ARMFastISel.cpp revision 6d64b3adab682aea9c0b4dd665acc5e863ac6d21
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "MCTargetDesc/ARMAddressingModes.h"
24#include "llvm/CallingConv.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Instructions.h"
28#include "llvm/IntrinsicInst.h"
29#include "llvm/Module.h"
30#include "llvm/Operator.h"
31#include "llvm/CodeGen/Analysis.h"
32#include "llvm/CodeGen/FastISel.h"
33#include "llvm/CodeGen/FunctionLoweringInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineConstantPool.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineMemOperand.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/CodeGen/PseudoSourceValue.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetMachine.h"
49#include "llvm/Target/TargetOptions.h"
50using namespace llvm;
51
52static cl::opt<bool>
53DisableARMFastISel("disable-arm-fast-isel",
54                    cl::desc("Turn off experimental ARM fast-isel support"),
55                    cl::init(false), cl::Hidden);
56
57extern cl::opt<bool> EnableARMLongCalls;
58
59namespace {
60
61  // All possible address modes, plus some.
62  typedef struct Address {
63    enum {
64      RegBase,
65      FrameIndexBase
66    } BaseType;
67
68    union {
69      unsigned Reg;
70      int FI;
71    } Base;
72
73    int Offset;
74
75    // Innocuous defaults for our address.
76    Address()
77     : BaseType(RegBase), Offset(0) {
78       Base.Reg = 0;
79     }
80  } Address;
81
82class ARMFastISel : public FastISel {
83
84  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
85  /// make the right decision when generating code for different targets.
86  const ARMSubtarget *Subtarget;
87  const TargetMachine &TM;
88  const TargetInstrInfo &TII;
89  const TargetLowering &TLI;
90  ARMFunctionInfo *AFI;
91
92  // Convenience variables to avoid some queries.
93  bool isThumb;
94  LLVMContext *Context;
95
96  public:
97    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
98    : FastISel(funcInfo),
99      TM(funcInfo.MF->getTarget()),
100      TII(*TM.getInstrInfo()),
101      TLI(*TM.getTargetLowering()) {
102      Subtarget = &TM.getSubtarget<ARMSubtarget>();
103      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
104      isThumb = AFI->isThumbFunction();
105      Context = &funcInfo.Fn->getContext();
106    }
107
108    // Code from FastISel.cpp.
109    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
110                                   const TargetRegisterClass *RC);
111    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
112                                    const TargetRegisterClass *RC,
113                                    unsigned Op0, bool Op0IsKill);
114    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
115                                     const TargetRegisterClass *RC,
116                                     unsigned Op0, bool Op0IsKill,
117                                     unsigned Op1, bool Op1IsKill);
118    virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
119                                      const TargetRegisterClass *RC,
120                                      unsigned Op0, bool Op0IsKill,
121                                      unsigned Op1, bool Op1IsKill,
122                                      unsigned Op2, bool Op2IsKill);
123    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
124                                     const TargetRegisterClass *RC,
125                                     unsigned Op0, bool Op0IsKill,
126                                     uint64_t Imm);
127    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
128                                     const TargetRegisterClass *RC,
129                                     unsigned Op0, bool Op0IsKill,
130                                     const ConstantFP *FPImm);
131    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
132                                      const TargetRegisterClass *RC,
133                                      unsigned Op0, bool Op0IsKill,
134                                      unsigned Op1, bool Op1IsKill,
135                                      uint64_t Imm);
136    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
137                                    const TargetRegisterClass *RC,
138                                    uint64_t Imm);
139    virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
140                                     const TargetRegisterClass *RC,
141                                     uint64_t Imm1, uint64_t Imm2);
142
143    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
144                                                unsigned Op0, bool Op0IsKill,
145                                                uint32_t Idx);
146
147    // Backend specific FastISel code.
148    virtual bool TargetSelectInstruction(const Instruction *I);
149    virtual unsigned TargetMaterializeConstant(const Constant *C);
150    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
151
152  #include "ARMGenFastISel.inc"
153
154    // Instruction selection routines.
155  private:
156    bool SelectLoad(const Instruction *I);
157    bool SelectStore(const Instruction *I);
158    bool SelectBranch(const Instruction *I);
159    bool SelectCmp(const Instruction *I);
160    bool SelectFPExt(const Instruction *I);
161    bool SelectFPTrunc(const Instruction *I);
162    bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
163    bool SelectSIToFP(const Instruction *I);
164    bool SelectFPToSI(const Instruction *I);
165    bool SelectSDiv(const Instruction *I);
166    bool SelectSRem(const Instruction *I);
167    bool SelectCall(const Instruction *I);
168    bool SelectSelect(const Instruction *I);
169    bool SelectRet(const Instruction *I);
170    bool SelectIntCast(const Instruction *I);
171
172    // Utility routines.
173  private:
174    bool isTypeLegal(Type *Ty, MVT &VT);
175    bool isLoadTypeLegal(Type *Ty, MVT &VT);
176    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value);
177    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr);
178    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
179    bool ARMComputeAddress(const Value *Obj, Address &Addr);
180    void ARMSimplifyAddress(Address &Addr, EVT VT);
181    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
182    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
183    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
184    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
185    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
186    unsigned ARMSelectCallOp(const GlobalValue *GV);
187
188    // Call handling routines.
189  private:
190    bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
191                        unsigned &ResultReg);
192    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
193    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
194                         SmallVectorImpl<unsigned> &ArgRegs,
195                         SmallVectorImpl<MVT> &ArgVTs,
196                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
197                         SmallVectorImpl<unsigned> &RegArgs,
198                         CallingConv::ID CC,
199                         unsigned &NumBytes);
200    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
201                    const Instruction *I, CallingConv::ID CC,
202                    unsigned &NumBytes);
203    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
204
205    // OptionalDef handling routines.
206  private:
207    bool isARMNEONPred(const MachineInstr *MI);
208    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
209    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
210    void AddLoadStoreOperands(EVT VT, Address &Addr,
211                              const MachineInstrBuilder &MIB,
212                              unsigned Flags);
213};
214
215} // end anonymous namespace
216
217#include "ARMGenCallingConv.inc"
218
219// DefinesOptionalPredicate - This is different from DefinesPredicate in that
220// we don't care about implicit defs here, just places we'll need to add a
221// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
222bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
223  const MCInstrDesc &MCID = MI->getDesc();
224  if (!MCID.hasOptionalDef())
225    return false;
226
227  // Look to see if our OptionalDef is defining CPSR or CCR.
228  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
229    const MachineOperand &MO = MI->getOperand(i);
230    if (!MO.isReg() || !MO.isDef()) continue;
231    if (MO.getReg() == ARM::CPSR)
232      *CPSR = true;
233  }
234  return true;
235}
236
237bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
238  const MCInstrDesc &MCID = MI->getDesc();
239
240  // If we're a thumb2 or not NEON function we were handled via isPredicable.
241  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
242       AFI->isThumb2Function())
243    return false;
244
245  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
246    if (MCID.OpInfo[i].isPredicate())
247      return true;
248
249  return false;
250}
251
252// If the machine is predicable go ahead and add the predicate operands, if
253// it needs default CC operands add those.
254// TODO: If we want to support thumb1 then we'll need to deal with optional
255// CPSR defs that need to be added before the remaining operands. See s_cc_out
256// for descriptions why.
257const MachineInstrBuilder &
258ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
259  MachineInstr *MI = &*MIB;
260
261  // Do we use a predicate? or...
262  // Are we NEON in ARM mode and have a predicate operand? If so, I know
263  // we're not predicable but add it anyways.
