ARMFastISel.cpp revision d054eda44114df411a2749e7b6b85d27509a0af1
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMTargetMachine.h"
20#include "ARMSubtarget.h"
21#include "ARMConstantPoolValue.h"
22#include "MCTargetDesc/ARMAddressingModes.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Module.h"
29#include "llvm/Operator.h"
30#include "llvm/CodeGen/Analysis.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/FunctionLoweringInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineConstantPool.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineMemOperand.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/DataLayout.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48using namespace llvm;
49
50extern cl::opt<bool> EnableARMLongCalls;
51
52namespace {
53
54  // All possible address modes, plus some.
55  typedef struct Address {
56    enum {
57      RegBase,
58      FrameIndexBase
59    } BaseType;
60
61    union {
62      unsigned Reg;
63      int FI;
64    } Base;
65
66    int Offset;
67
68    // Innocuous defaults for our address.
69    Address()
70     : BaseType(RegBase), Offset(0) {
71       Base.Reg = 0;
72     }
73  } Address;
74
75class ARMFastISel : public FastISel {
76
77  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
78  /// make the right decision when generating code for different targets.
79  const ARMSubtarget *Subtarget;
80  const TargetMachine &TM;
81  const TargetInstrInfo &TII;
82  const TargetLowering &TLI;
83  ARMFunctionInfo *AFI;
84
85  // Convenience variables to avoid some queries.
86  bool isThumb2;
87  LLVMContext *Context;
88
89  public:
90    explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
91                         const TargetLibraryInfo *libInfo)
92    : FastISel(funcInfo, libInfo),
93      TM(funcInfo.MF->getTarget()),
94      TII(*TM.getInstrInfo()),
95      TLI(*TM.getTargetLowering()) {
96      Subtarget = &TM.getSubtarget<ARMSubtarget>();
97      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
98      isThumb2 = AFI->isThumbFunction();
99      Context = &funcInfo.Fn->getContext();
100    }
101
102    // Code from FastISel.cpp.
103  private:
104    unsigned FastEmitInst_(unsigned MachineInstOpcode,
105                           const TargetRegisterClass *RC);
106    unsigned FastEmitInst_r(unsigned MachineInstOpcode,
107                            const TargetRegisterClass *RC,
108                            unsigned Op0, bool Op0IsKill);
109    unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
110                             const TargetRegisterClass *RC,
111                             unsigned Op0, bool Op0IsKill,
112                             unsigned Op1, bool Op1IsKill);
113    unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
114                              const TargetRegisterClass *RC,
115                              unsigned Op0, bool Op0IsKill,
116                              unsigned Op1, bool Op1IsKill,
117                              unsigned Op2, bool Op2IsKill);
118    unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
119                             const TargetRegisterClass *RC,
120                             unsigned Op0, bool Op0IsKill,
121                             uint64_t Imm);
122    unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
123                             const TargetRegisterClass *RC,
124                             unsigned Op0, bool Op0IsKill,
125                             const ConstantFP *FPImm);
126    unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
127                              const TargetRegisterClass *RC,
128                              unsigned Op0, bool Op0IsKill,
129                              unsigned Op1, bool Op1IsKill,
130                              uint64_t Imm);
131    unsigned FastEmitInst_i(unsigned MachineInstOpcode,
132                            const TargetRegisterClass *RC,
133                            uint64_t Imm);
134    unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
135                             const TargetRegisterClass *RC,
136                             uint64_t Imm1, uint64_t Imm2);
137
138    unsigned FastEmitInst_extractsubreg(MVT RetVT,
139                                        unsigned Op0, bool Op0IsKill,
140                                        uint32_t Idx);
141
142    // Backend specific FastISel code.
143  private:
144    virtual bool TargetSelectInstruction(const Instruction *I);
145    virtual unsigned TargetMaterializeConstant(const Constant *C);
146    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
147    virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
148                               const LoadInst *LI);
149  private:
150  #include "ARMGenFastISel.inc"
151
152    // Instruction selection routines.
153  private:
154    bool SelectLoad(const Instruction *I);
155    bool SelectStore(const Instruction *I);
156    bool SelectBranch(const Instruction *I);
157    bool SelectIndirectBr(const Instruction *I);
158    bool SelectCmp(const Instruction *I);
159    bool SelectFPExt(const Instruction *I);
160    bool SelectFPTrunc(const Instruction *I);
161    bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
162    bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
163    bool SelectIToFP(const Instruction *I, bool isSigned);
164    bool SelectFPToI(const Instruction *I, bool isSigned);
165    bool SelectDiv(const Instruction *I, bool isSigned);
166    bool SelectRem(const Instruction *I, bool isSigned);
167    bool SelectCall(const Instruction *I, const char *IntrMemName);
168    bool SelectIntrinsicCall(const IntrinsicInst &I);
169    bool SelectSelect(const Instruction *I);
170    bool SelectRet(const Instruction *I);
171    bool SelectTrunc(const Instruction *I);
172    bool SelectIntExt(const Instruction *I);
173    bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
174
175    // Utility routines.
176  private:
177    bool isTypeLegal(Type *Ty, MVT &VT);
178    bool isLoadTypeLegal(Type *Ty, MVT &VT);
179    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
180                    bool isZExt);
181    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
182                     unsigned Alignment = 0, bool isZExt = true,
183                     bool allocReg = true);
184    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
185                      unsigned Alignment = 0);
186    bool ARMComputeAddress(const Value *Obj, Address &Addr);
187    void ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3);
188    bool ARMIsMemCpySmall(uint64_t Len);
189    bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len);
190    unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt);
191    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
192    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
193    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
194    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
195    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
196    unsigned ARMSelectCallOp(bool UseReg);
197    unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, EVT VT);
198
199    // Call handling routines.
200  private:
201    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
202                                  bool Return,
203                                  bool isVarArg);
204    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
205                         SmallVectorImpl<unsigned> &ArgRegs,
206                         SmallVectorImpl<MVT> &ArgVTs,
207                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
208                         SmallVectorImpl<unsigned> &RegArgs,
209                         CallingConv::ID CC,
210                         unsigned &NumBytes,
211                         bool isVarArg);
212    unsigned getLibcallReg(const Twine &Name);
213    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
214                    const Instruction *I, CallingConv::ID CC,
215                    unsigned &NumBytes, bool isVarArg);
216    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
217
218    // OptionalDef handling routines.
219  private:
220    bool isARMNEONPred(const MachineInstr *MI);
221    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
222    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
223    void AddLoadStoreOperands(EVT VT, Address &Addr,
224                              const MachineInstrBuilder &MIB,
225                              unsigned Flags, bool useAM3);
226};
227
228} // end anonymous namespace
229
230#include "ARMGenCallingConv.inc"
231
232// DefinesOptionalPredicate - This is different from DefinesPredicate in that
233// we don't care about implicit defs here, just places we'll need to add a
234// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
235bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
236  if (!MI->hasOptionalDef())
237    return false;
238
239  // Look to see if our OptionalDef is defining CPSR or CCR.
240  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
241    const MachineOperand &MO = MI->getOperand(i);
242    if (!MO.isReg() || !MO.isDef()) continue;
243    if (MO.getReg() == ARM::CPSR)
244      *CPSR = true;
245  }
246  return true;
247}
248
249bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
250  const MCInstrDesc &MCID = MI->getDesc();
251
252  // If we're a thumb2 or not NEON function we were handled via isPredicable.
253  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
254       AFI->isThumb2Function())
255    return false;
256
257  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
258    if (MCID.OpInfo[i].isPredicate())
259      return true;
260
261  return false;
262}
263
264// If the machine is predicable go ahead and add the predicate operands, if
265// it needs default CC operands add those.
266// TODO: If we want to support thumb1 then we'll need to deal with optional
267// CPSR defs that need to be added before the remaining operands. See s_cc_out
268// for descriptions why.
269const MachineInstrBuilder &
270ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
271  MachineInstr *MI = &*MIB;
272
273  // Do we use a predicate? or...
274  // Are we NEON in ARM mode and have a predicate operand? If so, I know
275  // we're not predicable but add it anyways.
