ARMFastISel.cpp revision 6344a5f1464dade7735ac440d7a3d24bf009f298
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Module.h"
29#include "llvm/Operator.h"
30#include "llvm/CodeGen/Analysis.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/FunctionLoweringInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineConstantPool.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineMemOperand.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/PseudoSourceValue.h"
40#include "llvm/Support/CallSite.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/GetElementPtrTypeIterator.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetLowering.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetOptions.h"
49using namespace llvm;
50
51static cl::opt<bool>
52DisableARMFastISel("disable-arm-fast-isel",
53                    cl::desc("Turn off experimental ARM fast-isel support"),
54                    cl::init(false), cl::Hidden);
55
56extern cl::opt<bool> EnableARMLongCalls;
57
58namespace {
59
60  // All possible address modes, plus some.
61  typedef struct Address {
62    enum {
63      RegBase,
64      FrameIndexBase
65    } BaseType;
66
67    union {
68      unsigned Reg;
69      int FI;
70    } Base;
71
72    int Offset;
73    unsigned Scale;
74    unsigned PlusReg;
75
76    // Innocuous defaults for our address.
77    Address()
78     : BaseType(RegBase), Offset(0), Scale(0), PlusReg(0) {
79       Base.Reg = 0;
80     }
81  } Address;
82
83class ARMFastISel : public FastISel {
84
85  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
86  /// make the right decision when generating code for different targets.
87  const ARMSubtarget *Subtarget;
88  const TargetMachine &TM;
89  const TargetInstrInfo &TII;
90  const TargetLowering &TLI;
91  ARMFunctionInfo *AFI;
92
93  // Convenience variables to avoid some queries.
94  bool isThumb;
95  LLVMContext *Context;
96
97  public:
98    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
99    : FastISel(funcInfo),
100      TM(funcInfo.MF->getTarget()),
101      TII(*TM.getInstrInfo()),
102      TLI(*TM.getTargetLowering()) {
103      Subtarget = &TM.getSubtarget<ARMSubtarget>();
104      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
105      isThumb = AFI->isThumbFunction();
106      Context = &funcInfo.Fn->getContext();
107    }
108
109    // Code from FastISel.cpp.
110    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
111                                   const TargetRegisterClass *RC);
112    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
113                                    const TargetRegisterClass *RC,
114                                    unsigned Op0, bool Op0IsKill);
115    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
116                                     const TargetRegisterClass *RC,
117                                     unsigned Op0, bool Op0IsKill,
118                                     unsigned Op1, bool Op1IsKill);
119    virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
120                                      const TargetRegisterClass *RC,
121                                      unsigned Op0, bool Op0IsKill,
122                                      unsigned Op1, bool Op1IsKill,
123                                      unsigned Op2, bool Op2IsKill);
124    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
125                                     const TargetRegisterClass *RC,
126                                     unsigned Op0, bool Op0IsKill,
127                                     uint64_t Imm);
128    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
129                                     const TargetRegisterClass *RC,
130                                     unsigned Op0, bool Op0IsKill,
131                                     const ConstantFP *FPImm);
132    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
133                                      const TargetRegisterClass *RC,
134                                      unsigned Op0, bool Op0IsKill,
135                                      unsigned Op1, bool Op1IsKill,
136                                      uint64_t Imm);
137    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
138                                    const TargetRegisterClass *RC,
139                                    uint64_t Imm);
140
141    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
142                                                unsigned Op0, bool Op0IsKill,
143                                                uint32_t Idx);
144
145    // Backend specific FastISel code.
146    virtual bool TargetSelectInstruction(const Instruction *I);
147    virtual unsigned TargetMaterializeConstant(const Constant *C);
148    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
149
150  #include "ARMGenFastISel.inc"
151
152    // Instruction selection routines.
153  private:
154    bool SelectLoad(const Instruction *I);
155    bool SelectStore(const Instruction *I);
156    bool SelectBranch(const Instruction *I);
157    bool SelectCmp(const Instruction *I);
158    bool SelectFPExt(const Instruction *I);
159    bool SelectFPTrunc(const Instruction *I);
160    bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
161    bool SelectSIToFP(const Instruction *I);
162    bool SelectFPToSI(const Instruction *I);
163    bool SelectSDiv(const Instruction *I);
164    bool SelectSRem(const Instruction *I);
165    bool SelectCall(const Instruction *I);
166    bool SelectSelect(const Instruction *I);
167    bool SelectRet(const Instruction *I);
168
169    // Utility routines.
170  private:
171    bool isTypeLegal(const Type *Ty, MVT &VT);
172    bool isLoadTypeLegal(const Type *Ty, MVT &VT);
173    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr);
174    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
175    bool ARMComputeAddress(const Value *Obj, Address &Addr);
176    void ARMSimplifyAddress(Address &Addr, EVT VT);
177    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
178    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
179    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
180    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
181    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
182    unsigned ARMSelectCallOp(const GlobalValue *GV);
183
184    // Call handling routines.
185  private:
186    bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
187                        unsigned &ResultReg);
188    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
189    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
190                         SmallVectorImpl<unsigned> &ArgRegs,
191                         SmallVectorImpl<MVT> &ArgVTs,
192                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
193                         SmallVectorImpl<unsigned> &RegArgs,
194                         CallingConv::ID CC,
195                         unsigned &NumBytes);
196    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
197                    const Instruction *I, CallingConv::ID CC,
198                    unsigned &NumBytes);
199    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
200
201    // OptionalDef handling routines.
202  private:
203    bool isARMNEONPred(const MachineInstr *MI);
204    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
205    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
206    void AddLoadStoreOperands(EVT VT, Address &Addr,
207                              const MachineInstrBuilder &MIB);
208};
209
210} // end anonymous namespace
211
212#include "ARMGenCallingConv.inc"
213
214// DefinesOptionalPredicate - This is different from DefinesPredicate in that
215// we don't care about implicit defs here, just places we'll need to add a
216// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
217bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
218  const TargetInstrDesc &TID = MI->getDesc();
219  if (!TID.hasOptionalDef())
220    return false;
221
222  // Look to see if our OptionalDef is defining CPSR or CCR.
223  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
224    const MachineOperand &MO = MI->getOperand(i);
225    if (!MO.isReg() || !MO.isDef()) continue;
226    if (MO.getReg() == ARM::CPSR)
227      *CPSR = true;
228  }
229  return true;
230}
231
232bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
233  const TargetInstrDesc &TID = MI->getDesc();
234
235  // If we're a thumb2 or not NEON function we were handled via isPredicable.
236  if ((TID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
237       AFI->isThumb2Function())
238    return false;
239
240  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i)
241    if (TID.OpInfo[i].isPredicate())
242      return true;
243
244  return false;
245}
246
247// If the machine is predicable go ahead and add the predicate operands, if
248// it needs default CC operands add those.
249// TODO: If we want to support thumb1 then we'll need to deal with optional
250// CPSR defs that need to be added before the remaining operands. See s_cc_out
251// for descriptions why.
252const MachineInstrBuilder &
253ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
254  MachineInstr *MI = &*MIB;
255
256  // Do we use a predicate? or...
257  // Are we NEON in ARM mode and have a predicate operand? If so, I know
258  // we're not predicable but add it anyways.
