ARMFastISel.cpp revision 8a9bce978fa4ca60d3a0ba42a1d44c41463a3c33
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "MCTargetDesc/ARMAddressingModes.h"
24#include "llvm/CallingConv.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Instructions.h"
28#include "llvm/IntrinsicInst.h"
29#include "llvm/Module.h"
30#include "llvm/Operator.h"
31#include "llvm/CodeGen/Analysis.h"
32#include "llvm/CodeGen/FastISel.h"
33#include "llvm/CodeGen/FunctionLoweringInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineConstantPool.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineMemOperand.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/Support/CallSite.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/GetElementPtrTypeIterator.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetLowering.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetOptions.h"
49using namespace llvm;
50
51static cl::opt<bool>
52DisableARMFastISel("disable-arm-fast-isel",
53                    cl::desc("Turn off experimental ARM fast-isel support"),
54                    cl::init(false), cl::Hidden);
55
56extern cl::opt<bool> EnableARMLongCalls;
57
58namespace {
59
60  // All possible address modes, plus some.
61  typedef struct Address {
62    enum {
63      RegBase,
64      FrameIndexBase
65    } BaseType;
66
67    union {
68      unsigned Reg;
69      int FI;
70    } Base;
71
72    int Offset;
73
74    // Innocuous defaults for our address.
75    Address()
76     : BaseType(RegBase), Offset(0) {
77       Base.Reg = 0;
78     }
79  } Address;
80
81class ARMFastISel : public FastISel {
82
83  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
84  /// make the right decision when generating code for different targets.
85  const ARMSubtarget *Subtarget;
86  const TargetMachine &TM;
87  const TargetInstrInfo &TII;
88  const TargetLowering &TLI;
89  ARMFunctionInfo *AFI;
90
91  // Convenience variables to avoid some queries.
92  bool isThumb2;
93  LLVMContext *Context;
94
95  public:
96    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
97    : FastISel(funcInfo),
98      TM(funcInfo.MF->getTarget()),
99      TII(*TM.getInstrInfo()),
100      TLI(*TM.getTargetLowering()) {
101      Subtarget = &TM.getSubtarget<ARMSubtarget>();
102      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
103      isThumb2 = AFI->isThumbFunction();
104      Context = &funcInfo.Fn->getContext();
105    }
106
107    // Code from FastISel.cpp.
108    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
109                                   const TargetRegisterClass *RC);
110    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
111                                    const TargetRegisterClass *RC,
112                                    unsigned Op0, bool Op0IsKill);
113    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
114                                     const TargetRegisterClass *RC,
115                                     unsigned Op0, bool Op0IsKill,
116                                     unsigned Op1, bool Op1IsKill);
117    virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
118                                      const TargetRegisterClass *RC,
119                                      unsigned Op0, bool Op0IsKill,
120                                      unsigned Op1, bool Op1IsKill,
121                                      unsigned Op2, bool Op2IsKill);
122    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
123                                     const TargetRegisterClass *RC,
124                                     unsigned Op0, bool Op0IsKill,
125                                     uint64_t Imm);
126    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
127                                     const TargetRegisterClass *RC,
128                                     unsigned Op0, bool Op0IsKill,
129                                     const ConstantFP *FPImm);
130    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
131                                      const TargetRegisterClass *RC,
132                                      unsigned Op0, bool Op0IsKill,
133                                      unsigned Op1, bool Op1IsKill,
134                                      uint64_t Imm);
135    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
136                                    const TargetRegisterClass *RC,
137                                    uint64_t Imm);
138    virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
139                                     const TargetRegisterClass *RC,
140                                     uint64_t Imm1, uint64_t Imm2);
141
142    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
143                                                unsigned Op0, bool Op0IsKill,
144                                                uint32_t Idx);
145
146    // Backend specific FastISel code.
147    virtual bool TargetSelectInstruction(const Instruction *I);
148    virtual unsigned TargetMaterializeConstant(const Constant *C);
149    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
150    virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
151                               const LoadInst *LI);
152
153  #include "ARMGenFastISel.inc"
154
155    // Instruction selection routines.
156  private:
157    bool SelectLoad(const Instruction *I);
158    bool SelectStore(const Instruction *I);
159    bool SelectBranch(const Instruction *I);
160    bool SelectCmp(const Instruction *I);
161    bool SelectFPExt(const Instruction *I);
162    bool SelectFPTrunc(const Instruction *I);
163    bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
164    bool SelectSIToFP(const Instruction *I);
165    bool SelectFPToSI(const Instruction *I);
166    bool SelectSDiv(const Instruction *I);
167    bool SelectSRem(const Instruction *I);
168    bool SelectCall(const Instruction *I, const char *IntrMemName);
169    bool SelectIntrinsicCall(const IntrinsicInst &I);
170    bool SelectSelect(const Instruction *I);
171    bool SelectRet(const Instruction *I);
172    bool SelectTrunc(const Instruction *I);
173    bool SelectIntExt(const Instruction *I);
174
175    // Utility routines.
176  private:
177    bool isTypeLegal(Type *Ty, MVT &VT);
178    bool isLoadTypeLegal(Type *Ty, MVT &VT);
179    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
180                    bool isZExt);
181    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr, unsigned Alignment = 0,
182                     bool isZExt = true, bool allocReg = true);
183
184    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
185                      unsigned Alignment = 0);
186    bool ARMComputeAddress(const Value *Obj, Address &Addr);
187    void ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3);
188    bool ARMIsMemCpySmall(uint64_t Len);
189    bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len);
190    unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt);
191    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
192    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
193    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
194    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
195    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
196    unsigned ARMSelectCallOp(const GlobalValue *GV);
197
198    // Call handling routines.
199  private:
200    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
201    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
202                         SmallVectorImpl<unsigned> &ArgRegs,
203                         SmallVectorImpl<MVT> &ArgVTs,
204                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
205                         SmallVectorImpl<unsigned> &RegArgs,
206                         CallingConv::ID CC,
207                         unsigned &NumBytes);
208    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
209                    const Instruction *I, CallingConv::ID CC,
210                    unsigned &NumBytes);
211    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
212
213    // OptionalDef handling routines.
214  private:
215    bool isARMNEONPred(const MachineInstr *MI);
216    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
217    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
218    void AddLoadStoreOperands(EVT VT, Address &Addr,
219                              const MachineInstrBuilder &MIB,
220                              unsigned Flags, bool useAM3);
221};
222
223} // end anonymous namespace
224
225#include "ARMGenCallingConv.inc"
226
227// DefinesOptionalPredicate - This is different from DefinesPredicate in that
228// we don't care about implicit defs here, just places we'll need to add a
229// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
230bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
231  if (!MI->hasOptionalDef())
232    return false;
233
234  // Look to see if our OptionalDef is defining CPSR or CCR.
235  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
236    const MachineOperand &MO = MI->getOperand(i);
237    if (!MO.isReg() || !MO.isDef()) continue;
238    if (MO.getReg() == ARM::CPSR)
239      *CPSR = true;
240  }
241  return true;
242}
243
244bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
245  const MCInstrDesc &MCID = MI->getDesc();
246
247  // If we're a thumb2 or not NEON function we were handled via isPredicable.
248  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
249       AFI->isThumb2Function())
250    return false;
251
252  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
253    if (MCID.OpInfo[i].isPredicate())
254      return true;
255
256  return false;
257}
258
259// If the machine is predicable go ahead and add the predicate operands, if
260// it needs default CC operands add those.
261// TODO: If we want to support thumb1 then we'll need to deal with optional
262// CPSR defs that need to be added before the remaining operands. See s_cc_out
263// for descriptions why.
264const MachineInstrBuilder &
265ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
266  MachineInstr *MI = &*MIB;
267
268  // Do we use a predicate? or...
269  // Are we NEON in ARM mode and have a predicate operand? If so, I know
270  // we're not predicable but add it anyways.