276  if (TII.isPredicable(MI) || isARMNEONPred(MI))
277    AddDefaultPred(MIB);
278
279  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
280  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
281  bool CPSR = false;
282  if (DefinesOptionalPredicate(MI, &CPSR)) {
283    if (CPSR)
284      AddDefaultT1CC(MIB);
285    else
286      AddDefaultCC(MIB);
287  }
288  return MIB;
289}
290
291unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
292                                    const TargetRegisterClass* RC) {
293  unsigned ResultReg = createResultReg(RC);
294  const MCInstrDesc &II = TII.get(MachineInstOpcode);
295
296  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
297  return ResultReg;
298}
299
300unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
301                                     const TargetRegisterClass *RC,
302                                     unsigned Op0, bool Op0IsKill) {
303  unsigned ResultReg = createResultReg(RC);
304  const MCInstrDesc &II = TII.get(MachineInstOpcode);
305
306  if (II.getNumDefs() >= 1) {
307    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
308                   .addReg(Op0, Op0IsKill * RegState::Kill));
309  } else {
310    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
311                   .addReg(Op0, Op0IsKill * RegState::Kill));
312    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
313                   TII.get(TargetOpcode::COPY), ResultReg)
314                   .addReg(II.ImplicitDefs[0]));
315  }
316  return ResultReg;
317}
318
319unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
320                                      const TargetRegisterClass *RC,
321                                      unsigned Op0, bool Op0IsKill,
322                                      unsigned Op1, bool Op1IsKill) {
323  unsigned ResultReg = createResultReg(RC);
324  const MCInstrDesc &II = TII.get(MachineInstOpcode);
325
326  if (II.getNumDefs() >= 1) {
327    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
328                   .addReg(Op0, Op0IsKill * RegState::Kill)
329                   .addReg(Op1, Op1IsKill * RegState::Kill));
330  } else {
331    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
332                   .addReg(Op0, Op0IsKill * RegState::Kill)
333                   .addReg(Op1, Op1IsKill * RegState::Kill));
334    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
335                           TII.get(TargetOpcode::COPY), ResultReg)
336                   .addReg(II.ImplicitDefs[0]));
337  }
338  return ResultReg;
339}
340
341unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
342                                       const TargetRegisterClass *RC,
343                                       unsigned Op0, bool Op0IsKill,
344                                       unsigned Op1, bool Op1IsKill,
345                                       unsigned Op2, bool Op2IsKill) {
346  unsigned ResultReg = createResultReg(RC);
347  const MCInstrDesc &II = TII.get(MachineInstOpcode);
348
349  if (II.getNumDefs() >= 1) {
350    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
351                   .addReg(Op0, Op0IsKill * RegState::Kill)
352                   .addReg(Op1, Op1IsKill * RegState::Kill)
353                   .addReg(Op2, Op2IsKill * RegState::Kill));
354  } else {
355    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
356                   .addReg(Op0, Op0IsKill * RegState::Kill)
357                   .addReg(Op1, Op1IsKill * RegState::Kill)
358                   .addReg(Op2, Op2IsKill * RegState::Kill));
359    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
360                           TII.get(TargetOpcode::COPY), ResultReg)
361                   .addReg(II.ImplicitDefs[0]));
362  }
363  return ResultReg;
364}
365
366unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
367                                      const TargetRegisterClass *RC,
368                                      unsigned Op0, bool Op0IsKill,
369                                      uint64_t Imm) {
370  unsigned ResultReg = createResultReg(RC);
371  const MCInstrDesc &II = TII.get(MachineInstOpcode);
372
373  if (II.getNumDefs() >= 1) {
374    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
375                   .addReg(Op0, Op0IsKill * RegState::Kill)
376                   .addImm(Imm));
377  } else {
378    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
379                   .addReg(Op0, Op0IsKill * RegState::Kill)
380                   .addImm(Imm));
381    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
382                           TII.get(TargetOpcode::COPY), ResultReg)
383                   .addReg(II.ImplicitDefs[0]));
384  }
385  return ResultReg;
386}
387
388unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
389                                      const TargetRegisterClass *RC,
390                                      unsigned Op0, bool Op0IsKill,
391                                      const ConstantFP *FPImm) {
392  unsigned ResultReg = createResultReg(RC);
393  const MCInstrDesc &II = TII.get(MachineInstOpcode);
394
395  if (II.getNumDefs() >= 1) {
396    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
397                   .addReg(Op0, Op0IsKill * RegState::Kill)
398                   .addFPImm(FPImm));
399  } else {
400    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
401                   .addReg(Op0, Op0IsKill * RegState::Kill)
402                   .addFPImm(FPImm));
403    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
404                           TII.get(TargetOpcode::COPY), ResultReg)
405                   .addReg(II.ImplicitDefs[0]));
406  }
407  return ResultReg;
408}
409
410unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
411                                       const TargetRegisterClass *RC,
412                                       unsigned Op0, bool Op0IsKill,
413                                       unsigned Op1, bool Op1IsKill,
414                                       uint64_t Imm) {
415  unsigned ResultReg = createResultReg(RC);
416  const MCInstrDesc &II = TII.get(MachineInstOpcode);
417
418  if (II.getNumDefs() >= 1) {
419    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
420                   .addReg(Op0, Op0IsKill * RegState::Kill)
421                   .addReg(Op1, Op1IsKill * RegState::Kill)
422                   .addImm(Imm));
423  } else {
424    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
425                   .addReg(Op0, Op0IsKill * RegState::Kill)
426                   .addReg(Op1, Op1IsKill * RegState::Kill)
427                   .addImm(Imm));
428    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
429                           TII.get(TargetOpcode::COPY), ResultReg)
430                   .addReg(II.ImplicitDefs[0]));
431  }
432  return ResultReg;
433}
434
435unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
436                                     const TargetRegisterClass *RC,
437                                     uint64_t Imm) {
438  unsigned ResultReg = createResultReg(RC);
439  const MCInstrDesc &II = TII.get(MachineInstOpcode);
440
441  if (II.getNumDefs() >= 1) {
442    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
443                   .addImm(Imm));
444  } else {
445    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
446                   .addImm(Imm));
447    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
448                           TII.get(TargetOpcode::COPY), ResultReg)
449                   .addReg(II.ImplicitDefs[0]));
450  }
451  return ResultReg;
452}
453
454unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
455                                      const TargetRegisterClass *RC,
456                                      uint64_t Imm1, uint64_t Imm2) {
457  unsigned ResultReg = createResultReg(RC);
458  const MCInstrDesc &II = TII.get(MachineInstOpcode);
459
460  if (II.getNumDefs() >= 1) {
461    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
462                    .addImm(Imm1).addImm(Imm2));
463  } else {
464    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
465                    .addImm(Imm1).addImm(Imm2));
466    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
467                            TII.get(TargetOpcode::COPY),
468                            ResultReg)
469                    .addReg(II.ImplicitDefs[0]));
470  }
471  return ResultReg;
472}
473
474unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
475                                                 unsigned Op0, bool Op0IsKill,
476                                                 uint32_t Idx) {
477  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
478  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
479         "Cannot yet extract from physregs");
480
481  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
482                          DL, TII.get(TargetOpcode::COPY), ResultReg)
483                  .addReg(Op0, getKillRegState(Op0IsKill), Idx));
484  return ResultReg;
485}
486
487// TODO: Don't worry about 64-bit now, but when this is fixed remove the
488// checks from the various callers.
489unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
490  if (VT == MVT::f64) return 0;
491
492  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
493  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
494                          TII.get(ARM::VMOVSR), MoveReg)
495                  .addReg(SrcReg));
496  return MoveReg;
497}
498
499unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
500  if (VT == MVT::i64) return 0;
501
502  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
503  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
504                          TII.get(ARM::VMOVRS), MoveReg)
505                  .addReg(SrcReg));
506  return MoveReg;
507}
508
509// For double width floating point we need to materialize two constants
510// (the high and the low) into integer registers then use a move to get
511// the combined constant into an FP reg.
512unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
513  const APFloat Val = CFP->getValueAPF();
514  bool is64bit = VT == MVT::f64;
515
516  // This checks to see if we can use VFP3 instructions to materialize
517  // a constant, otherwise we have to go through the constant pool.
518  if (TLI.isFPImmLegal(Val, VT)) {
519    int Imm;
520    unsigned Opc;
521    if (is64bit) {
522      Imm = ARM_AM::getFP64Imm(Val);
523      Opc = ARM::FCONSTD;
524    } else {
525      Imm = ARM_AM::getFP32Imm(Val);
526      Opc = ARM::FCONSTS;
527    }
528    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
529    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
530                            DestReg)
531                    .addImm(Imm));
532    return DestReg;
533  }
534
535  // Require VFP2 for loading fp constants.
536  if (!Subtarget->hasVFP2()) return false;
537
538  // MachineConstantPool wants an explicit alignment.
539  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
540  if (Align == 0) {
541    // TODO: Figure out if this is correct.
542    Align = TD.getTypeAllocSize(CFP->getType());
543  }
544  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
545  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
546  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
547
548  // The extra reg is for addrmode5.
549  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
550                          DestReg)
551                  .addConstantPoolIndex(Idx)
552                  .addReg(0));
553  return DestReg;
554}
555
556unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
557
558  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
559    return false;
560
561  // If we can do this in a single instruction without a constant pool entry
562  // do so now.
563  const ConstantInt *CI = cast<ConstantInt>(C);
564  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
565    unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
566    unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
567    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
568                            TII.get(Opc), ImmReg)
569                    .addImm(CI->getZExtValue()));
570    return ImmReg;
571  }
572
573  // Use MVN to emit negative constants.
574  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
575    unsigned Imm = (unsigned)~(CI->getSExtValue());
576    bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
577      (ARM_AM::getSOImmVal(Imm) != -1);
578    if (UseImm) {
579      unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
580      unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
581      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
582                              TII.get(Opc), ImmReg)
583                      .addImm(Imm));
584      return ImmReg;
585    }
586  }
587
588  // Load from constant pool.  For now 32-bit only.
589  if (VT != MVT::i32)
590    return false;
591
592  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
593
594  // MachineConstantPool wants an explicit alignment.
595  unsigned Align = TD.getPrefTypeAlignment(C->getType());
596  if (Align == 0) {
597    // TODO: Figure out if this is correct.
598    Align = TD.getTypeAllocSize(C->getType());
599  }
600  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
601
602  if (isThumb2)
603    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
604                            TII.get(ARM::t2LDRpci), DestReg)
605                    .addConstantPoolIndex(Idx));
606  else
607    // The extra immediate is for addrmode2.
608    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
609                            TII.get(ARM::LDRcp), DestReg)
610                    .addConstantPoolIndex(Idx)
611                    .addImm(0));
612
613  return DestReg;
614}
615
616unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
617  // For now 32-bit only.
618  if (VT != MVT::i32) return 0;
619
620  Reloc::Model RelocM = TM.getRelocationModel();
621  bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
622  const TargetRegisterClass *RC = isThumb2 ?
623    (const TargetRegisterClass*)&ARM::rGPRRegClass :
624    (const TargetRegisterClass*)&ARM::GPRRegClass;
625  unsigned DestReg = createResultReg(RC);
626
627  // Use movw+movt when possible, it avoids constant pool entries.
628  // Darwin targets don't support movt with Reloc::Static, see
629  // ARMTargetLowering::LowerGlobalAddressDarwin.  Other targets only support
630  // static movt relocations.
631  if (Subtarget->useMovt() &&
632      Subtarget->isTargetDarwin() == (RelocM != Reloc::Static)) {
633    unsigned Opc;
634    switch (RelocM) {
635    case Reloc::PIC_:
636      Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
637      break;
638    case Reloc::DynamicNoPIC:
639      Opc = isThumb2 ? ARM::t2MOV_ga_dyn : ARM::MOV_ga_dyn;
640      break;
641    default:
642      Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
643      break;
644    }
645    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
646                            DestReg).addGlobalAddress(GV));
647  } else {
648    // MachineConstantPool wants an explicit alignment.
649    unsigned Align = TD.getPrefTypeAlignment(GV->getType());
650    if (Align == 0) {
651      // TODO: Figure out if this is correct.
652      Align = TD.getTypeAllocSize(GV->getType());
653    }
654
655    if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_)
656      return ARMLowerPICELF(GV, Align, VT);
657
658    // Grab index.
659    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
660      (Subtarget->isThumb() ? 4 : 8);
661    unsigned Id = AFI->createPICLabelUId();
662    ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
663                                                                ARMCP::CPValue,
664                                                                PCAdj);
665    unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
666
667    // Load value.
668    MachineInstrBuilder MIB;
669    if (isThumb2) {
670      unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
671      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
672        .addConstantPoolIndex(Idx);
673      if (RelocM == Reloc::PIC_)
674        MIB.addImm(Id);
675      AddOptionalDefs(MIB);
676    } else {
677      // The extra immediate is for addrmode2.
678      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
679                    DestReg)
680        .addConstantPoolIndex(Idx)
681        .addImm(0);
682      AddOptionalDefs(MIB);
683
684      if (RelocM == Reloc::PIC_) {
685        unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
686        unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
687
688        MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
689                                          DL, TII.get(Opc), NewDestReg)
690                                  .addReg(DestReg)
691                                  .addImm(Id);
692        AddOptionalDefs(MIB);
693        return NewDestReg;
694      }
695    }
696  }
697
698  if (IsIndirect) {
699    MachineInstrBuilder MIB;
700    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
701    if (isThumb2)
702      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
703                    TII.get(ARM::t2LDRi12), NewDestReg)
704            .addReg(DestReg)
705            .addImm(0);
706    else
707      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
708                    NewDestReg)
709            .addReg(DestReg)
710            .addImm(0);
711    DestReg = NewDestReg;
712    AddOptionalDefs(MIB);
713  }
714
715  return DestReg;
716}
717
718unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
719  EVT VT = TLI.getValueType(C->getType(), true);
720
721  // Only handle simple types.
722  if (!VT.isSimple()) return 0;
723
724  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
725    return ARMMaterializeFP(CFP, VT);
726  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
727    return ARMMaterializeGV(GV, VT);
728  else if (isa<ConstantInt>(C))
729    return ARMMaterializeInt(C, VT);
730
731  return 0;
732}
733
734// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
735
736unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
737  // Don't handle dynamic allocas.
