ARMFastISel.cpp revision dccd2c3c4346dd6625b80fcac9caa1be99731c9c
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/Analysis.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/FunctionLoweringInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineConstantPool.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/GetElementPtrTypeIterator.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46using namespace llvm;
47
48static cl::opt<bool>
49EnableARMFastISel("arm-fast-isel",
50                  cl::desc("Turn on experimental ARM fast-isel support"),
51                  cl::init(false), cl::Hidden);
52
53namespace {
54
55class ARMFastISel : public FastISel {
56
57  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
58  /// make the right decision when generating code for different targets.
59  const ARMSubtarget *Subtarget;
60  const TargetMachine &TM;
61  const TargetInstrInfo &TII;
62  const TargetLowering &TLI;
63  ARMFunctionInfo *AFI;
64
65  // Convenience variables to avoid some queries.
66  bool isThumb;
67  LLVMContext *Context;
68
69  public:
70    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
71    : FastISel(funcInfo),
72      TM(funcInfo.MF->getTarget()),
73      TII(*TM.getInstrInfo()),
74      TLI(*TM.getTargetLowering()) {
75      Subtarget = &TM.getSubtarget<ARMSubtarget>();
76      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
77      isThumb = AFI->isThumbFunction();
78      Context = &funcInfo.Fn->getContext();
79    }
80
81    // Code from FastISel.cpp.
82    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
83                                   const TargetRegisterClass *RC);
84    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
85                                    const TargetRegisterClass *RC,
86                                    unsigned Op0, bool Op0IsKill);
87    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
88                                     const TargetRegisterClass *RC,
89                                     unsigned Op0, bool Op0IsKill,
90                                     unsigned Op1, bool Op1IsKill);
91    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
92                                     const TargetRegisterClass *RC,
93                                     unsigned Op0, bool Op0IsKill,
94                                     uint64_t Imm);
95    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
96                                     const TargetRegisterClass *RC,
97                                     unsigned Op0, bool Op0IsKill,
98                                     const ConstantFP *FPImm);
99    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
100                                    const TargetRegisterClass *RC,
101                                    uint64_t Imm);
102    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
103                                      const TargetRegisterClass *RC,
104                                      unsigned Op0, bool Op0IsKill,
105                                      unsigned Op1, bool Op1IsKill,
106                                      uint64_t Imm);
107    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
108                                                unsigned Op0, bool Op0IsKill,
109                                                uint32_t Idx);
110
111    // Backend specific FastISel code.
112    virtual bool TargetSelectInstruction(const Instruction *I);
113    virtual unsigned TargetMaterializeConstant(const Constant *C);
114    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
115
116  #include "ARMGenFastISel.inc"
117
118    // Instruction selection routines.
119  private:
120    virtual bool SelectLoad(const Instruction *I);
121    virtual bool SelectStore(const Instruction *I);
122    virtual bool SelectBranch(const Instruction *I);
123    virtual bool SelectCmp(const Instruction *I);
124    virtual bool SelectFPExt(const Instruction *I);
125    virtual bool SelectFPTrunc(const Instruction *I);
126    virtual bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
127    virtual bool SelectSIToFP(const Instruction *I);
128    virtual bool SelectFPToSI(const Instruction *I);
129    virtual bool SelectSDiv(const Instruction *I);
130    virtual bool SelectSRem(const Instruction *I);
131    virtual bool SelectCall(const Instruction *I);
132    virtual bool SelectSelect(const Instruction *I);
133
134    // Utility routines.
135  private:
136    bool isTypeLegal(const Type *Ty, EVT &VT);
137    bool isLoadTypeLegal(const Type *Ty, EVT &VT);
138    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, unsigned Reg, int Offset);
139    bool ARMEmitStore(EVT VT, unsigned SrcReg, unsigned Reg, int Offset);
140    bool ARMLoadAlloca(const Instruction *I, EVT VT);
141    bool ARMStoreAlloca(const Instruction *I, unsigned SrcReg, EVT VT);
142    bool ARMComputeRegOffset(const Value *Obj, unsigned &Reg, int &Offset);
143    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
144    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
145    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
146    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
147    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
148
149    // Call handling routines.
150  private:
151    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
152    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
153                         SmallVectorImpl<unsigned> &ArgRegs,
154                         SmallVectorImpl<EVT> &ArgVTs,
155                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
156                         SmallVectorImpl<unsigned> &RegArgs,
157                         CallingConv::ID CC,
158                         unsigned &NumBytes);
159    bool FinishCall(EVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
160                    const Instruction *I, CallingConv::ID CC,
161                    unsigned &NumBytes);
162    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
163
164    // OptionalDef handling routines.
165  private:
166    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
167    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
168};
169
170} // end anonymous namespace
171
172#include "ARMGenCallingConv.inc"
173
174// DefinesOptionalPredicate - This is different from DefinesPredicate in that
175// we don't care about implicit defs here, just places we'll need to add a
176// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
177bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
178  const TargetInstrDesc &TID = MI->getDesc();
179  if (!TID.hasOptionalDef())
180    return false;
181
182  // Look to see if our OptionalDef is defining CPSR or CCR.
183  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
184    const MachineOperand &MO = MI->getOperand(i);
185    if (!MO.isReg() || !MO.isDef()) continue;
186    if (MO.getReg() == ARM::CPSR)
187      *CPSR = true;
188  }
189  return true;
190}
191
192// If the machine is predicable go ahead and add the predicate operands, if
193// it needs default CC operands add those.
194const MachineInstrBuilder &
195ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
196  MachineInstr *MI = &*MIB;
197
198  // Do we use a predicate?
