ARMFastISel.cpp revision 909cb4f2f2d227ea01852cb318c80a79c46bc9bf
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "MCTargetDesc/ARMAddressingModes.h"
24#include "llvm/CallingConv.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Instructions.h"
28#include "llvm/IntrinsicInst.h"
29#include "llvm/Module.h"
30#include "llvm/Operator.h"
31#include "llvm/CodeGen/Analysis.h"
32#include "llvm/CodeGen/FastISel.h"
33#include "llvm/CodeGen/FunctionLoweringInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineConstantPool.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineMemOperand.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/CodeGen/PseudoSourceValue.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetMachine.h"
49#include "llvm/Target/TargetOptions.h"
50using namespace llvm;
51
52static cl::opt<bool>
53DisableARMFastISel("disable-arm-fast-isel",
54                    cl::desc("Turn off experimental ARM fast-isel support"),
55                    cl::init(false), cl::Hidden);
56
57extern cl::opt<bool> EnableARMLongCalls;
58
59namespace {
60
61  // All possible address modes, plus some.
62  typedef struct Address {
63    enum {
64      RegBase,
65      FrameIndexBase
66    } BaseType;
67
68    union {
69      unsigned Reg;
70      int FI;
71    } Base;
72
73    int Offset;
74
75    // Innocuous defaults for our address.
76    Address()
77     : BaseType(RegBase), Offset(0) {
78       Base.Reg = 0;
79     }
80  } Address;
81
82class ARMFastISel : public FastISel {
83
84  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
85  /// make the right decision when generating code for different targets.
86  const ARMSubtarget *Subtarget;
87  const TargetMachine &TM;
88  const TargetInstrInfo &TII;
89  const TargetLowering &TLI;
90  ARMFunctionInfo *AFI;
91
92  // Convenience variables to avoid some queries.
93  bool isThumb2;
94  LLVMContext *Context;
95
96  public:
97    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
98    : FastISel(funcInfo),
99      TM(funcInfo.MF->getTarget()),
100      TII(*TM.getInstrInfo()),
101      TLI(*TM.getTargetLowering()) {
102      Subtarget = &TM.getSubtarget<ARMSubtarget>();
103      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
104      isThumb2 = AFI->isThumbFunction();
105      Context = &funcInfo.Fn->getContext();
106    }
107
108    // Code from FastISel.cpp.
109    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
110                                   const TargetRegisterClass *RC);
111    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
112                                    const TargetRegisterClass *RC,
113                                    unsigned Op0, bool Op0IsKill);
114    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
115                                     const TargetRegisterClass *RC,
116                                     unsigned Op0, bool Op0IsKill,
117                                     unsigned Op1, bool Op1IsKill);
118    virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
119                                      const TargetRegisterClass *RC,
120                                      unsigned Op0, bool Op0IsKill,
121                                      unsigned Op1, bool Op1IsKill,
122                                      unsigned Op2, bool Op2IsKill);
123    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
124                                     const TargetRegisterClass *RC,
125                                     unsigned Op0, bool Op0IsKill,
126                                     uint64_t Imm);
127    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
128                                     const TargetRegisterClass *RC,
129                                     unsigned Op0, bool Op0IsKill,
130                                     const ConstantFP *FPImm);
131    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
132                                      const TargetRegisterClass *RC,
133                                      unsigned Op0, bool Op0IsKill,
134                                      unsigned Op1, bool Op1IsKill,
135                                      uint64_t Imm);
136    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
137                                    const TargetRegisterClass *RC,
138                                    uint64_t Imm);
139    virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
140                                     const TargetRegisterClass *RC,
141                                     uint64_t Imm1, uint64_t Imm2);
142
143    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
144                                                unsigned Op0, bool Op0IsKill,
145                                                uint32_t Idx);
146
147    // Backend specific FastISel code.
148    virtual bool TargetSelectInstruction(const Instruction *I);
149    virtual unsigned TargetMaterializeConstant(const Constant *C);
150    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
151    virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
152                               const LoadInst *LI);
153
154  #include "ARMGenFastISel.inc"
155
156    // Instruction selection routines.
157  private:
158    bool SelectLoad(const Instruction *I);
159    bool SelectStore(const Instruction *I);
160    bool SelectBranch(const Instruction *I);
161    bool SelectCmp(const Instruction *I);
162    bool SelectFPExt(const Instruction *I);
163    bool SelectFPTrunc(const Instruction *I);
164    bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
165    bool SelectSIToFP(const Instruction *I);
166    bool SelectFPToSI(const Instruction *I);
167    bool SelectSDiv(const Instruction *I);
168    bool SelectSRem(const Instruction *I);
169    bool SelectCall(const Instruction *I, const char *IntrMemName);
170    bool SelectIntrinsicCall(const IntrinsicInst &I);
171    bool SelectSelect(const Instruction *I);
172    bool SelectRet(const Instruction *I);
173    bool SelectTrunc(const Instruction *I);
174    bool SelectIntExt(const Instruction *I);
175
176    // Utility routines.
177  private:
178    bool isTypeLegal(Type *Ty, MVT &VT);
179    bool isLoadTypeLegal(Type *Ty, MVT &VT);
180    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
181                    bool isZExt);
182    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr, bool isZExt,
183                     bool allocReg);
184
185    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
186    bool ARMComputeAddress(const Value *Obj, Address &Addr);
187    void ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3);
188    bool ARMIsMemXferSmall(uint64_t Len);
189    bool ARMTryEmitSmallMemXfer(Address Dest, Address Src, uint64_t Len,
190                                bool isMemCpy);
191    unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt);
192    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
193    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
194    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
195    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
196    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
197    unsigned ARMSelectCallOp(const GlobalValue *GV);
198
199    // Call handling routines.
200  private:
201    bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
202                        unsigned &ResultReg);
203    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
204    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
205                         SmallVectorImpl<unsigned> &ArgRegs,
206                         SmallVectorImpl<MVT> &ArgVTs,
207                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
208                         SmallVectorImpl<unsigned> &RegArgs,
209                         CallingConv::ID CC,
210                         unsigned &NumBytes);
211    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
212                    const Instruction *I, CallingConv::ID CC,
213                    unsigned &NumBytes);
214    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
215
216    // OptionalDef handling routines.
217  private:
218    bool isARMNEONPred(const MachineInstr *MI);
219    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
220    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
221    void AddLoadStoreOperands(EVT VT, Address &Addr,
222                              const MachineInstrBuilder &MIB,
223                              unsigned Flags, bool useAM3);
224};
225
226} // end anonymous namespace
227
228#include "ARMGenCallingConv.inc"
229
230// DefinesOptionalPredicate - This is different from DefinesPredicate in that
231// we don't care about implicit defs here, just places we'll need to add a
232// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
233bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
234  const MCInstrDesc &MCID = MI->getDesc();
235  if (!MCID.hasOptionalDef())
236    return false;
237
238  // Look to see if our OptionalDef is defining CPSR or CCR.
239  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
240    const MachineOperand &MO = MI->getOperand(i);
241    if (!MO.isReg() || !MO.isDef()) continue;
242    if (MO.getReg() == ARM::CPSR)
243      *CPSR = true;
244  }
245  return true;
246}
247
248bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
249  const MCInstrDesc &MCID = MI->getDesc();
250
251  // If we're a thumb2 or not NEON function we were handled via isPredicable.
252  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
253       AFI->isThumb2Function())
254    return false;
255
256  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
257    if (MCID.OpInfo[i].isPredicate())
258      return true;
259
260  return false;
261}
262
263// If the machine is predicable go ahead and add the predicate operands, if
264// it needs default CC operands add those.
265// TODO: If we want to support thumb1 then we'll need to deal with optional
266// CPSR defs that need to be added before the remaining operands. See s_cc_out
267// for descriptions why.
268const MachineInstrBuilder &
269ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
270  MachineInstr *MI = &*MIB;
271
272  // Do we use a predicate? or...
273  // Are we NEON in ARM mode and have a predicate operand? If so, I know
274  // we're not predicable but add it anyways.