738  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
739
740  MVT VT;
741  if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
742
743  DenseMap<const AllocaInst*, int>::iterator SI =
744    FuncInfo.StaticAllocaMap.find(AI);
745
746  // This will get lowered later into the correct offsets and registers
747  // via rewriteXFrameIndex.
748  if (SI != FuncInfo.StaticAllocaMap.end()) {
749    const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
750    unsigned ResultReg = createResultReg(RC);
751    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
752    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
753                            TII.get(Opc), ResultReg)
754                            .addFrameIndex(SI->second)
755                            .addImm(0));
756    return ResultReg;
757  }
758
759  return 0;
760}
761
762bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
763  EVT evt = TLI.getValueType(Ty, true);
764
765  // Only handle simple types.
766  if (evt == MVT::Other || !evt.isSimple()) return false;
767  VT = evt.getSimpleVT();
768
769  // Handle all legal types, i.e. a register that will directly hold this
770  // value.
771  return TLI.isTypeLegal(VT);
772}
773
774bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
775  if (isTypeLegal(Ty, VT)) return true;
776
777  // If this is a type than can be sign or zero-extended to a basic operation
778  // go ahead and accept it now.
779  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
780    return true;
781
782  return false;
783}
784
785// Computes the address to get to an object.
786bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
787  // Some boilerplate from the X86 FastISel.
788  const User *U = NULL;
789  unsigned Opcode = Instruction::UserOp1;
790  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
791    // Don't walk into other basic blocks unless the object is an alloca from
792    // another block, otherwise it may not have a virtual register assigned.
793    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
794        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
795      Opcode = I->getOpcode();
796      U = I;
797    }
798  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
799    Opcode = C->getOpcode();
800    U = C;
801  }
802
803  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
804    if (Ty->getAddressSpace() > 255)
805      // Fast instruction selection doesn't support the special
806      // address spaces.
807      return false;
808
809  switch (Opcode) {
810    default:
811    break;
812    case Instruction::BitCast: {
813      // Look through bitcasts.
814      return ARMComputeAddress(U->getOperand(0), Addr);
815    }
816    case Instruction::IntToPtr: {
817      // Look past no-op inttoptrs.
818      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
819        return ARMComputeAddress(U->getOperand(0), Addr);
820      break;
821    }
822    case Instruction::PtrToInt: {
823      // Look past no-op ptrtoints.
824      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
825        return ARMComputeAddress(U->getOperand(0), Addr);
826      break;
827    }
828    case Instruction::GetElementPtr: {
829      Address SavedAddr = Addr;
830      int TmpOffset = Addr.Offset;
831
832      // Iterate through the GEP folding the constants into offsets where
833      // we can.
834      gep_type_iterator GTI = gep_type_begin(U);
835      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
836           i != e; ++i, ++GTI) {
837        const Value *Op = *i;
838        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
839          const StructLayout *SL = TD.getStructLayout(STy);
840          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
841          TmpOffset += SL->getElementOffset(Idx);
842        } else {
843          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
844          for (;;) {
845            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
846              // Constant-offset addressing.
847              TmpOffset += CI->getSExtValue() * S;
848              break;
849            }
850            if (isa<AddOperator>(Op) &&
851                (!isa<Instruction>(Op) ||
852                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
853                 == FuncInfo.MBB) &&
854                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
855              // An add (in the same block) with a constant operand. Fold the
856              // constant.
857              ConstantInt *CI =
858              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
859              TmpOffset += CI->getSExtValue() * S;
860              // Iterate on the other operand.
861              Op = cast<AddOperator>(Op)->getOperand(0);
862              continue;
863            }
864            // Unsupported
865            goto unsupported_gep;
866          }
867        }
868      }
869
870      // Try to grab the base operand now.
871      Addr.Offset = TmpOffset;
872      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
873
874      // We failed, restore everything and try the other options.
875      Addr = SavedAddr;
876
877      unsupported_gep:
878      break;
879    }
880    case Instruction::Alloca: {
881      const AllocaInst *AI = cast<AllocaInst>(Obj);
882      DenseMap<const AllocaInst*, int>::iterator SI =
883        FuncInfo.StaticAllocaMap.find(AI);
884      if (SI != FuncInfo.StaticAllocaMap.end()) {
885        Addr.BaseType = Address::FrameIndexBase;
886        Addr.Base.FI = SI->second;
887        return true;
888      }
889      break;
890    }
891  }
892
893  // Try to get this in a register if nothing else has worked.
894  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
895  return Addr.Base.Reg != 0;
896}
897
898void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3) {
899
900  assert(VT.isSimple() && "Non-simple types are invalid here!");
901
902  bool needsLowering = false;
903  switch (VT.getSimpleVT().SimpleTy) {
904    default: llvm_unreachable("Unhandled load/store type!");
905    case MVT::i1:
906    case MVT::i8:
907    case MVT::i16:
908    case MVT::i32:
909      if (!useAM3) {
910        // Integer loads/stores handle 12-bit offsets.
911        needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
912        // Handle negative offsets.
913        if (needsLowering && isThumb2)
914          needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
915                            Addr.Offset > -256);
916      } else {
917        // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
918        needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
919      }
920      break;
921    case MVT::f32:
922    case MVT::f64:
923      // Floating point operands handle 8-bit offsets.
924      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
925      break;
926  }
927
928  // If this is a stack pointer and the offset needs to be simplified then
929  // put the alloca address into a register, set the base type back to
930  // register and continue. This should almost never happen.
931  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
932    const TargetRegisterClass *RC = isThumb2 ?
933      (const TargetRegisterClass*)&ARM::tGPRRegClass :
934      (const TargetRegisterClass*)&ARM::GPRRegClass;
935    unsigned ResultReg = createResultReg(RC);
936    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
937    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
938                            TII.get(Opc), ResultReg)
939                            .addFrameIndex(Addr.Base.FI)
940                            .addImm(0));
941    Addr.Base.Reg = ResultReg;
942    Addr.BaseType = Address::RegBase;
943  }
944
945  // Since the offset is too large for the load/store instruction
946  // get the reg+offset into a register.
947  if (needsLowering) {
948    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
949                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
950    Addr.Offset = 0;
951  }
952}
953
954void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
955                                       const MachineInstrBuilder &MIB,
956                                       unsigned Flags, bool useAM3) {
957  // addrmode5 output depends on the selection dag addressing dividing the
958  // offset by 4 that it then later multiplies. Do this here as well.
959  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
960      VT.getSimpleVT().SimpleTy == MVT::f64)
961    Addr.Offset /= 4;
962
963  // Frame base works a bit differently. Handle it separately.
964  if (Addr.BaseType == Address::FrameIndexBase) {
965    int FI = Addr.Base.FI;
966    int Offset = Addr.Offset;
967    MachineMemOperand *MMO =
968          FuncInfo.MF->getMachineMemOperand(
969                                  MachinePointerInfo::getFixedStack(FI, Offset),
970                                  Flags,
971                                  MFI.getObjectSize(FI),
972                                  MFI.getObjectAlignment(FI));
973    // Now add the rest of the operands.
974    MIB.addFrameIndex(FI);
975
976    // ARM halfword load/stores and signed byte loads need an additional
977    // operand.
978    if (useAM3) {
979      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
980      MIB.addReg(0);
981      MIB.addImm(Imm);
982    } else {
983      MIB.addImm(Addr.Offset);
984    }
985    MIB.addMemOperand(MMO);
986  } else {
987    // Now add the rest of the operands.
988    MIB.addReg(Addr.Base.Reg);
989
990    // ARM halfword load/stores and signed byte loads need an additional
991    // operand.
992    if (useAM3) {
993      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
994      MIB.addReg(0);
995      MIB.addImm(Imm);
996    } else {
997      MIB.addImm(Addr.Offset);
998    }
999  }
1000  AddOptionalDefs(MIB);
1001}
1002
1003bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
1004                              unsigned Alignment, bool isZExt, bool allocReg) {
1005  assert(VT.isSimple() && "Non-simple types are invalid here!");
1006  unsigned Opc;
1007  bool useAM3 = false;
1008  bool needVMOV = false;
1009  const TargetRegisterClass *RC;
1010  switch (VT.getSimpleVT().SimpleTy) {
1011    // This is mostly going to be Neon/vector support.
1012    default: return false;
1013    case MVT::i1:
1014    case MVT::i8:
1015      if (isThumb2) {
1016        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1017          Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
1018        else
1019          Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
1020      } else {
1021        if (isZExt) {
1022          Opc = ARM::LDRBi12;
1023        } else {
1024          Opc = ARM::LDRSB;
1025          useAM3 = true;
1026        }
1027      }
1028      RC = &ARM::GPRRegClass;
1029      break;
1030    case MVT::i16:
1031      if (Alignment && Alignment < 2 && (!Subtarget->allowsUnalignedMem() ||
1032                                         TM.Options.StrictAlign))
1033        return false;
1034
1035      if (isThumb2) {
1036        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1037          Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
1038        else
1039          Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
1040      } else {
1041        Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1042        useAM3 = true;
1043      }
1044      RC = &ARM::GPRRegClass;
1045      break;
1046    case MVT::i32:
1047      if (Alignment && Alignment < 4 && (!Subtarget->allowsUnalignedMem() ||
1048                                         TM.Options.StrictAlign))
1049        return false;
1050
1051      if (isThumb2) {
1052        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1053          Opc = ARM::t2LDRi8;
1054        else
1055          Opc = ARM::t2LDRi12;
1056      } else {
1057        Opc = ARM::LDRi12;
1058      }
1059      RC = &ARM::GPRRegClass;
1060      break;
1061    case MVT::f32:
1062      if (!Subtarget->hasVFP2()) return false;
1063      // Unaligned loads need special handling. Floats require word-alignment.
1064      if (Alignment && Alignment < 4) {
1065        needVMOV = true;
1066        VT = MVT::i32;
1067        Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1068        RC = &ARM::GPRRegClass;
1069      } else {
1070        Opc = ARM::VLDRS;
1071        RC = TLI.getRegClassFor(VT);
1072      }
1073      break;
1074    case MVT::f64:
1075      if (!Subtarget->hasVFP2()) return false;
1076      // FIXME: Unaligned loads need special handling.  Doublewords require
1077      // word-alignment.
1078      if (Alignment && Alignment < 4)
1079        return false;
1080
1081      Opc = ARM::VLDRD;
1082      RC = TLI.getRegClassFor(VT);
1083      break;
1084  }
1085  // Simplify this down to something we can handle.
1086  ARMSimplifyAddress(Addr, VT, useAM3);
1087
1088  // Create the base instruction, then add the operands.
1089  if (allocReg)
1090    ResultReg = createResultReg(RC);
1091  assert (ResultReg > 255 && "Expected an allocated virtual register.");
1092  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1093                                    TII.get(Opc), ResultReg);
1094  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1095
1096  // If we had an unaligned load of a float we've converted it to an regular
1097  // load.  Now we must move from the GRP to the FP register.
1098  if (needVMOV) {
1099    unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1100    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1101                            TII.get(ARM::VMOVSR), MoveReg)
1102                    .addReg(ResultReg));
1103    ResultReg = MoveReg;
1104  }
1105  return true;
1106}
1107
1108bool ARMFastISel::SelectLoad(const Instruction *I) {
1109  // Atomic loads need special handling.