264  if (TII.isPredicable(MI) || isARMNEONPred(MI))
265    AddDefaultPred(MIB);
266
267  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
268  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
269  bool CPSR = false;
270  if (DefinesOptionalPredicate(MI, &CPSR)) {
271    if (CPSR)
272      AddDefaultT1CC(MIB);
273    else
274      AddDefaultCC(MIB);
275  }
276  return MIB;
277}
278
279unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
280                                    const TargetRegisterClass* RC) {
281  unsigned ResultReg = createResultReg(RC);
282  const MCInstrDesc &II = TII.get(MachineInstOpcode);
283
284  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
285  return ResultReg;
286}
287
288unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
289                                     const TargetRegisterClass *RC,
290                                     unsigned Op0, bool Op0IsKill) {
291  unsigned ResultReg = createResultReg(RC);
292  const MCInstrDesc &II = TII.get(MachineInstOpcode);
293
294  if (II.getNumDefs() >= 1)
295    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
296                   .addReg(Op0, Op0IsKill * RegState::Kill));
297  else {
298    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
299                   .addReg(Op0, Op0IsKill * RegState::Kill));
300    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
301                   TII.get(TargetOpcode::COPY), ResultReg)
302                   .addReg(II.ImplicitDefs[0]));
303  }
304  return ResultReg;
305}
306
307unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
308                                      const TargetRegisterClass *RC,
309                                      unsigned Op0, bool Op0IsKill,
310                                      unsigned Op1, bool Op1IsKill) {
311  unsigned ResultReg = createResultReg(RC);
312  const MCInstrDesc &II = TII.get(MachineInstOpcode);
313
314  if (II.getNumDefs() >= 1)
315    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
316                   .addReg(Op0, Op0IsKill * RegState::Kill)
317                   .addReg(Op1, Op1IsKill * RegState::Kill));
318  else {
319    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
320                   .addReg(Op0, Op0IsKill * RegState::Kill)
321                   .addReg(Op1, Op1IsKill * RegState::Kill));
322    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
323                           TII.get(TargetOpcode::COPY), ResultReg)
324                   .addReg(II.ImplicitDefs[0]));
325  }
326  return ResultReg;
327}
328
329unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
330                                       const TargetRegisterClass *RC,
331                                       unsigned Op0, bool Op0IsKill,
332                                       unsigned Op1, bool Op1IsKill,
333                                       unsigned Op2, bool Op2IsKill) {
334  unsigned ResultReg = createResultReg(RC);
335  const MCInstrDesc &II = TII.get(MachineInstOpcode);
336
337  if (II.getNumDefs() >= 1)
338    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
339                   .addReg(Op0, Op0IsKill * RegState::Kill)
340                   .addReg(Op1, Op1IsKill * RegState::Kill)
341                   .addReg(Op2, Op2IsKill * RegState::Kill));
342  else {
343    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
344                   .addReg(Op0, Op0IsKill * RegState::Kill)
345                   .addReg(Op1, Op1IsKill * RegState::Kill)
346                   .addReg(Op2, Op2IsKill * RegState::Kill));
347    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
348                           TII.get(TargetOpcode::COPY), ResultReg)
349                   .addReg(II.ImplicitDefs[0]));
350  }
351  return ResultReg;
352}
353
354unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
355                                      const TargetRegisterClass *RC,
356                                      unsigned Op0, bool Op0IsKill,
357                                      uint64_t Imm) {
358  unsigned ResultReg = createResultReg(RC);
359  const MCInstrDesc &II = TII.get(MachineInstOpcode);
360
361  if (II.getNumDefs() >= 1)
362    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
363                   .addReg(Op0, Op0IsKill * RegState::Kill)
364                   .addImm(Imm));
365  else {
366    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
367                   .addReg(Op0, Op0IsKill * RegState::Kill)
368                   .addImm(Imm));
369    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
370                           TII.get(TargetOpcode::COPY), ResultReg)
371                   .addReg(II.ImplicitDefs[0]));
372  }
373  return ResultReg;
374}
375
376unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
377                                      const TargetRegisterClass *RC,
378                                      unsigned Op0, bool Op0IsKill,
379                                      const ConstantFP *FPImm) {
380  unsigned ResultReg = createResultReg(RC);
381  const MCInstrDesc &II = TII.get(MachineInstOpcode);
382
383  if (II.getNumDefs() >= 1)
384    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
385                   .addReg(Op0, Op0IsKill * RegState::Kill)
386                   .addFPImm(FPImm));
387  else {
388    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
389                   .addReg(Op0, Op0IsKill * RegState::Kill)
390                   .addFPImm(FPImm));
391    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
392                           TII.get(TargetOpcode::COPY), ResultReg)
393                   .addReg(II.ImplicitDefs[0]));
394  }
395  return ResultReg;
396}
397
398unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
399                                       const TargetRegisterClass *RC,
400                                       unsigned Op0, bool Op0IsKill,
401                                       unsigned Op1, bool Op1IsKill,
402                                       uint64_t Imm) {
403  unsigned ResultReg = createResultReg(RC);
404  const MCInstrDesc &II = TII.get(MachineInstOpcode);
405
406  if (II.getNumDefs() >= 1)
407    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
408                   .addReg(Op0, Op0IsKill * RegState::Kill)
409                   .addReg(Op1, Op1IsKill * RegState::Kill)
410                   .addImm(Imm));
411  else {
412    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
413                   .addReg(Op0, Op0IsKill * RegState::Kill)
414                   .addReg(Op1, Op1IsKill * RegState::Kill)
415                   .addImm(Imm));
416    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
417                           TII.get(TargetOpcode::COPY), ResultReg)
418                   .addReg(II.ImplicitDefs[0]));
419  }
420  return ResultReg;
421}
422
423unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
424                                     const TargetRegisterClass *RC,
425                                     uint64_t Imm) {
426  unsigned ResultReg = createResultReg(RC);
427  const MCInstrDesc &II = TII.get(MachineInstOpcode);
428
429  if (II.getNumDefs() >= 1)
430    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
431                   .addImm(Imm));
432  else {
433    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
434                   .addImm(Imm));
435    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
436                           TII.get(TargetOpcode::COPY), ResultReg)
437                   .addReg(II.ImplicitDefs[0]));
438  }
439  return ResultReg;
440}
441
442unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
443                                      const TargetRegisterClass *RC,
444                                      uint64_t Imm1, uint64_t Imm2) {
445  unsigned ResultReg = createResultReg(RC);
446  const MCInstrDesc &II = TII.get(MachineInstOpcode);
447
448  if (II.getNumDefs() >= 1)
449    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
450                    .addImm(Imm1).addImm(Imm2));
451  else {
452    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
453                    .addImm(Imm1).addImm(Imm2));
454    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
455                            TII.get(TargetOpcode::COPY),
456                            ResultReg)
457                    .addReg(II.ImplicitDefs[0]));
458  }
459  return ResultReg;
460}
461
462unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
463                                                 unsigned Op0, bool Op0IsKill,
464                                                 uint32_t Idx) {
465  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
466  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
467         "Cannot yet extract from physregs");
468  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
469                         DL, TII.get(TargetOpcode::COPY), ResultReg)
470                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
471  return ResultReg;
472}
473
474// TODO: Don't worry about 64-bit now, but when this is fixed remove the
475// checks from the various callers.
476unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
477  if (VT == MVT::f64) return 0;
478
479  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
480  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
481                          TII.get(ARM::VMOVRS), MoveReg)
482                  .addReg(SrcReg));
483  return MoveReg;
484}
485
486unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
487  if (VT == MVT::i64) return 0;
488
489  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
490  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
491                          TII.get(ARM::VMOVSR), MoveReg)
492                  .addReg(SrcReg));
493  return MoveReg;
494}
495
496// For double width floating point we need to materialize two constants
497// (the high and the low) into integer registers then use a move to get
498// the combined constant into an FP reg.
499unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
500  const APFloat Val = CFP->getValueAPF();
501  bool is64bit = VT == MVT::f64;
502
503  // This checks to see if we can use VFP3 instructions to materialize
504  // a constant, otherwise we have to go through the constant pool.
505  if (TLI.isFPImmLegal(Val, VT)) {
506    int Imm;
507    unsigned Opc;
508    if (is64bit) {
509      Imm = ARM_AM::getFP64Imm(Val);
510      Opc = ARM::FCONSTD;
511    } else {
512      Imm = ARM_AM::getFP32Imm(Val);
513      Opc = ARM::FCONSTS;
514    }
515    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
516    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
517                            DestReg)
518                    .addImm(Imm));
519    return DestReg;
520  }
521
522  // Require VFP2 for loading fp constants.
523  if (!Subtarget->hasVFP2()) return false;
524
525  // MachineConstantPool wants an explicit alignment.
