ARMFastISel.cpp revision 8b62abdd7b9c8fc5d78dad86093f4afdfeba949d
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMSubtarget.h"
21#include "ARMTargetMachine.h"
22#include "MCTargetDesc/ARMAddressingModes.h"
23#include "llvm/CallingConv.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/DataLayout.h"
34#include "llvm/DerivedTypes.h"
35#include "llvm/GlobalVariable.h"
36#include "llvm/Instructions.h"
37#include "llvm/IntrinsicInst.h"
38#include "llvm/Module.h"
39#include "llvm/Operator.h"
40#include "llvm/Support/CallSite.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/GetElementPtrTypeIterator.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48using namespace llvm;
49
50extern cl::opt<bool> EnableARMLongCalls;
51
52namespace {
53
54  // All possible address modes, plus some.
55  typedef struct Address {
56    enum {
57      RegBase,
58      FrameIndexBase
59    } BaseType;
60
61    union {
62      unsigned Reg;
63      int FI;
64    } Base;
65
66    int Offset;
67
68    // Innocuous defaults for our address.
69    Address()
70     : BaseType(RegBase), Offset(0) {
71       Base.Reg = 0;
72     }
73  } Address;
74
75class ARMFastISel : public FastISel {
76
77  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
78  /// make the right decision when generating code for different targets.
79  const ARMSubtarget *Subtarget;
80  const TargetMachine &TM;
81  const TargetInstrInfo &TII;
82  const TargetLowering &TLI;
83  ARMFunctionInfo *AFI;
84
85  // Convenience variables to avoid some queries.
86  bool isThumb2;
87  LLVMContext *Context;
88
89  public:
90    explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
91                         const TargetLibraryInfo *libInfo)
92    : FastISel(funcInfo, libInfo),
93      TM(funcInfo.MF->getTarget()),
94      TII(*TM.getInstrInfo()),
95      TLI(*TM.getTargetLowering()) {
96      Subtarget = &TM.getSubtarget<ARMSubtarget>();
97      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
98      isThumb2 = AFI->isThumbFunction();
99      Context = &funcInfo.Fn->getContext();
100    }
101
102    // Code from FastISel.cpp.
103  private:
104    unsigned FastEmitInst_(unsigned MachineInstOpcode,
105                           const TargetRegisterClass *RC);
106    unsigned FastEmitInst_r(unsigned MachineInstOpcode,
107                            const TargetRegisterClass *RC,
108                            unsigned Op0, bool Op0IsKill);
109    unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
110                             const TargetRegisterClass *RC,
111                             unsigned Op0, bool Op0IsKill,
112                             unsigned Op1, bool Op1IsKill);
113    unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
114                              const TargetRegisterClass *RC,
115                              unsigned Op0, bool Op0IsKill,
116                              unsigned Op1, bool Op1IsKill,
117                              unsigned Op2, bool Op2IsKill);
118    unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
119                             const TargetRegisterClass *RC,
120                             unsigned Op0, bool Op0IsKill,
121                             uint64_t Imm);
122    unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
123                             const TargetRegisterClass *RC,
124                             unsigned Op0, bool Op0IsKill,
125                             const ConstantFP *FPImm);
126    unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
127                              const TargetRegisterClass *RC,
128                              unsigned Op0, bool Op0IsKill,
129                              unsigned Op1, bool Op1IsKill,
130                              uint64_t Imm);
131    unsigned FastEmitInst_i(unsigned MachineInstOpcode,
132                            const TargetRegisterClass *RC,
133                            uint64_t Imm);
134    unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
135                             const TargetRegisterClass *RC,
136                             uint64_t Imm1, uint64_t Imm2);
137
138    unsigned FastEmitInst_extractsubreg(MVT RetVT,
139                                        unsigned Op0, bool Op0IsKill,
140                                        uint32_t Idx);
141
142    // Backend specific FastISel code.
143  private:
144    virtual bool TargetSelectInstruction(const Instruction *I);
145    virtual unsigned TargetMaterializeConstant(const Constant *C);
146    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
147    virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
148                               const LoadInst *LI);
149  private:
150  #include "ARMGenFastISel.inc"
151
152    // Instruction selection routines.
153  private:
154    bool SelectLoad(const Instruction *I);
155    bool SelectStore(const Instruction *I);
156    bool SelectBranch(const Instruction *I);
157    bool SelectIndirectBr(const Instruction *I);
158    bool SelectCmp(const Instruction *I);
159    bool SelectFPExt(const Instruction *I);
160    bool SelectFPTrunc(const Instruction *I);
161    bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
162    bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
163    bool SelectIToFP(const Instruction *I, bool isSigned);
164    bool SelectFPToI(const Instruction *I, bool isSigned);
165    bool SelectDiv(const Instruction *I, bool isSigned);
166    bool SelectRem(const Instruction *I, bool isSigned);
167    bool SelectCall(const Instruction *I, const char *IntrMemName);
168    bool SelectIntrinsicCall(const IntrinsicInst &I);
169    bool SelectSelect(const Instruction *I);
170    bool SelectRet(const Instruction *I);
171    bool SelectTrunc(const Instruction *I);
172    bool SelectIntExt(const Instruction *I);
173    bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
174
175    // Utility routines.
176  private:
177    bool isTypeLegal(Type *Ty, MVT &VT);
178    bool isLoadTypeLegal(Type *Ty, MVT &VT);
179    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
180                    bool isZExt);
181    bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
182                     unsigned Alignment = 0, bool isZExt = true,
183                     bool allocReg = true);
184    bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
185                      unsigned Alignment = 0);
186    bool ARMComputeAddress(const Value *Obj, Address &Addr);
187    void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
188    bool ARMIsMemCpySmall(uint64_t Len);
189    bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
190                               unsigned Alignment);
191    unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
192    unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
193    unsigned ARMMaterializeInt(const Constant *C, MVT VT);
194    unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
195    unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
196    unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
197    unsigned ARMSelectCallOp(bool UseReg);
198    unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
199
200    // Call handling routines.
201  private:
202    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
203                                  bool Return,
204                                  bool isVarArg);
205    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
206                         SmallVectorImpl<unsigned> &ArgRegs,
207                         SmallVectorImpl<MVT> &ArgVTs,
208                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
209                         SmallVectorImpl<unsigned> &RegArgs,
210                         CallingConv::ID CC,
211                         unsigned &NumBytes,
212                         bool isVarArg);
213    unsigned getLibcallReg(const Twine &Name);
214    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
215                    const Instruction *I, CallingConv::ID CC,
216                    unsigned &NumBytes, bool isVarArg);
217    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
218
219    // OptionalDef handling routines.
220  private:
221    bool isARMNEONPred(const MachineInstr *MI);
222    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
223    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
224    void AddLoadStoreOperands(MVT VT, Address &Addr,
225                              const MachineInstrBuilder &MIB,
226                              unsigned Flags, bool useAM3);
227};
228
229} // end anonymous namespace
230
231#include "ARMGenCallingConv.inc"
232
233// DefinesOptionalPredicate - This is different from DefinesPredicate in that
234// we don't care about implicit defs here, just places we'll need to add a
235// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
236bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
237  if (!MI->hasOptionalDef())
238    return false;
239
240  // Look to see if our OptionalDef is defining CPSR or CCR.
241  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
242    const MachineOperand &MO = MI->getOperand(i);
243    if (!MO.isReg() || !MO.isDef()) continue;
244    if (MO.getReg() == ARM::CPSR)
245      *CPSR = true;
246  }
247  return true;
248}
249
250bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
251  const MCInstrDesc &MCID = MI->getDesc();
252
253  // If we're a thumb2 or not NEON function we were handled via isPredicable.
254  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
255       AFI->isThumb2Function())
256    return false;
257
258  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
259    if (MCID.OpInfo[i].isPredicate())
260      return true;
261
262  return false;
263}
264
265// If the machine is predicable go ahead and add the predicate operands, if
266// it needs default CC operands add those.
267// TODO: If we want to support thumb1 then we'll need to deal with optional
268// CPSR defs that need to be added before the remaining operands. See s_cc_out
269// for descriptions why.
270const MachineInstrBuilder &
271ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
272  MachineInstr *MI = &*MIB;
273
274  // Do we use a predicate? or...
275  // Are we NEON in ARM mode and have a predicate operand? If so, I know
276  // we're not predicable but add it anyways.