1110  if (cast<LoadInst>(I)->isAtomic())
1111    return false;
1112
1113  // Verify we have a legal type before going any further.
1114  MVT VT;
1115  if (!isLoadTypeLegal(I->getType(), VT))
1116    return false;
1117
1118  // See if we can handle this address.
1119  Address Addr;
1120  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1121
1122  unsigned ResultReg;
1123  if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1124    return false;
1125  UpdateValueMap(I, ResultReg);
1126  return true;
1127}
1128
1129bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
1130                               unsigned Alignment) {
1131  unsigned StrOpc;
1132  bool useAM3 = false;
1133  switch (VT.getSimpleVT().SimpleTy) {
1134    // This is mostly going to be Neon/vector support.
1135    default: return false;
1136    case MVT::i1: {
1137      unsigned Res = createResultReg(isThumb2 ?
1138        (const TargetRegisterClass*)&ARM::tGPRRegClass :
1139        (const TargetRegisterClass*)&ARM::GPRRegClass);
1140      unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1141      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1142                              TII.get(Opc), Res)
1143                      .addReg(SrcReg).addImm(1));
1144      SrcReg = Res;
1145    } // Fallthrough here.
1146    case MVT::i8:
1147      if (isThumb2) {
1148        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1149          StrOpc = ARM::t2STRBi8;
1150        else
1151          StrOpc = ARM::t2STRBi12;
1152      } else {
1153        StrOpc = ARM::STRBi12;
1154      }
1155      break;
1156    case MVT::i16:
1157      if (Alignment && Alignment < 2 && (!Subtarget->allowsUnalignedMem() ||
1158                                         TM.Options.StrictAlign))
1159        return false;
1160
1161      if (isThumb2) {
1162        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1163          StrOpc = ARM::t2STRHi8;
1164        else
1165          StrOpc = ARM::t2STRHi12;
1166      } else {
1167        StrOpc = ARM::STRH;
1168        useAM3 = true;
1169      }
1170      break;
1171    case MVT::i32:
1172      if (Alignment && Alignment < 4 && (!Subtarget->allowsUnalignedMem() ||
1173                                         TM.Options.StrictAlign))
1174        return false;
1175
1176      if (isThumb2) {
1177        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1178          StrOpc = ARM::t2STRi8;
1179        else
1180          StrOpc = ARM::t2STRi12;
1181      } else {
1182        StrOpc = ARM::STRi12;
1183      }
1184      break;
1185    case MVT::f32:
1186      if (!Subtarget->hasVFP2()) return false;
1187      // Unaligned stores need special handling. Floats require word-alignment.
1188      if (Alignment && Alignment < 4) {
1189        unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1190        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1191                                TII.get(ARM::VMOVRS), MoveReg)
1192                        .addReg(SrcReg));
1193        SrcReg = MoveReg;
1194        VT = MVT::i32;
1195        StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1196      } else {
1197        StrOpc = ARM::VSTRS;
1198      }
1199      break;
1200    case MVT::f64:
1201      if (!Subtarget->hasVFP2()) return false;
1202      // FIXME: Unaligned stores need special handling.  Doublewords require
1203      // word-alignment.
1204      if (Alignment && Alignment < 4)
1205          return false;
1206
1207      StrOpc = ARM::VSTRD;
1208      break;
1209  }
1210  // Simplify this down to something we can handle.
1211  ARMSimplifyAddress(Addr, VT, useAM3);
1212
1213  // Create the base instruction, then add the operands.
1214  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1215                                    TII.get(StrOpc))
1216                            .addReg(SrcReg);
1217  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1218  return true;
1219}
1220
1221bool ARMFastISel::SelectStore(const Instruction *I) {
1222  Value *Op0 = I->getOperand(0);
1223  unsigned SrcReg = 0;
1224
1225  // Atomic stores need special handling.
1226  if (cast<StoreInst>(I)->isAtomic())
1227    return false;
1228
1229  // Verify we have a legal type before going any further.
1230  MVT VT;
1231  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1232    return false;
1233
1234  // Get the value to be stored into a register.
1235  SrcReg = getRegForValue(Op0);
1236  if (SrcReg == 0) return false;
1237
1238  // See if we can handle this address.
1239  Address Addr;
1240  if (!ARMComputeAddress(I->getOperand(1), Addr))
1241    return false;
1242
1243  if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1244    return false;
1245  return true;
1246}
1247
1248static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1249  switch (Pred) {
1250    // Needs two compares...
1251    case CmpInst::FCMP_ONE:
1252    case CmpInst::FCMP_UEQ:
1253    default:
1254      // AL is our "false" for now. The other two need more compares.
1255      return ARMCC::AL;
1256    case CmpInst::ICMP_EQ:
1257    case CmpInst::FCMP_OEQ:
1258      return ARMCC::EQ;
1259    case CmpInst::ICMP_SGT:
1260    case CmpInst::FCMP_OGT:
1261      return ARMCC::GT;
1262    case CmpInst::ICMP_SGE:
1263    case CmpInst::FCMP_OGE:
1264      return ARMCC::GE;
1265    case CmpInst::ICMP_UGT:
1266    case CmpInst::FCMP_UGT:
1267      return ARMCC::HI;
1268    case CmpInst::FCMP_OLT:
1269      return ARMCC::MI;
1270    case CmpInst::ICMP_ULE:
1271    case CmpInst::FCMP_OLE:
1272      return ARMCC::LS;
1273    case CmpInst::FCMP_ORD:
1274      return ARMCC::VC;
1275    case CmpInst::FCMP_UNO:
1276      return ARMCC::VS;
1277    case CmpInst::FCMP_UGE:
1278      return ARMCC::PL;
1279    case CmpInst::ICMP_SLT:
1280    case CmpInst::FCMP_ULT:
1281      return ARMCC::LT;
1282    case CmpInst::ICMP_SLE:
1283    case CmpInst::FCMP_ULE:
1284      return ARMCC::LE;
1285    case CmpInst::FCMP_UNE:
1286    case CmpInst::ICMP_NE:
1287      return ARMCC::NE;
1288    case CmpInst::ICMP_UGE:
1289      return ARMCC::HS;
1290    case CmpInst::ICMP_ULT:
1291      return ARMCC::LO;
1292  }
1293}
1294
1295bool ARMFastISel::SelectBranch(const Instruction *I) {
1296  const BranchInst *BI = cast<BranchInst>(I);
1297  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1298  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1299
1300  // Simple branch support.
1301
1302  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1303  // behavior.
1304  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1305    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1306
1307      // Get the compare predicate.
1308      // Try to take advantage of fallthrough opportunities.
1309      CmpInst::Predicate Predicate = CI->getPredicate();
1310      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1311        std::swap(TBB, FBB);
1312        Predicate = CmpInst::getInversePredicate(Predicate);
1313      }
1314
1315      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1316
1317      // We may not handle every CC for now.
1318      if (ARMPred == ARMCC::AL) return false;
1319
1320      // Emit the compare.
1321      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1322        return false;
1323
1324      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1325      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1326      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1327      FastEmitBranch(FBB, DL);
1328      FuncInfo.MBB->addSuccessor(TBB);
1329      return true;
1330    }
1331  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1332    MVT SourceVT;
1333    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1334        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1335      unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1336      unsigned OpReg = getRegForValue(TI->getOperand(0));
1337      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1338                              TII.get(TstOpc))
1339                      .addReg(OpReg).addImm(1));
1340
1341      unsigned CCMode = ARMCC::NE;
1342      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1343        std::swap(TBB, FBB);
1344        CCMode = ARMCC::EQ;
1345      }
1346
1347      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1348      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1349      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1350
1351      FastEmitBranch(FBB, DL);
1352      FuncInfo.MBB->addSuccessor(TBB);
1353      return true;
1354    }
1355  } else if (const ConstantInt *CI =
1356             dyn_cast<ConstantInt>(BI->getCondition())) {
1357    uint64_t Imm = CI->getZExtValue();
1358    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1359    FastEmitBranch(Target, DL);
1360    return true;
1361  }
1362
1363  unsigned CmpReg = getRegForValue(BI->getCondition());
1364  if (CmpReg == 0) return false;
1365
1366  // We've been divorced from our compare!  Our block was split, and
1367  // now our compare lives in a predecessor block.  We musn't
1368  // re-compare here, as the children of the compare aren't guaranteed
1369  // live across the block boundary (we *could* check for this).
1370  // Regardless, the compare has been done in the predecessor block,
1371  // and it left a value for us in a virtual register.  Ergo, we test
1372  // the one-bit value left in the virtual register.
1373  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1374  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1375                  .addReg(CmpReg).addImm(1));
1376
1377  unsigned CCMode = ARMCC::NE;
1378  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1379    std::swap(TBB, FBB);
1380    CCMode = ARMCC::EQ;
1381  }
1382
1383  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1384  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1385                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1386  FastEmitBranch(FBB, DL);
1387  FuncInfo.MBB->addSuccessor(TBB);
1388  return true;
1389}
1390
1391bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1392  unsigned AddrReg = getRegForValue(I->getOperand(0));
1393  if (AddrReg == 0) return false;
1394
1395  unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1396  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
1397                  .addReg(AddrReg));
1398
1399  const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1400  for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
1401    FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
1402
1403  return true;
1404}
1405
1406bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1407                             bool isZExt) {
1408  Type *Ty = Src1Value->getType();
1409  EVT SrcVT = TLI.getValueType(Ty, true);
1410  if (!SrcVT.isSimple()) return false;
1411
1412  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1413  if (isFloat && !Subtarget->hasVFP2())
1414    return false;
1415
1416  // Check to see if the 2nd operand is a constant that we can encode directly
1417  // in the compare.
1418  int Imm = 0;
1419  bool UseImm = false;
1420  bool isNegativeImm = false;
1421  // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1422  // Thus, Src1Value may be a ConstantInt, but we're missing it.
1423  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1424    if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1425        SrcVT == MVT::i1) {
1426      const APInt &CIVal = ConstInt->getValue();
1427      Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1428      // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1429      // then a cmn, because there is no way to represent 2147483648 as a
1430      // signed 32-bit int.
1431      if (Imm < 0 && Imm != (int)0x80000000) {
1432        isNegativeImm = true;
1433        Imm = -Imm;
1434      }
1435      UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1436        (ARM_AM::getSOImmVal(Imm) != -1);
1437    }
1438  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1439    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1440      if (ConstFP->isZero() && !ConstFP->isNegative())
1441        UseImm = true;
1442  }
1443
1444  unsigned CmpOpc;
1445  bool isICmp = true;
1446  bool needsExt = false;
1447  switch (SrcVT.getSimpleVT().SimpleTy) {
1448    default: return false;
1449    // TODO: Verify compares.
1450    case MVT::f32:
1451      isICmp = false;
1452      CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1453      break;
1454    case MVT::f64:
1455      isICmp = false;
1456      CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1457      break;
1458    case MVT::i1:
1459    case MVT::i8:
1460    case MVT::i16:
1461      needsExt = true;
1462    // Intentional fall-through.