526  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
527  if (Align == 0) {
528    // TODO: Figure out if this is correct.
529    Align = TD.getTypeAllocSize(CFP->getType());
530  }
531  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
532  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
533  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
534
535  // The extra reg is for addrmode5.
536  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
537                          DestReg)
538                  .addConstantPoolIndex(Idx)
539                  .addReg(0));
540  return DestReg;
541}
542
543unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
544
545  // For now 32-bit only.
546  if (VT != MVT::i32) return false;
547
548  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
549
550  // If we can do this in a single instruction without a constant pool entry
551  // do so now.
552  const ConstantInt *CI = cast<ConstantInt>(C);
553  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getSExtValue())) {
554    unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16;
555    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
556                            TII.get(Opc), DestReg)
557                    .addImm(CI->getSExtValue()));
558    return DestReg;
559  }
560
561  // MachineConstantPool wants an explicit alignment.
562  unsigned Align = TD.getPrefTypeAlignment(C->getType());
563  if (Align == 0) {
564    // TODO: Figure out if this is correct.
565    Align = TD.getTypeAllocSize(C->getType());
566  }
567  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
568
569  if (isThumb)
570    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
571                            TII.get(ARM::t2LDRpci), DestReg)
572                    .addConstantPoolIndex(Idx));
573  else
574    // The extra immediate is for addrmode2.
575    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
576                            TII.get(ARM::LDRcp), DestReg)
577                    .addConstantPoolIndex(Idx)
578                    .addImm(0));
579
580  return DestReg;
581}
582
583unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
584  // For now 32-bit only.
585  if (VT != MVT::i32) return 0;
586
587  Reloc::Model RelocM = TM.getRelocationModel();
588
589  // TODO: Need more magic for ARM PIC.
590  if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
591
592  // MachineConstantPool wants an explicit alignment.
593  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
594  if (Align == 0) {
595    // TODO: Figure out if this is correct.
596    Align = TD.getTypeAllocSize(GV->getType());
597  }
598
599  // Grab index.
600  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
601  unsigned Id = AFI->createPICLabelUId();
602  ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
603                                                              ARMCP::CPValue,
604                                                              PCAdj);
605  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
606
607  // Load value.
608  MachineInstrBuilder MIB;
609  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
610  if (isThumb) {
611    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
612    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
613          .addConstantPoolIndex(Idx);
614    if (RelocM == Reloc::PIC_)
615      MIB.addImm(Id);
616  } else {
617    // The extra immediate is for addrmode2.
618    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
619                  DestReg)
620          .addConstantPoolIndex(Idx)
621          .addImm(0);
622  }
623  AddOptionalDefs(MIB);
624
625  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
626    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
627    if (isThumb)
628      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
629                    TII.get(ARM::t2LDRi12), NewDestReg)
630            .addReg(DestReg)
631            .addImm(0);
632    else
633      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
634                    NewDestReg)
635            .addReg(DestReg)
636            .addImm(0);
637    DestReg = NewDestReg;
638    AddOptionalDefs(MIB);
639  }
640
641  return DestReg;
642}
643
644unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
645  EVT VT = TLI.getValueType(C->getType(), true);
646
647  // Only handle simple types.
648  if (!VT.isSimple()) return 0;
649
650  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
651    return ARMMaterializeFP(CFP, VT);
652  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
653    return ARMMaterializeGV(GV, VT);
654  else if (isa<ConstantInt>(C))
655    return ARMMaterializeInt(C, VT);
656
657  return 0;
658}
659
660unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
661  // Don't handle dynamic allocas.
662  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
663
664  MVT VT;
665  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
666
667  DenseMap<const AllocaInst*, int>::iterator SI =
668    FuncInfo.StaticAllocaMap.find(AI);
669
670  // This will get lowered later into the correct offsets and registers
671  // via rewriteXFrameIndex.
672  if (SI != FuncInfo.StaticAllocaMap.end()) {
673    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
674    unsigned ResultReg = createResultReg(RC);
675    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
676    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
677                            TII.get(Opc), ResultReg)
678                            .addFrameIndex(SI->second)
679                            .addImm(0));
680    return ResultReg;
681  }
682
683  return 0;
684}
685
686bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
687  EVT evt = TLI.getValueType(Ty, true);
688
689  // Only handle simple types.
690  if (evt == MVT::Other || !evt.isSimple()) return false;
691  VT = evt.getSimpleVT();
692
693  // Handle all legal types, i.e. a register that will directly hold this
694  // value.
695  return TLI.isTypeLegal(VT);
696}
697
698bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
699  if (isTypeLegal(Ty, VT)) return true;
700
701  // If this is a type than can be sign or zero-extended to a basic operation
702  // go ahead and accept it now.
703  if (VT == MVT::i8 || VT == MVT::i16)
704    return true;
705
706  return false;
707}
708
709// Computes the address to get to an object.
710bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
711  // Some boilerplate from the X86 FastISel.
712  const User *U = NULL;
713  unsigned Opcode = Instruction::UserOp1;
714  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
715    // Don't walk into other basic blocks unless the object is an alloca from
716    // another block, otherwise it may not have a virtual register assigned.
717    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
718        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
719      Opcode = I->getOpcode();
720      U = I;
721    }
722  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
723    Opcode = C->getOpcode();
724    U = C;
725  }
726
727  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
728    if (Ty->getAddressSpace() > 255)
729      // Fast instruction selection doesn't support the special
730      // address spaces.
731      return false;
732
733  switch (Opcode) {
734    default:
735    break;
736    case Instruction::BitCast: {
737      // Look through bitcasts.
738      return ARMComputeAddress(U->getOperand(0), Addr);
739    }
740    case Instruction::IntToPtr: {
741      // Look past no-op inttoptrs.
742      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
743        return ARMComputeAddress(U->getOperand(0), Addr);
744      break;
745    }
746    case Instruction::PtrToInt: {
747      // Look past no-op ptrtoints.
748      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
749        return ARMComputeAddress(U->getOperand(0), Addr);
750      break;
751    }
752    case Instruction::GetElementPtr: {
753      Address SavedAddr = Addr;
754      int TmpOffset = Addr.Offset;
755
756      // Iterate through the GEP folding the constants into offsets where
757      // we can.
758      gep_type_iterator GTI = gep_type_begin(U);
759      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
760           i != e; ++i, ++GTI) {
761        const Value *Op = *i;
762        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
763          const StructLayout *SL = TD.getStructLayout(STy);
764          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
765          TmpOffset += SL->getElementOffset(Idx);
766        } else {
767          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
768          for (;;) {
769            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
770              // Constant-offset addressing.
771              TmpOffset += CI->getSExtValue() * S;
772              break;
773            }
774            if (isa<AddOperator>(Op) &&
775                (!isa<Instruction>(Op) ||
776                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
777                 == FuncInfo.MBB) &&
778                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
779              // An add (in the same block) with a constant operand. Fold the
780              // constant.
781              ConstantInt *CI =
782              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
783              TmpOffset += CI->getSExtValue() * S;
784              // Iterate on the other operand.
785              Op = cast<AddOperator>(Op)->getOperand(0);
786              continue;
787            }
788            // Unsupported
789            goto unsupported_gep;
790          }
791        }
792      }
793
794      // Try to grab the base operand now.
795      Addr.Offset = TmpOffset;
796      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
797
798      // We failed, restore everything and try the other options.
799      Addr = SavedAddr;
800
801      unsupported_gep:
802      break;
803    }
804    case Instruction::Alloca: {
805      const AllocaInst *AI = cast<AllocaInst>(Obj);
806      DenseMap<const AllocaInst*, int>::iterator SI =
807        FuncInfo.StaticAllocaMap.find(AI);
808      if (SI != FuncInfo.StaticAllocaMap.end()) {
809        Addr.BaseType = Address::FrameIndexBase;
810        Addr.Base.FI = SI->second;
811        return true;
812      }
813      break;
814    }
815  }
816
817  // Materialize the global variable's address into a reg which can
818  // then be used later to load the variable.
819  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
820    unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
821    if (Tmp == 0) return false;
822
823    Addr.Base.Reg = Tmp;
824    return true;
825  }
826
827  // Try to get this in a register if nothing else has worked.
