ARMFastISel.cpp revision a8c4d739f2e763ae6dea7661a3af8393eeebd8ba
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMTargetMachine.h"
20#include "ARMSubtarget.h"
21#include "ARMConstantPoolValue.h"
22#include "MCTargetDesc/ARMAddressingModes.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Module.h"
29#include "llvm/Operator.h"
30#include "llvm/CodeGen/Analysis.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/FunctionLoweringInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineConstantPool.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineMemOperand.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48using namespace llvm;
49
50extern cl::opt<bool> EnableARMLongCalls;
51
52namespace {
53
54  // All possible address modes, plus some.
55  typedef struct Address {
56    enum {
57      RegBase,
58      FrameIndexBase
59    } BaseType;
60
61    union {
62      unsigned Reg;
63      int FI;
64    } Base;
65
66    int Offset;
67
68    // Innocuous defaults for our address.
69    Address()
70     : BaseType(RegBase), Offset(0) {
71       Base.Reg = 0;
72     }
73  } Address;
74
75class ARMFastISel : public FastISel {
76
77  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
78  /// make the right decision when generating code for different targets.
79  const ARMSubtarget *Subtarget;
80  const TargetMachine &TM;
81  const TargetInstrInfo &TII;
82  const TargetLowering &TLI;
83  ARMFunctionInfo *AFI;
84
85  // Convenience variables to avoid some queries.
86  bool isThumb2;
87  LLVMContext *Context;
88
89  public:
90    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
91    : FastISel(funcInfo),
92      TM(funcInfo.MF->getTarget()),
93      TII(*TM.getInstrInfo()),
94      TLI(*TM.getTargetLowering()) {
95      Subtarget = &TM.getSubtarget<ARMSubtarget>();
96      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
97      isThumb2 = AFI->isThumbFunction();
98      Context = &funcInfo.Fn->getContext();
99    }
100
101    // Code from FastISel.cpp.
102    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
103                                   const TargetRegisterClass *RC);
104    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
105                                    const TargetRegisterClass *RC,
106                                    unsigned Op0, bool Op0IsKill);
107    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
108                                     const TargetRegisterClass *RC,
109                                     unsigned Op0, bool Op0IsKill,
110                                     unsigned Op1, bool Op1IsKill);
111    virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
112                                      const TargetRegisterClass *RC,
113                                      unsigned Op0, bool Op0IsKill,
114                                      unsigned Op1, bool Op1IsKill,
115                                      unsigned Op2, bool Op2IsKill);
116    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
117                                     const TargetRegisterClass *RC,
118                                     unsigned Op0, bool Op0IsKill,
119                                     uint64_t Imm);
120    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
121                                     const TargetRegisterClass *RC,
122                                     unsigned Op0, bool Op0IsKill,
123                                     const ConstantFP *FPImm);
124    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
125                                      const TargetRegisterClass *RC,
126                                      unsigned Op0, bool Op0IsKill,
127                                      unsigned Op1, bool Op1IsKill,
128                                      uint64_t Imm);
129    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
130                                    const TargetRegisterClass *RC,
131                                    uint64_t Imm);
132    virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
133                                     const TargetRegisterClass *RC,
134                                     uint64_t Imm1, uint64_t Imm2);
135
136    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
137                                                unsigned Op0, bool Op0IsKill,
138                                                uint32_t Idx);
139
140    // Backend specific FastISel code.
141    virtual bool TargetSelectInstruction(const Instruction *I);
142    virtual unsigned TargetMaterializeConstant(const Constant *C);
143    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
144    virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
145                               const LoadInst *LI);
146
147  #include "ARMGenFastISel.inc"
148
149    // Instruction selection routines.
150  private:
151    bool SelectLoad(const Instruction *I);
152    bool SelectStore(const Instruction *I);
153    bool SelectBranch(const Instruction *I);
154    bool SelectIndirectBr(const Instruction *I);
155    bool SelectCmp(const Instruction *I);
156    bool SelectFPExt(const Instruction *I);
157    bool SelectFPTrunc(const Instruction *I);
158    bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
159    bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
160    bool SelectIToFP(const Instruction *I, bool isSigned);
161    bool SelectFPToI(const Instruction *I, bool isSigned);
162    bool SelectDiv(const Instruction *I, bool isSigned);
163    bool SelectRem(const Instruction *I, bool isSigned);
164    bool SelectCall(const Instruction *I, const char *IntrMemName);
165    bool SelectIntrinsicCall(const IntrinsicInst &I);
166    bool SelectSelect(const Instruction *I);
167    bool SelectRet(const Instruction *I);
168    bool SelectTrunc(const Instruction *I);
169    bool SelectIntExt(const Instruction *I);
170
171    // Utility routines.
172  private:
173    bool isTypeLegal(Type *Ty, MVT &VT);
174    bool isLoadTypeLegal(Type *Ty, MVT &VT);
175    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
176                    bool isZExt);
177    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
178                     unsigned Alignment = 0, bool isZExt = true,
179                     bool allocReg = true);
180    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
181                      unsigned Alignment = 0);
182    bool ARMComputeAddress(const Value *Obj, Address &Addr);
183    void ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3);
184    bool ARMIsMemCpySmall(uint64_t Len);
185    bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len);
186    unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt);
187    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
188    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
189    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
190    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
191    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
192    unsigned ARMSelectCallOp(bool UseReg);
193
194    // Call handling routines.
195  private:
196    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
197                                  bool Return,
198                                  bool isVarArg);
199    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
200                         SmallVectorImpl<unsigned> &ArgRegs,
201                         SmallVectorImpl<MVT> &ArgVTs,
202                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
203                         SmallVectorImpl<unsigned> &RegArgs,
204                         CallingConv::ID CC,
205                         unsigned &NumBytes,
206                         bool isVarArg);
207    unsigned getLibcallReg(const Twine &Name);
208    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
209                    const Instruction *I, CallingConv::ID CC,
210                    unsigned &NumBytes, bool isVarArg);
211    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
212
213    // OptionalDef handling routines.
214  private:
215    bool isARMNEONPred(const MachineInstr *MI);
216    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
217    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
218    void AddLoadStoreOperands(EVT VT, Address &Addr,
219                              const MachineInstrBuilder &MIB,
220                              unsigned Flags, bool useAM3);
221};
222
223} // end anonymous namespace
224
225#include "ARMGenCallingConv.inc"
226
227// DefinesOptionalPredicate - This is different from DefinesPredicate in that
228// we don't care about implicit defs here, just places we'll need to add a
229// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
230bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
231  if (!MI->hasOptionalDef())
232    return false;
233
234  // Look to see if our OptionalDef is defining CPSR or CCR.
235  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
236    const MachineOperand &MO = MI->getOperand(i);
237    if (!MO.isReg() || !MO.isDef()) continue;
238    if (MO.getReg() == ARM::CPSR)
239      *CPSR = true;
240  }
241  return true;
242}
243
244bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
245  const MCInstrDesc &MCID = MI->getDesc();
246
247  // If we're a thumb2 or not NEON function we were handled via isPredicable.
248  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
249       AFI->isThumb2Function())
250    return false;
251
252  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
253    if (MCID.OpInfo[i].isPredicate())
254      return true;
255
256  return false;
257}
258
259// If the machine is predicable go ahead and add the predicate operands, if
260// it needs default CC operands add those.
261// TODO: If we want to support thumb1 then we'll need to deal with optional
262// CPSR defs that need to be added before the remaining operands. See s_cc_out
263// for descriptions why.
264const MachineInstrBuilder &
265ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
266  MachineInstr *MI = &*MIB;
267
268  // Do we use a predicate? or...
269  // Are we NEON in ARM mode and have a predicate operand? If so, I know
270  // we're not predicable but add it anyways.