199  if (TII.isPredicable(MI))
200    AddDefaultPred(MIB);
201
202  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
203  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
204  bool CPSR = false;
205  if (DefinesOptionalPredicate(MI, &CPSR)) {
206    if (CPSR)
207      AddDefaultT1CC(MIB);
208    else
209      AddDefaultCC(MIB);
210  }
211  return MIB;
212}
213
214unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
215                                    const TargetRegisterClass* RC) {
216  unsigned ResultReg = createResultReg(RC);
217  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
218
219  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
220  return ResultReg;
221}
222
223unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
224                                     const TargetRegisterClass *RC,
225                                     unsigned Op0, bool Op0IsKill) {
226  unsigned ResultReg = createResultReg(RC);
227  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
228
229  if (II.getNumDefs() >= 1)
230    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
231                   .addReg(Op0, Op0IsKill * RegState::Kill));
232  else {
233    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
234                   .addReg(Op0, Op0IsKill * RegState::Kill));
235    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
236                   TII.get(TargetOpcode::COPY), ResultReg)
237                   .addReg(II.ImplicitDefs[0]));
238  }
239  return ResultReg;
240}
241
242unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
243                                      const TargetRegisterClass *RC,
244                                      unsigned Op0, bool Op0IsKill,
245                                      unsigned Op1, bool Op1IsKill) {
246  unsigned ResultReg = createResultReg(RC);
247  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
248
249  if (II.getNumDefs() >= 1)
250    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
251                   .addReg(Op0, Op0IsKill * RegState::Kill)
252                   .addReg(Op1, Op1IsKill * RegState::Kill));
253  else {
254    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
255                   .addReg(Op0, Op0IsKill * RegState::Kill)
256                   .addReg(Op1, Op1IsKill * RegState::Kill));
257    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
258                           TII.get(TargetOpcode::COPY), ResultReg)
259                   .addReg(II.ImplicitDefs[0]));
260  }
261  return ResultReg;
262}
263
264unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
265                                      const TargetRegisterClass *RC,
266                                      unsigned Op0, bool Op0IsKill,
267                                      uint64_t Imm) {
268  unsigned ResultReg = createResultReg(RC);
269  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
270
271  if (II.getNumDefs() >= 1)
272    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
273                   .addReg(Op0, Op0IsKill * RegState::Kill)
274                   .addImm(Imm));
275  else {
276    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
277                   .addReg(Op0, Op0IsKill * RegState::Kill)
278                   .addImm(Imm));
279    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
280                           TII.get(TargetOpcode::COPY), ResultReg)
281                   .addReg(II.ImplicitDefs[0]));
282  }
283  return ResultReg;
284}
285
286unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
287                                      const TargetRegisterClass *RC,
288                                      unsigned Op0, bool Op0IsKill,
289                                      const ConstantFP *FPImm) {
290  unsigned ResultReg = createResultReg(RC);
291  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
292
293  if (II.getNumDefs() >= 1)
294    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
295                   .addReg(Op0, Op0IsKill * RegState::Kill)
296                   .addFPImm(FPImm));
297  else {
298    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
299                   .addReg(Op0, Op0IsKill * RegState::Kill)
300                   .addFPImm(FPImm));
301    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
302                           TII.get(TargetOpcode::COPY), ResultReg)
303                   .addReg(II.ImplicitDefs[0]));
304  }
305  return ResultReg;
306}
307
308unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
309                                       const TargetRegisterClass *RC,
310                                       unsigned Op0, bool Op0IsKill,
311                                       unsigned Op1, bool Op1IsKill,
312                                       uint64_t Imm) {
313  unsigned ResultReg = createResultReg(RC);
314  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
315
316  if (II.getNumDefs() >= 1)
317    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
318                   .addReg(Op0, Op0IsKill * RegState::Kill)
319                   .addReg(Op1, Op1IsKill * RegState::Kill)
320                   .addImm(Imm));
321  else {
322    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
323                   .addReg(Op0, Op0IsKill * RegState::Kill)
324                   .addReg(Op1, Op1IsKill * RegState::Kill)
325                   .addImm(Imm));
326    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
327                           TII.get(TargetOpcode::COPY), ResultReg)
328                   .addReg(II.ImplicitDefs[0]));
329  }
330  return ResultReg;
331}
332
333unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
334                                     const TargetRegisterClass *RC,
335                                     uint64_t Imm) {
336  unsigned ResultReg = createResultReg(RC);
337  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
338
339  if (II.getNumDefs() >= 1)
340    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
341                   .addImm(Imm));
342  else {
343    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
344                   .addImm(Imm));
345    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
346                           TII.get(TargetOpcode::COPY), ResultReg)
347                   .addReg(II.ImplicitDefs[0]));
348  }
349  return ResultReg;
350}
351
352unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
353                                                 unsigned Op0, bool Op0IsKill,
354                                                 uint32_t Idx) {
355  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
356  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
357         "Cannot yet extract from physregs");
358  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
359                         DL, TII.get(TargetOpcode::COPY), ResultReg)
360                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
361  return ResultReg;
362}
363
364// TODO: Don't worry about 64-bit now, but when this is fixed remove the
365// checks from the various callers.
366unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
367  if (VT.getSimpleVT().SimpleTy == MVT::f64) return 0;
368
369  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
370  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
371                          TII.get(ARM::VMOVRS), MoveReg)
372                  .addReg(SrcReg));
373  return MoveReg;
374}
375
376unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
377  if (VT.getSimpleVT().SimpleTy == MVT::i64) return 0;
378
379  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
380  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
381                          TII.get(ARM::VMOVSR), MoveReg)
382                  .addReg(SrcReg));
383  return MoveReg;
384}
385
386// For double width floating point we need to materialize two constants
387// (the high and the low) into integer registers then use a move to get
388// the combined constant into an FP reg.
389unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
390  const APFloat Val = CFP->getValueAPF();
391  bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64;
392
393  // This checks to see if we can use VFP3 instructions to materialize
394  // a constant, otherwise we have to go through the constant pool.
395  if (TLI.isFPImmLegal(Val, VT)) {
396    unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
397    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
398    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
399                            DestReg)
400                    .addFPImm(CFP));
401    return DestReg;
402  }
403
404  // Require VFP2 for loading fp constants.
405  if (!Subtarget->hasVFP2()) return false;
406
407  // MachineConstantPool wants an explicit alignment.
408  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
409  if (Align == 0) {
410    // TODO: Figure out if this is correct.
411    Align = TD.getTypeAllocSize(CFP->getType());
412  }
413  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
414  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
415  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
416
417  // The extra reg is for addrmode5.
418  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
419                          DestReg)
420                  .addConstantPoolIndex(Idx)
421                  .addReg(0));
422  return DestReg;
423}
424
425unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
426
427  // For now 32-bit only.
428  if (VT.getSimpleVT().SimpleTy != MVT::i32) return false;
429
430  // MachineConstantPool wants an explicit alignment.