828  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
829  return Addr.Base.Reg != 0;
830}
831
832void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) {
833
834  assert(VT.isSimple() && "Non-simple types are invalid here!");
835
836  bool needsLowering = false;
837  switch (VT.getSimpleVT().SimpleTy) {
838    default:
839      assert(false && "Unhandled load/store type!");
840    case MVT::i1:
841    case MVT::i8:
842    case MVT::i16:
843    case MVT::i32:
844      // Integer loads/stores handle 12-bit offsets.
845      needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
846      break;
847    case MVT::f32:
848    case MVT::f64:
849      // Floating point operands handle 8-bit offsets.
850      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
851      break;
852  }
853
854  // If this is a stack pointer and the offset needs to be simplified then
855  // put the alloca address into a register, set the base type back to
856  // register and continue. This should almost never happen.
857  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
858    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
859                              ARM::GPRRegisterClass;
860    unsigned ResultReg = createResultReg(RC);
861    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
862    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
863                            TII.get(Opc), ResultReg)
864                            .addFrameIndex(Addr.Base.FI)
865                            .addImm(0));
866    Addr.Base.Reg = ResultReg;
867    Addr.BaseType = Address::RegBase;
868  }
869
870  // Since the offset is too large for the load/store instruction
871  // get the reg+offset into a register.
872  if (needsLowering) {
873    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
874                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
875    Addr.Offset = 0;
876  }
877}
878
879void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
880                                       const MachineInstrBuilder &MIB,
881                                       unsigned Flags) {
882  // addrmode5 output depends on the selection dag addressing dividing the
883  // offset by 4 that it then later multiplies. Do this here as well.
884  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
885      VT.getSimpleVT().SimpleTy == MVT::f64)
886    Addr.Offset /= 4;
887
888  // Frame base works a bit differently. Handle it separately.
889  if (Addr.BaseType == Address::FrameIndexBase) {
890    int FI = Addr.Base.FI;
891    int Offset = Addr.Offset;
892    MachineMemOperand *MMO =
893          FuncInfo.MF->getMachineMemOperand(
894                                  MachinePointerInfo::getFixedStack(FI, Offset),
895                                  Flags,
896                                  MFI.getObjectSize(FI),
897                                  MFI.getObjectAlignment(FI));
898    // Now add the rest of the operands.
899    MIB.addFrameIndex(FI);
900
901    // ARM halfword load/stores need an additional operand.
902    if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
903
904    MIB.addImm(Addr.Offset);
905    MIB.addMemOperand(MMO);
906  } else {
907    // Now add the rest of the operands.
908    MIB.addReg(Addr.Base.Reg);
909
910    // ARM halfword load/stores need an additional operand.
911    if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
912
913    MIB.addImm(Addr.Offset);
914  }
915  AddOptionalDefs(MIB);
916}
917
918bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) {
919
920  assert(VT.isSimple() && "Non-simple types are invalid here!");
921  unsigned Opc;
922  TargetRegisterClass *RC;
923  switch (VT.getSimpleVT().SimpleTy) {
924    // This is mostly going to be Neon/vector support.
925    default: return false;
926    case MVT::i16:
927      Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
928      RC = ARM::GPRRegisterClass;
929      break;
930    case MVT::i8:
931      Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
932      RC = ARM::GPRRegisterClass;
933      break;
934    case MVT::i32:
935      Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
936      RC = ARM::GPRRegisterClass;
937      break;
938    case MVT::f32:
939      Opc = ARM::VLDRS;
940      RC = TLI.getRegClassFor(VT);
941      break;
942    case MVT::f64:
943      Opc = ARM::VLDRD;
944      RC = TLI.getRegClassFor(VT);
945      break;
946  }
947  // Simplify this down to something we can handle.
948  ARMSimplifyAddress(Addr, VT);
949
950  // Create the base instruction, then add the operands.
951  ResultReg = createResultReg(RC);
952  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
953                                    TII.get(Opc), ResultReg);
954  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad);
955  return true;
956}
957
958bool ARMFastISel::SelectLoad(const Instruction *I) {
959  // Atomic loads need special handling.
960  if (cast<LoadInst>(I)->isAtomic())
961    return false;
962
963  // Verify we have a legal type before going any further.
964  MVT VT;
965  if (!isLoadTypeLegal(I->getType(), VT))
966    return false;
967
968  // See if we can handle this address.
969  Address Addr;
970  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
971
972  unsigned ResultReg;
973  if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
974  UpdateValueMap(I, ResultReg);
975  return true;
976}
977
978bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
979  unsigned StrOpc;
980  switch (VT.getSimpleVT().SimpleTy) {
981    // This is mostly going to be Neon/vector support.
982    default: return false;
983    case MVT::i1: {
984      unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass :
985                                               ARM::GPRRegisterClass);
986      unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
987      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
988                              TII.get(Opc), Res)
989                      .addReg(SrcReg).addImm(1));
990      SrcReg = Res;
991    } // Fallthrough here.
992    case MVT::i8:
993      StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
994      break;
995    case MVT::i16:
996      StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
997      break;
998    case MVT::i32:
999      StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
1000      break;
1001    case MVT::f32:
1002      if (!Subtarget->hasVFP2()) return false;
1003      StrOpc = ARM::VSTRS;
1004      break;
1005    case MVT::f64:
1006      if (!Subtarget->hasVFP2()) return false;
1007      StrOpc = ARM::VSTRD;
1008      break;
1009  }
1010  // Simplify this down to something we can handle.
1011  ARMSimplifyAddress(Addr, VT);
1012
1013  // Create the base instruction, then add the operands.
1014  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1015                                    TII.get(StrOpc))
1016                            .addReg(SrcReg, getKillRegState(true));
1017  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore);
1018  return true;
1019}
1020
1021bool ARMFastISel::SelectStore(const Instruction *I) {
1022  Value *Op0 = I->getOperand(0);
1023  unsigned SrcReg = 0;
1024
1025  // Atomic stores need special handling.
1026  if (cast<StoreInst>(I)->isAtomic())
1027    return false;
1028
1029  // Verify we have a legal type before going any further.
1030  MVT VT;
1031  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1032    return false;
1033
1034  // Get the value to be stored into a register.
1035  SrcReg = getRegForValue(Op0);
1036  if (SrcReg == 0) return false;
1037
1038  // See if we can handle this address.
1039  Address Addr;
1040  if (!ARMComputeAddress(I->getOperand(1), Addr))
1041    return false;
1042
1043  if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
1044  return true;
1045}
1046
1047static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1048  switch (Pred) {
1049    // Needs two compares...
1050    case CmpInst::FCMP_ONE:
1051    case CmpInst::FCMP_UEQ:
1052    default:
1053      // AL is our "false" for now. The other two need more compares.
1054      return ARMCC::AL;
1055    case CmpInst::ICMP_EQ:
1056    case CmpInst::FCMP_OEQ:
1057      return ARMCC::EQ;
1058    case CmpInst::ICMP_SGT:
1059    case CmpInst::FCMP_OGT:
1060      return ARMCC::GT;
1061    case CmpInst::ICMP_SGE:
1062    case CmpInst::FCMP_OGE:
1063      return ARMCC::GE;
1064    case CmpInst::ICMP_UGT:
1065    case CmpInst::FCMP_UGT:
1066      return ARMCC::HI;
1067    case CmpInst::FCMP_OLT:
1068      return ARMCC::MI;
1069    case CmpInst::ICMP_ULE:
1070    case CmpInst::FCMP_OLE:
1071      return ARMCC::LS;
1072    case CmpInst::FCMP_ORD:
1073      return ARMCC::VC;
1074    case CmpInst::FCMP_UNO:
1075      return ARMCC::VS;
1076    case CmpInst::FCMP_UGE:
1077      return ARMCC::PL;
1078    case CmpInst::ICMP_SLT:
1079    case CmpInst::FCMP_ULT:
1080      return ARMCC::LT;
1081    case CmpInst::ICMP_SLE:
1082    case CmpInst::FCMP_ULE:
1083      return ARMCC::LE;
1084    case CmpInst::FCMP_UNE:
1085    case CmpInst::ICMP_NE:
1086      return ARMCC::NE;
1087    case CmpInst::ICMP_UGE:
1088      return ARMCC::HS;
1089    case CmpInst::ICMP_ULT:
1090      return ARMCC::LO;
1091  }
1092}
1093
1094bool ARMFastISel::SelectBranch(const Instruction *I) {
1095  const BranchInst *BI = cast<BranchInst>(I);
1096  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1097  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1098
1099  // Simple branch support.