259  if (TII.isPredicable(MI) || isARMNEONPred(MI))
260    AddDefaultPred(MIB);
261
262  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
263  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
264  bool CPSR = false;
265  if (DefinesOptionalPredicate(MI, &CPSR)) {
266    if (CPSR)
267      AddDefaultT1CC(MIB);
268    else
269      AddDefaultCC(MIB);
270  }
271  return MIB;
272}
273
274unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
275                                    const TargetRegisterClass* RC) {
276  unsigned ResultReg = createResultReg(RC);
277  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
278
279  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
280  return ResultReg;
281}
282
283unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
284                                     const TargetRegisterClass *RC,
285                                     unsigned Op0, bool Op0IsKill) {
286  unsigned ResultReg = createResultReg(RC);
287  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
288
289  if (II.getNumDefs() >= 1)
290    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
291                   .addReg(Op0, Op0IsKill * RegState::Kill));
292  else {
293    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
294                   .addReg(Op0, Op0IsKill * RegState::Kill));
295    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
296                   TII.get(TargetOpcode::COPY), ResultReg)
297                   .addReg(II.ImplicitDefs[0]));
298  }
299  return ResultReg;
300}
301
302unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
303                                      const TargetRegisterClass *RC,
304                                      unsigned Op0, bool Op0IsKill,
305                                      unsigned Op1, bool Op1IsKill) {
306  unsigned ResultReg = createResultReg(RC);
307  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
308
309  if (II.getNumDefs() >= 1)
310    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
311                   .addReg(Op0, Op0IsKill * RegState::Kill)
312                   .addReg(Op1, Op1IsKill * RegState::Kill));
313  else {
314    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
315                   .addReg(Op0, Op0IsKill * RegState::Kill)
316                   .addReg(Op1, Op1IsKill * RegState::Kill));
317    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
318                           TII.get(TargetOpcode::COPY), ResultReg)
319                   .addReg(II.ImplicitDefs[0]));
320  }
321  return ResultReg;
322}
323
324unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
325                                       const TargetRegisterClass *RC,
326                                       unsigned Op0, bool Op0IsKill,
327                                       unsigned Op1, bool Op1IsKill,
328                                       unsigned Op2, bool Op2IsKill) {
329  unsigned ResultReg = createResultReg(RC);
330  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
331
332  if (II.getNumDefs() >= 1)
333    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
334                   .addReg(Op0, Op0IsKill * RegState::Kill)
335                   .addReg(Op1, Op1IsKill * RegState::Kill)
336                   .addReg(Op2, Op2IsKill * RegState::Kill));
337  else {
338    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
339                   .addReg(Op0, Op0IsKill * RegState::Kill)
340                   .addReg(Op1, Op1IsKill * RegState::Kill)
341                   .addReg(Op2, Op2IsKill * RegState::Kill));
342    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
343                           TII.get(TargetOpcode::COPY), ResultReg)
344                   .addReg(II.ImplicitDefs[0]));
345  }
346  return ResultReg;
347}
348
349unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
350                                      const TargetRegisterClass *RC,
351                                      unsigned Op0, bool Op0IsKill,
352                                      uint64_t Imm) {
353  unsigned ResultReg = createResultReg(RC);
354  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
355
356  if (II.getNumDefs() >= 1)
357    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
358                   .addReg(Op0, Op0IsKill * RegState::Kill)
359                   .addImm(Imm));
360  else {
361    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
362                   .addReg(Op0, Op0IsKill * RegState::Kill)
363                   .addImm(Imm));
364    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
365                           TII.get(TargetOpcode::COPY), ResultReg)
366                   .addReg(II.ImplicitDefs[0]));
367  }
368  return ResultReg;
369}
370
371unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
372                                      const TargetRegisterClass *RC,
373                                      unsigned Op0, bool Op0IsKill,
374                                      const ConstantFP *FPImm) {
375  unsigned ResultReg = createResultReg(RC);
376  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
377
378  if (II.getNumDefs() >= 1)
379    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
380                   .addReg(Op0, Op0IsKill * RegState::Kill)
381                   .addFPImm(FPImm));
382  else {
383    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
384                   .addReg(Op0, Op0IsKill * RegState::Kill)
385                   .addFPImm(FPImm));
386    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
387                           TII.get(TargetOpcode::COPY), ResultReg)
388                   .addReg(II.ImplicitDefs[0]));
389  }
390  return ResultReg;
391}
392
393unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
394                                       const TargetRegisterClass *RC,
395                                       unsigned Op0, bool Op0IsKill,
396                                       unsigned Op1, bool Op1IsKill,
397                                       uint64_t Imm) {
398  unsigned ResultReg = createResultReg(RC);
399  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
400
401  if (II.getNumDefs() >= 1)
402    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
403                   .addReg(Op0, Op0IsKill * RegState::Kill)
404                   .addReg(Op1, Op1IsKill * RegState::Kill)
405                   .addImm(Imm));
406  else {
407    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
408                   .addReg(Op0, Op0IsKill * RegState::Kill)
409                   .addReg(Op1, Op1IsKill * RegState::Kill)
410                   .addImm(Imm));
411    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
412                           TII.get(TargetOpcode::COPY), ResultReg)
413                   .addReg(II.ImplicitDefs[0]));
414  }
415  return ResultReg;
416}
417
418unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
419                                     const TargetRegisterClass *RC,
420                                     uint64_t Imm) {
421  unsigned ResultReg = createResultReg(RC);
422  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
423
424  if (II.getNumDefs() >= 1)
425    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
426                   .addImm(Imm));
427  else {
428    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
429                   .addImm(Imm));
430    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
431                           TII.get(TargetOpcode::COPY), ResultReg)
432                   .addReg(II.ImplicitDefs[0]));
433  }
434  return ResultReg;
435}
436
437unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
438                                                 unsigned Op0, bool Op0IsKill,
439                                                 uint32_t Idx) {
440  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
441  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
442         "Cannot yet extract from physregs");
443  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
444                         DL, TII.get(TargetOpcode::COPY), ResultReg)
445                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
446  return ResultReg;
447}
448
449// TODO: Don't worry about 64-bit now, but when this is fixed remove the
450// checks from the various callers.
451unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
452  if (VT == MVT::f64) return 0;
453
454  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
455  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
456                          TII.get(ARM::VMOVRS), MoveReg)
457                  .addReg(SrcReg));
458  return MoveReg;
459}
460
461unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
462  if (VT == MVT::i64) return 0;
463
464  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
465  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
466                          TII.get(ARM::VMOVSR), MoveReg)
467                  .addReg(SrcReg));
468  return MoveReg;
469}
470
471// For double width floating point we need to materialize two constants
472// (the high and the low) into integer registers then use a move to get
473// the combined constant into an FP reg.
474unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
475  const APFloat Val = CFP->getValueAPF();
476  bool is64bit = VT == MVT::f64;
477
478  // This checks to see if we can use VFP3 instructions to materialize
479  // a constant, otherwise we have to go through the constant pool.
480  if (TLI.isFPImmLegal(Val, VT)) {
481    unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
482    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
483    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
484                            DestReg)
485                    .addFPImm(CFP));
486    return DestReg;
487  }
488
489  // Require VFP2 for loading fp constants.
490  if (!Subtarget->hasVFP2()) return false;
491
492  // MachineConstantPool wants an explicit alignment.
493  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
494  if (Align == 0) {
495    // TODO: Figure out if this is correct.
496    Align = TD.getTypeAllocSize(CFP->getType());
497  }
498  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
499  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
500  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
501
502  // The extra reg is for addrmode5.
503  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
504                          DestReg)
505                  .addConstantPoolIndex(Idx)
506                  .addReg(0));
507  return DestReg;
508}
509
510unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
511
512  // For now 32-bit only.
513  if (VT != MVT::i32) return false;
514
515  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
516
517  // If we can do this in a single instruction without a constant pool entry
518  // do so now.