431  unsigned Align = TD.getPrefTypeAlignment(C->getType());
432  if (Align == 0) {
433    // TODO: Figure out if this is correct.
434    Align = TD.getTypeAllocSize(C->getType());
435  }
436  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
437  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
438
439  if (isThumb)
440    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
441                            TII.get(ARM::t2LDRpci), DestReg)
442                    .addConstantPoolIndex(Idx));
443  else
444    // The extra reg and immediate are for addrmode2.
445    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
446                            TII.get(ARM::LDRcp), DestReg)
447                    .addConstantPoolIndex(Idx)
448                    .addReg(0).addImm(0));
449
450  return DestReg;
451}
452
453unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
454  // For now 32-bit only.
455  if (VT.getSimpleVT().SimpleTy != MVT::i32) return 0;
456
457  Reloc::Model RelocM = TM.getRelocationModel();
458
459  // TODO: No external globals for now.
460  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) return 0;
461
462  // TODO: Need more magic for ARM PIC.
463  if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
464
465  // MachineConstantPool wants an explicit alignment.
466  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
467  if (Align == 0) {
468    // TODO: Figure out if this is correct.
469    Align = TD.getTypeAllocSize(GV->getType());
470  }
471
472  // Grab index.
473  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
474  unsigned Id = AFI->createConstPoolEntryUId();
475  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id,
476                                                       ARMCP::CPValue, PCAdj);
477  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
478
479  // Load value.
480  MachineInstrBuilder MIB;
481  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
482  if (isThumb) {
483    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
484    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
485          .addConstantPoolIndex(Idx);
486    if (RelocM == Reloc::PIC_)
487      MIB.addImm(Id);
488  } else {
489    // The extra reg and immediate are for addrmode2.
490    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
491                  DestReg)
492          .addConstantPoolIndex(Idx)
493          .addReg(0).addImm(0);
494  }
495  AddOptionalDefs(MIB);
496  return DestReg;
497}
498
499unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
500  EVT VT = TLI.getValueType(C->getType(), true);
501
502  // Only handle simple types.
503  if (!VT.isSimple()) return 0;
504
505  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
506    return ARMMaterializeFP(CFP, VT);
507  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
508    return ARMMaterializeGV(GV, VT);
509  else if (isa<ConstantInt>(C))
510    return ARMMaterializeInt(C, VT);
511
512  return 0;
513}
514
515unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
516  // Don't handle dynamic allocas.
517  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
518
519  EVT VT;
520  if (!isTypeLegal(AI->getType(), VT)) return false;
521
522  DenseMap<const AllocaInst*, int>::iterator SI =
523    FuncInfo.StaticAllocaMap.find(AI);
524
525  // This will get lowered later into the correct offsets and registers
526  // via rewriteXFrameIndex.
527  if (SI != FuncInfo.StaticAllocaMap.end()) {
528    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
529    unsigned ResultReg = createResultReg(RC);
530    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
531    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
532                            TII.get(Opc), ResultReg)
533                            .addFrameIndex(SI->second)
534                            .addImm(0));
535    return ResultReg;
536  }
537
538  return 0;
539}
540
541bool ARMFastISel::isTypeLegal(const Type *Ty, EVT &VT) {
542  VT = TLI.getValueType(Ty, true);
543
544  // Only handle simple types.
545  if (VT == MVT::Other || !VT.isSimple()) return false;
546
547  // Handle all legal types, i.e. a register that will directly hold this
548  // value.
549  return TLI.isTypeLegal(VT);
550}
551
552bool ARMFastISel::isLoadTypeLegal(const Type *Ty, EVT &VT) {
553  if (isTypeLegal(Ty, VT)) return true;
554
555  // If this is a type than can be sign or zero-extended to a basic operation
556  // go ahead and accept it now.
557  if (VT == MVT::i8 || VT == MVT::i16)
558    return true;
559
560  return false;
561}
562
563// Computes the Reg+Offset to get to an object.
564bool ARMFastISel::ARMComputeRegOffset(const Value *Obj, unsigned &Reg,
565                                      int &Offset) {
566  // Some boilerplate from the X86 FastISel.
567  const User *U = NULL;
568  unsigned Opcode = Instruction::UserOp1;
569  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
570    // Don't walk into other basic blocks; it's possible we haven't
571    // visited them yet, so the instructions may not yet be assigned
572    // virtual registers.
573    if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB)
574      return false;
575    Opcode = I->getOpcode();
576    U = I;
577  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
578    Opcode = C->getOpcode();
579    U = C;
580  }
581
582  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
583    if (Ty->getAddressSpace() > 255)
584      // Fast instruction selection doesn't support the special
585      // address spaces.
586      return false;
587
588  switch (Opcode) {
589    default:
590    break;
591    case Instruction::Alloca: {
592      assert(false && "Alloca should have been handled earlier!");
593      return false;
594    }
595  }
596
597  // FIXME: Handle global variables.
598  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
599    (void)GV;
600    return false;
601  }
602
603  // Try to get this in a register if nothing else has worked.
604  Reg = getRegForValue(Obj);
605  if (Reg == 0) return false;
606
607  // Since the offset may be too large for the load instruction
608  // get the reg+offset into a register.
609  // TODO: Verify the additions work, otherwise we'll need to add the
610  // offset instead of 0 to the instructions and do all sorts of operand
611  // munging.
612  // TODO: Optimize this somewhat.
613  if (Offset != 0) {
614    ARMCC::CondCodes Pred = ARMCC::AL;
615    unsigned PredReg = 0;
616
617    if (!isThumb)
618      emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
619                              Reg, Reg, Offset, Pred, PredReg,
620                              static_cast<const ARMBaseInstrInfo&>(TII));
621    else {
622      assert(AFI->isThumb2Function());
623      emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
624                             Reg, Reg, Offset, Pred, PredReg,
625                             static_cast<const ARMBaseInstrInfo&>(TII));
626    }
627  }
628  return true;
629}
630
631bool ARMFastISel::ARMLoadAlloca(const Instruction *I, EVT VT) {
632  Value *Op0 = I->getOperand(0);
633
634  // Promote load/store types.