277  if (TII.isPredicable(MI) || isARMNEONPred(MI))
278    AddDefaultPred(MIB);
279
280  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
281  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
282  bool CPSR = false;
283  if (DefinesOptionalPredicate(MI, &CPSR)) {
284    if (CPSR)
285      AddDefaultT1CC(MIB);
286    else
287      AddDefaultCC(MIB);
288  }
289  return MIB;
290}
291
292unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
293                                    const TargetRegisterClass* RC) {
294  unsigned ResultReg = createResultReg(RC);
295  const MCInstrDesc &II = TII.get(MachineInstOpcode);
296
297  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
298  return ResultReg;
299}
300
301unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
302                                     const TargetRegisterClass *RC,
303                                     unsigned Op0, bool Op0IsKill) {
304  unsigned ResultReg = createResultReg(RC);
305  const MCInstrDesc &II = TII.get(MachineInstOpcode);
306
307  if (II.getNumDefs() >= 1) {
308    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
309                   .addReg(Op0, Op0IsKill * RegState::Kill));
310  } else {
311    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
312                   .addReg(Op0, Op0IsKill * RegState::Kill));
313    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
314                   TII.get(TargetOpcode::COPY), ResultReg)
315                   .addReg(II.ImplicitDefs[0]));
316  }
317  return ResultReg;
318}
319
320unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
321                                      const TargetRegisterClass *RC,
322                                      unsigned Op0, bool Op0IsKill,
323                                      unsigned Op1, bool Op1IsKill) {
324  unsigned ResultReg = createResultReg(RC);
325  const MCInstrDesc &II = TII.get(MachineInstOpcode);
326
327  if (II.getNumDefs() >= 1) {
328    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
329                   .addReg(Op0, Op0IsKill * RegState::Kill)
330                   .addReg(Op1, Op1IsKill * RegState::Kill));
331  } else {
332    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
333                   .addReg(Op0, Op0IsKill * RegState::Kill)
334                   .addReg(Op1, Op1IsKill * RegState::Kill));
335    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
336                           TII.get(TargetOpcode::COPY), ResultReg)
337                   .addReg(II.ImplicitDefs[0]));
338  }
339  return ResultReg;
340}
341
342unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
343                                       const TargetRegisterClass *RC,
344                                       unsigned Op0, bool Op0IsKill,
345                                       unsigned Op1, bool Op1IsKill,
346                                       unsigned Op2, bool Op2IsKill) {
347  unsigned ResultReg = createResultReg(RC);
348  const MCInstrDesc &II = TII.get(MachineInstOpcode);
349
350  if (II.getNumDefs() >= 1) {
351    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
352                   .addReg(Op0, Op0IsKill * RegState::Kill)
353                   .addReg(Op1, Op1IsKill * RegState::Kill)
354                   .addReg(Op2, Op2IsKill * RegState::Kill));
355  } else {
356    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
357                   .addReg(Op0, Op0IsKill * RegState::Kill)
358                   .addReg(Op1, Op1IsKill * RegState::Kill)
359                   .addReg(Op2, Op2IsKill * RegState::Kill));
360    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
361                           TII.get(TargetOpcode::COPY), ResultReg)
362                   .addReg(II.ImplicitDefs[0]));
363  }
364  return ResultReg;
365}
366
367unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
368                                      const TargetRegisterClass *RC,
369                                      unsigned Op0, bool Op0IsKill,
370                                      uint64_t Imm) {
371  unsigned ResultReg = createResultReg(RC);
372  const MCInstrDesc &II = TII.get(MachineInstOpcode);
373
374  if (II.getNumDefs() >= 1) {
375    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
376                   .addReg(Op0, Op0IsKill * RegState::Kill)
377                   .addImm(Imm));
378  } else {
379    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
380                   .addReg(Op0, Op0IsKill * RegState::Kill)
381                   .addImm(Imm));
382    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
383                           TII.get(TargetOpcode::COPY), ResultReg)
384                   .addReg(II.ImplicitDefs[0]));
385  }
386  return ResultReg;
387}
388
389unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
390                                      const TargetRegisterClass *RC,
391                                      unsigned Op0, bool Op0IsKill,
392                                      const ConstantFP *FPImm) {
393  unsigned ResultReg = createResultReg(RC);
394  const MCInstrDesc &II = TII.get(MachineInstOpcode);
395
396  if (II.getNumDefs() >= 1) {
397    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
398                   .addReg(Op0, Op0IsKill * RegState::Kill)
399                   .addFPImm(FPImm));
400  } else {
401    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
402                   .addReg(Op0, Op0IsKill * RegState::Kill)
403                   .addFPImm(FPImm));
404    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
405                           TII.get(TargetOpcode::COPY), ResultReg)
406                   .addReg(II.ImplicitDefs[0]));
407  }
408  return ResultReg;
409}
410
411unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
412                                       const TargetRegisterClass *RC,
413                                       unsigned Op0, bool Op0IsKill,
414                                       unsigned Op1, bool Op1IsKill,
415                                       uint64_t Imm) {
416  unsigned ResultReg = createResultReg(RC);
417  const MCInstrDesc &II = TII.get(MachineInstOpcode);
418
419  if (II.getNumDefs() >= 1) {
420    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
421                   .addReg(Op0, Op0IsKill * RegState::Kill)
422                   .addReg(Op1, Op1IsKill * RegState::Kill)
423                   .addImm(Imm));
424  } else {
425    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
426                   .addReg(Op0, Op0IsKill * RegState::Kill)
427                   .addReg(Op1, Op1IsKill * RegState::Kill)
428                   .addImm(Imm));
429    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
430                           TII.get(TargetOpcode::COPY), ResultReg)
431                   .addReg(II.ImplicitDefs[0]));
432  }
433  return ResultReg;
434}
435
436unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
437                                     const TargetRegisterClass *RC,
438                                     uint64_t Imm) {
439  unsigned ResultReg = createResultReg(RC);
440  const MCInstrDesc &II = TII.get(MachineInstOpcode);
441
442  if (II.getNumDefs() >= 1) {
443    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
444                   .addImm(Imm));
445  } else {
446    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
447                   .addImm(Imm));
448    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
449                           TII.get(TargetOpcode::COPY), ResultReg)
450                   .addReg(II.ImplicitDefs[0]));
451  }
452  return ResultReg;
453}
454
455unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
456                                      const TargetRegisterClass *RC,
457                                      uint64_t Imm1, uint64_t Imm2) {
458  unsigned ResultReg = createResultReg(RC);
459  const MCInstrDesc &II = TII.get(MachineInstOpcode);
460
461  if (II.getNumDefs() >= 1) {
462    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
463                    .addImm(Imm1).addImm(Imm2));
464  } else {
465    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
466                    .addImm(Imm1).addImm(Imm2));
467    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
468                            TII.get(TargetOpcode::COPY),
469                            ResultReg)
470                    .addReg(II.ImplicitDefs[0]));
471  }
472  return ResultReg;
473}
474
475unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
476                                                 unsigned Op0, bool Op0IsKill,
477                                                 uint32_t Idx) {
478  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
479  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
480         "Cannot yet extract from physregs");
481
482  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
483                          DL, TII.get(TargetOpcode::COPY), ResultReg)
484                  .addReg(Op0, getKillRegState(Op0IsKill), Idx));
485  return ResultReg;
486}
487
488// TODO: Don't worry about 64-bit now, but when this is fixed remove the
489// checks from the various callers.
490unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
491  if (VT == MVT::f64) return 0;
492
493  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
494  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
495                          TII.get(ARM::VMOVSR), MoveReg)
496                  .addReg(SrcReg));
497  return MoveReg;
498}
499
500unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
501  if (VT == MVT::i64) return 0;
502
503  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
504  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
505                          TII.get(ARM::VMOVRS), MoveReg)
506                  .addReg(SrcReg));
507  return MoveReg;
508}
509
510// For double width floating point we need to materialize two constants
511// (the high and the low) into integer registers then use a move to get
512// the combined constant into an FP reg.
513unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
514  const APFloat Val = CFP->getValueAPF();
515  bool is64bit = VT == MVT::f64;
516
517  // This checks to see if we can use VFP3 instructions to materialize
518  // a constant, otherwise we have to go through the constant pool.
519  if (TLI.isFPImmLegal(Val, VT)) {
520    int Imm;
521    unsigned Opc;
522    if (is64bit) {
523      Imm = ARM_AM::getFP64Imm(Val);
524      Opc = ARM::FCONSTD;
525    } else {
526      Imm = ARM_AM::getFP32Imm(Val);
527      Opc = ARM::FCONSTS;
528    }
529    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
530    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
531                            DestReg)
532                    .addImm(Imm));
533    return DestReg;
534  }
535
536  // Require VFP2 for loading fp constants.
537  if (!Subtarget->hasVFP2()) return false;
538
539  // MachineConstantPool wants an explicit alignment.
540  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
541  if (Align == 0) {
542    // TODO: Figure out if this is correct.
543    Align = TD.getTypeAllocSize(CFP->getType());
544  }
545  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
546  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
547  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
548
549  // The extra reg is for addrmode5.
550  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
551                          DestReg)
552                  .addConstantPoolIndex(Idx)
553                  .addReg(0));
554  return DestReg;
555}
556
557unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
558
559  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
560    return false;
561
562  // If we can do this in a single instruction without a constant pool entry
563  // do so now.
564  const ConstantInt *CI = cast<ConstantInt>(C);
565  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
566    unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
567    const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
568      &ARM::GPRRegClass;
569    unsigned ImmReg = createResultReg(RC);
570    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
571                            TII.get(Opc), ImmReg)
572                    .addImm(CI->getZExtValue()));
573    return ImmReg;
574  }
575
576  // Use MVN to emit negative constants.
577  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
578    unsigned Imm = (unsigned)~(CI->getSExtValue());
579    bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
580      (ARM_AM::getSOImmVal(Imm) != -1);
581    if (UseImm) {
582      unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
583      unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
584      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
585                              TII.get(Opc), ImmReg)
586                      .addImm(Imm));
587      return ImmReg;
588    }
589  }
590
591  // Load from constant pool.  For now 32-bit only.
592  if (VT != MVT::i32)
593    return false;
594
595  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
596
597  // MachineConstantPool wants an explicit alignment.
598  unsigned Align = TD.getPrefTypeAlignment(C->getType());
599  if (Align == 0) {
600    // TODO: Figure out if this is correct.
601    Align = TD.getTypeAllocSize(C->getType());
602  }
603  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
604
605  if (isThumb2)
606    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
607                            TII.get(ARM::t2LDRpci), DestReg)
608                    .addConstantPoolIndex(Idx));
609  else
610    // The extra immediate is for addrmode2.
611    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
612                            TII.get(ARM::LDRcp), DestReg)
613                    .addConstantPoolIndex(Idx)
614                    .addImm(0));
615
616  return DestReg;
617}
618
619unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
620  // For now 32-bit only.
621  if (VT != MVT::i32) return 0;
622
623  Reloc::Model RelocM = TM.getRelocationModel();
624  bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
625  const TargetRegisterClass *RC = isThumb2 ?
626    (const TargetRegisterClass*)&ARM::rGPRRegClass :
627    (const TargetRegisterClass*)&ARM::GPRRegClass;
628  unsigned DestReg = createResultReg(RC);
629
630  // Use movw+movt when possible, it avoids constant pool entries.
631  // Darwin targets don't support movt with Reloc::Static, see
632  // ARMTargetLowering::LowerGlobalAddressDarwin.  Other targets only support
633  // static movt relocations.
634  if (Subtarget->useMovt() &&
635      Subtarget->isTargetDarwin() == (RelocM != Reloc::Static)) {
636    unsigned Opc;
637    switch (RelocM) {
638    case Reloc::PIC_:
639      Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
640      break;
641    case Reloc::DynamicNoPIC:
642      Opc = isThumb2 ? ARM::t2MOV_ga_dyn : ARM::MOV_ga_dyn;
643      break;
644    default:
645      Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
646      break;
647    }
648    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
649                            DestReg).addGlobalAddress(GV));
650  } else {
651    // MachineConstantPool wants an explicit alignment.
652    unsigned Align = TD.getPrefTypeAlignment(GV->getType());
653    if (Align == 0) {
654      // TODO: Figure out if this is correct.
655      Align = TD.getTypeAllocSize(GV->getType());
656    }
657
658    if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_)
659      return ARMLowerPICELF(GV, Align, VT);
660
661    // Grab index.
662    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
663      (Subtarget->isThumb() ? 4 : 8);
664    unsigned Id = AFI->createPICLabelUId();
665    ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
666                                                                ARMCP::CPValue,
667                                                                PCAdj);
668    unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
669
670    // Load value.
671    MachineInstrBuilder MIB;
672    if (isThumb2) {
673      unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
674      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
675        .addConstantPoolIndex(Idx);
676      if (RelocM == Reloc::PIC_)
677        MIB.addImm(Id);
678      AddOptionalDefs(MIB);
679    } else {
680      // The extra immediate is for addrmode2.
681      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
682                    DestReg)
683        .addConstantPoolIndex(Idx)
684        .addImm(0);
685      AddOptionalDefs(MIB);
686
687      if (RelocM == Reloc::PIC_) {
688        unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
689        unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
690
691        MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
692                                          DL, TII.get(Opc), NewDestReg)
693                                  .addReg(DestReg)
694                                  .addImm(Id);
695        AddOptionalDefs(MIB);
696        return NewDestReg;
697      }
698    }
699  }
700
701  if (IsIndirect) {
702    MachineInstrBuilder MIB;
703    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
704    if (isThumb2)
705      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
706                    TII.get(ARM::t2LDRi12), NewDestReg)
707            .addReg(DestReg)
708            .addImm(0);
709    else
710      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
711                    NewDestReg)
712            .addReg(DestReg)
713            .addImm(0);
714    DestReg = NewDestReg;
715    AddOptionalDefs(MIB);
716  }
717
718  return DestReg;
719}
720
721unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
722  EVT CEVT = TLI.getValueType(C->getType(), true);
723
724  // Only handle simple types.
