ARMFastISel.cpp revision 61d69da051f5e45ebca4b78f3cec21370de25061
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/Analysis.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/FunctionLoweringInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineConstantPool.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineMemOperand.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48using namespace llvm;
49
50static cl::opt<bool>
51DisableARMFastISel("disable-arm-fast-isel",
52                    cl::desc("Turn off experimental ARM fast-isel support"),
53                    cl::init(false), cl::Hidden);
54
55namespace {
56
57class ARMFastISel : public FastISel {
58
59  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
60  /// make the right decision when generating code for different targets.
61  const ARMSubtarget *Subtarget;
62  const TargetMachine &TM;
63  const TargetInstrInfo &TII;
64  const TargetLowering &TLI;
65  ARMFunctionInfo *AFI;
66
67  // Convenience variables to avoid some queries.
68  bool isThumb;
69  LLVMContext *Context;
70
71  public:
72    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
73    : FastISel(funcInfo),
74      TM(funcInfo.MF->getTarget()),
75      TII(*TM.getInstrInfo()),
76      TLI(*TM.getTargetLowering()) {
77      Subtarget = &TM.getSubtarget<ARMSubtarget>();
78      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
79      isThumb = AFI->isThumbFunction();
80      Context = &funcInfo.Fn->getContext();
81    }
82
83    // Code from FastISel.cpp.
84    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
85                                   const TargetRegisterClass *RC);
86    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
87                                    const TargetRegisterClass *RC,
88                                    unsigned Op0, bool Op0IsKill);
89    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
90                                     const TargetRegisterClass *RC,
91                                     unsigned Op0, bool Op0IsKill,
92                                     unsigned Op1, bool Op1IsKill);
93    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
94                                     const TargetRegisterClass *RC,
95                                     unsigned Op0, bool Op0IsKill,
96                                     uint64_t Imm);
97    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
98                                     const TargetRegisterClass *RC,
99                                     unsigned Op0, bool Op0IsKill,
100                                     const ConstantFP *FPImm);
101    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
102                                    const TargetRegisterClass *RC,
103                                    uint64_t Imm);
104    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
105                                      const TargetRegisterClass *RC,
106                                      unsigned Op0, bool Op0IsKill,
107                                      unsigned Op1, bool Op1IsKill,
108                                      uint64_t Imm);
109    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
110                                                unsigned Op0, bool Op0IsKill,
111                                                uint32_t Idx);
112
113    // Backend specific FastISel code.
114    virtual bool TargetSelectInstruction(const Instruction *I);
115    virtual unsigned TargetMaterializeConstant(const Constant *C);
116    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
117
118  #include "ARMGenFastISel.inc"
119
120    // Instruction selection routines.
121  private:
122    bool SelectLoad(const Instruction *I);
123    bool SelectStore(const Instruction *I);
124    bool SelectBranch(const Instruction *I);
125    bool SelectCmp(const Instruction *I);
126    bool SelectFPExt(const Instruction *I);
127    bool SelectFPTrunc(const Instruction *I);
128    bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
129    bool SelectSIToFP(const Instruction *I);
130    bool SelectFPToSI(const Instruction *I);
131    bool SelectSDiv(const Instruction *I);
132    bool SelectSRem(const Instruction *I);
133    bool SelectCall(const Instruction *I);
134    bool SelectSelect(const Instruction *I);
135    bool SelectRet(const Instruction *I);
136
137    // Utility routines.
138  private:
139    bool isTypeLegal(const Type *Ty, EVT &VT);
140    bool isLoadTypeLegal(const Type *Ty, EVT &VT);
141    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, unsigned Base, int Offset);
142    bool ARMEmitStore(EVT VT, unsigned SrcReg, unsigned Base, int Offset);
143    bool ARMComputeRegOffset(const Value *Obj, unsigned &Base, int &Offset);
144    void ARMSimplifyRegOffset(unsigned &Base, int &Offset, EVT VT);
145    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
146    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
147    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
148    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
149    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
150
151    // Call handling routines.
152  private:
153    bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
154                        unsigned &ResultReg);
155    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
156    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
157                         SmallVectorImpl<unsigned> &ArgRegs,
158                         SmallVectorImpl<EVT> &ArgVTs,
159                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
160                         SmallVectorImpl<unsigned> &RegArgs,
161                         CallingConv::ID CC,
162                         unsigned &NumBytes);
163    bool FinishCall(EVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
164                    const Instruction *I, CallingConv::ID CC,
165                    unsigned &NumBytes);
166    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
167
168    // OptionalDef handling routines.
169  private:
170    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
171    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
172};
173
174} // end anonymous namespace
175
176#include "ARMGenCallingConv.inc"
177
178// DefinesOptionalPredicate - This is different from DefinesPredicate in that
179// we don't care about implicit defs here, just places we'll need to add a
180// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
181bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
182  const TargetInstrDesc &TID = MI->getDesc();
183  if (!TID.hasOptionalDef())
184    return false;
185
186  // Look to see if our OptionalDef is defining CPSR or CCR.
187  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
188    const MachineOperand &MO = MI->getOperand(i);
189    if (!MO.isReg() || !MO.isDef()) continue;
190    if (MO.getReg() == ARM::CPSR)
191      *CPSR = true;
192  }
193  return true;
194}
195
196// If the machine is predicable go ahead and add the predicate operands, if
197// it needs default CC operands add those.
198// TODO: If we want to support thumb1 then we'll need to deal with optional
199// CPSR defs that need to be added before the remaining operands. See s_cc_out
200// for descriptions why.
201const MachineInstrBuilder &
202ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
203  MachineInstr *MI = &*MIB;
204
205  // Do we use a predicate?