271  if (TII.isPredicable(MI) || isARMNEONPred(MI))
272    AddDefaultPred(MIB);
273
274  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
275  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
276  bool CPSR = false;
277  if (DefinesOptionalPredicate(MI, &CPSR)) {
278    if (CPSR)
279      AddDefaultT1CC(MIB);
280    else
281      AddDefaultCC(MIB);
282  }
283  return MIB;
284}
285
286unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
287                                    const TargetRegisterClass* RC) {
288  unsigned ResultReg = createResultReg(RC);
289  const MCInstrDesc &II = TII.get(MachineInstOpcode);
290
291  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
292  return ResultReg;
293}
294
295unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
296                                     const TargetRegisterClass *RC,
297                                     unsigned Op0, bool Op0IsKill) {
298  unsigned ResultReg = createResultReg(RC);
299  const MCInstrDesc &II = TII.get(MachineInstOpcode);
300
301  if (II.getNumDefs() >= 1) {
302    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
303                   .addReg(Op0, Op0IsKill * RegState::Kill));
304  } else {
305    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
306                   .addReg(Op0, Op0IsKill * RegState::Kill));
307    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
308                   TII.get(TargetOpcode::COPY), ResultReg)
309                   .addReg(II.ImplicitDefs[0]));
310  }
311  return ResultReg;
312}
313
314unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
315                                      const TargetRegisterClass *RC,
316                                      unsigned Op0, bool Op0IsKill,
317                                      unsigned Op1, bool Op1IsKill) {
318  unsigned ResultReg = createResultReg(RC);
319  const MCInstrDesc &II = TII.get(MachineInstOpcode);
320
321  if (II.getNumDefs() >= 1) {
322    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
323                   .addReg(Op0, Op0IsKill * RegState::Kill)
324                   .addReg(Op1, Op1IsKill * RegState::Kill));
325  } else {
326    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
327                   .addReg(Op0, Op0IsKill * RegState::Kill)
328                   .addReg(Op1, Op1IsKill * RegState::Kill));
329    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
330                           TII.get(TargetOpcode::COPY), ResultReg)
331                   .addReg(II.ImplicitDefs[0]));
332  }
333  return ResultReg;
334}
335
336unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
337                                       const TargetRegisterClass *RC,
338                                       unsigned Op0, bool Op0IsKill,
339                                       unsigned Op1, bool Op1IsKill,
340                                       unsigned Op2, bool Op2IsKill) {
341  unsigned ResultReg = createResultReg(RC);
342  const MCInstrDesc &II = TII.get(MachineInstOpcode);
343
344  if (II.getNumDefs() >= 1) {
345    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
346                   .addReg(Op0, Op0IsKill * RegState::Kill)
347                   .addReg(Op1, Op1IsKill * RegState::Kill)
348                   .addReg(Op2, Op2IsKill * RegState::Kill));
349  } else {
350    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
351                   .addReg(Op0, Op0IsKill * RegState::Kill)
352                   .addReg(Op1, Op1IsKill * RegState::Kill)
353                   .addReg(Op2, Op2IsKill * RegState::Kill));
354    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
355                           TII.get(TargetOpcode::COPY), ResultReg)
356                   .addReg(II.ImplicitDefs[0]));
357  }
358  return ResultReg;
359}
360
361unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
362                                      const TargetRegisterClass *RC,
363                                      unsigned Op0, bool Op0IsKill,
364                                      uint64_t Imm) {
365  unsigned ResultReg = createResultReg(RC);
366  const MCInstrDesc &II = TII.get(MachineInstOpcode);
367
368  if (II.getNumDefs() >= 1) {
369    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
370                   .addReg(Op0, Op0IsKill * RegState::Kill)
371                   .addImm(Imm));
372  } else {
373    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
374                   .addReg(Op0, Op0IsKill * RegState::Kill)
375                   .addImm(Imm));
376    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
377                           TII.get(TargetOpcode::COPY), ResultReg)
378                   .addReg(II.ImplicitDefs[0]));
379  }
380  return ResultReg;
381}
382
383unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
384                                      const TargetRegisterClass *RC,
385                                      unsigned Op0, bool Op0IsKill,
386                                      const ConstantFP *FPImm) {
387  unsigned ResultReg = createResultReg(RC);
388  const MCInstrDesc &II = TII.get(MachineInstOpcode);
389
390  if (II.getNumDefs() >= 1) {
391    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
392                   .addReg(Op0, Op0IsKill * RegState::Kill)
393                   .addFPImm(FPImm));
394  } else {
395    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
396                   .addReg(Op0, Op0IsKill * RegState::Kill)
397                   .addFPImm(FPImm));
398    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
399                           TII.get(TargetOpcode::COPY), ResultReg)
400                   .addReg(II.ImplicitDefs[0]));
401  }
402  return ResultReg;
403}
404
405unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
406                                       const TargetRegisterClass *RC,
407                                       unsigned Op0, bool Op0IsKill,
408                                       unsigned Op1, bool Op1IsKill,
409                                       uint64_t Imm) {
410  unsigned ResultReg = createResultReg(RC);
411  const MCInstrDesc &II = TII.get(MachineInstOpcode);
412
413  if (II.getNumDefs() >= 1) {
414    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
415                   .addReg(Op0, Op0IsKill * RegState::Kill)
416                   .addReg(Op1, Op1IsKill * RegState::Kill)
417                   .addImm(Imm));
418  } else {
419    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
420                   .addReg(Op0, Op0IsKill * RegState::Kill)
421                   .addReg(Op1, Op1IsKill * RegState::Kill)
422                   .addImm(Imm));
423    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
424                           TII.get(TargetOpcode::COPY), ResultReg)
425                   .addReg(II.ImplicitDefs[0]));
426  }
427  return ResultReg;
428}
429
430unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
431                                     const TargetRegisterClass *RC,
432                                     uint64_t Imm) {
433  unsigned ResultReg = createResultReg(RC);
434  const MCInstrDesc &II = TII.get(MachineInstOpcode);
435
436  if (II.getNumDefs() >= 1) {
437    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
438                   .addImm(Imm));
439  } else {
440    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
441                   .addImm(Imm));
442    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
443                           TII.get(TargetOpcode::COPY), ResultReg)
444                   .addReg(II.ImplicitDefs[0]));
445  }
446  return ResultReg;
447}
448
449unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
450                                      const TargetRegisterClass *RC,
451                                      uint64_t Imm1, uint64_t Imm2) {
452  unsigned ResultReg = createResultReg(RC);
453  const MCInstrDesc &II = TII.get(MachineInstOpcode);
454
455  if (II.getNumDefs() >= 1) {
456    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
457                    .addImm(Imm1).addImm(Imm2));
458  } else {
459    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
460                    .addImm(Imm1).addImm(Imm2));
461    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
462                            TII.get(TargetOpcode::COPY),
463                            ResultReg)
464                    .addReg(II.ImplicitDefs[0]));
465  }
466  return ResultReg;
467}
468
469unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
470                                                 unsigned Op0, bool Op0IsKill,
471                                                 uint32_t Idx) {
472  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
473  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
474         "Cannot yet extract from physregs");
475
476  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
477                          DL, TII.get(TargetOpcode::COPY), ResultReg)
478                  .addReg(Op0, getKillRegState(Op0IsKill), Idx));
479  return ResultReg;
480}
481
482// TODO: Don't worry about 64-bit now, but when this is fixed remove the
483// checks from the various callers.
484unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
485  if (VT == MVT::f64) return 0;
486
487  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
488  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
489                          TII.get(ARM::VMOVSR), MoveReg)
490                  .addReg(SrcReg));
491  return MoveReg;
492}
493
494unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
495  if (VT == MVT::i64) return 0;
496
497  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
498  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
499                          TII.get(ARM::VMOVRS), MoveReg)
500                  .addReg(SrcReg));
501  return MoveReg;
502}
503
504// For double width floating point we need to materialize two constants
505// (the high and the low) into integer registers then use a move to get
506// the combined constant into an FP reg.
507unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
508  const APFloat Val = CFP->getValueAPF();
509  bool is64bit = VT == MVT::f64;
510
511  // This checks to see if we can use VFP3 instructions to materialize
512  // a constant, otherwise we have to go through the constant pool.
513  if (TLI.isFPImmLegal(Val, VT)) {
514    int Imm;
515    unsigned Opc;
516    if (is64bit) {
517      Imm = ARM_AM::getFP64Imm(Val);
518      Opc = ARM::FCONSTD;
519    } else {
520      Imm = ARM_AM::getFP32Imm(Val);
521      Opc = ARM::FCONSTS;
522    }
523    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
524    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
525                            DestReg)
526                    .addImm(Imm));
527    return DestReg;
528  }
529
530  // Require VFP2 for loading fp constants.
531  if (!Subtarget->hasVFP2()) return false;
532
533  // MachineConstantPool wants an explicit alignment.
534  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
535  if (Align == 0) {
536    // TODO: Figure out if this is correct.
537    Align = TD.getTypeAllocSize(CFP->getType());
538  }
539  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
540  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
541  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
542
543  // The extra reg is for addrmode5.
544  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
545                          DestReg)
546                  .addConstantPoolIndex(Idx)
547                  .addReg(0));
548  return DestReg;
549}
550
551unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
552
553  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
554    return false;
555
556  // If we can do this in a single instruction without a constant pool entry
557  // do so now.
558  const ConstantInt *CI = cast<ConstantInt>(C);
559  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
560    unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
561    unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
562    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
563                            TII.get(Opc), ImmReg)
564                    .addImm(CI->getZExtValue()));
565    return ImmReg;
566  }
567
568  // Use MVN to emit negative constants.
569  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
570    unsigned Imm = (unsigned)~(CI->getSExtValue());
571    bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
572      (ARM_AM::getSOImmVal(Imm) != -1);
573    if (UseImm) {
574      unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
575      unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
576      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
577                              TII.get(Opc), ImmReg)
578                      .addImm(Imm));
579      return ImmReg;
580    }
581  }
582
583  // Load from constant pool.  For now 32-bit only.
584  if (VT != MVT::i32)
585    return false;
586
587  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
588
589  // MachineConstantPool wants an explicit alignment.
590  unsigned Align = TD.getPrefTypeAlignment(C->getType());
591  if (Align == 0) {
592    // TODO: Figure out if this is correct.
593    Align = TD.getTypeAllocSize(C->getType());
594  }
595  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
596
597  if (isThumb2)
598    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
599                            TII.get(ARM::t2LDRpci), DestReg)
600                    .addConstantPoolIndex(Idx));
601  else
602    // The extra immediate is for addrmode2.
603    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
604                            TII.get(ARM::LDRcp), DestReg)
605                    .addConstantPoolIndex(Idx)
606                    .addImm(0));
607
608  return DestReg;
609}
610
611unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
612  // For now 32-bit only.
613  if (VT != MVT::i32) return 0;
614
615  Reloc::Model RelocM = TM.getRelocationModel();
616
617  // TODO: Need more magic for ARM PIC.
618  if (!isThumb2 && (RelocM == Reloc::PIC_)) return 0;
619
620  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
621
622  // Use movw+movt when possible, it avoids constant pool entries.
623  // Darwin targets don't support movt with Reloc::Static, see
624  // ARMTargetLowering::LowerGlobalAddressDarwin.  Other targets only support
625  // static movt relocations.
626  if (Subtarget->useMovt() &&
627      Subtarget->isTargetDarwin() == (RelocM != Reloc::Static)) {
628    unsigned Opc;
629    switch (RelocM) {
630    case Reloc::PIC_:
631      Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
632      break;
633    case Reloc::DynamicNoPIC:
634      Opc = isThumb2 ? ARM::t2MOV_ga_dyn : ARM::MOV_ga_dyn;
635      break;
636    default:
637      Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
638      break;
639    }
640    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
641                            DestReg).addGlobalAddress(GV));
642  } else {
643    // MachineConstantPool wants an explicit alignment.
644    unsigned Align = TD.getPrefTypeAlignment(GV->getType());
645    if (Align == 0) {
646      // TODO: Figure out if this is correct.
647      Align = TD.getTypeAllocSize(GV->getType());
648    }
649
650    // Grab index.
651    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
652      (Subtarget->isThumb() ? 4 : 8);
653    unsigned Id = AFI->createPICLabelUId();
654    ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
655                                                                ARMCP::CPValue,
656                                                                PCAdj);
657    unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
658
659    // Load value.
660    MachineInstrBuilder MIB;
661    if (isThumb2) {
662      unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
663      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
664        .addConstantPoolIndex(Idx);
665      if (RelocM == Reloc::PIC_)
666        MIB.addImm(Id);
667    } else {
668      // The extra immediate is for addrmode2.
669      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
670                    DestReg)
671        .addConstantPoolIndex(Idx)
672        .addImm(0);
673    }
674    AddOptionalDefs(MIB);
675  }
676
677  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
678    MachineInstrBuilder MIB;
679    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
680    if (isThumb2)
681      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
682                    TII.get(ARM::t2LDRi12), NewDestReg)
683            .addReg(DestReg)
684            .addImm(0);
685    else
686      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
687                    NewDestReg)
688            .addReg(DestReg)
689            .addImm(0);
690    DestReg = NewDestReg;
691    AddOptionalDefs(MIB);
692  }
693
694  return DestReg;
695}
696
697unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
698  EVT VT = TLI.getValueType(C->getType(), true);
699
700  // Only handle simple types.