725  if (!CEVT.isSimple()) return 0;
726  MVT VT = CEVT.getSimpleVT();
727
728  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
729    return ARMMaterializeFP(CFP, VT);
730  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
731    return ARMMaterializeGV(GV, VT);
732  else if (isa<ConstantInt>(C))
733    return ARMMaterializeInt(C, VT);
734
735  return 0;
736}
737
738// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
739
740unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
741  // Don't handle dynamic allocas.
742  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
743
744  MVT VT;
745  if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
746
747  DenseMap<const AllocaInst*, int>::iterator SI =
748    FuncInfo.StaticAllocaMap.find(AI);
749
750  // This will get lowered later into the correct offsets and registers
751  // via rewriteXFrameIndex.
752  if (SI != FuncInfo.StaticAllocaMap.end()) {
753    const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
754    unsigned ResultReg = createResultReg(RC);
755    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
756    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
757                            TII.get(Opc), ResultReg)
758                            .addFrameIndex(SI->second)
759                            .addImm(0));
760    return ResultReg;
761  }
762
763  return 0;
764}
765
766bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
767  EVT evt = TLI.getValueType(Ty, true);
768
769  // Only handle simple types.
770  if (evt == MVT::Other || !evt.isSimple()) return false;
771  VT = evt.getSimpleVT();
772
773  // Handle all legal types, i.e. a register that will directly hold this
774  // value.
775  return TLI.isTypeLegal(VT);
776}
777
778bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
779  if (isTypeLegal(Ty, VT)) return true;
780
781  // If this is a type than can be sign or zero-extended to a basic operation
782  // go ahead and accept it now.
783  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
784    return true;
785
786  return false;
787}
788
789// Computes the address to get to an object.
790bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
791  // Some boilerplate from the X86 FastISel.
792  const User *U = NULL;
793  unsigned Opcode = Instruction::UserOp1;
794  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
795    // Don't walk into other basic blocks unless the object is an alloca from
796    // another block, otherwise it may not have a virtual register assigned.
797    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
798        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
799      Opcode = I->getOpcode();
800      U = I;
801    }
802  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
803    Opcode = C->getOpcode();
804    U = C;
805  }
806
807  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
808    if (Ty->getAddressSpace() > 255)
809      // Fast instruction selection doesn't support the special
810      // address spaces.
811      return false;
812
813  switch (Opcode) {
814    default:
815    break;
816    case Instruction::BitCast: {
817      // Look through bitcasts.
818      return ARMComputeAddress(U->getOperand(0), Addr);
819    }
820    case Instruction::IntToPtr: {
821      // Look past no-op inttoptrs.
822      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
823        return ARMComputeAddress(U->getOperand(0), Addr);
824      break;
825    }
826    case Instruction::PtrToInt: {
827      // Look past no-op ptrtoints.
828      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
829        return ARMComputeAddress(U->getOperand(0), Addr);
830      break;
831    }
832    case Instruction::GetElementPtr: {
833      Address SavedAddr = Addr;
834      int TmpOffset = Addr.Offset;
835
836      // Iterate through the GEP folding the constants into offsets where
837      // we can.
838      gep_type_iterator GTI = gep_type_begin(U);
839      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
840           i != e; ++i, ++GTI) {
841        const Value *Op = *i;
842        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
843          const StructLayout *SL = TD.getStructLayout(STy);
844          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
845          TmpOffset += SL->getElementOffset(Idx);
846        } else {
847          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
848          for (;;) {
849            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
850              // Constant-offset addressing.
851              TmpOffset += CI->getSExtValue() * S;
852              break;
853            }
854            if (isa<AddOperator>(Op) &&
855                (!isa<Instruction>(Op) ||
856                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
857                 == FuncInfo.MBB) &&
858                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
859              // An add (in the same block) with a constant operand. Fold the
860              // constant.
861              ConstantInt *CI =
862              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
863              TmpOffset += CI->getSExtValue() * S;
864              // Iterate on the other operand.
865              Op = cast<AddOperator>(Op)->getOperand(0);
866              continue;
867            }
868            // Unsupported
869            goto unsupported_gep;
870          }
871        }
872      }
873
874      // Try to grab the base operand now.
875      Addr.Offset = TmpOffset;
876      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
877
878      // We failed, restore everything and try the other options.
879      Addr = SavedAddr;
880
881      unsupported_gep:
882      break;
883    }
884    case Instruction::Alloca: {
885      const AllocaInst *AI = cast<AllocaInst>(Obj);
886      DenseMap<const AllocaInst*, int>::iterator SI =
887        FuncInfo.StaticAllocaMap.find(AI);
888      if (SI != FuncInfo.StaticAllocaMap.end()) {
889        Addr.BaseType = Address::FrameIndexBase;
890        Addr.Base.FI = SI->second;
891        return true;
892      }
893      break;
894    }
895  }
896
897  // Try to get this in a register if nothing else has worked.
898  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
899  return Addr.Base.Reg != 0;
900}
901
902void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
903  bool needsLowering = false;
904  switch (VT.SimpleTy) {
905    default: llvm_unreachable("Unhandled load/store type!");
906    case MVT::i1:
907    case MVT::i8:
908    case MVT::i16:
909    case MVT::i32:
910      if (!useAM3) {
911        // Integer loads/stores handle 12-bit offsets.
912        needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
913        // Handle negative offsets.
914        if (needsLowering && isThumb2)
915          needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
916                            Addr.Offset > -256);
917      } else {
918        // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
919        needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
920      }
921      break;
922    case MVT::f32:
923    case MVT::f64:
924      // Floating point operands handle 8-bit offsets.
925      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
926      break;
927  }
928
929  // If this is a stack pointer and the offset needs to be simplified then
930  // put the alloca address into a register, set the base type back to
931  // register and continue. This should almost never happen.
932  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
933    const TargetRegisterClass *RC = isThumb2 ?
934      (const TargetRegisterClass*)&ARM::tGPRRegClass :
935      (const TargetRegisterClass*)&ARM::GPRRegClass;
936    unsigned ResultReg = createResultReg(RC);
937    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
938    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
939                            TII.get(Opc), ResultReg)
940                            .addFrameIndex(Addr.Base.FI)
941                            .addImm(0));
942    Addr.Base.Reg = ResultReg;
943    Addr.BaseType = Address::RegBase;
944  }
945
946  // Since the offset is too large for the load/store instruction
947  // get the reg+offset into a register.
948  if (needsLowering) {
949    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
950                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
951    Addr.Offset = 0;
952  }
953}
954
955void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
956                                       const MachineInstrBuilder &MIB,
957                                       unsigned Flags, bool useAM3) {
958  // addrmode5 output depends on the selection dag addressing dividing the
959  // offset by 4 that it then later multiplies. Do this here as well.
960  if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
961    Addr.Offset /= 4;
962
963  // Frame base works a bit differently. Handle it separately.
964  if (Addr.BaseType == Address::FrameIndexBase) {
965    int FI = Addr.Base.FI;
966    int Offset = Addr.Offset;
967    MachineMemOperand *MMO =
968          FuncInfo.MF->getMachineMemOperand(
969                                  MachinePointerInfo::getFixedStack(FI, Offset),
970                                  Flags,
971                                  MFI.getObjectSize(FI),
972                                  MFI.getObjectAlignment(FI));
973    // Now add the rest of the operands.
974    MIB.addFrameIndex(FI);
975
976    // ARM halfword load/stores and signed byte loads need an additional
977    // operand.
978    if (useAM3) {
979      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
980      MIB.addReg(0);
981      MIB.addImm(Imm);
982    } else {
983      MIB.addImm(Addr.Offset);
984    }
985    MIB.addMemOperand(MMO);
986  } else {
987    // Now add the rest of the operands.
988    MIB.addReg(Addr.Base.Reg);
989
990    // ARM halfword load/stores and signed byte loads need an additional
991    // operand.
992    if (useAM3) {
993      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
994      MIB.addReg(0);
995      MIB.addImm(Imm);
996    } else {
997      MIB.addImm(Addr.Offset);
998    }
999  }
1000  AddOptionalDefs(MIB);
1001}
1002
1003bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
1004                              unsigned Alignment, bool isZExt, bool allocReg) {
1005  unsigned Opc;
1006  bool useAM3 = false;
1007  bool needVMOV = false;
1008  const TargetRegisterClass *RC;
1009  switch (VT.SimpleTy) {
1010    // This is mostly going to be Neon/vector support.
1011    default: return false;
1012    case MVT::i1:
1013    case MVT::i8:
1014      if (isThumb2) {
1015        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1016          Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
1017        else
1018          Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
1019      } else {
1020        if (isZExt) {
1021          Opc = ARM::LDRBi12;
1022        } else {
1023          Opc = ARM::LDRSB;
1024          useAM3 = true;
1025        }
1026      }
1027      RC = &ARM::GPRRegClass;
1028      break;
1029    case MVT::i16:
1030      if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1031        return false;
1032
1033      if (isThumb2) {
1034        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1035          Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
1036        else
1037          Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
1038      } else {
1039        Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1040        useAM3 = true;
1041      }
1042      RC = &ARM::GPRRegClass;
1043      break;
1044    case MVT::i32:
1045      if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1046        return false;
1047
1048      if (isThumb2) {
1049        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1050          Opc = ARM::t2LDRi8;
1051        else
1052          Opc = ARM::t2LDRi12;
1053      } else {
1054        Opc = ARM::LDRi12;
1055      }
1056      RC = &ARM::GPRRegClass;
1057      break;
1058    case MVT::f32:
1059      if (!Subtarget->hasVFP2()) return false;
1060      // Unaligned loads need special handling. Floats require word-alignment.
1061      if (Alignment && Alignment < 4) {
1062        needVMOV = true;
1063        VT = MVT::i32;
1064        Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1065        RC = &ARM::GPRRegClass;
1066      } else {
1067        Opc = ARM::VLDRS;
1068        RC = TLI.getRegClassFor(VT);
1069      }
1070      break;
1071    case MVT::f64:
1072      if (!Subtarget->hasVFP2()) return false;
1073      // FIXME: Unaligned loads need special handling.  Doublewords require
1074      // word-alignment.
1075      if (Alignment && Alignment < 4)
1076        return false;
1077
1078      Opc = ARM::VLDRD;
1079      RC = TLI.getRegClassFor(VT);
1080      break;
1081  }
1082  // Simplify this down to something we can handle.
1083  ARMSimplifyAddress(Addr, VT, useAM3);
1084
1085  // Create the base instruction, then add the operands.
1086  if (allocReg)
1087    ResultReg = createResultReg(RC);
1088  assert (ResultReg > 255 && "Expected an allocated virtual register.");
1089  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1090                                    TII.get(Opc), ResultReg);
1091  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1092
1093  // If we had an unaligned load of a float we've converted it to an regular
1094  // load.  Now we must move from the GRP to the FP register.
1095  if (needVMOV) {
1096    unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1097    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1098                            TII.get(ARM::VMOVSR), MoveReg)
1099                    .addReg(ResultReg));
1100    ResultReg = MoveReg;
1101  }
1102  return true;
1103}
1104
1105bool ARMFastISel::SelectLoad(const Instruction *I) {
1106  // Atomic loads need special handling.
1107  if (cast<LoadInst>(I)->isAtomic())
1108    return false;
1109
1110  // Verify we have a legal type before going any further.