206  if (TII.isPredicable(MI))
207    AddDefaultPred(MIB);
208
209  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
210  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
211  bool CPSR = false;
212  if (DefinesOptionalPredicate(MI, &CPSR)) {
213    if (CPSR)
214      AddDefaultT1CC(MIB);
215    else
216      AddDefaultCC(MIB);
217  }
218  return MIB;
219}
220
221unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
222                                    const TargetRegisterClass* RC) {
223  unsigned ResultReg = createResultReg(RC);
224  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
225
226  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
227  return ResultReg;
228}
229
230unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
231                                     const TargetRegisterClass *RC,
232                                     unsigned Op0, bool Op0IsKill) {
233  unsigned ResultReg = createResultReg(RC);
234  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
235
236  if (II.getNumDefs() >= 1)
237    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
238                   .addReg(Op0, Op0IsKill * RegState::Kill));
239  else {
240    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
241                   .addReg(Op0, Op0IsKill * RegState::Kill));
242    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
243                   TII.get(TargetOpcode::COPY), ResultReg)
244                   .addReg(II.ImplicitDefs[0]));
245  }
246  return ResultReg;
247}
248
249unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
250                                      const TargetRegisterClass *RC,
251                                      unsigned Op0, bool Op0IsKill,
252                                      unsigned Op1, bool Op1IsKill) {
253  unsigned ResultReg = createResultReg(RC);
254  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
255
256  if (II.getNumDefs() >= 1)
257    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
258                   .addReg(Op0, Op0IsKill * RegState::Kill)
259                   .addReg(Op1, Op1IsKill * RegState::Kill));
260  else {
261    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
262                   .addReg(Op0, Op0IsKill * RegState::Kill)
263                   .addReg(Op1, Op1IsKill * RegState::Kill));
264    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
265                           TII.get(TargetOpcode::COPY), ResultReg)
266                   .addReg(II.ImplicitDefs[0]));
267  }
268  return ResultReg;
269}
270
271unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
272                                      const TargetRegisterClass *RC,
273                                      unsigned Op0, bool Op0IsKill,
274                                      uint64_t Imm) {
275  unsigned ResultReg = createResultReg(RC);
276  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
277
278  if (II.getNumDefs() >= 1)
279    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
280                   .addReg(Op0, Op0IsKill * RegState::Kill)
281                   .addImm(Imm));
282  else {
283    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
284                   .addReg(Op0, Op0IsKill * RegState::Kill)
285                   .addImm(Imm));
286    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
287                           TII.get(TargetOpcode::COPY), ResultReg)
288                   .addReg(II.ImplicitDefs[0]));
289  }
290  return ResultReg;
291}
292
293unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
294                                      const TargetRegisterClass *RC,
295                                      unsigned Op0, bool Op0IsKill,
296                                      const ConstantFP *FPImm) {
297  unsigned ResultReg = createResultReg(RC);
298  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
299
300  if (II.getNumDefs() >= 1)
301    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
302                   .addReg(Op0, Op0IsKill * RegState::Kill)
303                   .addFPImm(FPImm));
304  else {
305    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
306                   .addReg(Op0, Op0IsKill * RegState::Kill)
307                   .addFPImm(FPImm));
308    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
309                           TII.get(TargetOpcode::COPY), ResultReg)
310                   .addReg(II.ImplicitDefs[0]));
311  }
312  return ResultReg;
313}
314
315unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
316                                       const TargetRegisterClass *RC,
317                                       unsigned Op0, bool Op0IsKill,
318                                       unsigned Op1, bool Op1IsKill,
319                                       uint64_t Imm) {
320  unsigned ResultReg = createResultReg(RC);
321  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
322
323  if (II.getNumDefs() >= 1)
324    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
325                   .addReg(Op0, Op0IsKill * RegState::Kill)
326                   .addReg(Op1, Op1IsKill * RegState::Kill)
327                   .addImm(Imm));
328  else {
329    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
330                   .addReg(Op0, Op0IsKill * RegState::Kill)
331                   .addReg(Op1, Op1IsKill * RegState::Kill)
332                   .addImm(Imm));
333    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
334                           TII.get(TargetOpcode::COPY), ResultReg)
335                   .addReg(II.ImplicitDefs[0]));
336  }
337  return ResultReg;
338}
339
340unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
341                                     const TargetRegisterClass *RC,
342                                     uint64_t Imm) {
343  unsigned ResultReg = createResultReg(RC);
344  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
345
346  if (II.getNumDefs() >= 1)
347    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
348                   .addImm(Imm));
349  else {
350    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
351                   .addImm(Imm));
352    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
353                           TII.get(TargetOpcode::COPY), ResultReg)
354                   .addReg(II.ImplicitDefs[0]));
355  }
356  return ResultReg;
357}
358
359unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
360                                                 unsigned Op0, bool Op0IsKill,
361                                                 uint32_t Idx) {
362  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
363  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
364         "Cannot yet extract from physregs");
365  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
366                         DL, TII.get(TargetOpcode::COPY), ResultReg)
367                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
368  return ResultReg;
369}
370
371// TODO: Don't worry about 64-bit now, but when this is fixed remove the
372// checks from the various callers.
373unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
374  if (VT.getSimpleVT().SimpleTy == MVT::f64) return 0;
375
376  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
377  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
378                          TII.get(ARM::VMOVRS), MoveReg)
379                  .addReg(SrcReg));
380  return MoveReg;
381}
382
383unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
384  if (VT.getSimpleVT().SimpleTy == MVT::i64) return 0;
385
386  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
387  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
388                          TII.get(ARM::VMOVSR), MoveReg)
389                  .addReg(SrcReg));
390  return MoveReg;
391}
392
393// For double width floating point we need to materialize two constants
394// (the high and the low) into integer registers then use a move to get
395// the combined constant into an FP reg.
396unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
397  const APFloat Val = CFP->getValueAPF();
398  bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64;
399
400  // This checks to see if we can use VFP3 instructions to materialize
401  // a constant, otherwise we have to go through the constant pool.
402  if (TLI.isFPImmLegal(Val, VT)) {
403    unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
404    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
405    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
406                            DestReg)
407                    .addFPImm(CFP));
408    return DestReg;
409  }
410
411  // Require VFP2 for loading fp constants.
412  if (!Subtarget->hasVFP2()) return false;
413
414  // MachineConstantPool wants an explicit alignment.
415  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
416  if (Align == 0) {
417    // TODO: Figure out if this is correct.
418    Align = TD.getTypeAllocSize(CFP->getType());
419  }
420  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
421  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
422  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
423
424  // The extra reg is for addrmode5.
425  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
426                          DestReg)
427                  .addConstantPoolIndex(Idx)
428                  .addReg(0));
429  return DestReg;
430}
431
432unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
433
434  // For now 32-bit only.
435  if (VT.getSimpleVT().SimpleTy != MVT::i32) return false;
436
437  // MachineConstantPool wants an explicit alignment.
438  unsigned Align = TD.getPrefTypeAlignment(C->getType());
439  if (Align == 0) {
440    // TODO: Figure out if this is correct.
441    Align = TD.getTypeAllocSize(C->getType());
442  }
443  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
444  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
445
446  if (isThumb)
447    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
448                            TII.get(ARM::t2LDRpci), DestReg)
449                    .addConstantPoolIndex(Idx));
450  else
451    // The extra reg and immediate are for addrmode2.
452    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
453                            TII.get(ARM::LDRcp), DestReg)
454                    .addConstantPoolIndex(Idx)
455                    .addImm(0));
456
457  return DestReg;
458}
459
460unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
461  // For now 32-bit only.
462  if (VT.getSimpleVT().SimpleTy != MVT::i32) return 0;
463
464  Reloc::Model RelocM = TM.getRelocationModel();
465
466  // TODO: No external globals for now.
467  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) return 0;
468
469  // TODO: Need more magic for ARM PIC.
470  if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
471
472  // MachineConstantPool wants an explicit alignment.
473  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
474  if (Align == 0) {
475    // TODO: Figure out if this is correct.
476    Align = TD.getTypeAllocSize(GV->getType());
477  }
478
479  // Grab index.
480  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
481  unsigned Id = AFI->createConstPoolEntryUId();
482  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id,
483                                                       ARMCP::CPValue, PCAdj);
484  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
485
486  // Load value.
487  MachineInstrBuilder MIB;
488  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
489  if (isThumb) {
490    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
491    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
492          .addConstantPoolIndex(Idx);
493    if (RelocM == Reloc::PIC_)
494      MIB.addImm(Id);
495  } else {
496    // The extra reg and immediate are for addrmode2.