701  if (!VT.isSimple()) return 0;
702
703  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
704    return ARMMaterializeFP(CFP, VT);
705  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
706    return ARMMaterializeGV(GV, VT);
707  else if (isa<ConstantInt>(C))
708    return ARMMaterializeInt(C, VT);
709
710  return 0;
711}
712
713// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
714
715unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
716  // Don't handle dynamic allocas.
717  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
718
719  MVT VT;
720  if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
721
722  DenseMap<const AllocaInst*, int>::iterator SI =
723    FuncInfo.StaticAllocaMap.find(AI);
724
725  // This will get lowered later into the correct offsets and registers
726  // via rewriteXFrameIndex.
727  if (SI != FuncInfo.StaticAllocaMap.end()) {
728    const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
729    unsigned ResultReg = createResultReg(RC);
730    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
731    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
732                            TII.get(Opc), ResultReg)
733                            .addFrameIndex(SI->second)
734                            .addImm(0));
735    return ResultReg;
736  }
737
738  return 0;
739}
740
741bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
742  EVT evt = TLI.getValueType(Ty, true);
743
744  // Only handle simple types.
745  if (evt == MVT::Other || !evt.isSimple()) return false;
746  VT = evt.getSimpleVT();
747
748  // Handle all legal types, i.e. a register that will directly hold this
749  // value.
750  return TLI.isTypeLegal(VT);
751}
752
753bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
754  if (isTypeLegal(Ty, VT)) return true;
755
756  // If this is a type than can be sign or zero-extended to a basic operation
757  // go ahead and accept it now.
758  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
759    return true;
760
761  return false;
762}
763
764// Computes the address to get to an object.
765bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
766  // Some boilerplate from the X86 FastISel.
767  const User *U = NULL;
768  unsigned Opcode = Instruction::UserOp1;
769  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
770    // Don't walk into other basic blocks unless the object is an alloca from
771    // another block, otherwise it may not have a virtual register assigned.
772    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
773        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
774      Opcode = I->getOpcode();
775      U = I;
776    }
777  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
778    Opcode = C->getOpcode();
779    U = C;
780  }
781
782  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
783    if (Ty->getAddressSpace() > 255)
784      // Fast instruction selection doesn't support the special
785      // address spaces.
786      return false;
787
788  switch (Opcode) {
789    default:
790    break;
791    case Instruction::BitCast: {
792      // Look through bitcasts.
793      return ARMComputeAddress(U->getOperand(0), Addr);
794    }
795    case Instruction::IntToPtr: {
796      // Look past no-op inttoptrs.
797      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
798        return ARMComputeAddress(U->getOperand(0), Addr);
799      break;
800    }
801    case Instruction::PtrToInt: {
802      // Look past no-op ptrtoints.
803      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
804        return ARMComputeAddress(U->getOperand(0), Addr);
805      break;
806    }
807    case Instruction::GetElementPtr: {
808      Address SavedAddr = Addr;
809      int TmpOffset = Addr.Offset;
810
811      // Iterate through the GEP folding the constants into offsets where
812      // we can.
813      gep_type_iterator GTI = gep_type_begin(U);
814      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
815           i != e; ++i, ++GTI) {
816        const Value *Op = *i;
817        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
818          const StructLayout *SL = TD.getStructLayout(STy);
819          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
820          TmpOffset += SL->getElementOffset(Idx);
821        } else {
822          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
823          for (;;) {
824            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
825              // Constant-offset addressing.
826              TmpOffset += CI->getSExtValue() * S;
827              break;
828            }
829            if (isa<AddOperator>(Op) &&
830                (!isa<Instruction>(Op) ||
831                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
832                 == FuncInfo.MBB) &&
833                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
834              // An add (in the same block) with a constant operand. Fold the
835              // constant.
836              ConstantInt *CI =
837              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
838              TmpOffset += CI->getSExtValue() * S;
839              // Iterate on the other operand.
840              Op = cast<AddOperator>(Op)->getOperand(0);
841              continue;
842            }
843            // Unsupported
844            goto unsupported_gep;
845          }
846        }
847      }
848
849      // Try to grab the base operand now.
850      Addr.Offset = TmpOffset;
851      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
852
853      // We failed, restore everything and try the other options.
854      Addr = SavedAddr;
855
856      unsupported_gep:
857      break;
858    }
859    case Instruction::Alloca: {
860      const AllocaInst *AI = cast<AllocaInst>(Obj);
861      DenseMap<const AllocaInst*, int>::iterator SI =
862        FuncInfo.StaticAllocaMap.find(AI);
863      if (SI != FuncInfo.StaticAllocaMap.end()) {
864        Addr.BaseType = Address::FrameIndexBase;
865        Addr.Base.FI = SI->second;
866        return true;
867      }
868      break;
869    }
870  }
871
872  // Try to get this in a register if nothing else has worked.
873  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
874  return Addr.Base.Reg != 0;
875}
876
877void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3) {
878
879  assert(VT.isSimple() && "Non-simple types are invalid here!");
880
881  bool needsLowering = false;
882  switch (VT.getSimpleVT().SimpleTy) {
883    default: llvm_unreachable("Unhandled load/store type!");
884    case MVT::i1:
885    case MVT::i8:
886    case MVT::i16:
887    case MVT::i32:
888      if (!useAM3) {
889        // Integer loads/stores handle 12-bit offsets.
890        needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
891        // Handle negative offsets.
892        if (needsLowering && isThumb2)
893          needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
894                            Addr.Offset > -256);
895      } else {
896        // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
897        needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
898      }
899      break;
900    case MVT::f32:
901    case MVT::f64:
902      // Floating point operands handle 8-bit offsets.
903      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
904      break;
905  }
906
907  // If this is a stack pointer and the offset needs to be simplified then
908  // put the alloca address into a register, set the base type back to
909  // register and continue. This should almost never happen.
910  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
911    const TargetRegisterClass *RC = isThumb2 ?
912      (const TargetRegisterClass*)&ARM::tGPRRegClass :
913      (const TargetRegisterClass*)&ARM::GPRRegClass;
914    unsigned ResultReg = createResultReg(RC);
915    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
916    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
917                            TII.get(Opc), ResultReg)
918                            .addFrameIndex(Addr.Base.FI)
919                            .addImm(0));
920    Addr.Base.Reg = ResultReg;
921    Addr.BaseType = Address::RegBase;
922  }
923
924  // Since the offset is too large for the load/store instruction
925  // get the reg+offset into a register.
926  if (needsLowering) {
927    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
928                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
929    Addr.Offset = 0;
930  }
931}
932
933void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
934                                       const MachineInstrBuilder &MIB,
935                                       unsigned Flags, bool useAM3) {
936  // addrmode5 output depends on the selection dag addressing dividing the
937  // offset by 4 that it then later multiplies. Do this here as well.
938  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
939      VT.getSimpleVT().SimpleTy == MVT::f64)
940    Addr.Offset /= 4;
941
942  // Frame base works a bit differently. Handle it separately.
943  if (Addr.BaseType == Address::FrameIndexBase) {
944    int FI = Addr.Base.FI;
945    int Offset = Addr.Offset;
946    MachineMemOperand *MMO =
947          FuncInfo.MF->getMachineMemOperand(
948                                  MachinePointerInfo::getFixedStack(FI, Offset),
949                                  Flags,
950                                  MFI.getObjectSize(FI),
951                                  MFI.getObjectAlignment(FI));
952    // Now add the rest of the operands.
953    MIB.addFrameIndex(FI);
954
955    // ARM halfword load/stores and signed byte loads need an additional
956    // operand.
957    if (useAM3) {
958      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
959      MIB.addReg(0);
960      MIB.addImm(Imm);
961    } else {
962      MIB.addImm(Addr.Offset);
963    }
964    MIB.addMemOperand(MMO);
965  } else {
966    // Now add the rest of the operands.
967    MIB.addReg(Addr.Base.Reg);
968
969    // ARM halfword load/stores and signed byte loads need an additional
970    // operand.
971    if (useAM3) {
972      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
973      MIB.addReg(0);
974      MIB.addImm(Imm);
975    } else {
976      MIB.addImm(Addr.Offset);
977    }
978  }
979  AddOptionalDefs(MIB);
980}
981
982bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
983                              unsigned Alignment, bool isZExt, bool allocReg) {
984  assert(VT.isSimple() && "Non-simple types are invalid here!");
985  unsigned Opc;
986  bool useAM3 = false;
987  bool needVMOV = false;
988  const TargetRegisterClass *RC;
989  switch (VT.getSimpleVT().SimpleTy) {
990    // This is mostly going to be Neon/vector support.
991    default: return false;
992    case MVT::i1:
993    case MVT::i8:
994      if (isThumb2) {
995        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
996          Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
997        else
998          Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
999      } else {
1000        if (isZExt) {
1001          Opc = ARM::LDRBi12;
1002        } else {
1003          Opc = ARM::LDRSB;
1004          useAM3 = true;
1005        }
1006      }
1007      RC = &ARM::GPRRegClass;
1008      break;
1009    case MVT::i16:
1010      if (isThumb2) {
1011        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1012          Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
1013        else
1014          Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
1015      } else {
1016        Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1017        useAM3 = true;
1018      }
1019      RC = &ARM::GPRRegClass;
1020      break;
1021    case MVT::i32:
1022      if (isThumb2) {
1023        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1024          Opc = ARM::t2LDRi8;
1025        else
1026          Opc = ARM::t2LDRi12;
1027      } else {
1028        Opc = ARM::LDRi12;
1029      }
1030      RC = &ARM::GPRRegClass;
1031      break;
1032    case MVT::f32:
1033      if (!Subtarget->hasVFP2()) return false;
1034      // Unaligned loads need special handling. Floats require word-alignment.
1035      if (Alignment && Alignment < 4) {
1036        needVMOV = true;
1037        VT = MVT::i32;
1038        Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1039        RC = &ARM::GPRRegClass;
1040      } else {
1041        Opc = ARM::VLDRS;
1042        RC = TLI.getRegClassFor(VT);
1043      }
1044      break;
1045    case MVT::f64:
1046      if (!Subtarget->hasVFP2()) return false;
1047      // FIXME: Unaligned loads need special handling.  Doublewords require
1048      // word-alignment.
1049      if (Alignment && Alignment < 4)
1050        return false;
1051
1052      Opc = ARM::VLDRD;
1053      RC = TLI.getRegClassFor(VT);
1054      break;
1055  }
1056  // Simplify this down to something we can handle.
1057  ARMSimplifyAddress(Addr, VT, useAM3);
1058
1059  // Create the base instruction, then add the operands.