271  if (TII.isPredicable(MI) || isARMNEONPred(MI))
272    AddDefaultPred(MIB);
273
274  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
275  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
276  bool CPSR = false;
277  if (DefinesOptionalPredicate(MI, &CPSR)) {
278    if (CPSR)
279      AddDefaultT1CC(MIB);
280    else
281      AddDefaultCC(MIB);
282  }
283  return MIB;
284}
285
286unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
287                                    const TargetRegisterClass* RC) {
288  unsigned ResultReg = createResultReg(RC);
289  const MCInstrDesc &II = TII.get(MachineInstOpcode);
290
291  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
292  return ResultReg;
293}
294
295unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
296                                     const TargetRegisterClass *RC,
297                                     unsigned Op0, bool Op0IsKill) {
298  unsigned ResultReg = createResultReg(RC);
299  const MCInstrDesc &II = TII.get(MachineInstOpcode);
300
301  if (II.getNumDefs() >= 1)
302    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
303                   .addReg(Op0, Op0IsKill * RegState::Kill));
304  else {
305    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
306                   .addReg(Op0, Op0IsKill * RegState::Kill));
307    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
308                   TII.get(TargetOpcode::COPY), ResultReg)
309                   .addReg(II.ImplicitDefs[0]));
310  }
311  return ResultReg;
312}
313
314unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
315                                      const TargetRegisterClass *RC,
316                                      unsigned Op0, bool Op0IsKill,
317                                      unsigned Op1, bool Op1IsKill) {
318  unsigned ResultReg = createResultReg(RC);
319  const MCInstrDesc &II = TII.get(MachineInstOpcode);
320
321  if (II.getNumDefs() >= 1)
322    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
323                   .addReg(Op0, Op0IsKill * RegState::Kill)
324                   .addReg(Op1, Op1IsKill * RegState::Kill));
325  else {
326    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
327                   .addReg(Op0, Op0IsKill * RegState::Kill)
328                   .addReg(Op1, Op1IsKill * RegState::Kill));
329    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
330                           TII.get(TargetOpcode::COPY), ResultReg)
331                   .addReg(II.ImplicitDefs[0]));
332  }
333  return ResultReg;
334}
335
336unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
337                                       const TargetRegisterClass *RC,
338                                       unsigned Op0, bool Op0IsKill,
339                                       unsigned Op1, bool Op1IsKill,
340                                       unsigned Op2, bool Op2IsKill) {
341  unsigned ResultReg = createResultReg(RC);
342  const MCInstrDesc &II = TII.get(MachineInstOpcode);
343
344  if (II.getNumDefs() >= 1)
345    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
346                   .addReg(Op0, Op0IsKill * RegState::Kill)
347                   .addReg(Op1, Op1IsKill * RegState::Kill)
348                   .addReg(Op2, Op2IsKill * RegState::Kill));
349  else {
350    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
351                   .addReg(Op0, Op0IsKill * RegState::Kill)
352                   .addReg(Op1, Op1IsKill * RegState::Kill)
353                   .addReg(Op2, Op2IsKill * RegState::Kill));
354    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
355                           TII.get(TargetOpcode::COPY), ResultReg)
356                   .addReg(II.ImplicitDefs[0]));
357  }
358  return ResultReg;
359}
360
361unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
362                                      const TargetRegisterClass *RC,
363                                      unsigned Op0, bool Op0IsKill,
364                                      uint64_t Imm) {
365  unsigned ResultReg = createResultReg(RC);
366  const MCInstrDesc &II = TII.get(MachineInstOpcode);
367
368  if (II.getNumDefs() >= 1)
369    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
370                   .addReg(Op0, Op0IsKill * RegState::Kill)
371                   .addImm(Imm));
372  else {
373    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
374                   .addReg(Op0, Op0IsKill * RegState::Kill)
375                   .addImm(Imm));
376    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
377                           TII.get(TargetOpcode::COPY), ResultReg)
378                   .addReg(II.ImplicitDefs[0]));
379  }
380  return ResultReg;
381}
382
383unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
384                                      const TargetRegisterClass *RC,
385                                      unsigned Op0, bool Op0IsKill,
386                                      const ConstantFP *FPImm) {
387  unsigned ResultReg = createResultReg(RC);
388  const MCInstrDesc &II = TII.get(MachineInstOpcode);
389
390  if (II.getNumDefs() >= 1)
391    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
392                   .addReg(Op0, Op0IsKill * RegState::Kill)
393                   .addFPImm(FPImm));
394  else {
395    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
396                   .addReg(Op0, Op0IsKill * RegState::Kill)
397                   .addFPImm(FPImm));
398    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
399                           TII.get(TargetOpcode::COPY), ResultReg)
400                   .addReg(II.ImplicitDefs[0]));
401  }
402  return ResultReg;
403}
404
405unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
406                                       const TargetRegisterClass *RC,
407                                       unsigned Op0, bool Op0IsKill,
408                                       unsigned Op1, bool Op1IsKill,
409                                       uint64_t Imm) {
410  unsigned ResultReg = createResultReg(RC);
411  const MCInstrDesc &II = TII.get(MachineInstOpcode);
412
413  if (II.getNumDefs() >= 1)
414    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
415                   .addReg(Op0, Op0IsKill * RegState::Kill)
416                   .addReg(Op1, Op1IsKill * RegState::Kill)
417                   .addImm(Imm));
418  else {
419    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
420                   .addReg(Op0, Op0IsKill * RegState::Kill)
421                   .addReg(Op1, Op1IsKill * RegState::Kill)
422                   .addImm(Imm));
423    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
424                           TII.get(TargetOpcode::COPY), ResultReg)
425                   .addReg(II.ImplicitDefs[0]));
426  }
427  return ResultReg;
428}
429
430unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
431                                     const TargetRegisterClass *RC,
432                                     uint64_t Imm) {
433  unsigned ResultReg = createResultReg(RC);
434  const MCInstrDesc &II = TII.get(MachineInstOpcode);
435
436  if (II.getNumDefs() >= 1)
437    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
438                   .addImm(Imm));
439  else {
440    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
441                   .addImm(Imm));
442    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
443                           TII.get(TargetOpcode::COPY), ResultReg)
444                   .addReg(II.ImplicitDefs[0]));
445  }
446  return ResultReg;
447}
448
449unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
450                                      const TargetRegisterClass *RC,
451                                      uint64_t Imm1, uint64_t Imm2) {
452  unsigned ResultReg = createResultReg(RC);
453  const MCInstrDesc &II = TII.get(MachineInstOpcode);
454
455  if (II.getNumDefs() >= 1)
456    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
457                    .addImm(Imm1).addImm(Imm2));
458  else {
459    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
460                    .addImm(Imm1).addImm(Imm2));
461    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
462                            TII.get(TargetOpcode::COPY),
463                            ResultReg)
464                    .addReg(II.ImplicitDefs[0]));
465  }
466  return ResultReg;
467}
468
469unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
470                                                 unsigned Op0, bool Op0IsKill,
471                                                 uint32_t Idx) {
472  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
473  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
474         "Cannot yet extract from physregs");
475  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
476                         DL, TII.get(TargetOpcode::COPY), ResultReg)
477                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
478  return ResultReg;
479}
480
481// TODO: Don't worry about 64-bit now, but when this is fixed remove the
482// checks from the various callers.
483unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
484  if (VT == MVT::f64) return 0;
485
486  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
487  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
488                          TII.get(ARM::VMOVRS), MoveReg)
489                  .addReg(SrcReg));
490  return MoveReg;
491}
492
493unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
494  if (VT == MVT::i64) return 0;
495
496  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
497  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
498                          TII.get(ARM::VMOVSR), MoveReg)
499                  .addReg(SrcReg));
500  return MoveReg;
501}
502
503// For double width floating point we need to materialize two constants
504// (the high and the low) into integer registers then use a move to get
505// the combined constant into an FP reg.
506unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
507  const APFloat Val = CFP->getValueAPF();
508  bool is64bit = VT == MVT::f64;
509
510  // This checks to see if we can use VFP3 instructions to materialize
511  // a constant, otherwise we have to go through the constant pool.
512  if (TLI.isFPImmLegal(Val, VT)) {
513    int Imm;
514    unsigned Opc;
515    if (is64bit) {
516      Imm = ARM_AM::getFP64Imm(Val);
517      Opc = ARM::FCONSTD;
518    } else {
519      Imm = ARM_AM::getFP32Imm(Val);
520      Opc = ARM::FCONSTS;
521    }
522    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
523    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
524                            DestReg)
525                    .addImm(Imm));
526    return DestReg;
527  }
528
529  // Require VFP2 for loading fp constants.
530  if (!Subtarget->hasVFP2()) return false;
531
532  // MachineConstantPool wants an explicit alignment.
533  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
534  if (Align == 0) {
535    // TODO: Figure out if this is correct.
536    Align = TD.getTypeAllocSize(CFP->getType());
537  }
538  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
539  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
540  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
541
542  // The extra reg is for addrmode5.
543  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
544                          DestReg)
545                  .addConstantPoolIndex(Idx)
546                  .addReg(0));
547  return DestReg;
548}
549
550unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
551
552  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
553    return false;
554
555  // If we can do this in a single instruction without a constant pool entry
556  // do so now.
557  const ConstantInt *CI = cast<ConstantInt>(C);
558  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
559    unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
560    unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
561    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
562                            TII.get(Opc), ImmReg)
563                    .addImm(CI->getZExtValue()));
564    return ImmReg;
565  }
566
567  // Use MVN to emit negative constants.
568  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
569    unsigned Imm = (unsigned)~(CI->getSExtValue());
570    bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
571      (ARM_AM::getSOImmVal(Imm) != -1);
572    if (UseImm) {
573      unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
574      unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
575      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
576                              TII.get(Opc), ImmReg)
577                      .addImm(Imm));
578      return ImmReg;
579    }
580  }
581
582  // Load from constant pool.  For now 32-bit only.
583  if (VT != MVT::i32)
584    return false;
585
586  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
587
588  // MachineConstantPool wants an explicit alignment.
589  unsigned Align = TD.getPrefTypeAlignment(C->getType());
590  if (Align == 0) {
591    // TODO: Figure out if this is correct.
592    Align = TD.getTypeAllocSize(C->getType());
593  }
594  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
595
596  if (isThumb2)
597    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
598                            TII.get(ARM::t2LDRpci), DestReg)
599                    .addConstantPoolIndex(Idx));
600  else
601    // The extra immediate is for addrmode2.
602    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
603                            TII.get(ARM::LDRcp), DestReg)
604                    .addConstantPoolIndex(Idx)
605                    .addImm(0));
606
607  return DestReg;
608}
609
610unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
611  // For now 32-bit only.
612  if (VT != MVT::i32) return 0;
613
614  Reloc::Model RelocM = TM.getRelocationModel();
615
616  // TODO: Need more magic for ARM PIC.
617  if (!isThumb2 && (RelocM == Reloc::PIC_)) return 0;
618
619  // MachineConstantPool wants an explicit alignment.
620  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
621  if (Align == 0) {
622    // TODO: Figure out if this is correct.
623    Align = TD.getTypeAllocSize(GV->getType());
624  }
625
626  // Grab index.
627  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
628  unsigned Id = AFI->createPICLabelUId();
629  ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
630                                                              ARMCP::CPValue,
631                                                              PCAdj);
632  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
633
634  // Load value.
635  MachineInstrBuilder MIB;
636  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
637  if (isThumb2) {
638    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
639    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
640          .addConstantPoolIndex(Idx);
641    if (RelocM == Reloc::PIC_)
642      MIB.addImm(Id);
643  } else {
644    // The extra immediate is for addrmode2.