519  const ConstantInt *CI = cast<ConstantInt>(C);
520  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getSExtValue())) {
521    unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16;
522    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
523                            TII.get(Opc), DestReg)
524                    .addImm(CI->getSExtValue()));
525    return DestReg;
526  }
527
528  // MachineConstantPool wants an explicit alignment.
529  unsigned Align = TD.getPrefTypeAlignment(C->getType());
530  if (Align == 0) {
531    // TODO: Figure out if this is correct.
532    Align = TD.getTypeAllocSize(C->getType());
533  }
534  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
535
536  if (isThumb)
537    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
538                            TII.get(ARM::t2LDRpci), DestReg)
539                    .addConstantPoolIndex(Idx));
540  else
541    // The extra immediate is for addrmode2.
542    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
543                            TII.get(ARM::LDRcp), DestReg)
544                    .addConstantPoolIndex(Idx)
545                    .addImm(0));
546
547  return DestReg;
548}
549
550unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
551  // For now 32-bit only.
552  if (VT != MVT::i32) return 0;
553
554  Reloc::Model RelocM = TM.getRelocationModel();
555
556  // TODO: No external globals for now.
557  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) return 0;
558
559  // TODO: Need more magic for ARM PIC.
560  if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
561
562  // MachineConstantPool wants an explicit alignment.
563  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
564  if (Align == 0) {
565    // TODO: Figure out if this is correct.
566    Align = TD.getTypeAllocSize(GV->getType());
567  }
568
569  // Grab index.
570  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
571  unsigned Id = AFI->createPICLabelUId();
572  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id,
573                                                       ARMCP::CPValue, PCAdj);
574  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
575
576  // Load value.
577  MachineInstrBuilder MIB;
578  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
579  if (isThumb) {
580    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
581    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
582          .addConstantPoolIndex(Idx);
583    if (RelocM == Reloc::PIC_)
584      MIB.addImm(Id);
585  } else {
586    // The extra immediate is for addrmode2.
587    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
588                  DestReg)
589          .addConstantPoolIndex(Idx)
590          .addImm(0);
591  }
592  AddOptionalDefs(MIB);
593  return DestReg;
594}
595
596unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
597  EVT VT = TLI.getValueType(C->getType(), true);
598
599  // Only handle simple types.
600  if (!VT.isSimple()) return 0;
601
602  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
603    return ARMMaterializeFP(CFP, VT);
604  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
605    return ARMMaterializeGV(GV, VT);
606  else if (isa<ConstantInt>(C))
607    return ARMMaterializeInt(C, VT);
608
609  return 0;
610}
611
612unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
613  // Don't handle dynamic allocas.
614  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
615
616  MVT VT;
617  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
618
619  DenseMap<const AllocaInst*, int>::iterator SI =
620    FuncInfo.StaticAllocaMap.find(AI);
621
622  // This will get lowered later into the correct offsets and registers
623  // via rewriteXFrameIndex.
624  if (SI != FuncInfo.StaticAllocaMap.end()) {
625    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
626    unsigned ResultReg = createResultReg(RC);
627    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
628    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
629                            TII.get(Opc), ResultReg)
630                            .addFrameIndex(SI->second)
631                            .addImm(0));
632    return ResultReg;
633  }
634
635  return 0;
636}
637
638bool ARMFastISel::isTypeLegal(const Type *Ty, MVT &VT) {
639  EVT evt = TLI.getValueType(Ty, true);
640
641  // Only handle simple types.
642  if (evt == MVT::Other || !evt.isSimple()) return false;
643  VT = evt.getSimpleVT();
644
645  // Handle all legal types, i.e. a register that will directly hold this
646  // value.
647  return TLI.isTypeLegal(VT);
648}
649
650bool ARMFastISel::isLoadTypeLegal(const Type *Ty, MVT &VT) {
651  if (isTypeLegal(Ty, VT)) return true;
652
653  // If this is a type than can be sign or zero-extended to a basic operation
654  // go ahead and accept it now.
655  if (VT == MVT::i8 || VT == MVT::i16)
656    return true;
657
658  return false;
659}
660
661// Computes the address to get to an object.
662bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
663  // Some boilerplate from the X86 FastISel.
664  const User *U = NULL;
665  unsigned Opcode = Instruction::UserOp1;
666  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
667    // Don't walk into other basic blocks unless the object is an alloca from
668    // another block, otherwise it may not have a virtual register assigned.
669    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
670        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
671      Opcode = I->getOpcode();
672      U = I;
673    }
674  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
675    Opcode = C->getOpcode();
676    U = C;
677  }
678
679  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
680    if (Ty->getAddressSpace() > 255)
681      // Fast instruction selection doesn't support the special
682      // address spaces.
683      return false;
684
685  switch (Opcode) {
686    default:
687    break;
688    case Instruction::BitCast: {
689      // Look through bitcasts.
690      return ARMComputeAddress(U->getOperand(0), Addr);
691    }
692    case Instruction::IntToPtr: {
693      // Look past no-op inttoptrs.
694      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
695        return ARMComputeAddress(U->getOperand(0), Addr);
696      break;
697    }
698    case Instruction::PtrToInt: {
699      // Look past no-op ptrtoints.
700      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
701        return ARMComputeAddress(U->getOperand(0), Addr);
702      break;
703    }
704    case Instruction::GetElementPtr: {
705      Address SavedAddr = Addr;
706      int TmpOffset = Addr.Offset;
707
708      // Iterate through the GEP folding the constants into offsets where
709      // we can.
710      gep_type_iterator GTI = gep_type_begin(U);
711      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
712           i != e; ++i, ++GTI) {
713        const Value *Op = *i;
714        if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
715          const StructLayout *SL = TD.getStructLayout(STy);
716          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
717          TmpOffset += SL->getElementOffset(Idx);
718        } else {
719          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
720          for (;;) {
721            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
722              // Constant-offset addressing.
723              TmpOffset += CI->getSExtValue() * S;
724              break;
725            }
726            if (isa<AddOperator>(Op) &&
727                (!isa<Instruction>(Op) ||
728                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
729                 == FuncInfo.MBB) &&
730                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
731              // An add (in the same block) with a constant operand. Fold the
732              // constant.
733              ConstantInt *CI =
734              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
735              TmpOffset += CI->getSExtValue() * S;
736              // Iterate on the other operand.
737              Op = cast<AddOperator>(Op)->getOperand(0);
738              continue;
739            }
740            // Unsupported
741            goto unsupported_gep;
742          }
743        }
744      }
745
746      // Try to grab the base operand now.
747      Addr.Offset = TmpOffset;
748      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
749
750      // We failed, restore everything and try the other options.
751      Addr = SavedAddr;
752
753      unsupported_gep:
754      break;
755    }
756    case Instruction::Alloca: {
757      const AllocaInst *AI = cast<AllocaInst>(Obj);
758      DenseMap<const AllocaInst*, int>::iterator SI =
759        FuncInfo.StaticAllocaMap.find(AI);
760      if (SI != FuncInfo.StaticAllocaMap.end()) {
761        Addr.BaseType = Address::FrameIndexBase;
762        Addr.Base.FI = SI->second;
763        return true;
764      }
765      break;
766    }
767  }
768
769  // Materialize the global variable's address into a reg which can
770  // then be used later to load the variable.
771  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
772    unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
773    if (Tmp == 0) return false;
774
775    Addr.Base.Reg = Tmp;
776    return true;
777  }
778
779  // Try to get this in a register if nothing else has worked.
780  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
781  return Addr.Base.Reg != 0;
782}
783
784void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) {
785
786  assert(VT.isSimple() && "Non-simple types are invalid here!");
787
788  bool needsLowering = false;
789  switch (VT.getSimpleVT().SimpleTy) {
790    default:
791      assert(false && "Unhandled load/store type!");
792    case MVT::i1:
793    case MVT::i8:
794    case MVT::i16:
795    case MVT::i32:
796      // Integer loads/stores handle 12-bit offsets.