1463    case MVT::i32:
1464      if (isThumb2) {
1465        if (!UseImm)
1466          CmpOpc = ARM::t2CMPrr;
1467        else
1468          CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1469      } else {
1470        if (!UseImm)
1471          CmpOpc = ARM::CMPrr;
1472        else
1473          CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1474      }
1475      break;
1476  }
1477
1478  unsigned SrcReg1 = getRegForValue(Src1Value);
1479  if (SrcReg1 == 0) return false;
1480
1481  unsigned SrcReg2 = 0;
1482  if (!UseImm) {
1483    SrcReg2 = getRegForValue(Src2Value);
1484    if (SrcReg2 == 0) return false;
1485  }
1486
1487  // We have i1, i8, or i16, we need to either zero extend or sign extend.
1488  if (needsExt) {
1489    SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1490    if (SrcReg1 == 0) return false;
1491    if (!UseImm) {
1492      SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1493      if (SrcReg2 == 0) return false;
1494    }
1495  }
1496
1497  if (!UseImm) {
1498    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1499                            TII.get(CmpOpc))
1500                    .addReg(SrcReg1).addReg(SrcReg2));
1501  } else {
1502    MachineInstrBuilder MIB;
1503    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1504      .addReg(SrcReg1);
1505
1506    // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1507    if (isICmp)
1508      MIB.addImm(Imm);
1509    AddOptionalDefs(MIB);
1510  }
1511
1512  // For floating point we need to move the result to a comparison register
1513  // that we can then use for branches.
1514  if (Ty->isFloatTy() || Ty->isDoubleTy())
1515    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1516                            TII.get(ARM::FMSTAT)));
1517  return true;
1518}
1519
1520bool ARMFastISel::SelectCmp(const Instruction *I) {
1521  const CmpInst *CI = cast<CmpInst>(I);
1522
1523  // Get the compare predicate.
1524  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1525
1526  // We may not handle every CC for now.
1527  if (ARMPred == ARMCC::AL) return false;
1528
1529  // Emit the compare.
1530  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1531    return false;
1532
1533  // Now set a register based on the comparison. Explicitly set the predicates
1534  // here.
1535  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1536  const TargetRegisterClass *RC = isThumb2 ?
1537    (const TargetRegisterClass*)&ARM::rGPRRegClass :
1538    (const TargetRegisterClass*)&ARM::GPRRegClass;
1539  unsigned DestReg = createResultReg(RC);
1540  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1541  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1542  // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1543  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1544          .addReg(ZeroReg).addImm(1)
1545          .addImm(ARMPred).addReg(ARM::CPSR);
1546
1547  UpdateValueMap(I, DestReg);
1548  return true;
1549}
1550
1551bool ARMFastISel::SelectFPExt(const Instruction *I) {
1552  // Make sure we have VFP and that we're extending float to double.
1553  if (!Subtarget->hasVFP2()) return false;
1554
1555  Value *V = I->getOperand(0);
1556  if (!I->getType()->isDoubleTy() ||
1557      !V->getType()->isFloatTy()) return false;
1558
1559  unsigned Op = getRegForValue(V);
1560  if (Op == 0) return false;
1561
1562  unsigned Result = createResultReg(&ARM::DPRRegClass);
1563  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1564                          TII.get(ARM::VCVTDS), Result)
1565                  .addReg(Op));
1566  UpdateValueMap(I, Result);
1567  return true;
1568}
1569
1570bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1571  // Make sure we have VFP and that we're truncating double to float.
1572  if (!Subtarget->hasVFP2()) return false;
1573
1574  Value *V = I->getOperand(0);
1575  if (!(I->getType()->isFloatTy() &&
1576        V->getType()->isDoubleTy())) return false;
1577
1578  unsigned Op = getRegForValue(V);
1579  if (Op == 0) return false;
1580
1581  unsigned Result = createResultReg(&ARM::SPRRegClass);
1582  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1583                          TII.get(ARM::VCVTSD), Result)
1584                  .addReg(Op));
1585  UpdateValueMap(I, Result);
1586  return true;
1587}
1588
1589bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1590  // Make sure we have VFP.
1591  if (!Subtarget->hasVFP2()) return false;
1592
1593  MVT DstVT;
1594  Type *Ty = I->getType();
1595  if (!isTypeLegal(Ty, DstVT))
1596    return false;
1597
1598  Value *Src = I->getOperand(0);
1599  EVT SrcVT = TLI.getValueType(Src->getType(), true);
1600  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1601    return false;
1602
1603  unsigned SrcReg = getRegForValue(Src);
1604  if (SrcReg == 0) return false;
1605
1606  // Handle sign-extension.
1607  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1608    EVT DestVT = MVT::i32;
1609    SrcReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT,
1610                                       /*isZExt*/!isSigned);
1611    if (SrcReg == 0) return false;
1612  }
1613
1614  // The conversion routine works on fp-reg to fp-reg and the operand above
1615  // was an integer, move it to the fp registers if possible.
1616  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1617  if (FP == 0) return false;
1618
1619  unsigned Opc;
1620  if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1621  else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1622  else return false;
1623
1624  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1625  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1626                          ResultReg)
1627                  .addReg(FP));
1628  UpdateValueMap(I, ResultReg);
1629  return true;
1630}
1631
1632bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1633  // Make sure we have VFP.
1634  if (!Subtarget->hasVFP2()) return false;
1635
1636  MVT DstVT;
1637  Type *RetTy = I->getType();
1638  if (!isTypeLegal(RetTy, DstVT))
1639    return false;
1640
1641  unsigned Op = getRegForValue(I->getOperand(0));
1642  if (Op == 0) return false;
1643
1644  unsigned Opc;
1645  Type *OpTy = I->getOperand(0)->getType();
1646  if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1647  else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1648  else return false;
1649
1650  // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1651  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1652  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1653                          ResultReg)
1654                  .addReg(Op));
1655
1656  // This result needs to be in an integer register, but the conversion only
1657  // takes place in fp-regs.
1658  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1659  if (IntReg == 0) return false;
1660
1661  UpdateValueMap(I, IntReg);
1662  return true;
1663}
1664
1665bool ARMFastISel::SelectSelect(const Instruction *I) {
1666  MVT VT;
1667  if (!isTypeLegal(I->getType(), VT))
1668    return false;
1669
1670  // Things need to be register sized for register moves.
1671  if (VT != MVT::i32) return false;
1672  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1673
1674  unsigned CondReg = getRegForValue(I->getOperand(0));
1675  if (CondReg == 0) return false;
1676  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1677  if (Op1Reg == 0) return false;
1678
1679  // Check to see if we can use an immediate in the conditional move.
1680  int Imm = 0;
1681  bool UseImm = false;
1682  bool isNegativeImm = false;
1683  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1684    assert (VT == MVT::i32 && "Expecting an i32.");
1685    Imm = (int)ConstInt->getValue().getZExtValue();
1686    if (Imm < 0) {
1687      isNegativeImm = true;
1688      Imm = ~Imm;
1689    }
1690    UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1691      (ARM_AM::getSOImmVal(Imm) != -1);
1692  }
1693
1694  unsigned Op2Reg = 0;
1695  if (!UseImm) {
1696    Op2Reg = getRegForValue(I->getOperand(2));
1697    if (Op2Reg == 0) return false;
1698  }
1699
1700  unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1701  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1702                  .addReg(CondReg).addImm(0));
1703
1704  unsigned MovCCOpc;
1705  if (!UseImm) {
1706    MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1707  } else {
1708    if (!isNegativeImm) {
1709      MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1710    } else {
1711      MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1712    }
1713  }
1714  unsigned ResultReg = createResultReg(RC);
1715  if (!UseImm)
1716    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1717    .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
1718  else
1719    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1720    .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
1721  UpdateValueMap(I, ResultReg);
1722  return true;
1723}
1724
1725bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1726  MVT VT;
1727  Type *Ty = I->getType();
1728  if (!isTypeLegal(Ty, VT))
1729    return false;
1730
1731  // If we have integer div support we should have selected this automagically.
1732  // In case we have a real miss go ahead and return false and we'll pick
1733  // it up later.
1734  if (Subtarget->hasDivide()) return false;
1735
1736  // Otherwise emit a libcall.
1737  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1738  if (VT == MVT::i8)
1739    LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1740  else if (VT == MVT::i16)
1741    LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1742  else if (VT == MVT::i32)
1743    LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1744  else if (VT == MVT::i64)
1745    LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1746  else if (VT == MVT::i128)
1747    LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1748  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1749
1750  return ARMEmitLibcall(I, LC);
1751}
1752
1753bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1754  MVT VT;
1755  Type *Ty = I->getType();
1756  if (!isTypeLegal(Ty, VT))
1757    return false;
1758
1759  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1760  if (VT == MVT::i8)
1761    LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1762  else if (VT == MVT::i16)
1763    LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1764  else if (VT == MVT::i32)
1765    LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1766  else if (VT == MVT::i64)
1767    LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1768  else if (VT == MVT::i128)
1769    LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1770  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1771
1772  return ARMEmitLibcall(I, LC);
1773}
1774
1775bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1776  EVT DestVT  = TLI.getValueType(I->getType(), true);
1777
1778  // We can get here in the case when we have a binary operation on a non-legal
1779  // type and the target independent selector doesn't know how to handle it.
1780  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1781    return false;
1782
1783  unsigned Opc;
1784  switch (ISDOpcode) {
1785    default: return false;
1786    case ISD::ADD:
1787      Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1788      break;
1789    case ISD::OR:
1790      Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1791      break;
1792    case ISD::SUB:
1793      Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1794      break;
1795  }
1796
1797  unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1798  if (SrcReg1 == 0) return false;
1799
1800  // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1801  // in the instruction, rather then materializing the value in a register.
1802  unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1803  if (SrcReg2 == 0) return false;
1804
1805  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1806  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1807                          TII.get(Opc), ResultReg)
1808                  .addReg(SrcReg1).addReg(SrcReg2));
1809  UpdateValueMap(I, ResultReg);
1810  return true;
1811}
1812
1813bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1814  EVT VT  = TLI.getValueType(I->getType(), true);
1815
1816  // We can get here in the case when we want to use NEON for our fp
1817  // operations, but can't figure out how to. Just use the vfp instructions
1818  // if we have them.
1819  // FIXME: It'd be nice to use NEON instructions.
1820  Type *Ty = I->getType();
1821  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1822  if (isFloat && !Subtarget->hasVFP2())
1823    return false;
1824
1825  unsigned Opc;
1826  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1827  switch (ISDOpcode) {
1828    default: return false;
1829    case ISD::FADD:
1830      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1831      break;
1832    case ISD::FSUB:
1833      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1834      break;
1835    case ISD::FMUL:
1836      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1837      break;
1838  }
1839  unsigned Op1 = getRegForValue(I->getOperand(0));
1840  if (Op1 == 0) return false;
1841
1842  unsigned Op2 = getRegForValue(I->getOperand(1));
1843  if (Op2 == 0) return false;
1844
1845  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1846  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1847                          TII.get(Opc), ResultReg)
1848                  .addReg(Op1).addReg(Op2));
1849  UpdateValueMap(I, ResultReg);
1850  return true;
1851}
1852
1853// Call Handling Code
1854
1855// This is largely taken directly from CCAssignFnForNode
1856// TODO: We may not support all of this.