635  if (VT == MVT::i8 || VT == MVT::i16) VT = MVT::i32;
636
637  // Verify it's an alloca.
638  if (const AllocaInst *AI = dyn_cast<AllocaInst>(Op0)) {
639    DenseMap<const AllocaInst*, int>::iterator SI =
640      FuncInfo.StaticAllocaMap.find(AI);
641
642    if (SI != FuncInfo.StaticAllocaMap.end()) {
643      TargetRegisterClass* RC = TLI.getRegClassFor(VT);
644      unsigned ResultReg = createResultReg(RC);
645      TII.loadRegFromStackSlot(*FuncInfo.MBB, *FuncInfo.InsertPt,
646                               ResultReg, SI->second, RC,
647                               TM.getRegisterInfo());
648      UpdateValueMap(I, ResultReg);
649      return true;
650    }
651  }
652  return false;
653}
654
655bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg,
656                              unsigned Reg, int Offset) {
657
658  assert(VT.isSimple() && "Non-simple types are invalid here!");
659  unsigned Opc;
660  TargetRegisterClass *RC;
661  bool isFloat = false;
662  switch (VT.getSimpleVT().SimpleTy) {
663    default:
664      // This is mostly going to be Neon/vector support.
665      return false;
666    case MVT::i16:
667      Opc = isThumb ? ARM::t2LDRHi8 : ARM::LDRH;
668      RC = ARM::GPRRegisterClass;
669      VT = MVT::i32;
670      break;
671    case MVT::i8:
672      Opc = isThumb ? ARM::t2LDRBi8 : ARM::LDRB;
673      RC = ARM::GPRRegisterClass;
674      VT = MVT::i32;
675      break;
676    case MVT::i32:
677      Opc = isThumb ? ARM::t2LDRi8 : ARM::LDR;
678      RC = ARM::GPRRegisterClass;
679      break;
680    case MVT::f32:
681      Opc = ARM::VLDRS;
682      RC = TLI.getRegClassFor(VT);
683      isFloat = true;
684      break;
685    case MVT::f64:
686      Opc = ARM::VLDRD;
687      RC = TLI.getRegClassFor(VT);
688      isFloat = true;
689      break;
690  }
691
692  ResultReg = createResultReg(RC);
693
694  // For now with the additions above the offset should be zero - thus we
695  // can always fit into an i8.
696  assert(Offset == 0 && "Offset not zero!");
697
698  // The thumb and floating point instructions both take 2 operands, ARM takes
699  // another register.
700  if (isFloat || isThumb)
701    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
702                            TII.get(Opc), ResultReg)
703                    .addReg(Reg).addImm(Offset));
704  else
705    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
706                            TII.get(Opc), ResultReg)
707                    .addReg(Reg).addReg(0).addImm(Offset));
708  return true;
709}
710
711bool ARMFastISel::SelectLoad(const Instruction *I) {
712  // Verify we have a legal type before going any further.
713  EVT VT;
714  if (!isLoadTypeLegal(I->getType(), VT))
715    return false;
716
717  // If we're an alloca we know we have a frame index and can emit the load
718  // directly in short order.
719  if (ARMLoadAlloca(I, VT))
720    return true;
721
722  // Our register and offset with innocuous defaults.
723  unsigned Reg = 0;
724  int Offset = 0;
725
726  // See if we can handle this as Reg + Offset
727  if (!ARMComputeRegOffset(I->getOperand(0), Reg, Offset))
728    return false;
729
730  unsigned ResultReg;
731  if (!ARMEmitLoad(VT, ResultReg, Reg, Offset /* 0 */)) return false;
732
733  UpdateValueMap(I, ResultReg);
734  return true;
735}
736
737bool ARMFastISel::ARMStoreAlloca(const Instruction *I, unsigned SrcReg, EVT VT){
738  Value *Op1 = I->getOperand(1);
739
740  // Promote load/store types.
741  if (VT == MVT::i8 || VT == MVT::i16) VT = MVT::i32;
742
743  // Verify it's an alloca.
744  if (const AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
745    DenseMap<const AllocaInst*, int>::iterator SI =
746      FuncInfo.StaticAllocaMap.find(AI);
747
748    if (SI != FuncInfo.StaticAllocaMap.end()) {
749      TargetRegisterClass* RC = TLI.getRegClassFor(VT);
750      assert(SrcReg != 0 && "Nothing to store!");
751      TII.storeRegToStackSlot(*FuncInfo.MBB, *FuncInfo.InsertPt,
752                              SrcReg, true /*isKill*/, SI->second, RC,
753                              TM.getRegisterInfo());
754      return true;
755    }
756  }
757  return false;
758}
759
760bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg,
761                               unsigned DstReg, int Offset) {
762  unsigned StrOpc;
763  bool isFloat = false;
764  switch (VT.getSimpleVT().SimpleTy) {
765    default: return false;
766    case MVT::i1:
767    case MVT::i8: StrOpc = isThumb ? ARM::t2STRBi8 : ARM::STRB; break;
768    case MVT::i16: StrOpc = isThumb ? ARM::t2STRHi8 : ARM::STRH; break;
769    case MVT::i32: StrOpc = isThumb ? ARM::t2STRi8 : ARM::STR; break;
770    case MVT::f32:
771      if (!Subtarget->hasVFP2()) return false;
772      StrOpc = ARM::VSTRS;
773      isFloat = true;
774      break;
775    case MVT::f64:
776      if (!Subtarget->hasVFP2()) return false;
777      StrOpc = ARM::VSTRD;
778      isFloat = true;
779      break;
780  }
781
782  // The thumb addressing mode has operands swapped from the arm addressing
783  // mode, the floating point one only has two operands.
784  if (isFloat || isThumb)
785    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
786                            TII.get(StrOpc))
787                    .addReg(SrcReg).addReg(DstReg).addImm(Offset));
788  else
789    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
790                            TII.get(StrOpc))
791                    .addReg(SrcReg).addReg(DstReg).addReg(0).addImm(Offset));
792
793  return true;
794}
795
796bool ARMFastISel::SelectStore(const Instruction *I) {
797  Value *Op0 = I->getOperand(0);
798  unsigned SrcReg = 0;
799
800  // Yay type legalization
801  EVT VT;
802  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
803    return false;
804
805  // Get the value to be stored into a register.