275  if (TII.isPredicable(MI) || isARMNEONPred(MI))
276    AddDefaultPred(MIB);
277
278  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
279  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
280  bool CPSR = false;
281  if (DefinesOptionalPredicate(MI, &CPSR)) {
282    if (CPSR)
283      AddDefaultT1CC(MIB);
284    else
285      AddDefaultCC(MIB);
286  }
287  return MIB;
288}
289
290unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
291                                    const TargetRegisterClass* RC) {
292  unsigned ResultReg = createResultReg(RC);
293  const MCInstrDesc &II = TII.get(MachineInstOpcode);
294
295  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
296  return ResultReg;
297}
298
299unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
300                                     const TargetRegisterClass *RC,
301                                     unsigned Op0, bool Op0IsKill) {
302  unsigned ResultReg = createResultReg(RC);
303  const MCInstrDesc &II = TII.get(MachineInstOpcode);
304
305  if (II.getNumDefs() >= 1)
306    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
307                   .addReg(Op0, Op0IsKill * RegState::Kill));
308  else {
309    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
310                   .addReg(Op0, Op0IsKill * RegState::Kill));
311    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
312                   TII.get(TargetOpcode::COPY), ResultReg)
313                   .addReg(II.ImplicitDefs[0]));
314  }
315  return ResultReg;
316}
317
318unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
319                                      const TargetRegisterClass *RC,
320                                      unsigned Op0, bool Op0IsKill,
321                                      unsigned Op1, bool Op1IsKill) {
322  unsigned ResultReg = createResultReg(RC);
323  const MCInstrDesc &II = TII.get(MachineInstOpcode);
324
325  if (II.getNumDefs() >= 1)
326    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
327                   .addReg(Op0, Op0IsKill * RegState::Kill)
328                   .addReg(Op1, Op1IsKill * RegState::Kill));
329  else {
330    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
331                   .addReg(Op0, Op0IsKill * RegState::Kill)
332                   .addReg(Op1, Op1IsKill * RegState::Kill));
333    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
334                           TII.get(TargetOpcode::COPY), ResultReg)
335                   .addReg(II.ImplicitDefs[0]));
336  }
337  return ResultReg;
338}
339
340unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
341                                       const TargetRegisterClass *RC,
342                                       unsigned Op0, bool Op0IsKill,
343                                       unsigned Op1, bool Op1IsKill,
344                                       unsigned Op2, bool Op2IsKill) {
345  unsigned ResultReg = createResultReg(RC);
346  const MCInstrDesc &II = TII.get(MachineInstOpcode);
347
348  if (II.getNumDefs() >= 1)
349    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
350                   .addReg(Op0, Op0IsKill * RegState::Kill)
351                   .addReg(Op1, Op1IsKill * RegState::Kill)
352                   .addReg(Op2, Op2IsKill * RegState::Kill));
353  else {
354    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
355                   .addReg(Op0, Op0IsKill * RegState::Kill)
356                   .addReg(Op1, Op1IsKill * RegState::Kill)
357                   .addReg(Op2, Op2IsKill * RegState::Kill));
358    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
359                           TII.get(TargetOpcode::COPY), ResultReg)
360                   .addReg(II.ImplicitDefs[0]));
361  }
362  return ResultReg;
363}
364
365unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
366                                      const TargetRegisterClass *RC,
367                                      unsigned Op0, bool Op0IsKill,
368                                      uint64_t Imm) {
369  unsigned ResultReg = createResultReg(RC);
370  const MCInstrDesc &II = TII.get(MachineInstOpcode);
371
372  if (II.getNumDefs() >= 1)
373    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
374                   .addReg(Op0, Op0IsKill * RegState::Kill)
375                   .addImm(Imm));
376  else {
377    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
378                   .addReg(Op0, Op0IsKill * RegState::Kill)
379                   .addImm(Imm));
380    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
381                           TII.get(TargetOpcode::COPY), ResultReg)
382                   .addReg(II.ImplicitDefs[0]));
383  }
384  return ResultReg;
385}
386
387unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
388                                      const TargetRegisterClass *RC,
389                                      unsigned Op0, bool Op0IsKill,
390                                      const ConstantFP *FPImm) {
391  unsigned ResultReg = createResultReg(RC);
392  const MCInstrDesc &II = TII.get(MachineInstOpcode);
393
394  if (II.getNumDefs() >= 1)
395    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
396                   .addReg(Op0, Op0IsKill * RegState::Kill)
397                   .addFPImm(FPImm));
398  else {
399    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
400                   .addReg(Op0, Op0IsKill * RegState::Kill)
401                   .addFPImm(FPImm));
402    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
403                           TII.get(TargetOpcode::COPY), ResultReg)
404                   .addReg(II.ImplicitDefs[0]));
405  }
406  return ResultReg;
407}
408
409unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
410                                       const TargetRegisterClass *RC,
411                                       unsigned Op0, bool Op0IsKill,
412                                       unsigned Op1, bool Op1IsKill,
413                                       uint64_t Imm) {
414  unsigned ResultReg = createResultReg(RC);
415  const MCInstrDesc &II = TII.get(MachineInstOpcode);
416
417  if (II.getNumDefs() >= 1)
418    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
419                   .addReg(Op0, Op0IsKill * RegState::Kill)
420                   .addReg(Op1, Op1IsKill * RegState::Kill)
421                   .addImm(Imm));
422  else {
423    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
424                   .addReg(Op0, Op0IsKill * RegState::Kill)
425                   .addReg(Op1, Op1IsKill * RegState::Kill)
426                   .addImm(Imm));
427    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
428                           TII.get(TargetOpcode::COPY), ResultReg)
429                   .addReg(II.ImplicitDefs[0]));
430  }
431  return ResultReg;
432}
433
434unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
435                                     const TargetRegisterClass *RC,
436                                     uint64_t Imm) {
437  unsigned ResultReg = createResultReg(RC);
438  const MCInstrDesc &II = TII.get(MachineInstOpcode);
439
440  if (II.getNumDefs() >= 1)
441    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
442                   .addImm(Imm));
443  else {
444    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
445                   .addImm(Imm));
446    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
447                           TII.get(TargetOpcode::COPY), ResultReg)
448                   .addReg(II.ImplicitDefs[0]));
449  }
450  return ResultReg;
451}
452
453unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
454                                      const TargetRegisterClass *RC,
455                                      uint64_t Imm1, uint64_t Imm2) {
456  unsigned ResultReg = createResultReg(RC);
457  const MCInstrDesc &II = TII.get(MachineInstOpcode);
458
459  if (II.getNumDefs() >= 1)
460    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
461                    .addImm(Imm1).addImm(Imm2));
462  else {
463    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
464                    .addImm(Imm1).addImm(Imm2));
465    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
466                            TII.get(TargetOpcode::COPY),
467                            ResultReg)
468                    .addReg(II.ImplicitDefs[0]));
469  }
470  return ResultReg;
471}
472
473unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
474                                                 unsigned Op0, bool Op0IsKill,
475                                                 uint32_t Idx) {
476  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
477  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
478         "Cannot yet extract from physregs");
479  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
480                         DL, TII.get(TargetOpcode::COPY), ResultReg)
481                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
482  return ResultReg;
483}
484
485// TODO: Don't worry about 64-bit now, but when this is fixed remove the
486// checks from the various callers.
487unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
488  if (VT == MVT::f64) return 0;
489
490  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
491  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
492                          TII.get(ARM::VMOVRS), MoveReg)
493                  .addReg(SrcReg));
494  return MoveReg;
495}
496
497unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
498  if (VT == MVT::i64) return 0;
499
500  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
501  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
502                          TII.get(ARM::VMOVSR), MoveReg)
503                  .addReg(SrcReg));
504  return MoveReg;
505}
506
507// For double width floating point we need to materialize two constants
508// (the high and the low) into integer registers then use a move to get
509// the combined constant into an FP reg.
510unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
511  const APFloat Val = CFP->getValueAPF();
512  bool is64bit = VT == MVT::f64;
513
514  // This checks to see if we can use VFP3 instructions to materialize
515  // a constant, otherwise we have to go through the constant pool.
516  if (TLI.isFPImmLegal(Val, VT)) {
517    int Imm;
518    unsigned Opc;
519    if (is64bit) {
520      Imm = ARM_AM::getFP64Imm(Val);
521      Opc = ARM::FCONSTD;
522    } else {
523      Imm = ARM_AM::getFP32Imm(Val);
524      Opc = ARM::FCONSTS;
525    }
526    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
527    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
528                            DestReg)
529                    .addImm(Imm));
530    return DestReg;
531  }
532
533  // Require VFP2 for loading fp constants.
534  if (!Subtarget->hasVFP2()) return false;
535
536  // MachineConstantPool wants an explicit alignment.
537  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
538  if (Align == 0) {
539    // TODO: Figure out if this is correct.
540    Align = TD.getTypeAllocSize(CFP->getType());
541  }
542  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
543  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
544  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
545
546  // The extra reg is for addrmode5.
547  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
548                          DestReg)
549                  .addConstantPoolIndex(Idx)
550                  .addReg(0));
551  return DestReg;
552}
553
554unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
555
556  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
557    return false;
558
559  // If we can do this in a single instruction without a constant pool entry
560  // do so now.
561  const ConstantInt *CI = cast<ConstantInt>(C);
562  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
563    unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
564    unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
565    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
566                            TII.get(Opc), ImmReg)
567                    .addImm(CI->getZExtValue()));
568    return ImmReg;
569  }
570
571  // Use MVN to emit negative constants.
572  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
573    unsigned Imm = (unsigned)~(CI->getSExtValue());
574    bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
575      (ARM_AM::getSOImmVal(Imm) != -1);
576    if (UseImm) {
577      unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
578      unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
579      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
580                              TII.get(Opc), ImmReg)
581                      .addImm(Imm));
582      return ImmReg;
583    }
584  }
585
586  // Load from constant pool.  For now 32-bit only.
587  if (VT != MVT::i32)
588    return false;
589
590  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
591
592  // MachineConstantPool wants an explicit alignment.
593  unsigned Align = TD.getPrefTypeAlignment(C->getType());
594  if (Align == 0) {
595    // TODO: Figure out if this is correct.
596    Align = TD.getTypeAllocSize(C->getType());
597  }
598  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
599
600  if (isThumb2)
601    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
602                            TII.get(ARM::t2LDRpci), DestReg)
603                    .addConstantPoolIndex(Idx));
604  else
605    // The extra immediate is for addrmode2.
606    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
607                            TII.get(ARM::LDRcp), DestReg)
608                    .addConstantPoolIndex(Idx)
609                    .addImm(0));
610
611  return DestReg;
612}
613
614unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
615  // For now 32-bit only.
616  if (VT != MVT::i32) return 0;
617
618  Reloc::Model RelocM = TM.getRelocationModel();
619
620  // TODO: Need more magic for ARM PIC.
621  if (!isThumb2 && (RelocM == Reloc::PIC_)) return 0;
622
623  // MachineConstantPool wants an explicit alignment.
624  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
625  if (Align == 0) {
626    // TODO: Figure out if this is correct.
627    Align = TD.getTypeAllocSize(GV->getType());
628  }
629
630  // Grab index.
631  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
632  unsigned Id = AFI->createPICLabelUId();
633  ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
634                                                              ARMCP::CPValue,
635                                                              PCAdj);
636  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
637
638  // Load value.
