  EVT VT;
1110  const Type *Ty = I->getType();
1111  if (!isTypeLegal(Ty, VT))
1112    return false;
1113
1114  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1115  if (VT == MVT::i8)
1116    LC = RTLIB::SREM_I8;
1117  else if (VT == MVT::i16)
1118    LC = RTLIB::SREM_I16;
1119  else if (VT == MVT::i32)
1120    LC = RTLIB::SREM_I32;
1121  else if (VT == MVT::i64)
1122    LC = RTLIB::SREM_I64;
1123  else if (VT == MVT::i128)
1124    LC = RTLIB::SREM_I128;
1125  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1126
1127  return ARMEmitLibcall(I, LC);
1128}
1129
1130bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1131  EVT VT  = TLI.getValueType(I->getType(), true);
1132
1133  // We can get here in the case when we want to use NEON for our fp
1134  // operations, but can't figure out how to. Just use the vfp instructions
1135  // if we have them.
1136  // FIXME: It'd be nice to use NEON instructions.
1137  const Type *Ty = I->getType();
1138  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1139  if (isFloat && !Subtarget->hasVFP2())
1140    return false;
1141
1142  unsigned Op1 = getRegForValue(I->getOperand(0));
1143  if (Op1 == 0) return false;
1144
1145  unsigned Op2 = getRegForValue(I->getOperand(1));
1146  if (Op2 == 0) return false;
1147
1148  unsigned Opc;
1149  bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64 ||
1150                 VT.getSimpleVT().SimpleTy == MVT::i64;
1151  switch (ISDOpcode) {
1152    default: return false;
1153    case ISD::FADD:
1154      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1155      break;
1156    case ISD::FSUB:
1157      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1158      break;
1159    case ISD::FMUL:
1160      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1161      break;
1162  }
1163  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1164  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1165                          TII.get(Opc), ResultReg)
1166                  .addReg(Op1).addReg(Op2));
1167  UpdateValueMap(I, ResultReg);
1168  return true;
1169}
1170
1171// Call Handling Code
1172
1173// This is largely taken directly from CCAssignFnForNode - we don't support
1174// varargs in FastISel so that part has been removed.
1175// TODO: We may not support all of this.
1176CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1177  switch (CC) {
1178  default:
1179    llvm_unreachable("Unsupported calling convention");
1180  case CallingConv::C:
1181  case CallingConv::Fast:
1182    // Use target triple & subtarget features to do actual dispatch.
1183    if (Subtarget->isAAPCS_ABI()) {
1184      if (Subtarget->hasVFP2() &&
1185          FloatABIType == FloatABI::Hard)
1186        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1187      else
1188        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1189    } else
1190        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1191  case CallingConv::ARM_AAPCS_VFP:
1192    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1193  case CallingConv::ARM_AAPCS:
1194    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1195  case CallingConv::ARM_APCS:
1196    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1197  }
1198}
1199
1200bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1201                                  SmallVectorImpl<unsigned> &ArgRegs,
1202                                  SmallVectorImpl<EVT> &ArgVTs,
1203                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1204                                  SmallVectorImpl<unsigned> &RegArgs,
1205                                  CallingConv::ID CC,
1206                                  unsigned &NumBytes) {
1207  SmallVector<CCValAssign, 16> ArgLocs;
1208  CCState CCInfo(CC, false, TM, ArgLocs, *Context);
1209  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1210
1211  // Get a count of how many bytes are to be pushed on the stack.
1212  NumBytes = CCInfo.getNextStackOffset();
1213
1214  // Issue CALLSEQ_START
1215  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1216  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1217                          TII.get(AdjStackDown))
1218                  .addImm(NumBytes));
1219
1220  // Process the args.
1221  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1222    CCValAssign &VA = ArgLocs[i];
1223    unsigned Arg = ArgRegs[VA.getValNo()];
1224    EVT ArgVT = ArgVTs[VA.getValNo()];
1225
1226    // Handle arg promotion, etc.
1227    switch (VA.getLocInfo()) {
1228      case CCValAssign::Full: break;
1229      default:
1230      // TODO: Handle arg promotion.
1231      return false;
1232    }
1233
1234    // Now copy/store arg to correct locations.
1235    // TODO: We need custom lowering for f64 args.
1236    if (VA.isRegLoc() && !VA.needsCustom()) {
1237      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1238              VA.getLocReg())
1239      .addReg(Arg);
1240      RegArgs.push_back(VA.getLocReg());
1241    } else {
1242      // Need to store
1243      return false;
1244    }
1245  }
1246
1247  return true;
1248}
1249
1250bool ARMFastISel::FinishCall(EVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1251                             const Instruction *I, CallingConv::ID CC,
1252                             unsigned &NumBytes) {
1253  // Issue CALLSEQ_END
1254  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1255  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1256                          TII.get(AdjStackUp))
1257                  .addImm(NumBytes).addImm(0));
1258
1259  // Now the return value.