797      needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
798      break;
799    case MVT::f32:
800    case MVT::f64:
801      // Floating point operands handle 8-bit offsets.
802      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
803      break;
804  }
805
806  // If this is a stack pointer and the offset needs to be simplified then
807  // put the alloca address into a register, set the base type back to
808  // register and continue. This should almost never happen.
809  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
810    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
811                              ARM::GPRRegisterClass;
812    unsigned ResultReg = createResultReg(RC);
813    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
814    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
815                            TII.get(Opc), ResultReg)
816                            .addFrameIndex(Addr.Base.FI)
817                            .addImm(0));
818    Addr.Base.Reg = ResultReg;
819    Addr.BaseType = Address::RegBase;
820  }
821
822  // Since the offset is too large for the load/store instruction
823  // get the reg+offset into a register.
824  if (needsLowering) {
825    ARMCC::CondCodes Pred = ARMCC::AL;
826    unsigned PredReg = 0;
827
828    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
829      ARM::GPRRegisterClass;
830    unsigned BaseReg = createResultReg(RC);
831
832    if (!isThumb)
833      emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
834                              BaseReg, Addr.Base.Reg, Addr.Offset,
835                              Pred, PredReg,
836                              static_cast<const ARMBaseInstrInfo&>(TII));
837    else {
838      assert(AFI->isThumb2Function());
839      emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
840                             BaseReg, Addr.Base.Reg, Addr.Offset, Pred, PredReg,
841                             static_cast<const ARMBaseInstrInfo&>(TII));
842    }
843    Addr.Offset = 0;
844    Addr.Base.Reg = BaseReg;
845  }
846}
847
848void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
849                                       const MachineInstrBuilder &MIB) {
850  // addrmode5 output depends on the selection dag addressing dividing the
851  // offset by 4 that it then later multiplies. Do this here as well.
852  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
853      VT.getSimpleVT().SimpleTy == MVT::f64)
854    Addr.Offset /= 4;
855
856  // Frame base works a bit differently. Handle it separately.
857  if (Addr.BaseType == Address::FrameIndexBase) {
858    int FI = Addr.Base.FI;
859    int Offset = Addr.Offset;
860    MachineMemOperand *MMO =
861          FuncInfo.MF->getMachineMemOperand(
862                                  MachinePointerInfo::getFixedStack(FI, Offset),
863                                  MachineMemOperand::MOLoad,
864                                  MFI.getObjectSize(FI),
865                                  MFI.getObjectAlignment(FI));
866    // Now add the rest of the operands.
867    MIB.addFrameIndex(FI);
868
869    // ARM halfword load/stores need an additional operand.
870    if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
871
872    MIB.addImm(Addr.Offset);
873    MIB.addMemOperand(MMO);
874  } else {
875    // Now add the rest of the operands.
876    MIB.addReg(Addr.Base.Reg);
877
878    // ARM halfword load/stores need an additional operand.
879    if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
880
881    MIB.addImm(Addr.Offset);
882  }
883  AddOptionalDefs(MIB);
884}
885
886bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) {
887
888  assert(VT.isSimple() && "Non-simple types are invalid here!");
889  unsigned Opc;
890  TargetRegisterClass *RC;
891  switch (VT.getSimpleVT().SimpleTy) {
892    // This is mostly going to be Neon/vector support.
893    default: return false;
894    case MVT::i16:
895      Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
896      RC = ARM::GPRRegisterClass;
897      break;
898    case MVT::i8:
899      Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
900      RC = ARM::GPRRegisterClass;
901      break;
902    case MVT::i32:
903      Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
904      RC = ARM::GPRRegisterClass;
905      break;
906    case MVT::f32:
907      Opc = ARM::VLDRS;
908      RC = TLI.getRegClassFor(VT);
909      break;
910    case MVT::f64:
911      Opc = ARM::VLDRD;
912      RC = TLI.getRegClassFor(VT);
913      break;
914  }
915  // Simplify this down to something we can handle.
916  ARMSimplifyAddress(Addr, VT);
917
918  // Create the base instruction, then add the operands.
919  ResultReg = createResultReg(RC);
920  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
921                                    TII.get(Opc), ResultReg);
922  AddLoadStoreOperands(VT, Addr, MIB);
923  return true;
924}
925
926bool ARMFastISel::SelectLoad(const Instruction *I) {
927  // Verify we have a legal type before going any further.
928  MVT VT;
929  if (!isLoadTypeLegal(I->getType(), VT))
930    return false;
931
932  // See if we can handle this address.
933  Address Addr;
934  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
935
936  unsigned ResultReg;
937  if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
938  UpdateValueMap(I, ResultReg);
939  return true;
940}
941
942bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
943  unsigned StrOpc;
944  switch (VT.getSimpleVT().SimpleTy) {
945    // This is mostly going to be Neon/vector support.
946    default: return false;
947    case MVT::i1: {
948      unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass :
949                                               ARM::GPRRegisterClass);
950      unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
951      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
952                              TII.get(Opc), Res)
953                      .addReg(SrcReg).addImm(1));
954      SrcReg = Res;
955    } // Fallthrough here.
956    case MVT::i8:
957      StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
958      break;
959    case MVT::i16:
960      StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
961      break;
962    case MVT::i32:
963      StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
964      break;
965    case MVT::f32:
966      if (!Subtarget->hasVFP2()) return false;
967      StrOpc = ARM::VSTRS;
968      break;
969    case MVT::f64:
970      if (!Subtarget->hasVFP2()) return false;
971      StrOpc = ARM::VSTRD;
972      break;
973  }
974  // Simplify this down to something we can handle.
975  ARMSimplifyAddress(Addr, VT);
976
977  // Create the base instruction, then add the operands.
978  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
979                                    TII.get(StrOpc))
980                            .addReg(SrcReg, getKillRegState(true));
981  AddLoadStoreOperands(VT, Addr, MIB);
982  return true;
983}
984
985bool ARMFastISel::SelectStore(const Instruction *I) {
986  Value *Op0 = I->getOperand(0);
987  unsigned SrcReg = 0;
988
989  // Verify we have a legal type before going any further.
990  MVT VT;
991  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
992    return false;
993
994  // Get the value to be stored into a register.
995  SrcReg = getRegForValue(Op0);
996  if (SrcReg == 0) return false;
997
998  // See if we can handle this address.
999  Address Addr;
1000  if (!ARMComputeAddress(I->getOperand(1), Addr))
1001    return false;
1002
1003  if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
1004  return true;
1005}
1006
1007static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1008  switch (Pred) {
1009    // Needs two compares...
1010    case CmpInst::FCMP_ONE:
1011    case CmpInst::FCMP_UEQ:
1012    default:
1013      // AL is our "false" for now. The other two need more compares.