639  MachineInstrBuilder MIB;
640  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
641  if (isThumb2) {
642    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
643    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
644          .addConstantPoolIndex(Idx);
645    if (RelocM == Reloc::PIC_)
646      MIB.addImm(Id);
647  } else {
648    // The extra immediate is for addrmode2.
649    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
650                  DestReg)
651          .addConstantPoolIndex(Idx)
652          .addImm(0);
653  }
654  AddOptionalDefs(MIB);
655
656  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
657    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
658    if (isThumb2)
659      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
660                    TII.get(ARM::t2LDRi12), NewDestReg)
661            .addReg(DestReg)
662            .addImm(0);
663    else
664      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
665                    NewDestReg)
666            .addReg(DestReg)
667            .addImm(0);
668    DestReg = NewDestReg;
669    AddOptionalDefs(MIB);
670  }
671
672  return DestReg;
673}
674
675unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
676  EVT VT = TLI.getValueType(C->getType(), true);
677
678  // Only handle simple types.
679  if (!VT.isSimple()) return 0;
680
681  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
682    return ARMMaterializeFP(CFP, VT);
683  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
684    return ARMMaterializeGV(GV, VT);
685  else if (isa<ConstantInt>(C))
686    return ARMMaterializeInt(C, VT);
687
688  return 0;
689}
690
691unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
692  // Don't handle dynamic allocas.
693  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
694
695  MVT VT;
696  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
697
698  DenseMap<const AllocaInst*, int>::iterator SI =
699    FuncInfo.StaticAllocaMap.find(AI);
700
701  // This will get lowered later into the correct offsets and registers
702  // via rewriteXFrameIndex.
703  if (SI != FuncInfo.StaticAllocaMap.end()) {
704    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
705    unsigned ResultReg = createResultReg(RC);
706    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
707    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
708                            TII.get(Opc), ResultReg)
709                            .addFrameIndex(SI->second)
710                            .addImm(0));
711    return ResultReg;
712  }
713
714  return 0;
715}
716
717bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
718  EVT evt = TLI.getValueType(Ty, true);
719
720  // Only handle simple types.
721  if (evt == MVT::Other || !evt.isSimple()) return false;
722  VT = evt.getSimpleVT();
723
724  // Handle all legal types, i.e. a register that will directly hold this
725  // value.
726  return TLI.isTypeLegal(VT);
727}
728
729bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
730  if (isTypeLegal(Ty, VT)) return true;
731
732  // If this is a type than can be sign or zero-extended to a basic operation
733  // go ahead and accept it now.
734  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
735    return true;
736
737  return false;
738}
739
740// Computes the address to get to an object.
741bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
742  // Some boilerplate from the X86 FastISel.
743  const User *U = NULL;
744  unsigned Opcode = Instruction::UserOp1;
745  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
746    // Don't walk into other basic blocks unless the object is an alloca from
747    // another block, otherwise it may not have a virtual register assigned.
748    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
749        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
750      Opcode = I->getOpcode();
751      U = I;
752    }
753  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
754    Opcode = C->getOpcode();
755    U = C;
756  }
757
758  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
759    if (Ty->getAddressSpace() > 255)
760      // Fast instruction selection doesn't support the special
761      // address spaces.
762      return false;
763
764  switch (Opcode) {
765    default:
766    break;
767    case Instruction::BitCast: {
768      // Look through bitcasts.
769      return ARMComputeAddress(U->getOperand(0), Addr);
770    }
771    case Instruction::IntToPtr: {
772      // Look past no-op inttoptrs.
773      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
774        return ARMComputeAddress(U->getOperand(0), Addr);
775      break;
776    }
777    case Instruction::PtrToInt: {
778      // Look past no-op ptrtoints.
779      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
780        return ARMComputeAddress(U->getOperand(0), Addr);
781      break;
782    }
783    case Instruction::GetElementPtr: {
784      Address SavedAddr = Addr;
785      int TmpOffset = Addr.Offset;
786
787      // Iterate through the GEP folding the constants into offsets where
788      // we can.
789      gep_type_iterator GTI = gep_type_begin(U);
790      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
791           i != e; ++i, ++GTI) {
792        const Value *Op = *i;
793        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
794          const StructLayout *SL = TD.getStructLayout(STy);
795          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
796          TmpOffset += SL->getElementOffset(Idx);
797        } else {
798          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
799          for (;;) {
800            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
801              // Constant-offset addressing.
802              TmpOffset += CI->getSExtValue() * S;
803              break;
804            }
805            if (isa<AddOperator>(Op) &&
806                (!isa<Instruction>(Op) ||
807                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
808                 == FuncInfo.MBB) &&
809                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
810              // An add (in the same block) with a constant operand. Fold the
811              // constant.
812              ConstantInt *CI =
813              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
814              TmpOffset += CI->getSExtValue() * S;
815              // Iterate on the other operand.
816              Op = cast<AddOperator>(Op)->getOperand(0);
817              continue;
818            }
819            // Unsupported
820            goto unsupported_gep;
821          }
822        }
823      }
824
825      // Try to grab the base operand now.
826      Addr.Offset = TmpOffset;
827      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
828
829      // We failed, restore everything and try the other options.
830      Addr = SavedAddr;
831
832      unsupported_gep:
833      break;
834    }
835    case Instruction::Alloca: {
836      const AllocaInst *AI = cast<AllocaInst>(Obj);
837      DenseMap<const AllocaInst*, int>::iterator SI =
838        FuncInfo.StaticAllocaMap.find(AI);
839      if (SI != FuncInfo.StaticAllocaMap.end()) {
840        Addr.BaseType = Address::FrameIndexBase;
841        Addr.Base.FI = SI->second;
842        return true;
843      }
844      break;
845    }
846  }
847
848  // Materialize the global variable's address into a reg which can
849  // then be used later to load the variable.
850  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
851    unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
852    if (Tmp == 0) return false;
853
854    Addr.Base.Reg = Tmp;
855    return true;
856  }
857
858  // Try to get this in a register if nothing else has worked.
859  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
860  return Addr.Base.Reg != 0;
861}
862
863void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3) {
864
865  assert(VT.isSimple() && "Non-simple types are invalid here!");
866
867  bool needsLowering = false;
868  switch (VT.getSimpleVT().SimpleTy) {
869    default:
870      assert(false && "Unhandled load/store type!");
871      break;
872    case MVT::i1:
873    case MVT::i8:
874    case MVT::i16:
875    case MVT::i32:
876      if (!useAM3) {
877        // Integer loads/stores handle 12-bit offsets.
878        needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
879        // Handle negative offsets.
880        if (needsLowering && isThumb2)
881          needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
882                            Addr.Offset > -256);
883      } else {
884        // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
885        needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
886      }
887      break;
888    case MVT::f32:
889    case MVT::f64:
890      // Floating point operands handle 8-bit offsets.
891      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
892      break;
893  }
894
895  // If this is a stack pointer and the offset needs to be simplified then
896  // put the alloca address into a register, set the base type back to
897  // register and continue. This should almost never happen.
898  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
899    TargetRegisterClass *RC = isThumb2 ? ARM::tGPRRegisterClass :
900                              ARM::GPRRegisterClass;
901    unsigned ResultReg = createResultReg(RC);
902    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
903    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
904                            TII.get(Opc), ResultReg)
905                            .addFrameIndex(Addr.Base.FI)
906                            .addImm(0));
907    Addr.Base.Reg = ResultReg;
908    Addr.BaseType = Address::RegBase;
909  }
910
911  // Since the offset is too large for the load/store instruction
912  // get the reg+offset into a register.
913  if (needsLowering) {
914    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
915                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
916    Addr.Offset = 0;
917  }
918}
919
920void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
921                                       const MachineInstrBuilder &MIB,
922                                       unsigned Flags, bool useAM3) {
923  // addrmode5 output depends on the selection dag addressing dividing the
924  // offset by 4 that it then later multiplies. Do this here as well.
925  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
926      VT.getSimpleVT().SimpleTy == MVT::f64)
927    Addr.Offset /= 4;
928
929  // Frame base works a bit differently. Handle it separately.
930  if (Addr.BaseType == Address::FrameIndexBase) {
931    int FI = Addr.Base.FI;
932    int Offset = Addr.Offset;
933    MachineMemOperand *MMO =
934          FuncInfo.MF->getMachineMemOperand(
935                                  MachinePointerInfo::getFixedStack(FI, Offset),
936                                  Flags,
937                                  MFI.getObjectSize(FI),
938                                  MFI.getObjectAlignment(FI));
939    // Now add the rest of the operands.
940    MIB.addFrameIndex(FI);
941
942    // ARM halfword load/stores and signed byte loads need an additional operand.
943    if (useAM3) {
944      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
945      MIB.addReg(0);
946      MIB.addImm(Imm);
947    } else {
948      MIB.addImm(Addr.Offset);
949    }
950    MIB.addMemOperand(MMO);
951  } else {
952    // Now add the rest of the operands.
953    MIB.addReg(Addr.Base.Reg);
954
955    // ARM halfword load/stores and signed byte loads need an additional operand.
956    if (useAM3) {
957      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
958      MIB.addReg(0);
959      MIB.addImm(Imm);
960    } else {
961      MIB.addImm(Addr.Offset);
962    }
963  }
964  AddOptionalDefs(MIB);
965}
966
967bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
968                              bool isZExt = true, bool allocReg = true) {
969  assert(VT.isSimple() && "Non-simple types are invalid here!");
970  unsigned Opc;
971  bool useAM3 = false;
972  TargetRegisterClass *RC;
973  switch (VT.getSimpleVT().SimpleTy) {
974    // This is mostly going to be Neon/vector support.