1260  if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
1261    SmallVector<CCValAssign, 16> RVLocs;
1262    CCState CCInfo(CC, false, TM, RVLocs, *Context);
1263    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1264
1265    // Copy all of the result registers out of their specified physreg.
1266    if (RVLocs.size() == 2 && RetVT.getSimpleVT().SimpleTy == MVT::f64) {
1267      // For this move we copy into two registers and then move into the
1268      // double fp reg we want.
1269      // TODO: Are the copies necessary?
1270      TargetRegisterClass *CopyRC = TLI.getRegClassFor(MVT::i32);
1271      unsigned Copy1 = createResultReg(CopyRC);
1272      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1273              Copy1).addReg(RVLocs[0].getLocReg());
1274      UsedRegs.push_back(RVLocs[0].getLocReg());
1275
1276      unsigned Copy2 = createResultReg(CopyRC);
1277      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1278              Copy2).addReg(RVLocs[1].getLocReg());
1279      UsedRegs.push_back(RVLocs[1].getLocReg());
1280
1281      EVT DestVT = RVLocs[0].getValVT();
1282      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1283      unsigned ResultReg = createResultReg(DstRC);
1284      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1285                              TII.get(ARM::VMOVDRR), ResultReg)
1286                      .addReg(Copy1).addReg(Copy2));
1287
1288      // Finally update the result.
1289      UpdateValueMap(I, ResultReg);
1290    } else {
1291      assert(RVLocs.size() == 1 && "Can't handle non-double multi-reg retvals!");
1292      EVT CopyVT = RVLocs[0].getValVT();
1293      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1294
1295      unsigned ResultReg = createResultReg(DstRC);
1296      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1297              ResultReg).addReg(RVLocs[0].getLocReg());
1298      UsedRegs.push_back(RVLocs[0].getLocReg());
1299
1300      // Finally update the result.
1301      UpdateValueMap(I, ResultReg);
1302    }
1303  }
1304
1305  return true;
1306}
1307
1308// A quick function that will emit a call for a named libcall in F with the
1309// vector of passed arguments for the Instruction in I. We can assume that we
1310// can emit a call for any libcall we can produce. This is an abridged version
1311// of the full call infrastructure since we won't need to worry about things
1312// like computed function pointers or strange arguments at call sites.
1313// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1314// with X86.
1315bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1316  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1317
1318  // Handle *simple* calls for now.
1319  const Type *RetTy = I->getType();
1320  EVT RetVT;
1321  if (RetTy->isVoidTy())
1322    RetVT = MVT::isVoid;
1323  else if (!isTypeLegal(RetTy, RetVT))
1324    return false;
1325
1326  // For now we're using BLX etc on the assumption that we have v5t ops.
1327  if (!Subtarget->hasV5TOps()) return false;
1328
1329  // Set up the argument vectors.
1330  SmallVector<Value*, 8> Args;
1331  SmallVector<unsigned, 8> ArgRegs;
1332  SmallVector<EVT, 8> ArgVTs;
1333  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1334  Args.reserve(I->getNumOperands());
1335  ArgRegs.reserve(I->getNumOperands());
1336  ArgVTs.reserve(I->getNumOperands());
1337  ArgFlags.reserve(I->getNumOperands());
1338  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1339    Value *Op = I->getOperand(i);
1340    unsigned Arg = getRegForValue(Op);
1341    if (Arg == 0) return false;
1342
1343    const Type *ArgTy = Op->getType();
1344    EVT ArgVT;
1345    if (!isTypeLegal(ArgTy, ArgVT)) return false;
1346
1347    ISD::ArgFlagsTy Flags;
1348    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1349    Flags.setOrigAlign(OriginalAlignment);
1350
1351    Args.push_back(Op);
1352    ArgRegs.push_back(Arg);
1353    ArgVTs.push_back(ArgVT);
1354    ArgFlags.push_back(Flags);
1355  }
1356
1357  // Handle the arguments now that we've gotten them.
1358  SmallVector<unsigned, 4> RegArgs;
1359  unsigned NumBytes;
1360  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1361    return false;
1362
1363  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1364  // TODO: Turn this into the table of arm call ops.
1365  MachineInstrBuilder MIB;
1366  unsigned CallOpc;
1367  if(isThumb)
1368    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1369  else
1370    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1371  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1372        .addExternalSymbol(TLI.getLibcallName(Call));
1373
1374  // Add implicit physical register uses to the call.
1375  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1376    MIB.addReg(RegArgs[i]);
1377
1378  // Finish off the call including any return values.
1379  SmallVector<unsigned, 4> UsedRegs;
1380  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1381
1382  // Set all unused physreg defs as dead.
1383  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1384
1385  return true;
1386}
1387
1388bool ARMFastISel::SelectCall(const Instruction *I) {
1389  const CallInst *CI = cast<CallInst>(I);
1390  const Value *Callee = CI->getCalledValue();
1391
1392  // Can't handle inline asm or worry about intrinsics yet.
1393  if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1394
1395  // Only handle global variable Callees that are direct calls.
1396  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1397  if (!GV || Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()))
1398    return false;
1399
1400  // Check the calling convention.