1060  if (allocReg)
1061    ResultReg = createResultReg(RC);
1062  assert (ResultReg > 255 && "Expected an allocated virtual register.");
1063  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1064                                    TII.get(Opc), ResultReg);
1065  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1066
1067  // If we had an unaligned load of a float we've converted it to an regular
1068  // load.  Now we must move from the GRP to the FP register.
1069  if (needVMOV) {
1070    unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1071    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1072                            TII.get(ARM::VMOVSR), MoveReg)
1073                    .addReg(ResultReg));
1074    ResultReg = MoveReg;
1075  }
1076  return true;
1077}
1078
1079bool ARMFastISel::SelectLoad(const Instruction *I) {
1080  // Atomic loads need special handling.
1081  if (cast<LoadInst>(I)->isAtomic())
1082    return false;
1083
1084  // Verify we have a legal type before going any further.
1085  MVT VT;
1086  if (!isLoadTypeLegal(I->getType(), VT))
1087    return false;
1088
1089  // See if we can handle this address.
1090  Address Addr;
1091  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1092
1093  unsigned ResultReg;
1094  if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1095    return false;
1096  UpdateValueMap(I, ResultReg);
1097  return true;
1098}
1099
1100bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
1101                               unsigned Alignment) {
1102  unsigned StrOpc;
1103  bool useAM3 = false;
1104  switch (VT.getSimpleVT().SimpleTy) {
1105    // This is mostly going to be Neon/vector support.
1106    default: return false;
1107    case MVT::i1: {
1108      unsigned Res = createResultReg(isThumb2 ?
1109        (const TargetRegisterClass*)&ARM::tGPRRegClass :
1110        (const TargetRegisterClass*)&ARM::GPRRegClass);
1111      unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1112      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1113                              TII.get(Opc), Res)
1114                      .addReg(SrcReg).addImm(1));
1115      SrcReg = Res;
1116    } // Fallthrough here.
1117    case MVT::i8:
1118      if (isThumb2) {
1119        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1120          StrOpc = ARM::t2STRBi8;
1121        else
1122          StrOpc = ARM::t2STRBi12;
1123      } else {
1124        StrOpc = ARM::STRBi12;
1125      }
1126      break;
1127    case MVT::i16:
1128      if (isThumb2) {
1129        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1130          StrOpc = ARM::t2STRHi8;
1131        else
1132          StrOpc = ARM::t2STRHi12;
1133      } else {
1134        StrOpc = ARM::STRH;
1135        useAM3 = true;
1136      }
1137      break;
1138    case MVT::i32:
1139      if (isThumb2) {
1140        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1141          StrOpc = ARM::t2STRi8;
1142        else
1143          StrOpc = ARM::t2STRi12;
1144      } else {
1145        StrOpc = ARM::STRi12;
1146      }
1147      break;
1148    case MVT::f32:
1149      if (!Subtarget->hasVFP2()) return false;
1150      // Unaligned stores need special handling. Floats require word-alignment.
1151      if (Alignment && Alignment < 4) {
1152        unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1153        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1154                                TII.get(ARM::VMOVRS), MoveReg)
1155                        .addReg(SrcReg));
1156        SrcReg = MoveReg;
1157        VT = MVT::i32;
1158        StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1159      } else {
1160        StrOpc = ARM::VSTRS;
1161      }
1162      break;
1163    case MVT::f64:
1164      if (!Subtarget->hasVFP2()) return false;
1165      // FIXME: Unaligned stores need special handling.  Doublewords require
1166      // word-alignment.
1167      if (Alignment && Alignment < 4)
1168          return false;
1169
1170      StrOpc = ARM::VSTRD;
1171      break;
1172  }
1173  // Simplify this down to something we can handle.
1174  ARMSimplifyAddress(Addr, VT, useAM3);
1175
1176  // Create the base instruction, then add the operands.
1177  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1178                                    TII.get(StrOpc))
1179                            .addReg(SrcReg);
1180  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1181  return true;
1182}
1183
1184bool ARMFastISel::SelectStore(const Instruction *I) {
1185  Value *Op0 = I->getOperand(0);
1186  unsigned SrcReg = 0;
1187
1188  // Atomic stores need special handling.
1189  if (cast<StoreInst>(I)->isAtomic())
1190    return false;
1191
1192  // Verify we have a legal type before going any further.
1193  MVT VT;
1194  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1195    return false;
1196
1197  // Get the value to be stored into a register.
1198  SrcReg = getRegForValue(Op0);
1199  if (SrcReg == 0) return false;
1200
1201  // See if we can handle this address.
1202  Address Addr;
1203  if (!ARMComputeAddress(I->getOperand(1), Addr))
1204    return false;
1205
1206  if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1207    return false;
1208  return true;
1209}
1210
1211static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1212  switch (Pred) {
1213    // Needs two compares...
1214    case CmpInst::FCMP_ONE:
1215    case CmpInst::FCMP_UEQ:
1216    default:
1217      // AL is our "false" for now. The other two need more compares.
1218      return ARMCC::AL;
1219    case CmpInst::ICMP_EQ:
1220    case CmpInst::FCMP_OEQ:
1221      return ARMCC::EQ;
1222    case CmpInst::ICMP_SGT:
1223    case CmpInst::FCMP_OGT:
1224      return ARMCC::GT;
1225    case CmpInst::ICMP_SGE:
1226    case CmpInst::FCMP_OGE:
1227      return ARMCC::GE;
1228    case CmpInst::ICMP_UGT:
1229    case CmpInst::FCMP_UGT:
1230      return ARMCC::HI;
1231    case CmpInst::FCMP_OLT:
1232      return ARMCC::MI;
1233    case CmpInst::ICMP_ULE:
1234    case CmpInst::FCMP_OLE:
1235      return ARMCC::LS;
1236    case CmpInst::FCMP_ORD:
1237      return ARMCC::VC;
1238    case CmpInst::FCMP_UNO:
1239      return ARMCC::VS;
1240    case CmpInst::FCMP_UGE:
1241      return ARMCC::PL;
1242    case CmpInst::ICMP_SLT:
1243    case CmpInst::FCMP_ULT:
1244      return ARMCC::LT;
1245    case CmpInst::ICMP_SLE:
1246    case CmpInst::FCMP_ULE:
1247      return ARMCC::LE;
1248    case CmpInst::FCMP_UNE:
1249    case CmpInst::ICMP_NE:
1250      return ARMCC::NE;
1251    case CmpInst::ICMP_UGE:
1252      return ARMCC::HS;
1253    case CmpInst::ICMP_ULT:
1254      return ARMCC::LO;
1255  }
1256}
1257
1258bool ARMFastISel::SelectBranch(const Instruction *I) {
1259  const BranchInst *BI = cast<BranchInst>(I);
1260  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1261  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1262
1263  // Simple branch support.
1264
1265  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1266  // behavior.
1267  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1268    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1269
1270      // Get the compare predicate.
1271      // Try to take advantage of fallthrough opportunities.
1272      CmpInst::Predicate Predicate = CI->getPredicate();
1273      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1274        std::swap(TBB, FBB);
1275        Predicate = CmpInst::getInversePredicate(Predicate);
1276      }
1277
1278      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1279
1280      // We may not handle every CC for now.
1281      if (ARMPred == ARMCC::AL) return false;
1282
1283      // Emit the compare.
1284      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1285        return false;
1286
1287      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1288      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1289      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1290      FastEmitBranch(FBB, DL);
1291      FuncInfo.MBB->addSuccessor(TBB);
1292      return true;
1293    }
1294  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1295    MVT SourceVT;
1296    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1297        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1298      unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1299      unsigned OpReg = getRegForValue(TI->getOperand(0));
1300      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1301                              TII.get(TstOpc))
1302                      .addReg(OpReg).addImm(1));
1303
1304      unsigned CCMode = ARMCC::NE;
1305      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1306        std::swap(TBB, FBB);
1307        CCMode = ARMCC::EQ;
1308      }
1309
1310      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1311      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1312      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1313
1314      FastEmitBranch(FBB, DL);
1315      FuncInfo.MBB->addSuccessor(TBB);
1316      return true;
1317    }
1318  } else if (const ConstantInt *CI =
1319             dyn_cast<ConstantInt>(BI->getCondition())) {
1320    uint64_t Imm = CI->getZExtValue();
1321    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1322    FastEmitBranch(Target, DL);
1323    return true;
1324  }
1325
1326  unsigned CmpReg = getRegForValue(BI->getCondition());
1327  if (CmpReg == 0) return false;
1328
1329  // We've been divorced from our compare!  Our block was split, and
1330  // now our compare lives in a predecessor block.  We musn't
1331  // re-compare here, as the children of the compare aren't guaranteed
1332  // live across the block boundary (we *could* check for this).
1333  // Regardless, the compare has been done in the predecessor block,
1334  // and it left a value for us in a virtual register.  Ergo, we test
1335  // the one-bit value left in the virtual register.
1336  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1337  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1338                  .addReg(CmpReg).addImm(1));
1339
1340  unsigned CCMode = ARMCC::NE;
1341  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1342    std::swap(TBB, FBB);
1343    CCMode = ARMCC::EQ;
1344  }
1345
1346  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1347  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1348                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1349  FastEmitBranch(FBB, DL);
1350  FuncInfo.MBB->addSuccessor(TBB);
1351  return true;
1352}
1353
1354bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1355  unsigned AddrReg = getRegForValue(I->getOperand(0));
1356  if (AddrReg == 0) return false;
1357
1358  unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1359  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
1360                  .addReg(AddrReg));
1361  return true;
1362}
1363
1364bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1365                             bool isZExt) {
1366  Type *Ty = Src1Value->getType();
1367  EVT SrcVT = TLI.getValueType(Ty, true);
1368  if (!SrcVT.isSimple()) return false;
1369
1370  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1371  if (isFloat && !Subtarget->hasVFP2())
1372    return false;
1373
1374  // Check to see if the 2nd operand is a constant that we can encode directly
1375  // in the compare.
1376  int Imm = 0;
1377  bool UseImm = false;
1378  bool isNegativeImm = false;
1379  // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1380  // Thus, Src1Value may be a ConstantInt, but we're missing it.
1381  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1382    if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1383        SrcVT == MVT::i1) {
1384      const APInt &CIVal = ConstInt->getValue();
1385      Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1386      // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1387      // then a cmn, because there is no way to represent 2147483648 as a
1388      // signed 32-bit int.