975    default: return false;
976    case MVT::i1:
977    case MVT::i8:
978      if (isThumb2) {
979        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
980          Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
981        else
982          Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
983      } else {
984        if (isZExt) {
985          Opc = ARM::LDRBi12;
986        } else {
987          Opc = ARM::LDRSB;
988          useAM3 = true;
989        }
990      }
991      RC = ARM::GPRRegisterClass;
992      break;
993    case MVT::i16:
994      if (isThumb2) {
995        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
996          Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
997        else
998          Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
999      } else {
1000        Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1001        useAM3 = true;
1002      }
1003      RC = ARM::GPRRegisterClass;
1004      break;
1005    case MVT::i32:
1006      if (isThumb2) {
1007        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1008          Opc = ARM::t2LDRi8;
1009        else
1010          Opc = ARM::t2LDRi12;
1011      } else {
1012        Opc = ARM::LDRi12;
1013      }
1014      RC = ARM::GPRRegisterClass;
1015      break;
1016    case MVT::f32:
1017      Opc = ARM::VLDRS;
1018      RC = TLI.getRegClassFor(VT);
1019      break;
1020    case MVT::f64:
1021      Opc = ARM::VLDRD;
1022      RC = TLI.getRegClassFor(VT);
1023      break;
1024  }
1025  // Simplify this down to something we can handle.
1026  ARMSimplifyAddress(Addr, VT, useAM3);
1027
1028  // Create the base instruction, then add the operands.
1029  if (allocReg)
1030    ResultReg = createResultReg(RC);
1031  assert (ResultReg > 255 && "Expected an allocated virtual register.");
1032  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1033                                    TII.get(Opc), ResultReg);
1034  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1035  return true;
1036}
1037
1038bool ARMFastISel::SelectLoad(const Instruction *I) {
1039  // Atomic loads need special handling.
1040  if (cast<LoadInst>(I)->isAtomic())
1041    return false;
1042
1043  // Verify we have a legal type before going any further.
1044  MVT VT;
1045  if (!isLoadTypeLegal(I->getType(), VT))
1046    return false;
1047
1048  // See if we can handle this address.
1049  Address Addr;
1050  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1051
1052  unsigned ResultReg;
1053  if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
1054  UpdateValueMap(I, ResultReg);
1055  return true;
1056}
1057
1058bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
1059  unsigned StrOpc;
1060  bool useAM3 = false;
1061  switch (VT.getSimpleVT().SimpleTy) {
1062    // This is mostly going to be Neon/vector support.
1063    default: return false;
1064    case MVT::i1: {
1065      unsigned Res = createResultReg(isThumb2 ? ARM::tGPRRegisterClass :
1066                                               ARM::GPRRegisterClass);
1067      unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1068      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1069                              TII.get(Opc), Res)
1070                      .addReg(SrcReg).addImm(1));
1071      SrcReg = Res;
1072    } // Fallthrough here.
1073    case MVT::i8:
1074      if (isThumb2) {
1075        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1076          StrOpc = ARM::t2STRBi8;
1077        else
1078          StrOpc = ARM::t2STRBi12;
1079      } else {
1080        StrOpc = ARM::STRBi12;
1081      }
1082      break;
1083    case MVT::i16:
1084      if (isThumb2) {
1085        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1086          StrOpc = ARM::t2STRHi8;
1087        else
1088          StrOpc = ARM::t2STRHi12;
1089      } else {
1090        StrOpc = ARM::STRH;
1091        useAM3 = true;
1092      }
1093      break;
1094    case MVT::i32:
1095      if (isThumb2) {
1096        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1097          StrOpc = ARM::t2STRi8;
1098        else
1099          StrOpc = ARM::t2STRi12;
1100      } else {
1101        StrOpc = ARM::STRi12;
1102      }
1103      break;
1104    case MVT::f32:
1105      if (!Subtarget->hasVFP2()) return false;
1106      StrOpc = ARM::VSTRS;
1107      break;
1108    case MVT::f64:
1109      if (!Subtarget->hasVFP2()) return false;
1110      StrOpc = ARM::VSTRD;
1111      break;
1112  }
1113  // Simplify this down to something we can handle.
1114  ARMSimplifyAddress(Addr, VT, useAM3);
1115
1116  // Create the base instruction, then add the operands.
1117  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1118                                    TII.get(StrOpc))
1119                            .addReg(SrcReg, getKillRegState(true));
1120  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1121  return true;
1122}
1123
1124bool ARMFastISel::SelectStore(const Instruction *I) {
1125  Value *Op0 = I->getOperand(0);
1126  unsigned SrcReg = 0;
1127
1128  // Atomic stores need special handling.
1129  if (cast<StoreInst>(I)->isAtomic())
1130    return false;
1131
1132  // Verify we have a legal type before going any further.
1133  MVT VT;
1134  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1135    return false;
1136
1137  // Get the value to be stored into a register.
1138  SrcReg = getRegForValue(Op0);
1139  if (SrcReg == 0) return false;
1140
1141  // See if we can handle this address.
1142  Address Addr;
1143  if (!ARMComputeAddress(I->getOperand(1), Addr))
1144    return false;
1145
1146  if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
1147  return true;
1148}
1149
1150static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1151  switch (Pred) {
1152    // Needs two compares...
1153    case CmpInst::FCMP_ONE:
1154    case CmpInst::FCMP_UEQ:
1155    default:
1156      // AL is our "false" for now. The other two need more compares.
1157      return ARMCC::AL;
1158    case CmpInst::ICMP_EQ:
1159    case CmpInst::FCMP_OEQ:
1160      return ARMCC::EQ;
1161    case CmpInst::ICMP_SGT:
1162    case CmpInst::FCMP_OGT:
1163      return ARMCC::GT;
1164    case CmpInst::ICMP_SGE:
1165    case CmpInst::FCMP_OGE:
1166      return ARMCC::GE;
1167    case CmpInst::ICMP_UGT:
1168    case CmpInst::FCMP_UGT:
1169      return ARMCC::HI;
1170    case CmpInst::FCMP_OLT:
1171      return ARMCC::MI;
1172    case CmpInst::ICMP_ULE:
1173    case CmpInst::FCMP_OLE:
1174      return ARMCC::LS;
1175    case CmpInst::FCMP_ORD:
1176      return ARMCC::VC;
1177    case CmpInst::FCMP_UNO:
1178      return ARMCC::VS;
1179    case CmpInst::FCMP_UGE:
1180      return ARMCC::PL;
1181    case CmpInst::ICMP_SLT:
1182    case CmpInst::FCMP_ULT:
1183      return ARMCC::LT;
1184    case CmpInst::ICMP_SLE:
1185    case CmpInst::FCMP_ULE:
1186      return ARMCC::LE;
1187    case CmpInst::FCMP_UNE:
1188    case CmpInst::ICMP_NE:
1189      return ARMCC::NE;
1190    case CmpInst::ICMP_UGE:
1191      return ARMCC::HS;
1192    case CmpInst::ICMP_ULT:
1193      return ARMCC::LO;
1194  }
1195}
1196
1197bool ARMFastISel::SelectBranch(const Instruction *I) {
1198  const BranchInst *BI = cast<BranchInst>(I);
1199  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1200  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1201
1202  // Simple branch support.
1203
1204  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1205  // behavior.
1206  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1207    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1208
1209      // Get the compare predicate.
1210      // Try to take advantage of fallthrough opportunities.
1211      CmpInst::Predicate Predicate = CI->getPredicate();
1212      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1213        std::swap(TBB, FBB);
1214        Predicate = CmpInst::getInversePredicate(Predicate);
1215      }
1216
1217      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1218
1219      // We may not handle every CC for now.
1220      if (ARMPred == ARMCC::AL) return false;
1221
1222      // Emit the compare.
1223      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1224        return false;
1225
1226      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1227      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1228      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1229      FastEmitBranch(FBB, DL);
1230      FuncInfo.MBB->addSuccessor(TBB);
1231      return true;
1232    }
1233  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1234    MVT SourceVT;
1235    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1236        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1237      unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1238      unsigned OpReg = getRegForValue(TI->getOperand(0));
1239      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1240                              TII.get(TstOpc))
1241                      .addReg(OpReg).addImm(1));
1242
1243      unsigned CCMode = ARMCC::NE;
1244      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1245        std::swap(TBB, FBB);
1246        CCMode = ARMCC::EQ;
1247      }
1248
1249      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1250      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1251      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1252
1253      FastEmitBranch(FBB, DL);
1254      FuncInfo.MBB->addSuccessor(TBB);
1255      return true;
1256    }
1257  } else if (const ConstantInt *CI =
1258             dyn_cast<ConstantInt>(BI->getCondition())) {
1259    uint64_t Imm = CI->getZExtValue();
1260    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1261    FastEmitBranch(Target, DL);
1262    return true;
1263  }
1264
1265  unsigned CmpReg = getRegForValue(BI->getCondition());
1266  if (CmpReg == 0) return false;
1267
1268  // We've been divorced from our compare!  Our block was split, and
1269  // now our compare lives in a predecessor block.  We musn't
1270  // re-compare here, as the children of the compare aren't guaranteed
1271  // live across the block boundary (we *could* check for this).
1272  // Regardless, the compare has been done in the predecessor block,
1273  // and it left a value for us in a virtual register.  Ergo, we test
1274  // the one-bit value left in the virtual register.
