PPCAsmPrinter.cpp revision 5dfe3a9c3bd9091f9adecc909665d52bdd4edd8c
1//===-- PPC32/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal
11// representation of machine-dependent LLVM code to Intel-format
12// assembly language. This printer is the output mechanism used
13// by `llc' and `lli -print-machineinstrs' on X86.
14//
15//===----------------------------------------------------------------------===//
16
17#include <set>
18
19#include "PowerPC.h"
20#include "PowerPCInstrInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Module.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineInstr.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Support/Mangler.h"
30#include "Support/Statistic.h"
31#include "Support/StringExtras.h"
32#include "Support/CommandLine.h"
33
34namespace llvm {
35
36namespace {
37  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
38
39  struct Printer : public MachineFunctionPass {
40    /// Output stream on which we're printing assembly code.
41    ///
42    std::ostream &O;
43
44    /// Target machine description which we query for reg. names, data
45    /// layout, etc.
46    ///
47    TargetMachine &TM;
48
49    /// Name-mangler for global names.
50    ///
51    Mangler *Mang;
52    std::set< std::string > Stubs;
53    std::set<std::string> Strings;
54
55    Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
56
57    /// We name each basic block in a Function with a unique number, so
58    /// that we can consistently refer to them later. This is cleared
59    /// at the beginning of each call to runOnMachineFunction().
60    ///
61    typedef std::map<const Value *, unsigned> ValueMapTy;
62    ValueMapTy NumberForBB;
63
64    /// Cache of mangled name for current function. This is
65    /// recalculated at the beginning of each call to
66    /// runOnMachineFunction().
67    ///
68    std::string CurrentFnName;
69
70    virtual const char *getPassName() const {
71      return "PowerPC Assembly Printer";
72    }
73
74    void printMachineInstruction(const MachineInstr *MI);
75    void printOp(const MachineOperand &MO,
76		 bool elideOffsetKeyword = false);
77    void printConstantPool(MachineConstantPool *MCP);
78    bool runOnMachineFunction(MachineFunction &F);
79    bool doInitialization(Module &M);
80    bool doFinalization(Module &M);
81    void emitGlobalConstant(const Constant* CV);
82    void emitConstantValueOnly(const Constant *CV);
83  };
84} // end of anonymous namespace
85
86/// createPPCCodePrinterPass - Returns a pass that prints the X86
87/// assembly code for a MachineFunction to the given output stream,
88/// using the given target machine description.  This should work
89/// regardless of whether the function is in SSA form.
90///
91FunctionPass *createPPCCodePrinterPass(std::ostream &o,TargetMachine &tm){
92  return new Printer(o, tm);
93}
94
95/// isStringCompatible - Can we treat the specified array as a string?
96/// Only if it is an array of ubytes or non-negative sbytes.
97///
98static bool isStringCompatible(const ConstantArray *CVA) {
99  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
100  if (ETy == Type::UByteTy) return true;
101  if (ETy != Type::SByteTy) return false;
102
103  for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
104    if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
105      return false;
106
107  return true;
108}
109
110/// toOctal - Convert the low order bits of X into an octal digit.
111///
112static inline char toOctal(int X) {
113  return (X&7)+'0';
114}
115
116/// getAsCString - Return the specified array as a C compatible
117/// string, only if the predicate isStringCompatible is true.
118///
119static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
120  assert(isStringCompatible(CVA) && "Array is not string compatible!");
121
122  O << "\"";
123  for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
124    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
125
126    if (C == '"') {
127      O << "\\\"";
128    } else if (C == '\\') {
129      O << "\\\\";
130    } else if (isprint(C)) {
131      O << C;
132    } else {
133      switch(C) {
134      case '\b': O << "\\b"; break;
135      case '\f': O << "\\f"; break;
136      case '\n': O << "\\n"; break;
137      case '\r': O << "\\r"; break;
138      case '\t': O << "\\t"; break;
139      default:
140        O << '\\';
141        O << toOctal(C >> 6);
142        O << toOctal(C >> 3);
143        O << toOctal(C >> 0);
144        break;
145      }
146    }
147  }
148  O << "\"";
149}
150
151// Print out the specified constant, without a storage class.  Only the
152// constants valid in constant expressions can occur here.