1014      return ARMCC::AL;
1015    case CmpInst::ICMP_EQ:
1016    case CmpInst::FCMP_OEQ:
1017      return ARMCC::EQ;
1018    case CmpInst::ICMP_SGT:
1019    case CmpInst::FCMP_OGT:
1020      return ARMCC::GT;
1021    case CmpInst::ICMP_SGE:
1022    case CmpInst::FCMP_OGE:
1023      return ARMCC::GE;
1024    case CmpInst::ICMP_UGT:
1025    case CmpInst::FCMP_UGT:
1026      return ARMCC::HI;
1027    case CmpInst::FCMP_OLT:
1028      return ARMCC::MI;
1029    case CmpInst::ICMP_ULE:
1030    case CmpInst::FCMP_OLE:
1031      return ARMCC::LS;
1032    case CmpInst::FCMP_ORD:
1033      return ARMCC::VC;
1034    case CmpInst::FCMP_UNO:
1035      return ARMCC::VS;
1036    case CmpInst::FCMP_UGE:
1037      return ARMCC::PL;
1038    case CmpInst::ICMP_SLT:
1039    case CmpInst::FCMP_ULT:
1040      return ARMCC::LT;
1041    case CmpInst::ICMP_SLE:
1042    case CmpInst::FCMP_ULE:
1043      return ARMCC::LE;
1044    case CmpInst::FCMP_UNE:
1045    case CmpInst::ICMP_NE:
1046      return ARMCC::NE;
1047    case CmpInst::ICMP_UGE:
1048      return ARMCC::HS;
1049    case CmpInst::ICMP_ULT:
1050      return ARMCC::LO;
1051  }
1052}
1053
1054bool ARMFastISel::SelectBranch(const Instruction *I) {
1055  const BranchInst *BI = cast<BranchInst>(I);
1056  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1057  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1058
1059  // Simple branch support.
1060
1061  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1062  // behavior.
1063  // TODO: Factor this out.
1064  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1065    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1066      MVT VT;
1067      const Type *Ty = CI->getOperand(0)->getType();
1068      if (!isTypeLegal(Ty, VT))
1069        return false;
1070
1071      bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1072      if (isFloat && !Subtarget->hasVFP2())
1073        return false;
1074
1075      unsigned CmpOpc;
1076      switch (VT.SimpleTy) {
1077        default: return false;
1078        // TODO: Verify compares.
1079        case MVT::f32:
1080          CmpOpc = ARM::VCMPES;
1081          break;
1082        case MVT::f64:
1083          CmpOpc = ARM::VCMPED;
1084          break;
1085        case MVT::i32:
1086          CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1087          break;
1088      }
1089
1090      // Get the compare predicate.
1091      ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1092
1093      // We may not handle every CC for now.
1094      if (ARMPred == ARMCC::AL) return false;
1095
1096      unsigned Arg1 = getRegForValue(CI->getOperand(0));
1097      if (Arg1 == 0) return false;
1098
1099      unsigned Arg2 = getRegForValue(CI->getOperand(1));
1100      if (Arg2 == 0) return false;
1101
1102      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1103                              TII.get(CmpOpc))
1104                      .addReg(Arg1).addReg(Arg2));
1105
1106      // For floating point we need to move the result to a comparison register
1107      // that we can then use for branches.
1108      if (isFloat)
1109        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1110                                TII.get(ARM::FMSTAT)));
1111
1112      unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1113      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1114      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1115      FastEmitBranch(FBB, DL);
1116      FuncInfo.MBB->addSuccessor(TBB);
1117      return true;
1118    }
1119  }
1120
1121  unsigned CmpReg = getRegForValue(BI->getCondition());
1122  if (CmpReg == 0) return false;
1123
1124  // We've been divorced from our compare!  Our block was split, and
1125  // now our compare lives in a predecessor block.  We musn't
1126  // re-compare here, as the children of the compare aren't guaranteed
1127  // live across the block boundary (we *could* check for this).
1128  // Regardless, the compare has been done in the predecessor block,
1129  // and it left a value for us in a virtual register.  Ergo, we test
1130  // the one-bit value left in the virtual register.
1131  unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1132  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1133                  .addReg(CmpReg).addImm(1));
1134
1135
1136  unsigned CCMode = ARMCC::NE;
1137  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1138    std::swap(TBB, FBB);
1139    CCMode = ARMCC::EQ;
1140  }
1141
1142  unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1143  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1144                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1145  FastEmitBranch(FBB, DL);
1146  FuncInfo.MBB->addSuccessor(TBB);
1147  return true;
1148}
1149
1150bool ARMFastISel::SelectCmp(const Instruction *I) {
1151  const CmpInst *CI = cast<CmpInst>(I);
1152
1153  MVT VT;
1154  const Type *Ty = CI->getOperand(0)->getType();
1155  if (!isTypeLegal(Ty, VT))
1156    return false;
1157
1158  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1159  if (isFloat && !Subtarget->hasVFP2())
1160    return false;
1161
1162  unsigned CmpOpc;
1163  unsigned CondReg;
1164  switch (VT.SimpleTy) {
1165    default: return false;
1166    // TODO: Verify compares.
1167    case MVT::f32:
1168      CmpOpc = ARM::VCMPES;
1169      CondReg = ARM::FPSCR;
1170      break;
1171    case MVT::f64:
1172      CmpOpc = ARM::VCMPED;
1173      CondReg = ARM::FPSCR;
1174      break;
1175    case MVT::i32:
1176      CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1177      CondReg = ARM::CPSR;
1178      break;
1179  }
1180
1181  // Get the compare predicate.
1182  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1183
1184  // We may not handle every CC for now.
1185  if (ARMPred == ARMCC::AL) return false;
1186
1187  unsigned Arg1 = getRegForValue(CI->getOperand(0));
1188  if (Arg1 == 0) return false;
1189
1190  unsigned Arg2 = getRegForValue(CI->getOperand(1));
1191  if (Arg2 == 0) return false;
1192
1193  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1194                  .addReg(Arg1).addReg(Arg2));
1195
1196  // For floating point we need to move the result to a comparison register
1197  // that we can then use for branches.
1198  if (isFloat)
1199    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1200                            TII.get(ARM::FMSTAT)));
1201
1202  // Now set a register based on the comparison. Explicitly set the predicates
1203  // here.
1204  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1205  TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1206                                    : ARM::GPRRegisterClass;
1207  unsigned DestReg = createResultReg(RC);
1208  Constant *Zero
1209    = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1210  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1211  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1212          .addReg(ZeroReg).addImm(1)
1213          .addImm(ARMPred).addReg(CondReg);
1214
1215  UpdateValueMap(I, DestReg);
1216  return true;
1217}
1218
1219bool ARMFastISel::SelectFPExt(const Instruction *I) {
1220  // Make sure we have VFP and that we're extending float to double.
1221  if (!Subtarget->hasVFP2()) return false;
1222
1223  Value *V = I->getOperand(0);
1224  if (!I->getType()->isDoubleTy() ||
1225      !V->getType()->isFloatTy()) return false;
1226
1227  unsigned Op = getRegForValue(V);
1228  if (Op == 0) return false;
1229
1230  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1231  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1232                          TII.get(ARM::VCVTDS), Result)
1233                  .addReg(Op));
1234  UpdateValueMap(I, Result);
1235  return true;
1236}
1237
1238bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1239  // Make sure we have VFP and that we're truncating double to float.
1240  if (!Subtarget->hasVFP2()) return false;
1241
1242  Value *V = I->getOperand(0);
1243  if (!(I->getType()->isFloatTy() &&
1244        V->getType()->isDoubleTy())) return false;
1245
1246  unsigned Op = getRegForValue(V);
1247  if (Op == 0) return false;
1248
1249  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1250  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1251                          TII.get(ARM::VCVTSD), Result)
1252                  .addReg(Op));
1253  UpdateValueMap(I, Result);
1254  return true;
1255}
1256
1257bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1258  // Make sure we have VFP.
1259  if (!Subtarget->hasVFP2()) return false;
1260
1261  MVT DstVT;
1262  const Type *Ty = I->getType();
1263  if (!isTypeLegal(Ty, DstVT))
1264    return false;
1265
1266  unsigned Op = getRegForValue(I->getOperand(0));
1267  if (Op == 0) return false;
1268
1269  // The conversion routine works on fp-reg to fp-reg and the operand above
1270  // was an integer, move it to the fp registers if possible.