497    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
498                  DestReg)
499          .addConstantPoolIndex(Idx)
500          .addReg(0).addImm(0);
501  }
502  AddOptionalDefs(MIB);
503  return DestReg;
504}
505
506unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
507  EVT VT = TLI.getValueType(C->getType(), true);
508
509  // Only handle simple types.
510  if (!VT.isSimple()) return 0;
511
512  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
513    return ARMMaterializeFP(CFP, VT);
514  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
515    return ARMMaterializeGV(GV, VT);
516  else if (isa<ConstantInt>(C))
517    return ARMMaterializeInt(C, VT);
518
519  return 0;
520}
521
522unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
523  // Don't handle dynamic allocas.
524  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
525
526  EVT VT;
527  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
528
529  DenseMap<const AllocaInst*, int>::iterator SI =
530    FuncInfo.StaticAllocaMap.find(AI);
531
532  // This will get lowered later into the correct offsets and registers
533  // via rewriteXFrameIndex.
534  if (SI != FuncInfo.StaticAllocaMap.end()) {
535    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
536    unsigned ResultReg = createResultReg(RC);
537    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
538    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
539                            TII.get(Opc), ResultReg)
540                            .addFrameIndex(SI->second)
541                            .addImm(0));
542    return ResultReg;
543  }
544
545  return 0;
546}
547
548bool ARMFastISel::isTypeLegal(const Type *Ty, EVT &VT) {
549  VT = TLI.getValueType(Ty, true);
550
551  // Only handle simple types.
552  if (VT == MVT::Other || !VT.isSimple()) return false;
553
554  // Handle all legal types, i.e. a register that will directly hold this
555  // value.
556  return TLI.isTypeLegal(VT);
557}
558
559bool ARMFastISel::isLoadTypeLegal(const Type *Ty, EVT &VT) {
560  if (isTypeLegal(Ty, VT)) return true;
561
562  // If this is a type than can be sign or zero-extended to a basic operation
563  // go ahead and accept it now.
564  if (VT == MVT::i8 || VT == MVT::i16)
565    return true;
566
567  return false;
568}
569
570// Computes the Reg+Offset to get to an object.
571bool ARMFastISel::ARMComputeRegOffset(const Value *Obj, unsigned &Base,
572                                      int &Offset) {
573  // Some boilerplate from the X86 FastISel.
574  const User *U = NULL;
575  unsigned Opcode = Instruction::UserOp1;
576  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
577    // Don't walk into other basic blocks; it's possible we haven't
578    // visited them yet, so the instructions may not yet be assigned
579    // virtual registers.
580    if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB)
581      return false;
582    Opcode = I->getOpcode();
583    U = I;
584  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
585    Opcode = C->getOpcode();
586    U = C;
587  }
588
589  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
590    if (Ty->getAddressSpace() > 255)
591      // Fast instruction selection doesn't support the special
592      // address spaces.
593      return false;
594
595  switch (Opcode) {
596    default:
597    break;
598    case Instruction::BitCast: {
599      // Look through bitcasts.
600      return ARMComputeRegOffset(U->getOperand(0), Base, Offset);
601    }
602    case Instruction::IntToPtr: {
603      // Look past no-op inttoptrs.
604      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
605        return ARMComputeRegOffset(U->getOperand(0), Base, Offset);
606      break;
607    }
608    case Instruction::PtrToInt: {
609      // Look past no-op ptrtoints.
610      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
611        return ARMComputeRegOffset(U->getOperand(0), Base, Offset);
612      break;
613    }
614    case Instruction::GetElementPtr: {
615      int SavedOffset = Offset;
616      unsigned SavedBase = Base;
617      int TmpOffset = Offset;
618
619      // Iterate through the GEP folding the constants into offsets where
620      // we can.
621      gep_type_iterator GTI = gep_type_begin(U);
622      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
623           i != e; ++i, ++GTI) {
624        const Value *Op = *i;
625        if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
626          const StructLayout *SL = TD.getStructLayout(STy);
627          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
628          TmpOffset += SL->getElementOffset(Idx);
629        } else {
630          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
631          SmallVector<const Value *, 4> Worklist;
632          Worklist.push_back(Op);
633          do {
634            Op = Worklist.pop_back_val();
635            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
636              // Constant-offset addressing.
637              TmpOffset += CI->getSExtValue() * S;
638            } else if (isa<AddOperator>(Op) &&
639                       isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
640              // An add with a constant operand. Fold the constant.
641              ConstantInt *CI =
642                cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
643              TmpOffset += CI->getSExtValue() * S;
644              // Add the other operand back to the work list.
645              Worklist.push_back(cast<AddOperator>(Op)->getOperand(0));
646            } else
647              goto unsupported_gep;
648          } while (!Worklist.empty());
649        }
650      }
651
652      // Try to grab the base operand now.
653      Offset = TmpOffset;
654      if (ARMComputeRegOffset(U->getOperand(0), Base, Offset)) return true;
655
656      // We failed, restore everything and try the other options.
657      Offset = SavedOffset;
658      Base = SavedBase;
659
660      unsupported_gep:
661      break;
662    }
663    case Instruction::Alloca: {
664      const AllocaInst *AI = cast<AllocaInst>(Obj);
665      unsigned Reg = TargetMaterializeAlloca(AI);
666
667      if (Reg == 0) return false;
668
669      Base = Reg;
670      return true;
671    }
672  }
673
674  // Materialize the global variable's address into a reg which can
675  // then be used later to load the variable.
676  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
677    unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
678    if (Tmp == 0) return false;
679
680    Base = Tmp;
681    return true;
682  }
683
684  // Try to get this in a register if nothing else has worked.
685  if (Base == 0) Base = getRegForValue(Obj);
686  return Base != 0;
687}
688
689void ARMFastISel::ARMSimplifyRegOffset(unsigned &Base, int &Offset, EVT VT) {
690
691  assert(VT.isSimple() && "Non-simple types are invalid here!");
692
693  bool needsLowering = false;
694  switch (VT.getSimpleVT().SimpleTy) {
695    default:
696      assert(false && "Unhandled load/store type!");
697    case MVT::i1:
698    case MVT::i8:
699    case MVT::i16:
700    case MVT::i32:
701      // Integer loads/stores handle 12-bit offsets.
702      needsLowering = ((Offset & 0xfff) != Offset);
703      break;
704    case MVT::f32:
705    case MVT::f64:
706      // Floating point operands handle 8-bit offsets.
707      needsLowering = ((Offset & 0xff) != Offset);
708      break;
709  }
710
711  // Since the offset is too large for the load/store instruction
712  // get the reg+offset into a register.