1100
1101  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1102  // behavior.
1103  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1104    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1105
1106      // Get the compare predicate.
1107      // Try to take advantage of fallthrough opportunities.
1108      CmpInst::Predicate Predicate = CI->getPredicate();
1109      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1110        std::swap(TBB, FBB);
1111        Predicate = CmpInst::getInversePredicate(Predicate);
1112      }
1113
1114      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1115
1116      // We may not handle every CC for now.
1117      if (ARMPred == ARMCC::AL) return false;
1118
1119      // Emit the compare.
1120      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1)))
1121        return false;
1122
1123      unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1124      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1125      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1126      FastEmitBranch(FBB, DL);
1127      FuncInfo.MBB->addSuccessor(TBB);
1128      return true;
1129    }
1130  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1131    MVT SourceVT;
1132    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1133        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1134      unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1135      unsigned OpReg = getRegForValue(TI->getOperand(0));
1136      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1137                              TII.get(TstOpc))
1138                      .addReg(OpReg).addImm(1));
1139
1140      unsigned CCMode = ARMCC::NE;
1141      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1142        std::swap(TBB, FBB);
1143        CCMode = ARMCC::EQ;
1144      }
1145
1146      unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1147      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1148      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1149
1150      FastEmitBranch(FBB, DL);
1151      FuncInfo.MBB->addSuccessor(TBB);
1152      return true;
1153    }
1154  } else if (const ConstantInt *CI =
1155             dyn_cast<ConstantInt>(BI->getCondition())) {
1156    uint64_t Imm = CI->getZExtValue();
1157    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1158    FastEmitBranch(Target, DL);
1159    return true;
1160  }
1161
1162  unsigned CmpReg = getRegForValue(BI->getCondition());
1163  if (CmpReg == 0) return false;
1164
1165  // We've been divorced from our compare!  Our block was split, and
1166  // now our compare lives in a predecessor block.  We musn't
1167  // re-compare here, as the children of the compare aren't guaranteed
1168  // live across the block boundary (we *could* check for this).
1169  // Regardless, the compare has been done in the predecessor block,
1170  // and it left a value for us in a virtual register.  Ergo, we test
1171  // the one-bit value left in the virtual register.
1172  unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1173  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1174                  .addReg(CmpReg).addImm(1));
1175
1176  unsigned CCMode = ARMCC::NE;
1177  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1178    std::swap(TBB, FBB);
1179    CCMode = ARMCC::EQ;
1180  }
1181
1182  unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1183  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1184                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1185  FastEmitBranch(FBB, DL);
1186  FuncInfo.MBB->addSuccessor(TBB);
1187  return true;
1188}
1189
1190bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value) {
1191  MVT VT;
1192  Type *Ty = Src1Value->getType();
1193  if (!isTypeLegal(Ty, VT))
1194    return false;
1195
1196  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1197  if (isFloat && !Subtarget->hasVFP2())
1198    return false;
1199
1200  unsigned CmpOpc;
1201  switch (VT.SimpleTy) {
1202    // TODO: Add support for non-legal types (i.e., i1, i8, i16).
1203    default: return false;
1204    // TODO: Verify compares.
1205    case MVT::f32:
1206      CmpOpc = ARM::VCMPES;
1207      break;
1208    case MVT::f64:
1209      CmpOpc = ARM::VCMPED;
1210      break;
1211    case MVT::i32:
1212      CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1213      break;
1214  }
1215
1216  unsigned Src1 = getRegForValue(Src1Value);
1217  if (Src1 == 0) return false;
1218
1219  unsigned Src2 = getRegForValue(Src2Value);
1220  if (Src2 == 0) return false;
1221
1222  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1223                  .addReg(Src1).addReg(Src2));
1224
1225  // For floating point we need to move the result to a comparison register
1226  // that we can then use for branches.
1227  if (Ty->isFloatTy() || Ty->isDoubleTy())
1228    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1229                            TII.get(ARM::FMSTAT)));
1230  return true;
1231}
1232
1233bool ARMFastISel::SelectCmp(const Instruction *I) {
1234  const CmpInst *CI = cast<CmpInst>(I);
1235  Type *Ty = CI->getOperand(0)->getType();
1236
1237  // Get the compare predicate.
1238  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1239
1240  // We may not handle every CC for now.
1241  if (ARMPred == ARMCC::AL) return false;
1242
1243  // Emit the compare.
1244  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1)))
1245    return false;
1246
1247  // Now set a register based on the comparison. Explicitly set the predicates
1248  // here.
1249  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1250  TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1251                                    : ARM::GPRRegisterClass;
1252  unsigned DestReg = createResultReg(RC);
1253  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1254  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1255  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1256  unsigned CondReg = isFloat ? ARM::FPSCR : ARM::CPSR;
1257  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1258          .addReg(ZeroReg).addImm(1)
1259          .addImm(ARMPred).addReg(CondReg);
1260
1261  UpdateValueMap(I, DestReg);
1262  return true;
1263}
1264
1265bool ARMFastISel::SelectFPExt(const Instruction *I) {
1266  // Make sure we have VFP and that we're extending float to double.
1267  if (!Subtarget->hasVFP2()) return false;
1268
1269  Value *V = I->getOperand(0);
1270  if (!I->getType()->isDoubleTy() ||
1271      !V->getType()->isFloatTy()) return false;
1272
1273  unsigned Op = getRegForValue(V);
1274  if (Op == 0) return false;
1275
1276  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1277  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1278                          TII.get(ARM::VCVTDS), Result)
1279                  .addReg(Op));
1280  UpdateValueMap(I, Result);
1281  return true;
1282}
1283
1284bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1285  // Make sure we have VFP and that we're truncating double to float.
1286  if (!Subtarget->hasVFP2()) return false;
1287
1288  Value *V = I->getOperand(0);
1289  if (!(I->getType()->isFloatTy() &&
1290        V->getType()->isDoubleTy())) return false;
1291
1292  unsigned Op = getRegForValue(V);
1293  if (Op == 0) return false;
1294
1295  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1296  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1297                          TII.get(ARM::VCVTSD), Result)
1298                  .addReg(Op));
1299  UpdateValueMap(I, Result);
1300  return true;
1301}
1302
1303bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1304  // Make sure we have VFP.
1305  if (!Subtarget->hasVFP2()) return false;
1306
1307  MVT DstVT;
1308  Type *Ty = I->getType();
1309  if (!isTypeLegal(Ty, DstVT))
1310    return false;
1311
1312  // FIXME: Handle sign-extension where necessary.
1313  if (!I->getOperand(0)->getType()->isIntegerTy(32))
1314    return false;
1315
1316  unsigned Op = getRegForValue(I->getOperand(0));
1317  if (Op == 0) return false;
1318
1319  // The conversion routine works on fp-reg to fp-reg and the operand above
1320  // was an integer, move it to the fp registers if possible.
1321  unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1322  if (FP == 0) return false;
1323
1324  unsigned Opc;
1325  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1326  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1327  else return false;
1328
1329  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1330  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1331                          ResultReg)
1332                  .addReg(FP));
1333  UpdateValueMap(I, ResultReg);
1334  return true;
1335}
1336
1337bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1338  // Make sure we have VFP.
1339  if (!Subtarget->hasVFP2()) return false;
1340
1341  MVT DstVT;
1342  Type *RetTy = I->getType();
1343  if (!isTypeLegal(RetTy, DstVT))
1344    return false;
1345
1346  unsigned Op = getRegForValue(I->getOperand(0));
1347  if (Op == 0) return false;
1348
1349  unsigned Opc;
1350  Type *OpTy = I->getOperand(0)->getType();
1351  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1352  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1353  else return false;
1354
1355  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1356  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1357  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1358                          ResultReg)
1359                  .addReg(Op));
1360
1361  // This result needs to be in an integer register, but the conversion only
1362  // takes place in fp-regs.