1111  MVT VT;
1112  if (!isLoadTypeLegal(I->getType(), VT))
1113    return false;
1114
1115  // See if we can handle this address.
1116  Address Addr;
1117  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1118
1119  unsigned ResultReg;
1120  if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1121    return false;
1122  UpdateValueMap(I, ResultReg);
1123  return true;
1124}
1125
1126bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1127                               unsigned Alignment) {
1128  unsigned StrOpc;
1129  bool useAM3 = false;
1130  switch (VT.SimpleTy) {
1131    // This is mostly going to be Neon/vector support.
1132    default: return false;
1133    case MVT::i1: {
1134      unsigned Res = createResultReg(isThumb2 ?
1135        (const TargetRegisterClass*)&ARM::tGPRRegClass :
1136        (const TargetRegisterClass*)&ARM::GPRRegClass);
1137      unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1138      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1139                              TII.get(Opc), Res)
1140                      .addReg(SrcReg).addImm(1));
1141      SrcReg = Res;
1142    } // Fallthrough here.
1143    case MVT::i8:
1144      if (isThumb2) {
1145        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1146          StrOpc = ARM::t2STRBi8;
1147        else
1148          StrOpc = ARM::t2STRBi12;
1149      } else {
1150        StrOpc = ARM::STRBi12;
1151      }
1152      break;
1153    case MVT::i16:
1154      if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1155        return false;
1156
1157      if (isThumb2) {
1158        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1159          StrOpc = ARM::t2STRHi8;
1160        else
1161          StrOpc = ARM::t2STRHi12;
1162      } else {
1163        StrOpc = ARM::STRH;
1164        useAM3 = true;
1165      }
1166      break;
1167    case MVT::i32:
1168      if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1169        return false;
1170
1171      if (isThumb2) {
1172        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1173          StrOpc = ARM::t2STRi8;
1174        else
1175          StrOpc = ARM::t2STRi12;
1176      } else {
1177        StrOpc = ARM::STRi12;
1178      }
1179      break;
1180    case MVT::f32:
1181      if (!Subtarget->hasVFP2()) return false;
1182      // Unaligned stores need special handling. Floats require word-alignment.
1183      if (Alignment && Alignment < 4) {
1184        unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1185        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1186                                TII.get(ARM::VMOVRS), MoveReg)
1187                        .addReg(SrcReg));
1188        SrcReg = MoveReg;
1189        VT = MVT::i32;
1190        StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1191      } else {
1192        StrOpc = ARM::VSTRS;
1193      }
1194      break;
1195    case MVT::f64:
1196      if (!Subtarget->hasVFP2()) return false;
1197      // FIXME: Unaligned stores need special handling.  Doublewords require
1198      // word-alignment.
1199      if (Alignment && Alignment < 4)
1200          return false;
1201
1202      StrOpc = ARM::VSTRD;
1203      break;
1204  }
1205  // Simplify this down to something we can handle.
1206  ARMSimplifyAddress(Addr, VT, useAM3);
1207
1208  // Create the base instruction, then add the operands.
1209  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1210                                    TII.get(StrOpc))
1211                            .addReg(SrcReg);
1212  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1213  return true;
1214}
1215
1216bool ARMFastISel::SelectStore(const Instruction *I) {
1217  Value *Op0 = I->getOperand(0);
1218  unsigned SrcReg = 0;
1219
1220  // Atomic stores need special handling.
1221  if (cast<StoreInst>(I)->isAtomic())
1222    return false;
1223
1224  // Verify we have a legal type before going any further.
1225  MVT VT;
1226  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1227    return false;
1228
1229  // Get the value to be stored into a register.
1230  SrcReg = getRegForValue(Op0);
1231  if (SrcReg == 0) return false;
1232
1233  // See if we can handle this address.
1234  Address Addr;
1235  if (!ARMComputeAddress(I->getOperand(1), Addr))
1236    return false;
1237
1238  if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1239    return false;
1240  return true;
1241}
1242
1243static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1244  switch (Pred) {
1245    // Needs two compares...
1246    case CmpInst::FCMP_ONE:
1247    case CmpInst::FCMP_UEQ:
1248    default:
1249      // AL is our "false" for now. The other two need more compares.
1250      return ARMCC::AL;
1251    case CmpInst::ICMP_EQ:
1252    case CmpInst::FCMP_OEQ:
1253      return ARMCC::EQ;
1254    case CmpInst::ICMP_SGT:
1255    case CmpInst::FCMP_OGT:
1256      return ARMCC::GT;
1257    case CmpInst::ICMP_SGE:
1258    case CmpInst::FCMP_OGE:
1259      return ARMCC::GE;
1260    case CmpInst::ICMP_UGT:
1261    case CmpInst::FCMP_UGT:
1262      return ARMCC::HI;
1263    case CmpInst::FCMP_OLT:
1264      return ARMCC::MI;
1265    case CmpInst::ICMP_ULE:
1266    case CmpInst::FCMP_OLE:
1267      return ARMCC::LS;
1268    case CmpInst::FCMP_ORD:
1269      return ARMCC::VC;
1270    case CmpInst::FCMP_UNO:
1271      return ARMCC::VS;
1272    case CmpInst::FCMP_UGE:
1273      return ARMCC::PL;
1274    case CmpInst::ICMP_SLT:
1275    case CmpInst::FCMP_ULT:
1276      return ARMCC::LT;
1277    case CmpInst::ICMP_SLE:
1278    case CmpInst::FCMP_ULE:
1279      return ARMCC::LE;
1280    case CmpInst::FCMP_UNE:
1281    case CmpInst::ICMP_NE:
1282      return ARMCC::NE;
1283    case CmpInst::ICMP_UGE:
1284      return ARMCC::HS;
1285    case CmpInst::ICMP_ULT:
1286      return ARMCC::LO;
1287  }
1288}
1289
1290bool ARMFastISel::SelectBranch(const Instruction *I) {
1291  const BranchInst *BI = cast<BranchInst>(I);
1292  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1293  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1294
1295  // Simple branch support.
1296
1297  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1298  // behavior.
1299  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1300    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1301
1302      // Get the compare predicate.
1303      // Try to take advantage of fallthrough opportunities.
1304      CmpInst::Predicate Predicate = CI->getPredicate();
1305      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1306        std::swap(TBB, FBB);
1307        Predicate = CmpInst::getInversePredicate(Predicate);
1308      }
1309
1310      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1311
1312      // We may not handle every CC for now.
1313      if (ARMPred == ARMCC::AL) return false;
1314
1315      // Emit the compare.
1316      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1317        return false;
1318
1319      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1320      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1321      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1322      FastEmitBranch(FBB, DL);
1323      FuncInfo.MBB->addSuccessor(TBB);
1324      return true;
1325    }
1326  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1327    MVT SourceVT;
1328    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1329        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1330      unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1331      unsigned OpReg = getRegForValue(TI->getOperand(0));
1332      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1333                              TII.get(TstOpc))
1334                      .addReg(OpReg).addImm(1));
1335
1336      unsigned CCMode = ARMCC::NE;
1337      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1338        std::swap(TBB, FBB);
1339        CCMode = ARMCC::EQ;
1340      }
1341
1342      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1343      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1344      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1345
1346      FastEmitBranch(FBB, DL);
1347      FuncInfo.MBB->addSuccessor(TBB);
1348      return true;
1349    }
1350  } else if (const ConstantInt *CI =
1351             dyn_cast<ConstantInt>(BI->getCondition())) {
1352    uint64_t Imm = CI->getZExtValue();
1353    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1354    FastEmitBranch(Target, DL);
1355    return true;
1356  }
1357
1358  unsigned CmpReg = getRegForValue(BI->getCondition());
1359  if (CmpReg == 0) return false;
1360
1361  // We've been divorced from our compare!  Our block was split, and
1362  // now our compare lives in a predecessor block.  We musn't
1363  // re-compare here, as the children of the compare aren't guaranteed
1364  // live across the block boundary (we *could* check for this).
1365  // Regardless, the compare has been done in the predecessor block,
1366  // and it left a value for us in a virtual register.  Ergo, we test
1367  // the one-bit value left in the virtual register.
1368  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1369  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1370                  .addReg(CmpReg).addImm(1));
1371
1372  unsigned CCMode = ARMCC::NE;
1373  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1374    std::swap(TBB, FBB);
1375    CCMode = ARMCC::EQ;
1376  }
1377
1378  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1379  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1380                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1381  FastEmitBranch(FBB, DL);
1382  FuncInfo.MBB->addSuccessor(TBB);
1383  return true;
1384}
1385
1386bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1387  unsigned AddrReg = getRegForValue(I->getOperand(0));
1388  if (AddrReg == 0) return false;
1389
1390  unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1391  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
1392                  .addReg(AddrReg));
1393
1394  const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1395  for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
1396    FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
1397
1398  return true;
1399}
1400
1401bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1402                             bool isZExt) {
1403  Type *Ty = Src1Value->getType();
1404  EVT SrcEVT = TLI.getValueType(Ty, true);
1405  if (!SrcEVT.isSimple()) return false;
1406  MVT SrcVT = SrcEVT.getSimpleVT();
1407
1408  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1409  if (isFloat && !Subtarget->hasVFP2())
1410    return false;
1411
1412  // Check to see if the 2nd operand is a constant that we can encode directly
1413  // in the compare.
1414  int Imm = 0;
1415  bool UseImm = false;
1416  bool isNegativeImm = false;
1417  // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1418  // Thus, Src1Value may be a ConstantInt, but we're missing it.
1419  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1420    if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1421        SrcVT == MVT::i1) {
1422      const APInt &CIVal = ConstInt->getValue();
1423      Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1424      // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1425      // then a cmn, because there is no way to represent 2147483648 as a
1426      // signed 32-bit int.
1427      if (Imm < 0 && Imm != (int)0x80000000) {
1428        isNegativeImm = true;
1429        Imm = -Imm;
1430      }
1431      UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1432        (ARM_AM::getSOImmVal(Imm) != -1);
1433    }
1434  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1435    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1436      if (ConstFP->isZero() && !ConstFP->isNegative())
1437        UseImm = true;
1438  }
1439
1440  unsigned CmpOpc;
1441  bool isICmp = true;
1442  bool needsExt = false;
1443  switch (SrcVT.SimpleTy) {
1444    default: return false;
1445    // TODO: Verify compares.
1446    case MVT::f32:
1447      isICmp = false;
1448      CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1449      break;
1450    case MVT::f64:
1451      isICmp = false;
1452      CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1453      break;
1454    case MVT::i1:
1455    case MVT::i8:
1456    case MVT::i16:
1457      needsExt = true;
1458    // Intentional fall-through.
1459    case MVT::i32:
1460      if (isThumb2) {
1461        if (!UseImm)
1462          CmpOpc = ARM::t2CMPrr;
1463        else
1464          CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1465      } else {
1466        if (!UseImm)
1467          CmpOpc = ARM::CMPrr;
1468        else
1469          CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1470      }
1471      break;
1472  }
1473
1474  unsigned SrcReg1 = getRegForValue(Src1Value);
1475  if (SrcReg1 == 0) return false;
1476
1477  unsigned SrcReg2 = 0;
1478  if (!UseImm) {
1479    SrcReg2 = getRegForValue(Src2Value);
1480    if (SrcReg2 == 0) return false;
1481  }
1482
1483  // We have i1, i8, or i16, we need to either zero extend or sign extend.