645    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
646                  DestReg)
647          .addConstantPoolIndex(Idx)
648          .addImm(0);
649  }
650  AddOptionalDefs(MIB);
651
652  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
653    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
654    if (isThumb2)
655      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
656                    TII.get(ARM::t2LDRi12), NewDestReg)
657            .addReg(DestReg)
658            .addImm(0);
659    else
660      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
661                    NewDestReg)
662            .addReg(DestReg)
663            .addImm(0);
664    DestReg = NewDestReg;
665    AddOptionalDefs(MIB);
666  }
667
668  return DestReg;
669}
670
671unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
672  EVT VT = TLI.getValueType(C->getType(), true);
673
674  // Only handle simple types.
675  if (!VT.isSimple()) return 0;
676
677  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
678    return ARMMaterializeFP(CFP, VT);
679  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
680    return ARMMaterializeGV(GV, VT);
681  else if (isa<ConstantInt>(C))
682    return ARMMaterializeInt(C, VT);
683
684  return 0;
685}
686
687// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
688
689unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
690  // Don't handle dynamic allocas.
691  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
692
693  MVT VT;
694  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
695
696  DenseMap<const AllocaInst*, int>::iterator SI =
697    FuncInfo.StaticAllocaMap.find(AI);
698
699  // This will get lowered later into the correct offsets and registers
700  // via rewriteXFrameIndex.
701  if (SI != FuncInfo.StaticAllocaMap.end()) {
702    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
703    unsigned ResultReg = createResultReg(RC);
704    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
705    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
706                            TII.get(Opc), ResultReg)
707                            .addFrameIndex(SI->second)
708                            .addImm(0));
709    return ResultReg;
710  }
711
712  return 0;
713}
714
715bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
716  EVT evt = TLI.getValueType(Ty, true);
717
718  // Only handle simple types.
719  if (evt == MVT::Other || !evt.isSimple()) return false;
720  VT = evt.getSimpleVT();
721
722  // Handle all legal types, i.e. a register that will directly hold this
723  // value.
724  return TLI.isTypeLegal(VT);
725}
726
727bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
728  if (isTypeLegal(Ty, VT)) return true;
729
730  // If this is a type than can be sign or zero-extended to a basic operation
731  // go ahead and accept it now.
732  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
733    return true;
734
735  return false;
736}
737
738// Computes the address to get to an object.
739bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
740  // Some boilerplate from the X86 FastISel.
741  const User *U = NULL;
742  unsigned Opcode = Instruction::UserOp1;
743  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
744    // Don't walk into other basic blocks unless the object is an alloca from
745    // another block, otherwise it may not have a virtual register assigned.
746    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
747        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
748      Opcode = I->getOpcode();
749      U = I;
750    }
751  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
752    Opcode = C->getOpcode();
753    U = C;
754  }
755
756  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
757    if (Ty->getAddressSpace() > 255)
758      // Fast instruction selection doesn't support the special
759      // address spaces.
760      return false;
761
762  switch (Opcode) {
763    default:
764    break;
765    case Instruction::BitCast: {
766      // Look through bitcasts.
767      return ARMComputeAddress(U->getOperand(0), Addr);
768    }
769    case Instruction::IntToPtr: {
770      // Look past no-op inttoptrs.
771      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
772        return ARMComputeAddress(U->getOperand(0), Addr);
773      break;
774    }
775    case Instruction::PtrToInt: {
776      // Look past no-op ptrtoints.
777      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
778        return ARMComputeAddress(U->getOperand(0), Addr);
779      break;
780    }
781    case Instruction::GetElementPtr: {
782      Address SavedAddr = Addr;
783      int TmpOffset = Addr.Offset;
784
785      // Iterate through the GEP folding the constants into offsets where
786      // we can.
787      gep_type_iterator GTI = gep_type_begin(U);
788      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
789           i != e; ++i, ++GTI) {
790        const Value *Op = *i;
791        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
792          const StructLayout *SL = TD.getStructLayout(STy);
793          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
794          TmpOffset += SL->getElementOffset(Idx);
795        } else {
796          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
797          for (;;) {
798            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
799              // Constant-offset addressing.
800              TmpOffset += CI->getSExtValue() * S;
801              break;
802            }
803            if (isa<AddOperator>(Op) &&
804                (!isa<Instruction>(Op) ||
805                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
806                 == FuncInfo.MBB) &&
807                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
808              // An add (in the same block) with a constant operand. Fold the
809              // constant.
810              ConstantInt *CI =
811              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
812              TmpOffset += CI->getSExtValue() * S;
813              // Iterate on the other operand.
814              Op = cast<AddOperator>(Op)->getOperand(0);
815              continue;
816            }
817            // Unsupported
818            goto unsupported_gep;
819          }
820        }
821      }
822
823      // Try to grab the base operand now.
824      Addr.Offset = TmpOffset;
825      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
826
827      // We failed, restore everything and try the other options.
828      Addr = SavedAddr;
829
830      unsupported_gep:
831      break;
832    }
833    case Instruction::Alloca: {
834      const AllocaInst *AI = cast<AllocaInst>(Obj);
835      DenseMap<const AllocaInst*, int>::iterator SI =
836        FuncInfo.StaticAllocaMap.find(AI);
837      if (SI != FuncInfo.StaticAllocaMap.end()) {
838        Addr.BaseType = Address::FrameIndexBase;
839        Addr.Base.FI = SI->second;
840        return true;
841      }
842      break;
843    }
844  }
845
846  // Materialize the global variable's address into a reg which can
847  // then be used later to load the variable.
848  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
849    unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
850    if (Tmp == 0) return false;
851
852    Addr.Base.Reg = Tmp;
853    return true;
854  }
855
856  // Try to get this in a register if nothing else has worked.
857  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
858  return Addr.Base.Reg != 0;
859}
860
861void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3) {
862
863  assert(VT.isSimple() && "Non-simple types are invalid here!");
864
865  bool needsLowering = false;
866  switch (VT.getSimpleVT().SimpleTy) {
867    default:
868      assert(false && "Unhandled load/store type!");
869      break;
870    case MVT::i1:
871    case MVT::i8:
872    case MVT::i16:
873    case MVT::i32:
874      if (!useAM3) {
875        // Integer loads/stores handle 12-bit offsets.
876        needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
877        // Handle negative offsets.
878        if (needsLowering && isThumb2)
879          needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
880                            Addr.Offset > -256);
881      } else {
882        // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
883        needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
884      }
885      break;
886    case MVT::f32:
887    case MVT::f64:
888      // Floating point operands handle 8-bit offsets.
889      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
890      break;
891  }
892
893  // If this is a stack pointer and the offset needs to be simplified then
894  // put the alloca address into a register, set the base type back to
895  // register and continue. This should almost never happen.
896  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
897    TargetRegisterClass *RC = isThumb2 ? ARM::tGPRRegisterClass :
898                              ARM::GPRRegisterClass;
899    unsigned ResultReg = createResultReg(RC);
900    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
901    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
902                            TII.get(Opc), ResultReg)
903                            .addFrameIndex(Addr.Base.FI)
904                            .addImm(0));
905    Addr.Base.Reg = ResultReg;
906    Addr.BaseType = Address::RegBase;
907  }
908
909  // Since the offset is too large for the load/store instruction
910  // get the reg+offset into a register.
911  if (needsLowering) {
912    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
913                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
914    Addr.Offset = 0;
915  }
916}
917
918void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
919                                       const MachineInstrBuilder &MIB,
920                                       unsigned Flags, bool useAM3) {
921  // addrmode5 output depends on the selection dag addressing dividing the
922  // offset by 4 that it then later multiplies. Do this here as well.
923  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
924      VT.getSimpleVT().SimpleTy == MVT::f64)
925    Addr.Offset /= 4;
926
927  // Frame base works a bit differently. Handle it separately.
928  if (Addr.BaseType == Address::FrameIndexBase) {
929    int FI = Addr.Base.FI;
930    int Offset = Addr.Offset;
931    MachineMemOperand *MMO =
932          FuncInfo.MF->getMachineMemOperand(
933                                  MachinePointerInfo::getFixedStack(FI, Offset),
934                                  Flags,
935                                  MFI.getObjectSize(FI),
936                                  MFI.getObjectAlignment(FI));
937    // Now add the rest of the operands.
938    MIB.addFrameIndex(FI);
939
940    // ARM halfword load/stores and signed byte loads need an additional
941    // operand.
942    if (useAM3) {
943      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
944      MIB.addReg(0);
945      MIB.addImm(Imm);
946    } else {
947      MIB.addImm(Addr.Offset);
948    }
949    MIB.addMemOperand(MMO);
950  } else {
951    // Now add the rest of the operands.
952    MIB.addReg(Addr.Base.Reg);
953
954    // ARM halfword load/stores and signed byte loads need an additional
955    // operand.
956    if (useAM3) {
957      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
958      MIB.addReg(0);
959      MIB.addImm(Imm);
960    } else {
961      MIB.addImm(Addr.Offset);
962    }
963  }
964  AddOptionalDefs(MIB);
965}
966
967bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
968                              unsigned Alignment, bool isZExt, bool allocReg) {
969  assert(VT.isSimple() && "Non-simple types are invalid here!");
970  unsigned Opc;
971  bool useAM3 = false;
972  bool needVMOV = false;
973  TargetRegisterClass *RC;
974  switch (VT.getSimpleVT().SimpleTy) {
975    // This is mostly going to be Neon/vector support.