806  SrcReg = getRegForValue(Op0);
807  if (SrcReg == 0)
808    return false;
809
810  // If we're an alloca we know we have a frame index and can emit the store
811  // quickly.
812  if (ARMStoreAlloca(I, SrcReg, VT))
813    return true;
814
815  // Our register and offset with innocuous defaults.
816  unsigned Reg = 0;
817  int Offset = 0;
818
819  // See if we can handle this as Reg + Offset
820  if (!ARMComputeRegOffset(I->getOperand(1), Reg, Offset))
821    return false;
822
823  if (!ARMEmitStore(VT, SrcReg, Reg, Offset /* 0 */)) return false;
824
825  return true;
826}
827
828static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
829  switch (Pred) {
830    // Needs two compares...
831    case CmpInst::FCMP_ONE:
832    case CmpInst::FCMP_UEQ:
833    default:
834      assert(false && "Unhandled CmpInst::Predicate!");
835      return ARMCC::AL;
836    case CmpInst::ICMP_EQ:
837    case CmpInst::FCMP_OEQ:
838      return ARMCC::EQ;
839    case CmpInst::ICMP_SGT:
840    case CmpInst::FCMP_OGT:
841      return ARMCC::GT;
842    case CmpInst::ICMP_SGE:
843    case CmpInst::FCMP_OGE:
844      return ARMCC::GE;
845    case CmpInst::ICMP_UGT:
846    case CmpInst::FCMP_UGT:
847      return ARMCC::HI;
848    case CmpInst::FCMP_OLT:
849      return ARMCC::MI;
850    case CmpInst::ICMP_ULE:
851    case CmpInst::FCMP_OLE:
852      return ARMCC::LS;
853    case CmpInst::FCMP_ORD:
854      return ARMCC::VC;
855    case CmpInst::FCMP_UNO:
856      return ARMCC::VS;
857    case CmpInst::FCMP_UGE:
858      return ARMCC::PL;
859    case CmpInst::ICMP_SLT:
860    case CmpInst::FCMP_ULT:
861      return ARMCC::LT;
862    case CmpInst::ICMP_SLE:
863    case CmpInst::FCMP_ULE:
864      return ARMCC::LE;
865    case CmpInst::FCMP_UNE:
866    case CmpInst::ICMP_NE:
867      return ARMCC::NE;
868    case CmpInst::ICMP_UGE:
869      return ARMCC::HS;
870    case CmpInst::ICMP_ULT:
871      return ARMCC::LO;
872  }
873}
874
875bool ARMFastISel::SelectBranch(const Instruction *I) {
876  const BranchInst *BI = cast<BranchInst>(I);
877  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
878  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
879
880  // Simple branch support.
881  // TODO: Try to avoid the re-computation in some places.
882  unsigned CondReg = getRegForValue(BI->getCondition());
883  if (CondReg == 0) return false;
884
885  // Re-set the flags just in case.
886  unsigned CmpOpc = isThumb ? ARM::t2CMPri : ARM::CMPri;
887  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
888                  .addReg(CondReg).addImm(1));
889
890  unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
891  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
892                  .addMBB(TBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
893  FastEmitBranch(FBB, DL);
894  FuncInfo.MBB->addSuccessor(TBB);
895  return true;
896}
897
898bool ARMFastISel::SelectCmp(const Instruction *I) {
899  const CmpInst *CI = cast<CmpInst>(I);
900
901  EVT VT;
902  const Type *Ty = CI->getOperand(0)->getType();
903  if (!isTypeLegal(Ty, VT))
904    return false;
905
906  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
907  if (isFloat && !Subtarget->hasVFP2())
908    return false;
909
910  unsigned CmpOpc;
911  unsigned CondReg;
912  switch (VT.getSimpleVT().SimpleTy) {
913    default: return false;
914    // TODO: Verify compares.
915    case MVT::f32:
916      CmpOpc = ARM::VCMPES;
917      CondReg = ARM::FPSCR;
918      break;
919    case MVT::f64:
920      CmpOpc = ARM::VCMPED;
921      CondReg = ARM::FPSCR;
922      break;
923    case MVT::i32:
924      CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
925      CondReg = ARM::CPSR;
926      break;
927  }
928
929  // Get the compare predicate.
930  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
931
932  // We may not handle every CC for now.
933  if (ARMPred == ARMCC::AL) return false;
934
935  unsigned Arg1 = getRegForValue(CI->getOperand(0));
936  if (Arg1 == 0) return false;
937
938  unsigned Arg2 = getRegForValue(CI->getOperand(1));
939  if (Arg2 == 0) return false;
940
941  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
942                  .addReg(Arg1).addReg(Arg2));
943
944  // For floating point we need to move the result to a comparison register
945  // that we can then use for branches.
946  if (isFloat)
947    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
948                            TII.get(ARM::FMSTAT)));
949
950  // Now set a register based on the comparison. Explicitly set the predicates
951  // here.
952  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
953  TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
954                                    : ARM::GPRRegisterClass;
955  unsigned DestReg = createResultReg(RC);
956  Constant *Zero
957    = ConstantInt::get(Type::getInt32Ty(*Context), 0);
958  unsigned ZeroReg = TargetMaterializeConstant(Zero);
959  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
960          .addReg(ZeroReg).addImm(1)
961          .addImm(ARMPred).addReg(CondReg);
962
963  UpdateValueMap(I, DestReg);
964  return true;
965}
966
967bool ARMFastISel::SelectFPExt(const Instruction *I) {
968  // Make sure we have VFP and that we're extending float to double.
969  if (!Subtarget->hasVFP2()) return false;
970
971  Value *V = I->getOperand(0);
972  if (!I->getType()->isDoubleTy() ||
973      !V->getType()->isFloatTy()) return false;
974
975  unsigned Op = getRegForValue(V);
976  if (Op == 0) return false;
977
978  unsigned Result = createResultReg(ARM::DPRRegisterClass);
979  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
980                          TII.get(ARM::VCVTDS), Result)
981                  .addReg(Op));
982  UpdateValueMap(I, Result);
983  return true;
984}
985
986bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
987  // Make sure we have VFP and that we're truncating double to float.