1271  unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1272  if (FP == 0) return false;
1273
1274  unsigned Opc;
1275  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1276  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1277  else return 0;
1278
1279  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1280  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1281                          ResultReg)
1282                  .addReg(FP));
1283  UpdateValueMap(I, ResultReg);
1284  return true;
1285}
1286
1287bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1288  // Make sure we have VFP.
1289  if (!Subtarget->hasVFP2()) return false;
1290
1291  MVT DstVT;
1292  const Type *RetTy = I->getType();
1293  if (!isTypeLegal(RetTy, DstVT))
1294    return false;
1295
1296  unsigned Op = getRegForValue(I->getOperand(0));
1297  if (Op == 0) return false;
1298
1299  unsigned Opc;
1300  const Type *OpTy = I->getOperand(0)->getType();
1301  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1302  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1303  else return 0;
1304
1305  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1306  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1307  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1308                          ResultReg)
1309                  .addReg(Op));
1310
1311  // This result needs to be in an integer register, but the conversion only
1312  // takes place in fp-regs.
1313  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1314  if (IntReg == 0) return false;
1315
1316  UpdateValueMap(I, IntReg);
1317  return true;
1318}
1319
1320bool ARMFastISel::SelectSelect(const Instruction *I) {
1321  MVT VT;
1322  if (!isTypeLegal(I->getType(), VT))
1323    return false;
1324
1325  // Things need to be register sized for register moves.
1326  if (VT != MVT::i32) return false;
1327  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1328
1329  unsigned CondReg = getRegForValue(I->getOperand(0));
1330  if (CondReg == 0) return false;
1331  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1332  if (Op1Reg == 0) return false;
1333  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1334  if (Op2Reg == 0) return false;
1335
1336  unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1337  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1338                  .addReg(CondReg).addImm(1));
1339  unsigned ResultReg = createResultReg(RC);
1340  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1341  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1342    .addReg(Op1Reg).addReg(Op2Reg)
1343    .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1344  UpdateValueMap(I, ResultReg);
1345  return true;
1346}
1347
1348bool ARMFastISel::SelectSDiv(const Instruction *I) {
1349  MVT VT;
1350  const Type *Ty = I->getType();
1351  if (!isTypeLegal(Ty, VT))
1352    return false;
1353
1354  // If we have integer div support we should have selected this automagically.
1355  // In case we have a real miss go ahead and return false and we'll pick
1356  // it up later.
1357  if (Subtarget->hasDivide()) return false;
1358
1359  // Otherwise emit a libcall.
1360  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1361  if (VT == MVT::i8)
1362    LC = RTLIB::SDIV_I8;
1363  else if (VT == MVT::i16)
1364    LC = RTLIB::SDIV_I16;
1365  else if (VT == MVT::i32)
1366    LC = RTLIB::SDIV_I32;
1367  else if (VT == MVT::i64)
1368    LC = RTLIB::SDIV_I64;
1369  else if (VT == MVT::i128)
1370    LC = RTLIB::SDIV_I128;
1371  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1372
1373  return ARMEmitLibcall(I, LC);
1374}
1375
1376bool ARMFastISel::SelectSRem(const Instruction *I) {
1377  MVT VT;
1378  const Type *Ty = I->getType();
1379  if (!isTypeLegal(Ty, VT))
1380    return false;
1381
1382  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1383  if (VT == MVT::i8)
1384    LC = RTLIB::SREM_I8;
1385  else if (VT == MVT::i16)
1386    LC = RTLIB::SREM_I16;
1387  else if (VT == MVT::i32)
1388    LC = RTLIB::SREM_I32;
1389  else if (VT == MVT::i64)
1390    LC = RTLIB::SREM_I64;
1391  else if (VT == MVT::i128)
1392    LC = RTLIB::SREM_I128;
1393  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1394
1395  return ARMEmitLibcall(I, LC);
1396}
1397
1398bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1399  EVT VT  = TLI.getValueType(I->getType(), true);
1400
1401  // We can get here in the case when we want to use NEON for our fp
1402  // operations, but can't figure out how to. Just use the vfp instructions
1403  // if we have them.
1404  // FIXME: It'd be nice to use NEON instructions.
1405  const Type *Ty = I->getType();
1406  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1407  if (isFloat && !Subtarget->hasVFP2())
1408    return false;
1409
1410  unsigned Op1 = getRegForValue(I->getOperand(0));
1411  if (Op1 == 0) return false;
1412
1413  unsigned Op2 = getRegForValue(I->getOperand(1));
1414  if (Op2 == 0) return false;
1415
1416  unsigned Opc;
1417  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1418  switch (ISDOpcode) {
1419    default: return false;
1420    case ISD::FADD:
1421      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1422      break;
1423    case ISD::FSUB:
1424      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1425      break;
1426    case ISD::FMUL:
1427      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1428      break;
1429  }
1430  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1431  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1432                          TII.get(Opc), ResultReg)
1433                  .addReg(Op1).addReg(Op2));
1434  UpdateValueMap(I, ResultReg);
1435  return true;
1436}
1437
1438// Call Handling Code
1439
1440bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1441                                 EVT SrcVT, unsigned &ResultReg) {
1442  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1443                           Src, /*TODO: Kill=*/false);
1444
1445  if (RR != 0) {
1446    ResultReg = RR;
1447    return true;
1448  } else
1449    return false;
1450}
1451
1452// This is largely taken directly from CCAssignFnForNode - we don't support
1453// varargs in FastISel so that part has been removed.
1454// TODO: We may not support all of this.
1455CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1456  switch (CC) {
1457  default:
1458    llvm_unreachable("Unsupported calling convention");
1459  case CallingConv::Fast:
1460    // Ignore fastcc. Silence compiler warnings.
1461    (void)RetFastCC_ARM_APCS;
1462    (void)FastCC_ARM_APCS;
1463    // Fallthrough
1464  case CallingConv::C:
1465    // Use target triple & subtarget features to do actual dispatch.
1466    if (Subtarget->isAAPCS_ABI()) {
1467      if (Subtarget->hasVFP2() &&
1468          FloatABIType == FloatABI::Hard)
1469        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1470      else
1471        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1472    } else
1473        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1474  case CallingConv::ARM_AAPCS_VFP:
1475    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1476  case CallingConv::ARM_AAPCS:
1477    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1478  case CallingConv::ARM_APCS:
1479    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1480  }
1481}
1482
1483bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1484                                  SmallVectorImpl<unsigned> &ArgRegs,
1485                                  SmallVectorImpl<MVT> &ArgVTs,
1486                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1487                                  SmallVectorImpl<unsigned> &RegArgs,
1488                                  CallingConv::ID CC,
1489                                  unsigned &NumBytes) {
1490  SmallVector<CCValAssign, 16> ArgLocs;
1491  CCState CCInfo(CC, false, TM, ArgLocs, *Context);
1492  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1493
1494  // Get a count of how many bytes are to be pushed on the stack.
1495  NumBytes = CCInfo.getNextStackOffset();
1496
1497  // Issue CALLSEQ_START
1498  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1499  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1500                          TII.get(AdjStackDown))
1501                  .addImm(NumBytes));
1502
1503  // Process the args.
1504  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1505    CCValAssign &VA = ArgLocs[i];
1506    unsigned Arg = ArgRegs[VA.getValNo()];
1507    MVT ArgVT = ArgVTs[VA.getValNo()];
1508
1509    // We don't handle NEON/vector parameters yet.
1510    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1511      return false;
1512
1513    // Handle arg promotion, etc.