976    default: return false;
977    case MVT::i1:
978    case MVT::i8:
979      if (isThumb2) {
980        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
981          Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
982        else
983          Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
984      } else {
985        if (isZExt) {
986          Opc = ARM::LDRBi12;
987        } else {
988          Opc = ARM::LDRSB;
989          useAM3 = true;
990        }
991      }
992      RC = ARM::GPRRegisterClass;
993      break;
994    case MVT::i16:
995      if (isThumb2) {
996        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
997          Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
998        else
999          Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
1000      } else {
1001        Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1002        useAM3 = true;
1003      }
1004      RC = ARM::GPRRegisterClass;
1005      break;
1006    case MVT::i32:
1007      if (isThumb2) {
1008        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1009          Opc = ARM::t2LDRi8;
1010        else
1011          Opc = ARM::t2LDRi12;
1012      } else {
1013        Opc = ARM::LDRi12;
1014      }
1015      RC = ARM::GPRRegisterClass;
1016      break;
1017    case MVT::f32:
1018      // Unaligned loads need special handling. Floats require word-alignment.
1019      if (Alignment && Alignment < 4) {
1020        needVMOV = true;
1021        VT = MVT::i32;
1022        Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1023        RC = ARM::GPRRegisterClass;
1024      } else {
1025        Opc = ARM::VLDRS;
1026        RC = TLI.getRegClassFor(VT);
1027      }
1028      break;
1029    case MVT::f64:
1030      if (Alignment && Alignment < 4) {
1031        // FIXME: Unaligned loads need special handling.  Doublewords require
1032        // word-alignment.
1033        return false;
1034      }
1035      Opc = ARM::VLDRD;
1036      RC = TLI.getRegClassFor(VT);
1037      break;
1038  }
1039  // Simplify this down to something we can handle.
1040  ARMSimplifyAddress(Addr, VT, useAM3);
1041
1042  // Create the base instruction, then add the operands.
1043  if (allocReg)
1044    ResultReg = createResultReg(RC);
1045  assert (ResultReg > 255 && "Expected an allocated virtual register.");
1046  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1047                                    TII.get(Opc), ResultReg);
1048  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1049
1050  // If we had an unaligned load of a float we've converted it to an regular
1051  // load.  Now we must move from the GRP to the FP register.
1052  if (needVMOV) {
1053    unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1054    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1055                            TII.get(ARM::VMOVSR), MoveReg)
1056                    .addReg(ResultReg));
1057    ResultReg = MoveReg;
1058  }
1059  return true;
1060}
1061
1062bool ARMFastISel::SelectLoad(const Instruction *I) {
1063  // Atomic loads need special handling.
1064  if (cast<LoadInst>(I)->isAtomic())
1065    return false;
1066
1067  // Verify we have a legal type before going any further.
1068  MVT VT;
1069  if (!isLoadTypeLegal(I->getType(), VT))
1070    return false;
1071
1072  // See if we can handle this address.
1073  Address Addr;
1074  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1075
1076  unsigned ResultReg;
1077  if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1078    return false;
1079  UpdateValueMap(I, ResultReg);
1080  return true;
1081}
1082
1083bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
1084                               unsigned Alignment) {
1085  unsigned StrOpc;
1086  bool useAM3 = false;
1087  switch (VT.getSimpleVT().SimpleTy) {
1088    // This is mostly going to be Neon/vector support.
1089    default: return false;
1090    case MVT::i1: {
1091      unsigned Res = createResultReg(isThumb2 ? ARM::tGPRRegisterClass :
1092                                               ARM::GPRRegisterClass);
1093      unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1094      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1095                              TII.get(Opc), Res)
1096                      .addReg(SrcReg).addImm(1));
1097      SrcReg = Res;
1098    } // Fallthrough here.
1099    case MVT::i8:
1100      if (isThumb2) {
1101        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1102          StrOpc = ARM::t2STRBi8;
1103        else
1104          StrOpc = ARM::t2STRBi12;
1105      } else {
1106        StrOpc = ARM::STRBi12;
1107      }
1108      break;
1109    case MVT::i16:
1110      if (isThumb2) {
1111        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1112          StrOpc = ARM::t2STRHi8;
1113        else
1114          StrOpc = ARM::t2STRHi12;
1115      } else {
1116        StrOpc = ARM::STRH;
1117        useAM3 = true;
1118      }
1119      break;
1120    case MVT::i32:
1121      if (isThumb2) {
1122        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1123          StrOpc = ARM::t2STRi8;
1124        else
1125          StrOpc = ARM::t2STRi12;
1126      } else {
1127        StrOpc = ARM::STRi12;
1128      }
1129      break;
1130    case MVT::f32:
1131      if (!Subtarget->hasVFP2()) return false;
1132      StrOpc = ARM::VSTRS;
1133      // Unaligned stores need special handling. Floats require word-alignment.
1134      if (Alignment && Alignment < 4) {
1135        unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1136        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1137                                TII.get(ARM::VMOVRS), MoveReg)
1138                        .addReg(SrcReg));
1139        SrcReg = MoveReg;
1140        VT = MVT::i32;
1141        StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1142      }
1143      break;
1144    case MVT::f64:
1145      if (!Subtarget->hasVFP2()) return false;
1146      // FIXME: Unaligned stores need special handling.  Doublewords require
1147      // word-alignment.
1148      if (Alignment && Alignment < 4) {
1149          return false;
1150      }
1151      StrOpc = ARM::VSTRD;
1152      break;
1153  }
1154  // Simplify this down to something we can handle.
1155  ARMSimplifyAddress(Addr, VT, useAM3);
1156
1157  // Create the base instruction, then add the operands.
1158  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1159                                    TII.get(StrOpc))
1160                            .addReg(SrcReg);
1161  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1162  return true;
1163}
1164
1165bool ARMFastISel::SelectStore(const Instruction *I) {
1166  Value *Op0 = I->getOperand(0);
1167  unsigned SrcReg = 0;
1168
1169  // Atomic stores need special handling.
1170  if (cast<StoreInst>(I)->isAtomic())
1171    return false;
1172
1173  // Verify we have a legal type before going any further.
1174  MVT VT;
1175  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1176    return false;
1177
1178  // Get the value to be stored into a register.
1179  SrcReg = getRegForValue(Op0);
1180  if (SrcReg == 0) return false;
1181
1182  // See if we can handle this address.
1183  Address Addr;
1184  if (!ARMComputeAddress(I->getOperand(1), Addr))
1185    return false;
1186
1187  if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1188    return false;
1189  return true;
1190}
1191
1192static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1193  switch (Pred) {
1194    // Needs two compares...
1195    case CmpInst::FCMP_ONE:
1196    case CmpInst::FCMP_UEQ:
1197    default:
1198      // AL is our "false" for now. The other two need more compares.
1199      return ARMCC::AL;
1200    case CmpInst::ICMP_EQ:
1201    case CmpInst::FCMP_OEQ:
1202      return ARMCC::EQ;
1203    case CmpInst::ICMP_SGT:
1204    case CmpInst::FCMP_OGT:
1205      return ARMCC::GT;
1206    case CmpInst::ICMP_SGE:
1207    case CmpInst::FCMP_OGE:
1208      return ARMCC::GE;
1209    case CmpInst::ICMP_UGT:
1210    case CmpInst::FCMP_UGT:
1211      return ARMCC::HI;
1212    case CmpInst::FCMP_OLT:
1213      return ARMCC::MI;
1214    case CmpInst::ICMP_ULE:
1215    case CmpInst::FCMP_OLE:
1216      return ARMCC::LS;
1217    case CmpInst::FCMP_ORD:
1218      return ARMCC::VC;
1219    case CmpInst::FCMP_UNO:
1220      return ARMCC::VS;
1221    case CmpInst::FCMP_UGE:
1222      return ARMCC::PL;
1223    case CmpInst::ICMP_SLT:
1224    case CmpInst::FCMP_ULT:
1225      return ARMCC::LT;
1226    case CmpInst::ICMP_SLE:
1227    case CmpInst::FCMP_ULE:
1228      return ARMCC::LE;
1229    case CmpInst::FCMP_UNE:
1230    case CmpInst::ICMP_NE:
1231      return ARMCC::NE;
1232    case CmpInst::ICMP_UGE:
1233      return ARMCC::HS;
1234    case CmpInst::ICMP_ULT:
1235      return ARMCC::LO;
1236  }
1237}
1238
1239bool ARMFastISel::SelectBranch(const Instruction *I) {
1240  const BranchInst *BI = cast<BranchInst>(I);
1241  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1242  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1243
1244  // Simple branch support.
1245
1246  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1247  // behavior.
1248  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1249    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1250
1251      // Get the compare predicate.
1252      // Try to take advantage of fallthrough opportunities.
1253      CmpInst::Predicate Predicate = CI->getPredicate();
1254      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1255        std::swap(TBB, FBB);
1256        Predicate = CmpInst::getInversePredicate(Predicate);
1257      }
1258
1259      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1260
1261      // We may not handle every CC for now.
1262      if (ARMPred == ARMCC::AL) return false;
1263
1264      // Emit the compare.
1265      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1266        return false;
1267
1268      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1269      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1270      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1271      FastEmitBranch(FBB, DL);
1272      FuncInfo.MBB->addSuccessor(TBB);
1273      return true;
1274    }
1275  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1276    MVT SourceVT;
1277    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1278        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1279      unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1280      unsigned OpReg = getRegForValue(TI->getOperand(0));
1281      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1282                              TII.get(TstOpc))
1283                      .addReg(OpReg).addImm(1));
1284
1285      unsigned CCMode = ARMCC::NE;
1286      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1287        std::swap(TBB, FBB);
1288        CCMode = ARMCC::EQ;
1289      }
1290
1291      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1292      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1293      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1294
1295      FastEmitBranch(FBB, DL);
1296      FuncInfo.MBB->addSuccessor(TBB);
1297      return true;
1298    }
1299  } else if (const ConstantInt *CI =
1300             dyn_cast<ConstantInt>(BI->getCondition())) {
1301    uint64_t Imm = CI->getZExtValue();
1302    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1303    FastEmitBranch(Target, DL);
1304    return true;
1305  }
1306
1307  unsigned CmpReg = getRegForValue(BI->getCondition());
1308  if (CmpReg == 0) return false;
1309
1310  // We've been divorced from our compare!  Our block was split, and
1311  // now our compare lives in a predecessor block.  We musn't
1312  // re-compare here, as the children of the compare aren't guaranteed
1313  // live across the block boundary (we *could* check for this).