153void Printer::emitConstantValueOnly(const Constant *CV) {
154  if (CV->isNullValue())
155    O << "0";
156  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
157    assert(CB == ConstantBool::True);
158    O << "1";
159  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
160    O << CI->getValue();
161  else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
162    O << CI->getValue();
163  else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
164    // This is a constant address for a global variable or function.  Use the
165    // name of the variable or function as the address value.
166    O << Mang->getValueName(CPR->getValue());
167  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
168    const TargetData &TD = TM.getTargetData();
169    switch(CE->getOpcode()) {
170    case Instruction::GetElementPtr: {
171      // generate a symbolic expression for the byte address
172      const Constant *ptrVal = CE->getOperand(0);
173      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
174      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
175        O << "(";
176        emitConstantValueOnly(ptrVal);
177        O << ") + " << Offset;
178      } else {
179        emitConstantValueOnly(ptrVal);
180      }
181      break;
182    }
183    case Instruction::Cast: {
184      // Support only non-converting or widening casts for now, that is, ones
185      // that do not involve a change in value.  This assertion is really gross,
186      // and may not even be a complete check.
187      Constant *Op = CE->getOperand(0);
188      const Type *OpTy = Op->getType(), *Ty = CE->getType();
189
190      // Remember, kids, pointers on x86 can be losslessly converted back and
191      // forth into 32-bit or wider integers, regardless of signedness. :-P
192      assert(((isa<PointerType>(OpTy)
193               && (Ty == Type::LongTy || Ty == Type::ULongTy
194                   || Ty == Type::IntTy || Ty == Type::UIntTy))
195              || (isa<PointerType>(Ty)
196                  && (OpTy == Type::LongTy || OpTy == Type::ULongTy
197                      || OpTy == Type::IntTy || OpTy == Type::UIntTy))
198              || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
199                   && OpTy->isLosslesslyConvertibleTo(Ty))))
200             && "FIXME: Don't yet support this kind of constant cast expr");
201      O << "(";
202      emitConstantValueOnly(Op);
203      O << ")";
204      break;
205    }
206    case Instruction::Add:
207      O << "(";
208      emitConstantValueOnly(CE->getOperand(0));
209      O << ") + (";
210      emitConstantValueOnly(CE->getOperand(1));
211      O << ")";
212      break;
213    default:
214      assert(0 && "Unsupported operator!");
215    }
216  } else {
217    assert(0 && "Unknown constant value!");
218  }
219}
220
221// Print a constant value or values, with the appropriate storage class as a
222// prefix.
223void Printer::emitGlobalConstant(const Constant *CV) {
224  const TargetData &TD = TM.getTargetData();
225
226  if (CV->isNullValue()) {
227    O << "\t.space\t " << TD.getTypeSize(CV->getType()) << "\n";
228    return;
229  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
230    if (isStringCompatible(CVA)) {
231      O << ".ascii";
232      printAsCString(O, CVA);
233      O << "\n";
234    } else { // Not a string.  Print the values in successive locations
235      const std::vector<Use> &constValues = CVA->getValues();
236      for (unsigned i=0; i < constValues.size(); i++)
237        emitGlobalConstant(cast<Constant>(constValues[i].get()));
238    }
239    return;
240  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
241    // Print the fields in successive locations. Pad to align if needed!
242    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
243    const std::vector<Use>& constValues = CVS->getValues();
244    unsigned sizeSoFar = 0;
245    for (unsigned i=0, N = constValues.size(); i < N; i++) {
246      const Constant* field = cast<Constant>(constValues[i].get());
247
248      // Check if padding is needed and insert one or more 0s.