713  if (needsLowering) {
714    ARMCC::CondCodes Pred = ARMCC::AL;
715    unsigned PredReg = 0;
716
717    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
718      ARM::GPRRegisterClass;
719    unsigned BaseReg = createResultReg(RC);
720
721    if (!isThumb)
722      emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
723                              BaseReg, Base, Offset, Pred, PredReg,
724                              static_cast<const ARMBaseInstrInfo&>(TII));
725    else {
726      assert(AFI->isThumb2Function());
727      emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
728                             BaseReg, Base, Offset, Pred, PredReg,
729                             static_cast<const ARMBaseInstrInfo&>(TII));
730    }
731    Offset = 0;
732    Base = BaseReg;
733  }
734}
735
736bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg,
737                              unsigned Base, int Offset) {
738
739  assert(VT.isSimple() && "Non-simple types are invalid here!");
740  unsigned Opc;
741  TargetRegisterClass *RC;
742  bool isFloat = false;
743  switch (VT.getSimpleVT().SimpleTy) {
744    default:
745      // This is mostly going to be Neon/vector support.
746      return false;
747    case MVT::i16:
748      Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
749      RC = ARM::GPRRegisterClass;
750      break;
751    case MVT::i8:
752      Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
753      RC = ARM::GPRRegisterClass;
754      break;
755    case MVT::i32:
756      Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
757      RC = ARM::GPRRegisterClass;
758      break;
759    case MVT::f32:
760      Opc = ARM::VLDRS;
761      RC = TLI.getRegClassFor(VT);
762      isFloat = true;
763      break;
764    case MVT::f64:
765      Opc = ARM::VLDRD;
766      RC = TLI.getRegClassFor(VT);
767      isFloat = true;
768      break;
769  }
770
771  ResultReg = createResultReg(RC);
772
773  ARMSimplifyRegOffset(Base, Offset, VT);
774
775  // addrmode5 output depends on the selection dag addressing dividing the
776  // offset by 4 that it then later multiplies. Do this here as well.
777  if (isFloat)
778    Offset /= 4;
779
780  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
781                          TII.get(Opc), ResultReg)
782                  .addReg(Base).addImm(Offset));
783  return true;
784}
785
786bool ARMFastISel::SelectLoad(const Instruction *I) {
787  // Verify we have a legal type before going any further.
788  EVT VT;
789  if (!isLoadTypeLegal(I->getType(), VT))
790    return false;
791
792  // Our register and offset with innocuous defaults.
793  unsigned Base = 0;
794  int Offset = 0;
795
796  // See if we can handle this as Reg + Offset
797  if (!ARMComputeRegOffset(I->getOperand(0), Base, Offset))
798    return false;
799
800  unsigned ResultReg;
801  if (!ARMEmitLoad(VT, ResultReg, Base, Offset)) return false;
802
803  UpdateValueMap(I, ResultReg);
804  return true;
805}
806
807bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg,
808                               unsigned Base, int Offset) {
809  unsigned StrOpc;
810  bool isFloat = false;
811  bool needReg0Op = false;
812  switch (VT.getSimpleVT().SimpleTy) {
813    default: return false;
814    case MVT::i1:
815    case MVT::i8:
816      StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
817      break;
818    case MVT::i16:
819      StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
820      needReg0Op = true;
821      break;
822    case MVT::i32:
823      StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
824      break;
825    case MVT::f32:
826      if (!Subtarget->hasVFP2()) return false;
827      StrOpc = ARM::VSTRS;
828      isFloat = true;
829      break;
830    case MVT::f64:
831      if (!Subtarget->hasVFP2()) return false;
832      StrOpc = ARM::VSTRD;
833      isFloat = true;
834      break;
835  }
836
837  ARMSimplifyRegOffset(Base, Offset, VT);
838
839  // addrmode5 output depends on the selection dag addressing dividing the
840  // offset by 4 that it then later multiplies. Do this here as well.
841  if (isFloat)
842    Offset /= 4;
843
844
845  // FIXME: The 'needReg0Op' bit goes away once STRH is converted to
846  // not use the mega-addrmode stuff.
847  if (!needReg0Op)
848    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
849                            TII.get(StrOpc))
850                    .addReg(SrcReg).addReg(Base).addImm(Offset));
851  else
852    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
853                            TII.get(StrOpc))
854                    .addReg(SrcReg).addReg(Base).addReg(0).addImm(Offset));
855
856  return true;
857}
858
859bool ARMFastISel::SelectStore(const Instruction *I) {
860  Value *Op0 = I->getOperand(0);
861  unsigned SrcReg = 0;
862
863  // Yay type legalization
864  EVT VT;
865  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
866    return false;
867
868  // Get the value to be stored into a register.
869  SrcReg = getRegForValue(Op0);
870  if (SrcReg == 0)
871    return false;
872
873  // Our register and offset with innocuous defaults.
874  unsigned Base = 0;
875  int Offset = 0;
876
877  // See if we can handle this as Reg + Offset
878  if (!ARMComputeRegOffset(I->getOperand(1), Base, Offset))
879    return false;
880
881  if (!ARMEmitStore(VT, SrcReg, Base, Offset)) return false;
882
883  return true;
884}
885
886static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
887  switch (Pred) {
888    // Needs two compares...
889    case CmpInst::FCMP_ONE:
890    case CmpInst::FCMP_UEQ:
891    default:
892      assert(false && "Unhandled CmpInst::Predicate!");
893      return ARMCC::AL;
894    case CmpInst::ICMP_EQ:
895    case CmpInst::FCMP_OEQ:
896      return ARMCC::EQ;
897    case CmpInst::ICMP_SGT:
898    case CmpInst::FCMP_OGT:
899      return ARMCC::GT;
900    case CmpInst::ICMP_SGE:
901    case CmpInst::FCMP_OGE:
902      return ARMCC::GE;
903    case CmpInst::ICMP_UGT:
904    case CmpInst::FCMP_UGT:
905      return ARMCC::HI;
906    case CmpInst::FCMP_OLT:
907      return ARMCC::MI;
908    case CmpInst::ICMP_ULE:
909    case CmpInst::FCMP_OLE:
910      return ARMCC::LS;
911    case CmpInst::FCMP_ORD:
912      return ARMCC::VC;
913    case CmpInst::FCMP_UNO:
914      return ARMCC::VS;
915    case CmpInst::FCMP_UGE:
916      return ARMCC::PL;
917    case CmpInst::ICMP_SLT:
918    case CmpInst::FCMP_ULT:
919      return ARMCC::LT;
920    case CmpInst::ICMP_SLE:
921    case CmpInst::FCMP_ULE:
922      return ARMCC::LE;
923    case CmpInst::FCMP_UNE:
924    case CmpInst::ICMP_NE:
925      return ARMCC::NE;
926    case CmpInst::ICMP_UGE:
927      return ARMCC::HS;
928    case CmpInst::ICMP_ULT:
929      return ARMCC::LO;
930  }
931}
932
933bool ARMFastISel::SelectBranch(const Instruction *I) {
934  const BranchInst *BI = cast<BranchInst>(I);
935  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
936  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
937
938  // Simple branch support.
939
940  // If we can, avoid recomputing the compare - redoing it could lead to wonky
941  // behavior.
942  // TODO: Factor this out.