1484  if (needsExt) {
1485    SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1486    if (SrcReg1 == 0) return false;
1487    if (!UseImm) {
1488      SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1489      if (SrcReg2 == 0) return false;
1490    }
1491  }
1492
1493  if (!UseImm) {
1494    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1495                            TII.get(CmpOpc))
1496                    .addReg(SrcReg1).addReg(SrcReg2));
1497  } else {
1498    MachineInstrBuilder MIB;
1499    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1500      .addReg(SrcReg1);
1501
1502    // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1503    if (isICmp)
1504      MIB.addImm(Imm);
1505    AddOptionalDefs(MIB);
1506  }
1507
1508  // For floating point we need to move the result to a comparison register
1509  // that we can then use for branches.
1510  if (Ty->isFloatTy() || Ty->isDoubleTy())
1511    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1512                            TII.get(ARM::FMSTAT)));
1513  return true;
1514}
1515
1516bool ARMFastISel::SelectCmp(const Instruction *I) {
1517  const CmpInst *CI = cast<CmpInst>(I);
1518
1519  // Get the compare predicate.
1520  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1521
1522  // We may not handle every CC for now.
1523  if (ARMPred == ARMCC::AL) return false;
1524
1525  // Emit the compare.
1526  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1527    return false;
1528
1529  // Now set a register based on the comparison. Explicitly set the predicates
1530  // here.
1531  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1532  const TargetRegisterClass *RC = isThumb2 ?
1533    (const TargetRegisterClass*)&ARM::rGPRRegClass :
1534    (const TargetRegisterClass*)&ARM::GPRRegClass;
1535  unsigned DestReg = createResultReg(RC);
1536  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1537  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1538  // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1539  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1540          .addReg(ZeroReg).addImm(1)
1541          .addImm(ARMPred).addReg(ARM::CPSR);
1542
1543  UpdateValueMap(I, DestReg);
1544  return true;
1545}
1546
1547bool ARMFastISel::SelectFPExt(const Instruction *I) {
1548  // Make sure we have VFP and that we're extending float to double.
1549  if (!Subtarget->hasVFP2()) return false;
1550
1551  Value *V = I->getOperand(0);
1552  if (!I->getType()->isDoubleTy() ||
1553      !V->getType()->isFloatTy()) return false;
1554
1555  unsigned Op = getRegForValue(V);
1556  if (Op == 0) return false;
1557
1558  unsigned Result = createResultReg(&ARM::DPRRegClass);
1559  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1560                          TII.get(ARM::VCVTDS), Result)
1561                  .addReg(Op));
1562  UpdateValueMap(I, Result);
1563  return true;
1564}
1565
1566bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1567  // Make sure we have VFP and that we're truncating double to float.
1568  if (!Subtarget->hasVFP2()) return false;
1569
1570  Value *V = I->getOperand(0);
1571  if (!(I->getType()->isFloatTy() &&
1572        V->getType()->isDoubleTy())) return false;
1573
1574  unsigned Op = getRegForValue(V);
1575  if (Op == 0) return false;
1576
1577  unsigned Result = createResultReg(&ARM::SPRRegClass);
1578  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1579                          TII.get(ARM::VCVTSD), Result)
1580                  .addReg(Op));
1581  UpdateValueMap(I, Result);
1582  return true;
1583}
1584
1585bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1586  // Make sure we have VFP.
1587  if (!Subtarget->hasVFP2()) return false;
1588
1589  MVT DstVT;
1590  Type *Ty = I->getType();
1591  if (!isTypeLegal(Ty, DstVT))
1592    return false;
1593
1594  Value *Src = I->getOperand(0);
1595  EVT SrcEVT = TLI.getValueType(Src->getType(), true);
1596  if (!SrcEVT.isSimple())
1597    return false;
1598  MVT SrcVT = SrcEVT.getSimpleVT();
1599  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1600    return false;
1601
1602  unsigned SrcReg = getRegForValue(Src);
1603  if (SrcReg == 0) return false;
1604
1605  // Handle sign-extension.
1606  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1607    SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1608                                       /*isZExt*/!isSigned);
1609    if (SrcReg == 0) return false;
1610  }
1611
1612  // The conversion routine works on fp-reg to fp-reg and the operand above
1613  // was an integer, move it to the fp registers if possible.
1614  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1615  if (FP == 0) return false;
1616
1617  unsigned Opc;
1618  if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1619  else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1620  else return false;
1621
1622  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1623  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1624                          ResultReg)
1625                  .addReg(FP));
1626  UpdateValueMap(I, ResultReg);
1627  return true;
1628}
1629
1630bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1631  // Make sure we have VFP.
1632  if (!Subtarget->hasVFP2()) return false;
1633
1634  MVT DstVT;
1635  Type *RetTy = I->getType();
1636  if (!isTypeLegal(RetTy, DstVT))
1637    return false;
1638
1639  unsigned Op = getRegForValue(I->getOperand(0));
1640  if (Op == 0) return false;
1641
1642  unsigned Opc;
1643  Type *OpTy = I->getOperand(0)->getType();
1644  if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1645  else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1646  else return false;
1647
1648  // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1649  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1650  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1651                          ResultReg)
1652                  .addReg(Op));
1653
1654  // This result needs to be in an integer register, but the conversion only
1655  // takes place in fp-regs.
1656  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1657  if (IntReg == 0) return false;
1658
1659  UpdateValueMap(I, IntReg);
1660  return true;
1661}
1662
1663bool ARMFastISel::SelectSelect(const Instruction *I) {
1664  MVT VT;
1665  if (!isTypeLegal(I->getType(), VT))
1666    return false;
1667
1668  // Things need to be register sized for register moves.
1669  if (VT != MVT::i32) return false;
1670
1671  unsigned CondReg = getRegForValue(I->getOperand(0));
1672  if (CondReg == 0) return false;
1673  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1674  if (Op1Reg == 0) return false;
1675
1676  // Check to see if we can use an immediate in the conditional move.
1677  int Imm = 0;
1678  bool UseImm = false;
1679  bool isNegativeImm = false;
1680  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1681    assert (VT == MVT::i32 && "Expecting an i32.");
1682    Imm = (int)ConstInt->getValue().getZExtValue();
1683    if (Imm < 0) {
1684      isNegativeImm = true;
1685      Imm = ~Imm;
1686    }
1687    UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1688      (ARM_AM::getSOImmVal(Imm) != -1);
1689  }
1690
1691  unsigned Op2Reg = 0;
1692  if (!UseImm) {
1693    Op2Reg = getRegForValue(I->getOperand(2));
1694    if (Op2Reg == 0) return false;
1695  }
1696
1697  unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1698  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1699                  .addReg(CondReg).addImm(0));
1700
1701  unsigned MovCCOpc;
1702  const TargetRegisterClass *RC;
1703  if (!UseImm) {
1704    RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1705    MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1706  } else {
1707    RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1708    if (!isNegativeImm)
1709      MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1710    else
1711      MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1712  }
1713  unsigned ResultReg = createResultReg(RC);
1714  if (!UseImm)
1715    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1716    .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
1717  else
1718    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1719    .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
1720  UpdateValueMap(I, ResultReg);
1721  return true;
1722}
1723
1724bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1725  MVT VT;
1726  Type *Ty = I->getType();
1727  if (!isTypeLegal(Ty, VT))
1728    return false;
1729
1730  // If we have integer div support we should have selected this automagically.
1731  // In case we have a real miss go ahead and return false and we'll pick
1732  // it up later.
1733  if (Subtarget->hasDivide()) return false;
1734
1735  // Otherwise emit a libcall.
1736  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1737  if (VT == MVT::i8)
1738    LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1739  else if (VT == MVT::i16)
1740    LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1741  else if (VT == MVT::i32)
1742    LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1743  else if (VT == MVT::i64)
1744    LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1745  else if (VT == MVT::i128)
1746    LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1747  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1748
1749  return ARMEmitLibcall(I, LC);
1750}
1751
1752bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1753  MVT VT;
1754  Type *Ty = I->getType();
1755  if (!isTypeLegal(Ty, VT))
1756    return false;
1757
1758  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1759  if (VT == MVT::i8)
1760    LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1761  else if (VT == MVT::i16)
1762    LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1763  else if (VT == MVT::i32)
1764    LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1765  else if (VT == MVT::i64)
1766    LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1767  else if (VT == MVT::i128)
1768    LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1769  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1770
1771  return ARMEmitLibcall(I, LC);
1772}
1773
1774bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1775  EVT DestVT  = TLI.getValueType(I->getType(), true);
1776
1777  // We can get here in the case when we have a binary operation on a non-legal
1778  // type and the target independent selector doesn't know how to handle it.
1779  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1780    return false;
1781
1782  unsigned Opc;
1783  switch (ISDOpcode) {
1784    default: return false;
1785    case ISD::ADD:
1786      Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1787      break;
1788    case ISD::OR:
1789      Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1790      break;
1791    case ISD::SUB:
1792      Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1793      break;
1794  }
1795
1796  unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1797  if (SrcReg1 == 0) return false;
1798
1799  // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1800  // in the instruction, rather then materializing the value in a register.
1801  unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1802  if (SrcReg2 == 0) return false;
1803
1804  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1805  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1806                          TII.get(Opc), ResultReg)
1807                  .addReg(SrcReg1).addReg(SrcReg2));
1808  UpdateValueMap(I, ResultReg);
1809  return true;
1810}
1811
1812bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1813  EVT FPVT = TLI.getValueType(I->getType(), true);
1814  if (!FPVT.isSimple()) return false;
1815  MVT VT = FPVT.getSimpleVT();
1816
1817  // We can get here in the case when we want to use NEON for our fp
1818  // operations, but can't figure out how to. Just use the vfp instructions
1819  // if we have them.
1820  // FIXME: It'd be nice to use NEON instructions.
1821  Type *Ty = I->getType();
1822  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1823  if (isFloat && !Subtarget->hasVFP2())
1824    return false;
1825
1826  unsigned Opc;
1827  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1828  switch (ISDOpcode) {
1829    default: return false;
1830    case ISD::FADD:
1831      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1832      break;
1833    case ISD::FSUB:
1834      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1835      break;
1836    case ISD::FMUL:
1837      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1838      break;
1839  }
1840  unsigned Op1 = getRegForValue(I->getOperand(0));
1841  if (Op1 == 0) return false;
1842
1843  unsigned Op2 = getRegForValue(I->getOperand(1));
1844  if (Op2 == 0) return false;
1845
1846  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1847  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1848                          TII.get(Opc), ResultReg)
1849                  .addReg(Op1).addReg(Op2));
1850  UpdateValueMap(I, ResultReg);
1851  return true;
1852}
1853
1854// Call Handling Code
1855
1856// This is largely taken directly from CCAssignFnForNode
1857// TODO: We may not support all of this.
1858CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1859                                           bool Return,
1860                                           bool isVarArg) {
1861  switch (CC) {
1862  default:
1863    llvm_unreachable("Unsupported calling convention");
1864  case CallingConv::Fast:
1865    if (Subtarget->hasVFP2() && !isVarArg) {
1866      if (!Subtarget->isAAPCS_ABI())
1867        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1868      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1869      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1870    }
1871    // Fallthrough
1872  case CallingConv::C:
1873    // Use target triple & subtarget features to do actual dispatch.