988  if (!Subtarget->hasVFP2()) return false;
989
990  Value *V = I->getOperand(0);
991  if (!(I->getType()->isFloatTy() &&
992        V->getType()->isDoubleTy())) return false;
993
994  unsigned Op = getRegForValue(V);
995  if (Op == 0) return false;
996
997  unsigned Result = createResultReg(ARM::SPRRegisterClass);
998  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
999                          TII.get(ARM::VCVTSD), Result)
1000                  .addReg(Op));
1001  UpdateValueMap(I, Result);
1002  return true;
1003}
1004
1005bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1006  // Make sure we have VFP.
1007  if (!Subtarget->hasVFP2()) return false;
1008
1009  EVT DstVT;
1010  const Type *Ty = I->getType();
1011  if (!isTypeLegal(Ty, DstVT))
1012    return false;
1013
1014  unsigned Op = getRegForValue(I->getOperand(0));
1015  if (Op == 0) return false;
1016
1017  // The conversion routine works on fp-reg to fp-reg and the operand above
1018  // was an integer, move it to the fp registers if possible.
1019  unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1020  if (FP == 0) return false;
1021
1022  unsigned Opc;
1023  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1024  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1025  else return 0;
1026
1027  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1028  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1029                          ResultReg)
1030                  .addReg(FP));
1031  UpdateValueMap(I, ResultReg);
1032  return true;
1033}
1034
1035bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1036  // Make sure we have VFP.
1037  if (!Subtarget->hasVFP2()) return false;
1038
1039  EVT DstVT;
1040  const Type *RetTy = I->getType();
1041  if (!isTypeLegal(RetTy, DstVT))
1042    return false;
1043
1044  unsigned Op = getRegForValue(I->getOperand(0));
1045  if (Op == 0) return false;
1046
1047  unsigned Opc;
1048  const Type *OpTy = I->getOperand(0)->getType();
1049  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1050  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1051  else return 0;
1052
1053  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1054  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1055  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1056                          ResultReg)
1057                  .addReg(Op));
1058
1059  // This result needs to be in an integer register, but the conversion only
1060  // takes place in fp-regs.
1061  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1062  if (IntReg == 0) return false;
1063
1064  UpdateValueMap(I, IntReg);
1065  return true;
1066}
1067
1068bool ARMFastISel::SelectSelect(const Instruction *I) {
1069  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1070  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1071    return false;
1072
1073  // Things need to be register sized for register moves.
1074  if (VT.getSimpleVT().SimpleTy != MVT::i32) return false;
1075  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1076
1077  unsigned CondReg = getRegForValue(I->getOperand(0));
1078  if (CondReg == 0) return false;
1079  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1080  if (Op1Reg == 0) return false;
1081  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1082  if (Op2Reg == 0) return false;
1083
1084  unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1085  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1086                  .addReg(CondReg).addImm(1));
1087  unsigned ResultReg = createResultReg(RC);
1088  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1089  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1090    .addReg(Op1Reg).addReg(Op2Reg)
1091    .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1092  UpdateValueMap(I, ResultReg);
1093  return true;
1094}
1095
1096bool ARMFastISel::SelectSDiv(const Instruction *I) {
1097  EVT VT;
1098  const Type *Ty = I->getType();
1099  if (!isTypeLegal(Ty, VT))
1100    return false;
1101
1102  // If we have integer div support we should have selected this automagically.
1103  // In case we have a real miss go ahead and return false and we'll pick
1104  // it up later.
1105  if (Subtarget->hasDivide()) return false;
1106
1107  // Otherwise emit a libcall.
1108  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1109  if (VT == MVT::i8)
1110    LC = RTLIB::SDIV_I8;
1111  else if (VT == MVT::i16)
1112    LC = RTLIB::SDIV_I16;
1113  else if (VT == MVT::i32)
1114    LC = RTLIB::SDIV_I32;
1115  else if (VT == MVT::i64)
1116    LC = RTLIB::SDIV_I64;
1117  else if (VT == MVT::i128)
1118    LC = RTLIB::SDIV_I128;
1119  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1120
1121  return ARMEmitLibcall(I, LC);
1122}
1123
1124bool ARMFastISel::SelectSRem(const Instruction *I) {
1125  EVT VT;
1126  const Type *Ty = I->getType();
1127  if (!isTypeLegal(Ty, VT))
1128    return false;
1129
1130  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1131  if (VT == MVT::i8)
1132    LC = RTLIB::SREM_I8;
1133  else if (VT == MVT::i16)
1134    LC = RTLIB::SREM_I16;
1135  else if (VT == MVT::i32)
1136    LC = RTLIB::SREM_I32;
1137  else if (VT == MVT::i64)
1138    LC = RTLIB::SREM_I64;
1139  else if (VT == MVT::i128)
1140    LC = RTLIB::SREM_I128;
1141  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1142
1143  return ARMEmitLibcall(I, LC);
1144}
1145
1146bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1147  EVT VT  = TLI.getValueType(I->getType(), true);
1148
1149  // We can get here in the case when we want to use NEON for our fp
1150  // operations, but can't figure out how to. Just use the vfp instructions
1151  // if we have them.
1152  // FIXME: It'd be nice to use NEON instructions.
1153  const Type *Ty = I->getType();
1154  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1155  if (isFloat && !Subtarget->hasVFP2())
1156    return false;
1157
1158  unsigned Op1 = getRegForValue(I->getOperand(0));
1159  if (Op1 == 0) return false;
1160
1161  unsigned Op2 = getRegForValue(I->getOperand(1));
1162  if (Op2 == 0) return false;
1163
1164  unsigned Opc;
1165  bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64 ||
1166                 VT.getSimpleVT().SimpleTy == MVT::i64;
1167  switch (ISDOpcode) {
1168    default: return false;
1169    case ISD::FADD:
1170      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1171      break;
1172    case ISD::FSUB:
1173      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1174      break;
1175    case ISD::FMUL:
1176      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1177      break;
1178  }
1179  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1180  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1181                          TII.get(Opc), ResultReg)
1182                  .addReg(Op1).addReg(Op2));
1183  UpdateValueMap(I, ResultReg);
1184  return true;
1185}
1186
1187// Call Handling Code
1188
1189// This is largely taken directly from CCAssignFnForNode - we don't support
1190// varargs in FastISel so that part has been removed.