1363  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1364  if (IntReg == 0) return false;
1365
1366  UpdateValueMap(I, IntReg);
1367  return true;
1368}
1369
1370bool ARMFastISel::SelectSelect(const Instruction *I) {
1371  MVT VT;
1372  if (!isTypeLegal(I->getType(), VT))
1373    return false;
1374
1375  // Things need to be register sized for register moves.
1376  if (VT != MVT::i32) return false;
1377  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1378
1379  unsigned CondReg = getRegForValue(I->getOperand(0));
1380  if (CondReg == 0) return false;
1381  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1382  if (Op1Reg == 0) return false;
1383  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1384  if (Op2Reg == 0) return false;
1385
1386  unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1387  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1388                  .addReg(CondReg).addImm(1));
1389  unsigned ResultReg = createResultReg(RC);
1390  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1391  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1392    .addReg(Op1Reg).addReg(Op2Reg)
1393    .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1394  UpdateValueMap(I, ResultReg);
1395  return true;
1396}
1397
1398bool ARMFastISel::SelectSDiv(const Instruction *I) {
1399  MVT VT;
1400  Type *Ty = I->getType();
1401  if (!isTypeLegal(Ty, VT))
1402    return false;
1403
1404  // If we have integer div support we should have selected this automagically.
1405  // In case we have a real miss go ahead and return false and we'll pick
1406  // it up later.
1407  if (Subtarget->hasDivide()) return false;
1408
1409  // Otherwise emit a libcall.
1410  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1411  if (VT == MVT::i8)
1412    LC = RTLIB::SDIV_I8;
1413  else if (VT == MVT::i16)
1414    LC = RTLIB::SDIV_I16;
1415  else if (VT == MVT::i32)
1416    LC = RTLIB::SDIV_I32;
1417  else if (VT == MVT::i64)
1418    LC = RTLIB::SDIV_I64;
1419  else if (VT == MVT::i128)
1420    LC = RTLIB::SDIV_I128;
1421  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1422
1423  return ARMEmitLibcall(I, LC);
1424}
1425
1426bool ARMFastISel::SelectSRem(const Instruction *I) {
1427  MVT VT;
1428  Type *Ty = I->getType();
1429  if (!isTypeLegal(Ty, VT))
1430    return false;
1431
1432  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1433  if (VT == MVT::i8)
1434    LC = RTLIB::SREM_I8;
1435  else if (VT == MVT::i16)
1436    LC = RTLIB::SREM_I16;
1437  else if (VT == MVT::i32)
1438    LC = RTLIB::SREM_I32;
1439  else if (VT == MVT::i64)
1440    LC = RTLIB::SREM_I64;
1441  else if (VT == MVT::i128)
1442    LC = RTLIB::SREM_I128;
1443  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1444
1445  return ARMEmitLibcall(I, LC);
1446}
1447
1448bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1449  EVT VT  = TLI.getValueType(I->getType(), true);
1450
1451  // We can get here in the case when we want to use NEON for our fp
1452  // operations, but can't figure out how to. Just use the vfp instructions
1453  // if we have them.
1454  // FIXME: It'd be nice to use NEON instructions.
1455  Type *Ty = I->getType();
1456  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1457  if (isFloat && !Subtarget->hasVFP2())
1458    return false;
1459
1460  unsigned Op1 = getRegForValue(I->getOperand(0));
1461  if (Op1 == 0) return false;
1462
1463  unsigned Op2 = getRegForValue(I->getOperand(1));
1464  if (Op2 == 0) return false;
1465
1466  unsigned Opc;
1467  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1468  switch (ISDOpcode) {
1469    default: return false;
1470    case ISD::FADD:
1471      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1472      break;
1473    case ISD::FSUB:
1474      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1475      break;
1476    case ISD::FMUL:
1477      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1478      break;
1479  }
1480  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1481  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1482                          TII.get(Opc), ResultReg)
1483                  .addReg(Op1).addReg(Op2));
1484  UpdateValueMap(I, ResultReg);
1485  return true;
1486}
1487
1488// Call Handling Code
1489
1490bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1491                                 EVT SrcVT, unsigned &ResultReg) {
1492  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1493                           Src, /*TODO: Kill=*/false);
1494
1495  if (RR != 0) {
1496    ResultReg = RR;
1497    return true;
1498  } else
1499    return false;
1500}
1501
1502// This is largely taken directly from CCAssignFnForNode - we don't support
1503// varargs in FastISel so that part has been removed.
1504// TODO: We may not support all of this.
1505CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1506  switch (CC) {
1507  default:
1508    llvm_unreachable("Unsupported calling convention");
1509  case CallingConv::Fast:
1510    // Ignore fastcc. Silence compiler warnings.
1511    (void)RetFastCC_ARM_APCS;
1512    (void)FastCC_ARM_APCS;
1513    // Fallthrough
1514  case CallingConv::C:
1515    // Use target triple & subtarget features to do actual dispatch.
1516    if (Subtarget->isAAPCS_ABI()) {
1517      if (Subtarget->hasVFP2() &&
1518          FloatABIType == FloatABI::Hard)
1519        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1520      else
1521        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1522    } else
1523        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1524  case CallingConv::ARM_AAPCS_VFP:
1525    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1526  case CallingConv::ARM_AAPCS:
1527    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1528  case CallingConv::ARM_APCS:
1529    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1530  }
1531}
1532
1533bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1534                                  SmallVectorImpl<unsigned> &ArgRegs,
1535                                  SmallVectorImpl<MVT> &ArgVTs,
1536                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1537                                  SmallVectorImpl<unsigned> &RegArgs,
1538                                  CallingConv::ID CC,
1539                                  unsigned &NumBytes) {
1540  SmallVector<CCValAssign, 16> ArgLocs;
1541  CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
1542  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1543
1544  // Get a count of how many bytes are to be pushed on the stack.
1545  NumBytes = CCInfo.getNextStackOffset();
1546
1547  // Issue CALLSEQ_START
1548  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1549  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1550                          TII.get(AdjStackDown))
1551                  .addImm(NumBytes));
1552
1553  // Process the args.
1554  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1555    CCValAssign &VA = ArgLocs[i];
1556    unsigned Arg = ArgRegs[VA.getValNo()];
1557    MVT ArgVT = ArgVTs[VA.getValNo()];
1558
1559    // We don't handle NEON/vector parameters yet.
1560    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1561      return false;
1562
1563    // Handle arg promotion, etc.
1564    switch (VA.getLocInfo()) {
1565      case CCValAssign::Full: break;
1566      case CCValAssign::SExt: {
1567        bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1568                                         Arg, ArgVT, Arg);
1569        assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
1570        Emitted = true;
1571        ArgVT = VA.getLocVT();
1572        break;
1573      }
1574      case CCValAssign::ZExt: {
1575        bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1576                                         Arg, ArgVT, Arg);
1577        assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
1578        Emitted = true;
1579        ArgVT = VA.getLocVT();
1580        break;
1581      }
1582      case CCValAssign::AExt: {
1583        bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1584                                         Arg, ArgVT, Arg);
1585        if (!Emitted)
1586          Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1587                                      Arg, ArgVT, Arg);
1588        if (!Emitted)
1589          Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1590                                      Arg, ArgVT, Arg);
1591
1592        assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
1593        ArgVT = VA.getLocVT();
1594        break;
1595      }
1596      case CCValAssign::BCvt: {
1597        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1598                                 /*TODO: Kill=*/false);
1599        assert(BC != 0 && "Failed to emit a bitcast!");
1600        Arg = BC;
1601        ArgVT = VA.getLocVT();
1602        break;
1603      }
1604      default: llvm_unreachable("Unknown arg promotion!");
1605    }
1606
1607    // Now copy/store arg to correct locations.
1608    if (VA.isRegLoc() && !VA.needsCustom()) {
1609      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1610              VA.getLocReg())
1611      .addReg(Arg);
1612      RegArgs.push_back(VA.getLocReg());
1613    } else if (VA.needsCustom()) {
1614      // TODO: We need custom lowering for vector (v2f64) args.