1314  // Regardless, the compare has been done in the predecessor block,
1315  // and it left a value for us in a virtual register.  Ergo, we test
1316  // the one-bit value left in the virtual register.
1317  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1318  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1319                  .addReg(CmpReg).addImm(1));
1320
1321  unsigned CCMode = ARMCC::NE;
1322  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1323    std::swap(TBB, FBB);
1324    CCMode = ARMCC::EQ;
1325  }
1326
1327  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1328  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1329                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1330  FastEmitBranch(FBB, DL);
1331  FuncInfo.MBB->addSuccessor(TBB);
1332  return true;
1333}
1334
1335bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1336                             bool isZExt) {
1337  Type *Ty = Src1Value->getType();
1338  EVT SrcVT = TLI.getValueType(Ty, true);
1339  if (!SrcVT.isSimple()) return false;
1340
1341  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1342  if (isFloat && !Subtarget->hasVFP2())
1343    return false;
1344
1345  // Check to see if the 2nd operand is a constant that we can encode directly
1346  // in the compare.
1347  int Imm = 0;
1348  bool UseImm = false;
1349  bool isNegativeImm = false;
1350  // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1351  // Thus, Src1Value may be a ConstantInt, but we're missing it.
1352  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1353    if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1354        SrcVT == MVT::i1) {
1355      const APInt &CIVal = ConstInt->getValue();
1356      Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1357      if (Imm < 0) {
1358        isNegativeImm = true;
1359        Imm = -Imm;
1360      }
1361      UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1362        (ARM_AM::getSOImmVal(Imm) != -1);
1363    }
1364  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1365    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1366      if (ConstFP->isZero() && !ConstFP->isNegative())
1367        UseImm = true;
1368  }
1369
1370  unsigned CmpOpc;
1371  bool isICmp = true;
1372  bool needsExt = false;
1373  switch (SrcVT.getSimpleVT().SimpleTy) {
1374    default: return false;
1375    // TODO: Verify compares.
1376    case MVT::f32:
1377      isICmp = false;
1378      CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1379      break;
1380    case MVT::f64:
1381      isICmp = false;
1382      CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1383      break;
1384    case MVT::i1:
1385    case MVT::i8:
1386    case MVT::i16:
1387      needsExt = true;
1388    // Intentional fall-through.
1389    case MVT::i32:
1390      if (isThumb2) {
1391        if (!UseImm)
1392          CmpOpc = ARM::t2CMPrr;
1393        else
1394          CmpOpc = isNegativeImm ? ARM::t2CMNzri : ARM::t2CMPri;
1395      } else {
1396        if (!UseImm)
1397          CmpOpc = ARM::CMPrr;
1398        else
1399          CmpOpc = isNegativeImm ? ARM::CMNzri : ARM::CMPri;
1400      }
1401      break;
1402  }
1403
1404  unsigned SrcReg1 = getRegForValue(Src1Value);
1405  if (SrcReg1 == 0) return false;
1406
1407  unsigned SrcReg2 = 0;
1408  if (!UseImm) {
1409    SrcReg2 = getRegForValue(Src2Value);
1410    if (SrcReg2 == 0) return false;
1411  }
1412
1413  // We have i1, i8, or i16, we need to either zero extend or sign extend.
1414  if (needsExt) {
1415    unsigned ResultReg;
1416    ResultReg = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1417    if (ResultReg == 0) return false;
1418    SrcReg1 = ResultReg;
1419    if (!UseImm) {
1420      ResultReg = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1421      if (ResultReg == 0) return false;
1422      SrcReg2 = ResultReg;
1423    }
1424  }
1425
1426  if (!UseImm) {
1427    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1428                            TII.get(CmpOpc))
1429                    .addReg(SrcReg1).addReg(SrcReg2));
1430  } else {
1431    MachineInstrBuilder MIB;
1432    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1433      .addReg(SrcReg1);
1434
1435    // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1436    if (isICmp)
1437      MIB.addImm(Imm);
1438    AddOptionalDefs(MIB);
1439  }
1440
1441  // For floating point we need to move the result to a comparison register
1442  // that we can then use for branches.
1443  if (Ty->isFloatTy() || Ty->isDoubleTy())
1444    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1445                            TII.get(ARM::FMSTAT)));
1446  return true;
1447}
1448
1449bool ARMFastISel::SelectCmp(const Instruction *I) {
1450  const CmpInst *CI = cast<CmpInst>(I);
1451  Type *Ty = CI->getOperand(0)->getType();
1452
1453  // Get the compare predicate.
1454  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1455
1456  // We may not handle every CC for now.
1457  if (ARMPred == ARMCC::AL) return false;
1458
1459  // Emit the compare.
1460  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1461    return false;
1462
1463  // Now set a register based on the comparison. Explicitly set the predicates
1464  // here.
1465  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1466  TargetRegisterClass *RC = isThumb2 ? ARM::rGPRRegisterClass
1467                                    : ARM::GPRRegisterClass;
1468  unsigned DestReg = createResultReg(RC);
1469  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1470  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1471  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1472  unsigned CondReg = isFloat ? ARM::FPSCR : ARM::CPSR;
1473  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1474          .addReg(ZeroReg).addImm(1)
1475          .addImm(ARMPred).addReg(CondReg);
1476
1477  UpdateValueMap(I, DestReg);
1478  return true;
1479}
1480
1481bool ARMFastISel::SelectFPExt(const Instruction *I) {
1482  // Make sure we have VFP and that we're extending float to double.
1483  if (!Subtarget->hasVFP2()) return false;
1484
1485  Value *V = I->getOperand(0);
1486  if (!I->getType()->isDoubleTy() ||
1487      !V->getType()->isFloatTy()) return false;
1488
1489  unsigned Op = getRegForValue(V);
1490  if (Op == 0) return false;
1491
1492  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1493  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1494                          TII.get(ARM::VCVTDS), Result)
1495                  .addReg(Op));
1496  UpdateValueMap(I, Result);
1497  return true;
1498}
1499
1500bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1501  // Make sure we have VFP and that we're truncating double to float.
1502  if (!Subtarget->hasVFP2()) return false;
1503
1504  Value *V = I->getOperand(0);
1505  if (!(I->getType()->isFloatTy() &&
1506        V->getType()->isDoubleTy())) return false;
1507
1508  unsigned Op = getRegForValue(V);
1509  if (Op == 0) return false;
1510
1511  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1512  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1513                          TII.get(ARM::VCVTSD), Result)
1514                  .addReg(Op));
1515  UpdateValueMap(I, Result);
1516  return true;
1517}
1518
1519bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1520  // Make sure we have VFP.
1521  if (!Subtarget->hasVFP2()) return false;
1522
1523  MVT DstVT;
1524  Type *Ty = I->getType();
1525  if (!isTypeLegal(Ty, DstVT))
1526    return false;
1527
1528  Value *Src = I->getOperand(0);
1529  EVT SrcVT = TLI.getValueType(Src->getType(), true);
1530  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1531    return false;
1532
1533  unsigned SrcReg = getRegForValue(Src);
1534  if (SrcReg == 0) return false;
1535
1536  // Handle sign-extension.
1537  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1538    EVT DestVT = MVT::i32;
1539    unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, /*isZExt*/ false);
1540    if (ResultReg == 0) return false;
1541    SrcReg = ResultReg;
1542  }
1543
1544  // The conversion routine works on fp-reg to fp-reg and the operand above
1545  // was an integer, move it to the fp registers if possible.
1546  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1547  if (FP == 0) return false;
1548
1549  unsigned Opc;
1550  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1551  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1552  else return false;
1553
1554  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1555  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1556                          ResultReg)
1557                  .addReg(FP));
1558  UpdateValueMap(I, ResultReg);
1559  return true;
1560}
1561
1562bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1563  // Make sure we have VFP.
1564  if (!Subtarget->hasVFP2()) return false;
1565
1566  MVT DstVT;
1567  Type *RetTy = I->getType();
1568  if (!isTypeLegal(RetTy, DstVT))
1569    return false;
1570
1571  unsigned Op = getRegForValue(I->getOperand(0));
1572  if (Op == 0) return false;
1573
1574  unsigned Opc;
1575  Type *OpTy = I->getOperand(0)->getType();
1576  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1577  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1578  else return false;
1579
1580  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1581  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1582  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1583                          ResultReg)
1584                  .addReg(Op));
1585
1586  // This result needs to be in an integer register, but the conversion only
1587  // takes place in fp-regs.
1588  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1589  if (IntReg == 0) return false;
1590
1591  UpdateValueMap(I, IntReg);
1592  return true;
1593}
1594
1595bool ARMFastISel::SelectSelect(const Instruction *I) {
1596  MVT VT;
1597  if (!isTypeLegal(I->getType(), VT))
1598    return false;
1599
1600  // Things need to be register sized for register moves.
1601  if (VT != MVT::i32) return false;
1602  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1603
1604  unsigned CondReg = getRegForValue(I->getOperand(0));
1605  if (CondReg == 0) return false;
1606  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1607  if (Op1Reg == 0) return false;
1608
1609  // Check to see if we can use an immediate in the conditional move.