1191// TODO: We may not support all of this.
1192CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1193  switch (CC) {
1194  default:
1195    llvm_unreachable("Unsupported calling convention");
1196  case CallingConv::C:
1197  case CallingConv::Fast:
1198    // Use target triple & subtarget features to do actual dispatch.
1199    if (Subtarget->isAAPCS_ABI()) {
1200      if (Subtarget->hasVFP2() &&
1201          FloatABIType == FloatABI::Hard)
1202        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1203      else
1204        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1205    } else
1206        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1207  case CallingConv::ARM_AAPCS_VFP:
1208    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1209  case CallingConv::ARM_AAPCS:
1210    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1211  case CallingConv::ARM_APCS:
1212    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1213  }
1214}
1215
1216bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1217                                  SmallVectorImpl<unsigned> &ArgRegs,
1218                                  SmallVectorImpl<EVT> &ArgVTs,
1219                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1220                                  SmallVectorImpl<unsigned> &RegArgs,
1221                                  CallingConv::ID CC,
1222                                  unsigned &NumBytes) {
1223  SmallVector<CCValAssign, 16> ArgLocs;
1224  CCState CCInfo(CC, false, TM, ArgLocs, *Context);
1225  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1226
1227  // Get a count of how many bytes are to be pushed on the stack.
1228  NumBytes = CCInfo.getNextStackOffset();
1229
1230  // Issue CALLSEQ_START
1231  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1232  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown))
1233          .addImm(NumBytes);
1234
1235  // Process the args.
1236  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1237    CCValAssign &VA = ArgLocs[i];
1238    unsigned Arg = ArgRegs[VA.getValNo()];
1239    EVT ArgVT = ArgVTs[VA.getValNo()];
1240
1241    // Handle arg promotion, etc.
1242    switch (VA.getLocInfo()) {
1243      case CCValAssign::Full: break;
1244      default:
1245      // TODO: Handle arg promotion.
1246      return false;
1247    }
1248
1249    // Now copy/store arg to correct locations.
1250    if (VA.isRegLoc()) {
1251      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1252              VA.getLocReg())
1253      .addReg(Arg);
1254      RegArgs.push_back(VA.getLocReg());
1255    } else {
1256      // Need to store
1257      return false;
1258    }
1259  }
1260
1261  return true;
1262}
1263
1264bool ARMFastISel::FinishCall(EVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1265                             const Instruction *I, CallingConv::ID CC,
1266                             unsigned &NumBytes) {
1267  // Issue CALLSEQ_END
1268  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1269  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
1270          .addImm(NumBytes).addImm(0);
1271
1272  // Now the return value.
1273  if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
1274    SmallVector<CCValAssign, 16> RVLocs;
1275    CCState CCInfo(CC, false, TM, RVLocs, *Context);
1276    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1277
1278    // Copy all of the result registers out of their specified physreg.
1279    if (RVLocs.size() == 2 && RetVT.getSimpleVT().SimpleTy == MVT::f64) {
1280      // For this move we copy into two registers and then move into the
1281      // double fp reg we want.
1282      // TODO: Are the copies necessary?
1283      TargetRegisterClass *CopyRC = TLI.getRegClassFor(MVT::i32);
1284      unsigned Copy1 = createResultReg(CopyRC);
1285      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1286              Copy1).addReg(RVLocs[0].getLocReg());
1287      UsedRegs.push_back(RVLocs[0].getLocReg());
1288
1289      unsigned Copy2 = createResultReg(CopyRC);
1290      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1291              Copy2).addReg(RVLocs[1].getLocReg());
1292      UsedRegs.push_back(RVLocs[1].getLocReg());
1293
1294      EVT DestVT = RVLocs[0].getValVT();
1295      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1296      unsigned ResultReg = createResultReg(DstRC);
1297      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1298                              TII.get(ARM::VMOVDRR), ResultReg)
1299                      .addReg(Copy1).addReg(Copy2));
1300
1301      // Finally update the result.
1302      UpdateValueMap(I, ResultReg);
1303    } else {
1304      assert(RVLocs.size() == 1 && "Can't handle non-double multi-reg retvals!");
1305      EVT CopyVT = RVLocs[0].getValVT();
1306      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1307
1308      unsigned ResultReg = createResultReg(DstRC);
1309      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1310              ResultReg).addReg(RVLocs[0].getLocReg());
1311      UsedRegs.push_back(RVLocs[0].getLocReg());
1312
1313      // Finally update the result.
1314      UpdateValueMap(I, ResultReg);
1315    }
1316  }
1317
1318  return true;
1319}
1320
1321// A quick function that will emit a call for a named libcall in F with the
1322// vector of passed arguments for the Instruction in I. We can assume that we
1323// can emit a call for any libcall we can produce. This is an abridged version
1324// of the full call infrastructure since we won't need to worry about things
1325// like computed function pointers or strange arguments at call sites.
1326// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1327// with X86.
1328bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1329  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1330
1331  // Handle *simple* calls for now.
1332  const Type *RetTy = I->getType();
1333  EVT RetVT;
1334  if (RetTy->isVoidTy())
1335    RetVT = MVT::isVoid;
1336  else if (!isTypeLegal(RetTy, RetVT))
1337    return false;
1338
1339  // For now we're using BLX etc on the assumption that we have v5t ops.
1340  if (!Subtarget->hasV5TOps()) return false;
1341
1342  // Set up the argument vectors.
1343  SmallVector<Value*, 8> Args;
1344  SmallVector<unsigned, 8> ArgRegs;
1345  SmallVector<EVT, 8> ArgVTs;
1346  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1347  Args.reserve(I->getNumOperands());
1348  ArgRegs.reserve(I->getNumOperands());
1349  ArgVTs.reserve(I->getNumOperands());
1350  ArgFlags.reserve(I->getNumOperands());
1351  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1352    Value *Op = I->getOperand(i);
1353    unsigned Arg = getRegForValue(Op);
1354    if (Arg == 0) return false;
1355
1356    const Type *ArgTy = Op->getType();
1357    EVT ArgVT;
1358    if (!isTypeLegal(ArgTy, ArgVT)) return false;
1359
1360    ISD::ArgFlagsTy Flags;
1361    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1362    Flags.setOrigAlign(OriginalAlignment);
1363
1364    Args.push_back(Op);
1365    ArgRegs.push_back(Arg);
1366    ArgVTs.push_back(ArgVT);
1367    ArgFlags.push_back(Flags);
1368  }
1369
1370  // Handle the arguments now that we've gotten them.