1275  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1276  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1277                  .addReg(CmpReg).addImm(1));
1278
1279  unsigned CCMode = ARMCC::NE;
1280  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1281    std::swap(TBB, FBB);
1282    CCMode = ARMCC::EQ;
1283  }
1284
1285  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1286  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1287                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1288  FastEmitBranch(FBB, DL);
1289  FuncInfo.MBB->addSuccessor(TBB);
1290  return true;
1291}
1292
1293bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1294                             bool isZExt) {
1295  Type *Ty = Src1Value->getType();
1296  EVT SrcVT = TLI.getValueType(Ty, true);
1297  if (!SrcVT.isSimple()) return false;
1298
1299  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1300  if (isFloat && !Subtarget->hasVFP2())
1301    return false;
1302
1303  // Check to see if the 2nd operand is a constant that we can encode directly
1304  // in the compare.
1305  int Imm = 0;
1306  bool UseImm = false;
1307  bool isNegativeImm = false;
1308  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1309    if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1310        SrcVT == MVT::i1) {
1311      const APInt &CIVal = ConstInt->getValue();
1312      Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1313      if (Imm < 0) {
1314        isNegativeImm = true;
1315        Imm = -Imm;
1316      }
1317      UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1318        (ARM_AM::getSOImmVal(Imm) != -1);
1319    }
1320  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1321    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1322      if (ConstFP->isZero() && !ConstFP->isNegative())
1323        UseImm = true;
1324  }
1325
1326  unsigned CmpOpc;
1327  bool isICmp = true;
1328  bool needsExt = false;
1329  switch (SrcVT.getSimpleVT().SimpleTy) {
1330    default: return false;
1331    // TODO: Verify compares.
1332    case MVT::f32:
1333      isICmp = false;
1334      CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1335      break;
1336    case MVT::f64:
1337      isICmp = false;
1338      CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1339      break;
1340    case MVT::i1:
1341    case MVT::i8:
1342    case MVT::i16:
1343      needsExt = true;
1344    // Intentional fall-through.
1345    case MVT::i32:
1346      if (isThumb2) {
1347        if (!UseImm)
1348          CmpOpc = ARM::t2CMPrr;
1349        else
1350          CmpOpc = isNegativeImm ? ARM::t2CMNzri : ARM::t2CMPri;
1351      } else {
1352        if (!UseImm)
1353          CmpOpc = ARM::CMPrr;
1354        else
1355          CmpOpc = isNegativeImm ? ARM::CMNzri : ARM::CMPri;
1356      }
1357      break;
1358  }
1359
1360  unsigned SrcReg1 = getRegForValue(Src1Value);
1361  if (SrcReg1 == 0) return false;
1362
1363  unsigned SrcReg2;
1364  if (!UseImm) {
1365    SrcReg2 = getRegForValue(Src2Value);
1366    if (SrcReg2 == 0) return false;
1367  }
1368
1369  // We have i1, i8, or i16, we need to either zero extend or sign extend.
1370  if (needsExt) {
1371    unsigned ResultReg;
1372    ResultReg = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1373    if (ResultReg == 0) return false;
1374    SrcReg1 = ResultReg;
1375    if (!UseImm) {
1376      ResultReg = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1377      if (ResultReg == 0) return false;
1378      SrcReg2 = ResultReg;
1379    }
1380  }
1381
1382  if (!UseImm) {
1383    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1384                            TII.get(CmpOpc))
1385                    .addReg(SrcReg1).addReg(SrcReg2));
1386  } else {
1387    MachineInstrBuilder MIB;
1388    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1389      .addReg(SrcReg1);
1390
1391    // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1392    if (isICmp)
1393      MIB.addImm(Imm);
1394    AddOptionalDefs(MIB);
1395  }
1396
1397  // For floating point we need to move the result to a comparison register
1398  // that we can then use for branches.
1399  if (Ty->isFloatTy() || Ty->isDoubleTy())
1400    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1401                            TII.get(ARM::FMSTAT)));
1402  return true;
1403}
1404
1405bool ARMFastISel::SelectCmp(const Instruction *I) {
1406  const CmpInst *CI = cast<CmpInst>(I);
1407  Type *Ty = CI->getOperand(0)->getType();
1408
1409  // Get the compare predicate.
1410  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1411
1412  // We may not handle every CC for now.
1413  if (ARMPred == ARMCC::AL) return false;
1414
1415  // Emit the compare.
1416  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1417    return false;
1418
1419  // Now set a register based on the comparison. Explicitly set the predicates
1420  // here.
1421  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1422  TargetRegisterClass *RC = isThumb2 ? ARM::rGPRRegisterClass
1423                                    : ARM::GPRRegisterClass;
1424  unsigned DestReg = createResultReg(RC);
1425  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1426  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1427  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1428  unsigned CondReg = isFloat ? ARM::FPSCR : ARM::CPSR;
1429  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1430          .addReg(ZeroReg).addImm(1)
1431          .addImm(ARMPred).addReg(CondReg);
1432
1433  UpdateValueMap(I, DestReg);
1434  return true;
1435}
1436
1437bool ARMFastISel::SelectFPExt(const Instruction *I) {
1438  // Make sure we have VFP and that we're extending float to double.
1439  if (!Subtarget->hasVFP2()) return false;
1440
1441  Value *V = I->getOperand(0);
1442  if (!I->getType()->isDoubleTy() ||
1443      !V->getType()->isFloatTy()) return false;
1444
1445  unsigned Op = getRegForValue(V);
1446  if (Op == 0) return false;
1447
1448  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1449  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1450                          TII.get(ARM::VCVTDS), Result)
1451                  .addReg(Op));
1452  UpdateValueMap(I, Result);
1453  return true;
1454}
1455
1456bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1457  // Make sure we have VFP and that we're truncating double to float.
1458  if (!Subtarget->hasVFP2()) return false;
1459
1460  Value *V = I->getOperand(0);
1461  if (!(I->getType()->isFloatTy() &&
1462        V->getType()->isDoubleTy())) return false;
1463
1464  unsigned Op = getRegForValue(V);
1465  if (Op == 0) return false;
1466
1467  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1468  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1469                          TII.get(ARM::VCVTSD), Result)
1470                  .addReg(Op));
1471  UpdateValueMap(I, Result);
1472  return true;
1473}
1474
1475bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1476  // Make sure we have VFP.
1477  if (!Subtarget->hasVFP2()) return false;
1478
1479  MVT DstVT;
1480  Type *Ty = I->getType();
1481  if (!isTypeLegal(Ty, DstVT))
1482    return false;
1483
1484  Value *Src = I->getOperand(0);
1485  EVT SrcVT = TLI.getValueType(Src->getType(), true);
1486  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1487    return false;
1488
1489  unsigned SrcReg = getRegForValue(Src);
1490  if (SrcReg == 0) return false;
1491
1492  // Handle sign-extension.
1493  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1494    EVT DestVT = MVT::i32;
1495    unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, /*isZExt*/ false);
1496    if (ResultReg == 0) return false;
1497    SrcReg = ResultReg;
1498  }
1499
1500  // The conversion routine works on fp-reg to fp-reg and the operand above
1501  // was an integer, move it to the fp registers if possible.
1502  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1503  if (FP == 0) return false;
1504
1505  unsigned Opc;
1506  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1507  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1508  else return false;
1509
1510  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1511  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1512                          ResultReg)
1513                  .addReg(FP));
1514  UpdateValueMap(I, ResultReg);
1515  return true;
1516}
1517
1518bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1519  // Make sure we have VFP.
1520  if (!Subtarget->hasVFP2()) return false;
1521
1522  MVT DstVT;
1523  Type *RetTy = I->getType();
1524  if (!isTypeLegal(RetTy, DstVT))
1525    return false;
1526
1527  unsigned Op = getRegForValue(I->getOperand(0));
1528  if (Op == 0) return false;
1529
1530  unsigned Opc;
1531  Type *OpTy = I->getOperand(0)->getType();
1532  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1533  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1534  else return false;
1535
1536  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1537  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1538  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1539                          ResultReg)
1540                  .addReg(Op));
1541
1542  // This result needs to be in an integer register, but the conversion only
1543  // takes place in fp-regs.
1544  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1545  if (IntReg == 0) return false;
1546
1547  UpdateValueMap(I, IntReg);
1548  return true;
1549}
1550
1551bool ARMFastISel::SelectSelect(const Instruction *I) {
1552  MVT VT;
1553  if (!isTypeLegal(I->getType(), VT))
1554    return false;
1555
1556  // Things need to be register sized for register moves.
1557  if (VT != MVT::i32) return false;
1558  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1559
1560  unsigned CondReg = getRegForValue(I->getOperand(0));
1561  if (CondReg == 0) return false;
1562  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1563  if (Op1Reg == 0) return false;
1564
1565  // Check to see if we can use an immediate in the conditional move.
1566  int Imm = 0;
1567  bool UseImm = false;
1568  bool isNegativeImm = false;
1569  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1570    assert (VT == MVT::i32 && "Expecting an i32.");
1571    Imm = (int)ConstInt->getValue().getZExtValue();
1572    if (Imm < 0) {
1573      isNegativeImm = true;
1574      Imm = ~Imm;
1575    }
1576    UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1577      (ARM_AM::getSOImmVal(Imm) != -1);
1578  }
1579
1580  unsigned Op2Reg;
1581  if (!UseImm) {
1582    Op2Reg = getRegForValue(I->getOperand(2));
1583    if (Op2Reg == 0) return false;
1584  }
1585
1586  unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1587  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1588                  .addReg(CondReg).addImm(0));
1589
1590  unsigned MovCCOpc;
1591  if (!UseImm) {
1592    MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1593  } else {
1594    if (!isNegativeImm) {
1595      MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1596    } else {
1597      MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1598    }
1599  }
1600  unsigned ResultReg = createResultReg(RC);
1601  if (!UseImm)
1602    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1603    .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
1604  else
1605    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1606    .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
1607  UpdateValueMap(I, ResultReg);
1608  return true;
1609}
1610
1611bool ARMFastISel::SelectSDiv(const Instruction *I) {
1612  MVT VT;
1613  Type *Ty = I->getType();
1614  if (!isTypeLegal(Ty, VT))
1615    return false;
1616
1617  // If we have integer div support we should have selected this automagically.