1610  int Imm = 0;
1611  bool UseImm = false;
1612  bool isNegativeImm = false;
1613  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1614    assert (VT == MVT::i32 && "Expecting an i32.");
1615    Imm = (int)ConstInt->getValue().getZExtValue();
1616    if (Imm < 0) {
1617      isNegativeImm = true;
1618      Imm = ~Imm;
1619    }
1620    UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1621      (ARM_AM::getSOImmVal(Imm) != -1);
1622  }
1623
1624  unsigned Op2Reg = 0;
1625  if (!UseImm) {
1626    Op2Reg = getRegForValue(I->getOperand(2));
1627    if (Op2Reg == 0) return false;
1628  }
1629
1630  unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1631  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1632                  .addReg(CondReg).addImm(0));
1633
1634  unsigned MovCCOpc;
1635  if (!UseImm) {
1636    MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1637  } else {
1638    if (!isNegativeImm) {
1639      MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1640    } else {
1641      MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1642    }
1643  }
1644  unsigned ResultReg = createResultReg(RC);
1645  if (!UseImm)
1646    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1647    .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
1648  else
1649    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1650    .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
1651  UpdateValueMap(I, ResultReg);
1652  return true;
1653}
1654
1655bool ARMFastISel::SelectSDiv(const Instruction *I) {
1656  MVT VT;
1657  Type *Ty = I->getType();
1658  if (!isTypeLegal(Ty, VT))
1659    return false;
1660
1661  // If we have integer div support we should have selected this automagically.
1662  // In case we have a real miss go ahead and return false and we'll pick
1663  // it up later.
1664  if (Subtarget->hasDivide()) return false;
1665
1666  // Otherwise emit a libcall.
1667  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1668  if (VT == MVT::i8)
1669    LC = RTLIB::SDIV_I8;
1670  else if (VT == MVT::i16)
1671    LC = RTLIB::SDIV_I16;
1672  else if (VT == MVT::i32)
1673    LC = RTLIB::SDIV_I32;
1674  else if (VT == MVT::i64)
1675    LC = RTLIB::SDIV_I64;
1676  else if (VT == MVT::i128)
1677    LC = RTLIB::SDIV_I128;
1678  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1679
1680  return ARMEmitLibcall(I, LC);
1681}
1682
1683bool ARMFastISel::SelectSRem(const Instruction *I) {
1684  MVT VT;
1685  Type *Ty = I->getType();
1686  if (!isTypeLegal(Ty, VT))
1687    return false;
1688
1689  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1690  if (VT == MVT::i8)
1691    LC = RTLIB::SREM_I8;
1692  else if (VT == MVT::i16)
1693    LC = RTLIB::SREM_I16;
1694  else if (VT == MVT::i32)
1695    LC = RTLIB::SREM_I32;
1696  else if (VT == MVT::i64)
1697    LC = RTLIB::SREM_I64;
1698  else if (VT == MVT::i128)
1699    LC = RTLIB::SREM_I128;
1700  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1701
1702  return ARMEmitLibcall(I, LC);
1703}
1704
1705bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1706  EVT VT  = TLI.getValueType(I->getType(), true);
1707
1708  // We can get here in the case when we want to use NEON for our fp
1709  // operations, but can't figure out how to. Just use the vfp instructions
1710  // if we have them.
1711  // FIXME: It'd be nice to use NEON instructions.
1712  Type *Ty = I->getType();
1713  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1714  if (isFloat && !Subtarget->hasVFP2())
1715    return false;
1716
1717  unsigned Opc;
1718  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1719  switch (ISDOpcode) {
1720    default: return false;
1721    case ISD::FADD:
1722      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1723      break;
1724    case ISD::FSUB:
1725      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1726      break;
1727    case ISD::FMUL:
1728      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1729      break;
1730  }
1731  unsigned Op1 = getRegForValue(I->getOperand(0));
1732  if (Op1 == 0) return false;
1733
1734  unsigned Op2 = getRegForValue(I->getOperand(1));
1735  if (Op2 == 0) return false;
1736
1737  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1738  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1739                          TII.get(Opc), ResultReg)
1740                  .addReg(Op1).addReg(Op2));
1741  UpdateValueMap(I, ResultReg);
1742  return true;
1743}
1744
1745// Call Handling Code
1746
1747// This is largely taken directly from CCAssignFnForNode - we don't support
1748// varargs in FastISel so that part has been removed.
1749// TODO: We may not support all of this.
1750CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1751  switch (CC) {
1752  default:
1753    llvm_unreachable("Unsupported calling convention");
1754  case CallingConv::Fast:
1755    // Ignore fastcc. Silence compiler warnings.
1756    (void)RetFastCC_ARM_APCS;
1757    (void)FastCC_ARM_APCS;
1758    // Fallthrough
1759  case CallingConv::C:
1760    // Use target triple & subtarget features to do actual dispatch.
1761    if (Subtarget->isAAPCS_ABI()) {
1762      if (Subtarget->hasVFP2() &&
1763          TM.Options.FloatABIType == FloatABI::Hard)
1764        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1765      else
1766        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1767    } else
1768        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1769  case CallingConv::ARM_AAPCS_VFP:
1770    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1771  case CallingConv::ARM_AAPCS:
1772    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1773  case CallingConv::ARM_APCS:
1774    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1775  }
1776}
1777
1778bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1779                                  SmallVectorImpl<unsigned> &ArgRegs,
1780                                  SmallVectorImpl<MVT> &ArgVTs,
1781                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1782                                  SmallVectorImpl<unsigned> &RegArgs,
1783                                  CallingConv::ID CC,
1784                                  unsigned &NumBytes) {
1785  SmallVector<CCValAssign, 16> ArgLocs;
1786  CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
1787  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1788
1789  // Get a count of how many bytes are to be pushed on the stack.
1790  NumBytes = CCInfo.getNextStackOffset();
1791
1792  // Issue CALLSEQ_START
1793  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1794  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1795                          TII.get(AdjStackDown))
1796                  .addImm(NumBytes));
1797
1798  // Process the args.
1799  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1800    CCValAssign &VA = ArgLocs[i];
1801    unsigned Arg = ArgRegs[VA.getValNo()];
1802    MVT ArgVT = ArgVTs[VA.getValNo()];
1803
1804    // We don't handle NEON/vector parameters yet.
1805    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1806      return false;
1807
1808    // Handle arg promotion, etc.
1809    switch (VA.getLocInfo()) {
1810      case CCValAssign::Full: break;
1811      case CCValAssign::SExt: {
1812        MVT DestVT = VA.getLocVT();
1813        unsigned ResultReg = ARMEmitIntExt(ArgVT, Arg, DestVT,
1814                                           /*isZExt*/false);
1815        assert (ResultReg != 0 && "Failed to emit a sext");
1816        Arg = ResultReg;
1817        ArgVT = DestVT;
1818        break;
1819      }
1820      case CCValAssign::AExt:
1821        // Intentional fall-through.  Handle AExt and ZExt.
1822      case CCValAssign::ZExt: {
1823        MVT DestVT = VA.getLocVT();
1824        unsigned ResultReg = ARMEmitIntExt(ArgVT, Arg, DestVT,
1825                                           /*isZExt*/true);
1826        assert (ResultReg != 0 && "Failed to emit a sext");
1827        Arg = ResultReg;
1828        ArgVT = DestVT;
1829        break;
1830      }
1831      case CCValAssign::BCvt: {
1832        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1833                                 /*TODO: Kill=*/false);
1834        assert(BC != 0 && "Failed to emit a bitcast!");
1835        Arg = BC;
1836        ArgVT = VA.getLocVT();
1837        break;
1838      }
1839      default: llvm_unreachable("Unknown arg promotion!");
1840    }
1841
1842    // Now copy/store arg to correct locations.
1843    if (VA.isRegLoc() && !VA.needsCustom()) {
1844      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1845              VA.getLocReg())
1846        .addReg(Arg);
1847      RegArgs.push_back(VA.getLocReg());
1848    } else if (VA.needsCustom()) {
1849      // TODO: We need custom lowering for vector (v2f64) args.
1850      if (VA.getLocVT() != MVT::f64) return false;
1851
1852      CCValAssign &NextVA = ArgLocs[++i];
1853
1854      // TODO: Only handle register args for now.
1855      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1856
1857      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1858                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1859                      .addReg(NextVA.getLocReg(), RegState::Define)
1860                      .addReg(Arg));
1861      RegArgs.push_back(VA.getLocReg());
1862      RegArgs.push_back(NextVA.getLocReg());
1863    } else {
1864      assert(VA.isMemLoc());
1865      // Need to store on the stack.
1866      Address Addr;
1867      Addr.BaseType = Address::RegBase;
1868      Addr.Base.Reg = ARM::SP;
1869      Addr.Offset = VA.getLocMemOffset();
1870
1871      if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1872    }
1873  }
1874  return true;
1875}
1876
1877bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1878                             const Instruction *I, CallingConv::ID CC,
1879                             unsigned &NumBytes) {
1880  // Issue CALLSEQ_END
1881  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1882  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1883                          TII.get(AdjStackUp))
1884                  .addImm(NumBytes).addImm(0));
1885
1886  // Now the return value.
1887  if (RetVT != MVT::isVoid) {
1888    SmallVector<CCValAssign, 16> RVLocs;
1889    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
1890    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1891
1892    // Copy all of the result registers out of their specified physreg.
1893    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1894      // For this move we copy into two registers and then move into the
1895      // double fp reg we want.
1896      EVT DestVT = RVLocs[0].getValVT();
1897      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1898      unsigned ResultReg = createResultReg(DstRC);
1899      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1900                              TII.get(ARM::VMOVDRR), ResultReg)
1901                      .addReg(RVLocs[0].getLocReg())
1902                      .addReg(RVLocs[1].getLocReg()));
1903
1904      UsedRegs.push_back(RVLocs[0].getLocReg());
1905      UsedRegs.push_back(RVLocs[1].getLocReg());
1906
1907      // Finally update the result.
1908      UpdateValueMap(I, ResultReg);
1909    } else {
1910      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1911      EVT CopyVT = RVLocs[0].getValVT();
1912
1913      // Special handling for extended integers.