1615      if (VA.getLocVT() != MVT::f64) return false;
1616
1617      CCValAssign &NextVA = ArgLocs[++i];
1618
1619      // TODO: Only handle register args for now.
1620      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1621
1622      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1623                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1624                      .addReg(NextVA.getLocReg(), RegState::Define)
1625                      .addReg(Arg));
1626      RegArgs.push_back(VA.getLocReg());
1627      RegArgs.push_back(NextVA.getLocReg());
1628    } else {
1629      assert(VA.isMemLoc());
1630      // Need to store on the stack.
1631      Address Addr;
1632      Addr.BaseType = Address::RegBase;
1633      Addr.Base.Reg = ARM::SP;
1634      Addr.Offset = VA.getLocMemOffset();
1635
1636      if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1637    }
1638  }
1639  return true;
1640}
1641
1642bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1643                             const Instruction *I, CallingConv::ID CC,
1644                             unsigned &NumBytes) {
1645  // Issue CALLSEQ_END
1646  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1647  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1648                          TII.get(AdjStackUp))
1649                  .addImm(NumBytes).addImm(0));
1650
1651  // Now the return value.
1652  if (RetVT != MVT::isVoid) {
1653    SmallVector<CCValAssign, 16> RVLocs;
1654    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
1655    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1656
1657    // Copy all of the result registers out of their specified physreg.
1658    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1659      // For this move we copy into two registers and then move into the
1660      // double fp reg we want.
1661      EVT DestVT = RVLocs[0].getValVT();
1662      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1663      unsigned ResultReg = createResultReg(DstRC);
1664      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1665                              TII.get(ARM::VMOVDRR), ResultReg)
1666                      .addReg(RVLocs[0].getLocReg())
1667                      .addReg(RVLocs[1].getLocReg()));
1668
1669      UsedRegs.push_back(RVLocs[0].getLocReg());
1670      UsedRegs.push_back(RVLocs[1].getLocReg());
1671
1672      // Finally update the result.
1673      UpdateValueMap(I, ResultReg);
1674    } else {
1675      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1676      EVT CopyVT = RVLocs[0].getValVT();
1677      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1678
1679      unsigned ResultReg = createResultReg(DstRC);
1680      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1681              ResultReg).addReg(RVLocs[0].getLocReg());
1682      UsedRegs.push_back(RVLocs[0].getLocReg());
1683
1684      // Finally update the result.
1685      UpdateValueMap(I, ResultReg);
1686    }
1687  }
1688
1689  return true;
1690}
1691
1692bool ARMFastISel::SelectRet(const Instruction *I) {
1693  const ReturnInst *Ret = cast<ReturnInst>(I);
1694  const Function &F = *I->getParent()->getParent();
1695
1696  if (!FuncInfo.CanLowerReturn)
1697    return false;
1698
1699  if (F.isVarArg())
1700    return false;
1701
1702  CallingConv::ID CC = F.getCallingConv();
1703  if (Ret->getNumOperands() > 0) {
1704    SmallVector<ISD::OutputArg, 4> Outs;
1705    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1706                  Outs, TLI);
1707
1708    // Analyze operands of the call, assigning locations to each operand.
1709    SmallVector<CCValAssign, 16> ValLocs;
1710    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
1711    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1712
1713    const Value *RV = Ret->getOperand(0);
1714    unsigned Reg = getRegForValue(RV);
1715    if (Reg == 0)
1716      return false;
1717
1718    // Only handle a single return value for now.
1719    if (ValLocs.size() != 1)
1720      return false;
1721
1722    CCValAssign &VA = ValLocs[0];
1723
1724    // Don't bother handling odd stuff for now.
1725    // FIXME: Should be able to handle i1, i8, and/or i16 return types.
1726    if (VA.getLocInfo() != CCValAssign::Full)
1727      return false;
1728    // Only handle register returns for now.
1729    if (!VA.isRegLoc())
1730      return false;
1731    // TODO: For now, don't try to handle cases where getLocInfo()
1732    // says Full but the types don't match.
1733    if (TLI.getValueType(RV->getType()) != VA.getValVT())
1734      return false;
1735
1736    // Make the copy.
1737    unsigned SrcReg = Reg + VA.getValNo();
1738    unsigned DstReg = VA.getLocReg();
1739    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1740    // Avoid a cross-class copy. This is very unlikely.
1741    if (!SrcRC->contains(DstReg))
1742      return false;
1743    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1744            DstReg).addReg(SrcReg);
1745
1746    // Mark the register as live out of the function.
1747    MRI.addLiveOut(VA.getLocReg());
1748  }
1749
1750  unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
1751  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1752                          TII.get(RetOpc)));
1753  return true;
1754}
1755
1756unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
1757
1758  // Darwin needs the r9 versions of the opcodes.
1759  bool isDarwin = Subtarget->isTargetDarwin();
1760  if (isThumb) {
1761    return isDarwin ? ARM::tBLr9 : ARM::tBL;
1762  } else  {
1763    return isDarwin ? ARM::BLr9 : ARM::BL;
1764  }
1765}
1766
1767// A quick function that will emit a call for a named libcall in F with the
1768// vector of passed arguments for the Instruction in I. We can assume that we
1769// can emit a call for any libcall we can produce. This is an abridged version
1770// of the full call infrastructure since we won't need to worry about things
1771// like computed function pointers or strange arguments at call sites.
1772// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1773// with X86.
1774bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1775  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1776
1777  // Handle *simple* calls for now.
1778  Type *RetTy = I->getType();
1779  MVT RetVT;
1780  if (RetTy->isVoidTy())
1781    RetVT = MVT::isVoid;
1782  else if (!isTypeLegal(RetTy, RetVT))
1783    return false;
1784
1785  // TODO: For now if we have long calls specified we don't handle the call.
1786  if (EnableARMLongCalls) return false;
1787
1788  // Set up the argument vectors.
1789  SmallVector<Value*, 8> Args;
1790  SmallVector<unsigned, 8> ArgRegs;
1791  SmallVector<MVT, 8> ArgVTs;
1792  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1793  Args.reserve(I->getNumOperands());
1794  ArgRegs.reserve(I->getNumOperands());
1795  ArgVTs.reserve(I->getNumOperands());
1796  ArgFlags.reserve(I->getNumOperands());
1797  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1798    Value *Op = I->getOperand(i);
1799    unsigned Arg = getRegForValue(Op);
1800    if (Arg == 0) return false;
1801
1802    Type *ArgTy = Op->getType();
1803    MVT ArgVT;
1804    if (!isTypeLegal(ArgTy, ArgVT)) return false;
1805
1806    ISD::ArgFlagsTy Flags;
1807    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1808    Flags.setOrigAlign(OriginalAlignment);
1809
1810    Args.push_back(Op);
1811    ArgRegs.push_back(Arg);
1812    ArgVTs.push_back(ArgVT);
1813    ArgFlags.push_back(Flags);
1814  }
1815
1816  // Handle the arguments now that we've gotten them.
1817  SmallVector<unsigned, 4> RegArgs;
1818  unsigned NumBytes;
1819  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1820    return false;
1821
1822  // Issue the call, BLr9 for darwin, BL otherwise.
1823  // TODO: Turn this into the table of arm call ops.
1824  MachineInstrBuilder MIB;
1825  unsigned CallOpc = ARMSelectCallOp(NULL);
1826  if(isThumb)
1827    // Explicitly adding the predicate here.
1828    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1829                         TII.get(CallOpc)))
1830                         .addExternalSymbol(TLI.getLibcallName(Call));
1831  else
1832    // Explicitly adding the predicate here.
1833    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1834                         TII.get(CallOpc))
1835          .addExternalSymbol(TLI.getLibcallName(Call)));
1836
1837  // Add implicit physical register uses to the call.
1838  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1839    MIB.addReg(RegArgs[i]);
1840
1841  // Finish off the call including any return values.
1842  SmallVector<unsigned, 4> UsedRegs;
1843  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1844
1845  // Set all unused physreg defs as dead.
1846  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1847
1848  return true;
1849}
1850
1851bool ARMFastISel::SelectCall(const Instruction *I) {
1852  const CallInst *CI = cast<CallInst>(I);
1853  const Value *Callee = CI->getCalledValue();
1854
1855  // Can't handle inline asm or worry about intrinsics yet.