943  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
944    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
945      EVT VT;
946      const Type *Ty = CI->getOperand(0)->getType();
947      if (!isTypeLegal(Ty, VT))
948        return false;
949
950      bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
951      if (isFloat && !Subtarget->hasVFP2())
952        return false;
953
954      unsigned CmpOpc;
955      unsigned CondReg;
956      switch (VT.getSimpleVT().SimpleTy) {
957        default: return false;
958        // TODO: Verify compares.
959        case MVT::f32:
960          CmpOpc = ARM::VCMPES;
961          CondReg = ARM::FPSCR;
962          break;
963        case MVT::f64:
964          CmpOpc = ARM::VCMPED;
965          CondReg = ARM::FPSCR;
966          break;
967        case MVT::i32:
968          CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
969          CondReg = ARM::CPSR;
970          break;
971      }
972
973      // Get the compare predicate.
974      ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
975
976      // We may not handle every CC for now.
977      if (ARMPred == ARMCC::AL) return false;
978
979      unsigned Arg1 = getRegForValue(CI->getOperand(0));
980      if (Arg1 == 0) return false;
981
982      unsigned Arg2 = getRegForValue(CI->getOperand(1));
983      if (Arg2 == 0) return false;
984
985      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
986                              TII.get(CmpOpc))
987                      .addReg(Arg1).addReg(Arg2));
988
989      // For floating point we need to move the result to a comparison register
990      // that we can then use for branches.
991      if (isFloat)
992        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
993                                TII.get(ARM::FMSTAT)));
994
995      unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
996      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
997      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
998      FastEmitBranch(FBB, DL);
999      FuncInfo.MBB->addSuccessor(TBB);
1000      return true;
1001    }
1002  }
1003
1004  unsigned CmpReg = getRegForValue(BI->getCondition());
1005  if (CmpReg == 0) return false;
1006
1007  // Re-set the flags just in case.
1008  unsigned CmpOpc = isThumb ? ARM::t2CMPri : ARM::CMPri;
1009  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1010                  .addReg(CmpReg).addImm(1));
1011
1012  unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1013  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1014                  .addMBB(TBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
1015  FastEmitBranch(FBB, DL);
1016  FuncInfo.MBB->addSuccessor(TBB);
1017  return true;
1018}
1019
1020bool ARMFastISel::SelectCmp(const Instruction *I) {
1021  const CmpInst *CI = cast<CmpInst>(I);
1022
1023  EVT VT;
1024  const Type *Ty = CI->getOperand(0)->getType();
1025  if (!isTypeLegal(Ty, VT))
1026    return false;
1027
1028  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1029  if (isFloat && !Subtarget->hasVFP2())
1030    return false;
1031
1032  unsigned CmpOpc;
1033  unsigned CondReg;
1034  switch (VT.getSimpleVT().SimpleTy) {
1035    default: return false;
1036    // TODO: Verify compares.
1037    case MVT::f32:
1038      CmpOpc = ARM::VCMPES;
1039      CondReg = ARM::FPSCR;
1040      break;
1041    case MVT::f64:
1042      CmpOpc = ARM::VCMPED;
1043      CondReg = ARM::FPSCR;
1044      break;
1045    case MVT::i32:
1046      CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1047      CondReg = ARM::CPSR;
1048      break;
1049  }
1050
1051  // Get the compare predicate.
1052  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1053
1054  // We may not handle every CC for now.
1055  if (ARMPred == ARMCC::AL) return false;
1056
1057  unsigned Arg1 = getRegForValue(CI->getOperand(0));
1058  if (Arg1 == 0) return false;
1059
1060  unsigned Arg2 = getRegForValue(CI->getOperand(1));
1061  if (Arg2 == 0) return false;
1062
1063  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1064                  .addReg(Arg1).addReg(Arg2));
1065
1066  // For floating point we need to move the result to a comparison register
1067  // that we can then use for branches.
1068  if (isFloat)
1069    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1070                            TII.get(ARM::FMSTAT)));
1071
1072  // Now set a register based on the comparison. Explicitly set the predicates
1073  // here.
1074  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1075  TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1076                                    : ARM::GPRRegisterClass;
1077  unsigned DestReg = createResultReg(RC);
1078  Constant *Zero
1079    = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1080  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1081  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1082          .addReg(ZeroReg).addImm(1)
1083          .addImm(ARMPred).addReg(CondReg);
1084
1085  UpdateValueMap(I, DestReg);
1086  return true;
1087}
1088
1089bool ARMFastISel::SelectFPExt(const Instruction *I) {
1090  // Make sure we have VFP and that we're extending float to double.
1091  if (!Subtarget->hasVFP2()) return false;
1092
1093  Value *V = I->getOperand(0);
1094  if (!I->getType()->isDoubleTy() ||
1095      !V->getType()->isFloatTy()) return false;
1096
1097  unsigned Op = getRegForValue(V);
1098  if (Op == 0) return false;
1099
1100  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1101  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1102                          TII.get(ARM::VCVTDS), Result)
1103                  .addReg(Op));
1104  UpdateValueMap(I, Result);
1105  return true;
1106}
1107
1108bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1109  // Make sure we have VFP and that we're truncating double to float.
1110  if (!Subtarget->hasVFP2()) return false;
1111
1112  Value *V = I->getOperand(0);
1113  if (!(I->getType()->isFloatTy() &&
1114        V->getType()->isDoubleTy())) return false;
1115
1116  unsigned Op = getRegForValue(V);
1117  if (Op == 0) return false;
1118
1119  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1120  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1121                          TII.get(ARM::VCVTSD), Result)
1122                  .addReg(Op));
1123  UpdateValueMap(I, Result);
1124  return true;
1125}
1126
1127bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1128  // Make sure we have VFP.
1129  if (!Subtarget->hasVFP2()) return false;
1130
1131  EVT DstVT;
1132  const Type *Ty = I->getType();
1133  if (!isTypeLegal(Ty, DstVT))
1134    return false;
1135
1136  unsigned Op = getRegForValue(I->getOperand(0));
1137  if (Op == 0) return false;
1138
1139  // The conversion routine works on fp-reg to fp-reg and the operand above
1140  // was an integer, move it to the fp registers if possible.
1141  unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1142  if (FP == 0) return false;
1143
1144  unsigned Opc;
1145  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1146  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1147  else return 0;
1148
1149  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1150  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1151                          ResultReg)
1152                  .addReg(FP));
1153  UpdateValueMap(I, ResultReg);
1154  return true;
1155}
1156
1157bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1158  // Make sure we have VFP.
1159  if (!Subtarget->hasVFP2()) return false;
1160
1161  EVT DstVT;
1162  const Type *RetTy = I->getType();
1163  if (!isTypeLegal(RetTy, DstVT))
1164    return false;
1165
1166  unsigned Op = getRegForValue(I->getOperand(0));
1167  if (Op == 0) return false;
1168
1169  unsigned Opc;
1170  const Type *OpTy = I->getOperand(0)->getType();
1171  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1172  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1173  else return 0;
1174
1175  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1176  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1177  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1178                          ResultReg)
1179                  .addReg(Op));
1180
1181  // This result needs to be in an integer register, but the conversion only
1182  // takes place in fp-regs.