249      unsigned fieldSize = TD.getTypeSize(field->getType());
250      unsigned padSize = ((i == N-1? cvsLayout->StructSize
251                           : cvsLayout->MemberOffsets[i+1])
252                          - cvsLayout->MemberOffsets[i]) - fieldSize;
253      sizeSoFar += fieldSize + padSize;
254
255      // Now print the actual field value
256      emitGlobalConstant(field);
257
258      // Insert the field padding unless it's zero bytes...
259      if (padSize)
260        O << "\t.space\t " << padSize << "\n";
261    }
262    assert(sizeSoFar == cvsLayout->StructSize &&
263           "Layout of constant struct may be incorrect!");
264    return;
265  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
266    // FP Constants are printed as integer constants to avoid losing
267    // precision...
268    double Val = CFP->getValue();
269    switch (CFP->getType()->getPrimitiveID()) {
270    default: assert(0 && "Unknown floating point type!");
271    case Type::FloatTyID: {
272      union FU {                            // Abide by C TBAA rules
273        float FVal;
274        unsigned UVal;
275      } U;
276      U.FVal = Val;
277      O << ".long\t" << U.UVal << "\t# float " << Val << "\n";
278      return;
279    }
280    case Type::DoubleTyID: {
281      union DU {                            // Abide by C TBAA rules
282        double FVal;
283        uint64_t UVal;
284        struct {
285        	uint32_t MSWord;
286        	uint32_t LSWord;
287        } T;
288      } U;
289      U.FVal = Val;
290
291      O << ".long\t" << U.T.MSWord << "\t# double most significant word " << Val << "\n";
292      O << ".long\t" << U.T.LSWord << "\t# double least significant word" << Val << "\n";
293      return;
294    }
295    }
296  } else if (CV->getType()->getPrimitiveSize() == 64) {
297    const ConstantInt *CI = dyn_cast<ConstantInt>(CV);
298    if(CI) {
299  	union DU {                            // Abide by C TBAA rules
300        int64_t UVal;
301        struct {
302        	uint32_t MSWord;
303        	uint32_t LSWord;
304        } T;
305      } U;
306      U.UVal = CI->getRawValue();
307
308      O << ".long\t" << U.T.MSWord << "\t# Double-word most significant word " << U.UVal << "\n";
309      O << ".long\t" << U.T.LSWord << "\t# Double-word least significant word" << U.UVal << "\n";
310      return;
311    }
312  }
313
314  const Type *type = CV->getType();
315  O << "\t";
316  switch (type->getPrimitiveID()) {
317  case Type::UByteTyID: case Type::SByteTyID:
318    O << ".byte";
319    break;
320  case Type::UShortTyID: case Type::ShortTyID:
321    O << ".short";
322    break;
323  case Type::BoolTyID:
324  case Type::PointerTyID:
325  case Type::UIntTyID: case Type::IntTyID:
326    O << ".long";
327    break;
328  case Type::ULongTyID: case Type::LongTyID:
329  	assert (0 && "Should have already output double-word constant.");
330  case Type::FloatTyID: case Type::DoubleTyID:
331    assert (0 && "Should have already output floating point constant.");
332  default:
333    assert (0 && "Can't handle printing this type of thing");
334    break;
335  }
336  O << "\t";
337  emitConstantValueOnly(CV);
338  O << "\n";
339}
340
341/// printConstantPool - Print to the current output stream assembly
342/// representations of the constants in the constant pool MCP. This is
343/// used to print out constants which have been "spilled to memory" by
344/// the code generator.
345///
346void Printer::printConstantPool(MachineConstantPool *MCP) {
347  const std::vector<Constant*> &CP = MCP->getConstants();
348  const TargetData &TD = TM.getTargetData();
349
350  if (CP.empty()) return;
351
352  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
353    O << "\t.const\n";
354    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
355      << "\n";
356    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
357      << *CP[i] << "\n";
358    emitGlobalConstant(CP[i]);
359  }
360}
361
362/// runOnMachineFunction - This uses the printMachineInstruction()
363/// method to print assembly for each instruction.