1618  // In case we have a real miss go ahead and return false and we'll pick
1619  // it up later.
1620  if (Subtarget->hasDivide()) return false;
1621
1622  // Otherwise emit a libcall.
1623  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1624  if (VT == MVT::i8)
1625    LC = RTLIB::SDIV_I8;
1626  else if (VT == MVT::i16)
1627    LC = RTLIB::SDIV_I16;
1628  else if (VT == MVT::i32)
1629    LC = RTLIB::SDIV_I32;
1630  else if (VT == MVT::i64)
1631    LC = RTLIB::SDIV_I64;
1632  else if (VT == MVT::i128)
1633    LC = RTLIB::SDIV_I128;
1634  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1635
1636  return ARMEmitLibcall(I, LC);
1637}
1638
1639bool ARMFastISel::SelectSRem(const Instruction *I) {
1640  MVT VT;
1641  Type *Ty = I->getType();
1642  if (!isTypeLegal(Ty, VT))
1643    return false;
1644
1645  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1646  if (VT == MVT::i8)
1647    LC = RTLIB::SREM_I8;
1648  else if (VT == MVT::i16)
1649    LC = RTLIB::SREM_I16;
1650  else if (VT == MVT::i32)
1651    LC = RTLIB::SREM_I32;
1652  else if (VT == MVT::i64)
1653    LC = RTLIB::SREM_I64;
1654  else if (VT == MVT::i128)
1655    LC = RTLIB::SREM_I128;
1656  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1657
1658  return ARMEmitLibcall(I, LC);
1659}
1660
1661bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1662  EVT VT  = TLI.getValueType(I->getType(), true);
1663
1664  // We can get here in the case when we want to use NEON for our fp
1665  // operations, but can't figure out how to. Just use the vfp instructions
1666  // if we have them.
1667  // FIXME: It'd be nice to use NEON instructions.
1668  Type *Ty = I->getType();
1669  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1670  if (isFloat && !Subtarget->hasVFP2())
1671    return false;
1672
1673  unsigned Op1 = getRegForValue(I->getOperand(0));
1674  if (Op1 == 0) return false;
1675
1676  unsigned Op2 = getRegForValue(I->getOperand(1));
1677  if (Op2 == 0) return false;
1678
1679  unsigned Opc;
1680  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1681  switch (ISDOpcode) {
1682    default: return false;
1683    case ISD::FADD:
1684      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1685      break;
1686    case ISD::FSUB:
1687      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1688      break;
1689    case ISD::FMUL:
1690      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1691      break;
1692  }
1693  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1694  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1695                          TII.get(Opc), ResultReg)
1696                  .addReg(Op1).addReg(Op2));
1697  UpdateValueMap(I, ResultReg);
1698  return true;
1699}
1700
1701// Call Handling Code
1702
1703bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1704                                 EVT SrcVT, unsigned &ResultReg) {
1705  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1706                           Src, /*TODO: Kill=*/false);
1707
1708  if (RR != 0) {
1709    ResultReg = RR;
1710    return true;
1711  } else
1712    return false;
1713}
1714
1715// This is largely taken directly from CCAssignFnForNode - we don't support
1716// varargs in FastISel so that part has been removed.
1717// TODO: We may not support all of this.
1718CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1719  switch (CC) {
1720  default:
1721    llvm_unreachable("Unsupported calling convention");
1722  case CallingConv::Fast:
1723    // Ignore fastcc. Silence compiler warnings.
1724    (void)RetFastCC_ARM_APCS;
1725    (void)FastCC_ARM_APCS;
1726    // Fallthrough
1727  case CallingConv::C:
1728    // Use target triple & subtarget features to do actual dispatch.
1729    if (Subtarget->isAAPCS_ABI()) {
1730      if (Subtarget->hasVFP2() &&
1731          FloatABIType == FloatABI::Hard)
1732        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1733      else
1734        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1735    } else
1736        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1737  case CallingConv::ARM_AAPCS_VFP:
1738    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1739  case CallingConv::ARM_AAPCS:
1740    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1741  case CallingConv::ARM_APCS:
1742    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1743  }
1744}
1745
1746bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1747                                  SmallVectorImpl<unsigned> &ArgRegs,
1748                                  SmallVectorImpl<MVT> &ArgVTs,
1749                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1750                                  SmallVectorImpl<unsigned> &RegArgs,
1751                                  CallingConv::ID CC,
1752                                  unsigned &NumBytes) {
1753  SmallVector<CCValAssign, 16> ArgLocs;
1754  CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
1755  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1756
1757  // Get a count of how many bytes are to be pushed on the stack.
1758  NumBytes = CCInfo.getNextStackOffset();
1759
1760  // Issue CALLSEQ_START
1761  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1762  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1763                          TII.get(AdjStackDown))
1764                  .addImm(NumBytes));
1765
1766  // Process the args.
1767  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1768    CCValAssign &VA = ArgLocs[i];
1769    unsigned Arg = ArgRegs[VA.getValNo()];
1770    MVT ArgVT = ArgVTs[VA.getValNo()];
1771
1772    // We don't handle NEON/vector parameters yet.
1773    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1774      return false;
1775
1776    // Handle arg promotion, etc.
1777    switch (VA.getLocInfo()) {
1778      case CCValAssign::Full: break;
1779      case CCValAssign::SExt: {
1780        EVT DestVT = VA.getLocVT();
1781        unsigned ResultReg = ARMEmitIntExt(ArgVT, Arg, DestVT,
1782                                           /*isZExt*/false);
1783        assert (ResultReg != 0 && "Failed to emit a sext");
1784        Arg = ResultReg;
1785        break;
1786      }
1787      case CCValAssign::AExt:
1788        // Intentional fall-through.  Handle AExt and ZExt.
1789      case CCValAssign::ZExt: {
1790        EVT DestVT = VA.getLocVT();
1791        unsigned ResultReg = ARMEmitIntExt(ArgVT, Arg, DestVT,
1792                                           /*isZExt*/true);
1793        assert (ResultReg != 0 && "Failed to emit a sext");
1794        Arg = ResultReg;
1795        break;
1796      }
1797      case CCValAssign::BCvt: {
1798        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1799                                 /*TODO: Kill=*/false);
1800        assert(BC != 0 && "Failed to emit a bitcast!");
1801        Arg = BC;
1802        ArgVT = VA.getLocVT();
1803        break;
1804      }
1805      default: llvm_unreachable("Unknown arg promotion!");
1806    }
1807
1808    // Now copy/store arg to correct locations.
1809    if (VA.isRegLoc() && !VA.needsCustom()) {
1810      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1811              VA.getLocReg())
1812        .addReg(Arg);
1813      RegArgs.push_back(VA.getLocReg());
1814    } else if (VA.needsCustom()) {
1815      // TODO: We need custom lowering for vector (v2f64) args.
1816      if (VA.getLocVT() != MVT::f64) return false;
1817
1818      CCValAssign &NextVA = ArgLocs[++i];
1819
1820      // TODO: Only handle register args for now.
1821      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1822
1823      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1824                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1825                      .addReg(NextVA.getLocReg(), RegState::Define)
1826                      .addReg(Arg));
1827      RegArgs.push_back(VA.getLocReg());
1828      RegArgs.push_back(NextVA.getLocReg());
1829    } else {
1830      assert(VA.isMemLoc());
1831      // Need to store on the stack.
1832      Address Addr;
1833      Addr.BaseType = Address::RegBase;
1834      Addr.Base.Reg = ARM::SP;
1835      Addr.Offset = VA.getLocMemOffset();
1836
1837      if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1838    }
1839  }
1840  return true;
1841}
1842
1843bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1844                             const Instruction *I, CallingConv::ID CC,
1845                             unsigned &NumBytes) {
1846  // Issue CALLSEQ_END
1847  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1848  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1849                          TII.get(AdjStackUp))
1850                  .addImm(NumBytes).addImm(0));
1851
1852  // Now the return value.
1853  if (RetVT != MVT::isVoid) {
1854    SmallVector<CCValAssign, 16> RVLocs;
1855    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
1856    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1857
1858    // Copy all of the result registers out of their specified physreg.
1859    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1860      // For this move we copy into two registers and then move into the
1861      // double fp reg we want.
1862      EVT DestVT = RVLocs[0].getValVT();
1863      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1864      unsigned ResultReg = createResultReg(DstRC);
1865      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1866                              TII.get(ARM::VMOVDRR), ResultReg)
1867                      .addReg(RVLocs[0].getLocReg())
1868                      .addReg(RVLocs[1].getLocReg()));
1869
1870      UsedRegs.push_back(RVLocs[0].getLocReg());
1871      UsedRegs.push_back(RVLocs[1].getLocReg());
1872
1873      // Finally update the result.
1874      UpdateValueMap(I, ResultReg);
1875    } else {
1876      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1877      EVT CopyVT = RVLocs[0].getValVT();
1878
1879      // Special handling for extended integers.
1880      if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1881        CopyVT = MVT::i32;
1882
1883      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1884
1885      unsigned ResultReg = createResultReg(DstRC);
1886      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1887              ResultReg).addReg(RVLocs[0].getLocReg());
1888      UsedRegs.push_back(RVLocs[0].getLocReg());
1889
1890      // Finally update the result.