1183  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1184  if (IntReg == 0) return false;
1185
1186  UpdateValueMap(I, IntReg);
1187  return true;
1188}
1189
1190bool ARMFastISel::SelectSelect(const Instruction *I) {
1191  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1192  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1193    return false;
1194
1195  // Things need to be register sized for register moves.
1196  if (VT.getSimpleVT().SimpleTy != MVT::i32) return false;
1197  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1198
1199  unsigned CondReg = getRegForValue(I->getOperand(0));
1200  if (CondReg == 0) return false;
1201  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1202  if (Op1Reg == 0) return false;
1203  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1204  if (Op2Reg == 0) return false;
1205
1206  unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1207  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1208                  .addReg(CondReg).addImm(1));
1209  unsigned ResultReg = createResultReg(RC);
1210  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1211  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1212    .addReg(Op1Reg).addReg(Op2Reg)
1213    .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1214  UpdateValueMap(I, ResultReg);
1215  return true;
1216}
1217
1218bool ARMFastISel::SelectSDiv(const Instruction *I) {
1219  EVT VT;
1220  const Type *Ty = I->getType();
1221  if (!isTypeLegal(Ty, VT))
1222    return false;
1223
1224  // If we have integer div support we should have selected this automagically.
1225  // In case we have a real miss go ahead and return false and we'll pick
1226  // it up later.
1227  if (Subtarget->hasDivide()) return false;
1228
1229  // Otherwise emit a libcall.
1230  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1231  if (VT == MVT::i8)
1232    LC = RTLIB::SDIV_I8;
1233  else if (VT == MVT::i16)
1234    LC = RTLIB::SDIV_I16;
1235  else if (VT == MVT::i32)
1236    LC = RTLIB::SDIV_I32;
1237  else if (VT == MVT::i64)
1238    LC = RTLIB::SDIV_I64;
1239  else if (VT == MVT::i128)
1240    LC = RTLIB::SDIV_I128;
1241  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1242
1243  return ARMEmitLibcall(I, LC);
1244}
1245
1246bool ARMFastISel::SelectSRem(const Instruction *I) {
1247  EVT VT;
1248  const Type *Ty = I->getType();
1249  if (!isTypeLegal(Ty, VT))
1250    return false;
1251
1252  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1253  if (VT == MVT::i8)
1254    LC = RTLIB::SREM_I8;
1255  else if (VT == MVT::i16)
1256    LC = RTLIB::SREM_I16;
1257  else if (VT == MVT::i32)
1258    LC = RTLIB::SREM_I32;
1259  else if (VT == MVT::i64)
1260    LC = RTLIB::SREM_I64;
1261  else if (VT == MVT::i128)
1262    LC = RTLIB::SREM_I128;
1263  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1264
1265  return ARMEmitLibcall(I, LC);
1266}
1267
1268bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1269  EVT VT  = TLI.getValueType(I->getType(), true);
1270
1271  // We can get here in the case when we want to use NEON for our fp
1272  // operations, but can't figure out how to. Just use the vfp instructions
1273  // if we have them.
1274  // FIXME: It'd be nice to use NEON instructions.
1275  const Type *Ty = I->getType();
1276  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1277  if (isFloat && !Subtarget->hasVFP2())
1278    return false;
1279
1280  unsigned Op1 = getRegForValue(I->getOperand(0));
1281  if (Op1 == 0) return false;
1282
1283  unsigned Op2 = getRegForValue(I->getOperand(1));
1284  if (Op2 == 0) return false;
1285
1286  unsigned Opc;
1287  bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64 ||
1288                 VT.getSimpleVT().SimpleTy == MVT::i64;
1289  switch (ISDOpcode) {
1290    default: return false;
1291    case ISD::FADD:
1292      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1293      break;
1294    case ISD::FSUB:
1295      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1296      break;
1297    case ISD::FMUL:
1298      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1299      break;
1300  }
1301  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1302  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1303                          TII.get(Opc), ResultReg)
1304                  .addReg(Op1).addReg(Op2));
1305  UpdateValueMap(I, ResultReg);
1306  return true;
1307}
1308
1309// Call Handling Code
1310
1311bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1312                                 EVT SrcVT, unsigned &ResultReg) {
1313  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1314                           Src, /*TODO: Kill=*/false);
1315
1316  if (RR != 0) {
1317    ResultReg = RR;
1318    return true;
1319  } else
1320    return false;
1321}
1322
1323// This is largely taken directly from CCAssignFnForNode - we don't support
1324// varargs in FastISel so that part has been removed.
1325// TODO: We may not support all of this.
1326CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1327  switch (CC) {
1328  default:
1329    llvm_unreachable("Unsupported calling convention");
1330  case CallingConv::Fast:
1331    // Ignore fastcc. Silence compiler warnings.
1332    (void)RetFastCC_ARM_APCS;
1333    (void)FastCC_ARM_APCS;
1334    // Fallthrough
1335  case CallingConv::C:
1336    // Use target triple & subtarget features to do actual dispatch.
1337    if (Subtarget->isAAPCS_ABI()) {
1338      if (Subtarget->hasVFP2() &&
1339          FloatABIType == FloatABI::Hard)
1340        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1341      else
1342        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1343    } else
1344        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1345  case CallingConv::ARM_AAPCS_VFP:
1346    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1347  case CallingConv::ARM_AAPCS:
1348    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1349  case CallingConv::ARM_APCS:
1350    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1351  }
1352}
1353
1354bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1355                                  SmallVectorImpl<unsigned> &ArgRegs,
1356                                  SmallVectorImpl<EVT> &ArgVTs,
1357                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1358                                  SmallVectorImpl<unsigned> &RegArgs,
1359                                  CallingConv::ID CC,
1360                                  unsigned &NumBytes) {
1361  SmallVector<CCValAssign, 16> ArgLocs;
1362  CCState CCInfo(CC, false, TM, ArgLocs, *Context);
1363  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1364
1365  // Get a count of how many bytes are to be pushed on the stack.
1366  NumBytes = CCInfo.getNextStackOffset();
1367
1368  // Issue CALLSEQ_START
1369  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1370  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1371                          TII.get(AdjStackDown))
1372                  .addImm(NumBytes));
1373
1374  // Process the args.
1375  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1376    CCValAssign &VA = ArgLocs[i];
1377    unsigned Arg = ArgRegs[VA.getValNo()];
1378    EVT ArgVT = ArgVTs[VA.getValNo()];
1379
1380    // We don't handle NEON parameters yet.
1381    if (VA.getLocVT().isVector() && VA.getLocVT().getSizeInBits() > 64)
1382      return false;
1383
1384    // Handle arg promotion, etc.