364///
365bool Printer::runOnMachineFunction(MachineFunction &MF) {
366  // BBNumber is used here so that a given Printer will never give two
367  // BBs the same name. (If you have a better way, please let me know!)
368  static unsigned BBNumber = 0;
369
370  O << "\n\n";
371  // What's my mangled name?
372  CurrentFnName = Mang->getValueName(MF.getFunction());
373
374  // Print out constants referenced by the function
375  printConstantPool(MF.getConstantPool());
376
377  // Print out labels for the function.
378  O << "\t.text\n";
379  O << "\t.globl\t" << CurrentFnName << "\n";
380  O << "\t.align 5\n";
381  O << CurrentFnName << ":\n";
382
383  // Number each basic block so that we can consistently refer to them
384  // in PC-relative references.
385  NumberForBB.clear();
386  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
387       I != E; ++I) {
388    NumberForBB[I->getBasicBlock()] = BBNumber++;
389  }
390
391  // Print out code for the function.
392  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
393       I != E; ++I) {
394    // Print a label for the basic block.
395    O << "L" << NumberForBB[I->getBasicBlock()] << ":\t# "
396      << I->getBasicBlock()->getName() << "\n";
397    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
398	 II != E; ++II) {
399      // Print the assembly for the instruction.
400      O << "\t";
401      printMachineInstruction(II);
402    }
403  }
404
405  // We didn't modify anything.
406  return false;
407}
408
409
410
411void Printer::printOp(const MachineOperand &MO,
412		      bool elideOffsetKeyword /* = false */) {
413  const MRegisterInfo &RI = *TM.getRegisterInfo();
414  int new_symbol;
415
416  switch (MO.getType()) {
417  case MachineOperand::MO_VirtualRegister:
418    if (Value *V = MO.getVRegValueOrNull()) {
419      O << "<" << V->getName() << ">";
420      return;
421    }
422    // FALLTHROUGH
423  case MachineOperand::MO_MachineRegister:
424      O << RI.get(MO.getReg()).Name;
425      return;
426
427  case MachineOperand::MO_SignExtendedImmed:
428  case MachineOperand::MO_UnextendedImmed:
429    O << (int)MO.getImmedValue();
430    return;
431  case MachineOperand::MO_MachineBasicBlock: {
432    MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
433    O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
434      << "_" << MBBOp->getNumber () << "\t# "
435      << MBBOp->getBasicBlock ()->getName ();
436    return;
437  }
438  case MachineOperand::MO_PCRelativeDisp:
439    std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs";
440    abort ();
441    return;
442  case MachineOperand::MO_GlobalAddress:
443    if (!elideOffsetKeyword) {
444		if(isa<Function>(MO.getGlobal())) {
445			Stubs.insert(Mang->getValueName(MO.getGlobal()));
446			O << "L" << Mang->getValueName(MO.getGlobal()) << "$stub";
447		} else {
448			O << Mang->getValueName(MO.getGlobal());
449		}
450    }
451    return;
452  case MachineOperand::MO_ExternalSymbol:
453    O << MO.getSymbolName();
454    return;
455  default:
456    O << "<unknown operand type>"; return;
457  }
458}
459
460#if 0
461static inline
462unsigned int ValidOpcodes(const MachineInstr *MI, unsigned int ArgType[5]) {
463	int i;
464	unsigned int retval = 1;
465
466	for(i = 0; i<5; i++) {
467		switch(ArgType[i]) {
468			case none:
469				break;
470			case Gpr:
471			case Gpr0:
472				Type::UIntTy
473			case Simm16:
474			case Zimm16:
475			case PCRelimm24:
476			case Imm24:
477			case Imm5:
478			case PCRelimm14:
479			case Imm14:
480			case Imm2:
481			case Crf:
482			case Imm3:
483			case Imm1:
484			case Fpr:
485			case Imm4:
486			case Imm8:
487			case Disimm16:
488			case Spr:
489			case Sgr:
490	};
491
492		}
493	}
494}
495#endif
496
497/// printMachineInstruction -- Print out a single PPC32 LLVM instruction
498/// MI in Darwin syntax to the current output stream.