1891      UpdateValueMap(I, ResultReg);
1892    }
1893  }
1894
1895  return true;
1896}
1897
1898bool ARMFastISel::SelectRet(const Instruction *I) {
1899  const ReturnInst *Ret = cast<ReturnInst>(I);
1900  const Function &F = *I->getParent()->getParent();
1901
1902  if (!FuncInfo.CanLowerReturn)
1903    return false;
1904
1905  if (F.isVarArg())
1906    return false;
1907
1908  CallingConv::ID CC = F.getCallingConv();
1909  if (Ret->getNumOperands() > 0) {
1910    SmallVector<ISD::OutputArg, 4> Outs;
1911    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1912                  Outs, TLI);
1913
1914    // Analyze operands of the call, assigning locations to each operand.
1915    SmallVector<CCValAssign, 16> ValLocs;
1916    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
1917    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1918
1919    const Value *RV = Ret->getOperand(0);
1920    unsigned Reg = getRegForValue(RV);
1921    if (Reg == 0)
1922      return false;
1923
1924    // Only handle a single return value for now.
1925    if (ValLocs.size() != 1)
1926      return false;
1927
1928    CCValAssign &VA = ValLocs[0];
1929
1930    // Don't bother handling odd stuff for now.
1931    if (VA.getLocInfo() != CCValAssign::Full)
1932      return false;
1933    // Only handle register returns for now.
1934    if (!VA.isRegLoc())
1935      return false;
1936
1937    unsigned SrcReg = Reg + VA.getValNo();
1938    EVT RVVT = TLI.getValueType(RV->getType());
1939    EVT DestVT = VA.getValVT();
1940    // Special handling for extended integers.
1941    if (RVVT != DestVT) {
1942      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1943        return false;
1944
1945      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1946        return false;
1947
1948      assert(DestVT == MVT::i32 && "ARM should always ext to i32");
1949
1950      bool isZExt = Outs[0].Flags.isZExt();
1951      unsigned ResultReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, isZExt);
1952      if (ResultReg == 0) return false;
1953      SrcReg = ResultReg;
1954    }
1955
1956    // Make the copy.
1957    unsigned DstReg = VA.getLocReg();
1958    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1959    // Avoid a cross-class copy. This is very unlikely.
1960    if (!SrcRC->contains(DstReg))
1961      return false;
1962    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1963            DstReg).addReg(SrcReg);
1964
1965    // Mark the register as live out of the function.
1966    MRI.addLiveOut(VA.getLocReg());
1967  }
1968
1969  unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
1970  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1971                          TII.get(RetOpc)));
1972  return true;
1973}
1974
1975unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
1976
1977  // Darwin needs the r9 versions of the opcodes.
1978  bool isDarwin = Subtarget->isTargetDarwin();
1979  if (isThumb2) {
1980    return isDarwin ? ARM::tBLr9 : ARM::tBL;
1981  } else  {
1982    return isDarwin ? ARM::BLr9 : ARM::BL;
1983  }
1984}
1985
1986// A quick function that will emit a call for a named libcall in F with the
1987// vector of passed arguments for the Instruction in I. We can assume that we
1988// can emit a call for any libcall we can produce. This is an abridged version
1989// of the full call infrastructure since we won't need to worry about things
1990// like computed function pointers or strange arguments at call sites.
1991// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1992// with X86.
1993bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1994  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1995
1996  // Handle *simple* calls for now.
1997  Type *RetTy = I->getType();
1998  MVT RetVT;
1999  if (RetTy->isVoidTy())
2000    RetVT = MVT::isVoid;
2001  else if (!isTypeLegal(RetTy, RetVT))
2002    return false;
2003
2004  // TODO: For now if we have long calls specified we don't handle the call.
2005  if (EnableARMLongCalls) return false;
2006
2007  // Set up the argument vectors.
2008  SmallVector<Value*, 8> Args;
2009  SmallVector<unsigned, 8> ArgRegs;
2010  SmallVector<MVT, 8> ArgVTs;
2011  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2012  Args.reserve(I->getNumOperands());
2013  ArgRegs.reserve(I->getNumOperands());
2014  ArgVTs.reserve(I->getNumOperands());
2015  ArgFlags.reserve(I->getNumOperands());
2016  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2017    Value *Op = I->getOperand(i);
2018    unsigned Arg = getRegForValue(Op);
2019    if (Arg == 0) return false;
2020
2021    Type *ArgTy = Op->getType();
2022    MVT ArgVT;
2023    if (!isTypeLegal(ArgTy, ArgVT)) return false;
2024
2025    ISD::ArgFlagsTy Flags;
2026    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2027    Flags.setOrigAlign(OriginalAlignment);
2028
2029    Args.push_back(Op);
2030    ArgRegs.push_back(Arg);
2031    ArgVTs.push_back(ArgVT);
2032    ArgFlags.push_back(Flags);
2033  }
2034
2035  // Handle the arguments now that we've gotten them.
2036  SmallVector<unsigned, 4> RegArgs;
2037  unsigned NumBytes;
2038  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
2039    return false;
2040
2041  // Issue the call, BLr9 for darwin, BL otherwise.
2042  // TODO: Turn this into the table of arm call ops.
2043  MachineInstrBuilder MIB;
2044  unsigned CallOpc = ARMSelectCallOp(NULL);
2045  if(isThumb2)
2046    // Explicitly adding the predicate here.
2047    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2048                         TII.get(CallOpc)))
2049                         .addExternalSymbol(TLI.getLibcallName(Call));
2050  else
2051    // Explicitly adding the predicate here.
2052    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2053                         TII.get(CallOpc))
2054          .addExternalSymbol(TLI.getLibcallName(Call)));
2055
2056  // Add implicit physical register uses to the call.
2057  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2058    MIB.addReg(RegArgs[i]);
2059
2060  // Finish off the call including any return values.
2061  SmallVector<unsigned, 4> UsedRegs;
2062  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
2063
2064  // Set all unused physreg defs as dead.
2065  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2066
2067  return true;
2068}
2069
2070bool ARMFastISel::SelectCall(const Instruction *I,
2071                             const char *IntrMemName = 0) {
2072  const CallInst *CI = cast<CallInst>(I);
2073  const Value *Callee = CI->getCalledValue();
2074
2075  // Can't handle inline asm.
2076  if (isa<InlineAsm>(Callee)) return false;
2077
2078  // Only handle global variable Callees.
2079  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2080  if (!GV)
2081    return false;
2082
2083  // Check the calling convention.
2084  ImmutableCallSite CS(CI);
2085  CallingConv::ID CC = CS.getCallingConv();
2086
2087  // TODO: Avoid some calling conventions?
2088
2089  // Let SDISel handle vararg functions.
2090  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2091  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2092  if (FTy->isVarArg())
2093    return false;
2094
2095  // Handle *simple* calls for now.
2096  Type *RetTy = I->getType();
2097  MVT RetVT;
2098  if (RetTy->isVoidTy())
2099    RetVT = MVT::isVoid;
2100  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2101           RetVT != MVT::i8  && RetVT != MVT::i1)
2102    return false;
2103
2104  // TODO: For now if we have long calls specified we don't handle the call.
2105  if (EnableARMLongCalls) return false;
2106
2107  // Set up the argument vectors.
2108  SmallVector<Value*, 8> Args;
2109  SmallVector<unsigned, 8> ArgRegs;
2110  SmallVector<MVT, 8> ArgVTs;
2111  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2112  Args.reserve(CS.arg_size());
2113  ArgRegs.reserve(CS.arg_size());
2114  ArgVTs.reserve(CS.arg_size());
2115  ArgFlags.reserve(CS.arg_size());
2116  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2117       i != e; ++i) {
2118    // If we're lowering a memory intrinsic instead of a regular call, skip the
2119    // last two arguments, which shouldn't be passed to the underlying function.
2120    if (IntrMemName && e-i <= 2)
2121      break;
2122
2123    unsigned Arg = getRegForValue(*i);
2124    if (Arg == 0)
2125      return false;
2126    ISD::ArgFlagsTy Flags;
2127    unsigned AttrInd = i - CS.arg_begin() + 1;
2128    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2129      Flags.setSExt();
2130    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2131      Flags.setZExt();
2132
2133    // FIXME: Only handle *easy* calls for now.
2134    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2135        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2136        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2137        CS.paramHasAttr(AttrInd, Attribute::ByVal))
2138      return false;
2139
2140    Type *ArgTy = (*i)->getType();
2141    MVT ArgVT;
2142    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2143        ArgVT != MVT::i1)
2144      return false;
2145    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2146    Flags.setOrigAlign(OriginalAlignment);
2147
2148    Args.push_back(*i);
2149    ArgRegs.push_back(Arg);
2150    ArgVTs.push_back(ArgVT);
2151    ArgFlags.push_back(Flags);
2152  }
2153
2154  // Handle the arguments now that we've gotten them.
2155  SmallVector<unsigned, 4> RegArgs;
2156  unsigned NumBytes;
2157  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
2158    return false;
2159
2160  // Issue the call, BLr9 for darwin, BL otherwise.
2161  // TODO: Turn this into the table of arm call ops.
2162  MachineInstrBuilder MIB;
2163  unsigned CallOpc = ARMSelectCallOp(GV);
2164  // Explicitly adding the predicate here.
2165  if(isThumb2) {
2166    // Explicitly adding the predicate here.
2167    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2168                                 TII.get(CallOpc)));
2169    if (!IntrMemName)
2170      MIB.addGlobalAddress(GV, 0, 0);
2171    else
2172      MIB.addExternalSymbol(IntrMemName, 0);
2173  } else {
2174    if (!IntrMemName)
2175      // Explicitly adding the predicate here.
2176      MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2177                                   TII.get(CallOpc))
2178            .addGlobalAddress(GV, 0, 0));
2179    else
2180      MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2181                                   TII.get(CallOpc))
2182            .addExternalSymbol(IntrMemName, 0));
2183  }
2184
2185  // Add implicit physical register uses to the call.