1371  SmallVector<unsigned, 4> RegArgs;
1372  unsigned NumBytes;
1373  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1374    return false;
1375
1376  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1377  // TODO: Turn this into the table of arm call ops.
1378  MachineInstrBuilder MIB;
1379  unsigned CallOpc;
1380  if(isThumb)
1381    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1382  else
1383    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1384  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1385        .addExternalSymbol(TLI.getLibcallName(Call));
1386
1387  // Add implicit physical register uses to the call.
1388  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1389    MIB.addReg(RegArgs[i]);
1390
1391  // Finish off the call including any return values.
1392  SmallVector<unsigned, 4> UsedRegs;
1393  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1394
1395  // Set all unused physreg defs as dead.
1396  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1397
1398  return true;
1399}
1400
1401bool ARMFastISel::SelectCall(const Instruction *I) {
1402  const CallInst *CI = cast<CallInst>(I);
1403  const Value *Callee = CI->getCalledValue();
1404
1405  // Can't handle inline asm or worry about intrinsics yet.
1406  if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1407
1408  // Only handle global variable Callees that are direct calls.
1409  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1410  if (!GV || Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()))
1411    return false;
1412
1413  // Check the calling convention.
1414  ImmutableCallSite CS(CI);
1415  CallingConv::ID CC = CS.getCallingConv();
1416  // TODO: Avoid some calling conventions?
1417  if (CC != CallingConv::C) {
1418    // errs() << "Can't handle calling convention: " << CC << "\n";
1419    return false;
1420  }
1421
1422  // Let SDISel handle vararg functions.
1423  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1424  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1425  if (FTy->isVarArg())
1426    return false;
1427
1428  // Handle *simple* calls for now.
1429  const Type *RetTy = I->getType();
1430  EVT RetVT;
1431  if (RetTy->isVoidTy())
1432    RetVT = MVT::isVoid;
1433  else if (!isTypeLegal(RetTy, RetVT))
1434    return false;
1435
1436  // For now we're using BLX etc on the assumption that we have v5t ops.
1437  // TODO: Maybe?
1438  if (!Subtarget->hasV5TOps()) return false;
1439
1440  // Set up the argument vectors.
1441  SmallVector<Value*, 8> Args;
1442  SmallVector<unsigned, 8> ArgRegs;
1443  SmallVector<EVT, 8> ArgVTs;
1444  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1445  Args.reserve(CS.arg_size());
1446  ArgRegs.reserve(CS.arg_size());
1447  ArgVTs.reserve(CS.arg_size());
1448  ArgFlags.reserve(CS.arg_size());
1449  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1450       i != e; ++i) {
1451    unsigned Arg = getRegForValue(*i);
1452
1453    if (Arg == 0)
1454      return false;
1455    ISD::ArgFlagsTy Flags;
1456    unsigned AttrInd = i - CS.arg_begin() + 1;
1457    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1458      Flags.setSExt();
1459    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1460      Flags.setZExt();
1461
1462         // FIXME: Only handle *easy* calls for now.
1463    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1464        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1465        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1466        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1467      return false;
1468
1469    const Type *ArgTy = (*i)->getType();
1470    EVT ArgVT;
1471    if (!isTypeLegal(ArgTy, ArgVT))
1472      return false;
1473    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1474    Flags.setOrigAlign(OriginalAlignment);
1475
1476    Args.push_back(*i);
1477    ArgRegs.push_back(Arg);
1478    ArgVTs.push_back(ArgVT);
1479    ArgFlags.push_back(Flags);
1480  }
1481
1482  // Handle the arguments now that we've gotten them.
1483  SmallVector<unsigned, 4> RegArgs;
1484  unsigned NumBytes;
1485  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1486    return false;
1487
1488  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1489  // TODO: Turn this into the table of arm call ops.
1490  MachineInstrBuilder MIB;
1491  unsigned CallOpc;
1492  if(isThumb)
1493    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1494  else
1495    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1496  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1497              .addGlobalAddress(GV, 0, 0);
1498
1499  // Add implicit physical register uses to the call.
1500  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1501    MIB.addReg(RegArgs[i]);
1502
1503  // Finish off the call including any return values.
1504  SmallVector<unsigned, 4> UsedRegs;
1505  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1506
1507  // Set all unused physreg defs as dead.
1508  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1509
1510  return true;
1511
1512}
1513
1514// TODO: SoftFP support.
1515bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
1516  // No Thumb-1 for now.
1517  if (isThumb && !AFI->isThumb2Function()) return false;
1518
1519  switch (I->getOpcode()) {
1520    case Instruction::Load:
1521      return SelectLoad(I);
1522    case Instruction::Store:
1523      return SelectStore(I);
1524    case Instruction::Br:
1525      return SelectBranch(I);
1526    case Instruction::ICmp:
1527    case Instruction::FCmp:
1528      return SelectCmp(I);
1529    case Instruction::FPExt:
1530      return SelectFPExt(I);
1531    case Instruction::FPTrunc:
1532      return SelectFPTrunc(I);
1533    case Instruction::SIToFP:
1534      return SelectSIToFP(I);
1535    case Instruction::FPToSI:
1536      return SelectFPToSI(I);
1537    case Instruction::FAdd:
1538      return SelectBinaryOp(I, ISD::FADD);
1539    case Instruction::FSub:
1540      return SelectBinaryOp(I, ISD::FSUB);
1541    case Instruction::FMul:
1542      return SelectBinaryOp(I, ISD::FMUL);
1543    case Instruction::SDiv:
1544      return SelectSDiv(I);
1545    case Instruction::SRem:
1546      return SelectSRem(I);
1547    case Instruction::Call:
1548      return SelectCall(I);
1549    case Instruction::Select:
1550      return SelectSelect(I);
1551    default: break;
1552  }
1553  return false;
1554}
1555
1556namespace llvm {
1557  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
1558    if (EnableARMFastISel) return new ARMFastISel(funcInfo);
1559    return 0;
1560  }
1561}
1562