499///
500void Printer::printMachineInstruction(const MachineInstr *MI) {
501  unsigned Opcode = MI->getOpcode();
502  const TargetInstrInfo &TII = *TM.getInstrInfo();
503  const TargetInstrDescriptor &Desc = TII.get(Opcode);
504  unsigned int i;
505
506  unsigned int ArgCount = Desc.TSFlags & PPC32II::ArgCountMask;
507  unsigned int ArgType[5];
508
509
510  ArgType[0] = (Desc.TSFlags>>PPC32II::Arg0TypeShift) & PPC32II::ArgTypeMask;
511  ArgType[1] = (Desc.TSFlags>>PPC32II::Arg1TypeShift) & PPC32II::ArgTypeMask;
512  ArgType[2] = (Desc.TSFlags>>PPC32II::Arg2TypeShift) & PPC32II::ArgTypeMask;
513  ArgType[3] = (Desc.TSFlags>>PPC32II::Arg3TypeShift) & PPC32II::ArgTypeMask;
514  ArgType[4] = (Desc.TSFlags>>PPC32II::Arg4TypeShift) & PPC32II::ArgTypeMask;
515
516  assert ( ((Desc.TSFlags & PPC32II::VMX) == 0) && "Instruction requires VMX support");
517  assert ( ((Desc.TSFlags & PPC32II::PPC64) == 0) && "Instruction requires 64 bit support");
518  //assert ( ValidOpcodes(MI, ArgType) && "Instruction has invalid inputs");
519  ++EmittedInsts;
520
521  if(Opcode == PPC32::MovePCtoLR) {
522    O << "mflr r0\n";
523    O << "bcl 20,31,L" << CurrentFnName << "$pb\n";
524    O  << "L" << CurrentFnName << "$pb:\n";
525    return;
526  }
527
528  O << TII.getName(MI->getOpcode()) << " ";
529  std::cout << TII.getName(MI->getOpcode()) << " expects " << ArgCount << " args\n";
530
531  if(Opcode == PPC32::LOADLoAddr) {
532    printOp(MI->getOperand(0));
533    O << ", ";
534    printOp(MI->getOperand(1));
535    O << ", lo16(";
536    printOp(MI->getOperand(2));
537    O << "-L" << CurrentFnName << "$pb)\n";
538    return;
539  }
540
541  if(Opcode == PPC32::LOADHiAddr) {
542    printOp(MI->getOperand(0));
543    O << ", ";
544    printOp(MI->getOperand(1));
545    O << ", ha16(" ;
546    printOp(MI->getOperand(2));
547     O << "-L" << CurrentFnName << "$pb)\n";
548    return;
549  }
550
551  if( (ArgCount == 3) && (ArgType[1] == PPC32II::Disimm16) ) {
552    printOp(MI->getOperand(0));
553    O << ", ";
554    printOp(MI->getOperand(1));
555    O << "(";
556    if((ArgType[2] == PPC32II::Gpr0) && (MI->getOperand(2).getReg() == PPC32::R0)) {
557    	O << "0";
558    } else {
559    	printOp(MI->getOperand(2));
560    }
561    O << ")\n";
562  } else {
563    for(i = 0; i< ArgCount; i++) {
564        if( (ArgType[i] == PPC32II::Gpr0) && ((MI->getOperand(i).getReg()) == PPC32::R0)) {
565            O << "0";
566        } else {
567        	//std::cout << "DEBUG " << (*(TM.getRegisterInfo())).get(MI->getOperand(i).getReg()).Name << "\n";
568            printOp(MI->getOperand(i));
569        }
570        if( ArgCount - 1 == i) {
571            O << "\n";
572        } else {
573            O << ", ";
574        }
575    }
576  }
577
578  return;
579}
580
581bool Printer::doInitialization(Module &M) {
582  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
583  //
584  // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
585  // instruction as a reference to the register named sp, and if you try to
586  // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
587  // before being looked up in the symbol table. This creates spurious
588  // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
589  // mode, and decorate all register names with percent signs.