1514    switch (VA.getLocInfo()) {
1515      case CCValAssign::Full: break;
1516      case CCValAssign::SExt: {
1517        bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1518                                         Arg, ArgVT, Arg);
1519        assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
1520        Emitted = true;
1521        ArgVT = VA.getLocVT();
1522        break;
1523      }
1524      case CCValAssign::ZExt: {
1525        bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1526                                         Arg, ArgVT, Arg);
1527        assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
1528        Emitted = true;
1529        ArgVT = VA.getLocVT();
1530        break;
1531      }
1532      case CCValAssign::AExt: {
1533        bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1534                                         Arg, ArgVT, Arg);
1535        if (!Emitted)
1536          Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1537                                      Arg, ArgVT, Arg);
1538        if (!Emitted)
1539          Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1540                                      Arg, ArgVT, Arg);
1541
1542        assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
1543        ArgVT = VA.getLocVT();
1544        break;
1545      }
1546      case CCValAssign::BCvt: {
1547        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1548                                 /*TODO: Kill=*/false);
1549        assert(BC != 0 && "Failed to emit a bitcast!");
1550        Arg = BC;
1551        ArgVT = VA.getLocVT();
1552        break;
1553      }
1554      default: llvm_unreachable("Unknown arg promotion!");
1555    }
1556
1557    // Now copy/store arg to correct locations.
1558    if (VA.isRegLoc() && !VA.needsCustom()) {
1559      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1560              VA.getLocReg())
1561      .addReg(Arg);
1562      RegArgs.push_back(VA.getLocReg());
1563    } else if (VA.needsCustom()) {
1564      // TODO: We need custom lowering for vector (v2f64) args.
1565      if (VA.getLocVT() != MVT::f64) return false;
1566
1567      CCValAssign &NextVA = ArgLocs[++i];
1568
1569      // TODO: Only handle register args for now.
1570      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1571
1572      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1573                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1574                      .addReg(NextVA.getLocReg(), RegState::Define)
1575                      .addReg(Arg));
1576      RegArgs.push_back(VA.getLocReg());
1577      RegArgs.push_back(NextVA.getLocReg());
1578    } else {
1579      assert(VA.isMemLoc());
1580      // Need to store on the stack.
1581      Address Addr;
1582      Addr.BaseType = Address::RegBase;
1583      Addr.Base.Reg = ARM::SP;
1584      Addr.Offset = VA.getLocMemOffset();
1585
1586      if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1587    }
1588  }
1589  return true;
1590}
1591
1592bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1593                             const Instruction *I, CallingConv::ID CC,
1594                             unsigned &NumBytes) {
1595  // Issue CALLSEQ_END
1596  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1597  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1598                          TII.get(AdjStackUp))
1599                  .addImm(NumBytes).addImm(0));
1600
1601  // Now the return value.
1602  if (RetVT != MVT::isVoid) {
1603    SmallVector<CCValAssign, 16> RVLocs;
1604    CCState CCInfo(CC, false, TM, RVLocs, *Context);
1605    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1606
1607    // Copy all of the result registers out of their specified physreg.
1608    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1609      // For this move we copy into two registers and then move into the
1610      // double fp reg we want.
1611      EVT DestVT = RVLocs[0].getValVT();
1612      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1613      unsigned ResultReg = createResultReg(DstRC);
1614      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1615                              TII.get(ARM::VMOVDRR), ResultReg)
1616                      .addReg(RVLocs[0].getLocReg())
1617                      .addReg(RVLocs[1].getLocReg()));
1618
1619      UsedRegs.push_back(RVLocs[0].getLocReg());
1620      UsedRegs.push_back(RVLocs[1].getLocReg());
1621
1622      // Finally update the result.
1623      UpdateValueMap(I, ResultReg);
1624    } else {
1625      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1626      EVT CopyVT = RVLocs[0].getValVT();
1627      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1628
1629      unsigned ResultReg = createResultReg(DstRC);
1630      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1631              ResultReg).addReg(RVLocs[0].getLocReg());
1632      UsedRegs.push_back(RVLocs[0].getLocReg());
1633
1634      // Finally update the result.
1635      UpdateValueMap(I, ResultReg);
1636    }
1637  }
1638
1639  return true;
1640}
1641
1642bool ARMFastISel::SelectRet(const Instruction *I) {
1643  const ReturnInst *Ret = cast<ReturnInst>(I);
1644  const Function &F = *I->getParent()->getParent();
1645
1646  if (!FuncInfo.CanLowerReturn)
1647    return false;
1648
1649  if (F.isVarArg())
1650    return false;
1651
1652  CallingConv::ID CC = F.getCallingConv();
1653  if (Ret->getNumOperands() > 0) {
1654    SmallVector<ISD::OutputArg, 4> Outs;
1655    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1656                  Outs, TLI);
1657
1658    // Analyze operands of the call, assigning locations to each operand.
1659    SmallVector<CCValAssign, 16> ValLocs;
1660    CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
1661    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1662
1663    const Value *RV = Ret->getOperand(0);
1664    unsigned Reg = getRegForValue(RV);
1665    if (Reg == 0)
1666      return false;
1667
1668    // Only handle a single return value for now.
1669    if (ValLocs.size() != 1)
1670      return false;
1671
1672    CCValAssign &VA = ValLocs[0];
1673
1674    // Don't bother handling odd stuff for now.
1675    if (VA.getLocInfo() != CCValAssign::Full)
1676      return false;
1677    // Only handle register returns for now.
1678    if (!VA.isRegLoc())
1679      return false;
1680    // TODO: For now, don't try to handle cases where getLocInfo()
1681    // says Full but the types don't match.
1682    if (TLI.getValueType(RV->getType()) != VA.getValVT())
1683      return false;
1684
1685    // Make the copy.
1686    unsigned SrcReg = Reg + VA.getValNo();
1687    unsigned DstReg = VA.getLocReg();
1688    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1689    // Avoid a cross-class copy. This is very unlikely.
1690    if (!SrcRC->contains(DstReg))
1691      return false;
1692    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1693            DstReg).addReg(SrcReg);
1694
1695    // Mark the register as live out of the function.
1696    MRI.addLiveOut(VA.getLocReg());
1697  }
1698
1699  unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
1700  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1701                          TII.get(RetOpc)));
1702  return true;
1703}
1704
1705unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
1706
1707  // Darwin needs the r9 versions of the opcodes.
1708  bool isDarwin = Subtarget->isTargetDarwin();
1709  if (isThumb) {
1710    return isDarwin ? ARM::tBLr9 : ARM::tBL;
1711  } else  {
1712    return isDarwin ? ARM::BLr9 : ARM::BL;
1713  }
1714}
1715
1716// A quick function that will emit a call for a named libcall in F with the
1717// vector of passed arguments for the Instruction in I. We can assume that we
1718// can emit a call for any libcall we can produce. This is an abridged version
1719// of the full call infrastructure since we won't need to worry about things
1720// like computed function pointers or strange arguments at call sites.
1721// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1722// with X86.
1723bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1724  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1725
1726  // Handle *simple* calls for now.
1727  const Type *RetTy = I->getType();
1728  MVT RetVT;
1729  if (RetTy->isVoidTy())
1730    RetVT = MVT::isVoid;
1731  else if (!isTypeLegal(RetTy, RetVT))
1732    return false;
1733
1734  // TODO: For now if we have long calls specified we don't handle the call.
1735  if (EnableARMLongCalls) return false;
1736
1737  // Set up the argument vectors.