1401  ImmutableCallSite CS(CI);
1402  CallingConv::ID CC = CS.getCallingConv();
1403  // TODO: Avoid some calling conventions?
1404  if (CC != CallingConv::C) {
1405    // errs() << "Can't handle calling convention: " << CC << "\n";
1406    return false;
1407  }
1408
1409  // Let SDISel handle vararg functions.
1410  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1411  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1412  if (FTy->isVarArg())
1413    return false;
1414
1415  // Handle *simple* calls for now.
1416  const Type *RetTy = I->getType();
1417  EVT RetVT;
1418  if (RetTy->isVoidTy())
1419    RetVT = MVT::isVoid;
1420  else if (!isTypeLegal(RetTy, RetVT))
1421    return false;
1422
1423  // For now we're using BLX etc on the assumption that we have v5t ops.
1424  // TODO: Maybe?
1425  if (!Subtarget->hasV5TOps()) return false;
1426
1427  // Set up the argument vectors.
1428  SmallVector<Value*, 8> Args;
1429  SmallVector<unsigned, 8> ArgRegs;
1430  SmallVector<EVT, 8> ArgVTs;
1431  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1432  Args.reserve(CS.arg_size());
1433  ArgRegs.reserve(CS.arg_size());
1434  ArgVTs.reserve(CS.arg_size());
1435  ArgFlags.reserve(CS.arg_size());
1436  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1437       i != e; ++i) {
1438    unsigned Arg = getRegForValue(*i);
1439
1440    if (Arg == 0)
1441      return false;
1442    ISD::ArgFlagsTy Flags;
1443    unsigned AttrInd = i - CS.arg_begin() + 1;
1444    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1445      Flags.setSExt();
1446    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1447      Flags.setZExt();
1448
1449         // FIXME: Only handle *easy* calls for now.
1450    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1451        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1452        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1453        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1454      return false;
1455
1456    const Type *ArgTy = (*i)->getType();
1457    EVT ArgVT;
1458    if (!isTypeLegal(ArgTy, ArgVT))
1459      return false;
1460    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1461    Flags.setOrigAlign(OriginalAlignment);
1462
1463    Args.push_back(*i);
1464    ArgRegs.push_back(Arg);
1465    ArgVTs.push_back(ArgVT);
1466    ArgFlags.push_back(Flags);
1467  }
1468
1469  // Handle the arguments now that we've gotten them.
1470  SmallVector<unsigned, 4> RegArgs;
1471  unsigned NumBytes;
1472  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1473    return false;
1474
1475  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1476  // TODO: Turn this into the table of arm call ops.
1477  MachineInstrBuilder MIB;
1478  unsigned CallOpc;
1479  if(isThumb)
1480    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1481  else
1482    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1483  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1484              .addGlobalAddress(GV, 0, 0);
1485
1486  // Add implicit physical register uses to the call.
1487  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1488    MIB.addReg(RegArgs[i]);
1489
1490  // Finish off the call including any return values.
1491  SmallVector<unsigned, 4> UsedRegs;
1492  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1493
1494  // Set all unused physreg defs as dead.
1495  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1496
1497  return true;
1498
1499}
1500
1501// TODO: SoftFP support.
1502bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
1503  // No Thumb-1 for now.
1504  if (isThumb && !AFI->isThumb2Function()) return false;
1505
1506  switch (I->getOpcode()) {
1507    case Instruction::Load:
1508      return SelectLoad(I);
1509    case Instruction::Store:
1510      return SelectStore(I);
1511    case Instruction::Br:
1512      return SelectBranch(I);
1513    case Instruction::ICmp:
1514    case Instruction::FCmp:
1515      return SelectCmp(I);
1516    case Instruction::FPExt:
1517      return SelectFPExt(I);
1518    case Instruction::FPTrunc:
1519      return SelectFPTrunc(I);
1520    case Instruction::SIToFP:
1521      return SelectSIToFP(I);
1522    case Instruction::FPToSI:
1523      return SelectFPToSI(I);
1524    case Instruction::FAdd:
1525      return SelectBinaryOp(I, ISD::FADD);
1526    case Instruction::FSub:
1527      return SelectBinaryOp(I, ISD::FSUB);
1528    case Instruction::FMul:
1529      return SelectBinaryOp(I, ISD::FMUL);
1530    case Instruction::SDiv:
1531      return SelectSDiv(I);
1532    case Instruction::SRem:
1533      return SelectSRem(I);
1534    case Instruction::Call:
1535      return SelectCall(I);
1536    case Instruction::Select:
1537      return SelectSelect(I);
1538    default: break;
1539  }
1540  return false;
1541}
1542
1543namespace llvm {
1544  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
1545    // Completely untested on non-darwin.
1546    const TargetMachine &TM = funcInfo.MF->getTarget();
1547    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
1548    if (Subtarget->isTargetDarwin() && EnableARMFastISel)
1549      return new ARMFastISel(funcInfo);
1550    return 0;
1551  }
1552}
1553