590 // O << "\t.intel_syntax\n";
591  Mang = new Mangler(M, true);
592  return false; // success
593}
594
595// SwitchSection - Switch to the specified section of the executable if we are
596// not already in it!
597//
598static void SwitchSection(std::ostream &OS, std::string &CurSection,
599                          const char *NewSection) {
600  if (CurSection != NewSection) {
601    CurSection = NewSection;
602    if (!CurSection.empty())
603      OS << "\t" << NewSection << "\n";
604  }
605}
606
607bool Printer::doFinalization(Module &M) {
608  const TargetData &TD = TM.getTargetData();
609  std::string CurSection;
610
611  // Print out module-level global variables here.
612  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
613    if (I->hasInitializer()) {   // External global require no code
614      O << "\n\n";
615      std::string name = Mang->getValueName(I);
616      Constant *C = I->getInitializer();
617      unsigned Size = TD.getTypeSize(C->getType());
618      unsigned Align = TD.getTypeAlignment(C->getType());
619
620      if (C->isNullValue() &&
621          (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
622           I->hasWeakLinkage() /* FIXME: Verify correct */)) {
623        SwitchSection(O, CurSection, ".data");
624        if (I->hasInternalLinkage())
625          O << "\t.local " << name << "\n";
626
627        O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
628          << "," << (unsigned)TD.getTypeAlignment(C->getType());
629        O << "\t\t# ";
630        WriteAsOperand(O, I, true, true, &M);
631        O << "\n";
632      } else {
633        switch (I->getLinkage()) {
634        case GlobalValue::LinkOnceLinkage:
635        case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
636          // Nonnull linkonce -> weak
637          O << "\t.weak " << name << "\n";
638          SwitchSection(O, CurSection, "");
639          O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
640          break;
641
642        case GlobalValue::AppendingLinkage:
643          // FIXME: appending linkage variables should go into a section of
644          // their name or something.  For now, just emit them as external.
645        case GlobalValue::ExternalLinkage:
646          // If external or appending, declare as a global symbol
647          O << "\t.globl " << name << "\n";
648          // FALL THROUGH
649        case GlobalValue::InternalLinkage:
650          if (C->isNullValue())
651            SwitchSection(O, CurSection, ".bss");
652          else
653            SwitchSection(O, CurSection, ".data");
654          break;
655        }
656
657        O << "\t.align " << Align << "\n";
658        O << name << ":\t\t\t\t# ";
659        WriteAsOperand(O, I, true, true, &M);
660        O << " = ";
661        WriteAsOperand(O, C, false, false, &M);
662        O << "\n";
663        emitGlobalConstant(C);
664      }
665    }
666
667    for(std::set<std::string>::iterator i = Stubs.begin(); i != Stubs.end(); ++i) {
668    	O << ".data\n";
669		O << ".section __TEXT,__picsymbolstub1,symbol_stubs,pure_instructions,32\n";
670		O << "\t.align 2\n";
671    	O << "L" << *i << "$stub:\n";
672    	O << "\t.indirect_symbol " << *i << "\n";
673    	O << "\tmflr r0\n";
674    	O << "\tbcl 20,31,L0$" << *i << "\n";
675    	O << "L0$" << *i << ":\n";
676    	O << "\tmflr r11\n";
677    	O << "\taddis r11,r11,ha16(L" << *i << "$lazy_ptr-L0$" << *i << ")\n";
678    	O << "\tmtlr r0\n";
679    	O << "\tlwzu r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n";
680    	O << "\tmtctr r12\n";
681    	O << "\tbctr\n";
682    	O << ".data\n";
683		O << ".lazy_symbol_pointer\n";
684		O << "L" << *i << "$lazy_ptr:\n";
685        O << ".indirect_symbol " << *i << "\n";
686        O << ".long dyld_stub_binding_helper\n";
687
688   	}
689
690  delete Mang;
691  return false; // success
692}
693
694} // End llvm namespace
695