1914      if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1915        CopyVT = MVT::i32;
1916
1917      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1918
1919      unsigned ResultReg = createResultReg(DstRC);
1920      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1921              ResultReg).addReg(RVLocs[0].getLocReg());
1922      UsedRegs.push_back(RVLocs[0].getLocReg());
1923
1924      // Finally update the result.
1925      UpdateValueMap(I, ResultReg);
1926    }
1927  }
1928
1929  return true;
1930}
1931
1932bool ARMFastISel::SelectRet(const Instruction *I) {
1933  const ReturnInst *Ret = cast<ReturnInst>(I);
1934  const Function &F = *I->getParent()->getParent();
1935
1936  if (!FuncInfo.CanLowerReturn)
1937    return false;
1938
1939  if (F.isVarArg())
1940    return false;
1941
1942  CallingConv::ID CC = F.getCallingConv();
1943  if (Ret->getNumOperands() > 0) {
1944    SmallVector<ISD::OutputArg, 4> Outs;
1945    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1946                  Outs, TLI);
1947
1948    // Analyze operands of the call, assigning locations to each operand.
1949    SmallVector<CCValAssign, 16> ValLocs;
1950    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
1951    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1952
1953    const Value *RV = Ret->getOperand(0);
1954    unsigned Reg = getRegForValue(RV);
1955    if (Reg == 0)
1956      return false;
1957
1958    // Only handle a single return value for now.
1959    if (ValLocs.size() != 1)
1960      return false;
1961
1962    CCValAssign &VA = ValLocs[0];
1963
1964    // Don't bother handling odd stuff for now.
1965    if (VA.getLocInfo() != CCValAssign::Full)
1966      return false;
1967    // Only handle register returns for now.
1968    if (!VA.isRegLoc())
1969      return false;
1970
1971    unsigned SrcReg = Reg + VA.getValNo();
1972    EVT RVVT = TLI.getValueType(RV->getType());
1973    EVT DestVT = VA.getValVT();
1974    // Special handling for extended integers.
1975    if (RVVT != DestVT) {
1976      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1977        return false;
1978
1979      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1980        return false;
1981
1982      assert(DestVT == MVT::i32 && "ARM should always ext to i32");
1983
1984      bool isZExt = Outs[0].Flags.isZExt();
1985      unsigned ResultReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, isZExt);
1986      if (ResultReg == 0) return false;
1987      SrcReg = ResultReg;
1988    }
1989
1990    // Make the copy.
1991    unsigned DstReg = VA.getLocReg();
1992    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1993    // Avoid a cross-class copy. This is very unlikely.
1994    if (!SrcRC->contains(DstReg))
1995      return false;
1996    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1997            DstReg).addReg(SrcReg);
1998
1999    // Mark the register as live out of the function.
2000    MRI.addLiveOut(VA.getLocReg());
2001  }
2002
2003  unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2004  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2005                          TII.get(RetOpc)));
2006  return true;
2007}
2008
2009unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
2010
2011  // Darwin needs the r9 versions of the opcodes.
2012  bool isDarwin = Subtarget->isTargetDarwin();
2013  if (isThumb2) {
2014    return isDarwin ? ARM::tBLr9 : ARM::tBL;
2015  } else  {
2016    return isDarwin ? ARM::BLr9 : ARM::BL;
2017  }
2018}
2019
2020// A quick function that will emit a call for a named libcall in F with the
2021// vector of passed arguments for the Instruction in I. We can assume that we
2022// can emit a call for any libcall we can produce. This is an abridged version
2023// of the full call infrastructure since we won't need to worry about things
2024// like computed function pointers or strange arguments at call sites.
2025// TODO: Try to unify this and the normal call bits for ARM, then try to unify
2026// with X86.
2027bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2028  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2029
2030  // Handle *simple* calls for now.
2031  Type *RetTy = I->getType();
2032  MVT RetVT;
2033  if (RetTy->isVoidTy())
2034    RetVT = MVT::isVoid;
2035  else if (!isTypeLegal(RetTy, RetVT))
2036    return false;
2037
2038  // TODO: For now if we have long calls specified we don't handle the call.
2039  if (EnableARMLongCalls) return false;
2040
2041  // Set up the argument vectors.
2042  SmallVector<Value*, 8> Args;
2043  SmallVector<unsigned, 8> ArgRegs;
2044  SmallVector<MVT, 8> ArgVTs;
2045  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2046  Args.reserve(I->getNumOperands());
2047  ArgRegs.reserve(I->getNumOperands());
2048  ArgVTs.reserve(I->getNumOperands());
2049  ArgFlags.reserve(I->getNumOperands());
2050  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2051    Value *Op = I->getOperand(i);
2052    unsigned Arg = getRegForValue(Op);
2053    if (Arg == 0) return false;
2054
2055    Type *ArgTy = Op->getType();
2056    MVT ArgVT;
2057    if (!isTypeLegal(ArgTy, ArgVT)) return false;
2058
2059    ISD::ArgFlagsTy Flags;
2060    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2061    Flags.setOrigAlign(OriginalAlignment);
2062
2063    Args.push_back(Op);
2064    ArgRegs.push_back(Arg);
2065    ArgVTs.push_back(ArgVT);
2066    ArgFlags.push_back(Flags);
2067  }
2068
2069  // Handle the arguments now that we've gotten them.
2070  SmallVector<unsigned, 4> RegArgs;
2071  unsigned NumBytes;
2072  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
2073    return false;
2074
2075  // Issue the call, BLr9 for darwin, BL otherwise.
2076  // TODO: Turn this into the table of arm call ops.
2077  MachineInstrBuilder MIB;
2078  unsigned CallOpc = ARMSelectCallOp(NULL);
2079  if(isThumb2)
2080    // Explicitly adding the predicate here.
2081    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2082                         TII.get(CallOpc)))
2083                         .addExternalSymbol(TLI.getLibcallName(Call));
2084  else
2085    // Explicitly adding the predicate here.
2086    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2087                         TII.get(CallOpc))
2088          .addExternalSymbol(TLI.getLibcallName(Call)));
2089
2090  // Add implicit physical register uses to the call.
2091  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2092    MIB.addReg(RegArgs[i]);
2093
2094  // Finish off the call including any return values.
2095  SmallVector<unsigned, 4> UsedRegs;
2096  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
2097
2098  // Set all unused physreg defs as dead.
2099  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2100
2101  return true;
2102}
2103
2104bool ARMFastISel::SelectCall(const Instruction *I,
2105                             const char *IntrMemName = 0) {
2106  const CallInst *CI = cast<CallInst>(I);
2107  const Value *Callee = CI->getCalledValue();
2108
2109  // Can't handle inline asm.
2110  if (isa<InlineAsm>(Callee)) return false;
2111
2112  // Only handle global variable Callees.
2113  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2114  if (!GV)
2115    return false;
2116
2117  // Check the calling convention.
2118  ImmutableCallSite CS(CI);
2119  CallingConv::ID CC = CS.getCallingConv();
2120
2121  // TODO: Avoid some calling conventions?
2122
2123  // Let SDISel handle vararg functions.
2124  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2125  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2126  if (FTy->isVarArg())
2127    return false;
2128
2129  // Handle *simple* calls for now.
2130  Type *RetTy = I->getType();
2131  MVT RetVT;
2132  if (RetTy->isVoidTy())
2133    RetVT = MVT::isVoid;
2134  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2135           RetVT != MVT::i8  && RetVT != MVT::i1)
2136    return false;
2137
2138  // TODO: For now if we have long calls specified we don't handle the call.
2139  if (EnableARMLongCalls) return false;
2140
2141  // Set up the argument vectors.
2142  SmallVector<Value*, 8> Args;
2143  SmallVector<unsigned, 8> ArgRegs;
2144  SmallVector<MVT, 8> ArgVTs;
2145  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2146  Args.reserve(CS.arg_size());
2147  ArgRegs.reserve(CS.arg_size());
2148  ArgVTs.reserve(CS.arg_size());
2149  ArgFlags.reserve(CS.arg_size());
2150  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2151       i != e; ++i) {
2152    // If we're lowering a memory intrinsic instead of a regular call, skip the
2153    // last two arguments, which shouldn't be passed to the underlying function.
2154    if (IntrMemName && e-i <= 2)
2155      break;
2156
2157    ISD::ArgFlagsTy Flags;
2158    unsigned AttrInd = i - CS.arg_begin() + 1;
2159    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2160      Flags.setSExt();
2161    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2162      Flags.setZExt();
2163
2164    // FIXME: Only handle *easy* calls for now.
2165    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2166        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2167        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2168        CS.paramHasAttr(AttrInd, Attribute::ByVal))
2169      return false;
2170
2171    Type *ArgTy = (*i)->getType();
2172    MVT ArgVT;
2173    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2174        ArgVT != MVT::i1)
2175      return false;
2176
2177    unsigned Arg = getRegForValue(*i);
2178    if (Arg == 0)
2179      return false;
2180
2181    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2182    Flags.setOrigAlign(OriginalAlignment);
2183
2184    Args.push_back(*i);
2185    ArgRegs.push_back(Arg);
2186    ArgVTs.push_back(ArgVT);
2187    ArgFlags.push_back(Flags);
2188  }
2189
2190  // Handle the arguments now that we've gotten them.
2191  SmallVector<unsigned, 4> RegArgs;
2192  unsigned NumBytes;
2193  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
2194    return false;
2195
2196  // Issue the call, BLr9 for darwin, BL otherwise.
2197  // TODO: Turn this into the table of arm call ops.
2198  MachineInstrBuilder MIB;
2199  unsigned CallOpc = ARMSelectCallOp(GV);
2200  // Explicitly adding the predicate here.
2201  if(isThumb2) {
2202    // Explicitly adding the predicate here.