1874    if (Subtarget->isAAPCS_ABI()) {
1875      if (Subtarget->hasVFP2() &&
1876          TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1877        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1878      else
1879        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1880    } else
1881        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1882  case CallingConv::ARM_AAPCS_VFP:
1883    if (!isVarArg)
1884      return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1885    // Fall through to soft float variant, variadic functions don't
1886    // use hard floating point ABI.
1887  case CallingConv::ARM_AAPCS:
1888    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1889  case CallingConv::ARM_APCS:
1890    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1891  case CallingConv::GHC:
1892    if (Return)
1893      llvm_unreachable("Can't return in GHC call convention");
1894    else
1895      return CC_ARM_APCS_GHC;
1896  }
1897}
1898
1899bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1900                                  SmallVectorImpl<unsigned> &ArgRegs,
1901                                  SmallVectorImpl<MVT> &ArgVTs,
1902                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1903                                  SmallVectorImpl<unsigned> &RegArgs,
1904                                  CallingConv::ID CC,
1905                                  unsigned &NumBytes,
1906                                  bool isVarArg) {
1907  SmallVector<CCValAssign, 16> ArgLocs;
1908  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
1909  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1910                             CCAssignFnForCall(CC, false, isVarArg));
1911
1912  // Check that we can handle all of the arguments. If we can't, then bail out
1913  // now before we add code to the MBB.
1914  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1915    CCValAssign &VA = ArgLocs[i];
1916    MVT ArgVT = ArgVTs[VA.getValNo()];
1917
1918    // We don't handle NEON/vector parameters yet.
1919    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1920      return false;
1921
1922    // Now copy/store arg to correct locations.
1923    if (VA.isRegLoc() && !VA.needsCustom()) {
1924      continue;
1925    } else if (VA.needsCustom()) {
1926      // TODO: We need custom lowering for vector (v2f64) args.
1927      if (VA.getLocVT() != MVT::f64 ||
1928          // TODO: Only handle register args for now.
1929          !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1930        return false;
1931    } else {
1932      switch (static_cast<EVT>(ArgVT).getSimpleVT().SimpleTy) {
1933      default:
1934        return false;
1935      case MVT::i1:
1936      case MVT::i8:
1937      case MVT::i16:
1938      case MVT::i32:
1939        break;
1940      case MVT::f32:
1941        if (!Subtarget->hasVFP2())
1942          return false;
1943        break;
1944      case MVT::f64:
1945        if (!Subtarget->hasVFP2())
1946          return false;
1947        break;
1948      }
1949    }
1950  }
1951
1952  // At the point, we are able to handle the call's arguments in fast isel.
1953
1954  // Get a count of how many bytes are to be pushed on the stack.
1955  NumBytes = CCInfo.getNextStackOffset();
1956
1957  // Issue CALLSEQ_START
1958  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1959  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1960                          TII.get(AdjStackDown))
1961                  .addImm(NumBytes));
1962
1963  // Process the args.
1964  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1965    CCValAssign &VA = ArgLocs[i];
1966    unsigned Arg = ArgRegs[VA.getValNo()];
1967    MVT ArgVT = ArgVTs[VA.getValNo()];
1968
1969    assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1970           "We don't handle NEON/vector parameters yet.");
1971
1972    // Handle arg promotion, etc.
1973    switch (VA.getLocInfo()) {
1974      case CCValAssign::Full: break;
1975      case CCValAssign::SExt: {
1976        MVT DestVT = VA.getLocVT();
1977        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1978        assert (Arg != 0 && "Failed to emit a sext");
1979        ArgVT = DestVT;
1980        break;
1981      }
1982      case CCValAssign::AExt:
1983        // Intentional fall-through.  Handle AExt and ZExt.
1984      case CCValAssign::ZExt: {
1985        MVT DestVT = VA.getLocVT();
1986        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1987        assert (Arg != 0 && "Failed to emit a sext");
1988        ArgVT = DestVT;
1989        break;
1990      }
1991      case CCValAssign::BCvt: {
1992        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1993                                 /*TODO: Kill=*/false);
1994        assert(BC != 0 && "Failed to emit a bitcast!");
1995        Arg = BC;
1996        ArgVT = VA.getLocVT();
1997        break;
1998      }
1999      default: llvm_unreachable("Unknown arg promotion!");
2000    }
2001
2002    // Now copy/store arg to correct locations.
2003    if (VA.isRegLoc() && !VA.needsCustom()) {
2004      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2005              VA.getLocReg())
2006        .addReg(Arg);
2007      RegArgs.push_back(VA.getLocReg());
2008    } else if (VA.needsCustom()) {
2009      // TODO: We need custom lowering for vector (v2f64) args.
2010      assert(VA.getLocVT() == MVT::f64 &&
2011             "Custom lowering for v2f64 args not available");
2012
2013      CCValAssign &NextVA = ArgLocs[++i];
2014
2015      assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2016             "We only handle register args!");
2017
2018      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2019                              TII.get(ARM::VMOVRRD), VA.getLocReg())
2020                      .addReg(NextVA.getLocReg(), RegState::Define)
2021                      .addReg(Arg));
2022      RegArgs.push_back(VA.getLocReg());
2023      RegArgs.push_back(NextVA.getLocReg());
2024    } else {
2025      assert(VA.isMemLoc());
2026      // Need to store on the stack.
2027      Address Addr;
2028      Addr.BaseType = Address::RegBase;
2029      Addr.Base.Reg = ARM::SP;
2030      Addr.Offset = VA.getLocMemOffset();
2031
2032      bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2033      assert(EmitRet && "Could not emit a store for argument!");
2034    }
2035  }
2036
2037  return true;
2038}
2039
2040bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
2041                             const Instruction *I, CallingConv::ID CC,
2042                             unsigned &NumBytes, bool isVarArg) {
2043  // Issue CALLSEQ_END
2044  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2045  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2046                          TII.get(AdjStackUp))
2047                  .addImm(NumBytes).addImm(0));
2048
2049  // Now the return value.
2050  if (RetVT != MVT::isVoid) {
2051    SmallVector<CCValAssign, 16> RVLocs;
2052    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
2053    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2054
2055    // Copy all of the result registers out of their specified physreg.
2056    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2057      // For this move we copy into two registers and then move into the
2058      // double fp reg we want.
2059      MVT DestVT = RVLocs[0].getValVT();
2060      const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2061      unsigned ResultReg = createResultReg(DstRC);
2062      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2063                              TII.get(ARM::VMOVDRR), ResultReg)
2064                      .addReg(RVLocs[0].getLocReg())
2065                      .addReg(RVLocs[1].getLocReg()));
2066
2067      UsedRegs.push_back(RVLocs[0].getLocReg());
2068      UsedRegs.push_back(RVLocs[1].getLocReg());
2069
2070      // Finally update the result.
2071      UpdateValueMap(I, ResultReg);
2072    } else {
2073      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2074      MVT CopyVT = RVLocs[0].getValVT();
2075
2076      // Special handling for extended integers.
2077      if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2078        CopyVT = MVT::i32;
2079
2080      const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2081
2082      unsigned ResultReg = createResultReg(DstRC);
2083      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2084              ResultReg).addReg(RVLocs[0].getLocReg());
2085      UsedRegs.push_back(RVLocs[0].getLocReg());
2086
2087      // Finally update the result.
2088      UpdateValueMap(I, ResultReg);
2089    }
2090  }
2091
2092  return true;
2093}
2094
2095bool ARMFastISel::SelectRet(const Instruction *I) {
2096  const ReturnInst *Ret = cast<ReturnInst>(I);
2097  const Function &F = *I->getParent()->getParent();
2098
2099  if (!FuncInfo.CanLowerReturn)
2100    return false;
2101
2102  CallingConv::ID CC = F.getCallingConv();
2103  if (Ret->getNumOperands() > 0) {
2104    SmallVector<ISD::OutputArg, 4> Outs;
2105    GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
2106
2107    // Analyze operands of the call, assigning locations to each operand.
2108    SmallVector<CCValAssign, 16> ValLocs;
2109    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
2110    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2111                                                 F.isVarArg()));
2112
2113    const Value *RV = Ret->getOperand(0);
2114    unsigned Reg = getRegForValue(RV);
2115    if (Reg == 0)
2116      return false;
2117
2118    // Only handle a single return value for now.
2119    if (ValLocs.size() != 1)
2120      return false;
2121
2122    CCValAssign &VA = ValLocs[0];
2123
2124    // Don't bother handling odd stuff for now.
2125    if (VA.getLocInfo() != CCValAssign::Full)
2126      return false;
2127    // Only handle register returns for now.
2128    if (!VA.isRegLoc())
2129      return false;
2130
2131    unsigned SrcReg = Reg + VA.getValNo();
2132    EVT RVEVT = TLI.getValueType(RV->getType());
2133    if (!RVEVT.isSimple()) return false;
2134    MVT RVVT = RVEVT.getSimpleVT();
2135    MVT DestVT = VA.getValVT();
2136    // Special handling for extended integers.
2137    if (RVVT != DestVT) {
2138      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2139        return false;
2140
2141      assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2142
2143      // Perform extension if flagged as either zext or sext.  Otherwise, do
2144      // nothing.
2145      if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2146        SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2147        if (SrcReg == 0) return false;
2148      }
2149    }
2150
2151    // Make the copy.
2152    unsigned DstReg = VA.getLocReg();
2153    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2154    // Avoid a cross-class copy. This is very unlikely.
2155    if (!SrcRC->contains(DstReg))
2156      return false;
2157    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2158            DstReg).addReg(SrcReg);
2159
2160    // Mark the register as live out of the function.
2161    MRI.addLiveOut(VA.getLocReg());
2162  }
2163
2164  unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2165  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2166                          TII.get(RetOpc)));
2167  return true;
2168}
2169
2170unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2171  if (UseReg)
2172    return isThumb2 ? ARM::tBLXr : ARM::BLX;
2173  else
2174    return isThumb2 ? ARM::tBL : ARM::BL;
2175}
2176
2177unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2178  GlobalValue *GV = new GlobalVariable(Type::getInt32Ty(*Context), false,
2179                                       GlobalValue::ExternalLinkage, 0, Name);
2180  EVT LCREVT = TLI.getValueType(GV->getType());
2181  if (!LCREVT.isSimple()) return 0;
2182  return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2183}
2184
2185// A quick function that will emit a call for a named libcall in F with the
2186// vector of passed arguments for the Instruction in I. We can assume that we
2187// can emit a call for any libcall we can produce. This is an abridged version
2188// of the full call infrastructure since we won't need to worry about things
2189// like computed function pointers or strange arguments at call sites.
2190// TODO: Try to unify this and the normal call bits for ARM, then try to unify
2191// with X86.
2192bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2193  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2194
2195  // Handle *simple* calls for now.
2196  Type *RetTy = I->getType();
2197  MVT RetVT;
2198  if (RetTy->isVoidTy())
2199    RetVT = MVT::isVoid;
2200  else if (!isTypeLegal(RetTy, RetVT))
2201    return false;
2202
2203  // Can't handle non-double multi-reg retvals.