1389      if (Imm < 0 && Imm != (int)0x80000000) {
1390        isNegativeImm = true;
1391        Imm = -Imm;
1392      }
1393      UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1394        (ARM_AM::getSOImmVal(Imm) != -1);
1395    }
1396  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1397    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1398      if (ConstFP->isZero() && !ConstFP->isNegative())
1399        UseImm = true;
1400  }
1401
1402  unsigned CmpOpc;
1403  bool isICmp = true;
1404  bool needsExt = false;
1405  switch (SrcVT.getSimpleVT().SimpleTy) {
1406    default: return false;
1407    // TODO: Verify compares.
1408    case MVT::f32:
1409      isICmp = false;
1410      CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1411      break;
1412    case MVT::f64:
1413      isICmp = false;
1414      CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1415      break;
1416    case MVT::i1:
1417    case MVT::i8:
1418    case MVT::i16:
1419      needsExt = true;
1420    // Intentional fall-through.
1421    case MVT::i32:
1422      if (isThumb2) {
1423        if (!UseImm)
1424          CmpOpc = ARM::t2CMPrr;
1425        else
1426          CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1427      } else {
1428        if (!UseImm)
1429          CmpOpc = ARM::CMPrr;
1430        else
1431          CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1432      }
1433      break;
1434  }
1435
1436  unsigned SrcReg1 = getRegForValue(Src1Value);
1437  if (SrcReg1 == 0) return false;
1438
1439  unsigned SrcReg2 = 0;
1440  if (!UseImm) {
1441    SrcReg2 = getRegForValue(Src2Value);
1442    if (SrcReg2 == 0) return false;
1443  }
1444
1445  // We have i1, i8, or i16, we need to either zero extend or sign extend.
1446  if (needsExt) {
1447    SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1448    if (SrcReg1 == 0) return false;
1449    if (!UseImm) {
1450      SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1451      if (SrcReg2 == 0) return false;
1452    }
1453  }
1454
1455  if (!UseImm) {
1456    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1457                            TII.get(CmpOpc))
1458                    .addReg(SrcReg1).addReg(SrcReg2));
1459  } else {
1460    MachineInstrBuilder MIB;
1461    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1462      .addReg(SrcReg1);
1463
1464    // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1465    if (isICmp)
1466      MIB.addImm(Imm);
1467    AddOptionalDefs(MIB);
1468  }
1469
1470  // For floating point we need to move the result to a comparison register
1471  // that we can then use for branches.
1472  if (Ty->isFloatTy() || Ty->isDoubleTy())
1473    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1474                            TII.get(ARM::FMSTAT)));
1475  return true;
1476}
1477
1478bool ARMFastISel::SelectCmp(const Instruction *I) {
1479  const CmpInst *CI = cast<CmpInst>(I);
1480
1481  // Get the compare predicate.
1482  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1483
1484  // We may not handle every CC for now.
1485  if (ARMPred == ARMCC::AL) return false;
1486
1487  // Emit the compare.
1488  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1489    return false;
1490
1491  // Now set a register based on the comparison. Explicitly set the predicates
1492  // here.
1493  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1494  const TargetRegisterClass *RC = isThumb2 ?
1495    (const TargetRegisterClass*)&ARM::rGPRRegClass :
1496    (const TargetRegisterClass*)&ARM::GPRRegClass;
1497  unsigned DestReg = createResultReg(RC);
1498  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1499  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1500  // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1501  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1502          .addReg(ZeroReg).addImm(1)
1503          .addImm(ARMPred).addReg(ARM::CPSR);
1504
1505  UpdateValueMap(I, DestReg);
1506  return true;
1507}
1508
1509bool ARMFastISel::SelectFPExt(const Instruction *I) {
1510  // Make sure we have VFP and that we're extending float to double.
1511  if (!Subtarget->hasVFP2()) return false;
1512
1513  Value *V = I->getOperand(0);
1514  if (!I->getType()->isDoubleTy() ||
1515      !V->getType()->isFloatTy()) return false;
1516
1517  unsigned Op = getRegForValue(V);
1518  if (Op == 0) return false;
1519
1520  unsigned Result = createResultReg(&ARM::DPRRegClass);
1521  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1522                          TII.get(ARM::VCVTDS), Result)
1523                  .addReg(Op));
1524  UpdateValueMap(I, Result);
1525  return true;
1526}
1527
1528bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1529  // Make sure we have VFP and that we're truncating double to float.
1530  if (!Subtarget->hasVFP2()) return false;
1531
1532  Value *V = I->getOperand(0);
1533  if (!(I->getType()->isFloatTy() &&
1534        V->getType()->isDoubleTy())) return false;
1535
1536  unsigned Op = getRegForValue(V);
1537  if (Op == 0) return false;
1538
1539  unsigned Result = createResultReg(&ARM::SPRRegClass);
1540  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1541                          TII.get(ARM::VCVTSD), Result)
1542                  .addReg(Op));
1543  UpdateValueMap(I, Result);
1544  return true;
1545}
1546
1547bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1548  // Make sure we have VFP.
1549  if (!Subtarget->hasVFP2()) return false;
1550
1551  MVT DstVT;
1552  Type *Ty = I->getType();
1553  if (!isTypeLegal(Ty, DstVT))
1554    return false;
1555
1556  Value *Src = I->getOperand(0);
1557  EVT SrcVT = TLI.getValueType(Src->getType(), true);
1558  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1559    return false;
1560
1561  unsigned SrcReg = getRegForValue(Src);
1562  if (SrcReg == 0) return false;
1563
1564  // Handle sign-extension.
1565  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1566    EVT DestVT = MVT::i32;
1567    SrcReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT,
1568                                       /*isZExt*/!isSigned);
1569    if (SrcReg == 0) return false;
1570  }
1571
1572  // The conversion routine works on fp-reg to fp-reg and the operand above
1573  // was an integer, move it to the fp registers if possible.
1574  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1575  if (FP == 0) return false;
1576
1577  unsigned Opc;
1578  if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1579  else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1580  else return false;
1581
1582  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1583  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1584                          ResultReg)
1585                  .addReg(FP));
1586  UpdateValueMap(I, ResultReg);
1587  return true;
1588}
1589
1590bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1591  // Make sure we have VFP.
1592  if (!Subtarget->hasVFP2()) return false;
1593
1594  MVT DstVT;
1595  Type *RetTy = I->getType();
1596  if (!isTypeLegal(RetTy, DstVT))
1597    return false;
1598
1599  unsigned Op = getRegForValue(I->getOperand(0));
1600  if (Op == 0) return false;
1601
1602  unsigned Opc;
1603  Type *OpTy = I->getOperand(0)->getType();
1604  if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1605  else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1606  else return false;
1607
1608  // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1609  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1610  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1611                          ResultReg)
1612                  .addReg(Op));
1613
1614  // This result needs to be in an integer register, but the conversion only
1615  // takes place in fp-regs.
1616  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1617  if (IntReg == 0) return false;
1618
1619  UpdateValueMap(I, IntReg);
1620  return true;
1621}
1622
1623bool ARMFastISel::SelectSelect(const Instruction *I) {
1624  MVT VT;
1625  if (!isTypeLegal(I->getType(), VT))
1626    return false;
1627
1628  // Things need to be register sized for register moves.
1629  if (VT != MVT::i32) return false;
1630  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1631
1632  unsigned CondReg = getRegForValue(I->getOperand(0));
1633  if (CondReg == 0) return false;
1634  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1635  if (Op1Reg == 0) return false;
1636
1637  // Check to see if we can use an immediate in the conditional move.
1638  int Imm = 0;
1639  bool UseImm = false;
1640  bool isNegativeImm = false;
1641  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1642    assert (VT == MVT::i32 && "Expecting an i32.");
1643    Imm = (int)ConstInt->getValue().getZExtValue();
1644    if (Imm < 0) {
1645      isNegativeImm = true;
1646      Imm = ~Imm;
1647    }
1648    UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1649      (ARM_AM::getSOImmVal(Imm) != -1);
1650  }
1651
1652  unsigned Op2Reg = 0;
1653  if (!UseImm) {
1654    Op2Reg = getRegForValue(I->getOperand(2));
1655    if (Op2Reg == 0) return false;
1656  }
1657
1658  unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1659  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1660                  .addReg(CondReg).addImm(0));
1661
1662  unsigned MovCCOpc;
1663  if (!UseImm) {
1664    MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1665  } else {
1666    if (!isNegativeImm) {
1667      MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1668    } else {
1669      MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1670    }
1671  }
1672  unsigned ResultReg = createResultReg(RC);
1673  if (!UseImm)
1674    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1675    .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
1676  else
1677    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1678    .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
1679  UpdateValueMap(I, ResultReg);
1680  return true;
1681}
1682
1683bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1684  MVT VT;
1685  Type *Ty = I->getType();
1686  if (!isTypeLegal(Ty, VT))
1687    return false;
1688
1689  // If we have integer div support we should have selected this automagically.
1690  // In case we have a real miss go ahead and return false and we'll pick
1691  // it up later.
1692  if (Subtarget->hasDivide()) return false;
1693
1694  // Otherwise emit a libcall.
1695  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1696  if (VT == MVT::i8)
1697    LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1698  else if (VT == MVT::i16)
1699    LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1700  else if (VT == MVT::i32)
1701    LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1702  else if (VT == MVT::i64)
1703    LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1704  else if (VT == MVT::i128)
1705    LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1706  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1707
1708  return ARMEmitLibcall(I, LC);
1709}
1710
1711bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1712  MVT VT;
1713  Type *Ty = I->getType();
1714  if (!isTypeLegal(Ty, VT))
1715    return false;
1716
1717  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1718  if (VT == MVT::i8)
1719    LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1720  else if (VT == MVT::i16)
1721    LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1722  else if (VT == MVT::i32)
1723    LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1724  else if (VT == MVT::i64)
1725    LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1726  else if (VT == MVT::i128)
1727    LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1728  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1729
1730  return ARMEmitLibcall(I, LC);
1731}
1732
1733bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1734  EVT DestVT  = TLI.getValueType(I->getType(), true);
1735
1736  // We can get here in the case when we have a binary operation on a non-legal
1737  // type and the target independent selector doesn't know how to handle it.
1738  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1739    return false;
1740
1741  unsigned Opc;
1742  switch (ISDOpcode) {
1743    default: return false;
1744    case ISD::ADD:
1745      Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1746      break;
1747    case ISD::OR:
1748      Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1749      break;
1750    case ISD::SUB:
1751      Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1752      break;
1753  }
1754
1755  unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1756  if (SrcReg1 == 0) return false;
1757
1758  // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1759  // in the instruction, rather then materializing the value in a register.