1738  SmallVector<Value*, 8> Args;
1739  SmallVector<unsigned, 8> ArgRegs;
1740  SmallVector<MVT, 8> ArgVTs;
1741  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1742  Args.reserve(I->getNumOperands());
1743  ArgRegs.reserve(I->getNumOperands());
1744  ArgVTs.reserve(I->getNumOperands());
1745  ArgFlags.reserve(I->getNumOperands());
1746  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1747    Value *Op = I->getOperand(i);
1748    unsigned Arg = getRegForValue(Op);
1749    if (Arg == 0) return false;
1750
1751    const Type *ArgTy = Op->getType();
1752    MVT ArgVT;
1753    if (!isTypeLegal(ArgTy, ArgVT)) return false;
1754
1755    ISD::ArgFlagsTy Flags;
1756    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1757    Flags.setOrigAlign(OriginalAlignment);
1758
1759    Args.push_back(Op);
1760    ArgRegs.push_back(Arg);
1761    ArgVTs.push_back(ArgVT);
1762    ArgFlags.push_back(Flags);
1763  }
1764
1765  // Handle the arguments now that we've gotten them.
1766  SmallVector<unsigned, 4> RegArgs;
1767  unsigned NumBytes;
1768  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1769    return false;
1770
1771  // Issue the call, BLr9 for darwin, BL otherwise.
1772  // TODO: Turn this into the table of arm call ops.
1773  MachineInstrBuilder MIB;
1774  unsigned CallOpc = ARMSelectCallOp(NULL);
1775  if(isThumb)
1776    // Explicitly adding the predicate here.
1777    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1778                         TII.get(CallOpc)))
1779                         .addExternalSymbol(TLI.getLibcallName(Call));
1780  else
1781    // Explicitly adding the predicate here.
1782    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1783                         TII.get(CallOpc))
1784          .addExternalSymbol(TLI.getLibcallName(Call)));
1785
1786  // Add implicit physical register uses to the call.
1787  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1788    MIB.addReg(RegArgs[i]);
1789
1790  // Finish off the call including any return values.
1791  SmallVector<unsigned, 4> UsedRegs;
1792  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1793
1794  // Set all unused physreg defs as dead.
1795  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1796
1797  return true;
1798}
1799
1800bool ARMFastISel::SelectCall(const Instruction *I) {
1801  const CallInst *CI = cast<CallInst>(I);
1802  const Value *Callee = CI->getCalledValue();
1803
1804  // Can't handle inline asm or worry about intrinsics yet.
1805  if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1806
1807  // Only handle global variable Callees that are direct calls.
1808  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1809  if (!GV || Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()))
1810    return false;
1811
1812  // Check the calling convention.
1813  ImmutableCallSite CS(CI);
1814  CallingConv::ID CC = CS.getCallingConv();
1815
1816  // TODO: Avoid some calling conventions?
1817
1818  // Let SDISel handle vararg functions.
1819  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1820  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1821  if (FTy->isVarArg())
1822    return false;
1823
1824  // Handle *simple* calls for now.
1825  const Type *RetTy = I->getType();
1826  MVT RetVT;
1827  if (RetTy->isVoidTy())
1828    RetVT = MVT::isVoid;
1829  else if (!isTypeLegal(RetTy, RetVT))
1830    return false;
1831
1832  // TODO: For now if we have long calls specified we don't handle the call.
1833  if (EnableARMLongCalls) return false;
1834
1835  // Set up the argument vectors.
1836  SmallVector<Value*, 8> Args;
1837  SmallVector<unsigned, 8> ArgRegs;
1838  SmallVector<MVT, 8> ArgVTs;
1839  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1840  Args.reserve(CS.arg_size());
1841  ArgRegs.reserve(CS.arg_size());
1842  ArgVTs.reserve(CS.arg_size());
1843  ArgFlags.reserve(CS.arg_size());
1844  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1845       i != e; ++i) {
1846    unsigned Arg = getRegForValue(*i);
1847
1848    if (Arg == 0)
1849      return false;
1850    ISD::ArgFlagsTy Flags;
1851    unsigned AttrInd = i - CS.arg_begin() + 1;
1852    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1853      Flags.setSExt();
1854    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1855      Flags.setZExt();
1856
1857         // FIXME: Only handle *easy* calls for now.
1858    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1859        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1860        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1861        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1862      return false;
1863
1864    const Type *ArgTy = (*i)->getType();
1865    MVT ArgVT;
1866    if (!isTypeLegal(ArgTy, ArgVT))
1867      return false;
1868    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1869    Flags.setOrigAlign(OriginalAlignment);
1870
1871    Args.push_back(*i);
1872    ArgRegs.push_back(Arg);
1873    ArgVTs.push_back(ArgVT);
1874    ArgFlags.push_back(Flags);
1875  }
1876
1877  // Handle the arguments now that we've gotten them.
1878  SmallVector<unsigned, 4> RegArgs;
1879  unsigned NumBytes;
1880  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1881    return false;
1882
1883  // Issue the call, BLr9 for darwin, BL otherwise.
1884  // TODO: Turn this into the table of arm call ops.
1885  MachineInstrBuilder MIB;
1886  unsigned CallOpc = ARMSelectCallOp(GV);
1887  // Explicitly adding the predicate here.
1888  if(isThumb)
1889    // Explicitly adding the predicate here.
1890    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1891                         TII.get(CallOpc)))
1892          .addGlobalAddress(GV, 0, 0);
1893  else
1894    // Explicitly adding the predicate here.
1895    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1896                         TII.get(CallOpc))
1897          .addGlobalAddress(GV, 0, 0));
1898
1899  // Add implicit physical register uses to the call.
1900  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1901    MIB.addReg(RegArgs[i]);
1902
1903  // Finish off the call including any return values.
1904  SmallVector<unsigned, 4> UsedRegs;
1905  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1906
1907  // Set all unused physreg defs as dead.
1908  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1909
1910  return true;
1911
1912}
1913
1914// TODO: SoftFP support.
1915bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
1916
1917  switch (I->getOpcode()) {
1918    case Instruction::Load:
1919      return SelectLoad(I);
1920    case Instruction::Store:
1921      return SelectStore(I);
1922    case Instruction::Br:
1923      return SelectBranch(I);
1924    case Instruction::ICmp:
1925    case Instruction::FCmp:
1926      return SelectCmp(I);
1927    case Instruction::FPExt:
1928      return SelectFPExt(I);
1929    case Instruction::FPTrunc:
1930      return SelectFPTrunc(I);
1931    case Instruction::SIToFP:
1932      return SelectSIToFP(I);
1933    case Instruction::FPToSI:
1934      return SelectFPToSI(I);
1935    case Instruction::FAdd:
1936      return SelectBinaryOp(I, ISD::FADD);
1937    case Instruction::FSub:
1938      return SelectBinaryOp(I, ISD::FSUB);
1939    case Instruction::FMul:
1940      return SelectBinaryOp(I, ISD::FMUL);
1941    case Instruction::SDiv:
1942      return SelectSDiv(I);
1943    case Instruction::SRem:
1944      return SelectSRem(I);
1945    case Instruction::Call:
1946      return SelectCall(I);
1947    case Instruction::Select:
1948      return SelectSelect(I);
1949    case Instruction::Ret:
1950      return SelectRet(I);
1951    default: break;
1952  }
1953  return false;
1954}
1955
1956namespace llvm {
1957  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
1958    // Completely untested on non-darwin.
1959    const TargetMachine &TM = funcInfo.MF->getTarget();
1960
1961    // Darwin and thumb1 only for now.
1962    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
1963    if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
1964        !DisableARMFastISel)
1965      return new ARMFastISel(funcInfo);
1966    return 0;
1967  }
1968}
1969