2203    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2204                                 TII.get(CallOpc)));
2205    if (!IntrMemName)
2206      MIB.addGlobalAddress(GV, 0, 0);
2207    else
2208      MIB.addExternalSymbol(IntrMemName, 0);
2209  } else {
2210    if (!IntrMemName)
2211      // Explicitly adding the predicate here.
2212      MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2213                                   TII.get(CallOpc))
2214            .addGlobalAddress(GV, 0, 0));
2215    else
2216      MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2217                                   TII.get(CallOpc))
2218            .addExternalSymbol(IntrMemName, 0));
2219  }
2220
2221  // Add implicit physical register uses to the call.
2222  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2223    MIB.addReg(RegArgs[i]);
2224
2225  // Finish off the call including any return values.
2226  SmallVector<unsigned, 4> UsedRegs;
2227  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
2228
2229  // Set all unused physreg defs as dead.
2230  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2231
2232  return true;
2233}
2234
2235bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2236  return Len <= 16;
2237}
2238
2239bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len) {
2240  // Make sure we don't bloat code by inlining very large memcpy's.
2241  if (!ARMIsMemCpySmall(Len))
2242    return false;
2243
2244  // We don't care about alignment here since we just emit integer accesses.
2245  while (Len) {
2246    MVT VT;
2247    if (Len >= 4)
2248      VT = MVT::i32;
2249    else if (Len >= 2)
2250      VT = MVT::i16;
2251    else {
2252      assert(Len == 1);
2253      VT = MVT::i8;
2254    }
2255
2256    bool RV;
2257    unsigned ResultReg;
2258    RV = ARMEmitLoad(VT, ResultReg, Src);
2259    assert (RV = true && "Should be able to handle this load.");
2260    RV = ARMEmitStore(VT, ResultReg, Dest);
2261    assert (RV = true && "Should be able to handle this store.");
2262
2263    unsigned Size = VT.getSizeInBits()/8;
2264    Len -= Size;
2265    Dest.Offset += Size;
2266    Src.Offset += Size;
2267  }
2268
2269  return true;
2270}
2271
2272bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2273  // FIXME: Handle more intrinsics.
2274  switch (I.getIntrinsicID()) {
2275  default: return false;
2276  case Intrinsic::memcpy:
2277  case Intrinsic::memmove: {
2278    const MemTransferInst &MTI = cast<MemTransferInst>(I);
2279    // Don't handle volatile.
2280    if (MTI.isVolatile())
2281      return false;
2282
2283    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2284    // we would emit dead code because we don't currently handle memmoves.
2285    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2286    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2287      // Small memcpy's are common enough that we want to do them without a call
2288      // if possible.
2289      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2290      if (ARMIsMemCpySmall(Len)) {
2291        Address Dest, Src;
2292        if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2293            !ARMComputeAddress(MTI.getRawSource(), Src))
2294          return false;
2295        if (ARMTryEmitSmallMemCpy(Dest, Src, Len))
2296          return true;
2297      }
2298    }
2299
2300    if (!MTI.getLength()->getType()->isIntegerTy(32))
2301      return false;
2302
2303    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2304      return false;
2305
2306    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2307    return SelectCall(&I, IntrMemName);
2308  }
2309  case Intrinsic::memset: {
2310    const MemSetInst &MSI = cast<MemSetInst>(I);
2311    // Don't handle volatile.
2312    if (MSI.isVolatile())
2313      return false;
2314
2315    if (!MSI.getLength()->getType()->isIntegerTy(32))
2316      return false;
2317
2318    if (MSI.getDestAddressSpace() > 255)
2319      return false;
2320
2321    return SelectCall(&I, "memset");
2322  }
2323  }
2324  return false;
2325}
2326
2327bool ARMFastISel::SelectTrunc(const Instruction *I) {
2328  // The high bits for a type smaller than the register size are assumed to be
2329  // undefined.
2330  Value *Op = I->getOperand(0);
2331
2332  EVT SrcVT, DestVT;
2333  SrcVT = TLI.getValueType(Op->getType(), true);
2334  DestVT = TLI.getValueType(I->getType(), true);
2335
2336  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2337    return false;
2338  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2339    return false;
2340
2341  unsigned SrcReg = getRegForValue(Op);
2342  if (!SrcReg) return false;
2343
2344  // Because the high bits are undefined, a truncate doesn't generate
2345  // any code.
2346  UpdateValueMap(I, SrcReg);
2347  return true;
2348}
2349
2350unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT,
2351                                    bool isZExt) {
2352  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2353    return 0;
2354
2355  unsigned Opc;
2356  bool isBoolZext = false;
2357  if (!SrcVT.isSimple()) return 0;
2358  switch (SrcVT.getSimpleVT().SimpleTy) {
2359  default: return 0;
2360  case MVT::i16:
2361    if (!Subtarget->hasV6Ops()) return 0;
2362    if (isZExt)
2363      Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH;
2364    else
2365      Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
2366    break;
2367  case MVT::i8:
2368    if (!Subtarget->hasV6Ops()) return 0;
2369    if (isZExt)
2370      Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB;
2371    else
2372      Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
2373    break;
2374  case MVT::i1:
2375    if (isZExt) {
2376      Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
2377      isBoolZext = true;
2378      break;
2379    }
2380    return 0;
2381  }
2382
2383  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2384  MachineInstrBuilder MIB;
2385  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
2386        .addReg(SrcReg);
2387  if (isBoolZext)
2388    MIB.addImm(1);
2389  else
2390    MIB.addImm(0);
2391  AddOptionalDefs(MIB);
2392  return ResultReg;
2393}
2394
2395bool ARMFastISel::SelectIntExt(const Instruction *I) {
2396  // On ARM, in general, integer casts don't involve legal types; this code
2397  // handles promotable integers.
2398  Type *DestTy = I->getType();
2399  Value *Src = I->getOperand(0);
2400  Type *SrcTy = Src->getType();
2401
2402  EVT SrcVT, DestVT;
2403  SrcVT = TLI.getValueType(SrcTy, true);
2404  DestVT = TLI.getValueType(DestTy, true);
2405
2406  bool isZExt = isa<ZExtInst>(I);
2407  unsigned SrcReg = getRegForValue(Src);
2408  if (!SrcReg) return false;
2409
2410  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2411  if (ResultReg == 0) return false;
2412  UpdateValueMap(I, ResultReg);
2413  return true;
2414}
2415
2416// TODO: SoftFP support.
2417bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2418
2419  switch (I->getOpcode()) {
2420    case Instruction::Load:
2421      return SelectLoad(I);
2422    case Instruction::Store:
2423      return SelectStore(I);
2424    case Instruction::Br:
2425      return SelectBranch(I);
2426    case Instruction::ICmp:
2427    case Instruction::FCmp:
2428      return SelectCmp(I);
2429    case Instruction::FPExt:
2430      return SelectFPExt(I);
2431    case Instruction::FPTrunc:
2432      return SelectFPTrunc(I);
2433    case Instruction::SIToFP:
2434      return SelectSIToFP(I);
2435    case Instruction::FPToSI:
2436      return SelectFPToSI(I);
2437    case Instruction::FAdd:
2438      return SelectBinaryOp(I, ISD::FADD);
2439    case Instruction::FSub:
2440      return SelectBinaryOp(I, ISD::FSUB);
2441    case Instruction::FMul:
2442      return SelectBinaryOp(I, ISD::FMUL);
2443    case Instruction::SDiv:
2444      return SelectSDiv(I);
2445    case Instruction::SRem:
2446      return SelectSRem(I);
2447    case Instruction::Call:
2448      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2449        return SelectIntrinsicCall(*II);
2450      return SelectCall(I);
2451    case Instruction::Select:
2452      return SelectSelect(I);
2453    case Instruction::Ret:
2454      return SelectRet(I);
2455    case Instruction::Trunc:
2456      return SelectTrunc(I);
2457    case Instruction::ZExt:
2458    case Instruction::SExt:
2459      return SelectIntExt(I);
2460    default: break;
2461  }
2462  return false;
2463}
2464
2465/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
2466/// vreg is being provided by the specified load instruction.  If possible,
2467/// try to fold the load as an operand to the instruction, returning true if
2468/// successful.
2469bool ARMFastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
2470                                const LoadInst *LI) {
2471  // Verify we have a legal type before going any further.
2472  MVT VT;
2473  if (!isLoadTypeLegal(LI->getType(), VT))
2474    return false;
2475
2476  // Combine load followed by zero- or sign-extend.
2477  // ldrb r1, [r0]       ldrb r1, [r0]
2478  // uxtb r2, r1     =>
2479  // mov  r3, r2         mov  r3, r1
2480  bool isZExt = true;
2481  switch(MI->getOpcode()) {
2482    default: return false;
2483    case ARM::SXTH:
2484    case ARM::t2SXTH:
2485      isZExt = false;
2486    case ARM::UXTH:
2487    case ARM::t2UXTH:
2488      if (VT != MVT::i16)
2489        return false;
2490    break;
2491    case ARM::SXTB:
2492    case ARM::t2SXTB:
2493      isZExt = false;
2494    case ARM::UXTB:
2495    case ARM::t2UXTB:
2496      if (VT != MVT::i8)
2497        return false;
2498    break;
2499  }
2500  // See if we can handle this address.
2501  Address Addr;
2502  if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2503
2504  unsigned ResultReg = MI->getOperand(0).getReg();
2505  if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2506    return false;
2507  MI->eraseFromParent();
2508  return true;
2509}
2510
2511namespace llvm {
2512  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
2513    // Completely untested on non-darwin.
2514    const TargetMachine &TM = funcInfo.MF->getTarget();
2515
2516    // Darwin and thumb1 only for now.
2517    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2518    if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
2519        !DisableARMFastISel)
2520      return new ARMFastISel(funcInfo);
2521    return 0;
2522  }
2523}
2524