2204  if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2205    SmallVector<CCValAssign, 16> RVLocs;
2206    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
2207    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2208    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2209      return false;
2210  }
2211
2212  // Set up the argument vectors.
2213  SmallVector<Value*, 8> Args;
2214  SmallVector<unsigned, 8> ArgRegs;
2215  SmallVector<MVT, 8> ArgVTs;
2216  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2217  Args.reserve(I->getNumOperands());
2218  ArgRegs.reserve(I->getNumOperands());
2219  ArgVTs.reserve(I->getNumOperands());
2220  ArgFlags.reserve(I->getNumOperands());
2221  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2222    Value *Op = I->getOperand(i);
2223    unsigned Arg = getRegForValue(Op);
2224    if (Arg == 0) return false;
2225
2226    Type *ArgTy = Op->getType();
2227    MVT ArgVT;
2228    if (!isTypeLegal(ArgTy, ArgVT)) return false;
2229
2230    ISD::ArgFlagsTy Flags;
2231    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2232    Flags.setOrigAlign(OriginalAlignment);
2233
2234    Args.push_back(Op);
2235    ArgRegs.push_back(Arg);
2236    ArgVTs.push_back(ArgVT);
2237    ArgFlags.push_back(Flags);
2238  }
2239
2240  // Handle the arguments now that we've gotten them.
2241  SmallVector<unsigned, 4> RegArgs;
2242  unsigned NumBytes;
2243  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2244                       RegArgs, CC, NumBytes, false))
2245    return false;
2246
2247  unsigned CalleeReg = 0;
2248  if (EnableARMLongCalls) {
2249    CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2250    if (CalleeReg == 0) return false;
2251  }
2252
2253  // Issue the call.
2254  unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls);
2255  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2256                                    DL, TII.get(CallOpc));
2257  // BL / BLX don't take a predicate, but tBL / tBLX do.
2258  if (isThumb2)
2259    AddDefaultPred(MIB);
2260  if (EnableARMLongCalls)
2261    MIB.addReg(CalleeReg);
2262  else
2263    MIB.addExternalSymbol(TLI.getLibcallName(Call));
2264
2265  // Add implicit physical register uses to the call.
2266  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2267    MIB.addReg(RegArgs[i], RegState::Implicit);
2268
2269  // Add a register mask with the call-preserved registers.
2270  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2271  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2272
2273  // Finish off the call including any return values.
2274  SmallVector<unsigned, 4> UsedRegs;
2275  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2276
2277  // Set all unused physreg defs as dead.
2278  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2279
2280  return true;
2281}
2282
2283bool ARMFastISel::SelectCall(const Instruction *I,
2284                             const char *IntrMemName = 0) {
2285  const CallInst *CI = cast<CallInst>(I);
2286  const Value *Callee = CI->getCalledValue();
2287
2288  // Can't handle inline asm.
2289  if (isa<InlineAsm>(Callee)) return false;
2290
2291  // Allow SelectionDAG isel to handle tail calls.
2292  if (CI->isTailCall()) return false;
2293
2294  // Check the calling convention.
2295  ImmutableCallSite CS(CI);
2296  CallingConv::ID CC = CS.getCallingConv();
2297
2298  // TODO: Avoid some calling conventions?
2299
2300  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2301  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2302  bool isVarArg = FTy->isVarArg();
2303
2304  // Handle *simple* calls for now.
2305  Type *RetTy = I->getType();
2306  MVT RetVT;
2307  if (RetTy->isVoidTy())
2308    RetVT = MVT::isVoid;
2309  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2310           RetVT != MVT::i8  && RetVT != MVT::i1)
2311    return false;
2312
2313  // Can't handle non-double multi-reg retvals.
2314  if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2315      RetVT != MVT::i16 && RetVT != MVT::i32) {
2316    SmallVector<CCValAssign, 16> RVLocs;
2317    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
2318    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2319    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2320      return false;
2321  }
2322
2323  // Set up the argument vectors.
2324  SmallVector<Value*, 8> Args;
2325  SmallVector<unsigned, 8> ArgRegs;
2326  SmallVector<MVT, 8> ArgVTs;
2327  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2328  unsigned arg_size = CS.arg_size();
2329  Args.reserve(arg_size);
2330  ArgRegs.reserve(arg_size);
2331  ArgVTs.reserve(arg_size);
2332  ArgFlags.reserve(arg_size);
2333  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2334       i != e; ++i) {
2335    // If we're lowering a memory intrinsic instead of a regular call, skip the
2336    // last two arguments, which shouldn't be passed to the underlying function.
2337    if (IntrMemName && e-i <= 2)
2338      break;
2339
2340    ISD::ArgFlagsTy Flags;
2341    unsigned AttrInd = i - CS.arg_begin() + 1;
2342    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2343      Flags.setSExt();
2344    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2345      Flags.setZExt();
2346
2347    // FIXME: Only handle *easy* calls for now.
2348    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2349        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2350        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2351        CS.paramHasAttr(AttrInd, Attribute::ByVal))
2352      return false;
2353
2354    Type *ArgTy = (*i)->getType();
2355    MVT ArgVT;
2356    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2357        ArgVT != MVT::i1)
2358      return false;
2359
2360    unsigned Arg = getRegForValue(*i);
2361    if (Arg == 0)
2362      return false;
2363
2364    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2365    Flags.setOrigAlign(OriginalAlignment);
2366
2367    Args.push_back(*i);
2368    ArgRegs.push_back(Arg);
2369    ArgVTs.push_back(ArgVT);
2370    ArgFlags.push_back(Flags);
2371  }
2372
2373  // Handle the arguments now that we've gotten them.
2374  SmallVector<unsigned, 4> RegArgs;
2375  unsigned NumBytes;
2376  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2377                       RegArgs, CC, NumBytes, isVarArg))
2378    return false;
2379
2380  bool UseReg = false;
2381  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2382  if (!GV || EnableARMLongCalls) UseReg = true;
2383
2384  unsigned CalleeReg = 0;
2385  if (UseReg) {
2386    if (IntrMemName)
2387      CalleeReg = getLibcallReg(IntrMemName);
2388    else
2389      CalleeReg = getRegForValue(Callee);
2390
2391    if (CalleeReg == 0) return false;
2392  }
2393
2394  // Issue the call.
2395  unsigned CallOpc = ARMSelectCallOp(UseReg);
2396  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2397                                    DL, TII.get(CallOpc));
2398
2399  // ARM calls don't take a predicate, but tBL / tBLX do.
2400  if(isThumb2)
2401    AddDefaultPred(MIB);
2402  if (UseReg)
2403    MIB.addReg(CalleeReg);
2404  else if (!IntrMemName)
2405    MIB.addGlobalAddress(GV, 0, 0);
2406  else
2407    MIB.addExternalSymbol(IntrMemName, 0);
2408
2409  // Add implicit physical register uses to the call.
2410  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2411    MIB.addReg(RegArgs[i], RegState::Implicit);
2412
2413  // Add a register mask with the call-preserved registers.
2414  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2415  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2416
2417  // Finish off the call including any return values.
2418  SmallVector<unsigned, 4> UsedRegs;
2419  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2420    return false;
2421
2422  // Set all unused physreg defs as dead.
2423  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2424
2425  return true;
2426}
2427
2428bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2429  return Len <= 16;
2430}
2431
2432bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2433                                        uint64_t Len, unsigned Alignment) {
2434  // Make sure we don't bloat code by inlining very large memcpy's.
2435  if (!ARMIsMemCpySmall(Len))
2436    return false;
2437
2438  while (Len) {
2439    MVT VT;
2440    if (!Alignment || Alignment >= 4) {
2441      if (Len >= 4)
2442        VT = MVT::i32;
2443      else if (Len >= 2)
2444        VT = MVT::i16;
2445      else {
2446        assert (Len == 1 && "Expected a length of 1!");
2447        VT = MVT::i8;
2448      }
2449    } else {
2450      // Bound based on alignment.
2451      if (Len >= 2 && Alignment == 2)
2452        VT = MVT::i16;
2453      else {
2454        assert (Alignment == 1 && "Expected an alignment of 1!");
2455        VT = MVT::i8;
2456      }
2457    }
2458
2459    bool RV;
2460    unsigned ResultReg;
2461    RV = ARMEmitLoad(VT, ResultReg, Src);
2462    assert (RV == true && "Should be able to handle this load.");
2463    RV = ARMEmitStore(VT, ResultReg, Dest);
2464    assert (RV == true && "Should be able to handle this store.");
2465    (void)RV;
2466
2467    unsigned Size = VT.getSizeInBits()/8;
2468    Len -= Size;
2469    Dest.Offset += Size;
2470    Src.Offset += Size;
2471  }
2472
2473  return true;
2474}
2475
2476bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2477  // FIXME: Handle more intrinsics.
2478  switch (I.getIntrinsicID()) {
2479  default: return false;
2480  case Intrinsic::frameaddress: {
2481    MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
2482    MFI->setFrameAddressIsTaken(true);
2483
2484    unsigned LdrOpc;
2485    const TargetRegisterClass *RC;
2486    if (isThumb2) {
2487      LdrOpc =  ARM::t2LDRi12;
2488      RC = (const TargetRegisterClass*)&ARM::tGPRRegClass;
2489    } else {
2490      LdrOpc =  ARM::LDRi12;
2491      RC = (const TargetRegisterClass*)&ARM::GPRRegClass;
2492    }
2493
2494    const ARMBaseRegisterInfo *RegInfo =
2495          static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo());
2496    unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2497    unsigned SrcReg = FramePtr;
2498
2499    // Recursively load frame address
2500    // ldr r0 [fp]
2501    // ldr r0 [r0]
2502    // ldr r0 [r0]
2503    // ...
2504    unsigned DestReg;
2505    unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2506    while (Depth--) {
2507      DestReg = createResultReg(RC);
2508      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2509                              TII.get(LdrOpc), DestReg)
2510                      .addReg(SrcReg).addImm(0));
2511      SrcReg = DestReg;
2512    }
2513    UpdateValueMap(&I, SrcReg);
2514    return true;
2515  }
2516  case Intrinsic::memcpy:
2517  case Intrinsic::memmove: {
2518    const MemTransferInst &MTI = cast<MemTransferInst>(I);
2519    // Don't handle volatile.
2520    if (MTI.isVolatile())
2521      return false;
2522
2523    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2524    // we would emit dead code because we don't currently handle memmoves.
2525    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2526    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2527      // Small memcpy's are common enough that we want to do them without a call
2528      // if possible.
2529      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2530      if (ARMIsMemCpySmall(Len)) {
2531        Address Dest, Src;
2532        if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2533            !ARMComputeAddress(MTI.getRawSource(), Src))
2534          return false;
2535        unsigned Alignment = MTI.getAlignment();
2536        if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2537          return true;
2538      }
2539    }
2540
2541    if (!MTI.getLength()->getType()->isIntegerTy(32))
2542      return false;
2543
2544    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2545      return false;
2546
2547    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2548    return SelectCall(&I, IntrMemName);
2549  }
2550  case Intrinsic::memset: {
2551    const MemSetInst &MSI = cast<MemSetInst>(I);
2552    // Don't handle volatile.