1857CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1858                                           bool Return,
1859                                           bool isVarArg) {
1860  switch (CC) {
1861  default:
1862    llvm_unreachable("Unsupported calling convention");
1863  case CallingConv::Fast:
1864    if (Subtarget->hasVFP2() && !isVarArg) {
1865      if (!Subtarget->isAAPCS_ABI())
1866        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1867      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1868      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1869    }
1870    // Fallthrough
1871  case CallingConv::C:
1872    // Use target triple & subtarget features to do actual dispatch.
1873    if (Subtarget->isAAPCS_ABI()) {
1874      if (Subtarget->hasVFP2() &&
1875          TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1876        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1877      else
1878        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1879    } else
1880        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1881  case CallingConv::ARM_AAPCS_VFP:
1882    if (!isVarArg)
1883      return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1884    // Fall through to soft float variant, variadic functions don't
1885    // use hard floating point ABI.
1886  case CallingConv::ARM_AAPCS:
1887    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1888  case CallingConv::ARM_APCS:
1889    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1890  case CallingConv::GHC:
1891    if (Return)
1892      llvm_unreachable("Can't return in GHC call convention");
1893    else
1894      return CC_ARM_APCS_GHC;
1895  }
1896}
1897
1898bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1899                                  SmallVectorImpl<unsigned> &ArgRegs,
1900                                  SmallVectorImpl<MVT> &ArgVTs,
1901                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1902                                  SmallVectorImpl<unsigned> &RegArgs,
1903                                  CallingConv::ID CC,
1904                                  unsigned &NumBytes,
1905                                  bool isVarArg) {
1906  SmallVector<CCValAssign, 16> ArgLocs;
1907  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
1908  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1909                             CCAssignFnForCall(CC, false, isVarArg));
1910
1911  // Check that we can handle all of the arguments. If we can't, then bail out
1912  // now before we add code to the MBB.
1913  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1914    CCValAssign &VA = ArgLocs[i];
1915    MVT ArgVT = ArgVTs[VA.getValNo()];
1916
1917    // We don't handle NEON/vector parameters yet.
1918    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1919      return false;
1920
1921    // Now copy/store arg to correct locations.
1922    if (VA.isRegLoc() && !VA.needsCustom()) {
1923      continue;
1924    } else if (VA.needsCustom()) {
1925      // TODO: We need custom lowering for vector (v2f64) args.
1926      if (VA.getLocVT() != MVT::f64 ||
1927          // TODO: Only handle register args for now.
1928          !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1929        return false;
1930    } else {
1931      switch (static_cast<EVT>(ArgVT).getSimpleVT().SimpleTy) {
1932      default:
1933        return false;
1934      case MVT::i1:
1935      case MVT::i8:
1936      case MVT::i16:
1937      case MVT::i32:
1938        break;
1939      case MVT::f32:
1940        if (!Subtarget->hasVFP2())
1941          return false;
1942        break;
1943      case MVT::f64:
1944        if (!Subtarget->hasVFP2())
1945          return false;
1946        break;
1947      }
1948    }
1949  }
1950
1951  // At the point, we are able to handle the call's arguments in fast isel.
1952
1953  // Get a count of how many bytes are to be pushed on the stack.
1954  NumBytes = CCInfo.getNextStackOffset();
1955
1956  // Issue CALLSEQ_START
1957  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1958  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1959                          TII.get(AdjStackDown))
1960                  .addImm(NumBytes));
1961
1962  // Process the args.
1963  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1964    CCValAssign &VA = ArgLocs[i];
1965    unsigned Arg = ArgRegs[VA.getValNo()];
1966    MVT ArgVT = ArgVTs[VA.getValNo()];
1967
1968    assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1969           "We don't handle NEON/vector parameters yet.");
1970
1971    // Handle arg promotion, etc.
1972    switch (VA.getLocInfo()) {
1973      case CCValAssign::Full: break;
1974      case CCValAssign::SExt: {
1975        MVT DestVT = VA.getLocVT();
1976        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1977        assert (Arg != 0 && "Failed to emit a sext");
1978        ArgVT = DestVT;
1979        break;
1980      }
1981      case CCValAssign::AExt:
1982        // Intentional fall-through.  Handle AExt and ZExt.
1983      case CCValAssign::ZExt: {
1984        MVT DestVT = VA.getLocVT();
1985        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1986        assert (Arg != 0 && "Failed to emit a sext");
1987        ArgVT = DestVT;
1988        break;
1989      }
1990      case CCValAssign::BCvt: {
1991        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1992                                 /*TODO: Kill=*/false);
1993        assert(BC != 0 && "Failed to emit a bitcast!");
1994        Arg = BC;
1995        ArgVT = VA.getLocVT();
1996        break;
1997      }
1998      default: llvm_unreachable("Unknown arg promotion!");
1999    }
2000
2001    // Now copy/store arg to correct locations.
2002    if (VA.isRegLoc() && !VA.needsCustom()) {
2003      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2004              VA.getLocReg())
2005        .addReg(Arg);
2006      RegArgs.push_back(VA.getLocReg());
2007    } else if (VA.needsCustom()) {
2008      // TODO: We need custom lowering for vector (v2f64) args.
2009      assert(VA.getLocVT() == MVT::f64 &&
2010             "Custom lowering for v2f64 args not available");
2011
2012      CCValAssign &NextVA = ArgLocs[++i];
2013
2014      assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2015             "We only handle register args!");
2016
2017      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2018                              TII.get(ARM::VMOVRRD), VA.getLocReg())
2019                      .addReg(NextVA.getLocReg(), RegState::Define)
2020                      .addReg(Arg));
2021      RegArgs.push_back(VA.getLocReg());
2022      RegArgs.push_back(NextVA.getLocReg());
2023    } else {
2024      assert(VA.isMemLoc());
2025      // Need to store on the stack.
2026      Address Addr;
2027      Addr.BaseType = Address::RegBase;
2028      Addr.Base.Reg = ARM::SP;
2029      Addr.Offset = VA.getLocMemOffset();
2030
2031      bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2032      assert(EmitRet && "Could not emit a store for argument!");
2033    }
2034  }
2035
2036  return true;
2037}
2038
2039bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
2040                             const Instruction *I, CallingConv::ID CC,
2041                             unsigned &NumBytes, bool isVarArg) {
2042  // Issue CALLSEQ_END
2043  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2044  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2045                          TII.get(AdjStackUp))
2046                  .addImm(NumBytes).addImm(0));
2047
2048  // Now the return value.
2049  if (RetVT != MVT::isVoid) {
2050    SmallVector<CCValAssign, 16> RVLocs;
2051    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
2052    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2053
2054    // Copy all of the result registers out of their specified physreg.
2055    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2056      // For this move we copy into two registers and then move into the
2057      // double fp reg we want.
2058      EVT DestVT = RVLocs[0].getValVT();
2059      const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2060      unsigned ResultReg = createResultReg(DstRC);
2061      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2062                              TII.get(ARM::VMOVDRR), ResultReg)
2063                      .addReg(RVLocs[0].getLocReg())
2064                      .addReg(RVLocs[1].getLocReg()));
2065
2066      UsedRegs.push_back(RVLocs[0].getLocReg());
2067      UsedRegs.push_back(RVLocs[1].getLocReg());
2068
2069      // Finally update the result.
2070      UpdateValueMap(I, ResultReg);
2071    } else {
2072      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2073      EVT CopyVT = RVLocs[0].getValVT();
2074
2075      // Special handling for extended integers.
2076      if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2077        CopyVT = MVT::i32;
2078
2079      const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2080
2081      unsigned ResultReg = createResultReg(DstRC);
2082      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2083              ResultReg).addReg(RVLocs[0].getLocReg());
2084      UsedRegs.push_back(RVLocs[0].getLocReg());
2085
2086      // Finally update the result.
2087      UpdateValueMap(I, ResultReg);
2088    }
2089  }
2090
2091  return true;
2092}
2093
2094bool ARMFastISel::SelectRet(const Instruction *I) {
2095  const ReturnInst *Ret = cast<ReturnInst>(I);
2096  const Function &F = *I->getParent()->getParent();
2097
2098  if (!FuncInfo.CanLowerReturn)
2099    return false;
2100
2101  CallingConv::ID CC = F.getCallingConv();
2102  if (Ret->getNumOperands() > 0) {
2103    SmallVector<ISD::OutputArg, 4> Outs;
2104    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
2105                  Outs, TLI);
2106
2107    // Analyze operands of the call, assigning locations to each operand.
2108    SmallVector<CCValAssign, 16> ValLocs;
2109    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
2110    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2111                                                 F.isVarArg()));
2112
2113    const Value *RV = Ret->getOperand(0);
2114    unsigned Reg = getRegForValue(RV);
2115    if (Reg == 0)
2116      return false;
2117
2118    // Only handle a single return value for now.
2119    if (ValLocs.size() != 1)
2120      return false;
2121
2122    CCValAssign &VA = ValLocs[0];
2123
2124    // Don't bother handling odd stuff for now.
2125    if (VA.getLocInfo() != CCValAssign::Full)
2126      return false;
2127    // Only handle register returns for now.
2128    if (!VA.isRegLoc())
2129      return false;
2130
2131    unsigned SrcReg = Reg + VA.getValNo();
2132    EVT RVVT = TLI.getValueType(RV->getType());
2133    EVT DestVT = VA.getValVT();
2134    // Special handling for extended integers.
2135    if (RVVT != DestVT) {
2136      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2137        return false;
2138
2139      assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2140
2141      // Perform extension if flagged as either zext or sext.  Otherwise, do
2142      // nothing.
2143      if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2144        SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2145        if (SrcReg == 0) return false;
2146      }
2147    }
2148
2149    // Make the copy.
2150    unsigned DstReg = VA.getLocReg();
2151    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2152    // Avoid a cross-class copy. This is very unlikely.
2153    if (!SrcRC->contains(DstReg))
2154      return false;
2155    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2156            DstReg).addReg(SrcReg);
2157
2158    // Mark the register as live out of the function.
2159    MRI.addLiveOut(VA.getLocReg());
2160  }
2161
2162  unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2163  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2164                          TII.get(RetOpc)));
2165  return true;
2166}
2167
2168unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2169  if (UseReg)
2170    return isThumb2 ? ARM::tBLXr : ARM::BLX;
2171  else
2172    return isThumb2 ? ARM::tBL : ARM::BL;
2173}
2174
2175unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2176  GlobalValue *GV = new GlobalVariable(Type::getInt32Ty(*Context), false,
2177                                       GlobalValue::ExternalLinkage, 0, Name);
2178  return ARMMaterializeGV(GV, TLI.getValueType(GV->getType()));
2179}
2180
2181// A quick function that will emit a call for a named libcall in F with the
2182// vector of passed arguments for the Instruction in I. We can assume that we
2183// can emit a call for any libcall we can produce. This is an abridged version
2184// of the full call infrastructure since we won't need to worry about things
2185// like computed function pointers or strange arguments at call sites.
2186// TODO: Try to unify this and the normal call bits for ARM, then try to unify
2187// with X86.