1385    switch (VA.getLocInfo()) {
1386      case CCValAssign::Full: break;
1387      case CCValAssign::SExt: {
1388        bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1389                                         Arg, ArgVT, Arg);
1390        assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1391        Emitted = true;
1392        ArgVT = VA.getLocVT();
1393        break;
1394      }
1395      case CCValAssign::ZExt: {
1396        bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1397                                         Arg, ArgVT, Arg);
1398        assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1399        Emitted = true;
1400        ArgVT = VA.getLocVT();
1401        break;
1402      }
1403      case CCValAssign::AExt: {
1404        bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1405                                         Arg, ArgVT, Arg);
1406        if (!Emitted)
1407          Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1408                                      Arg, ArgVT, Arg);
1409        if (!Emitted)
1410          Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1411                                      Arg, ArgVT, Arg);
1412
1413        assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1414        ArgVT = VA.getLocVT();
1415        break;
1416      }
1417      case CCValAssign::BCvt: {
1418        unsigned BC = FastEmit_r(ArgVT.getSimpleVT(),
1419                                 VA.getLocVT().getSimpleVT(),
1420                                 ISD::BIT_CONVERT, Arg, /*TODO: Kill=*/false);
1421        assert(BC != 0 && "Failed to emit a bitcast!");
1422        Arg = BC;
1423        ArgVT = VA.getLocVT();
1424        break;
1425      }
1426      default: llvm_unreachable("Unknown arg promotion!");
1427    }
1428
1429    // Now copy/store arg to correct locations.
1430    if (VA.isRegLoc() && !VA.needsCustom()) {
1431      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1432              VA.getLocReg())
1433      .addReg(Arg);
1434      RegArgs.push_back(VA.getLocReg());
1435    } else if (VA.needsCustom()) {
1436      // TODO: We need custom lowering for vector (v2f64) args.
1437      if (VA.getLocVT() != MVT::f64) return false;
1438
1439      CCValAssign &NextVA = ArgLocs[++i];
1440
1441      // TODO: Only handle register args for now.
1442      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1443
1444      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1445                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1446                      .addReg(NextVA.getLocReg(), RegState::Define)
1447                      .addReg(Arg));
1448      RegArgs.push_back(VA.getLocReg());
1449      RegArgs.push_back(NextVA.getLocReg());
1450    } else {
1451      assert(VA.isMemLoc());
1452      // Need to store on the stack.
1453      unsigned Base = ARM::SP;
1454      int Offset = VA.getLocMemOffset();
1455
1456      if (!ARMEmitStore(ArgVT, Arg, Base, Offset)) return false;
1457    }
1458  }
1459  return true;
1460}
1461
1462bool ARMFastISel::FinishCall(EVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1463                             const Instruction *I, CallingConv::ID CC,
1464                             unsigned &NumBytes) {
1465  // Issue CALLSEQ_END
1466  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1467  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1468                          TII.get(AdjStackUp))
1469                  .addImm(NumBytes).addImm(0));
1470
1471  // Now the return value.
1472  if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
1473    SmallVector<CCValAssign, 16> RVLocs;
1474    CCState CCInfo(CC, false, TM, RVLocs, *Context);
1475    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1476
1477    // Copy all of the result registers out of their specified physreg.
1478    if (RVLocs.size() == 2 && RetVT.getSimpleVT().SimpleTy == MVT::f64) {
1479      // For this move we copy into two registers and then move into the
1480      // double fp reg we want.
1481      EVT DestVT = RVLocs[0].getValVT();
1482      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1483      unsigned ResultReg = createResultReg(DstRC);
1484      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1485                              TII.get(ARM::VMOVDRR), ResultReg)
1486                      .addReg(RVLocs[0].getLocReg())
1487                      .addReg(RVLocs[1].getLocReg()));
1488
1489      UsedRegs.push_back(RVLocs[0].getLocReg());
1490      UsedRegs.push_back(RVLocs[1].getLocReg());
1491
1492      // Finally update the result.
1493      UpdateValueMap(I, ResultReg);
1494    } else {
1495      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1496      EVT CopyVT = RVLocs[0].getValVT();
1497      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1498
1499      unsigned ResultReg = createResultReg(DstRC);
1500      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1501              ResultReg).addReg(RVLocs[0].getLocReg());
1502      UsedRegs.push_back(RVLocs[0].getLocReg());
1503
1504      // Finally update the result.
1505      UpdateValueMap(I, ResultReg);
1506    }
1507  }
1508
1509  return true;
1510}
1511
1512bool ARMFastISel::SelectRet(const Instruction *I) {
1513  const ReturnInst *Ret = cast<ReturnInst>(I);
1514  const Function &F = *I->getParent()->getParent();
1515
1516  if (!FuncInfo.CanLowerReturn)
1517    return false;
1518
1519  if (F.isVarArg())
1520    return false;
1521
1522  CallingConv::ID CC = F.getCallingConv();
1523  if (Ret->getNumOperands() > 0) {
1524    SmallVector<ISD::OutputArg, 4> Outs;
1525    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1526                  Outs, TLI);
1527
1528    // Analyze operands of the call, assigning locations to each operand.
1529    SmallVector<CCValAssign, 16> ValLocs;
1530    CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
1531    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1532
1533    const Value *RV = Ret->getOperand(0);
1534    unsigned Reg = getRegForValue(RV);
1535    if (Reg == 0)
1536      return false;
1537
1538    // Only handle a single return value for now.
1539    if (ValLocs.size() != 1)
1540      return false;
1541
1542    CCValAssign &VA = ValLocs[0];
1543
1544    // Don't bother handling odd stuff for now.
1545    if (VA.getLocInfo() != CCValAssign::Full)
1546      return false;
1547    // Only handle register returns for now.
1548    if (!VA.isRegLoc())
1549      return false;
1550    // TODO: For now, don't try to handle cases where getLocInfo()
1551    // says Full but the types don't match.
1552    if (VA.getValVT() != TLI.getValueType(RV->getType()))
1553      return false;
1554
1555    // Make the copy.
1556    unsigned SrcReg = Reg + VA.getValNo();
1557    unsigned DstReg = VA.getLocReg();
1558    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1559    // Avoid a cross-class copy. This is very unlikely.
1560    if (!SrcRC->contains(DstReg))
1561      return false;
1562    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1563            DstReg).addReg(SrcReg);
1564
1565    // Mark the register as live out of the function.
1566    MRI.addLiveOut(VA.getLocReg());
1567  }
1568
1569  unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
1570  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1571                          TII.get(RetOpc)));
1572  return true;
1573}
1574
1575// A quick function that will emit a call for a named libcall in F with the
1576// vector of passed arguments for the Instruction in I. We can assume that we
1577// can emit a call for any libcall we can produce. This is an abridged version
1578// of the full call infrastructure since we won't need to worry about things
1579// like computed function pointers or strange arguments at call sites.
1580// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1581// with X86.
1582bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1583  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1584
1585  // Handle *simple* calls for now.
1586  const Type *RetTy = I->getType();
1587  EVT RetVT;
1588  if (RetTy->isVoidTy())
1589    RetVT = MVT::isVoid;
1590  else if (!isTypeLegal(RetTy, RetVT))
1591    return false;
1592
1593  // For now we're using BLX etc on the assumption that we have v5t ops.
1594  if (!Subtarget->hasV5TOps()) return false;
1595
1596  // Set up the argument vectors.