2553    if (MSI.isVolatile())
2554      return false;
2555
2556    if (!MSI.getLength()->getType()->isIntegerTy(32))
2557      return false;
2558
2559    if (MSI.getDestAddressSpace() > 255)
2560      return false;
2561
2562    return SelectCall(&I, "memset");
2563  }
2564  case Intrinsic::trap: {
2565    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::TRAP));
2566    return true;
2567  }
2568  }
2569}
2570
2571bool ARMFastISel::SelectTrunc(const Instruction *I) {
2572  // The high bits for a type smaller than the register size are assumed to be
2573  // undefined.
2574  Value *Op = I->getOperand(0);
2575
2576  EVT SrcVT, DestVT;
2577  SrcVT = TLI.getValueType(Op->getType(), true);
2578  DestVT = TLI.getValueType(I->getType(), true);
2579
2580  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2581    return false;
2582  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2583    return false;
2584
2585  unsigned SrcReg = getRegForValue(Op);
2586  if (!SrcReg) return false;
2587
2588  // Because the high bits are undefined, a truncate doesn't generate
2589  // any code.
2590  UpdateValueMap(I, SrcReg);
2591  return true;
2592}
2593
2594unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2595                                    bool isZExt) {
2596  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2597    return 0;
2598
2599  unsigned Opc;
2600  bool isBoolZext = false;
2601  const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::i32);
2602  switch (SrcVT.SimpleTy) {
2603  default: return 0;
2604  case MVT::i16:
2605    if (!Subtarget->hasV6Ops()) return 0;
2606    RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
2607    if (isZExt)
2608      Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH;
2609    else
2610      Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
2611    break;
2612  case MVT::i8:
2613    if (!Subtarget->hasV6Ops()) return 0;
2614    RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
2615    if (isZExt)
2616      Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB;
2617    else
2618      Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
2619    break;
2620  case MVT::i1:
2621    if (isZExt) {
2622      RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
2623      Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
2624      isBoolZext = true;
2625      break;
2626    }
2627    return 0;
2628  }
2629
2630  unsigned ResultReg = createResultReg(RC);
2631  MachineInstrBuilder MIB;
2632  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
2633        .addReg(SrcReg);
2634  if (isBoolZext)
2635    MIB.addImm(1);
2636  else
2637    MIB.addImm(0);
2638  AddOptionalDefs(MIB);
2639  return ResultReg;
2640}
2641
2642bool ARMFastISel::SelectIntExt(const Instruction *I) {
2643  // On ARM, in general, integer casts don't involve legal types; this code
2644  // handles promotable integers.
2645  Type *DestTy = I->getType();
2646  Value *Src = I->getOperand(0);
2647  Type *SrcTy = Src->getType();
2648
2649  bool isZExt = isa<ZExtInst>(I);
2650  unsigned SrcReg = getRegForValue(Src);
2651  if (!SrcReg) return false;
2652
2653  EVT SrcEVT, DestEVT;
2654  SrcEVT = TLI.getValueType(SrcTy, true);
2655  DestEVT = TLI.getValueType(DestTy, true);
2656  if (!SrcEVT.isSimple()) return false;
2657  if (!DestEVT.isSimple()) return false;
2658
2659  MVT SrcVT = SrcEVT.getSimpleVT();
2660  MVT DestVT = DestEVT.getSimpleVT();
2661  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2662  if (ResultReg == 0) return false;
2663  UpdateValueMap(I, ResultReg);
2664  return true;
2665}
2666
2667bool ARMFastISel::SelectShift(const Instruction *I,
2668                              ARM_AM::ShiftOpc ShiftTy) {
2669  // We handle thumb2 mode by target independent selector
2670  // or SelectionDAG ISel.
2671  if (isThumb2)
2672    return false;
2673
2674  // Only handle i32 now.
2675  EVT DestVT = TLI.getValueType(I->getType(), true);
2676  if (DestVT != MVT::i32)
2677    return false;
2678
2679  unsigned Opc = ARM::MOVsr;
2680  unsigned ShiftImm;
2681  Value *Src2Value = I->getOperand(1);
2682  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2683    ShiftImm = CI->getZExtValue();
2684
2685    // Fall back to selection DAG isel if the shift amount
2686    // is zero or greater than the width of the value type.
2687    if (ShiftImm == 0 || ShiftImm >=32)
2688      return false;
2689
2690    Opc = ARM::MOVsi;
2691  }
2692
2693  Value *Src1Value = I->getOperand(0);
2694  unsigned Reg1 = getRegForValue(Src1Value);
2695  if (Reg1 == 0) return false;
2696
2697  unsigned Reg2 = 0;
2698  if (Opc == ARM::MOVsr) {
2699    Reg2 = getRegForValue(Src2Value);
2700    if (Reg2 == 0) return false;
2701  }
2702
2703  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2704  if(ResultReg == 0) return false;
2705
2706  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2707                                    TII.get(Opc), ResultReg)
2708                            .addReg(Reg1);
2709
2710  if (Opc == ARM::MOVsi)
2711    MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2712  else if (Opc == ARM::MOVsr) {
2713    MIB.addReg(Reg2);
2714    MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2715  }
2716
2717  AddOptionalDefs(MIB);
2718  UpdateValueMap(I, ResultReg);
2719  return true;
2720}
2721
2722// TODO: SoftFP support.
2723bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2724
2725  switch (I->getOpcode()) {
2726    case Instruction::Load:
2727      return SelectLoad(I);
2728    case Instruction::Store:
2729      return SelectStore(I);
2730    case Instruction::Br:
2731      return SelectBranch(I);
2732    case Instruction::IndirectBr:
2733      return SelectIndirectBr(I);
2734    case Instruction::ICmp:
2735    case Instruction::FCmp:
2736      return SelectCmp(I);
2737    case Instruction::FPExt:
2738      return SelectFPExt(I);
2739    case Instruction::FPTrunc:
2740      return SelectFPTrunc(I);
2741    case Instruction::SIToFP:
2742      return SelectIToFP(I, /*isSigned*/ true);
2743    case Instruction::UIToFP:
2744      return SelectIToFP(I, /*isSigned*/ false);
2745    case Instruction::FPToSI:
2746      return SelectFPToI(I, /*isSigned*/ true);
2747    case Instruction::FPToUI:
2748      return SelectFPToI(I, /*isSigned*/ false);
2749    case Instruction::Add:
2750      return SelectBinaryIntOp(I, ISD::ADD);
2751    case Instruction::Or:
2752      return SelectBinaryIntOp(I, ISD::OR);
2753    case Instruction::Sub:
2754      return SelectBinaryIntOp(I, ISD::SUB);
2755    case Instruction::FAdd:
2756      return SelectBinaryFPOp(I, ISD::FADD);
2757    case Instruction::FSub:
2758      return SelectBinaryFPOp(I, ISD::FSUB);
2759    case Instruction::FMul:
2760      return SelectBinaryFPOp(I, ISD::FMUL);
2761    case Instruction::SDiv:
2762      return SelectDiv(I, /*isSigned*/ true);
2763    case Instruction::UDiv:
2764      return SelectDiv(I, /*isSigned*/ false);
2765    case Instruction::SRem:
2766      return SelectRem(I, /*isSigned*/ true);
2767    case Instruction::URem:
2768      return SelectRem(I, /*isSigned*/ false);
2769    case Instruction::Call:
2770      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2771        return SelectIntrinsicCall(*II);
2772      return SelectCall(I);
2773    case Instruction::Select:
2774      return SelectSelect(I);
2775    case Instruction::Ret:
2776      return SelectRet(I);
2777    case Instruction::Trunc:
2778      return SelectTrunc(I);
2779    case Instruction::ZExt:
2780    case Instruction::SExt:
2781      return SelectIntExt(I);
2782    case Instruction::Shl:
2783      return SelectShift(I, ARM_AM::lsl);
2784    case Instruction::LShr:
2785      return SelectShift(I, ARM_AM::lsr);
2786    case Instruction::AShr:
2787      return SelectShift(I, ARM_AM::asr);
2788    default: break;
2789  }
2790  return false;
2791}
2792
2793/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
2794/// vreg is being provided by the specified load instruction.  If possible,
2795/// try to fold the load as an operand to the instruction, returning true if
2796/// successful.
2797bool ARMFastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
2798                                const LoadInst *LI) {
2799  // Verify we have a legal type before going any further.
2800  MVT VT;
2801  if (!isLoadTypeLegal(LI->getType(), VT))
2802    return false;
2803
2804  // Combine load followed by zero- or sign-extend.
2805  // ldrb r1, [r0]       ldrb r1, [r0]
2806  // uxtb r2, r1     =>
2807  // mov  r3, r2         mov  r3, r1
2808  bool isZExt = true;
2809  switch(MI->getOpcode()) {
2810    default: return false;
2811    case ARM::SXTH:
2812    case ARM::t2SXTH:
2813      isZExt = false;
2814    case ARM::UXTH:
2815    case ARM::t2UXTH:
2816      if (VT != MVT::i16)
2817        return false;
2818    break;
2819    case ARM::SXTB:
2820    case ARM::t2SXTB:
2821      isZExt = false;
2822    case ARM::UXTB:
2823    case ARM::t2UXTB:
2824      if (VT != MVT::i8)
2825        return false;
2826    break;
2827  }
2828  // See if we can handle this address.
2829  Address Addr;
2830  if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2831
2832  unsigned ResultReg = MI->getOperand(0).getReg();
2833  if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2834    return false;
2835  MI->eraseFromParent();
2836  return true;
2837}
2838
2839unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
2840                                     unsigned Align, MVT VT) {
2841  bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2842  ARMConstantPoolConstant *CPV =
2843    ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2844  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
2845
2846  unsigned Opc;
2847  unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT));
2848  // Load value.
2849  if (isThumb2) {
2850    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2851                            TII.get(ARM::t2LDRpci), DestReg1)
2852                    .addConstantPoolIndex(Idx));
2853    Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs;
2854  } else {
2855    // The extra immediate is for addrmode2.
2856    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2857                            DL, TII.get(ARM::LDRcp), DestReg1)
2858                    .addConstantPoolIndex(Idx).addImm(0));
2859    Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs;
2860  }
2861
2862  unsigned GlobalBaseReg = AFI->getGlobalBaseReg();
2863  if (GlobalBaseReg == 0) {
2864    GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT));
2865    AFI->setGlobalBaseReg(GlobalBaseReg);
2866  }
2867
2868  unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT));
2869  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2870                                    DL, TII.get(Opc), DestReg2)
2871                            .addReg(DestReg1)
2872                            .addReg(GlobalBaseReg);
2873  if (!UseGOTOFF)
2874    MIB.addImm(0);
2875  AddOptionalDefs(MIB);
2876
2877  return DestReg2;
2878}
2879
2880namespace llvm {
2881  FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
2882                                const TargetLibraryInfo *libInfo) {
2883    // Completely untested on non-iOS.
2884    const TargetMachine &TM = funcInfo.MF->getTarget();
2885
2886    // Darwin and thumb1 only for now.
2887    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2888    if (Subtarget->isTargetIOS() && !Subtarget->isThumb1Only())
2889      return new ARMFastISel(funcInfo, libInfo);
2890    return 0;
2891  }
2892}
2893