2188bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2189  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2190
2191  // Handle *simple* calls for now.
2192  Type *RetTy = I->getType();
2193  MVT RetVT;
2194  if (RetTy->isVoidTy())
2195    RetVT = MVT::isVoid;
2196  else if (!isTypeLegal(RetTy, RetVT))
2197    return false;
2198
2199  // Can't handle non-double multi-reg retvals.
2200  if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2201    SmallVector<CCValAssign, 16> RVLocs;
2202    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
2203    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2204    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2205      return false;
2206  }
2207
2208  // Set up the argument vectors.
2209  SmallVector<Value*, 8> Args;
2210  SmallVector<unsigned, 8> ArgRegs;
2211  SmallVector<MVT, 8> ArgVTs;
2212  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2213  Args.reserve(I->getNumOperands());
2214  ArgRegs.reserve(I->getNumOperands());
2215  ArgVTs.reserve(I->getNumOperands());
2216  ArgFlags.reserve(I->getNumOperands());
2217  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2218    Value *Op = I->getOperand(i);
2219    unsigned Arg = getRegForValue(Op);
2220    if (Arg == 0) return false;
2221
2222    Type *ArgTy = Op->getType();
2223    MVT ArgVT;
2224    if (!isTypeLegal(ArgTy, ArgVT)) return false;
2225
2226    ISD::ArgFlagsTy Flags;
2227    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2228    Flags.setOrigAlign(OriginalAlignment);
2229
2230    Args.push_back(Op);
2231    ArgRegs.push_back(Arg);
2232    ArgVTs.push_back(ArgVT);
2233    ArgFlags.push_back(Flags);
2234  }
2235
2236  // Handle the arguments now that we've gotten them.
2237  SmallVector<unsigned, 4> RegArgs;
2238  unsigned NumBytes;
2239  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2240                       RegArgs, CC, NumBytes, false))
2241    return false;
2242
2243  unsigned CalleeReg = 0;
2244  if (EnableARMLongCalls) {
2245    CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2246    if (CalleeReg == 0) return false;
2247  }
2248
2249  // Issue the call.
2250  unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls);
2251  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2252                                    DL, TII.get(CallOpc));
2253  // BL / BLX don't take a predicate, but tBL / tBLX do.
2254  if (isThumb2)
2255    AddDefaultPred(MIB);
2256  if (EnableARMLongCalls)
2257    MIB.addReg(CalleeReg);
2258  else
2259    MIB.addExternalSymbol(TLI.getLibcallName(Call));
2260
2261  // Add implicit physical register uses to the call.
2262  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2263    MIB.addReg(RegArgs[i], RegState::Implicit);
2264
2265  // Add a register mask with the call-preserved registers.
2266  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2267  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2268
2269  // Finish off the call including any return values.
2270  SmallVector<unsigned, 4> UsedRegs;
2271  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2272
2273  // Set all unused physreg defs as dead.
2274  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2275
2276  return true;
2277}
2278
2279bool ARMFastISel::SelectCall(const Instruction *I,
2280                             const char *IntrMemName = 0) {
2281  const CallInst *CI = cast<CallInst>(I);
2282  const Value *Callee = CI->getCalledValue();
2283
2284  // Can't handle inline asm.
2285  if (isa<InlineAsm>(Callee)) return false;
2286
2287  // Check the calling convention.
2288  ImmutableCallSite CS(CI);
2289  CallingConv::ID CC = CS.getCallingConv();
2290
2291  // TODO: Avoid some calling conventions?
2292
2293  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2294  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2295  bool isVarArg = FTy->isVarArg();
2296
2297  // Handle *simple* calls for now.
2298  Type *RetTy = I->getType();
2299  MVT RetVT;
2300  if (RetTy->isVoidTy())
2301    RetVT = MVT::isVoid;
2302  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2303           RetVT != MVT::i8  && RetVT != MVT::i1)
2304    return false;
2305
2306  // Can't handle non-double multi-reg retvals.
2307  if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2308      RetVT != MVT::i16 && RetVT != MVT::i32) {
2309    SmallVector<CCValAssign, 16> RVLocs;
2310    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
2311    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2312    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2313      return false;
2314  }
2315
2316  // Set up the argument vectors.
2317  SmallVector<Value*, 8> Args;
2318  SmallVector<unsigned, 8> ArgRegs;
2319  SmallVector<MVT, 8> ArgVTs;
2320  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2321  unsigned arg_size = CS.arg_size();
2322  Args.reserve(arg_size);
2323  ArgRegs.reserve(arg_size);
2324  ArgVTs.reserve(arg_size);
2325  ArgFlags.reserve(arg_size);
2326  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2327       i != e; ++i) {
2328    // If we're lowering a memory intrinsic instead of a regular call, skip the
2329    // last two arguments, which shouldn't be passed to the underlying function.
2330    if (IntrMemName && e-i <= 2)
2331      break;
2332
2333    ISD::ArgFlagsTy Flags;
2334    unsigned AttrInd = i - CS.arg_begin() + 1;
2335    if (CS.paramHasAttr(AttrInd, Attributes::SExt))
2336      Flags.setSExt();
2337    if (CS.paramHasAttr(AttrInd, Attributes::ZExt))
2338      Flags.setZExt();
2339
2340    // FIXME: Only handle *easy* calls for now.
2341    if (CS.paramHasAttr(AttrInd, Attributes::InReg) ||
2342        CS.paramHasAttr(AttrInd, Attributes::StructRet) ||
2343        CS.paramHasAttr(AttrInd, Attributes::Nest) ||
2344        CS.paramHasAttr(AttrInd, Attributes::ByVal))
2345      return false;
2346
2347    Type *ArgTy = (*i)->getType();
2348    MVT ArgVT;
2349    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2350        ArgVT != MVT::i1)
2351      return false;
2352
2353    unsigned Arg = getRegForValue(*i);
2354    if (Arg == 0)
2355      return false;
2356
2357    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2358    Flags.setOrigAlign(OriginalAlignment);
2359
2360    Args.push_back(*i);
2361    ArgRegs.push_back(Arg);
2362    ArgVTs.push_back(ArgVT);
2363    ArgFlags.push_back(Flags);
2364  }
2365
2366  // Handle the arguments now that we've gotten them.
2367  SmallVector<unsigned, 4> RegArgs;
2368  unsigned NumBytes;
2369  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2370                       RegArgs, CC, NumBytes, isVarArg))
2371    return false;
2372
2373  bool UseReg = false;
2374  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2375  if (!GV || EnableARMLongCalls) UseReg = true;
2376
2377  unsigned CalleeReg = 0;
2378  if (UseReg) {
2379    if (IntrMemName)
2380      CalleeReg = getLibcallReg(IntrMemName);
2381    else
2382      CalleeReg = getRegForValue(Callee);
2383
2384    if (CalleeReg == 0) return false;
2385  }
2386
2387  // Issue the call.
2388  unsigned CallOpc = ARMSelectCallOp(UseReg);
2389  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2390                                    DL, TII.get(CallOpc));
2391
2392  // ARM calls don't take a predicate, but tBL / tBLX do.
2393  if(isThumb2)
2394    AddDefaultPred(MIB);
2395  if (UseReg)
2396    MIB.addReg(CalleeReg);
2397  else if (!IntrMemName)
2398    MIB.addGlobalAddress(GV, 0, 0);
2399  else
2400    MIB.addExternalSymbol(IntrMemName, 0);
2401
2402  // Add implicit physical register uses to the call.
2403  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2404    MIB.addReg(RegArgs[i], RegState::Implicit);
2405
2406  // Add a register mask with the call-preserved registers.
2407  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2408  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2409
2410  // Finish off the call including any return values.
2411  SmallVector<unsigned, 4> UsedRegs;
2412  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2413    return false;
2414
2415  // Set all unused physreg defs as dead.
2416  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2417
2418  return true;
2419}
2420
2421bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2422  return Len <= 16;
2423}
2424
2425bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2426                                        uint64_t Len) {
2427  // Make sure we don't bloat code by inlining very large memcpy's.
2428  if (!ARMIsMemCpySmall(Len))
2429    return false;
2430
2431  // We don't care about alignment here since we just emit integer accesses.
2432  while (Len) {
2433    MVT VT;
2434    if (Len >= 4)
2435      VT = MVT::i32;
2436    else if (Len >= 2)
2437      VT = MVT::i16;
2438    else {
2439      assert(Len == 1);
2440      VT = MVT::i8;
2441    }
2442
2443    bool RV;
2444    unsigned ResultReg;
2445    RV = ARMEmitLoad(VT, ResultReg, Src);
2446    assert (RV == true && "Should be able to handle this load.");
2447    RV = ARMEmitStore(VT, ResultReg, Dest);
2448    assert (RV == true && "Should be able to handle this store.");
2449    (void)RV;
2450
2451    unsigned Size = VT.getSizeInBits()/8;
2452    Len -= Size;
2453    Dest.Offset += Size;
2454    Src.Offset += Size;
2455  }
2456
2457  return true;
2458}
2459
2460bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2461  // FIXME: Handle more intrinsics.
2462  switch (I.getIntrinsicID()) {
2463  default: return false;
2464  case Intrinsic::frameaddress: {
2465    MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
2466    MFI->setFrameAddressIsTaken(true);
2467
2468    unsigned LdrOpc;
2469    const TargetRegisterClass *RC;
2470    if (isThumb2) {
2471      LdrOpc =  ARM::t2LDRi12;
2472      RC = (const TargetRegisterClass*)&ARM::tGPRRegClass;
2473    } else {
2474      LdrOpc =  ARM::LDRi12;
2475      RC = (const TargetRegisterClass*)&ARM::GPRRegClass;
2476    }
2477
2478    const ARMBaseRegisterInfo *RegInfo =
2479          static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo());
2480    unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2481    unsigned SrcReg = FramePtr;
2482
2483    // Recursively load frame address
2484    // ldr r0 [fp]
2485    // ldr r0 [r0]
2486    // ldr r0 [r0]
2487    // ...
2488    unsigned DestReg;
2489    unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2490    while (Depth--) {
2491      DestReg = createResultReg(RC);
2492      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2493                              TII.get(LdrOpc), DestReg)
2494                      .addReg(SrcReg).addImm(0));
2495      SrcReg = DestReg;
2496    }
2497    UpdateValueMap(&I, SrcReg);
2498    return true;
2499  }
2500  case Intrinsic::memcpy:
2501  case Intrinsic::memmove: {
2502    const MemTransferInst &MTI = cast<MemTransferInst>(I);
2503    // Don't handle volatile.
2504    if (MTI.isVolatile())
2505      return false;
2506
2507    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2508    // we would emit dead code because we don't currently handle memmoves.
2509    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2510    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2511      // Small memcpy's are common enough that we want to do them without a call
2512      // if possible.
2513      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2514      if (ARMIsMemCpySmall(Len)) {
2515        Address Dest, Src;
2516        if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2517            !ARMComputeAddress(MTI.getRawSource(), Src))
2518          return false;
2519        if (ARMTryEmitSmallMemCpy(Dest, Src, Len))
2520          return true;
2521      }
2522    }
2523
2524    if (!MTI.getLength()->getType()->isIntegerTy(32))
2525      return false;
2526
2527    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2528      return false;
2529
2530    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2531    return SelectCall(&I, IntrMemName);
2532  }
2533  case Intrinsic::memset: {
2534    const MemSetInst &MSI = cast<MemSetInst>(I);
2535    // Don't handle volatile.