1856  if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1857
1858  // Only handle global variable Callees.
1859  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1860  if (!GV)
1861    return false;
1862
1863  // Check the calling convention.
1864  ImmutableCallSite CS(CI);
1865  CallingConv::ID CC = CS.getCallingConv();
1866
1867  // TODO: Avoid some calling conventions?
1868
1869  // Let SDISel handle vararg functions.
1870  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1871  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1872  if (FTy->isVarArg())
1873    return false;
1874
1875  // Handle *simple* calls for now.
1876  Type *RetTy = I->getType();
1877  MVT RetVT;
1878  if (RetTy->isVoidTy())
1879    RetVT = MVT::isVoid;
1880  else if (!isTypeLegal(RetTy, RetVT))
1881    return false;
1882
1883  // TODO: For now if we have long calls specified we don't handle the call.
1884  if (EnableARMLongCalls) return false;
1885
1886  // Set up the argument vectors.
1887  SmallVector<Value*, 8> Args;
1888  SmallVector<unsigned, 8> ArgRegs;
1889  SmallVector<MVT, 8> ArgVTs;
1890  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1891  Args.reserve(CS.arg_size());
1892  ArgRegs.reserve(CS.arg_size());
1893  ArgVTs.reserve(CS.arg_size());
1894  ArgFlags.reserve(CS.arg_size());
1895  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1896       i != e; ++i) {
1897    unsigned Arg = getRegForValue(*i);
1898
1899    if (Arg == 0)
1900      return false;
1901    ISD::ArgFlagsTy Flags;
1902    unsigned AttrInd = i - CS.arg_begin() + 1;
1903    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1904      Flags.setSExt();
1905    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1906      Flags.setZExt();
1907
1908         // FIXME: Only handle *easy* calls for now.
1909    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1910        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1911        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1912        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1913      return false;
1914
1915    Type *ArgTy = (*i)->getType();
1916    MVT ArgVT;
1917    // FIXME: Should be able to handle i1, i8, and/or i16 parameters.
1918    if (!isTypeLegal(ArgTy, ArgVT))
1919      return false;
1920    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1921    Flags.setOrigAlign(OriginalAlignment);
1922
1923    Args.push_back(*i);
1924    ArgRegs.push_back(Arg);
1925    ArgVTs.push_back(ArgVT);
1926    ArgFlags.push_back(Flags);
1927  }
1928
1929  // Handle the arguments now that we've gotten them.
1930  SmallVector<unsigned, 4> RegArgs;
1931  unsigned NumBytes;
1932  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1933    return false;
1934
1935  // Issue the call, BLr9 for darwin, BL otherwise.
1936  // TODO: Turn this into the table of arm call ops.
1937  MachineInstrBuilder MIB;
1938  unsigned CallOpc = ARMSelectCallOp(GV);
1939  // Explicitly adding the predicate here.
1940  if(isThumb)
1941    // Explicitly adding the predicate here.
1942    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1943                         TII.get(CallOpc)))
1944          .addGlobalAddress(GV, 0, 0);
1945  else
1946    // Explicitly adding the predicate here.
1947    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1948                         TII.get(CallOpc))
1949          .addGlobalAddress(GV, 0, 0));
1950
1951  // Add implicit physical register uses to the call.
1952  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1953    MIB.addReg(RegArgs[i]);
1954
1955  // Finish off the call including any return values.
1956  SmallVector<unsigned, 4> UsedRegs;
1957  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1958
1959  // Set all unused physreg defs as dead.
1960  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1961
1962  return true;
1963
1964}
1965
1966bool ARMFastISel::SelectIntCast(const Instruction *I) {
1967  // On ARM, in general, integer casts don't involve legal types; this code
1968  // handles promotable integers.  The high bits for a type smaller than
1969  // the register size are assumed to be undefined.
1970  Type *DestTy = I->getType();
1971  Value *Op = I->getOperand(0);
1972  Type *SrcTy = Op->getType();
1973
1974  EVT SrcVT, DestVT;
1975  SrcVT = TLI.getValueType(SrcTy, true);
1976  DestVT = TLI.getValueType(DestTy, true);
1977
1978  if (isa<TruncInst>(I)) {
1979    if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1980      return false;
1981    if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1982      return false;
1983
1984    unsigned SrcReg = getRegForValue(Op);
1985    if (!SrcReg) return false;
1986
1987    // Because the high bits are undefined, a truncate doesn't generate
1988    // any code.
1989    UpdateValueMap(I, SrcReg);
1990    return true;
1991  }
1992  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1993    return false;
1994
1995  unsigned Opc;
1996  bool isZext = isa<ZExtInst>(I);
1997  bool isBoolZext = false;
1998  if (!SrcVT.isSimple())
1999    return false;
2000  switch (SrcVT.getSimpleVT().SimpleTy) {
2001  default: return false;
2002  case MVT::i16:
2003    if (!Subtarget->hasV6Ops()) return false;
2004    if (isZext)
2005      Opc = isThumb ? ARM::t2UXTH : ARM::UXTH;
2006    else
2007      Opc = isThumb ? ARM::t2SXTH : ARM::SXTH;
2008    break;
2009  case MVT::i8:
2010    if (!Subtarget->hasV6Ops()) return false;
2011    if (isZext)
2012      Opc = isThumb ? ARM::t2UXTB : ARM::UXTB;
2013    else
2014      Opc = isThumb ? ARM::t2SXTB : ARM::SXTB;
2015    break;
2016  case MVT::i1:
2017    if (isZext) {
2018      Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
2019      isBoolZext = true;
2020      break;
2021    }
2022    return false;
2023  }
2024
2025  // FIXME: We could save an instruction in many cases by special-casing
2026  // load instructions.
2027  unsigned SrcReg = getRegForValue(Op);
2028  if (!SrcReg) return false;
2029
2030  unsigned DestReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2031  MachineInstrBuilder MIB;
2032  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
2033        .addReg(SrcReg);
2034  if (isBoolZext)
2035    MIB.addImm(1);
2036  else
2037    MIB.addImm(0);
2038  AddOptionalDefs(MIB);
2039  UpdateValueMap(I, DestReg);
2040  return true;
2041}
2042
2043// TODO: SoftFP support.
2044bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2045
2046  switch (I->getOpcode()) {
2047    case Instruction::Load:
2048      return SelectLoad(I);
2049    case Instruction::Store:
2050      return SelectStore(I);
2051    case Instruction::Br:
2052      return SelectBranch(I);
2053    case Instruction::ICmp:
2054    case Instruction::FCmp:
2055      return SelectCmp(I);
2056    case Instruction::FPExt:
2057      return SelectFPExt(I);
2058    case Instruction::FPTrunc:
2059      return SelectFPTrunc(I);
2060    case Instruction::SIToFP:
2061      return SelectSIToFP(I);
2062    case Instruction::FPToSI:
2063      return SelectFPToSI(I);
2064    case Instruction::FAdd:
2065      return SelectBinaryOp(I, ISD::FADD);
2066    case Instruction::FSub:
2067      return SelectBinaryOp(I, ISD::FSUB);
2068    case Instruction::FMul:
2069      return SelectBinaryOp(I, ISD::FMUL);
2070    case Instruction::SDiv:
2071      return SelectSDiv(I);
2072    case Instruction::SRem:
2073      return SelectSRem(I);
2074    case Instruction::Call:
2075      return SelectCall(I);
2076    case Instruction::Select:
2077      return SelectSelect(I);
2078    case Instruction::Ret:
2079      return SelectRet(I);
2080    case Instruction::Trunc:
2081    case Instruction::ZExt:
2082    case Instruction::SExt:
2083      return SelectIntCast(I);
2084    default: break;
2085  }
2086  return false;
2087}
2088
2089namespace llvm {
2090  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
2091    // Completely untested on non-darwin.
2092    const TargetMachine &TM = funcInfo.MF->getTarget();
2093
2094    // Darwin and thumb1 only for now.
2095    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2096    if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
2097        !DisableARMFastISel)
2098      return new ARMFastISel(funcInfo);
2099    return 0;
2100  }
2101}
2102