1760  unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1761  if (SrcReg2 == 0) return false;
1762
1763  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1764  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1765                          TII.get(Opc), ResultReg)
1766                  .addReg(SrcReg1).addReg(SrcReg2));
1767  UpdateValueMap(I, ResultReg);
1768  return true;
1769}
1770
1771bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1772  EVT VT  = TLI.getValueType(I->getType(), true);
1773
1774  // We can get here in the case when we want to use NEON for our fp
1775  // operations, but can't figure out how to. Just use the vfp instructions
1776  // if we have them.
1777  // FIXME: It'd be nice to use NEON instructions.
1778  Type *Ty = I->getType();
1779  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1780  if (isFloat && !Subtarget->hasVFP2())
1781    return false;
1782
1783  unsigned Opc;
1784  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1785  switch (ISDOpcode) {
1786    default: return false;
1787    case ISD::FADD:
1788      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1789      break;
1790    case ISD::FSUB:
1791      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1792      break;
1793    case ISD::FMUL:
1794      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1795      break;
1796  }
1797  unsigned Op1 = getRegForValue(I->getOperand(0));
1798  if (Op1 == 0) return false;
1799
1800  unsigned Op2 = getRegForValue(I->getOperand(1));
1801  if (Op2 == 0) return false;
1802
1803  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1804  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1805                          TII.get(Opc), ResultReg)
1806                  .addReg(Op1).addReg(Op2));
1807  UpdateValueMap(I, ResultReg);
1808  return true;
1809}
1810
1811// Call Handling Code
1812
1813// This is largely taken directly from CCAssignFnForNode - we don't support
1814// varargs in FastISel so that part has been removed.
1815// TODO: We may not support all of this.
1816CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1817                                           bool Return,
1818                                           bool isVarArg) {
1819  switch (CC) {
1820  default:
1821    llvm_unreachable("Unsupported calling convention");
1822  case CallingConv::Fast:
1823    // Ignore fastcc. Silence compiler warnings.
1824    (void)RetFastCC_ARM_APCS;
1825    (void)FastCC_ARM_APCS;
1826    // Fallthrough
1827  case CallingConv::C:
1828    // Use target triple & subtarget features to do actual dispatch.
1829    if (Subtarget->isAAPCS_ABI()) {
1830      if (Subtarget->hasVFP2() &&
1831          TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1832        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1833      else
1834        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1835    } else
1836        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1837  case CallingConv::ARM_AAPCS_VFP:
1838    if (!isVarArg)
1839      return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1840  case CallingConv::ARM_AAPCS:
1841    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1842  case CallingConv::ARM_APCS:
1843    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1844  }
1845}
1846
1847bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1848                                  SmallVectorImpl<unsigned> &ArgRegs,
1849                                  SmallVectorImpl<MVT> &ArgVTs,
1850                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1851                                  SmallVectorImpl<unsigned> &RegArgs,
1852                                  CallingConv::ID CC,
1853                                  unsigned &NumBytes,
1854                                  bool isVarArg) {
1855  SmallVector<CCValAssign, 16> ArgLocs;
1856  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
1857  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1858                             CCAssignFnForCall(CC, false, isVarArg));
1859
1860  // Check that we can handle all of the arguments. If we can't, then bail out
1861  // now before we add code to the MBB.
1862  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1863    CCValAssign &VA = ArgLocs[i];
1864    MVT ArgVT = ArgVTs[VA.getValNo()];
1865
1866    // We don't handle NEON/vector parameters yet.
1867    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1868      return false;
1869
1870    // Now copy/store arg to correct locations.
1871    if (VA.isRegLoc() && !VA.needsCustom()) {
1872      continue;
1873    } else if (VA.needsCustom()) {
1874      // TODO: We need custom lowering for vector (v2f64) args.
1875      if (VA.getLocVT() != MVT::f64 ||
1876          // TODO: Only handle register args for now.
1877          !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1878        return false;
1879    } else {
1880      switch (static_cast<EVT>(ArgVT).getSimpleVT().SimpleTy) {
1881      default:
1882        return false;
1883      case MVT::i1:
1884      case MVT::i8:
1885      case MVT::i16:
1886      case MVT::i32:
1887        break;
1888      case MVT::f32:
1889        if (!Subtarget->hasVFP2())
1890          return false;
1891        break;
1892      case MVT::f64:
1893        if (!Subtarget->hasVFP2())
1894          return false;
1895        break;
1896      }
1897    }
1898  }
1899
1900  // At the point, we are able to handle the call's arguments in fast isel.
1901
1902  // Get a count of how many bytes are to be pushed on the stack.
1903  NumBytes = CCInfo.getNextStackOffset();
1904
1905  // Issue CALLSEQ_START
1906  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1907  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1908                          TII.get(AdjStackDown))
1909                  .addImm(NumBytes));
1910
1911  // Process the args.
1912  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1913    CCValAssign &VA = ArgLocs[i];
1914    unsigned Arg = ArgRegs[VA.getValNo()];
1915    MVT ArgVT = ArgVTs[VA.getValNo()];
1916
1917    assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1918           "We don't handle NEON/vector parameters yet.");
1919
1920    // Handle arg promotion, etc.
1921    switch (VA.getLocInfo()) {
1922      case CCValAssign::Full: break;
1923      case CCValAssign::SExt: {
1924        MVT DestVT = VA.getLocVT();
1925        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1926        assert (Arg != 0 && "Failed to emit a sext");
1927        ArgVT = DestVT;
1928        break;
1929      }
1930      case CCValAssign::AExt:
1931        // Intentional fall-through.  Handle AExt and ZExt.
1932      case CCValAssign::ZExt: {
1933        MVT DestVT = VA.getLocVT();
1934        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1935        assert (Arg != 0 && "Failed to emit a sext");
1936        ArgVT = DestVT;
1937        break;
1938      }
1939      case CCValAssign::BCvt: {
1940        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1941                                 /*TODO: Kill=*/false);
1942        assert(BC != 0 && "Failed to emit a bitcast!");
1943        Arg = BC;
1944        ArgVT = VA.getLocVT();
1945        break;
1946      }
1947      default: llvm_unreachable("Unknown arg promotion!");
1948    }
1949
1950    // Now copy/store arg to correct locations.
1951    if (VA.isRegLoc() && !VA.needsCustom()) {
1952      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1953              VA.getLocReg())
1954        .addReg(Arg);
1955      RegArgs.push_back(VA.getLocReg());
1956    } else if (VA.needsCustom()) {
1957      // TODO: We need custom lowering for vector (v2f64) args.
1958      assert(VA.getLocVT() == MVT::f64 &&
1959             "Custom lowering for v2f64 args not available");
1960
1961      CCValAssign &NextVA = ArgLocs[++i];
1962
1963      assert(VA.isRegLoc() && NextVA.isRegLoc() &&
1964             "We only handle register args!");
1965
1966      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1967                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1968                      .addReg(NextVA.getLocReg(), RegState::Define)
1969                      .addReg(Arg));
1970      RegArgs.push_back(VA.getLocReg());
1971      RegArgs.push_back(NextVA.getLocReg());
1972    } else {
1973      assert(VA.isMemLoc());
1974      // Need to store on the stack.
1975      Address Addr;
1976      Addr.BaseType = Address::RegBase;
1977      Addr.Base.Reg = ARM::SP;
1978      Addr.Offset = VA.getLocMemOffset();
1979
1980      bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
1981      assert(EmitRet && "Could not emit a store for argument!");
1982    }
1983  }
1984
1985  return true;
1986}
1987
1988bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1989                             const Instruction *I, CallingConv::ID CC,
1990                             unsigned &NumBytes, bool isVarArg) {
1991  // Issue CALLSEQ_END
1992  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1993  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1994                          TII.get(AdjStackUp))
1995                  .addImm(NumBytes).addImm(0));
1996
1997  // Now the return value.
1998  if (RetVT != MVT::isVoid) {
1999    SmallVector<CCValAssign, 16> RVLocs;
2000    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
2001    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2002
2003    // Copy all of the result registers out of their specified physreg.
2004    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2005      // For this move we copy into two registers and then move into the
2006      // double fp reg we want.
2007      EVT DestVT = RVLocs[0].getValVT();
2008      const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2009      unsigned ResultReg = createResultReg(DstRC);
2010      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2011                              TII.get(ARM::VMOVDRR), ResultReg)
2012                      .addReg(RVLocs[0].getLocReg())
2013                      .addReg(RVLocs[1].getLocReg()));
2014
2015      UsedRegs.push_back(RVLocs[0].getLocReg());
2016      UsedRegs.push_back(RVLocs[1].getLocReg());
2017
2018      // Finally update the result.
2019      UpdateValueMap(I, ResultReg);
2020    } else {
2021      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2022      EVT CopyVT = RVLocs[0].getValVT();
2023
2024      // Special handling for extended integers.
2025      if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2026        CopyVT = MVT::i32;
2027
2028      const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2029
2030      unsigned ResultReg = createResultReg(DstRC);
2031      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2032              ResultReg).addReg(RVLocs[0].getLocReg());
2033      UsedRegs.push_back(RVLocs[0].getLocReg());
2034
2035      // Finally update the result.
2036      UpdateValueMap(I, ResultReg);
2037    }
2038  }
2039
2040  return true;
2041}
2042
2043bool ARMFastISel::SelectRet(const Instruction *I) {
2044  const ReturnInst *Ret = cast<ReturnInst>(I);
2045  const Function &F = *I->getParent()->getParent();
2046
2047  if (!FuncInfo.CanLowerReturn)
2048    return false;
2049
2050  CallingConv::ID CC = F.getCallingConv();
2051  if (Ret->getNumOperands() > 0) {
2052    SmallVector<ISD::OutputArg, 4> Outs;
2053    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
2054                  Outs, TLI);
2055
2056    // Analyze operands of the call, assigning locations to each operand.
2057    SmallVector<CCValAssign, 16> ValLocs;
2058    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
2059    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2060                                                 F.isVarArg()));
2061
2062    const Value *RV = Ret->getOperand(0);
2063    unsigned Reg = getRegForValue(RV);
2064    if (Reg == 0)
2065      return false;
2066
2067    // Only handle a single return value for now.
2068    if (ValLocs.size() != 1)
2069      return false;
2070
2071    CCValAssign &VA = ValLocs[0];
2072
2073    // Don't bother handling odd stuff for now.
2074    if (VA.getLocInfo() != CCValAssign::Full)
2075      return false;
2076    // Only handle register returns for now.