2186  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2187    MIB.addReg(RegArgs[i]);
2188
2189  // Finish off the call including any return values.
2190  SmallVector<unsigned, 4> UsedRegs;
2191  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
2192
2193  // Set all unused physreg defs as dead.
2194  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2195
2196  return true;
2197}
2198
2199bool ARMFastISel::ARMIsMemXferSmall(uint64_t Len) {
2200  return Len <= 16;
2201}
2202
2203bool ARMFastISel::ARMTryEmitSmallMemXfer(Address Dest, Address Src, uint64_t Len,
2204                                         bool isMemCpy) {
2205  // FIXME: Memmove's require a little more care because their source and
2206  // destination may overlap.
2207  if (!isMemCpy)
2208    return false;
2209
2210  // Make sure we don't bloat code by inlining very large memcpy's.
2211  if (!ARMIsMemXferSmall(Len))
2212    return false;
2213
2214  // We don't care about alignment here since we just emit integer accesses.
2215  while (Len) {
2216    MVT VT;
2217    if (Len >= 4)
2218      VT = MVT::i32;
2219    else if (Len >= 2)
2220      VT = MVT::i16;
2221    else {
2222      assert(Len == 1);
2223      VT = MVT::i8;
2224    }
2225
2226    bool RV;
2227    unsigned ResultReg;
2228    RV = ARMEmitLoad(VT, ResultReg, Src);
2229    assert (RV = true && "Should be able to handle this load.");
2230    RV = ARMEmitStore(VT, ResultReg, Dest);
2231    assert (RV = true && "Should be able to handle this store.");
2232
2233    unsigned Size = VT.getSizeInBits()/8;
2234    Len -= Size;
2235    Dest.Offset += Size;
2236    Src.Offset += Size;
2237  }
2238
2239  return true;
2240}
2241
2242bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2243  // FIXME: Handle more intrinsics.
2244  switch (I.getIntrinsicID()) {
2245  default: return false;
2246  case Intrinsic::memcpy:
2247  case Intrinsic::memmove: {
2248    const MemTransferInst &MTI = cast<MemTransferInst>(I);
2249    // Don't handle volatile.
2250    if (MTI.isVolatile())
2251      return false;
2252
2253    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2254    // we would emit dead code because we don't currently handle memmoves.
2255    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2256    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2257      // Small memcpy/memmove's are common enough that we want to do them
2258      // without a call if possible.
2259      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2260      if (ARMIsMemXferSmall(Len)) {
2261        Address Dest, Src;
2262        if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2263            !ARMComputeAddress(MTI.getRawSource(), Src))
2264          return false;
2265        if (ARMTryEmitSmallMemXfer(Dest, Src, Len, isMemCpy))
2266          return true;
2267      }
2268    }
2269
2270    if (!MTI.getLength()->getType()->isIntegerTy(32))
2271      return false;
2272
2273    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2274      return false;
2275
2276    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2277    return SelectCall(&I, IntrMemName);
2278  }
2279  case Intrinsic::memset: {
2280    const MemSetInst &MSI = cast<MemSetInst>(I);
2281    // Don't handle volatile.
2282    if (MSI.isVolatile())
2283      return false;
2284
2285    if (!MSI.getLength()->getType()->isIntegerTy(32))
2286      return false;
2287
2288    if (MSI.getDestAddressSpace() > 255)
2289      return false;
2290
2291    return SelectCall(&I, "memset");
2292  }
2293  }
2294  return false;
2295}
2296
2297bool ARMFastISel::SelectTrunc(const Instruction *I) {
2298  // The high bits for a type smaller than the register size are assumed to be
2299  // undefined.
2300  Value *Op = I->getOperand(0);
2301
2302  EVT SrcVT, DestVT;
2303  SrcVT = TLI.getValueType(Op->getType(), true);
2304  DestVT = TLI.getValueType(I->getType(), true);
2305
2306  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2307    return false;
2308  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2309    return false;
2310
2311  unsigned SrcReg = getRegForValue(Op);
2312  if (!SrcReg) return false;
2313
2314  // Because the high bits are undefined, a truncate doesn't generate
2315  // any code.
2316  UpdateValueMap(I, SrcReg);
2317  return true;
2318}
2319
2320unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT,
2321                                    bool isZExt) {
2322  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2323    return 0;
2324
2325  unsigned Opc;
2326  bool isBoolZext = false;
2327  if (!SrcVT.isSimple()) return 0;
2328  switch (SrcVT.getSimpleVT().SimpleTy) {
2329  default: return 0;
2330  case MVT::i16:
2331    if (!Subtarget->hasV6Ops()) return 0;
2332    if (isZExt)
2333      Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH;
2334    else
2335      Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
2336    break;
2337  case MVT::i8:
2338    if (!Subtarget->hasV6Ops()) return 0;
2339    if (isZExt)
2340      Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB;
2341    else
2342      Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
2343    break;
2344  case MVT::i1:
2345    if (isZExt) {
2346      Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
2347      isBoolZext = true;
2348      break;
2349    }
2350    return 0;
2351  }
2352
2353  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2354  MachineInstrBuilder MIB;
2355  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
2356        .addReg(SrcReg);
2357  if (isBoolZext)
2358    MIB.addImm(1);
2359  else
2360    MIB.addImm(0);
2361  AddOptionalDefs(MIB);
2362  return ResultReg;
2363}
2364
2365bool ARMFastISel::SelectIntExt(const Instruction *I) {
2366  // On ARM, in general, integer casts don't involve legal types; this code
2367  // handles promotable integers.
2368  Type *DestTy = I->getType();
2369  Value *Src = I->getOperand(0);
2370  Type *SrcTy = Src->getType();
2371
2372  EVT SrcVT, DestVT;
2373  SrcVT = TLI.getValueType(SrcTy, true);
2374  DestVT = TLI.getValueType(DestTy, true);
2375
2376  bool isZExt = isa<ZExtInst>(I);
2377  unsigned SrcReg = getRegForValue(Src);
2378  if (!SrcReg) return false;
2379
2380  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2381  if (ResultReg == 0) return false;
2382  UpdateValueMap(I, ResultReg);
2383  return true;
2384}
2385
2386// TODO: SoftFP support.
2387bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2388
2389  switch (I->getOpcode()) {
2390    case Instruction::Load:
2391      return SelectLoad(I);
2392    case Instruction::Store:
2393      return SelectStore(I);
2394    case Instruction::Br:
2395      return SelectBranch(I);
2396    case Instruction::ICmp:
2397    case Instruction::FCmp:
2398      return SelectCmp(I);
2399    case Instruction::FPExt:
2400      return SelectFPExt(I);
2401    case Instruction::FPTrunc:
2402      return SelectFPTrunc(I);
2403    case Instruction::SIToFP:
2404      return SelectSIToFP(I);
2405    case Instruction::FPToSI:
2406      return SelectFPToSI(I);
2407    case Instruction::FAdd:
2408      return SelectBinaryOp(I, ISD::FADD);
2409    case Instruction::FSub:
2410      return SelectBinaryOp(I, ISD::FSUB);
2411    case Instruction::FMul:
2412      return SelectBinaryOp(I, ISD::FMUL);
2413    case Instruction::SDiv:
2414      return SelectSDiv(I);
2415    case Instruction::SRem:
2416      return SelectSRem(I);
2417    case Instruction::Call:
2418      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2419        return SelectIntrinsicCall(*II);
2420      return SelectCall(I);
2421    case Instruction::Select:
2422      return SelectSelect(I);
2423    case Instruction::Ret:
2424      return SelectRet(I);
2425    case Instruction::Trunc:
2426      return SelectTrunc(I);
2427    case Instruction::ZExt:
2428    case Instruction::SExt:
2429      return SelectIntExt(I);
2430    default: break;
2431  }
2432  return false;
2433}
2434
2435/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
2436/// vreg is being provided by the specified load instruction.  If possible,
2437/// try to fold the load as an operand to the instruction, returning true if
2438/// successful.
2439bool ARMFastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
2440                                const LoadInst *LI) {
2441  // Verify we have a legal type before going any further.
2442  MVT VT;
2443  if (!isLoadTypeLegal(LI->getType(), VT))
2444    return false;
2445
2446  // Combine load followed by zero- or sign-extend.
2447  // ldrb r1, [r0]       ldrb r1, [r0]
2448  // uxtb r2, r1     =>
2449  // mov  r3, r2         mov  r3, r1
2450  bool isZExt = true;
2451  switch(MI->getOpcode()) {
2452    default: return false;
2453    case ARM::SXTH:
2454    case ARM::t2SXTH:
2455      isZExt = false;
2456    case ARM::UXTH:
2457    case ARM::t2UXTH:
2458      if (VT != MVT::i16)
2459        return false;
2460    break;
2461    case ARM::SXTB:
2462    case ARM::t2SXTB:
2463      isZExt = false;
2464    case ARM::UXTB:
2465    case ARM::t2UXTB:
2466      if (VT != MVT::i8)
2467        return false;
2468    break;
2469  }
2470  // See if we can handle this address.
2471  Address Addr;
2472  if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2473
2474  unsigned ResultReg = MI->getOperand(0).getReg();
2475  if (!ARMEmitLoad(VT, ResultReg, Addr, isZExt, false))
2476    return false;
2477  MI->eraseFromParent();
2478  return true;
2479}
2480
2481namespace llvm {
2482  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
2483    // Completely untested on non-darwin.
2484    const TargetMachine &TM = funcInfo.MF->getTarget();
2485
2486    // Darwin and thumb1 only for now.
2487    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2488    if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
2489        !DisableARMFastISel)
2490      return new ARMFastISel(funcInfo);
2491    return 0;
2492  }
2493}
2494