2536    if (MSI.isVolatile())
2537      return false;
2538
2539    if (!MSI.getLength()->getType()->isIntegerTy(32))
2540      return false;
2541
2542    if (MSI.getDestAddressSpace() > 255)
2543      return false;
2544
2545    return SelectCall(&I, "memset");
2546  }
2547  case Intrinsic::trap: {
2548    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::TRAP));
2549    return true;
2550  }
2551  }
2552}
2553
2554bool ARMFastISel::SelectTrunc(const Instruction *I) {
2555  // The high bits for a type smaller than the register size are assumed to be
2556  // undefined.
2557  Value *Op = I->getOperand(0);
2558
2559  EVT SrcVT, DestVT;
2560  SrcVT = TLI.getValueType(Op->getType(), true);
2561  DestVT = TLI.getValueType(I->getType(), true);
2562
2563  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2564    return false;
2565  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2566    return false;
2567
2568  unsigned SrcReg = getRegForValue(Op);
2569  if (!SrcReg) return false;
2570
2571  // Because the high bits are undefined, a truncate doesn't generate
2572  // any code.
2573  UpdateValueMap(I, SrcReg);
2574  return true;
2575}
2576
2577unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT,
2578                                    bool isZExt) {
2579  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2580    return 0;
2581
2582  unsigned Opc;
2583  bool isBoolZext = false;
2584  if (!SrcVT.isSimple()) return 0;
2585  switch (SrcVT.getSimpleVT().SimpleTy) {
2586  default: return 0;
2587  case MVT::i16:
2588    if (!Subtarget->hasV6Ops()) return 0;
2589    if (isZExt)
2590      Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH;
2591    else
2592      Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
2593    break;
2594  case MVT::i8:
2595    if (!Subtarget->hasV6Ops()) return 0;
2596    if (isZExt)
2597      Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB;
2598    else
2599      Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
2600    break;
2601  case MVT::i1:
2602    if (isZExt) {
2603      Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
2604      isBoolZext = true;
2605      break;
2606    }
2607    return 0;
2608  }
2609
2610  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2611  MachineInstrBuilder MIB;
2612  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
2613        .addReg(SrcReg);
2614  if (isBoolZext)
2615    MIB.addImm(1);
2616  else
2617    MIB.addImm(0);
2618  AddOptionalDefs(MIB);
2619  return ResultReg;
2620}
2621
2622bool ARMFastISel::SelectIntExt(const Instruction *I) {
2623  // On ARM, in general, integer casts don't involve legal types; this code
2624  // handles promotable integers.
2625  Type *DestTy = I->getType();
2626  Value *Src = I->getOperand(0);
2627  Type *SrcTy = Src->getType();
2628
2629  EVT SrcVT, DestVT;
2630  SrcVT = TLI.getValueType(SrcTy, true);
2631  DestVT = TLI.getValueType(DestTy, true);
2632
2633  bool isZExt = isa<ZExtInst>(I);
2634  unsigned SrcReg = getRegForValue(Src);
2635  if (!SrcReg) return false;
2636
2637  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2638  if (ResultReg == 0) return false;
2639  UpdateValueMap(I, ResultReg);
2640  return true;
2641}
2642
2643bool ARMFastISel::SelectShift(const Instruction *I,
2644                              ARM_AM::ShiftOpc ShiftTy) {
2645  // We handle thumb2 mode by target independent selector
2646  // or SelectionDAG ISel.
2647  if (isThumb2)
2648    return false;
2649
2650  // Only handle i32 now.
2651  EVT DestVT = TLI.getValueType(I->getType(), true);
2652  if (DestVT != MVT::i32)
2653    return false;
2654
2655  unsigned Opc = ARM::MOVsr;
2656  unsigned ShiftImm;
2657  Value *Src2Value = I->getOperand(1);
2658  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2659    ShiftImm = CI->getZExtValue();
2660
2661    // Fall back to selection DAG isel if the shift amount
2662    // is zero or greater than the width of the value type.
2663    if (ShiftImm == 0 || ShiftImm >=32)
2664      return false;
2665
2666    Opc = ARM::MOVsi;
2667  }
2668
2669  Value *Src1Value = I->getOperand(0);
2670  unsigned Reg1 = getRegForValue(Src1Value);
2671  if (Reg1 == 0) return false;
2672
2673  unsigned Reg2 = 0;
2674  if (Opc == ARM::MOVsr) {
2675    Reg2 = getRegForValue(Src2Value);
2676    if (Reg2 == 0) return false;
2677  }
2678
2679  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2680  if(ResultReg == 0) return false;
2681
2682  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2683                                    TII.get(Opc), ResultReg)
2684                            .addReg(Reg1);
2685
2686  if (Opc == ARM::MOVsi)
2687    MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2688  else if (Opc == ARM::MOVsr) {
2689    MIB.addReg(Reg2);
2690    MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2691  }
2692
2693  AddOptionalDefs(MIB);
2694  UpdateValueMap(I, ResultReg);
2695  return true;
2696}
2697
2698// TODO: SoftFP support.
2699bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2700
2701  switch (I->getOpcode()) {
2702    case Instruction::Load:
2703      return SelectLoad(I);
2704    case Instruction::Store:
2705      return SelectStore(I);
2706    case Instruction::Br:
2707      return SelectBranch(I);
2708    case Instruction::IndirectBr:
2709      return SelectIndirectBr(I);
2710    case Instruction::ICmp:
2711    case Instruction::FCmp:
2712      return SelectCmp(I);
2713    case Instruction::FPExt:
2714      return SelectFPExt(I);
2715    case Instruction::FPTrunc:
2716      return SelectFPTrunc(I);
2717    case Instruction::SIToFP:
2718      return SelectIToFP(I, /*isSigned*/ true);
2719    case Instruction::UIToFP:
2720      return SelectIToFP(I, /*isSigned*/ false);
2721    case Instruction::FPToSI:
2722      return SelectFPToI(I, /*isSigned*/ true);
2723    case Instruction::FPToUI:
2724      return SelectFPToI(I, /*isSigned*/ false);
2725    case Instruction::Add:
2726      return SelectBinaryIntOp(I, ISD::ADD);
2727    case Instruction::Or:
2728      return SelectBinaryIntOp(I, ISD::OR);
2729    case Instruction::Sub:
2730      return SelectBinaryIntOp(I, ISD::SUB);
2731    case Instruction::FAdd:
2732      return SelectBinaryFPOp(I, ISD::FADD);
2733    case Instruction::FSub:
2734      return SelectBinaryFPOp(I, ISD::FSUB);
2735    case Instruction::FMul:
2736      return SelectBinaryFPOp(I, ISD::FMUL);
2737    case Instruction::SDiv:
2738      return SelectDiv(I, /*isSigned*/ true);
2739    case Instruction::UDiv:
2740      return SelectDiv(I, /*isSigned*/ false);
2741    case Instruction::SRem:
2742      return SelectRem(I, /*isSigned*/ true);
2743    case Instruction::URem:
2744      return SelectRem(I, /*isSigned*/ false);
2745    case Instruction::Call:
2746      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2747        return SelectIntrinsicCall(*II);
2748      return SelectCall(I);
2749    case Instruction::Select:
2750      return SelectSelect(I);
2751    case Instruction::Ret:
2752      return SelectRet(I);
2753    case Instruction::Trunc:
2754      return SelectTrunc(I);
2755    case Instruction::ZExt:
2756    case Instruction::SExt:
2757      return SelectIntExt(I);
2758    case Instruction::Shl:
2759      return SelectShift(I, ARM_AM::lsl);
2760    case Instruction::LShr:
2761      return SelectShift(I, ARM_AM::lsr);
2762    case Instruction::AShr:
2763      return SelectShift(I, ARM_AM::asr);
2764    default: break;
2765  }
2766  return false;
2767}
2768
2769/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
2770/// vreg is being provided by the specified load instruction.  If possible,
2771/// try to fold the load as an operand to the instruction, returning true if
2772/// successful.
2773bool ARMFastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
2774                                const LoadInst *LI) {
2775  // Verify we have a legal type before going any further.
2776  MVT VT;
2777  if (!isLoadTypeLegal(LI->getType(), VT))
2778    return false;
2779
2780  // Combine load followed by zero- or sign-extend.
2781  // ldrb r1, [r0]       ldrb r1, [r0]
2782  // uxtb r2, r1     =>
2783  // mov  r3, r2         mov  r3, r1
2784  bool isZExt = true;
2785  switch(MI->getOpcode()) {
2786    default: return false;
2787    case ARM::SXTH:
2788    case ARM::t2SXTH:
2789      isZExt = false;
2790    case ARM::UXTH:
2791    case ARM::t2UXTH:
2792      if (VT != MVT::i16)
2793        return false;
2794    break;
2795    case ARM::SXTB:
2796    case ARM::t2SXTB:
2797      isZExt = false;
2798    case ARM::UXTB:
2799    case ARM::t2UXTB:
2800      if (VT != MVT::i8)
2801        return false;
2802    break;
2803  }
2804  // See if we can handle this address.
2805  Address Addr;
2806  if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2807
2808  unsigned ResultReg = MI->getOperand(0).getReg();
2809  if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2810    return false;
2811  MI->eraseFromParent();
2812  return true;
2813}
2814
2815unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
2816                                     unsigned Align, EVT VT) {
2817  bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2818  ARMConstantPoolConstant *CPV =
2819    ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2820  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
2821
2822  unsigned Opc;
2823  unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT));
2824  // Load value.
2825  if (isThumb2) {
2826    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2827                            TII.get(ARM::t2LDRpci), DestReg1)
2828                    .addConstantPoolIndex(Idx));
2829    Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs;
2830  } else {
2831    // The extra immediate is for addrmode2.
2832    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2833                            DL, TII.get(ARM::LDRcp), DestReg1)
2834                    .addConstantPoolIndex(Idx).addImm(0));
2835    Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs;
2836  }
2837
2838  unsigned GlobalBaseReg = AFI->getGlobalBaseReg();
2839  if (GlobalBaseReg == 0) {
2840    GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT));
2841    AFI->setGlobalBaseReg(GlobalBaseReg);
2842  }
2843
2844  unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT));
2845  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2846                                    DL, TII.get(Opc), DestReg2)
2847                            .addReg(DestReg1)
2848                            .addReg(GlobalBaseReg);
2849  if (!UseGOTOFF)
2850    MIB.addImm(0);
2851  AddOptionalDefs(MIB);
2852
2853  return DestReg2;
2854}
2855
2856namespace llvm {
2857  FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
2858                                const TargetLibraryInfo *libInfo) {
2859    // Completely untested on non-iOS.
2860    const TargetMachine &TM = funcInfo.MF->getTarget();
2861
2862    // Darwin and thumb1 only for now.
2863    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2864    if (Subtarget->isTargetIOS() && !Subtarget->isThumb1Only())
2865      return new ARMFastISel(funcInfo, libInfo);
2866    return 0;
2867  }
2868}
2869