2077    if (!VA.isRegLoc())
2078      return false;
2079
2080    unsigned SrcReg = Reg + VA.getValNo();
2081    EVT RVVT = TLI.getValueType(RV->getType());
2082    EVT DestVT = VA.getValVT();
2083    // Special handling for extended integers.
2084    if (RVVT != DestVT) {
2085      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2086        return false;
2087
2088      assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2089
2090      // Perform extension if flagged as either zext or sext.  Otherwise, do
2091      // nothing.
2092      if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2093        SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2094        if (SrcReg == 0) return false;
2095      }
2096    }
2097
2098    // Make the copy.
2099    unsigned DstReg = VA.getLocReg();
2100    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2101    // Avoid a cross-class copy. This is very unlikely.
2102    if (!SrcRC->contains(DstReg))
2103      return false;
2104    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2105            DstReg).addReg(SrcReg);
2106
2107    // Mark the register as live out of the function.
2108    MRI.addLiveOut(VA.getLocReg());
2109  }
2110
2111  unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2112  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2113                          TII.get(RetOpc)));
2114  return true;
2115}
2116
2117unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2118  if (UseReg)
2119    return isThumb2 ? ARM::tBLXr : ARM::BLX;
2120  else
2121    return isThumb2 ? ARM::tBL : ARM::BL;
2122}
2123
2124unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2125  GlobalValue *GV = new GlobalVariable(Type::getInt32Ty(*Context), false,
2126                                       GlobalValue::ExternalLinkage, 0, Name);
2127  return ARMMaterializeGV(GV, TLI.getValueType(GV->getType()));
2128}
2129
2130// A quick function that will emit a call for a named libcall in F with the
2131// vector of passed arguments for the Instruction in I. We can assume that we
2132// can emit a call for any libcall we can produce. This is an abridged version
2133// of the full call infrastructure since we won't need to worry about things
2134// like computed function pointers or strange arguments at call sites.
2135// TODO: Try to unify this and the normal call bits for ARM, then try to unify
2136// with X86.
2137bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2138  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2139
2140  // Handle *simple* calls for now.
2141  Type *RetTy = I->getType();
2142  MVT RetVT;
2143  if (RetTy->isVoidTy())
2144    RetVT = MVT::isVoid;
2145  else if (!isTypeLegal(RetTy, RetVT))
2146    return false;
2147
2148  // Can't handle non-double multi-reg retvals.
2149  if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2150    SmallVector<CCValAssign, 16> RVLocs;
2151    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
2152    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2153    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2154      return false;
2155  }
2156
2157  // Set up the argument vectors.
2158  SmallVector<Value*, 8> Args;
2159  SmallVector<unsigned, 8> ArgRegs;
2160  SmallVector<MVT, 8> ArgVTs;
2161  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2162  Args.reserve(I->getNumOperands());
2163  ArgRegs.reserve(I->getNumOperands());
2164  ArgVTs.reserve(I->getNumOperands());
2165  ArgFlags.reserve(I->getNumOperands());
2166  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2167    Value *Op = I->getOperand(i);
2168    unsigned Arg = getRegForValue(Op);
2169    if (Arg == 0) return false;
2170
2171    Type *ArgTy = Op->getType();
2172    MVT ArgVT;
2173    if (!isTypeLegal(ArgTy, ArgVT)) return false;
2174
2175    ISD::ArgFlagsTy Flags;
2176    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2177    Flags.setOrigAlign(OriginalAlignment);
2178
2179    Args.push_back(Op);
2180    ArgRegs.push_back(Arg);
2181    ArgVTs.push_back(ArgVT);
2182    ArgFlags.push_back(Flags);
2183  }
2184
2185  // Handle the arguments now that we've gotten them.
2186  SmallVector<unsigned, 4> RegArgs;
2187  unsigned NumBytes;
2188  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2189                       RegArgs, CC, NumBytes, false))
2190    return false;
2191
2192  unsigned CalleeReg = 0;
2193  if (EnableARMLongCalls) {
2194    CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2195    if (CalleeReg == 0) return false;
2196  }
2197
2198  // Issue the call.
2199  unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls);
2200  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2201                                    DL, TII.get(CallOpc));
2202  if (isThumb2) {
2203    // Explicitly adding the predicate here.
2204    AddDefaultPred(MIB);
2205    if (EnableARMLongCalls)
2206      MIB.addReg(CalleeReg);
2207    else
2208      MIB.addExternalSymbol(TLI.getLibcallName(Call));
2209  } else {
2210    if (EnableARMLongCalls)
2211      MIB.addReg(CalleeReg);
2212    else
2213      MIB.addExternalSymbol(TLI.getLibcallName(Call));
2214
2215    // Explicitly adding the predicate here.
2216    AddDefaultPred(MIB);
2217  }
2218  // Add implicit physical register uses to the call.
2219  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2220    MIB.addReg(RegArgs[i]);
2221
2222  // Add a register mask with the call-preserved registers.
2223  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2224  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2225
2226  // Finish off the call including any return values.
2227  SmallVector<unsigned, 4> UsedRegs;
2228  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2229
2230  // Set all unused physreg defs as dead.
2231  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2232
2233  return true;
2234}
2235
2236bool ARMFastISel::SelectCall(const Instruction *I,
2237                             const char *IntrMemName = 0) {
2238  const CallInst *CI = cast<CallInst>(I);
2239  const Value *Callee = CI->getCalledValue();
2240
2241  // Can't handle inline asm.
2242  if (isa<InlineAsm>(Callee)) return false;
2243
2244  // Check the calling convention.
2245  ImmutableCallSite CS(CI);
2246  CallingConv::ID CC = CS.getCallingConv();
2247
2248  // TODO: Avoid some calling conventions?
2249
2250  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2251  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2252  bool isVarArg = FTy->isVarArg();
2253
2254  // Handle *simple* calls for now.
2255  Type *RetTy = I->getType();
2256  MVT RetVT;
2257  if (RetTy->isVoidTy())
2258    RetVT = MVT::isVoid;
2259  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2260           RetVT != MVT::i8  && RetVT != MVT::i1)
2261    return false;
2262
2263  // Can't handle non-double multi-reg retvals.
2264  if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2265      RetVT != MVT::i16 && RetVT != MVT::i32) {
2266    SmallVector<CCValAssign, 16> RVLocs;
2267    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
2268    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2269    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2270      return false;
2271  }
2272
2273  // Set up the argument vectors.
2274  SmallVector<Value*, 8> Args;
2275  SmallVector<unsigned, 8> ArgRegs;
2276  SmallVector<MVT, 8> ArgVTs;
2277  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2278  unsigned arg_size = CS.arg_size();
2279  Args.reserve(arg_size);
2280  ArgRegs.reserve(arg_size);
2281  ArgVTs.reserve(arg_size);
2282  ArgFlags.reserve(arg_size);
2283  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2284       i != e; ++i) {
2285    // If we're lowering a memory intrinsic instead of a regular call, skip the
2286    // last two arguments, which shouldn't be passed to the underlying function.
2287    if (IntrMemName && e-i <= 2)
2288      break;
2289
2290    ISD::ArgFlagsTy Flags;
2291    unsigned AttrInd = i - CS.arg_begin() + 1;
2292    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2293      Flags.setSExt();
2294    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2295      Flags.setZExt();
2296
2297    // FIXME: Only handle *easy* calls for now.
2298    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2299        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2300        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2301        CS.paramHasAttr(AttrInd, Attribute::ByVal))
2302      return false;
2303
2304    Type *ArgTy = (*i)->getType();
2305    MVT ArgVT;
2306    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2307        ArgVT != MVT::i1)
2308      return false;
2309
2310    unsigned Arg = getRegForValue(*i);
2311    if (Arg == 0)
2312      return false;
2313
2314    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2315    Flags.setOrigAlign(OriginalAlignment);
2316
2317    Args.push_back(*i);
2318    ArgRegs.push_back(Arg);
2319    ArgVTs.push_back(ArgVT);
2320    ArgFlags.push_back(Flags);
2321  }
2322
2323  // Handle the arguments now that we've gotten them.
2324  SmallVector<unsigned, 4> RegArgs;
2325  unsigned NumBytes;
2326  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2327                       RegArgs, CC, NumBytes, isVarArg))
2328    return false;
2329
2330  bool UseReg = false;
2331  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2332  if (!GV || EnableARMLongCalls) UseReg = true;
2333
2334  unsigned CalleeReg = 0;
2335  if (UseReg) {
2336    if (IntrMemName)
2337      CalleeReg = getLibcallReg(IntrMemName);
2338    else
2339      CalleeReg = getRegForValue(Callee);
2340
2341    if (CalleeReg == 0) return false;
2342  }
2343
2344  // Issue the call.
2345  unsigned CallOpc = ARMSelectCallOp(UseReg);
2346  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2347                                    DL, TII.get(CallOpc));
2348  if(isThumb2) {
2349    // Explicitly adding the predicate here.
2350    AddDefaultPred(MIB);
2351    if (UseReg)
2352      MIB.addReg(CalleeReg);
2353    else if (!IntrMemName)
2354      MIB.addGlobalAddress(GV, 0, 0);
2355    else
2356      MIB.addExternalSymbol(IntrMemName, 0);
2357  } else {
2358    if (UseReg)
2359      MIB.addReg(CalleeReg);
2360    else if (!IntrMemName)
2361      MIB.addGlobalAddress(GV, 0, 0);
2362    else
2363      MIB.addExternalSymbol(IntrMemName, 0);
2364
2365    // Explicitly adding the predicate here.
2366    AddDefaultPred(MIB);
2367  }
2368
2369  // Add implicit physical register uses to the call.
2370  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2371    MIB.addReg(RegArgs[i]);
2372
2373  // Add a register mask with the call-preserved registers.
2374  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2375  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2376
2377  // Finish off the call including any return values.
2378  SmallVector<unsigned, 4> UsedRegs;
2379  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2380    return false;
2381
2382  // Set all unused physreg defs as dead.
2383  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2384
2385  return true;
2386}
2387
2388bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2389  return Len <= 16;
2390}
2391
2392bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2393                                        uint64_t Len) {
2394  // Make sure we don't bloat code by inlining very large memcpy's.
2395  if (!ARMIsMemCpySmall(Len))
2396    return false;
2397
2398  // We don't care about alignment here since we just emit integer accesses.