1597  SmallVector<Value*, 8> Args;
1598  SmallVector<unsigned, 8> ArgRegs;
1599  SmallVector<EVT, 8> ArgVTs;
1600  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1601  Args.reserve(I->getNumOperands());
1602  ArgRegs.reserve(I->getNumOperands());
1603  ArgVTs.reserve(I->getNumOperands());
1604  ArgFlags.reserve(I->getNumOperands());
1605  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1606    Value *Op = I->getOperand(i);
1607    unsigned Arg = getRegForValue(Op);
1608    if (Arg == 0) return false;
1609
1610    const Type *ArgTy = Op->getType();
1611    EVT ArgVT;
1612    if (!isTypeLegal(ArgTy, ArgVT)) return false;
1613
1614    ISD::ArgFlagsTy Flags;
1615    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1616    Flags.setOrigAlign(OriginalAlignment);
1617
1618    Args.push_back(Op);
1619    ArgRegs.push_back(Arg);
1620    ArgVTs.push_back(ArgVT);
1621    ArgFlags.push_back(Flags);
1622  }
1623
1624  // Handle the arguments now that we've gotten them.
1625  SmallVector<unsigned, 4> RegArgs;
1626  unsigned NumBytes;
1627  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1628    return false;
1629
1630  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1631  // TODO: Turn this into the table of arm call ops.
1632  MachineInstrBuilder MIB;
1633  unsigned CallOpc;
1634  if(isThumb)
1635    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1636  else
1637    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1638  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1639        .addExternalSymbol(TLI.getLibcallName(Call));
1640
1641  // Add implicit physical register uses to the call.
1642  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1643    MIB.addReg(RegArgs[i]);
1644
1645  // Finish off the call including any return values.
1646  SmallVector<unsigned, 4> UsedRegs;
1647  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1648
1649  // Set all unused physreg defs as dead.
1650  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1651
1652  return true;
1653}
1654
1655bool ARMFastISel::SelectCall(const Instruction *I) {
1656  const CallInst *CI = cast<CallInst>(I);
1657  const Value *Callee = CI->getCalledValue();
1658
1659  // Can't handle inline asm or worry about intrinsics yet.
1660  if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1661
1662  // Only handle global variable Callees that are direct calls.
1663  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1664  if (!GV || Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()))
1665    return false;
1666
1667  // Check the calling convention.
1668  ImmutableCallSite CS(CI);
1669  CallingConv::ID CC = CS.getCallingConv();
1670
1671  // TODO: Avoid some calling conventions?
1672
1673  // Let SDISel handle vararg functions.
1674  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1675  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1676  if (FTy->isVarArg())
1677    return false;
1678
1679  // Handle *simple* calls for now.
1680  const Type *RetTy = I->getType();
1681  EVT RetVT;
1682  if (RetTy->isVoidTy())
1683    RetVT = MVT::isVoid;
1684  else if (!isTypeLegal(RetTy, RetVT))
1685    return false;
1686
1687  // For now we're using BLX etc on the assumption that we have v5t ops.
1688  // TODO: Maybe?
1689  if (!Subtarget->hasV5TOps()) return false;
1690
1691  // Set up the argument vectors.
1692  SmallVector<Value*, 8> Args;
1693  SmallVector<unsigned, 8> ArgRegs;
1694  SmallVector<EVT, 8> ArgVTs;
1695  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1696  Args.reserve(CS.arg_size());
1697  ArgRegs.reserve(CS.arg_size());
1698  ArgVTs.reserve(CS.arg_size());
1699  ArgFlags.reserve(CS.arg_size());
1700  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1701       i != e; ++i) {
1702    unsigned Arg = getRegForValue(*i);
1703
1704    if (Arg == 0)
1705      return false;
1706    ISD::ArgFlagsTy Flags;
1707    unsigned AttrInd = i - CS.arg_begin() + 1;
1708    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1709      Flags.setSExt();
1710    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1711      Flags.setZExt();
1712
1713         // FIXME: Only handle *easy* calls for now.
1714    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1715        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1716        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1717        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1718      return false;
1719
1720    const Type *ArgTy = (*i)->getType();
1721    EVT ArgVT;
1722    if (!isTypeLegal(ArgTy, ArgVT))
1723      return false;
1724    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1725    Flags.setOrigAlign(OriginalAlignment);
1726
1727    Args.push_back(*i);
1728    ArgRegs.push_back(Arg);
1729    ArgVTs.push_back(ArgVT);
1730    ArgFlags.push_back(Flags);
1731  }
1732
1733  // Handle the arguments now that we've gotten them.
1734  SmallVector<unsigned, 4> RegArgs;
1735  unsigned NumBytes;
1736  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1737    return false;
1738
1739  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1740  // TODO: Turn this into the table of arm call ops.
1741  MachineInstrBuilder MIB;
1742  unsigned CallOpc;
1743  if(isThumb)
1744    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1745  else
1746    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1747  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1748              .addGlobalAddress(GV, 0, 0);
1749
1750  // Add implicit physical register uses to the call.
1751  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1752    MIB.addReg(RegArgs[i]);
1753
1754  // Finish off the call including any return values.
1755  SmallVector<unsigned, 4> UsedRegs;
1756  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1757
1758  // Set all unused physreg defs as dead.
1759  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1760
1761  return true;
1762
1763}
1764
1765// TODO: SoftFP support.
1766bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
1767
1768  switch (I->getOpcode()) {
1769    case Instruction::Load:
1770      return SelectLoad(I);
1771    case Instruction::Store:
1772      return SelectStore(I);
1773    case Instruction::Br:
1774      return SelectBranch(I);
1775    case Instruction::ICmp:
1776    case Instruction::FCmp:
1777      return SelectCmp(I);
1778    case Instruction::FPExt:
1779      return SelectFPExt(I);
1780    case Instruction::FPTrunc:
1781      return SelectFPTrunc(I);
1782    case Instruction::SIToFP:
1783      return SelectSIToFP(I);
1784    case Instruction::FPToSI:
1785      return SelectFPToSI(I);
1786    case Instruction::FAdd:
1787      return SelectBinaryOp(I, ISD::FADD);
1788    case Instruction::FSub:
1789      return SelectBinaryOp(I, ISD::FSUB);
1790    case Instruction::FMul:
1791      return SelectBinaryOp(I, ISD::FMUL);
1792    case Instruction::SDiv:
1793      return SelectSDiv(I);
1794    case Instruction::SRem:
1795      return SelectSRem(I);
1796    case Instruction::Call:
1797      return SelectCall(I);
1798    case Instruction::Select:
1799      return SelectSelect(I);
1800    case Instruction::Ret:
1801      return SelectRet(I);
1802    default: break;
1803  }
1804  return false;
1805}
1806
1807namespace llvm {
1808  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
1809    // Completely untested on non-darwin.
1810    const TargetMachine &TM = funcInfo.MF->getTarget();
1811
1812    // Darwin and thumb1 only for now.
1813    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
1814    if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
1815        !DisableARMFastISel)
1816      return new ARMFastISel(funcInfo);
1817    return 0;
1818  }
1819}
1820