2399  while (Len) {
2400    MVT VT;
2401    if (Len >= 4)
2402      VT = MVT::i32;
2403    else if (Len >= 2)
2404      VT = MVT::i16;
2405    else {
2406      assert(Len == 1);
2407      VT = MVT::i8;
2408    }
2409
2410    bool RV;
2411    unsigned ResultReg;
2412    RV = ARMEmitLoad(VT, ResultReg, Src);
2413    assert (RV == true && "Should be able to handle this load.");
2414    RV = ARMEmitStore(VT, ResultReg, Dest);
2415    assert (RV == true && "Should be able to handle this store.");
2416    (void)RV;
2417
2418    unsigned Size = VT.getSizeInBits()/8;
2419    Len -= Size;
2420    Dest.Offset += Size;
2421    Src.Offset += Size;
2422  }
2423
2424  return true;
2425}
2426
2427bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2428  // FIXME: Handle more intrinsics.
2429  switch (I.getIntrinsicID()) {
2430  default: return false;
2431  case Intrinsic::frameaddress: {
2432    MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
2433    MFI->setFrameAddressIsTaken(true);
2434
2435    unsigned LdrOpc;
2436    const TargetRegisterClass *RC;
2437    if (isThumb2) {
2438      LdrOpc =  ARM::t2LDRi12;
2439      RC = (const TargetRegisterClass*)&ARM::tGPRRegClass;
2440    } else {
2441      LdrOpc =  ARM::LDRi12;
2442      RC = (const TargetRegisterClass*)&ARM::GPRRegClass;
2443    }
2444
2445    const ARMBaseRegisterInfo *RegInfo =
2446          static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo());
2447    unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2448    unsigned SrcReg = FramePtr;
2449
2450    // Recursively load frame address
2451    // ldr r0 [fp]
2452    // ldr r0 [r0]
2453    // ldr r0 [r0]
2454    // ...
2455    unsigned DestReg;
2456    unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2457    while (Depth--) {
2458      DestReg = createResultReg(RC);
2459      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2460                              TII.get(LdrOpc), DestReg)
2461                      .addReg(SrcReg).addImm(0));
2462      SrcReg = DestReg;
2463    }
2464    UpdateValueMap(&I, SrcReg);
2465    return true;
2466  }
2467  case Intrinsic::memcpy:
2468  case Intrinsic::memmove: {
2469    const MemTransferInst &MTI = cast<MemTransferInst>(I);
2470    // Don't handle volatile.
2471    if (MTI.isVolatile())
2472      return false;
2473
2474    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2475    // we would emit dead code because we don't currently handle memmoves.
2476    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2477    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2478      // Small memcpy's are common enough that we want to do them without a call
2479      // if possible.
2480      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2481      if (ARMIsMemCpySmall(Len)) {
2482        Address Dest, Src;
2483        if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2484            !ARMComputeAddress(MTI.getRawSource(), Src))
2485          return false;
2486        if (ARMTryEmitSmallMemCpy(Dest, Src, Len))
2487          return true;
2488      }
2489    }
2490
2491    if (!MTI.getLength()->getType()->isIntegerTy(32))
2492      return false;
2493
2494    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2495      return false;
2496
2497    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2498    return SelectCall(&I, IntrMemName);
2499  }
2500  case Intrinsic::memset: {
2501    const MemSetInst &MSI = cast<MemSetInst>(I);
2502    // Don't handle volatile.
2503    if (MSI.isVolatile())
2504      return false;
2505
2506    if (!MSI.getLength()->getType()->isIntegerTy(32))
2507      return false;
2508
2509    if (MSI.getDestAddressSpace() > 255)
2510      return false;
2511
2512    return SelectCall(&I, "memset");
2513  }
2514  case Intrinsic::trap: {
2515    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::TRAP));
2516    return true;
2517  }
2518  }
2519}
2520
2521bool ARMFastISel::SelectTrunc(const Instruction *I) {
2522  // The high bits for a type smaller than the register size are assumed to be
2523  // undefined.
2524  Value *Op = I->getOperand(0);
2525
2526  EVT SrcVT, DestVT;
2527  SrcVT = TLI.getValueType(Op->getType(), true);
2528  DestVT = TLI.getValueType(I->getType(), true);
2529
2530  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2531    return false;
2532  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2533    return false;
2534
2535  unsigned SrcReg = getRegForValue(Op);
2536  if (!SrcReg) return false;
2537
2538  // Because the high bits are undefined, a truncate doesn't generate
2539  // any code.
2540  UpdateValueMap(I, SrcReg);
2541  return true;
2542}
2543
2544unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT,
2545                                    bool isZExt) {
2546  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2547    return 0;
2548
2549  unsigned Opc;
2550  bool isBoolZext = false;
2551  if (!SrcVT.isSimple()) return 0;
2552  switch (SrcVT.getSimpleVT().SimpleTy) {
2553  default: return 0;
2554  case MVT::i16:
2555    if (!Subtarget->hasV6Ops()) return 0;
2556    if (isZExt)
2557      Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH;
2558    else
2559      Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
2560    break;
2561  case MVT::i8:
2562    if (!Subtarget->hasV6Ops()) return 0;
2563    if (isZExt)
2564      Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB;
2565    else
2566      Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
2567    break;
2568  case MVT::i1:
2569    if (isZExt) {
2570      Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
2571      isBoolZext = true;
2572      break;
2573    }
2574    return 0;
2575  }
2576
2577  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2578  MachineInstrBuilder MIB;
2579  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
2580        .addReg(SrcReg);
2581  if (isBoolZext)
2582    MIB.addImm(1);
2583  else
2584    MIB.addImm(0);
2585  AddOptionalDefs(MIB);
2586  return ResultReg;
2587}
2588
2589bool ARMFastISel::SelectIntExt(const Instruction *I) {
2590  // On ARM, in general, integer casts don't involve legal types; this code
2591  // handles promotable integers.
2592  Type *DestTy = I->getType();
2593  Value *Src = I->getOperand(0);
2594  Type *SrcTy = Src->getType();
2595
2596  EVT SrcVT, DestVT;
2597  SrcVT = TLI.getValueType(SrcTy, true);
2598  DestVT = TLI.getValueType(DestTy, true);
2599
2600  bool isZExt = isa<ZExtInst>(I);
2601  unsigned SrcReg = getRegForValue(Src);
2602  if (!SrcReg) return false;
2603
2604  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2605  if (ResultReg == 0) return false;
2606  UpdateValueMap(I, ResultReg);
2607  return true;
2608}
2609
2610// TODO: SoftFP support.
2611bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2612
2613  switch (I->getOpcode()) {
2614    case Instruction::Load:
2615      return SelectLoad(I);
2616    case Instruction::Store:
2617      return SelectStore(I);
2618    case Instruction::Br:
2619      return SelectBranch(I);
2620    case Instruction::IndirectBr:
2621      return SelectIndirectBr(I);
2622    case Instruction::ICmp:
2623    case Instruction::FCmp:
2624      return SelectCmp(I);
2625    case Instruction::FPExt:
2626      return SelectFPExt(I);
2627    case Instruction::FPTrunc:
2628      return SelectFPTrunc(I);
2629    case Instruction::SIToFP:
2630      return SelectIToFP(I, /*isSigned*/ true);
2631    case Instruction::UIToFP:
2632      return SelectIToFP(I, /*isSigned*/ false);
2633    case Instruction::FPToSI:
2634      return SelectFPToI(I, /*isSigned*/ true);
2635    case Instruction::FPToUI:
2636      return SelectFPToI(I, /*isSigned*/ false);
2637    case Instruction::Add:
2638      return SelectBinaryIntOp(I, ISD::ADD);
2639    case Instruction::Or:
2640      return SelectBinaryIntOp(I, ISD::OR);
2641    case Instruction::Sub:
2642      return SelectBinaryIntOp(I, ISD::SUB);
2643    case Instruction::FAdd:
2644      return SelectBinaryFPOp(I, ISD::FADD);
2645    case Instruction::FSub:
2646      return SelectBinaryFPOp(I, ISD::FSUB);
2647    case Instruction::FMul:
2648      return SelectBinaryFPOp(I, ISD::FMUL);
2649    case Instruction::SDiv:
2650      return SelectDiv(I, /*isSigned*/ true);
2651    case Instruction::UDiv:
2652      return SelectDiv(I, /*isSigned*/ false);
2653    case Instruction::SRem:
2654      return SelectRem(I, /*isSigned*/ true);
2655    case Instruction::URem:
2656      return SelectRem(I, /*isSigned*/ false);
2657    case Instruction::Call:
2658      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2659        return SelectIntrinsicCall(*II);
2660      return SelectCall(I);
2661    case Instruction::Select:
2662      return SelectSelect(I);
2663    case Instruction::Ret:
2664      return SelectRet(I);
2665    case Instruction::Trunc:
2666      return SelectTrunc(I);
2667    case Instruction::ZExt:
2668    case Instruction::SExt:
2669      return SelectIntExt(I);
2670    default: break;
2671  }
2672  return false;
2673}
2674
2675/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
2676/// vreg is being provided by the specified load instruction.  If possible,
2677/// try to fold the load as an operand to the instruction, returning true if
2678/// successful.
2679bool ARMFastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
2680                                const LoadInst *LI) {
2681  // Verify we have a legal type before going any further.
2682  MVT VT;
2683  if (!isLoadTypeLegal(LI->getType(), VT))
2684    return false;
2685
2686  // Combine load followed by zero- or sign-extend.
2687  // ldrb r1, [r0]       ldrb r1, [r0]
2688  // uxtb r2, r1     =>
2689  // mov  r3, r2         mov  r3, r1
2690  bool isZExt = true;
2691  switch(MI->getOpcode()) {
2692    default: return false;
2693    case ARM::SXTH:
2694    case ARM::t2SXTH:
2695      isZExt = false;
2696    case ARM::UXTH:
2697    case ARM::t2UXTH:
2698      if (VT != MVT::i16)
2699        return false;
2700    break;
2701    case ARM::SXTB:
2702    case ARM::t2SXTB:
2703      isZExt = false;
2704    case ARM::UXTB:
2705    case ARM::t2UXTB:
2706      if (VT != MVT::i8)
2707        return false;
2708    break;
2709  }
2710  // See if we can handle this address.
2711  Address Addr;
2712  if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2713
2714  unsigned ResultReg = MI->getOperand(0).getReg();
2715  if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2716    return false;
2717  MI->eraseFromParent();
2718  return true;
2719}
2720
2721namespace llvm {
2722  FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
2723    // Completely untested on non-iOS.
2724    const TargetMachine &TM = funcInfo.MF->getTarget();
2725
2726    // Darwin and thumb1 only for now.
2727    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2728    if (Subtarget->isTargetIOS() && !Subtarget->isThumb1Only())
2729      return new ARMFastISel(funcInfo);
2730    return 0;
2731  }
2732}
2733